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Gold catalysis has recently found its first large-scale applications in the 
chemical industry. In this mini review, we provide a critical analysis of the 
success factors and of the main obstacles that had to be overcome on the 
long way from discovery to commercialization. The insights should be 
useful to researchers in both academia and industry working on the 
development of tomorrow's gold catalysts to tackle significant 
environmental and economic issues.  
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The image displays also a carbide-based PVC plant in China. We thank the United Nations Environment 
Programme and its Global Mercury Partnership for providing the picture. 
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Introduction 

The discovery of the very first heterogeneous catalyst containing gold, a catalyst for the 

oxidative acetoxylation of ethylene to vinyl acetate, goes back almost exactly half a 

century. The patent claiming it was filed in June 1965 by the German company 

Knapsack.1 Four decades have passed since the discovery of Bond and Sermon that the 

activity of Au/SiO2 catalysts prepared by mild thermal treatment of impregnated 

HAuCl4 for the hydrogenation of 1-pentene at 373 K increased by a factor of 7000 as 

gold content was decreased from 1% to 0.01%.2  And three decades have gone by since 

the almost simultaneous discoveries of Hutchings3 and Haruta4 that nanoscale gold 

supported on activated carbon or on 'reducible' supports such as titania (the reducibility 

of a catalyst support is its ability to generate oxygen vacancies and to transfer the 

oxygen onto the metal particle) are exceptionally effective redox catalyst for acetylene 

hydrochlorination and CO oxidation. Now the time has finally arrived when 

heterogeneous catalysts containing gold start to appear in large-scale applications in the 

chemical industry.  

 According to the noble nature of the metal, extended gold surfaces do not 

chemisorb oxygen, nor do they corrode. It came thus as a surprise for the chemical 

community when the scientists above first showed that gold, when prepared as 

supported nanoparticles, can be an excellent catalyst. This marked the starting point for 

heterogeneous gold catalysis. Only a few years later a further breakthrough also came 

with the discovery that gold can also be a very active homogeneous catalyst,5 including 

remarkable quasi-homogeneous catalysis for which subnanoparticle gold clusters (3 to 

10 atoms) formed in solution give reaction turnover numbers of 107 at room 

temperature.6  

 All these discoveries contributed to the emergence of gold catalysis, both 

homogeneous and heterogeneous, as a major research topic.7,8  
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 The history of the discovery, development, and commercialization of gold 

catalysts for acetylene hydrochlorination as a replacement for the HgCl2 has been 

recently recounted.9 To the best of our knowledge, to date two other Au containing solid 

catalysts are commercially employed in the chemical industry: the Au-doped Pd catalyst 

for the vinyl acetate synthesis, which has been in use for almost half a century,10 and the 

core-shell AuNiOx catalyst for the oxidative esterification of methacrolein to methyl 

methacrylate.11  

 A first analysis on the commercial aspects of heterogeneous gold catalysis 

published in 2005 concluded that the two limiting factors to address prior to industrial 

applications were the catalyst durability under operating conditions, and viable methods 

of catalyst preparation.12 Another analysis by one of the authors also pointed out that 

new catalysts have to be seen in the context of the chemical process they are embedded 

in.13 For a new catalyst to come into use one of two options have to be fulfilled. One 

option is that the new catalyst enables the development of an entirely new process with 

different raw materials and breakthrough economics. This was the case for the vinyl 

acetate catalyst, which allowed the replacement of acetylene by the much cheaper 

ethylene as raw material. In such a case the new catalyst will lead to the construction of 

many new plants and to a step change in technology.  

Another option is that the catalyst uses the same raw materials as conventional 

catalysts but offers a moderate economic hub, for instance because it is more selective 

than conventional catalyst. In this case a new catalyst will only find application if it can 

be developed as a drop-in for existing plants. This was the case with both the catalyst 

for hydrochlorination of acetylene and for the oxidative esterification of methacrolein. 

They could only be successfully introduced, because they could replace old catalysts in 

existing plants. 
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 For specific reactions gold can show significantly higher activity and selectivity 

when compared with other metal catalysts, including platinum-group metals (PGMs), 

often under milder reaction conditions and this can pave the way to new applications.14  

Catalysts based on similarly expensive, supported PGMs are widely employed 

in the chemical industry due to their ability to activate industrially and economically 

important molecules (H2 and O2, as ideally suited redox catalysts, but also CO, olefins 

etc.). The fact that gold is more abundant than other PGMs is certainly a positive aspect. 

In 2015, global gold production from mining was estimated at 3,000 tonnes.15 In the 

same year the overall production of Pt was only 178 tonnes and that of Pd only 207.5 

tonnes.  

 In the following, we will discuss the main obstacles that had to be overcome on 

the long way from discovery to commercialization. This critical analysis is intended to 

provide guidance and inspiration to researchers in both academia and industry working 

on new gold-catalysts and gold-catalyzed processes for potentially industrially 

important problems as for example, the direct synthesis of hydrogen peroxide,16 the 

direct oxidation of hydrocarbons,17 and the selective oxidation of renewable substrates 

of primary importance in the emerging biorefinery field.18  
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Oxidative esterification of methacrolein to methyl methacrylate 

Since 1976 Asahi Kasei (the former Asahi Chemical) has been producing methyl 

methacrylate at its facility in Kawasaki, Japan. The plant used a three-step process from 

tert-butyl alcohol, which was first oxidized to methacrolein and subsequently to 

methacrylic acid, both processes taking place in the gas phase using two different Mo 

catalysts. Finally, the methacrylic acid was esterified with methanol to give the desired 

methyl methacrylate. However, this process was hampered by high specific investment 

costs and particularly by the low lifetime of the catalyst in the second oxidation step. 

 

 
Scheme 1. The old Asahi process (upper route) and the new  
Direct-Metha Process (lower route) to methyl methacrylate. 

 

In order to overcome these problems, Asahi developed a process where methacrolein 

was oxidatively esterified with methanol in the liquid phase to give directly the desired 

methyl methacrylate, the so-called “Direct-Metha Process” (Scheme 1).19  

Originally, the oxidative esterification of MA with methanol in the presence of 

molecular oxygen was carried out in the liquid phase over a catalyst containing the 

intermetallic phase Pd3Pb as the active phase supported on alumina.20 The introduction 

of the catalytic oxidative esterification was a very important development, because it 

allowed reducing the number of steps from three to two, thus addressing the major 

drawback of the original Asahi process, which was the high specific investment. 

However, the new Direct-Metha process, which was in use after 1982, still had 

drawbacks. The selectivity to methyl methacrylate based on methacrolein was quite 
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good but, unfortunately, the catalyst also oxidized methanol to methyl formate to a 

considerable extent. Thus, using the Pd3Pb catalyst 0.2 moles of methyl formate were 

produced per mole of methyl methacrylate. Additionally the Pd3Pb catalyst was difficult 

to produce because any Pd not bound in the Pd3Pb phase leads to selectivity losses due 

to decarbonylation of methacrolein. Yet, the most pressing problem was to reduce the 

losses of methanol and the formation of methyl formate as by-product. The research 

team at Asahi led by Ken Suzuki, succeeded in discovering a new catalyst to replace the 

original Pd3Pb catalyst, which had a much lower rate of formation of methyl formate.  

Since the pioneering work of Hayashi and his group at Nippon Shokubai 

between 2002 and 2006 on the oxidative esterification of ethylene glycol in the presence 

of methanol to methyl glycolate, it was known that gold was a competent metal to 

catalyze oxidative esterifications.21 The preferred catalyst was gold, sometimes with Pb 

as dopant, supported on alumina. Although the selectivity based on ethylene glycol was 

quite good, these catalysts still produced considerable amounts of methyl formate as by-

product (between 0.15 and 0.36 moles of methyl formate per mol of methyl glycolate, 

depending on the molar ratio of methanol to ethylene glycol used in the reaction). The 

work at Nippon Shokubai never went beyond the pilot plant scale, but it surely served 

as an inspiration for the group at Asahi Kasei. 

The best catalyst identified was a Au-NiO/SiO2-Al 2O3-MgO catalyst which 

produced methyl methacrylate with a selectivity based on methacrolein of 98% at a 

methacrolein conversion of 58%. However, the most important finding was that now the 

oxidation of methanol to methyl formate was negligible (only 0.007 moles of methyl 

formate were formed per mol of methyl methacrylate). This catalyst, though, was not 

commercially usable because of insufficient mechanical stability.  

To overcome this problem the team at Asahi Kasei developed a core-shell 

catalyst containing gold-nickel oxide (AuNiOx) nanoparticles supported on a silica-
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based carrier where the Au nanoparticles are not exposed directly at the surface but just 

below it in order to protect the Au particles from mechanical abrasion. The stability of 

this catalyst was verified in long running pilot plant experiments and finally the catalyst 

was used in the existing commercial MMA production plant in 2008.22  

The Au-NiOx nanoparticles (optimal composition, 20 mol.-% of Au) have a 

core-shell structure, with Au nanoparticles at the core and the surface covered by highly 

oxidized NiOx. These core-shell nanoparticles showed the desired activity and 

selectivity, but the catalyst was still not technically useful. The oxidative esterification 

of methacrolein is performed in suspension and this implies that the catalyst is subject 

to a high mechanical stress. The abrasion caused by the mechanical stress led to a loss 

of the catalytically active nanoparticles and to a deactivation of the catalyst. 

 

 
Figure 1. Electron-probe microanalysis spectra of a single particle of AuNiOx/SiO2–Al2O3–MgO. (a) 

Secondary electron image and line analysis. (b) Color mapping (Ni in green, Au in red) display 
corresponding to the concentration of the element distribution. [Reproduced from Ref.11, with kind 

permission]. 
 

In order to solve this problem, the team at Asahi used a mechanically robust SiO2-

Al 2O3-MgO support as 60 µm spheres and controlled the deposition process in such a 

way that the gold nanoparticles are preferentially located just below the surface but only 

down to a depth of less than 10 µm (see Figure 1). In this way the gold nanoparticles 

remain well accessible but are protected from losses through abrasion. Only through this 

improved deposition procedure was it possible to obtain a robust, long-lived catalyst. As 

shown in Figure 2, this catalyst was operated in a continuous manner for 40 days with 
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stable catalytic activity. During this period MMA was obtained with high selectivity 

(96-97%) and constant yield (ca. 60%), and negligible gold and nickel leaching (Au and 

Ni in the reaction mixture <2.5 ppb). An examination of the catalyst after the long time 

run showed no sintering of the AuNiOx nanoparticles with the macroscopic core-shell 

structure remaining intact. 

 

 

 
 
 
 
 
 
 
 
 

Figure 2. Catalytic activity of AuNiOx/SiO2–Al2O3–MgO  
over time in a continuous-flow reaction apparatus  
[Reproduced from Ref.11, with kind permission]. 

 

 

In summary, several factors were decisive for the success of this new catalyst. First of 

all the reaction conditions for the new catalyst are very similar to the ones of the 

original catalyst, and the new catalyst has a deactivation rate (both chemical and 

mechanical) which is not faster than the one of the original catalyst. These are the sine 

qua non requirements for a drop-in catalyst. Additionally, the new catalyst provides a 

lower rate of by-product formation (by-products are still formed, albeit in reduced 

amounts, while the amount of waste water remains essentially unchanged), and a lower 

catalyst cost due to the lower amount of precious metal required for a similar 

productivity. 
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Hydrochlorination of acetylene 

In 2015, catalyst manufacturer Johnson Matthey officially announced the introduction 

of Pricat MFC as the brand for its newly developed gold catalyst for the manufacture of 

vinyl chloride monomer (VCM), the monomer for polyvinyl chloride (PVC, the world's 

third largest polymer).23 About one third of the approximately 50 million tons per year 

of VCM capacity worldwide uses the acetylene hydrochlorination technology but the 

plants using it are almost exclusively located in China. These plants, that still use HgCl2 

supported on carbon as the catalyst, have come under pressure because the Minamata 

Convention on Mercury requires that before 2022 all VCM plants have to switch to a 

mercury-free catalyst, providing there is an economically viable alternative. The 

mercury catalyst has a limited lifetime of just 6 months and the losses of mercury during 

operation and catalyst recovery for all the existing plants amounts to 600 tons per year, 

which is roundabout 50% of the world consumption of mercury.  

There is thus a big incentive from both a regulatory and an environmental point 

of view to replace these mercury catalysts. However, the new catalyst has to be a drop-

in catalyst for existing plants, because the economical hub will be only modest: the 

plants will still use the same starting materials and only small improvements on 

selectivity can be expected. The replacement catalyst must thus work under similar 

reaction conditions, must have a similar catalytic activity, at least equal selectivity and 

the overall catalyst costs have to be in the same range as with the catalyst being 

replaced.   

The catalytic activity of tetrachloroauric acid, both in homogeneous and 

heterogeneous form, is actually known since 1977, when the Japanese company Denki 

Kagaku Kogyo, known today as Denka, filed two patents on the production of vinyl 

chloride from acetylene and HCl.24 Although the patents mainly claim mixtures of gold 

with platinum or palladium, they also contain experiments where gold alone shows 
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good catalytic activity and selectivity. But these patents fell into oblivion and it took 

another 10 years before this subject was picked up again, by Hutchings and his team 

who showed that tributylammonium tetrachloroaurate in isopropanol/decane was a 

competent homogeneous catalyst for the addition of HCl to acetylene,25 although the 

catalytic activity was only moderate.  

The first heterogeneous catalysts were simply prepared by simple adsorption of 

HAuCl4 from aqueous solution onto an activated carbon.3,26 These catalysts were almost 

as active and as selective as the mercury catalyst, but they deactivated rather quickly. 

Although activity could be recovered by treating with HCl, the deactivation after 

regeneration was at least as fast as with a fresh catalyst and it was clear that such a 

catalyst would not be technically usable.  

In the following years, two mechanisms of deactivation were identified. At 

lower reaction temperatures (60-100°C) coke deposition was the major deactivation 

pathway, but at higher reaction temperatures (120-180°C) reduction of cationic gold 

species to (inactive) Au(0) was the major deactivation pathway.27 In the same study the 

authors also demonstrated that deposition of gold in the presence of the highly oxidizing 

aqua regia leads to considerably more active catalysts, probably because more oxidized 

gold species are present at the surface of the gold nanoparticles. However, in spite of the 

high gold loadings and the improved deposition under oxidative conditions, the problem 

of catalyst deactivation could not be solved. 

 To establish an economically viable process for VCM producers, the industrial 

research team at Johnson Matthey led by Peter Johnston set as development targets a 

maximum gold loading of 0.25%, and a preparation that does not require the use of 

aqua regia, because of the difficulties associated in disposing of aqua regia containing 

waste streams. This loading is significantly lower than typical 0.5-1% Au loadings of 

conventional Au/C catalyst whose preparation required the use of aqua regia as solvent, 
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but above all they had to solve the problem of catalyst deactivation.28 This was 

necessary in order to meet the targeted catalyst costs required to compete with the 

HgCl2 based catalyst. 

 Reviewing the actual development of this catalyst offers some valuable lessons. 

In 1995 Aker Solutions, a chemical plant construction company based in Norway later 

partly acquired by Jacobs, developed a gold catalyst for making VCM and tested it 

successfully (longer catalyst life vs mercury catalyst) on pilot plant scale.29 The catalyst, 

however, was never commercialized because the company's internal project was 

terminated. In 2006 the company started to co-operate with Johnson Matthey and with 

the group of Graham Hutchings in Cardiff to further develop and commercialize a Au/C 

catalyst customized for the Chinese VCM process conditions. In 2007, Hutchings and 

co-workers demonstrated that the activity is maximal for a catalyst containing only gold 

without any other metals. They also demonstrated that it is essential to maximize the 

dispersion of gold to ensure the maximum amount of gold can be maintained in the 

cationic state in the working catalyst.30 The catalyst preparation then became the key 

means of improving the catalyst performance and the key challenge.  

 In 2010 Jacobs was commissioned a pilot plant by a VCM manufacturer in 

western China replicating a single tube from a commercial reactor (a single 3 m tube 

with 2 kg catalyst charge).31 The pilot plant operated continuously for two years since 

mid-2011, with 6 different catalysts tested in order to fine-tune the catalyst formulation. 

Eventually, the team was able to prepare an highly active catalyst with 0.1% loading by 

supporting Na3Au(S2O3)2 on carbon extrudates.32 Seemingly, the presence of the sulfur 

containing anions helped stabilize the cationic gold and allowed for a catalyst less prone 

to deactivation, at the same time allowing for a preparation method that did not require 

the use of aqua regia. 
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 Trials confirmed that the Au/C catalyst family is highly active and highly 

selective. After the last test showed successful operation over a period of nine months 

(the test was deemed successful after 6 months stable operation), a full commercial 

reactor with 790 reactor tubes and 1.6 tons of the gold catalyst was commissioned in 

2012, and has been in operation since 2013.  

 

 
Figure 3. Comparison of catalyst performance in a primary reactor for a 10% HgCl2/C catalyst (green), 
pilot plant operation for 0.1% Au/C to a yield of 3000 kg VCM/kg catalyst (blue), full scale commercial 
reactor for 0.1% Au/C to a yield of 1000 kg VCM/kg catalyst (red). Catalyst = 0.1% Au/C prepared by 

supporting Na3Au(S2O3)2 on carbon extrudates. [Reproduced from Ref.9, with kind permission]. 
 

 

The reactor was operated under conditions equivalent to those of the process using the 

HgCl2/C catalyst for more than 4500 h time on stream (Figure 3). At a productivity 

level of 1000 kg VCM/kg catalyst, the performance of the catalyst (and reactor) was 

identical to the performance in pilot plant scale. This is considerably better than the 

typical yield and productivity that can be achieved with the HgCl2/C catalyst, with the 

new catalyst continuing to operate well beyond the point at which the Hg catalyst would 

have to be removed from the reactor and replaced.  

In summary, also in this case, the success of the gold catalyst was due to the fact 

that it could be used as a drop-in in existing plants without major modifications and of 

course to the fact that it offered an overall improved economics while eliminating 

altogether the mercury emissions.   
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Production of gold industrial catalysts  

A few companies already manufacture and sell supported gold catalysts.33 In 2009, 

South Africa’s AuTEK (a joint venture among minerals research organization Mintek 

and three gold mining houses) was the first company to establish a plant to reproducibly 

manufacture significant quantities of 1 wt.-% gold-based catalysts trade named 

AUROlite, (Au/TiO2, Au/ZnO, Au/Al2O3) and AUROlith (Au/Al2O3/cordierite) 

obtained via a deposition-precipitation method patented in 2005,34 marketed as ideally 

suited to catalyze oxidation reactions (in both gas and liquid phase). 

 A catalyst developed by 3M for CO oxidation, especially for escape masks, is 

NanAucat, comprised of Au nanoparticles supported via chemical vapor deposition onto 

porous amorphous carbon.35 The catalyst is marketed as the most active and stable one 

for CO removal. Indeed NanAucat is not susceptible to deactivation by moisture as it 

happens with the currently used Hopcalite thus not requiring the heavy bed of desiccant 

used with the latter catalyst, but it is still susceptible to deactivation by amines and 

sulfur compounds.  

 In general, as mentioned in the introduction, the main issues in the production of 

gold supported catalysts identified in 2005 in the discussion on commercial aspects of 

gold catalysis,
 
were nanoparticle size and reproducibility of the material's synthetic 

method.12 Recent innovations in catalyst preparation routes have solved many of these 

issues, allowing the production of highly active, robust and selective catalysts with low 

levels of gold loading.  

 For instance, the key innovation that led to industrialization of the gold-based 

route to VCM was the ability to synthesize sufficiently active catalysts with just 0.25% 

gold loading, in place of the typical 1% load of first-generation commercial catalysts. 

The route lately developed by Johnston and co-workers established a new methodology 

for the preparation of stable supported cationic gold catalysts with Au loading in 0.15-
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0.6% range of Au which, being based on sulphur-containing gold-containing 

complexes, exploits the well known stability of gold-sulphur bonds. Remarkably from a 

green chemistry viewpoint, furthermore, the preparation for these gold catalysts takes 

place in aqueous phase.  

 In the case of the Asahi catalyst, Au and NiO were supported on a mixed oxide 

SiO2–Al2O3–MgO obtained via an aqueous sol-gel route (the support having a specific 

surface area of 149 m2/g, an average pore diameter of 8 nm, and average particle size of 

60 µm) by coprecipitation performed by heating an aqueous solution containing 

Ni(NO3)2·6H2O and HAuCl4 (12 mL, 1.3 mol/L) to 90°C in the presence of the support, 

followed by drying in vacuo and calcination at 450°C for 5 h. The catalyst is obtained 

as a brown powder containing 0.9 wt.-% Au and 1.1 wt.-% Ni.  
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Heterogeneous vs Homogeneous Catalysis 

Remarkably, the first industrial applications of gold catalysis concern the production of 

bulk chemicals, and not to the production of fine chemicals or active pharmaceutical 

ingredients (APIs), even though the low toxicity of gold when compared to other PGMs 

should be an important advantage in this application. Even the fact that in this highly 

regulated sector of the chemical industry the maximum allowed residual concentrations 

of palladium or platinum (both classified as 'Metals of significant safety concern') in 

APIs are below 10 ppm if orally administered, and <1 ppm is administered parenterally, 

has not changed the situation.36  

 The high cost of gold, the need to recover it via scavenging from solution (for 

example with thiol-functionalized silica gel), and the inevitable loss of the original 

catalyst may explain why homogeneous gold catalysis for selective organic synthesis, 

today a well-established field of research with a plethora of reactions being catalyzed by 

gold complexes,37 is not yet used on industrial scale.  

The potential of homogeneous gold in catalyzing the selective electrophilic 

activation of multiple bonds under mild conditions was evident as early as 1997, when 

researchers at BASF first patented and then published the discovery that cationic [L-

Au+] complexes (where L is a phosphine or an arsine) catalyze the addition of alcohols 

to alkynes under mild conditions (293-323 K) with impressive turnover frequencies of 

up to 5400 h-1,38 which is orders of magnitude better than the preceding results obtained 

by Utimoto with simple gold(III) salts.39 However, even this impressing catalytic 

activity was not sufficient for commercial success. Back in 1997 the researchers at 

BASF were looking for catalysts that allowed the synthesis of 2,2-dimethoxypropane, a 

building block for the vitamin E synthesis, from a mixture of propyne and allene 

(propadiene), which is available as a by-products from naphtha steam-cracking.  

The gold complexes proved to be much more active and long lived than the 
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previously known mercury catalysts, but they had the serious drawback that only 

propyne reacted at an acceptable rate, while allene remained mostly unconverted. 

Finally, a simple zinc silicate catalyst proved to be the best option, both because of the 

low cost of the catalyst but mainly due to the fact that propyne and allene reacted at 

approximately equal rates.40  

In the case of Pd, Ananikov and co-workers have shown that both heterogeneous 

and homogeneous catalysis contribute to product formation, with leaching of Pd 

nanoparticles leading to the formation of metal complexes and clusters in solution.41 A 

similar phenomenon should be in principle also operative in gold heterogeneous 

catalysts. Great room for practically relevant improvement indeed exists by merging 

heterogeneous and homogeneous catalysis via an approach similar to that pursued by 

Toste and co-workers with dendrimer-encapsulated gold,42 who demonstrated in 2012 

that changing the dendrimer properties allows the catalytic reactivity to be tuned in a 

similar fashion to ligand modification. From efforts to mimic the surface-attachement of 

homogeneous gold catalysts by the typical propylaminosiloxy linker, Hashmi and 

coworkers in 2013 obtained the most active homogeneous gold catalyst reported so 

far,43 namely a mononuclear phosphorus-containing gold complex in which the steric 

bulkiness of the ligand is the crucial factor ensuring long catalyst lifetimes by slowing 

down catalyst decomposition.44 

Similarly, studying the CO oxidation over Au/TiO2 and Au/Fe2O3 samples, 

Klyushin and co-workers have recently shown that metal-support interaction plays a key 

role in Au activation being more important than size reduction, with the support 

overlayer on Au particles having a strong influence on the electronic structure of gold 

through charge transfer and stabilization of low coordinated Au atoms.45 
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Figure 4. Suggested CO oxidation pathway on titania.  

[Reproduced from Ref. 45, with kind permission]. 
 

 

As it happens with metal nanoparticle catalysis, defects (edges, twins, kinks, low-

coordinated atoms etc.) in the nanoparticle crystal lattice are beneficial, and any 

support-metal interaction capable to stabilize such defects on the surface of active 

samples, will be reflected in enhanced catalytic activity.  
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Conclusions and Perspectives 

In 1976, Sermon proclaimed gold to be 'an uncommonly good catalyst'.46 Forty years 

later, Asahi Kasei started to use a gold catalyst for the methyl methacrylate production 

in Kawasaki, Japan, followed in 2015 by a large PVC manufacturer near Shanghai 

switching from a mercury to a gold catalyst for the production of vinyl chloride. Will 

these large-scale applications be followed by several others so as to fulfil gold's 

'potential to save lives, improve health and clean up the planet'?47  

To understand the impact of the new gold-catalyzed process, it is enough to 

consider that China alone accounts for 50% of the world’s mercury release in the 

environment, and PVC production accounts for 60% of China’s emissions (installed 

capacity of the mercuric chloride catalyst by the major PVC producers in China >4000 

tons/year).48 Gold, though, is certainly expensive, and currently the most expensive 

among all noble metals. Being historically considered a refuge investment vehicle, its 

value has increased sharply following the global financial crisis after 2008. As of early 

March 2016, gold price was $1,245/oz49 (1 oz = 31.1 g) while palladium was only about 

half as expensive ($627/oz).50 For comparison, in March 2001 the gold price was 

$263/oz, with researchers reviewing gold technology applications noting a few months 

later that the gold price was 'characterized by a remarkably stable value compared to 

the widely fluctuating prices of the PGMs'.51 Prognosticating the price development of 

precious metals is, and will remain a challenging task. Being the object of financial 

speculation,52 indeed, the price of gold and PGMs can vary widely.  

Strong fluctuations in price have hampered application of gold catalysts for 

example in automotive catalytic converters, causing operation of the first company, 

which had focused its business on this segment of gold nanoscale catalysis, NanoStellar, 

to cease operations. The company’s product was intended to replace half of the 

platinum-palladium alloy in a diesel oxidation catalyst with palladium-gold, but in 
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August 2011 gold became more expensive of platinum and business proposal became 

unattractive.53 Yet, arguably, this will not be the case for gold-catalysis applied to the 

synthesis of bulk and eventually also fine chemicals. In the former case, gold losses 

similar to the ones seen with Pd in automotive catalytic converter54 were to be expected.  

 In the case of heterogeneous gold catalysis applied to the synthesis of chemicals, 

gold in the spent solid catalyst is recovered, exactly as it happens with PGM catalysts 

which are given back to the catalyst manufacturer for treatment and recovery of the 

noble metals.55 In other words, the real problem is not availability, but price.  

 This explains why in the catalyst cost model used in the manufacture of vinyl 

chloride 0.25% was the maximum acceptable load for the Au/C. Whereas the costs of 

the mercury catalyst account for less than 1% of the total PVC production costs (costs to 

minimize mercury emissions not included), the gold catalyst is at 2% of total PVC 

production costs. In other words, the impact of the new catalyst on the total PVC 

production costs is minimal.  

One might therefore ask whether industrial gold catalysis will become 

ubiquitous once highly active and extensively recyclable nanoscale gold catalysts will 

become commercially available, with applications including the fine chemicals and 

pharmaceutical industry56 as it happens today with palladium catalysis. For example, 

one might wonder whether the ORMOSIL-encapsulated SiliaCat Au catalyst57 or the 

AUROlite (1% Au/TiO2)
58 will find widespread utilization in flow microreactors 

allowing dramatically reduced reaction times to selectively oxidize a broad variety of 

alcohols under base-free aqueous conditions with no by-product formation besides 

water.  

Yet, the availability of methods to make catalysts as well of green catalytic 

processes is a required but not a sufficient condition. Just because a catalyst exists does 

not mean it will be used (see the case of the homogeneous L-Au+ catalysts). In the first 
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place the need for an improved catalyst or process has to exist. In other words, an 

established catalyst producer will only introduce a catalyst in its portfolio if there is an 

application for it. In that case, a catalyst developed specifically for that application (a 

task that is usually very time consuming) might become available. 

 As of today, three gold containing heterogeneous catalysts have found 

application in commercial plants. Others, which have undergone pilot scale testing were 

not commercialized, including the 1 wt.-% AUROlite catalyst for the hydrogenation of 

CO2 to formic acid, which was tested but was not commercialized because of 

insufficient activity.59 

 It can be expected that in the future the number of Au catalysts actually 

employed by industry will grow, not only in bulk chemicals but also in biorefinery and 

in the fine chemical and pharmaceutical industries. Suzuki and co-workers at Asahi 

noted that due to the broad substrate range applicability of the Au-NiOx catalyst, it was 

being evaluated with the aim to extend its application 'to other oxidation reactions'.11 

An outcome unimaginable in 1985 when Hutchings published his forecast based on the 

correlation between metal (chloride) catalyst activity and standard electrode potential 

that, contrary to mainstream theory, gold should be highly active in acetylene 

hydrochlorination.60 
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