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In this paper, we study the reducibility of time quasiperiodic perturbations of the quan-
tum harmonic or anharmonic oscillator in one space dimension. We modify known
algorithms obtaining a reducibility result which allows us to deal with perturbations
of order strictly larger than the ones considered in all the previous papers. Published
by AIP Publishing. https://doi.org/10.1063/1.5048726

I. INTRODUCTION

In this paper, we study the reducibility of the time dependent Schrödinger equation

iψ̇ =H(ωt)ψ, (1.1)

H(ωt)B (−i∂x − εW1(x,ωt))2 + V (x) + εW0(x,−i∂x,ωt), x ∈R, (1.2)

where V is a smooth potential growing as V (x) ' |x|2` , ` ≥ 1, as x→∞, and W i are real valued C∞

functions (symbols), depending in a quasiperiodic way on time. More precisely, we prove the existence
of a unitary (in L2) transformation depending in a quasiperiodic way on time, which conjugates the
system to a diagonal time independent one. The main point is that we allow here perturbations which
are of order higher than those treated in all previous papers. In particular, we include the case of a
harmonic oscillator subject to a magnetic forcing.

From a physical point of view, the main consequence is that a time quasiperiodic perturbation
of the kind considered here does not transfer indefinitely energy to a quantum particle. From a
mathematical point of view, this is expressed by the fact that the Sobolev norms of the solutions of
(1.1) stay bounded for all time. We recall that (1.2) was also studied for more theoretical reasons: it
is well known that the classical Duffing oscillator, namely, the Hamiltonian system with Hamiltonian
ξ2 + x4 + εxβ0 cos(ωt), exhibits small chaotic islands when ε , 0. The question is whether the
quantum system has some behaviors which are a quantum counterpart of this nonregular behavior.
Furthermore, a point of interest is whether this depends on the value of the exponent β0 or not. As a
consequence of reducibility, one gets that the quantum perturbed system qualitatively behaves forever
as the unperturbed one, in sharp contrast with what happens in the classical case. Here, we prove that
this is the case as far as β0 < 3. Previously, this was known for integer values of β0 ≤ 4 or for real
values β0 < 2. We also expect our result to be the best one achievable with variants of the present
technique.

We now describe more in detail our assumptions and compare the present result with the previous
ones. To fix this, consider the case where W0 is independent of �i∂x so that it is a function of x andωt
only. In this case, the precise assumption is that ∀k ≥ 0, and there exists Ck such that the following
estimates are fulfilled:

���∂
k
x W0(x,ωt)��� ≤Ck〈x〉

β0−k , β0 < 2` − 1 , (1.3)

���∂
k
x W1(x,ωt)��� ≤Ck〈x〉

β1−k , β1

{
≤ ` if ` ∈ [1, 2)

< 2(` − 1) if 2 ≤ `.
(1.4)
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In the literature, the best known results are those of Ref. 1, which required β0 < ` and β1 < ` � 1 for
` ∈ [1, 2], while, in the case ` > 2, the order β1 was subject to the limitation β1 < `/2.

The problem of reducibility of equations of the form of (1.1) has a long history, and the main
results have been obtained in Refs. 2–8, and 1 (see Ref. 1 for a more detailed history). We also
mention that our result is limited to the one dimensional case, while some results on these prob-
lems in more than one dimension have been recently obtained.9–13 We also recall that related
techniques have been used in order to get a control on the growth of Sobolev norms in Refs. 14
and 15.

We now outline the strategy of the proof, which is the same as that of Refs. 8 and 1, which in
turn is a development of the ideas of Refs. 16–18. Such ideas consist of exploiting pseudodifferential
calculus in order to conjugate the Hamiltonian to a new one which is a smoothing perturbation of a time
independent operator and then applying a Kolmogorov-Arnold-Moser (theory) (KAM)-reducibility
scheme in order to complete the reduction to constant coefficients. More applications of these ideas
can be found in several papers (see, e.g., Refs. 19–23, and 13).

In the present paper, in order to prove our reducibility result, we proceed as follows: first, by a
gauge transformation, we eliminate from the perturbation the terms containing first order derivatives.
Then, we develop a variant of the theory of Refs. 8 and 1 in order to reduce the perturbation to a
smoothing one. The main difference is that here we do not eliminate time from the normal form that
we construct. More precisely, we first use the theory of Ref. 1 (a variant of Theorem 3.19 of that paper)
in order to conjugate (1.2) to a system which is a perturbation of H0 belonging to a better class of
symbols (essentially those considered in Ref. 8), and then, we apply the theory of Ref. 14 in order to
conjugate the so obtained system to another one which is a smoothing perturbation of a diagonal time
dependent system. Finally, we eliminate time from the latter system by an explicit transformation
which is done at the quantum level. Actually, we recall that in Refs. 8 and 1, the main limitation to
the order of the perturbation came from the construction of the transformation eliminating time from
the perturbation.

In Sec. II, we give a precise statement of our main result and Sec. III contains its proof. Section III
is split into 4 subsections: in Subsection III A, we give some preliminaries; in Subsection III B, we
eliminate W1; and in Subsection III C, we give some smoothing theorems reducing the system to a
time dependent normal form. Finally, in Subsection III D, we eliminate time from the normal form
and conclude the proof.

II. STATEMENT OF THE MAIN RESULT

We start by giving the precise assumptions on the potential. When ` > 1, we assume that

V (x)=V (−x), (2.1)

and that it admits an asymptotic expansion of the form

V (x)∼ |x |2` +
∑
j≥1

V2(`−j)(x), (2.2)

with Va homogeneous of degree a, namely, such that Va(ρx) = ρaV (x), ∀ρ > 0. We also assume
that

V ′(x), 0, ∀x , 0. (2.3)

In the case ` = 1, we assume that V (x) = x2.

Remark 2.1. The above assumptions on the potential are needed in order to apply the theory of
Ref. 1, which in turn deeply exploits the theory of Ref. 24. We think that it should be possible to extend
the results to more general potentials, for example, to noneven potentials and to potentials admitting
expansions more general then (2.2). Such an extension would require a nontrivial amount of work for
which we do not have a true motivation. For this reason, we limit ourselves to the considered class
of potentials.
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We denote by λvj the sequence of the eigenvalues of

H0B−∂xx + V (x). (2.4)

According to the results of Ref. 24, they form a sequence λvj ∼ cjd , with d = 2`
`+1 . In what follows, we

will identify L2 with `2 by introducing the basis of the eigenvector of H0. We also define a reference

operator K0BH
`+1
2`

0 .

Definition 2.2. For s ≥ 0, we define the Sobolev-like spaces HsBD(Ks
0) (domain of the s-power

of the operator K0) endowed by the graph norm. For negative s, the space Hs is the dual of H−s.
We will denote by B(Hs1 ;Hs2 ) the space of bounded linear operators from Hs1 to Hs2 .

Proposition 2.3. For s ≥ 0, given a function u ∈Hs, one has that

‖u‖Hs ' ‖u‖
H
`+1
`

s + ‖〈x〉(`+1)su‖L2 , (2.5)

where 〈x〉B
√

1 + x2, Hs is the standard Sobolev space, and ‖.‖Hs the corresponding norm.

The proof is given in Sec. III A.
Now, we recall the class of real valued symbols introduced in Ref. 1 (see also Refs. 24 and 8).

We emphasize that we will never use complex valued symbols. Define

λ(x, ξ)B
(
1 + ξ2 + |x |2`

) 1
2` . (2.6)

Definition 2.4. The space Sm1,m2 is the space of the functions (symbols) g ∈C∞(R2) such that
∀k1, k2 ≥ 0, there exists Ck1,k2 with the property that

���∂
k1
ξ ∂

k2
x g(x, ξ)��� ≤Ck1,k2

[
λ(x, ξ)

]m1−`k1〈x〉m2−k2 . (2.7)

Remark 2.5. The constants Ck1,k2 form a family of seminorms which allow one to endow Sm1,m2

with the structure of Fréchet space. Thus, one can consider also the space C∞(Tn, Sm1,m2 ) which is a
Fréchet space too.

We will also use the following class of symbols.

Definition 2.6. The space Sm
V is the space of the functions (symbols) g ∈C∞(R) such that

∀k ≥ 0, there exists Ck with the property that

���∂
k
x g(x)��� ≤Ck〈x〉

m−k . (2.8)

Remark 2.7. Here the index V is written in order to recall that this is a space composed by
“potentials,” thus depending on x only. For these kinds of functions, we will systematically identify
the function with the corresponding multiplication operator.

Remark 2.8. We have Sm
V ⊂ S0,m, and, defining

[m]Bmax{m, 0}, (2.9)

one also has Sm1,m2 ⊂ Sm1+[m2],0.

To a symbol g ∈ Sm1,m2 , we associate its Weyl quantization, namely, the operator Opw(g), defined
by

Opw(g)ψ(x)B
1

2π

∫
R2

ei(x−y)·ξg
( x + y

2
; ξ

)
ψ(y)dydξ. (2.10)
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Given a symbol g, we will often denote by the corresponding capital letter (in this case G) the
corresponding Weyl operator, and vice versa.

The frequencies ω will be assumed to vary in the set

ΩB [1, 2]n,

or in suitable closed subsets O ⊂ Ω. We will denote by |O| the Lebesgue measure of a Borel set.

Definition 2.9. Given a family of time dependent unitary operators U(t), we will say that it
conjugates H1, to H2, if given an arbitrary solution ψ of the Schrödinger equation iψ̇ =H1ψ, the
function ϕ defined by ψ = U(t)ϕ satisfies iϕ̇=H2ϕ.

Our main result is the following Theorem whose proof will occupy the rest of the paper.

Theorem 2.10. Let w0 ∈C∞(Tn; Sβ
(1)
0 ,β(2)

0 ), W1 ∈C∞(Tn; Sβ1
V ) be real valued symbols. Consider

the linear operator

H(ωt)= (−i∂x − εW1(x,ωt))2 + V (x) + εW0(ωt) (2.11)

(where of course W0BOpw(w0)) and define

βBmax
{
β(1)

0 , [β(2)
0 ], [β1 + 1]

}
.

Assume β < 2` � 1 and β1≤`.
Then there exists C, ε∗ > 0, and ∀|ε | < ε∗, a closed set Ω(ε) ⊂ Ω and, ∀ω ∈ Ω(ε), there

exists a unitary (in L2) time quasiperiodic map Uω(ωt) conjugating (2.11) to H∞B diag(λ∞j ), with
λ∞j = λ

∞
j (ω, ε) independent of time and

���λ
∞
j − λ

v
j

��� ≤Cε j
β
`+1 . (2.12)

Furthermore, one has

1. lim
ε→0
|Ω −Ω(ε)| = 0;

2. ∀s, r ≥ 0, ∃εs,r > 0 and sr such that if |ε| < εs,r, then the map φ 7→ Uω(φ) is of class
Cr(Tn;B(Hs+sr ;Hs)); when r = 0, one has s0 = 0.

3. ∃b > 0 such that ∀s ≥ 0, ‖Uω(φ) − 1‖B(Hs+β ;Hs) ≤Csε
b.

As usual, the boundedness of Sobolev norms and the pure point nature of the Floquet spectrum
follow.

Consider now the following class of symbols (already used in Refs. 24 and 8):

Definition 2.11. The space Sm is the space of the symbols g ∈C∞(R2) such that∀k1, k2 ≥ 0, there
exists Ck1,k2 with the property that

���∂
k1
ξ ∂

k2
x g(x, ξ)��� ≤Ck1,k2

[
λ(x, ξ)

]m−`k1−k2 . (2.13)

Remark 2.12. If a symbol w is of class Sm (m ≥ 0), and depends on x only, then it is a polynomial.
Indeed taking m derivatives with respect to x, one gets a function which tends to zero as ξ → ∞.
Since it is actually independent of ξ, it must be identically zero, and thus, the original function is a
polynomial.

By a small variant of the Proof of Theorem 2.10, one gets the following result.

Theorem 2.13. Let w ∈C∞(Tn; Sβ) be a symbol and consider the time dependent operator
H(ωt)B H0 + ε W(ωt); assume β < 2`, then the same conclusion of Theorem 2.10 holds.

The details of the proof are omitted.
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Remark 2.14. In Ref. 8, the same result was obtained under the stronger limitation β < ` + 1 in
the general case, or β < (3` + 1)/2 in the case where 〈w〉 = 0.

III. PROOF

First, remark that a quasiperiodic family of unitary transformations U(ωt) conjugates H(ωt)
to

H+(φ)=Uω∗H(φ)BU(φ)−1
(
H(φ)U(φ) − iω · ∂φU(φ)

)
. (3.1)

A. A few results on pseudodifferential calculus

An operator G will be said to be pseudodifferential of class OPSm1,m2 if there exists a symbol
g ∈ Sm1,m2 such that G = Opw(g). Similarly, we will say that G ∈ OPSm if there exists a symbol g ∈
Sm such that G = Opw(g).

Remark 3.1. If W ∈ Sm
V is a function, then by direct computation one has

Opw(ξW (x))=−iW∂x −
i
2

Wx =
−i∂x ◦W −W i∂x

2
. (3.2)

In particular, H0 is the Weyl quantization of the symbol

h0(x, ξ)B ξ2 + V (x), (3.3)

and the operator H of (2.11) is the Weyl quantization

h(x, ξ,ωt)= (ξ − εW1(x,ωt))2 + V (x) + εw0(x, ξ,ωt). (3.4)

According to the standard theory of pseudodifferential operators (see, in particular, Lemma 3.4 of
Ref. 1), given two symbols a ∈ Sm1,m2 and b ∈ Sm′1,m′2 , there exists a symbol g ∈ Sm1+m′1,m2+m′2 such that
Opw(a)Opw(b) = Opw(g). One denotes a]bB g, and furthermore, one has g= ab + Sm1+m′1−`,m2+m′2−1,
and there exists a full asymptotic expansion of a]b. Furthermore, the symbol (a]b � b]a)/i of 1/i
times the commutator of the two Weyl operators is called the Moyal Bracket of a and b and will be
denoted by {a; b}M . It turns out that

{a; b}M ∈ Sm1+m′1−`,m2+m′2−1, {a; b}M = {a; b} + Sm1+m2−3`,m1+m2−3, (3.5)

where {.; .} denotes the Poisson Bracket.
We also recall the following two lemmas, proved in Ref. 1, which will be used in our proof.

Lemma 3.2 (Lemma 3.8 in Ref. 1). Let χ ∈ Sm,0 have the further property that ∂xχ ∈ S` ,0. Assume
m ≤ ` + 1, then XBOpw(χ) is self-adjoint and e�iεX leaves invariant all the spaces Hs.

Lemma 3.3 (Lemma 3.11 in Ref. 1). Let χ ∈ Sα,0 with α < `, then given g ∈ Sm1,m2 , one has

eiεXOpw(g)e−iεX ∈OPSm1,m2 ,

and its symbol is given by

g + ε {g, χ} + εSm1+2(α−`),m2−2. (3.6)

Remark 3.4. In the following, we will need to consider the case where χ is also time dependent,
namely, χ ∈C∞(R, Sα,0), with α < `. In such a case, according to the formula (3.1), the operator
e�iεX conjugates Opw(g) to

eiεXOpw(g)e−iεX + eiεX∂te
−iεX .

According to Remark 3.12 of Ref. 1, one has

eiεX∂te
−iεX ∈OPSα,0.
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The application of the Calderon Vaillancourt Theorem yields the following Lemma.

Lemma 3.5. Let g ∈ Sm1,m2 , then one has

Opw(g) ∈B(Hs1+s;Hs), ∀s, ∀s1 ≥m1 + [m2]. (3.7)

In order to deal with functions p which depend on (x, ξ) through h0 only, namely, such that there
exist a p̃ with the property that

p(x, ξ)= p̃(h0(x, ξ)),

we introduce the following class of symbols.

Definition 3.6. A function p̃ ∈C∞ will be said to be of class S̃m if there exist constants Ck such
that

�����
∂k p̃

∂Ek
(E)

�����
≤Ck〈E〉

m
2` −k . (3.8)

Sometimes symbols of this class are also called classical symbols.
By abuse of notation, we will say that p ∈ S̃m if there exists p̃ ∈ S̃m such that p(x, ξ)= p̃(h0(x, ξ)).

We say that the corresponding Weyl operator Opw(p) belongs to the class ÕPS
m

.

Proof of Proposition 2.3. Proposition 2.3 is a direct consequence of the fact that, according to

the results of Ref. 25, for any real s, the operator Ks
0 (recall that K0 =H

`+1
2`

0 ) is a pseudodifferential
operator whose symbol has the form

(ξ2 + |x |2`)
s(`+1)

2` + lower order terms.

In turn, for, s ≥ 0, this is bounded by a constant times 〈ξ〉s
`+1
` + 〈x〉s(`+1). As a consequence, one

deduces the equivalence (2.5). ◽

Let p ∈ Sm1,m2 be a symbol and define its average by

〈p〉(x, ξ)B
1

T (E)

∫ T (E)

0
p(Φτh0

(x, ξ))dτ
�����E=h0(x,ξ)

, (3.9)

where Φτh0
(x, ξ) is the classical flow of the Hamiltonian h0 and T (E) is the period of the classical

orbits of h0 at energy E. Consider the homological equation

p + {h0; χ} = 〈p〉. (3.10)

Then the following lemma summarizes the results of Lemmas 3.13 and 3.14 of Ref. 1.

Lemma 3.7. Assume that p ∈ Sm1,m2 , then one has 〈p〉 ∈ S̃m1+[m2], and furthermore, the homolog-
ical equation (3.10) has a solution χ ∈ Sm1+[m2]−`+1,0.

B. Reduction of W 1

In order to eliminate the magnetic term, we will perform a gauge transformation; first of all, we
study the properties of such a transformation.

Lemma 3.8. Let b ∈ SαV withα ≤ ` + 1, then the unitary transformation e�ib(x) maps the spacesHs

into themselves and leaves invariant the space of the pseudodifferential operators of class OPSm1,m2 .

Proof. In order to show that the spaces Hs are left invariant by the transformation e�ib generated
by b, we apply Theorem 1.2 of Ref. 26 according to which it is enough to verify that [b, K0]K−1

0 is a
bounded operator. This is easily verified by remarking that
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[b, K0]K−1
0 =Opw({b, h

`+1
2`

0 }h
− `+1

2`
0 ) + lower order terms ,

and by explicit computation of the Poisson bracket, the function {b, h
`+1
2`

0 }h
− `+1

2`
0 is bounded together

with all its derivatives, provided α � 1 ≤ `. Thus, by the Calderon Vaillancourt Theorem, cf. Lemma
3.5, the corresponding operator is bounded. We come to the transformation of pseudodifferential
operators.

According to the standard approach to Egorov’s theorem, it is enough to prove that, denoting by
Φt

b(x, ξ)= (x, ξ − tb′(x)) the Hamiltonian flow of the Hamiltonian function b, one has g ◦Φt
b ∈ Sn1,n2

for any g ∈ Sn1,n2 for any n1, n2. First, remark that one has

|g(x, ξ − tb′(x))| ≤C〈x〉n2λ(x, ξ − tb′(x))n1 .

But, by the definition of λ,

λ(x, ξ − tb′(x)) ≤C(1 + ξ2 + (tb′(x))2 + |x |2`) ≤C1λ(x, ξ)

since, by assumption, |tb′(x)|2 ≤ 〈x〉2(α�1) ≤ 〈x〉2` , for |t| ≤ 1. For the derivatives of g, one proceeds
similarly. ◽

Lemma 3.9. There exists b ∈C∞(Tn; S[β1+1]
V ) such that the transformation

U (1)(φ) :ψ(x) 7→ e−iεb(φ,x)ψ(x) (3.11)

conjugates (2.11) to

H (1)(φ)B−∂xx + V (x) + εW (1)
0 (φ), w(1)

0 ∈C∞(Tn, Sβ,0), (3.12)

where W (1)
0 =Opw

(
w(1)

0

)
.

Proof. One has

[U (1)]−1 ◦ (i∂x) ◦ U (1) = i∂x − εbx,

− [U (1)]−1 ◦
(
iω · ∂φU (1)

)
=−εω · ∂φb,

(3.13)

while the operators of multiplication are invariant under the transformation (with φ considered as a
parameter). Thus, if we define b by

b(φ, x)=
∫ x

0
W1(φ, y)dy, (3.14)

we get b ∈ S[β1+1], and (i∂x + W1(x, φ))2 is conjugated to the differential operator (i∂x)2 − εω · ∂φb.
The transformation of W0 is an immediate corollary of Lemma 3.8. Finally, by summing up, one

gets the thesis. ◽

C. Smoothing theorems

Thanks to Lemma 3.9, in the case ` = 1, Theorem 2.10 follows from Theorem 2.4 of Ref. 1, so
we concentrate on the case ` > 1.

In this case, the conjugation of H (1) to a Hamiltonian with a smoothing perturbation is obtained
through the combination of a few smoothing theorems which essentially have already been proved
in previous papers, but are here combined in a new way. Precisely, in Theorem 3.10, we conjugate
H (1) to a new Hamiltonian H (2) which is a perturbation of H0, with perturbation which, up to a
smoothing remainder, belongs to the class C∞(Tn, Sβ). In Theorem 3.11, we conjugate (again up to a
smoothing remainder) H (2) to a new Hamiltonian which is time dependent and diagonal (with respect
to the basis of the eigenfunctions of H0). In Lemma 3.13, we show that the (still time dependent)
eigenvalues of the diagonal Hamiltonian are symbols of class S̃β as functions of λvj . In Lemma
3.15, we eliminate time from the above eigenvalues. Finally, in Lemma 3.16, we summarize the
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results and draw the last conclusions in a form suitable for the application of the KAM theory of
Ref. 8.

The first result that we need is a smoothing theorem which is a variant of Theorem 3.19 of
Ref. 1.

Theorem 3.10 [Smoothing Theorem 1]. Consider the Hamiltonian (3.12), and assume

β < 2` − 1 ;

fix an arbitrary κ > 0. Then there exists a time dependent family of unitary transformations U(2)(φ)
which conjugates the Hamiltonian (3.12) to a pseudo-differential operator H(2) with the symbol h(2)

given by

h(2)(φ, x, ξ)= h0(x, ξ) + εz(2)(h0(x, ξ), φ) + εr(2)(x, ξ, φ), (3.15)

where z(2) ∈C∞(Tn; S̃β) is a function of (x, ξ) through h0 only, while the remainder fulfills

r(2) ∈C∞(Tn; S−κ,0). (3.16)

Furthermore, one has

1. ∀r ≥ 0, ∃sr such that the map φ 7→ U(2)(φ) is of class Cr(Tn;B(Hs+sr ;Hs)); when r = 0, one
has s0 = 0.

2. 


U (2)(φ) − 1


B(Hs+β ;Hs)
≤Csε .

Proof. The proof is essentially identical to the Proof of Theorem 3.19 of Ref. 1, the difference is
that one makes the first transformation reducing (3.12) to the form (3.41) of Ref. 1, and then, instead
of eliminating the time dependence from the average of w(1)

0 , one iterates the previous step (as in Ref.
14), in order to get a normal form which is a function of time, but depending on the space variables
through h0 only.

Precisely, fix

δBmin{` − 1; β − (2` − 1)},

which is strictly positive due to the assumption on β, and define the sequence

α0B β, αj+1 = αj − δ.

Then, we are going to prove that there exist sequences of (time dependent) symbols zj ∈C∞(Tn; S̃β),
w(1)

j ∈C∞(Tn; Sαj ,0), and χj ∈C∞(Tn; Sαj−1−`+1,0) with the property that e−iεOpw (χj+1) conjugates the
Hamiltonian operator with symbol

h(1)
j B h0 + εzj + εw(1)

j (3.17)

to a Hamiltonian operator with the same symbol, but with j replaced by j + 1. We proceed by induction.
The result is true for j = 0 by taking zj = 0. Assume that the result true for some j. Next, we consider
the homological equation (3.10) with p replaced by w(1)

j . Let χj+1 be its solution, and use the operator

e−iεOpw (χj+1) to conjugate the Hamiltonian to a new Hamiltonian with a symbol which, according to
Lemma 3.3, is given by

h0 + ε
{
h0; χj+1

}
+ εSαj−(2`−1−αj),0 (3.18)

+εzj + ε2Sα0−(2`−1−αj),0 (3.19)

+εw(1)
j + ε2Sαj−(2`−1−αj),0 (3.20)

+εSαj−`+1,0. (3.21)

Define zj+1 = zj + ε〈w(1)
j 〉 and w(1)

j+1 to be the sum of all the remainder terms above. Then, one deduces
the claimed statement with j + 1 in place of j. ◽
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We now apply Theorem 3.8 of Ref. 14 which gives the following.

Theorem 3.11 [Smoothing Theorem 2]. Under the assumptions of Theorem 3.10. There exists a
unitary (time-dependent) operator U(3)(φ) in L2(R) which conjugates H(2) [and thus the Hamiltonian
(2.11)] to the Hamiltonian

H (3)(φ)BH0 + εZ (3)(φ) + εR(3)(φ), (3.22)

where Z (3)(φ) ∈C∞(Tn, ÕPS
β
) commutes with H0, i.e., [Z (3)(ωt), H0] = 0, while R(3) ∈

C∞(Tn, OPS−κ,0). Furthermore, one has

1. ∀r ≥ 0, ∃sr such that the map φ 7→ U(3)(φ) is of class Cr(Tn;B(Hs+sr ;Hs)); when r = 0, one
has s0 = 0.

2. 


U (3)(φ) − 1


B(Hs+β ;Hs)
≤Csε .

Proof. First, we recall that according to Theorems 7 and 8 of Ref. 24, there exists a
pseudodifferential operator Q ∈ OPS�(`+1) such that

H0 =K
2`
`+1

1 + Q, and [K1; Q]= 0, (3.23)

and the spectrum of K1 is {j + σ}j≥0 with27 σ > 0. Remark that K1 and Q are diagonal on the basis
of the eigenfunctions of H0. Then, Theorem 3.8 of Ref. 14 applies and gives the result with Z (3)

which commutes with K1; however, since the eigenvalues of K1 are simple, Z (3) commutes also with
H0. ◽

Remark 3.12. By the previous theorem, the matrix of the operator Z (3)(ωt) is diagonal on the
basis of the eigenfunctions of H0. Thus, on this basis

Z (3)(φ)= diagj≥0µj(φ) (3.24)

with suitable smooth functions µj(φ) which satisfy for any m ∈N, the estimate ‖µj ‖Cm(Tn) ≤Cmj
β
`+1

for a suitable constant Cm > 0.

We are now going to show that, due to the property that Z (3)(ωt) is a pseudodifferential operator,
the µj

′s are essentially smooth functions of the eigenvalues of H0, i.e., of λvj .

Lemma 3.13. For any κ there exists a smooth function zµ ∈C∞(Tn; S̃β) and a sequence of
functions δj(φ) such that

µj(φ)= zµ(λvj , φ) + δj(φ), (3.25)

and for any m ≥ 0, there exist Cm such that

‖δj ‖Cm(Tn) ≤Cm〈j〉
−κ . (3.26)

Proof. The Lemma follows by the following inductive claim: For any k ∈N, there exists a smooth
function z {k }µ (H0) of the operator H0 (spectrally defined as a function of H0) with z {k }µ ∈C∞(Tn, OPSβ)
such that

Z (3) = z {k }µ (H0) + OPSβ−(k+1)(`+1).

The claim is proved by arguing by induction on k.
Proof for k = 0

Denote by z(3), the symbol of Z (3) (where we drop the dependence on φ). Let η(E) be a smooth
compactly supported function and write

z(3) = z(3)
0 + z(3)

R ,

where z(3)
R (x, ξ,ωt)B z(3)(x, ξ,ωt)η(h0(x, ξ)) and z(3)

0 B z(3) − z(3)
R .
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By the commutation property, one has
{
z(3); h0

}
M
= 0 =⇒

{
z(3)

0 ; h0

}
=: δ ∈ Sβ−`−3. (3.27)

Denote by Φt
h0

, the flow of the Hamiltonian system with Hamiltonian h0, and define the average of

z(3)
0 according to (3.9). By Lemma 4.16 of Ref. 8, one has 〈z(3)〉 ∈C∞(Tn, S̃β).

Define now

ž(3)
0 B z(3)

0 − 〈z
(3)
0 〉,

and remark that the average of δ vanishes so that ž(3)
0 is the only solution with zero average of the

equation {
h0; ž(3)

}
= δ.

Now, according to Lemma 4.17 of Ref. 8, such a solution is of class Sβ�2(`+1). It follows that
ž(3)

0 ∈ Sβ−2(`+1). Furthermore, by the standard argument, one has that 〈z(3)
0 〉(x, ξ)= 〈z(3)

0 〉(h0(x, ξ), φ)
depending on (x, ξ) through h0 only. Finally, by functional calculus, one has that the Weyl operator
of 〈z(3)

0 〉(h0, φ) is given by

〈z(3)
0 〉(H0) + OPSβ−(`+1). (3.28)

Thus, one has

Z (3) = 〈z(3)
0 〉(H0) + OPSβ−(`+1).

Thus, the claimed statement for k = 0 follows by defining z {0}µ B 〈z
(3)
0 〉.

Proof of the inductive step
Assume that

Z (3) = z {k }µ (H0) + OPSβ−(k+1)(`+1), z[k]
µ ∈OPSβ .

We define A{k }µ BZ (3) − z {k }µ (H0) ∈OPSβ−(k+1)(`+1), and let a{k }µ ∈ Sβ−(k+1)(`+1) be the symbol of A
[
{k }

µ .
The following splitting holds:

a{k }µ = a{k }
µ,0 + a{k }

µ,R, a{k }
µ,0B (1 − η(h0(x, ξ)))a{k }µ , a{k }

µ,RB η(h0(x, ξ))a{k }µ .

Since Z (3) and z {k }µ (H0) commute with H0 then A{k }µ also commutes with H0, and hence, one obtains
that {

a{k }µ ; h0

}
M
= 0 =⇒

{
a{k }
µ,0; h0

}
=: δk ∈ Sβ−(k+1)(`+1)−`−3.

We now define ǎ{k }
µ,0B a{k }

µ,0 − 〈a
{k }
µ,0〉, where 〈a{k }

µ,0〉 is the average of the symbol a{k }
µ,0 with respect to

the Hamiltonian flow of h0. Note that the average of δk vanishes, and by Lemma 4.16 of Ref. 8,
one has that 〈a{k }

µ,0〉 ≡ 〈a
{k }
µ,0〉(h0) ∈ S̃β−(k+1)(`+1). Hence, ǎ{k }

µ,0 is the unique solution of the homological
equation {

ǎ{k }
µ,0; h0

}
=: δk ,

and by Lemma 4.17 of Ref. 8, one has that ǎ{k }
µ,0 ∈ Sβ−(k+3)(`+1), and hence,

a{k }µ = a{k }
µ,0 + a{k }

µ,R = 〈a
{k }
µ,0〉(h0) + ǎ{k }

µ,0 + a{k }
µ,R = 〈a

{k }
µ,0〉(h0) + Sβ−(k+3)(`+1). (3.29)

Finally, by functional calculus, one has that

Opw
(
〈a{k }
µ,0〉(h0)

)
= 〈a{k }

µ,0〉(H0) + OPSβ−(k+2)(`+1). (3.30)

Therefore, (3.29) and (3.30) imply that

Z (3) = z {k }µ (H0) + A{k }µ
(3.29)
= z {k }µ (H0) + Opw

(
〈a{k }
µ,0〉(h0)

)
+ OPSβ−(k+3)(`+1)

(3.30)
= z {k }µ (H0) + 〈a{k }

µ,0〉(H0) + OPSβ−(k+2)(`+1).
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The claimed statement at the step k + 1 then follows by defining z {k+1}
µ (H0)B z {k }µ (H0) + 〈a{k }

µ,0〉

(H0). ◽

D. Elimination of time from Z (3) and preparation for KAM theory

In this section, we eliminate time from Z (3), and we get a system suitable for the application of
the KAM Theorem 7.3 of Ref. 8.

First, we fix a τ > n � 1, and for any γ ∈ (0, 1), we define the set Ωγ of Diophantine frequencies
with constant γ by the following.

Definition 3.14. The frequencies ω belonging to the set

ΩγB

{
ω ∈ [1, 2]n : |ω · k | ≥

γ

|k |τ
, ∀k ∈Zn \ {0}

}
(3.31)

are called Diophantine.

It is well known that ���Ω −Ωγ
��� ≤Cγ for a suitable positive constant C.

In the following, we will denote by Lip
(
Ωγ; Cr(Tn;B(Hs;Hs′))

)
the space of Lipschitz functions

from Ωγ to Cr(Tn;B(Hs;Hs′)). Furthermore, we define

〈zµ〉φ(E)B
1

(2π)n

∫
Tn

zµ(E, φ) dφ, (3.32)

where zµ is given in Lemma 3.13. Note that 〈zµ〉 ∈ S̃β . We now prove the following lemma.

Lemma 3.15. Forω ∈ Ωγ, there exists a unitary (time-dependent) operator U (4)(ωt) in L2 which
conjugates (3.22) into

H (4)(φ)BA0 + εR0(φ), (3.33)

where

A0B diagj≥0(λ(0)
j (ω)), (3.34)

λ(0)
j (ω)= λvj + 〈zµ〉φ(λvj ), ∀j ≥ 0. (3.35)

Furthermore, one has

1. ∀r ≥ 0, the map φ 7→ U(4)(φ) is of class Cr(Tn; B(Hs;Hs−βr)).
2. 


U (4)(φ) − 1


B(Hs+β ;Hs)

≤Csεγ
−1.

3. For all r, one has R0BLip
(
Ωγ; Cr(Tn;B(Hs;Hs+κ−βr−1))

)
.

Proof. The transformation is obtained by eliminating time from the operator H0 + εzµ(H0).
Note that this latter linear operator is diagonal. According to Lemma 3.13, we write the operator
H (3)(φ) in (3.22) as H (3)(φ) = D(φ) + εQ(φ), where D(φ)B diagj≥0

(
λvj + εzµ(λvj , φ)

)
and Q(φ)

B R(3)(φ) + diagj≥0δj(φ). We then conjugate H (4) by means of a transformation of the form U (4)(φ)
= diagj≥0e−εcj(φ). By (3.1), the conjugated vector field is then given by

H (4)(φ)= diagj≥0

(
λvj + εzµ(λvj , φ) − εω · ∂φcj(φ)

)
+ εU (4)(φ)−1Q(φ)U (4)(φ).

In order to eliminate time dependence from the diagonal part of the operator H (4)(φ), we consider
the Fourier expansion

zµ(λvj , φ)(φ)=
∑
k∈Zn

ẑµ(λvj , k)eik ·φ

and define
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cj(φ)=
∑

k∈Zn\{0}

ẑµ(λvj , k)

iω · k
eik ·φ .

Then the operator H (4)(φ) takes the form

H (4)(φ)= diagj≥0

(
λvj + ε〈zµ〉φ(λvj )

)
+ εU (4)(φ)−1Q(φ)U (4)(φ) ,

where we recall the definition (3.32). A simple analysis of the transformation U (4)(φ) and of the
remainder R0(φ)B U (4)(φ)�1Q(φ)U (4)(φ) shows that the properties 1-3 are fulfilled. ◽

As a final step, we have a Lemma which shows that H (4) fulfills the assumptions of Theorem 7.3
of Ref. 8 which thus gives the result.

Lemma 3.16. For any positive γ, r, κ, there exists a set Ω(0)
γ ⊂Ωγ and positive constants a, C, ε∗

such that, if |ε| < ε∗, then for any ω ∈Ω(0)
γ , the unitary (in L2) operator U1 B U (1)◦U (2)◦U (3)◦U (4)

conjugates (1.2) to (3.33), and furthermore, the following properties hold:
���Ωγ \Ω

(0)
γ

��� ≤Cγa, (3.36)

A0B diag(λ(0)
j ), (3.37)

with λ(0)
j = λ

(0)
j (ω) Lipschitz dependent on ω ∈ Ωγ and fulfilling the following inequalities

[with d = 2`/(` + 1)]:

���λ
(0)
j − λ

v
j

��� ≤Cε j
β

l+1 , (3.38)

���λ
(0)
i − λ

(0)
j

��� ≥
1
C

���i
d − jd ���, (3.39)

�������

∆(λ(0)
i − λ

(0)
j )

∆ω

�������
≤Cε |id − jd |, (3.40)

���λ
(0)
i − λ

(0)
j + ω · k��� ≥

γ(1 + |id − jd |)
1 + |k |τ

, |i − j | + |k | , 0, (3.41)

where, as usual, for any Lipschitz function f, we denoted ∆f = f(ω) � f(ω′).
Furthermore, one has

1. the map φ 7→ U1(φ) is of class Cr(Tn;B(Hs;Hs−βr)).
2. ‖U1(φ) − 1‖B(Hs+β ;Hs) ≤Csεγ

−1.

3. For all r, one has R0BLip
(
Ωγ; Cr(Tn;B(Hs;Hs+κ−βr−1))

)
.

The proof is exactly as the proof of Lemma 5.2 of Ref. 8 to which we refer for the details.
We end the section by remarking that Theorem 2.10 is now an immediate consequence of the

Theorem 7.3 of Ref. 8.
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