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ABSTRACT 

This work describes the organocatalytic α−trifluoromethylthiolation of silylenol ethers using N-

(trifluoromethylthio)saccharin as trifluoromethylthiolating reagent that is activated by the presence of 

catalytic amounts of a Lewis base. Tetrahydrothiophene was identified as the best organocatalyst and it was 

successfully employed to promote the synthesis of different α−trifluoromethylketones; the reaction has 

been performed under a traditional batch methodology and under continuous flow conditions. In general, 

yields obtained using the traditional batch process were higher than those observed when the reaction was 

performed under flow conditions. However, short reaction times, higher productivity and higher space time 

yields were observed when a flow system process was employed. Preliminary DFT calculations were also 

performed in order to elucidate the mechanism of the reaction. 
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1. INTRODUCTION  

The incorporation of a SCF3 group into organic molecules is a topic of great interest, especially for the 

pharmaceutical and agrochemical industries.[1] Due to its high lipophilicity and high electron-withdrawing 

character (Hansch lipophilicity parameter πR= 1.44 vs πR= 0.88 for CF3),[2] the SCF3 moiety represent a 

powerful opportunity to influence the pharmacokinetics properties of a drug molecule increasing the 

transmembrane permeation. [3, 4] A few examples of molecular targets with a SCF3 group possessing 

biological activities are reported in Scheme 1.  



 

Scheme 1: Agrochemicals and active pharmaceutical ingredients containing a SCF3 group. 

In the last few decades, numerous methods for the introduction of a trifluoromethylthio group into 

organic compounds have been reported;[5, 6] however, the development of efficient methods to introduce 

catalytically and directly the SCF3 to the alpha- position of a carbonyl function is still a challenge. The first 

example of a metal-free, but non catalytic, SCF3 electrophilic substitution on a carbonyl compound was 

reported by Haas in 1980, where diethyl malonate reacts with highly toxic electrophilic gas ClSCF3 to form 

mono- and di- substituted products.[7] Few years later also the trifluoromethylthiolation of ketones,[8] cyclic 

β-diketones,[9] β-keto acids,[10] α,β-unsaturated cyclic ketones[11] trimethylsilyl enol ethers[12] and 

enamines[12, 13] performed with ClSCF3 were reported in good yields. In the last few years, with the aim to 

employ less dangerous compounds as SCF3 sources, the trifluoromethylthiolation of amino-indoles and α-

bromo ketones promoted by octadecyl-S-trifluorothiol carbonate were investigated.[14] Other non- catalytic 

metodologies involving the generation of different “+SCF3” sources for the synthesis of 

trifluoromethylthiolated aldehydes[15-17] ketones,[15, 18] β-ketoesters[16, 17] indoles and oxindoles[19] 

were developed.  

On the other hand, to date, only a very few organocatalytic α-trifluoromethylthiolation reactions of 

carbonyl compounds have been described in literature. Starting from 2013, Shen and Rueping, 

independently, reported the stereoselective cinchona catalyzed trifluoromethylthiolation of indanone-

derived β-ketoesters[20, 21] and of oxindoles[22, 23] using respectively α-trifluoromethylthiolated 

hypervalent iodine reagent and trifluoromethylthiophthalimide as an electrophilic SCF3 source. Cinchona 

alkaloids derivatives were also employed as organocatalysts in the α-trifluoromethylthiolation of 3-

thiooxindoles.[24] In 2014, Liu and Tan reported another version of enantioselective 

trifluoromethylthiolation of oxindoles performed with an in situ generation of an electrophilic 

trifluoromethylthio reagent involving as precursors trichloroisocyanuric acid and AgSCF3.[25] 

However, it must be noted that all these catalytic methodologies, cannot be applied to simple 

ketones or aldehydes and work exclusively with activated carbonyl compounds such as keto esters and β-



diketones. On the best of our knowledge, the first catalytic methodology involving the use of not-activated 

carbonyl compounds was reported by Billard in 2014.[26] In this approach catalytic amounts of Me3SiCl 

activated the trifluoromethanesulfenamide and promote the transfer of SCF3. More recently, Wu and Sun 

published another example of α-trifluoromethylthiolation of simple aldehydes by enamine catalysis using 

the Hayashi-Jørgensen catalyst.[27] 

Therefore, despite considerable efforts, at the moment, only two examples of catalytic α-

trifluoromethylthiolation of un-activated carbonyl compounds exist. As a part of our continuing development 

of Lewis base activation of Lewis acids, and on the basis of the experience of some of us in α-

thiofunctionalization reactions,[28] we report herein the catalytic α-trifluoromethylhthiolation of ketone-

derived enoxysilanes promoted by Lewis basis. 

 

2. EXPERIMENTAL 

2.1. Experimental instrument and materials 

1H-NMR, 13C-NMR and 19F-NMR spectra were recorded with instruments at 300 MHz (Bruker F300). Proton 

chemical shifts are reported in ppm (δ) with the solvent reference relative to tetramethylsilane (TMS) 

employed as the internal standard (CDCl3 δ = 7.26 ppm). 13C NMR spectra were recorded operating at 75 

MHz, with complete proton decoupling. Carbon chemical shifts are reported in ppm (δ) relative to TMS with 

the respective solvent resonance as the internal standard (CDCl3, δ = 77.0 ppm). 19F NMR spectra were 

recorded operating at 282 MHz. Fluorine chemical shifts are reported in ppm (δ) relative to CF3Cl. All the 

solvents were used are commercially available (≥99%, chromatographic grade, purchased from Sigma 

Aldrich) and stored under nitrogen over molecular sieves (bottles with crown cap). Reactions were monitored 

by analytical thin-layer chromatography (TLC) using Aluminium oxide or silica gel 60 F254 pre-coated glass 

plates and visualized using UV light. Chromatographic purification where performed on Aluminium oxide, 

neutral, Brockmann I 50-200 µm 60A previously deactivated with 3% of H2O.  

  

2.2. Experimental procedure 

2.2.1 Synthesis of AgSCF3 

AgF (1 eq, 47.4 mmol, 6 g), CS2 (2.1 eq, 99.3 mmol, 6 mL) in CH3CN (12 mL) were placed in a dark flask under 

N2 atmosfere and heated to reflux for 18h. After this time, the mixture was cooled to RT and all the volatile 

parts were removed under reduced pressure. The remaining black residue was then dissolved in AcOEt, all 

the insoluble parts were removed by filtration and the liquid phase was concentrated with the aid of a rotary 

evaporator. The resulting pale yellow solid was then dissolved in a small amount of CH3CN and 40 mL of Et2O 

were carefully layered on top of this solution. The mixture was then placed at -15 °C for 24h to produce a 

needle-shaped white solid that was recovered by filtration and washed with cooled Et2O. The solid was stored 

at 5 °C with the exclusion of light. Yield: 0.62 g, 76%. 19F-NMR (CD3CN) : δ -22.51 (s) ppm 



 

2.2.2 Synthesis of N-chlorophthalimide 

AlCl3 (1 eq, 10 mmol, 1.36g) was added to a solution of Pb(OAc)4 (1 eq, 10 mmol, 4.52g) in dry CH3CN (100 

mL). The mixture was stirred at RT for 5 min, then phthalimide (1 eq, 10 mmol, 1.5 g) was added. The resulting 

mixture was gently refluxed until nitrogen for 20h, then cooled to RT. The solvent was removed by rotary 

evaporation, and the crude was purified by chromatographic purification with pure DCM as eluent. Yield: 

1.32 g, 71%. 1H-NMR (300 MHz, CDCl3): δ 7.94-7.91 (m, 2H), 7.82-7.79 (m, 2H) ppm. 

 

2.2.3 Synthesis of N-chlorosaccharin 

AlCl3 (1 eq, 10 mmol, 1.36g) was added to a solution of Pb(OAc)4 (1 eq, 10 mmol, 4.52g) in dry CH3CN (100 

mL). The mixture was stirred at RT for 5 min, then phthalimide (1 eq, 10 mmol, 1.5 g) was added. The resulting 

mixture was gently refluxed until nitrogen for 20h, then cooled to RT. The solvent was removed by rotary 

evaporation, and the crude was purified by chromatographic purification with pure DCM as eluent. Yield: 

1.32 g, 71%. 1H-NMR (300 MHz, CDCl3): δ 7.94-7.91 (m, 2H), 7.82-7.79 (m, 2H) ppm. 

 

2.2.4 Synthesis of N-(trifluoromethylthio)phthalimide (2a) 

AgSCF3 (1.3 eq, 2.4 mmol, 500 mg) was added to a solution of N-chlorophthalimide (1 eq, 1.8 mmol, 330 mg) 

in CH3CN (8 mL) under N2 atmosphere. The mixture was stirred for 3h at RT, then the solvent was removed 

by rotary evaporation. The crude obtained was dissolved in DCM, filtered through a celite pad and the solvent 

was removed by rotary evaporation to give a white solid. Yield: 0.40 g, 89%.  

1H-NMR (300 MHz, CDCl3): δ 8.01 (dd, 2H, J = 6Hz, J = 3Hz), 7.88 (dd, 2H, J = 6Hz, J = 3Hz) ppm. 19F-NMR 

(CDCl3): δ -49.32 (s, 3F) ppm. 13C-NMR (CDCl3): δ 165.7, 135.4, 131.4, 127.9 (q, J = 322.5 Hz), 124.7 ppm. 

 

2.2.5 Synthesis of N-(trifluoromethylthio)saccharin (2b) 

N-chlorosaccharin (1 eq, 1.15 mmol, 250 mg) and AgSCF3 (1.2 eq, 1.38 mmol, 288 mg) were dissolved in 

CH3CN (4 mL) under N2 atmosphere. The mixture was stirred vigorously at room temperature for 10 min. The 

CH3CN was then drained under reduced pressure. And the residue was extracted 

with CH2Cl2 (3mL x 3). The solution was combined and the solvent was evaporated under vacuum. The residue 

was further dried under high vacuum to give compound 2b as a white solid. Yield 251 mg, 77%. 1H-NMR (300 

MHz, CDCl3): 8.20 (d, 1H J = 7.5 Hz), 8.08-7.99 (m, 2H), 7.98-7.91 (m, 1H). 

19F-NMR (CDCl3): δ -47.73 (s, 3F) ppm. 13C-NMR (CDCl3): 158.4, 137.9, 136.4, 135.0, 127.8 (q, J = 315 Hz), 

126.5, 126.1, 122.0 ppm 

 

2.3. General procedure for trifluoromethylthiolation of silylenol ethers (batch conditions) 



A solution of desired silylenol ether 1a-d (1 eq, 0.14 mmol) in 900 uL of solvent was charged in a two necks 

10 ml round bottom flask (provided with a condenser when necessary) containing compound 2a or 2b (1 eq, 

0.14 mmol). A solution of desired silylenol ether 1a-d (1 eq, 0.14 mmol) in 900 uL of solvent was then added 

(final concentration: 0.1 M). The reaction mixture was stirred at the desired temperature for the desired 

time, then a quench with 1 mL of NaHCO3 saturated solution was performed. The mixture was further diluted 

with 2 mL of AcOEt, then two layers were separated and the organic phase was recovered, dried with Na2SO4 

and the solvent was removed under reduced pressure. The crude was then purified by chromatographic 

purification on Aluminium oxide, with a mixture of Hexane:DCM 9:1.  

 

2.4. General procedure for α−trifluoromethylthiolation of silylenol ethers performed using Chemtrix Labtrix® 

Start Standard platform (flow conditions)  

A Labtrix® Start Standard system, with a 10 μl glass microreactor was used. In a typical experiment, syringe 

A was filled with a mixture obtained dissolving 0.2 mmol of desired silylenol ether 1a-d, 0.02 mmol of 

biphenyl as internal standard, and 0.02 mmol of THT in 1000 µL of dry CH3CN in order to have 0.2 M 

concentration of silylenol ether. Syringe B was filled with a solution obtained dissolving 0.2 mmol of 

trifluoromethylthiolating agent in 1000 µL of dry CH3CN in order to have 0.2 M concentration of “+SCF3” 

source (the concentrations of all reagents in the syringe were doubled with respect to the batch conditions, 

to achieve the same concentration after mixing). Mixtures A and B were pumped into the microreactor with 

the desired flow rate for the desired residence time. Three reactor volumes were discarded before starting 

sample collection in order to reach steady-state conditions. Then the mixture was collected in a 400 µL of 1:1 

AcOEt:NaHCO3(SS) solution and the organic phase was directly analyzed by GC. Conversions were reported in 

tables. 

 

2.5. Product analysis  

2.5.1. 1-phenyl-2-((trifluoromethyl)thio)propan-1-one (3a) 

The title compound was prepared according to typical experimental procedure. Yellow oil. 1H-NMR (300 MHz, 

CDCl3): δ 8.00 (d, 2H, J = 9.1 Hz), 7.6 (t, 1H, J = 7.4 Hz), 7.54 (m, 2H), 4.99 (q, 1H, J = 7.1 Hz), 1.74 (d, 3H, J = 

7.1 Hz). 19F-NMR (CDCl3): δ -39.80 (s, 3F) ppm; 13C-NMR (CDCl3): 196.3, 134.0, 130.7 (q, J = 305.2 Hz), 129.0, 

128.7, 44.5, 19.8 ppm. 

 

2.5.2 1-(4-methylphenyl)-2-((trifluoromethyl)thio)propan-1-one (3b) 

The title compound was prepared according to typical experimental procedure. Isolated as yellow oil. 1H-

NMR (300 MHz, CDCl3): δ 7.98 (d, 2H, J = 7.5 Hz), 7.00 (d, 2H, J = 7.5 Hz), 4.97 (q, 1H, J = 7.1 Hz), 3.92 (s, 3H), 

1.74 (d, 3H, J = 7.0 Hz) ppm. 19F-NMR (CDCl3): δ -39.85 (s, 3F) ppm; 13C-NMR (CDCl3): 194.7, 164.3, 132.9, 

132.0 (q, J = 305.25 Hz), 114.2, 55.6, 44.3, 20.0 ppm.  



2.5.3 1-((trifluoromethyl)thio)-2-cyclohexanone (3c) 

The title compound was prepared according to typical experimental procedure. Isolated as yellow oil using 

pentane:DCM 9:1 mixture. 1H-NMR (300 MHz, CDCl3): δ 4.65 (t, 1H, J = 6.2 Hz), 2.40 (t, 2H, J = 6.5 Hz), 2.07 

(m, 2H), 1.70-1.55 (m,4H). 19F-NMR (CDCl3): δ -39.23 (s, 3F). 

 

2.5.4. 2-((trifluoromethyl)thio)-3,4-dihydronaphthalen-1(2H)-one (3d) 

 The title compound was prepared according to typical experimental procedure. Isolated as yellow oil. 1H-

NMR (300 MHz, CDCl3): δ 8.07 (dd, 1H, J = 7.9, 1.4 Hz), 7.55 (td, 1H, J = 7.5, 1.4 Hz), 7.37 (t, 1H, J = 7.6 Hz), 

7.29 (d, 1H, J = 6.6 Hz), 4.38 (dd, 1H, J = 10.7, 4.4 Hz), 3.21-3.09 (m, J = 7.3, 4.9 Hz, 2H), 2.77-2.67 (m 1H), 

2.48-2.36 (m, 1H). 19F-NMR (CDCl3): δ -38.74 (s, 3F) ppm; 13C-NMR (CDCl3): 192.1, 142.9, 135.1, 131.5 (q, J = 

305.2 Hz), 131.1, 128.7, 128.1, 126.4, 51.7, 31.2, 28.2 ppm. 

 

 

3. RESULTS AND DISCUSSION  

For preliminary studies, we selected as model substrate the (Z)-(1-phenylpropenyloxy)silane 1, prepared 

from acetophenone by treatment with LDA followed by the addition of trimethylsilyl chloride in THF at low 

temperature. The E:Z selectivity will be dictated by the reaction conditions, as described by Ireland[29]and 

in our case E:Z ratio was major than 1:99. The second step was to determine a suitable sulfur(II) reagent 

(“+SCF3
” donor). In this sense, the quantitative scale for the trifluoromethylthio cation-donating ability of 

electrophilic trifluoromethylthiolating reagents reported by Xue and Cheng[30] was taken into account. 

According to this scale, a new parameter called trifluoromethylthiocation donating ability (Tt+DA), was 

introduced as a quantitative descriptor for the propensity of electrophilic trifluoromethylthiolating reagents 

to transfer a SCF3 moiety to organic compounds. Based on that, N-(trifluoromethylthio)phthalimide (2a) 

developed by Munavalli[31] present a Tt+DA = 33 Kcal/mol and it is known to be able to transfer the SCF3 

group to enamines at room temperature without the presence of a catalyst. For this reason, this 

trifluoromethylthiolating reagent represents a good choice for preliminary investigation. In addition, the 

more reactive N-(trifluoromethylthio)saccharin 2b (Tt+DA = 17.9 Kcal/mol), developed by Shen[16] was also 

considered as a valid alternative. 

 

3.1 Studies performed under batch conditions 

As initial conditions, 1 eq of pure (Z)-(1-phenylpropenyloxy)silane 1a was reacted under traditional batch 

conditions with 1 eq of triffluoromethylthiolating reagent 2a-b in CH3CN as solvent (0.1 M) for 24 h at room 

temperature. Results of this initial screening are reported in Table 1.  

 

 



Table 1: Survey of bases for the α-trifluoromethylthiolation of (Z)-1. 

 

Entry Reagent Catalyst 
1H-NMR conv 

(%) 
yield (%) 

1 2a - - - 

2 2a TEA - - 

3 2a THT < 5% Not isolated 

4 2b - - - 

5 2b TEA 60 55 

6 2b DABCO 22 20 

7 2b DBU 19 15 

8 2b THT 55 50 

9 2b HMPA 30 27 

10 2b Ph2Se 28 25 

 

As showed, no reaction occurred when either 2a or 2b were used in the absence of catalyst and no 

product was formed when N-(trifluoromethylthio)phthalimide was employed in combination with catalytic 

amount of triethylamine (TEA) or tetrahydrothiophene (THT). However, N-(trifluoromethylthio)saccharin 

gave product 3a in 55% yield in the presence of triethylamine (10 mol%), demonstrating that the reaction 

could be performed under catalytic conditions. Different tertiary amines where then tested, such as DABCO 

and DBU, but lower yields were observed (entries 6 and 7). The use of HMPA and diphenylselenide were also 

investigated and, in this case, product 3a was isolated in 27 and 25% yield (entries 9-10). Nevertheless, the 

reaction performed using tetrahydrothiophene as organocatalys gave a product with 50% yield. On the basis 

of these data, triethylamine and tetrahydrothiophene were selected for further optimization studies. Few 

selected results are reported in table 2.  

 

Table 2: Screening of reaction conditions under batch conditions. 



 

 

Entry 
Catalyst  

(loading) 
Solvent 

Temperature 

(°C) 

Time 

 (h) 

1H-NMR 

conv (%) 

Yield  

(%) 

1 TEA (10 mol%) DCM 25 20 27 25 

2 TEA (10 mol%) THF 60 20 - - 

3 TEA (10 mol%) Toluene 80 20 - - 

4 TEA (10 mol%) CH3CN 80 20 74 66 

6 TEA (5 mol%) CH3CN 80 5 38 32 

7 TEA (1 mol%) CH3CN 80 5 24 13 

8 THT (10 mol%) CH3CN 80 5 74 66 

9 THT (5 mol%) CH3CN 80 5 56 51 

10 THT (1 mol%) CH3CN 80 5 38 30 

11a THT (10 mol%) CH3CN 80 5 100 97 

a2 equivalents of 2b were used. 

 

From a careful screening of solvent, temperature and reaction time, acetonitrile was selected as the 

preferred reaction medium; performing the reaction at 80 °C for 20 hour using 10 mol% TEA as catalyst, the 

product  3a was obtained in 66% yield (entry 4). 

The same chemical efficiency was also obtained using 10 mol% THT, but in only 5 hours (entry 9), 

demonstrating that the latter catalyst present a better chemical efficiency than triethylamine. Under the best 

experimental conditions, it was attempted to lower the catalyst loading: by decreasing the amount of TEA to 

5 mol% and to 1 mol%, 3a was formed in 38% yield and 24% respectively (entries 9 and 10); instead, 5 mol% 

of THT gave the desired product in 56% yield (entry 10). When 2 equivalents of trifluoromethylthiolated 

saccharin 2b were employed (entry 12), a quantitative yield was observed; however, since 2a is the most 

expensive reagent in this type of transformation, we decided to use a 1:1 ratio of substrates with 10 mol% of 

THT in acetonitrile at 80 °C for 5h as best reaction conditions. We next extended the scope of the reaction to 

differently substituted silyl enol ethers to verify the general applicability of this methodology.  

 

 

 

Table 3: trifluoromethylthiolation of various silyl enol ethers.  



 

 

Entry Substrate Product 1H-NMR conv (%) yield (%) 

1a 

 

1a 3a 74 66 

2a 

 

1b 3a 52 42 

3a 

 

1c 3b 48 40 

4 

 

1d 3c 75 70 

5 

 

1e 3d 44 32 

aZ:E ratio was > 99:1 

 

The presence of a bulky protecting group such as tertbutyldimethylsilyl (TBS) seem to slightly interfere in 

the formation of product 3a, that was obtained in 42% yield when substrate 1b was used (table 3, entry 2). 

Furthermore, the presence of electron donating substituents seems to cause a yield decrement, as product 

3b was isolated in 40% yield. Interesting, good results were obtained using cyclic compounds: (E)-silylenol 

ether 1d was converted in product 3c in 75% yield (entry 4) but more rigid compound 1e gave α-

trifluoromethylthiolated compound 3d with 32% yield only.  

 

3.2 Studies performed under flow conditions 

In order to improve the efficiency of the organocatalytic α-trifluoromethylthiolation of silylenol ethers, 

we then investigated the new reaction under continuous flow conditions.[32] For the screening of reaction 

conditions and for synthesis of compounds, we used a commercially available Chemtrix Labtrix® Start 

Standard platform equipped with two syringe pumps (Chemix Fusion 100) to deliver the reagents through 



two Hamilton gastight 500 μL syringes into a glass microreactor (Chemtrix SOR 3223; 10 μL volume, channel 

width 300 μm and channel depth 120 μm). Conversions were determined by GC using biphenyl as internal 

standard (IS). Scheme 2 reports a simplified picture of the microreactor in which a 0.2 M solution of silylenol 

ether (1), containing 10 mol% of tetrahydrothiophene and byphenyl (as internal standard) in acetonitrile 

(Solution A) and a 0.2 M solution of trifluoromethylthiolating reagent (solution B) were fed into the 

microreactor. Preliminary results are reported in table 4. 

 

Scheme 2: Organocatalytic α-trifluoromethylthiolation of silylenol ethers under flow conditions. 

 

Table 4: Screening of reaction conditions under flow conditions using 2b as trifluoromethylthio source. 

Entry 
Temp 

(°C) 

Flow ratea 

(µL/min) 

Residence 

time (min) 

Convb 

(%) 

1c 60 2 5 - 

2 RT 2 2.5 15 

3 RT 1 5 19 

4 RT 0.5 10 37 

5 40 2 2.5 24 

6 40 1 5 28 

7 40 0.5 10 35 

8 60 2 2.5 22 

9 60 1 5 33 

10 60 0.5 10 52 

11 60 0.33 15 41 

12 70 0.5 10 36 

13d 80 2 2.5 19 

14d 80 1 5 22 

15d 100 2 2.5 18 

16 d 100 1 5 19 



17 d 120 2 2.5 16 

18 d 150 2 2.5 12 

 

aThe total flow rate is given by the sum of the flow rate of the two syringe pumps that feed reagents with the same rate. 
bMonitored by GC using biphenyl as internal standard. CReaction performed using 0.2 M solution of 2a. dA 100 psi back 

pressure regulator was mounted at the end of the microreactor.  

 

 

As in the case of batch conditions, product formation was not observed when a 0.2 M solution of N-

(trifluoromethylthio)phthalimide (2a) was employed (table 4, entry 1). However, we were glad to find that 

product 3a could be detected with 19% yield at RT after 5 min residence time using a 0.2 M solution of 2b 

(entry 3). Increasing the residence time to 10 min gave the desired product in 37% yield. The same level of 

chemical efficiency was observed when the temperature was increased to 40°C (entries 4 vs 7).  

On the basis of these data, a screening of different temperature as well as flow conditions was 

performed, and best results were obtained when operating at 60 °C, with 10 minutes of residence time; in 

this case the formation of the desired product occurred in 52% yield (entry 10). It must be noted that 

comparable yield was obtained using 10 mol% of THT at RT after 24 h (table 1, entry 8) proving that, in this 

reaction, the flow approach is more efficient than the traditional one.  

Operating at temperature higher than 60°C, in the presence of a back pressure regulator valve at the 

end of the microreactor (in order to avoid the evaporation of the solvent), a strong degradation of the starting 

silylenol ether was observed, with concomitant decrement of product yields. (entries 13-16).  

In order to understand whether different initial catalyst-substrate pre-coordination phenomena may 

play a role in the α-trifluoromethylthiolation of silylenol ethers, various combinations of feeding mixtures 

were studied, showing that also the feeding system can influence the chemical efficiency of the process 

(scheme 3). 

 

Scheme 3 

 

Generally, during all experiments, no clogging problems were encountered; however, the attempt to 

perform the reaction using more concentrated solution failed, due to a solubility problems of N-

(trifluoromethylthio)saccharin. On the other hands, when more diluted solutions were used, poor results 



were obtained. (Table 5, entry 1). When 0.2 M solution of N-(trifluoromethylthio)saccharin 2b was fed into 

the microreactor with a 0.1 M solution of silylenol ether (2:1 ratio), product 3a was formed with lower yields 

(entries 2-7). Since it was not possible to increase the concentration of 2b more than 0.2 M (syringe B), we 

next changed the stoichiometric ratio of the reaction simply by varying the flow rate of the two solutions. In 

this case, best results were obtained operating at 60 °C, where compound 3a was obtained in 34% yield after 

10 minutes.  

 

Table 5: Screening of reaction conditions with different concentrations and molar ratio. 

 

Entry 
Temp 

(°C) 

1a eq 

[M] 

2b eq 

[M] 

Flow rate 

Syringe A 

(µL/min) 

Flow rate 

Syringe B 

(µL/min) 

Total 

flow rate 

(µL/min) 

Residence 

time 

(min) 

Conva (%) 

1 60 1 (0.1) 1 (0.1) 0.5 0.5 1 10 10 

2 RT 1 (0.1) 2 (0.2) 1 1 2 5 11 

3 RT 1 (0.1) 2 (0.2) 0.5 0.5 1 10 12 

4 40 1 (0.1) 2 (0.2) 1 1 2 5 11 

5 40 1 (0.1) 2 (0.2) 0.5 0.5 1 10 13 

6 60 1 (0.1) 2 (0.2) 1 1 2 5 10 

7 60 1 (0.1) 2 (0.2) 0.5 0.5 1 10 14 

8 RT 1 (0.2) 2 (0.2) 1.33 2.67 4 2.5 9 

9 RT 1 (0.2) 2 (0.2) 0.66 1.27 2 5 20 

10 RT 1 (0.2) 2 (0.2) 0.33 0.67 1 10 26 

11 40 1 (0.2) 2 (0.2) 1.33 2.67 4 2.5 18 

12 40 1 (0.2) 2 (0.2) 0.66 1.27 2 5 25 

13 40 1 (0.2) 2 (0.2) 0.33 0.67 1 10 33 

14 60 1 (0.2) 2 (0.2) 0.33 0.67 1 10 34 

a Monitored by GC using biphenyl as internal standard. 

 

After having established the best reaction conditions for the α-trifluoromethylthiolation of silylenol 

ether 1a in flow, the reaction was extended to the synthesis of compounds 3a-d under continuous flow 



conditions, in the same, identified optimized experimental conditions: 1:1 molar ratio, 0.2 M concentration 

at 60 °C with 10 min as residence time (table 4, entry 10). The results are reported in table 6. 

 

Table 6: Trifluoromethylthiolation of various silyl enol ethers performed under flow conditions.  

 
 
 

Entry Substrate Product Conv (%) 

1a 

 

1b 3a 25b 

2 a 

 

1c 3b 32c 

3 

 

1d 3c 11c 

4 

 

1e 3d 19c 

 
a Z:E ratio > 99:1. b Monitored by GC using biphenyl as internal standard and confirmed by 1H-NMR. cDetermined 

by 19F-NMR.  

 

 As for the in batch reactions, the tertbutyldimethylsilyl (TBS) enol ether gave lower yields than the 

TMS derivative, as well the p-methoxy derivative 1c reacted to give the product in modest yields. 

Unexpectedly, also the cyclic silylenol ether 1d gave the product in very low yields, showing that for the 

process in continuo further studies are necessary to find the optimized reaction conditions for each substrate.  

However, it is interesting to make a comparison between the two approaches, taking in account the 

productivity and the space-time concepts.[33] The calculated productivity for the traditional flask synthesis 

of α-trifluoromethylthiolated ketone 3a (80 °C, 5 h, 74% yield) is 1480 h-1, while the productivity obtained for 



the flow process is 1.5 time higher (2228 h-1 ; calculated for 60 °C, 10 min, 52% yield). Moreover, also the 

space-time yield for the flow process (2x10-1, measured as [mass (product) / (vol(reactor) x reaction time) 

expressed as Kg/m3 s-1 is about 200 times higher than the traditional one, showing that in this case, the flow 

approach offer clear advantages than the traditional batch process. 

 

4. MECHANISM STUDY  

A proposed mechanism for the α-trifluoromethylthiolation is depicted in scheme 4. In analogy with 

ketone-derived enoxysilanes sulfenylation,[28] the first step involves the interaction of the Lewis base with 

N-(trifluoromethylthio)saccharin for the generation of adduct i. This active trifluoromethylthiosulfenylating 

agent then reacts with the silylenol ether to produce thiiranium ion or a silyloxycarbenium (adduct ii) that 

after nucleophilic removal of the silyl-protecting group by the saccharin anion affords the desired product 

with the concomitant release of the catalyst.  

 

Scheme 5: Proposed catalytic cycle 

 

Since this transformation requires high temperatures to take place (in opposite to the α-sulfenylation 

reaction), we started to perform some DFT calculation (M062X / 6-31G(2d,2p) level of theory) in order to 

provide more detailes on the mechanism. At the beginning, a conformational analysis with Monte Carlo 

techniques using OPLS_2005 force field[34] on a simple model of all the structures was performed; then 

refined structures were generated by DFT calculations. All the calculations were performed in vacuum by 

using Gaussian G09 rev D package. [35]  

The first calculations focused on the interaction of the Lewis base with N-(trifluoromethylthio)saccharin, 

by determining the energy barrier required for the activation of the “SCF3” group. The calculated energy 



profiles for this activation is shown in scheme 6, while the coordinates of all the optimized structures are 

described in the Supporting information.  

Interestingly, it was found that the transfer of the SCF3 group from N-(trifluoromethylthio)saccharin to 

tetrahydrothiophene is an high-energy demanding step, with a barrier estimated in 43.5 kcal/mol. This is in 

accordance with the fact that, experimentally, high temperatures are required in order to observe product 

formation. After this activation, the distance between nitrogen atom and the SCF3 group in N-

(trifluoromethylthio)saccharin increase from 1.69 Å to 3.2 Å, with consequent formation of THT-SCF3 adduct 

in a s-cis conformation geometry.  

 

 

Scheme 6: Calculated reaction profile for the α-trifluoromethylthiolation of silylenol ether by DFT 

calculations at M062X / 6-31G(2d,2p) level of theory. 

 

At this point, the new formed THT-SCF3 adduct interacts with the silylenol ether and according to 

literature, the formation of the thiiranium ion could be hypothesized.[36] The formation of thiiranium ion 

TS2 was effectively located as transition state and it was found that this structure is very close in energy 

compared to activated intermediates (only +0.68 Kcal/mol); however it is very far away from the starting 

materials (+39.42 kcal/mol). The silyloxycarbenium ion C’ was instead located as a stable entity. Since the 

activation of the N-(trifluoromethylthio)saccharin is more energetic demanding respect to the formation of 

the thiiranium ion, it could be considered as the rate determining step. It must be noted that the thiiranium 

ion is quite symmetrical since there are no significantly differences in terms of distances and angles between 



the sulfur atom and the two carbons of the enol ether ( dS-C = 2.7 Å, ����(�) ≅ ��(�)
� � = 76°). As final step, 

the nucleophilic attach of the saccharin anion to the silyloxycarbenium C’ occurs, releasing the final product 

with an additional increase of the energy gain for the process. 

 

CONCLUSIONS 

We have developed a novel approach for the α-trifluoromethylthiolation of unactivated ketones, 

starting from the corresponding silylenol ethers, in the presence of catalytic amounts of tetrahydrothiophene 

and N-(trifluoromethylthio)saccharin. This transformation was performed both under traditional batch 

conditions and, for the first time, under continuous flow conditions. Generally speaking, higher yields were 

observed using THT catalysts in a traditional batch process, but flow processes afforded the products with 

higher productivity and 200 times higher space-time yields. Preliminary DFT investigations on the activation 

mechanism of the trifluoromethylthiolating reagent were also performed, showing that relatively high 

temperatures are required in order to observe product formation.  
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