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Spatial Panel Data Model with Error
Dependence: A Bayesian Separable

Covariance Approach

Samantha Leorato∗ and Maura Mezzetti†

Abstract. A hierarchical Bayesian model for spatial panel data is proposed. The
idea behind the proposed method is to analyze spatially dependent panel data by
means of a separable covariance matrix. Let us indicate the observations as yit,
in i = 1, . . . , N regions and at t = 1, . . . , T times, and suppose the covariance
matrix of y, given a set of regressors, is written as a Kronecker product of a
purely spatial and a purely temporal covariance. On the one hand, the structure of
separable covariances dramatically reduces the number of parameters, while on the
other hand, the lack of a structured pattern for spatial and temporal covariances
permits capturing possible unknown dependencies (both in time and space). The
use of the Bayesian approach allows one to overcome some of the difficulties of the
classical (MLE or GMM based) approach. We present two illustrative examples:
the estimation of cigarette price elasticity and of the determinants of the house
price in 120 municipalities in the Province of Rome.

Keywords: Bayesian inference, Kronecker product, separable covariance matrix,
inverse Wishart distribution, spatial–temporal dependence.

1 Introduction

In recent years, there has been a growing interest in studying panel data theory. The
great advantage of panel data is that there is more than one realization of the observ-
able processes, thus allowing for various forms of heterogeneity/dependence that are not
possible for cross-section or time-series data separately. When for each time unit the
observed variables refer to a spatial aggregate (region, country or municipality) they
are usually referred to as spatial panel data. The development of spatial econometric
models conveys particular emphasis on the role of either spatial structure (heterogene-
ity) or interactions in space (spatial autocorrelation). The fact that distance affects
economic behavior is the main reason for a variable associated with a specific location
being dependent on variables at other locations. In this perspective, different types of
interaction effects may be considered: endogenous interaction effects, exogenous inter-
action effects or interaction effects among error terms. Usually the literature refers to
spatial lag model for the former situation, and to spatial error model for the latter (see,
for instance, Elhorst (2010)).

This paper complements the literature on models with error correlation for spatial
panel data; in particular, we propose a hierarchical Bayesian model that accounts for
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both spatial and temporal error autocorrelations. To the authors’ best knowledge, the
first spatial panel data model allowing for both spatial and temporal dependences is
due to Baltagi et al. (2007), who extended the spatial autoregressive error model by
adding an autocorrelation structure on the errors at different time units. One of the
first papers dealing with a Bayesian approach for the estimation of spatial panel data
with autocorrelated errors is Zheng et al. (2008), who proposed a hierarchical Bayesian
estimation of the model of Baltagi et al. (2007). Since then the spatial panel data
literature has been growing exponentially fast. Most of the contributions, though, fall
into a classical framework (mainly MLE or GMM based). In contrast, the Bayesian
contributions to spatial panel models have been relatively few. One of the explicit aims
of this work is therefore to fill the gap and help define a Bayesian alternative to the
classical spatial–temporal error model.

As for the model of Zheng et al. (2008), our model considers both spatial and tempo-
ral heterogeneity, by the inclusion of fixed or random effects in a single model. However,
unlike Zheng et al. (2008), we do not assign a priori any specific structure to the covari-
ance matrix. The key assumption in our approach is the separability of the spatial and
temporal components of the covariance (conditional on eventual heterogeneities of the
covariates). The covariance matrix of the dependent variables thus takes the form of a
Kronecker product of two covariance matrices (temporal and spatial). This assumption
incorporates the main models considered in the spatial error dependence approach.

Several authors observed many advantages of the use of Kronecker product for the
decomposition of the covariance for analyzing different types of data. For example, it has
been applied to multivariate longitudinal data (see, for instance, Naik and Rao (2001)
or Shults (2000)); some spatio-temporal models have also been taken into account in
geological and biomedical applications (see Aston and Gunn (2005) or Kyriakidis and
Journel (1999)). A well-known limit of separable covariance functions is that they do
not allow for space–time interactions in the covariance (e.g., see Kyriakidis and Journel
(1999) and Cressie and Huang (1999)). Nevertheless, statistical space–time modeling has
been using separable covariance functions to a large extent. The main advantage is that
the structure of a separable covariance drastically reduces the number of parameters
in the covariance matrix, and therefore computational procedures for large space–time
data sets are simplified. Furthermore, Genton (2007) studied the nearest Kronecker
approximation of non-separable spatial–temporal covariance matrices, in the Frobenius
norm.

A particular factorizable covariance matrix arises naturally in the model proposed
by Baltagi et al. (2007), where the spatial and temporal covariances depend on scalar
parameters measuring spatial and temporal dependencies. Therefore the hypotheses of
Baltagi et al. (2007) (as well as Zheng et al. (2008)) can be derived by our model
assumptions. The assumption of a structured covariance matrix, typically depending
on a small fixed number of parameters, is more parsimonious and has advantages both
in terms of computational burden and interpretability. On the other hand, according
to this assumption, the pattern of the spatial dependence is given, usually governed by
geographical proximity. It is however possible that some social, political or economical
factors determine the proximity of two regions or countries, and these factors may not be
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known at all. Therefore, our proposal of unstructured spatial and temporal covariances
is expected to be more robust against misspecification of the error components.

The rest of the paper is structured as follows: after a brief review of the main
competing models for spatial panel data in Section 1.1, in Section 2 we present our
hierarchical model, and derive the posterior distributions in the general case (when we
impose no structure on the spatial and temporal components). Section 3 considers the
models obtained when the spatial or temporal patterns are specified. Two examples
are treated as benchmarks: the autoregressive matrix for the temporal dimension and
a spatial covariance based on the matrix exponential. After showing computational
aspects in Section 4, Section 5 presents applications to simulated and real data, while
Section 6 is devoted to sensitivity analysis. In particular, in Section 6.2 robustness
to deviation from separability in covariance structure is checked. Finally, Section 7
concludes.

1.1 The existing models

In the last decade, many authors proposed alternative methods for the estimation of
different specifications of spatial panel data models. Here we briefly review the main
models for spatial panel data considered in the literature, with a particular focus on
models with spatial autocorrelations. A deeper presentation of the different models can
be found in Elhorst (2010), Anselin et al. (2008) and more recently in Lee and Yu (2012).

The alternative models can be divided into different classes, according to the nature
of the spatial interaction effects considered, the presence or absence of dynamic effects,
and the type of time- or space-specific effects. Concerning the spatial dimension, the
model may contain spatially lagged dependent variables (spatial lag model), spatially
lagged regressors (Durbin model) or spatial error autocorrelation (SEM). The spatial
interaction in general is specified via a spatial autoregressive process that depends on a
weight matrixW. The weight matrix is given a priori and is typically either an adjacency
matrix, that is, a matrix with zeros on the main diagonal and ones corresponding to
neighboring couples of regions (usually normalized by rows), or a decreasing function
of distances between regions.

Following Sarafidis and Wansbeek (2012), the main spatial error models are the
spatial autoregressive (SAR), the spatial moving average (SMA) and the spatial error
component (SEC) models. These spatial models can be estimated, for example, using
a generalized method of moments (GMM) approach (see, e.g., Kapoor et al. (2007)
and Kelejian and Prucha (2010)). In models with spatial and temporal covariances, the
time dependence is usually represented by an autoregressive process as, for example, in
Baltagi et al. (2003), Kapoor et al. (2007).

Spatial panel data models can include space specific effects, to account for hetero-
geneity in space due to unobserved characteristics of each spatial unit considered. Similar
effects can be included in time that control spatially-invariant variables whose omission
could bias the estimates in a time-series analysis. A model could include simultaneously
space- and time-specific effects. All the different specifications described above can be
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Non-dynamic models Dynamic models
Spatial lag model (SLM) Spatial lag model (DSLM)

yt = μt + λWyt + β′xt + ut yt = μt + ρyt−1 + λWyt + β′xt + ut

Spatial error models (SEM) Spatial error models (DSEM)
yt = μt + β′xt + εt yt = μt + ρyt−1 + β′xt + εt
(SMA) εt = λWut + ut

(SAR) εt = λWεt + ut

(SAR+AR) εt = λWεt + vt

vt = ρvt−1 + ut

(SEC) εt = λWξt + ut

(SMA) εt = λWut + ut

(SAR) εt = λWεt + ut

(SEC) εt = λWξt + ut

Durbin model (DM) Durbin model (DDM)
yt = μt + β′xt + θWxt + ut yt = μt + ρyt−1 + β′xt + θWxt + ut

Table 1: Specifications of the main spatial panel data models, where ut is a vector of
N independent N(0, σ2) random variables and ξit is a zero-mean random component
uncorrelated with uit and xit.

either non-dynamic or dynamic. A dynamic model consists in the inclusion of time-

lagged values of the dependent variable. Table 1 presents a schematized view of all the

models described above. Although far from being exhaustive, these models represent a

good synthesis of the main models used in the spatial panel data literature. Standard

spatial error models do not account for covariances in the time dimension. However,

Table 1 also includes the model proposed by Baltagi et al. (2007) as an extension of

the static SAR model. To the author’s best knowledge, no dynamic counterpart has

ever been proposed. As we stressed above, inference on all models in Table 1 mainly (if

not exclusively) follows the non-Bayesian paradigm. In all the models below, the vector

of specific effects μt = (μ1t, . . . , μNt)
′ is equal to μit = αi for the spatial effects only,

μit = ηt, in the case of the temporal specific effect, and μit = αi + ηt when the model

includes both. In all these cases, the effects can be assumed to be fixed or random. In

the random effects model, αi and ηt are treated as random variables that are assumed

to be mutually independent and independent with the errors εit.

2 The conditionally separable autocovariance model

Let y = {yit} indicate the column vector (N×T ), where N is the number of spatial units

and T the number of time points and let x = (x1, . . . ,xK), where xk denotes the vector

of N · T observations relative to the kth regressor (excluding time or space dummies).

Moreover, let β be the vector of K regression coefficients and μ = (μ′
1, . . . ,μ

′
T )

′ be
an N · T column vector of fixed or random effects either regional (μit = αi), temporal

(μit = ηt) or both (μit = ηt + αi).

In this paper, we propose a Bayesian approach for the estimation of a spatial panel

data model, assuming a conditionally separable autocovariance matrix for the errors

(CSA).
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Specifically, the CSA model is a hierarchical linear model,

y = xβ + μ+ ε,

y | x,β,μ, σ2
ε ,Ψ,Φ ∼ N(xβ + μ,Σ), (1)

Σ = var(y | x,β,μ,Ψ,Φ) = Ψ⊗Φ,

namely the covariance matrix Σ is the Kronecker product of two symmetric positive
definite (p.d.) matrices of sizes T and N , respectively. In order to write the likelihood
function, it is more convenient to rewrite the term μ in (1) as

μ = (IT ⊗ ıN )α+ (ıT ⊗ IN )η,

where α and η are the vectors of space and time effects, respectively, while IT ⊗ ıN and
ıT ⊗ IN are the corresponding matrices of dummies. Appropriately specifying Ψ and Φ
gives all the SEM models in Table 1. More precisely, the errors in (1) can be equivalently
written as εt = ctDut and εi = dtCui, where Ψ = CC� and Φ = DD� and ct and di
are the tth and ith elements of the main diagonals of C and D, respectively.

The introduction of a separable covariance matrix yields the intuitive interpretation
of the two componentsΨ andΦ as the spatial and temporal covariance matrices, respec-
tively. The covariances between the observations of the response variable are therefore
the following:

cov(yit, yjs|β,α,η,Ψ,Φ) = φi,jψt,s. (2)

Taking one of the two matrices as diagonal, we have the model with either the
temporal or the spatial dependence considered separately. In particular, one obtains
the well known SUR model (Zellner (1962)), when Φ is the identity matrix. Model
(1) in particular coincides with the one used in Zheng et al. (2008) if Ψ and Φ are
autoregressive and spatial autoregressive matrices, respectively.

Various authors (see, for instance, Mitchell et al. (2006)) noted that a lack of identi-
fiability can result when covariance is defined through Kronecker product. The indeter-
minacy stems from the fact that givenΣ = Ψ⊗Φ,Ψ andΦ are not unique since, for any
k > 0, kΨ⊗ (1/k)Φ = Ψ⊗Φ. As a consequence, the likelihood in the Gaussian model
(1) is invariant under scale transformations of Φ and Ψ. This non-identifiability in the
frequentist contest is generally fixed by rescaling one of the factor-specific covariance
matrices so that one of its diagonal nonzero elements is equal to 1, (see, for instance,
Srivastava et al. (2008)), for example, by setting Ψ11 = 1 or Φ11 = 1. Historically,
Bayesian statisticians have been less interested in the concept since, strictly speaking,
any parameter having a proper prior distribution is estimable, thus, by using a Bayesian
hierarchical model with proper priors for Ψ and Φ, we can ignore this problem. In fact,
as noted by Lindley (1972), the problem of non-identification is not a real difficulty in
practice in the Bayesian context, as long as the posterior distribution is well defined,
which in general occurs if the prior is a proper distribution. Moreover, the posterior
distribution of coefficients β depends on Σ = Ψ ⊗Φ, thus, is not affected by changes
in the scale of Ψ and Φ.

The lack of information about the possible source of correlation both in the spatial
and in the serial dimensions, especially in the unobservables, is the main reason for
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considering the extension of the traditional SEM models to a more general assumption
of separable spatial and temporal covariance matrices. Similar considerations also moti-
vated Pesaran (2004) and Pesaran and Tosetti (2011) to propose an alternative residual
multifactor approach, where spatial dependence is determined by a small number of
unobserved common factors.

As an alternative to the main model illustrated in the following subsections, Section 3
presents the case of structured matrices Ψ and Φ. In this case, prior probabilities
simplify to p(Ψ) = p(ρ) and p(Φ) = p(λ) where ρ and λ are scalar parameters. We
refer to the case when the structure of Ψ (or Φ) is known as structured and when it is
unknown as unstructured.

In all the specifications considered below, we assume prior independence of the
parameters of the model, namely that

p(β,α,η,Φ,Ψ) = p(Ψ)p(Φ)p(β)p(α)p(η). (3)

Most of the prior distributions in (3) are chosen within the conjugate families. Therefore,
all β, η and α are assumed to have a Gaussian prior so that

β | β0,H ∼ Nk (β0,H) (4)

and

p(α) ∼ NN (α0,Hα),

p(η) ∼ NT (η0,Hη). (5)

In particular, if we assume state effects, then η = 0 with probability one, which means
assuming a degenerate prior for η, with η0 = 0, Hη = 0, the null matrix. Similarly, the
model with time effects only is obtained by taking α0 = 0, Hα = 0. The specification of
the priors for Ψ and Φ in the unstructured and structured cases will be detailed in the
following sections. As is well known, within the Bayesian framework, the fixed and ran-
dom effects differ only in that the random effects require one more level in the hierarchy.
Therefore, in the case of random effects, we must also specify a prior distribution for
the (vector valued) hyperparameters α0,η0 while all other prior distributions remain
the same:

p(α | α0,Hα) ∼ NN (α0,Hα), p(α0) ∼ NN (α00,H
0
α),

p(η | η0,Hη) ∼ NT (η0,Hη), p(η0) ∼ NT (η00,H
0
η).

(6)

Finally, we set H−1
η | νη,Aη ∼ WT (νη,Aη) and H−1

α | να,Aα ∼ WN (να,Aα) when
the model includes time or space random effects, where νη > T +1, να > N+1, Aη,Aα

are two symmetric p.d. matrices, and whereWk(a,A) indicates a k-dimensional Wishart
distribution with parameters a and A.
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2.1 Unstructured covariances

The only constraints imposed on the two matrices correspond to the definition of a
covariance matrix (symmetry and p.d.). The priors p(Ψ) and p(Φ) are matrix-valued
probability distributions. A convenient choice is to let the distributions of Ψ and Φ
belong to conjugate families. In particular, we choose the inverse Wishart priors:

Ψ ∼ IWT (γ,A),
Φ ∼ IWN (ν,B),

where A and B are symmetric p.d. matrices, while γ and ν are two scalars. We adopt
the following parametrization: EΨ = A/γ and EΨ−1 = A−1/(γ − T − 1), and, corre-
spondingly, EΦ = B/ν and EΦ−1 = B−1/(ν −N − 1); thus, γ > T +1 and ν > N +1.
Hence, the lower the shape parameters (ν −N − 1 and γ − T − 1), the less informative
the distribution.

One of the main drawbacks of the inverse Wishart distribution is that the uncertainty
of the matrix is determined by the single scalar parameter (ν or γ). This limitation of the
Wishart prior induced some authors to consider generalizations such as, for instance,
the generalized inverse Wishart distribution (see, for instance, Brown et al. (1994)).
This kind of generalization is not explored here, and will be the object of further re-
search. Despite its limits, we find that the Wishart model performs quite well in our
simulations, even compared to its competitors based on the structured specification.
Although in principle Wishart probability density function is defined also for γ ≤ T +1,
the resulting estimates in this case are very unstable. A less informative choice for γ
and ν guaranteeing stability of the estimates, that is, γ = T + 2, ν = N + 2, proves to
work reasonably well even when sizes N and T are (moderately) unbalanced. However,
when the difference between the time and space dimensions increases, the prior preci-
sion parameters may differ substantially. In particular, the prior precision relative to the
covariance matrix with the highest dimension tends to increase and, as a consequence,
the weight of the prior expected value on the posterior expected value tends to increase.

Besides the advocated robustness against misspecification of the covariance function,
an advantage of the unspecified structure of the covariance matrices is that, similarly
to the multifactor approach, it can account for strong forms of dependence. This is in
particular important in the spatial dimension where shocks common to all regions at a
given time can determine a persistent spatial dependence. According to the definition
given in Chudik et al. (2009), the process {εit} is cross-sectionally strongly dependent
if, as N → ∞,

N−1ζ1(Φ) ≥ K > 0

where ζi(Φ) is the ith largest eigenvalue of matrix Φ. From Corollary 2.2 in Dette
(2002), if ν = N + κ and B = IN , then

lim
N

NζN (Φ−1) = lim
N

N
(
1−

√
N/ν

)2

≤ lim
N

N (1−N/ν) = κ

and consequently,
N−1ζ1(Φ) ≥ 1/κ > 0.

Thus, the prior distribution for Φ allows for strong cross-sectional (spatial) dependence.
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2.2 Posterior distributions

The derivation of the conditional distributions is a simple matter because they are
assumed to belong to conjugate families. For both the fixed and random effects models,
the likelihood will be written as

L(y | x,β,α,η,Ψ,Φ)

= |Σ|−1/2

(2π)NT/2 exp
{
−1

2 (y − xβ −Dsα−Dtη)
′Σ−1(y − xβ −Dsα−Dtη)

}
(7)

where Dt = IT ⊗ ıN is the matrix of the time dummies and Ds = ıT ⊗ IN is the matrix
of the space dummies, and Σ as in (1) is equal to Ψ⊗Φ. The properties of Kronecker
product allow us to compute Σ−1 as Ψ−1⊗Φ−1. Given the sets of priors of the previous
subsection, we are able to write explicitly the posterior distributions for the fixed and
random effects models.

For the fixed effects model the full conditional immediately writes:

p(y,x,β,μ,Ψ,Φ) = p(y | x,β,α,η,Ψ,Φ)p(β)p(α)p(η)p(Ψ)p(Φ) (8)

where

p(β) ∝ |H|− 1
2 exp

(
−1

2
(β − β0)

′H−1(β − β0)

)
and p(α) and p(η) follow (5).

The posterior distribution of β and of the effects are both Gaussian. In particular,

β | y,x,α,η,Ψ,Φ ∼ Nk

(
β̃, H̃

)
(9)

with

β̃ = E(β | y,x,α,η,Ψ,Φ) = H̃
(
x′Σ−1(y −Dsα−Dtη) +H−1β0

)
,

H̃ = var(β | y,x,α,η,Ψ,Φ) =
(
x′Σ−1x+H−1

)−1
.

The posterior distributions for α and η are respectively:

α | y,x,β,η,Ψ,Φ ∼ NN

(
α̃, H̃α

)
,

α̃ = H̃α

[
D′

sΣ
−1(y − xβ −Dtη) +H−1

α α0

]
= H̃α

(
Φ−1MsΨ

−1ıT +H−1
α α0

)
,

H̃α =
[
D′

sΣ
−1Ds +H−1

α

]−1
=

[
ı′TΨ

−1ıTΦ
−1 +H−1

α

]−1
, (10)

and

η | y,x,β,α,Ψ,Φ ∼ NT

(
η̃, Σ̃η

)
,

η̃ = Σ̃η

(
Ψ−1M′

tΦ
−1ıN +H−1

η η0

)
,

Σ̃η =
[
ı′NΦ−1ıNΨ−1 +H−1

η

]−1
(11)
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where Ms is the N×T matrix obtained by reshaping the vector y−xβ−Dtη such that
the N observations of year t correspond to column t, Mt is the T ×N matrix obtained
by reshaping the vector y−xβ−Dsα such that the T observations of state i correspond
to column i.

The posterior distributions of Φ and Ψ are inverse Wishart:

Ψ | y,x,β,α,η,Φ ∼ IW(γ +N, Ã) with Ã = U′Φ−1U+A,

Φ | y,x,β,α,η,Ψ ∼ IW(ν + T, B̃) with B̃ = UΨ−1U′ +B,
(12)

where U is obtained by reshaping the vector of residuals y−xβ−Dsα−Dtη into the
N × T matrix, such that the tth column gives the N residuals at time t.

In the case of a random effects model, the full conditional distribution includes one
more component arising from the hierarchical step on the vectors η0 and α0:

p(y,x,β,η,α,η0,α0,Ψ,Φ) = L(y | x,β,η,α,η0,α0,Ψ,Φ)

×p(β)p(η | η0)p(η0)p(α | α0)p(α0)p(Ψ)p(Φ). (13)

Therefore, the posterior distributions of all the parameters remain the same, thus α
and η follow (10) and (11) and

α0 | y,x,β,η,η0,α,Ψ,Φ ∼ NN

(
α̃0, H̃

0
α

)
,

α̃0 = H̃0
α

[
H−1

α α+H0
α
−1

α00

]
,

H̃α =
[
H−1

α +H0
α
−1

]−1

,

and similarly

η0 | y,x,β,η,α,α0,Ψ,Φ ∼ NN

(
η̃0, H̃

0
η

)
,

η̃0 = H̃0
η

[
H−1

η η +H0
η
−1

η00

]
,

H̃η =
[
H−1

η +H0
η
−1

]−1

.

3 Structured covariances

Posterior estimation of unstructured covariances presented in Section 2.1 might re-
veal latent interactions and this can be advantageous when error correlation on the
two dimensions, space and time, is not a straightforward function of spatial and tem-
poral lags. On the other hand, there is a trade-off between robustness and parsi-
mony of a model: under the separability assumption, the matrix Σ still depends on
(N(N + 1) + T (T + 1))/2 parameters, in contrast with the models summarized in
Table 1. When prior information on the spatial or the temporal interaction is avail-
able, modeling Ψ or Φ as a known function of a fixed number of parameters could
be preferable. In this section, we focus on the estimation of model (1) under this hy-
pothesis. For the time dimension we consider an autoregressive specification, while for
the matrix Φ we define a matrix exponential specification. This is strictly related to
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the matrix exponential spatial structure (MESS) models for the spatial errors proposed
by LeSage and Pace (2007). For both parameters, we show that the posterior distri-
bution is log-concave, permitting us to implement adaptive rejection sampling. Thus,
unlike LeSage and Pace (2007), through a Bayesian approach, computations for MESS
model estimation are feasible avoiding the finite series approximation of the exponential
transformation.

3.1 Autoregressive model for Ψ

Starting from (3), again β, η and α follow (4) and (5), respectively. Ψ is now defined
as a first order autoregressive matrix. Then, |Ψ| = (1−ρ2)T−1 and the inverse Ψ−1 can
be written

Ψ−1 =
1

1− ρ2
[
IT − ρM2 + ρ2M3

]
(14)

where

M2 =

⎛⎜⎜⎜⎜⎜⎝
0 1 . . . 0 0
1 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 1
0 0 . . . 1 0

⎞⎟⎟⎟⎟⎟⎠ and M3 =

⎛⎜⎜⎜⎜⎜⎝
0 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0
0 0 . . . 0 0

⎞⎟⎟⎟⎟⎟⎠.

A reasonable assumption for ρ can be a scaled Beta prior:

p(ρ) =
Γ(c+ d)

Γ(c)Γ(d)

(
ρ+ a

b− a

)c−1 (
1− ρ+ a

b− a

)d−1

(15)

with −1 ≤ a < b ≤ 1.

Except for the parameter ρ, the derivation of the posterior distributions of the other
parameters is essentially the same as in Section 2.2.

The posterior of ρ is a nonstandard distribution:

p(ρ | y,X,β,η,α,Ψ)

∝ L(ρ | X,β,η,α,Ψ, λ)p(ρ)

∝ (1− ρ2)N(T−1)/2

(
ρ+ a

b− a

)c−1 (
1− ρ+ a

b− a

)d−1

exp−
1
2 trΨ

−1C

∝ (1− ρ2)
N(T−1)

2

(
ρ+ a

b− a

)c−1(
1− ρ+ a

b− a

)d−1

exp
− 1

2
k1−k2ρ+k3ρ2

1−ρ2 , (16)

where C = UΦ−1U′, k1 = tr(C), k2 = tr(M2C) and k3 = tr(M3C). Log-concavity
is easily verified (see Rowe (2002a)) and allows using adaptive rejection sampling as in
Gilks and Wild (1992).
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3.2 Matrix exponential Φ

The definition of a parametric spatial model usually stems from the knowledge of the
spatial structure governing the process, often defined through an adjacency matrix W.
One of the leading examples is the spatial autoregressive covariance matrix Φ = [(I −
λW)(I−λW)′]−1, also used in Zheng et al. (2008), where λ is a scalar spatial correlation
parameter and W is an adjacency matrix assumed to have non-negative elements and
typically row-standardized such that ‖W‖∞ = 1.

Here we propose a specification based on the matrix exponential: Φ = eλW, where

for a square matrix A, eA =
∑∞

k=0
Ak

k! . Chiu et al. (1996) proposed matrix exponen-
tial as a flexible way to specify an arbitrary covariance matrix. Some years before,
Leonard and Hsu (1992) proposed to model the variance in a Bayesian hierarchical
Gaussian model as the matrix exponential of an appropriately transformed Gaussian
vector and showed advantages relative to the standard conjugate inverse Wishart prior
distribution. The MESS model proposed by LeSage and Pace (2007) corresponds to
Φ = e{−λW}e{−λW′} and has the advantage of simplifying “the log-likelihood al-
lowing a closed form solution to the problem of maximum-likelihood estimation”. This
occurs because of tr(W) = 0, that implies det(Φ) = exp(λ tr(W)) = 1 for all λ. If W is
a symmetric adjacency matrix, our specification corresponds to the covariance matrix
of an MESS model, with a parameter λMESS = −λ/2.

Prior distributions of the parameters (β,α,η) are the same as in the above sections.
As for p(Ψ), it can be either the inverse Wishart as in Section 2.1 or the prior distribution
p(ρ) discussed in Section 3.1.

We assume for λ a diffuse prior: p(λ) ∝ 1. For both the fixed and random effects
versions, the likelihood will be written as

L(y | x,β,α,η,Ψ, λ)

= |Σ|−1/2

(2π)NT/2 exp
{
−1

2 (y − xβ −Dsα−Dtη)
′Σ−1(y − xβ −Dsα−Dtη)

}
(17)

where Σ = Ψ⊗ eλW .

The posterior of λ is a nonstandard distribution:

p(λ | y,X,β,η,α,Ψ) ∝ L(y | X,β,μ,Ψ, λ)p(λ)

∝ exp

{
−tr

(
TλW

2

)
− 1

2

∞∑
k=0

(−λ)k

k!
tr
(
W kUΨ−1U′)}

(18)

where the matrix U is defined in Section 2.2.

The log of the posterior distribution is easily seen to be concave, provided W is
a symmetric matrix as shown in the Appendix, and adaptive rejection sampling as in
Gilks and Wild (1992) can be implemented.
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4 Computational aspects

We implemented a Gibbs sampling algorithm in Matlab, in order to obtain posterior
estimates from the posterior distributions derived in the previous sections. Starting with
initial values for the unknown parameters β, α, η, Ψ and Φ, say β(0), α(0), η(0), Ψ(0)

and Φ(0), the algorithm is based on the following steps (without lack of generality, we
consider the fixed effects case):

(a) sample β(i) from p(β(i)|y,α(i−1),η(i−1),Ψ(i−1),Φ(i−1)), as in (9);

(b) sample α(i) from p(α(i)|y,β(i−1),η(i−1),Ψ(i−1),Φ(i−1)), as in (10);

sample η(i) from p(η(i)|y,β(i−1),α(i−1),Ψ(i−1),Φ(i−1)), as in (11);

(c) matrices Φ and Ψ are sampled according to the four possible models:

(i) Unstructured model (Um): no structure for both Ψ and Φ. The [N(N+1)+T (T+
1)]/2 parameters are sampled from

p(Φ(i)|y,β(i−1),α(i−1),η(i−1),Ψ(i−1))

and

p(Ψ(i)|y,β(i−1),α(i−1),η(i−1),Φ(i−1)),

two inverse Wishart distributions with updated parameters as in (12);

(ii) Autoregressive model (AR): autoregressive structure for Ψ and no structure for
Φ. The (1 +N(N + 1)/2) parameters are sampled from (12) for

p(Φ(i)|y,β(i−1),α(i−1),η(i−1), ρ(i−1))

and from (16) for p(ρ(i)|y,β(i−1),α(i−1),η(i−1),Φ(i−1)), through adaptive rejec-
tion sampling as in Gilks and Wild (1992) (ARS);

(iii) Expm model (Expm): matrix exponential specification for Φ and no structure for
Ψ. The (1 + T (T + 1)/2) parameters are sampled from (12) for

p(Ψ(i)|y,β(i−1),α(i−1),η(i−1), λ(i−1))

and from p(λ(i)|y,β(i−1),α(i−1),η(i−1),Ψ(i−1)) as in (18), through ARS. Our
specification for matrix exponential covariance differs from the MESS in that
W is not necessarily an adjacency matrix1. In principle, the ARS algorithm does
not need W to have zero entries in the main diagonal, but require a symmetric
matrix, thus excluding row standardization in most of the cases.

1Recently, Rodrigues et al. (2014) highlighted some important failures of the matrix exponential
spatial specification. If, in particular, W is a regular graph, the exponential matrix eλW turns out to
have a counterintuitive behavior: irrespective of the data, marginal and partial covariances between two
regions have opposite sign. Similar difficulties in interpreting the spatial covariance structure, however,
can arise using the SAR model (Wall (2004)), whenever the structure depends on an adjacency matrix.
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(iv) Fully structured model (AR-Expm): autoregressive structure for Ψ and matrix
exponential specification forΦ. The 2 parameters (ρ and λ) are estimated sampling
from (16) and (18) through ARS.

All specifications converge after a relatively low number of iterations. However, a
higher computational cost is associated to all models that include at least one structured
covariance matrix because sampling from an inverse Wishart distribution is faster than
sampling from either (16) and (18). Both previous posterior distributions require, in
fact, adaptive rejection sampling, and in some examples, the adaptive rejection sampling
algorithm took up to few tens of seconds to sample an acceptable value.

5 Application

We illustrate the performance of the model proposed using simulated data and two real
data sets. Simulation studies are considered in order to assess the performance of the
model and the sensitivity to prior assumptions. The first data set consists of a panel of
46 states of the United States for a period of 30 years, from 1963 to 1992, and estimates
the demand equation of cigarette consumption as a function of cigarette price and per
capita disposable income. This data set is taken from Baltagi (2008) and has also been
used for illustration purposes in other studies. A second application consists of house
price data from Province of Rome from 2005 to 2011 and studies the effect of economic
and demographic change on house price in 120 municipalities.

5.1 Simulated data

We simulate different scenarios, considering different values of T and N (equal to 16, 49
and 100). Different values for β, α and η have been considered, ranging in the interval
[−10, 10]. Temporal structure is assumed to be a first order autoregressive with values
for ρ in (−0.6,−0.3, 0, 0.3, 0.6). Concerning spatial structure, we simulate a fictitious
squared area composed of N squared regions (

√
N = 4, 7, 10 for each side), and W

is the corresponding symmetric adjacency matrix. The matrix Φ is the exponential
matrix defined in Section 3.2, Φ = eλW. For each adjacency matrix, different values for
λ are considered (−0.6,−0.3, 0, 0.3, 0.6). Different true spatial covariance matrices, as,
for example, spatial autoregressive, are also explored. For each scenario the absence of
fixed effects, presence of time or spatial fixed effects and the presence of time and spatial
effects are considered. For all the possible scenarios, we estimated the matrices Ψ and
Φ according to the four possible specifications (Um, AR, Expm, AR-Expm). For each
model we run 1000 simulations, and the estimation is done by an MCMC algorithm,
with 10000 MCMC iterations, after a burn in of 5000 iterations.

The estimates of β, α and η are stable under the different specification of the
covariance matrix for all the values considered. For this reason, the table and figures
that follow in this section refer to the case β = α = η = 0.

To evaluate the performance in estimating covariances, as a measure of distance be-
tween matrices, we use the normalized Frobenius norm of the difference between the true
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λ = −0.6
ρ = −0.6 ρ = 0 ρ = 0.6

|Φ̂−Φ| Um AR Expm Um AR Expm Um AR Expm
N = 16 T = 16 0.145 0.064 0.309 0.135 0.056 0.338 0.153 0.073 0.307
N = 16 T = 100 0.170 0.025 0.577 0.160 0.025 0.607 0.160 0.026 0.578
N = 100 T = 16 0.172 0.202 0.095 0.141 0.138 0.094 0.180 0.244 0.095
N = 100 T = 100 0.163 0.056 0.169 0.174 0.051 0.205 0.161 0.062 0.170

|Ψ̂−Ψ| Um AR Expm Um AR Expm Um AR Expm
N = 16 T = 16 0.181 0.508 0.056 0.074 0.003 0.084 0.185 0.509 0.069
N = 16 T = 100 0.164 0.477 0.164 0.225 0.224 0.241 0.158 0.347 0.160
N = 100 T = 16 0.226 0.955 0.021 0.042 0.547 0.030 0.218 0.376 0.022
N = 100 T = 100 0.171 0.426 0.052 0.095 0.117 0.075 0.169 0.541 0.052

λ = 0.6
ρ = −0.6 ρ = 0 ρ = 0.6

|Φ̂−Φ| Um AR Expm Um AR Expm Um AR Expm
N = 16 T = 16 0.301 0.036 0.378 0.300 0.034 0.417 0.275 0.038 0.379
N = 16 T = 100 0.340 0.008 0.562 0.321 0.015 0.575 0.334 0.010 0.562
N = 100 T = 16 0.170 0.105 0.097 0.194 0.081 0.096 0.196 0.119 0.094
N = 100 T = 100 0.288 0.029 0.225 0.305 0.027 0.280 0.290 0.028 0.228

|Ψ̂−Ψ| Um AR Expm Um AR Expm Um AR Expm
N = 16 T = 16 0.169 0.490 0.105 0.145 0.004 0.170 0.131 0.492 0.100
N = 16 T = 100 0.244 0.477 0.382 0.344 0.232 0.574 0.246 0.350 0.391
N = 100 T = 16 0.195 0.971 0.022 0.078 0.474 0.031 0.201 0.371 0.021
N = 100 T = 100 0.165 0.430 0.067 0.171 0.117 0.121 0.166 0.559 0.070

Table 2: Frobenius norm of the difference Φ̂−Φ and Ψ̂−Ψ corresponding to different
values of ρ and λ and different sample sizes.

and the estimated spatial and temporal matrices: |Φ̂−Φ0|/|Φ0| and |Ψ̂−Ψ0|/|Ψ0|,
where Φ0 and Ψ0 are respectively the true spatial and temporal covariances, Φ̂ and Ψ̂

are respectively the estimated spatial and temporal covariances, and |A| =
√∑

ij |aij |2.

Posterior estimates for ρ are almost identical irrespective of whether the matrix Φ
has a Wishart prior or is a function of λ, and the same behavior is observed for λ with
respect to Ψ. Thus, here we are only reporting results for the three models Um, AR
and Expm.
The unstructured model captures both temporal and spatial pattern as pointed out in
Figures 1–4, where comparison of posterior distributions of matrices Φ and Ψ with the
true ones is shown for four scenarios.

Table 2 presents the Frobenius norm of the difference between the true and estimated
covariance matrices (bothΦ andΨ), for small and large sample sizes and for some values
of ρ and λ. All matrices are standardized in order to have trace equal to their size. The
matrix Φ̂ is the mean of the samples from the posterior Wishart distribution in the cases

Um and AR, while it is equal to the exponential matrix eλ̂W with λ̂ being the mean of
the samples from the posterior distribution of λ in the Expm case. Similarly, the Ψ̂ in
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Figure 1: Posterior estimation of Φ and Ψ: unstructured model. T = 16, N = 16. The
true Ψ matrix is AR(1) with parameter ρ = 0.6, the true Φ is Expm(λW), with λ = 0.6.

Figure 2: Posterior estimation of Φ and Ψ: unstructured model. T = 100, N = 100.
The true Ψ matrix is AR(1) with parameter ρ = 0.6, the true Φ is Expm(λW), with
λ = −0.6.

the column denoted as AR is the autoregressive covariance matrix computed using the
posterior estimates of ρ. Unstructured models perform generally well. When the model
is estimated assuming either AR or Expm, we observe that the estimate is generally
worse. In particular, the estimate of the corresponding structured matrix (i.e., Ψ when
AR model is assumed and Φ when Expm model is assumed, respectively) is worse; and,
unexpectedly, the estimate of the matrix that is still estimated without assuming any
structure is better. In order to evaluate the magnitude of the Frobenius norm presented
in Table 2, we simulate 10000 pairs of matrices from inverse Wishart distributions with
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Figure 3: Posterior estimation of Φ and Ψ: unstructured model. T = 16, N = 100.
The true Ψ matrix is AR(1) with parameter ρ = 0.6, the true Φ is Expm(λW), with
λ = −0.6.

Figure 4: Posterior estimation of Φ and Ψ: unstructured model, T = 16, N = 16. The
true Ψ matrix is IT , the true Φ is IN .

expected values equal to the true matrices and shape parameters equal to 10. The values
found in Table 2 result lower than the 2.5 percentile of the simulated results, except for
the Expm and the Um estimates of Φ when N = 16 and λ = 0.6; the latter, however,
never exceeds the 10th percentile. In general, the structured estimates perform worse
when the sample size (N for Φ, T for Ψ) is small.

To confirm the fact that structured models are sensitive to the specification of the
dependence pattern, we performed simulations from a data generating process with
spatial covariance different from matrix exponential (we use an SAR with the same λs).
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Unsurprisingly, only unstructured models (Um and AR that are unstructured for Φ)
are able to capture the spatial dependence correctly.

5.2 Cigarette demand data

The data set consists of a panel of 46 US states for a period of 30 years, from 1963
to 1992. The response variable is the real per capita sales of cigarettes by persons
of smoking age (14 years and older) measured in packets per person on the log-scale
(henceforth cig). Two explanatory variables are considered for constructing the demand
equation: the average retail price of a packet of cigarettes measured in real terms on
the log-scale (p) and the real per capita disposable income of each state on the log-scale
(inc). Then, all the coefficients in the demand equation represent elasticities.

This data set has been widely used in spatial panel data literature (Baltagi and
Levin (1986), Baltagi and Levin (1992), Elhorst (2005), Baltagi (2008), Lee and Yu
(2010) among others). One of the challenges of this example is to take spatial depen-
dence between neighboring states into account. Other challenges are in accounting for
heterogeneities in space and time.

We run all the models described above, with and without temporal and spatial
fixed/random effects. More details, as well as reasons to include state-specific and time-
specific effects, are given in Baltagi (2008). The main findings of Baltagi and Levin
(1986), Baltagi and Levin (1992) are a significant price elasticity and very small income
elasticity (insignificant in Baltagi and Levin (1986) and significant but small in Baltagi
and Levin (1992)). Also, the “bootlegging” effect is significant: the minimum price of
neighboring states influences the cigarette consumption in a state.

Our estimated parameters β are in line with the results of Lee and Yu (2010): both
the price and income elasticities are significant, opposite in sign. A negative significant
price elasticity is also consistent with Baltagi and Levin (1986); income elasticity is
smaller in absolute value, as in Lee and Yu (2010). The Baltagi and Levin (1986) analysis
yields a significant negative effect of cigarette price on cigarette consumption, while there
is no effect of income on cigarette consumption with an insignificant income elasticity.

Table 3 gives the results under different models and in Figure 5 posterior distribution
of β with and without other effects are shown. Table 3 shows that the effect of price is
higher in absolute value when the exponential matrix model is assumed. Compared to
the models presented in Elhorst (2010), which we do not report here, our estimates are
more stable within the different models. To compare the different models, we compute
the marginal likelihood drawn from the posterior distributions from Gibbs output ac-
cording to Chib (1995) at each iteration and keeping the posterior mean values. These
are reported in Table 3 together with the sum of squared errors (SSE). Both criteria
suggest a better estimation arising from unstructured model.

Our model can also include spatially lagged regressors, which permit us to disen-
tangle direct and indirect spatial effects. We do not report the results of the estimates
obtained by adding lagged regressors in Table 3 since we want to stress the relative
performance of unstructured and structured models. Moreover, by taking into account
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Model p 95% CI inc 95% CI SSE post
likelihood

Um
–0.4254 [–0.4735, –0.3738] 0.2863 [0.2101, 0.3714] 49.4580 8118.6

FEsp –0.4169 [–0.4680, –0.3647] 0.2738 [0.1932, 0.3548] 11.9912 8326.6
REsp –0.4186 [–0.4686, –0.3672] 0.2686 [0.1917, 0.3525] 11.8692 8207.2
FEtime –0.4353 [–0.4902, –0.3786] 0.3446 [0.2495, 0.4355] 38.4413 8413.7
REtime –0.4305 [–0.4897, –0.3759] 0.3558 [0.2632, 0.4437] 38.3616 8327.5
FEsp FEtime –0.4259 [–0.4851, –0.3649] 0.3324 [0.2413, 0.4283] 7.7115 8208.9
REsp REtime –0.4274 [–0.4867, –0.3697] 0.3321 [0.2396, 0.4306] 7.6937 8413.9
AR

–0.4552 [–0.5407, –0.3665] 0.1611 [0.0526, 0.2779] 52.4364 6264.7
FEsp –0.4381 [–0.5237, –0.3532] 0.1131 [–0.0095, 0.2339] 13.0839 6298.4
REsp –0.4385 [–0.5242, –0.3512] 0.1153 [–0.0009, 0.2325] 13.1050 6285
FEtime –0.4508 [–0.5671,–0.3378] 0.3355 [0.1736, 0.4876] 45.2281 6318.9
REtime –0.4543 [–0.5705, –0.3368] 0.3330 [0.1706, 0.4942] 45.2065 6297.7
FEsp FEtime –0.4272 [–0.5486, –0.3083] 0.2815 [0.0954, 0.4731] 8.9095 6285.6
REsp REtime –0.4283 [–0.5505, –0.3073] 0.2811 [0.0913, 0.4711] 8.8887 6319.2
Expm

–0.6497 [–0.7517, –0.5465] 0.2455 [0.0900, 0.4307] 50.9832 4984.7
FEsp –0.6270 [–0.7321, –0.5247] 0.2150 [0.0407, 0.4360] 12.2229 5139.4
REsp –0.6280 [–0.7357, –0.5260] 0.2131 [0.0490, 0.4236] 12.1878 4999.8
FEtime –0.6873 [–0.8729, –0.5171] 0.4741 [0.3043, 0.6594] 41.9080 5149.8
REtime –0.6945 [–0.8708, –0.5242] 0.4719 [0.2964, 0.6528] 41.8500 5136.7
FEsp FEtime –0.6410 [–0.8165, –0.4680] 0.5068 [0.2897, 0.7160] 7.9975 5002.4
REsp REtime –0.6448 [–0.8092, –0.4809] 0.4995 [0.2889, 0.7231] 8.0042 5145.8

Table 3: Posterior estimates of β under unstructured and structured models.

Spatial lag models SSPE UM SSPE
no FE 9.4496 no FE 10.2582
spatial FE 4.3306 spatial FE 7.9736
sp. lagged regress. 12.7457 sp. lagged regressors 10.516
sp. lagged regress. sp. lagged regress.
and spatial FE 5.3404 and spatial FE 8.4838

Table 4: SSPE of the prediction of the last 5 years of the panel for different spatial lag
models and for different specifications of our unstructured model.

models with lagged regressors, we find that the performance in terms of prediction error
is worsened, as shown in Table 4, which presents the sum of squared prediction errors
(SSPE) of some of the spatial lag models of Table 1 and of our unstructured model.2 In
particular, the predictions of Table 4 are based on the subsample including the first 25
years. We also compared the out-of-sample prediction for some randomly chosen subsets
of 6 states. The table presents four specifications of both the spatial lag model and the

2Here we limit ourselves to presenting the unstructured model that performs better, in general.
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Figure 5: Cigarette Example: posterior distribution of β under unstructured separable
model (with spatial and temporal effects) and posterior distribution of ρ and λ under
AR and Expm models (with spatial and temporal effects), respectively.

unstructured model, with or without spatial FE, and with or without spatially lagged
regressors. Fixed effects mean spatial fixed effects in the case of prediction of future
observations, and time fixed effects in the case of prediction of different locations. We
find that adding spatially lagged regressors decreases the predictive accuracy of both
our model and the spatial lag model, somehow confirming the findings of Elhorst (2005)
and Lee and Yu (2010), who reported an insignificant bootlegging effect, unlike in Bal-
tagi and Levin (1986). As noted by Lee and Yu (2010), these conflicting results might
be explained by the inclusion of the spatial effects, which, if omitted, can lead to biased
estimates. Their conclusion seems to be also validated by Table 4 showing that adding
spatial fixed effects decreases the SSPE of all models considered.

The overall performance of our model is in line with that of spatial lag models. In the
case of prediction in the time dimension, the spatial lag model seems to outperform the
unstructured model: the best model is the spatial lag with fixed effects, while our best
model is the one that includes, together with fixed effects, also the interaction between
state and cigarette price (which is not reported in the table). In the case of prediction
of out-of-sample states, the difference in SSPE clearly depends on the subset of states
that are being predicted. However, in all the random subsets of locations we compared,
the unstructured model appeared to perform at least slightly better than the spatial
lag model. As in the case of prediction in the time dimension, adding spatially lagged
regressors tends to increase the SSPE.
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Figure 6: Cigarette Example: posterior estimation of temporal and spatial covariance
matrices under structured and unstructured models, space and time fixed effects in-
cluded.

Since our model is in the class of generalized spatial error models, the comparison
of predictive accuracy (both in predicting out-of-sample years or locations) might help
addressing the so called Galton’s problem, that is, distinguishing spatial association in
outcomes arising from common exposure to spatially correlated shocks from spatially
dependent outcomes due to contagion (leading to the dichotomy spatial lag vs spatial
error).

In Figure 6, posterior estimates of the two matrices Ψ and Φ are shown, under
unstructured (top matrices) and structured models (bottom matrices), including space
and time fixed effects. Looking at the figure, the top matrices appear different from the
bottom matrices, showing that structured and unstructured methods result in different
patterns both in the space and in time dimension. Considering AR model, running 5000
iterations (after a burn-in of 1000 iterations) from posterior distribution of ρ, a posterior
estimate equal to 0.66 (95% credible interval [0.35, 0.928]) is obtained. The previous es-
timates are quite insensitive to the presence or absence of fixed or random effects, both
spatial and temporal. On the other hand, observing the graphical representation of
Um posterior estimate of matrix Ψ under unstructured model, the temporal pattern
shown is far from being first order autoregressive, suggesting the existence of three dif-
ferent regimes reciprocally uncorrelated, approximately corresponding to (1962–1971),
(1972–1984) and (1985–1992). Our findings could be related to results found by Balt-
agi and Levin (1986) who pointed out that the temporal pattern between 1963–1970
is different from the following period, partly explained by the Fairness Doctrine Act
effective before 1970 and the Impact of Taxation introduced in 1983. The two plots on
the left in Figure 6, again, underline the advantage of unstructured model as respect to
structured models. Considering, again, as a measure of distance between two matrices
the normalized Frobenius norm, Um posterior estimates of Φ is 33% farther from the
identity matrix compared to Expm posterior estimate. The estimates of parameter λ
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clearly depend on the choice of matrix W, thus, a possible explanation of the difference
between the two posterior estimates of the spatial correlation matrices could be due
to incorrect specification of the weight matrix. Visual exploration of the posterior Um
matrix reveals the presence of correlation between regions not necessarily adjacent.

Zheng et al. (2008), through a Bayesian approach, found a positive spatial correla-
tion, which decreases dramatically when temporal dependence is also included. Simi-
larly, running Expm model forcing Ψ to be the identity matrix, our posterior estimate
of λ increases and equals to 0.43 with a 95% credible interval [0.03, 0.81] compared
to the estimate equal to 0.29 with 95% credible interval [−0.312, 0.856], obtained with
the Expm model (with spatial and time fixed effects included and Ψ estimated unstruc-
turally). Thus, our results suggest the advantage of considering simultaneously time and
space dependence: by ignoring one source of variability, estimates of the other could be
severely biased.

5.3 House price data

In this section, we apply our method to house price data from Italy. We use data on
the average minimum and maximum price per square meter in the 120 municipalities
of the Province of Rome, released by the Agenzia dellle Entrate (formerly Agenzia del
Territorio), since 2005.

In housing data, spatial dependence is typically related to the so-called ripple effect:
a great shock in the prices for houses in Rome propagates through neighboring towns.
Without fixing a priori the weight matrix, we claim that our approach can capture
the propagation phenomenon, not necessarily due to distances among observations or
distance from Rome. Characteristics such as the commuting time and the existence of
services (schools, pre-schools, hospitals) can be relevant to determine differences in the
elasticities and in the correlations between house prices.

We adopt a simple model where house price drivers are the “classical” explanatory
variables or fundamentals (see, among the others, Capozza et al. (2002)). The depen-
dent variable log(Yit) is the logarithm of house price at time t for municipality i. The
regressors included are the following:

• pop population

• income average income, obtained from Agenzia delle Entrate,

• car number of cars over population, obtained from Automobile Club d’Italia,

• business number of firms over population, obtained from Camera di Commercio
di Roma,

• immigrants number of immigrants over population, obtained from Istituto Nazio-
nale di Statistica, (ISTAT),

• elderly percentage of population over 65 years old, obtained from ISTAT,
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Figure 7: House price data for eight municipalities.

Figure 8: House price data for four time points.

• young percentage of population under 15 years old, obtained from ISTAT,

• school number of students enrolled in public school over population under 15,
obtained from Ministero dell’Istruzione.

Data analysis is anticipated by a preliminary graphical investigation of spatial and
temporal pattern. In Figure 7 and Figure 8, temporal and spatial pattern is shown, as an
example, for a subsample of the data suggesting the necessity to consider correlations in
both the dimensions. In many OECD countries, house prices in real terms rose sharply
after the mid 1990s. As reported by Caliman and di Bella (2011), in the period 1999–2007
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Figure 9: House price data: spatial distribution for four covariates.

Figure 10: House price data: temporal distribution for five covariates in Marino.

house prices increased at a yearly average real rate of about 5% in the US, Euro Area and
Canada. In Italy, in the same period (1999–2007) real house prices increased by 3.8% per
year and the Affordability Ratio, that is, the ratio between house prices and incomes,
showed a 20% increase. After 2008, in many areas in Italy, a slight decrease in house
prices was observed followed by a plateaux. Figure 9 shows geographical distributions of
four covariates (population, income, immigrants and school) for the year 2008. Figure 10
compares the time series of house prices and of some covariates (population, income,
cars, business and school) for a selected municipality (Marino). Figure 9 and Figure 10,
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Figure 11: House price data: posterior estimation of matrices Ψ and Φ under unstruc-
tured and structured models, space fixed effects included.

although referring to a subsample, suggest that, on the one hand, spatial association
observed in house price distribution could be partially explained by spatial association
of the covariates, while on the other hand, catching temporal pattern by means of
covariates looks less straightforward.

We ran MCMC simulations for model Um, AR, Expm and AR-Expm, consider-
ing fixed or random, spatial, temporal and both spatial and temporal effects. Random
and fixed effects produced essentially the same results. The best model in terms of
comparison of observed and estimated values was the unstructured model with spa-
tial fixed effects, while the computation of marginal likelihoods from Gibbs output,
according to Chib (1995), suggested the choice of the model with time and space fixed
effects.

Figure 11 compares posterior estimates of Φ and Ψ, with fixed spatial effects in-
cluded, according to Um (top matrices) and AR and Expm models (bottom matrices).
The two matrices in the first column look quite different, conveying the idea that the
spatial pattern is unsatisfactorily captured by the adjacency matrix. The difference be-
tween the two matrices in the second column also suggests a possible misspecification
of the first order autoregressive model for the temporal covariance. Posterior estimates
of Ψ under Um model appear as a two-by-two block matrix. A latent shock may de-
termine temporal pattern within the first three years and the last four years. Similar
remarks arise from Figure 12, that compares posterior estimates of Φ and Ψ, without
fixed effects.

The presence of spatial fixed effect modifies the posterior estimates of regression
coefficients and covariance matrices, suggesting that the spatial pattern is explained by
some latent factor not captured by the covariates. Figure 13 shows posterior distribu-
tion of the regression parameters under unstructured model with spatial fixed effects.
Both βpop and βcar are not significant when spatial fixed effects are included, while pop
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Figure 12: House price data: posterior estimation of matrices Ψ and Φ under unstruc-
tured and structured models, without fixed effects.

results in a negative effect when no fixed effects are considered and a positive effect
when only temporal fixed effects are taken into account; on the other hand, car has
a significant coefficient only when no effects are considered. Furthermore, real incomes
and percentage of students enrolled in local schools have a positive impact on house
price that cannot be captured by spatial effects alone. Controversial is the positive ef-
fect found by the immigrants, contradicting the results in Caliman and di Bella (2011);
generally migration decisions are affected by housing costs.

Repeating all the estimation by imposing the constraint Φ = IN permits us to assess
whether or not the data show a spatial correlation. A comparison between these new
estimates with the previous ones (Um and AR only, since Expm model clearly can’t
be defined in this case) shows that estimates obtained without accounting for spatial
correlation are quite different: the number of credible intervals not including the origin
is larger, thus attesting possible bias due to misspecification of the constrained model.
At the same time, credible intervals become larger which implies a contemporaneous
loss in the accuracy of the estimation. For illustrative purposes, Table 5 reports the Um
estimates of the model with no effects and time effects only.

The house price dynamic is negatively affected by interest rates (lower interest rates
increase households’ capacity to borrow). Since interest rates are constant among munic-
ipalities, we do not include this covariate, which would behave as a time-specific effect;
however, eventual shocks on the interest rates in the period considered can contribute
to explaining Um estimates of Ψ.

We repeated the same comparison with spatial lag models performed in Section 5.2
to assess the relative predictive performances of our approach. If the focus is on predict-
ing the house price for an arbitrary subset of the municipalities of the Province of Rome,
our approach is dominated by the spatial lag model, in all specifications considered (with
or without time effects, with or without spatially lagged regressors). This suggests that
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Figure 13: House price data: posterior estimation of β.

a spatial error model, although flexible, is not appropriate to predict house price at

different locations given characteristics of the municipalities because it is not able to

adequately capture the contagion phenomena. The situation is more balanced when the
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Φ = I Φ ∼ IW
Variable No Effects 95% CI No Effects 95% CI
pop 0.2457∗ [0.1360, 0.3555] 0.1199∗ [0.0073, 0.2304]
inc 0.0680∗ [0.0323, 0.1053] 0.0203∗ [0.0006, 0.041]
cars 0.0338 [−0.0102, 0.0779] 0.0238 [−0.0033, 0.0532]
business −0.0150 [−0.0710, 0.0412] −0.0297 [−0.0651, 0.0044]
immigrants 0.0304 [−0.0104, 0.0729] 0.0162 [−0.0119, 0.0447]
elderly −0.0774∗ [−0.1496, −0.0048] −0.0427 [−0.0949, 0.0006]
school 0.0235 [−0.0117, 0.0589] 0.0198 [−0.0050, 0.0449]

Φ = I Φ ∼ IW
Variable Time Effects 95% CI Time Effects 95% CI
pop 0.2536∗ [0.1415, 0.3633] 0.1496∗ [0.0458, 0.2435]
inc 0.0394∗ [0.0069, 0.0728] 0.0148 [−0.0054, 0.0379]
cars 0.0409 [−0.0030, 0.0864] 0.0272 [−0.0041, 0.0580]
business −0.0117 [−0.0660, 0.0424] −0.0271 [−0.0631, 0.0109]
immigrants 0.0367 [−0.0088, 0.0824] 0.0160 [−0.0121; 0.0464]
elderly −0.0721∗ [−0.1440, −0.0025] −0.0373 [−0.0876; 0.0193]
school 0.0213 [−0.0123, 0.0554] 0.0185 [−0.0085; 0.0418]

Table 5: Um Estimates and relative credible intervals of the models with no specific
effects and with time effects, assuming a degenerate prior Φ = I (columns 1 and 2)
and an inverse Wishart prior (columns 3 and 4). Parameters with ∗ indicate a credible
interval that does not contain zero.

final goal is to predict the house price in time: here in particular the unstructured model
with spatial fixed effects reaches the lowest SSPE.

6 Sensitivity analysis

6.1 The choice of the hyperparameters

We conduct sensitivity analysis to investigate changes in posterior distribution by vary-
ing hyperparameter values.

The prior distribution for β is normal with mean β0 and variance matrix H, with
H = h0I. A lower value for h0 tends to shrink posterior estimates of β to β0, a reasonable
value is h0 = 103, thus reflecting poor prior information. The deviation of H from a
scalar matrix does not affect posterior distribution of β, provided that the trace remains
the same. Similar prior variance matrices are chosen for the spatial and temporal effects.
When random effect models are estimated, the prior variance for α0 and η0 must be of
the same order as that of h0, otherwise effects are shrunk.

Increasing the value of N , the first component of (16) becomes too large and domi-
nates the distribution, as an alternative to (15) the following prior distribution can be
used, with k approximately as large as N :

p(ρ) ∝ (1− ρ2)−k. (19)
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The choice of the shape hyperparameters in inverse Wishart prior distributions has
always been critical, especially when it is desired to achieve arbitrarily high noninfor-
mativity (Gelman (2006)). When unstructured model is assumed, the posterior distri-
butions of Ψ and Φ seem, in fact, to be more sensitive to the order of magnitude of the
shape parameters than to the form of the matrices A and B. Identity matrices are, thus,
assumed for A and B. The smaller the parameters, the higher the uncertainty on the
prior covariance matrix. However, the values of ν < N +2 and γ < T +2 correspond to
a prior distribution with no moments. In principle, the posterior distribution will have
finite moments provided that the updated shape parameters ν + T and γ + N satisfy
ν + T ≥ N + 2 and γ +N ≥ T + 2. However, choosing the values of ν and γ below the
critical thresholds (N +2, T +2), will give unstable estimates of Φ and Ψ, that is why
we set γ = T + 2 and ν = N + 2.

From the cigarette data example we can observe that the posterior estimates of β are
stable with respect to the choice of hyperparameters and the introduction of spatial or
temporal effects, they change whenever a structured or unstructured model is assumed.
Moreover, the posterior variance of β is larger when a structured model is assumed
compared to an unstructured model.

To see how stable the final estimates are, multiple MCMC runs were conducted with
different initial values and starting points.

6.2 The separability assumption

Statistical space–time modeling has been using separable covariance functions to a large
extent because the structure of separable covariances reduces the number of parameters.
Nonetheless, a well-known limitation of separable covariance functions is that they do
not allow for space–time interactions in the covariance (see, e.g., Kyriakidis and Journel
(1999), Cressie and Huang (1999)). For all these reasons, several papers have been
devoted to test the reasonability of the hypothesis of separability of covariances; we
cite Mitchell et al. (2006) among others. In many applications, a separable covariance
structure can be seen as an approximation of a non-separable population covariance
matrix. In all these cases, there is a trade-off between the gain related to dimension
reduction and the loss in the accuracy of the estimation of the covariance matrix. In
this light, Genton (2007), using real data on Irish wind speed, computed the nearest
Kronecker approximation of a non-separable spatial–temporal covariance matrix in the
Frobenius norm and found that the gain in the computation cost exceeded the loss in
terms of mean squared prediction error.

In a similar spirit, in order to have a better understanding of how the lack of sep-
arability might affect our estimates, we focus on the sensitivity of our approach to the
assumption of the separability of the spatial and temporal covariance components. We
estimate the parameters of model (1) from a sample drawn from a spatial error model
with a single regressor and a non-separable covariance matrix Σ. For the definition of
the matrix, we follow the model introduced by Gneiting et al. (2007).

They proposed a general class of non-separable, stationary covariance function model
for spatio-temporal random processes of the form
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Figure 14: Frobenius norm of the distance between the true non separable matrix Σ and
the matrix Ψ̂⊗ Φ̂ estimated assuming the unstructured conditionally separable model
and for different choices of the parameters defining Σ.

C(h, u) =

{ 1
1+a|u|2α if h = 0,

1−ν
1+a|u|2α exp

(
−c||h||

(1+a|u|2α)γ/2

)
otherwise

(20)

where h is the distance between locations, u is temporal lag, a and c are temporal
and spatial nonnegative scale parameters, respectively, and α ∈ (0, 1] is a smoothness
parameter. The parameter γ ∈ [0, 1] controls the space–time interaction and γ = 0
yields a space–time separable correlation function for which the spatial correlations at
different temporal lags u are proportional to each other. We simulated different scenarios
considering varying values for a ∈ {1, 2, 3}, c ∈ {0.1, 0.2, 0.3}, α ∈ {0.1, 0.5, 1}, γ ∈
{0, 0.5, 1} ν ∈ {0.04, 0.5, 0.8}, and then estimated the matrix sigma, by assuming
unstructured Ψ and Φ.

Figure 14 presents the Frobenius norm of the difference between the true and the
estimated spatial and temporal matrices: |Ψ̂⊗ Φ̂− Σ|/|Σ|, where Φ̂ and Ψ̂ are re-
spectively the estimated spatial and temporal covariances for each of the 243 models
simulated: the three lines plotted (straight, dashed and dotted) represent the Frobe-
nius norm for all the 81 different scenarios corresponding to a specific value of γ. In
particular, the Frobenius norm does not seem to be much affected by the presence of
a moderate non-separability (γ = 0.5), while there is a more relevant increase in the
distance between the estimated and true covariance matrix in the case of maximum non-
separability. However, the estimate of the β parameter is not affected by any change in
the parameter specifications, as Figure 15 shows.

7 Conclusion and discussion

We have proposed a Bayesian hierarchical model which incorporates both spatial and
temporal correlation. Through flexibility of a Bayesian approach and thanks to the
advances in MCMC computation, our proposed model has the potential to catch the
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Figure 15: Posterior mean of β̂ from the estimation of all 243 different spatial error mod-
els following (20) estimated assuming the unstructured conditionally separable model
(β = 2).

eventual presence of hidden sources of correlation in both spatial and temporal dimen-
sions. Previous contributions accounting for both temporal and spatial correlation have
met some obstacles, which Bayesian approach can partially overcome, as already pointed
out by Zheng et al. (2008).

The key feature of our model is the separability of the covariance matrix, which,
besides the computational gain, allows for a direct interpretation of covariances as
products of spatial and temporal components (see, for instance, Rowe (2002b)). The
use of the Bayesian approach is convenient since it helps overcome the problem of the
lack of identification of the matrices Φ and Ψ by the introduction of the prior distribu-
tions.

By the dramatic reduction of the constraints imposed on covariance patterns, al-
though increasing the number of parameters, we entail the whole class of SEMs (and of
temporal error models) in a unique panel data model framework. Our Um model there-
fore lends itself to being the natural competitor for the recently developed multifactor
approach: as for the multifactor error model, it is able to capture correlation structures
whose nature is a priori unknown and allows for strong dependence. Unlike in the mul-
tifactor approach, the estimates of Φ and Ψ obtained from the Um model open the way
for a possible ex-post identification of the distance or adjacency matrix governing the
spatial association. The model does not account for lagged variables (regressors or de-
pendent variable), and so this feature needs to be developed further. However, spatially
lagged regressors can be added easily to all specifications of our model as additional
regressions in the equation.

From a computational viewpoint, the AR and Expm models offer a viable alter-
native to existing spatio-temporal models since they can both be estimated by imple-
menting a simple ARS algorithm. However, the choice of a matrix exponential spec-
ification for the spatial covariance matrix has recently raised some concerns due to
various rather problematic features of the matrix. Moreover, the link between the ma-
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trix exponential and the more popular SAR models is not clear and deserves further
exploration.

In all our models, the estimates of regressor coefficients (including the space or
time specific effects) are rather robust; the Expm specification alone seems to affect the
coefficient estimates in a significant way.

Appendix A

A.1 Log-concavity of posterior distribution of λ

log p(λ | y,X,β,μ,Ψ) ∝ −1

2

∞∑
k=0

(−λ)k

k!
tr
(
W kUΨ−1U′)− 1

2
tr(TλW).

Then,

∂
∂λ log p(λ | y,X,β,μ,Ψ) ∝ −1

2

∑∞
k=1(−1)ktr

(
WkUΨ−1U′) λk−1

(k−1)! −
1
2 tr(TW)

= +1
2 tr

(
e−λWWUΨ−1U′)− 1

2 tr(TW)

while

∂2 log p(λ | y,X,β,μ,Ψ)

(∂λ)2
∝ −1

2

∞∑
k=2

tr
(
WkUΨ−1U′) (−λ)k−2

(k − 2)!

= −1

2
tr
(
WeλWWUΨ−1U′)

= −1

2

(
(y −Xβ − ηDt −αDs)

′(Ψ−1 ⊗We−λWW)(y −Xβ − ηDt −αDs)
)

is nonpositive because both Ψ−1 and We−λWW = W′e−λWW are positive semidefi-
nite.
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