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We address metrological protocols for the estimation of the intensity and the orientation of a magnetic
field, and show that quantum-enhanced precision may be achieved by probing the field with an arbitrary
spin at thermal equilibrium. A general expression is derived for the ultimate achievable precision, as given
by the quantum Fisher information. The optimal observable is shown to correspond to the spin projection
along a temperature-dependent direction, and allows a maximally precise parameter estimation also
through ensemble measurements. Finally, we prove the robustness of our scheme against deviations of the
measured spin projection from optimality.
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Quantum sensing and metrology are the art of using a
quantum system to design precise estimation protocols. In
order to make effective this approach, one needs to exploit
the inherent sensitivity of a quantum system to external
disturbances while minimizing the detrimental effects of
such sensitivity, e.g., decoherence and measurement back-
action [1–4].
Quantum parameter estimation is the paradigmatic prob-

lem of quantummetrology. Here, the parameter of interest is
not directly measurable, but rather encoded into the state of a
physical system, fromwhich it has to be extracted by suitably
designed measurement schemes. Within the framework of
parameter estimation theory, one may identify the optimal
observable and evaluate the corresponding sensitivity. Such
an ultimate quantum limit to the achievable precision is given
by the quantum Fisher information [5]. Indeed, these tools
have been employed to address several metrological prob-
lems, ranging from the characterization of complex envi-
ronments [6,7] to that of quantum channels [8–10] and
correlations [11,12], from the estimation of an optical phase
[13–16] to quantum thermometry [17,18]. However, the
explicit determination of the optimal observable and its
actual implementation in the lab often remain challenging.
A magnetic field is a typical quantity whose estimate can

be obtained through a quantum probe. In fact, a variety of
atomic [19–22] and solid-state spin systems [23–26] are
currently being used in order to implement field sensors of
increasing sensitivity and spatial resolution. The most
widely pursued approach ultimately relies on the measure-
ment of the quantum phase accumulated by the spin due to
its interaction with the field [4]. These protocols typically
require the coherent control and dynamics of the spin state
and, in the most advanced cases, the controlled generation
of entanglement in order to outperform classical devices.
Systems at thermal equilibrium represent a possible

alternative, whereby the state preparation, though less
general, is greatly simplified, and decoherence no longer
represents a limiting factor.
In this Letter, we address the estimation of a magnetic

field, obtained by performing arbitrary measurements on the
equilibrium state of an arbitrary spin. We find a general
expression for the quantum Fisher information, which is also
given in terms of common thermodynamic quantities, such as
magnetization and magnetic susceptibility. Besides, the
optimal observable is shown to coincide with the spin
projection along a direction that depends on temperature
through a universal expression. Interestingly, the upper
bound for the estimation precision is also saturated by an
ensemblemeasurement of the optimal spin projection, which
is quantified by a different figure of merit. Finally, the
dependence of the Fisher information on the measured spin
projection demonstrates the robustness of the estimation
protocol with respect to deviations from optimality.
Defining the problem.—A finite system with equispaced

energy levels can be represented in terms of a spin of length
S, placed in an external magnetic field. We consider the
case where the field depends on the unknown parameter λ
both in intensity and orientation. The system Hamiltonian
thus reads,

H ¼ ΔðSx sin θ þ Sz cos θÞ ¼ Δn̂Z · S≡ ΔSZ; ð1Þ

where the direction n̂Z ¼ ðsin θ cosφ; sin θ sinφ; cos θÞ
and the energy gap Δ are known functions of λ, whose
value is unknown and has to be estimated by performing
(repeated) measurements of a spin observable SO [Fig. 1(a)].
In order to simplify the equations, and without loss of
generality, we define the reference frame such that both
n̂Z and n̂X ≡ ∂θn̂Z lie in the xz plane (and thus φ ¼ 0) for a
generic value λ of the unknown parameter.
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The spin is in equilibrium with a heat bath at a temper-
ature T. Its density operator is thus given by the following
expression:

ρλ ¼
XS

MZ¼−S

e−δMZ

Z
jMZihMZj≡

XS

MZ¼−S
pMZ

jMZihMZj; ð2Þ

where Z ¼ P
S
MZ¼−S e

−ΔMZ is the partition function, δ≡
Δ=kBT is the ratio between the Hamiltonian and the
thermal energy scales, and jMZi ¼ e−iSyθjMzi are the
eigenstates of SZ. The density operator ρλ depends on
the parameter λ through the angle θ, which determines the
eigenstates jMZi, and through the normalized energy gap δ,
which determines the corresponding probabilities pMZ

.
Identifying the optimal observable.—The observables

that allow, in principle, the most precise estimate of the
parameter λ can be derived from the symmetric logarithmic
derivative (SLD) Lλ, which is obtained by solving the
differential equation ∂λρλ ¼ 1

2
ðLλρλ þ ρλLλÞ [1,5]. In order

to determine the SLD corresponding to the present density
operator, we compute first the derivative of ρλ, and then its
matrix elements in the basis of the Hamiltonian eigenstates
[27]. The resulting expression of the SLD reads,

Lλ ¼ _δðhSZi − SZÞ þ 2_θ tanhðδ=2ÞSX; ð3Þ

where SX ≡ n̂X · S, _θ≡ ∂λθ, and _δ≡ ∂λδ.

From the above equation it follows that Lλ, and thus the
optimal observable, simply coincides (up to irrelevant
transformations) with a spin projection SO;opt along a
temperature-dependent direction. This is specified by the
versor n̂O;opt ≡ ½sinðθ þ ϕoptÞ; 0; cosðθ þ ϕoptÞ�, lying in
the xz plane, with the angle ϕopt defined by the equation

_δ tanϕopt ¼ −2_θ tanhðδ=2Þ: ð4Þ

Therefore, if kBT is much larger than Δ, SO;opt coincides
with the spin projection along the field direction (SZ). The
same applies if the dependence of the normalized energy
gap on λ is much stronger than that of the azimuthal angle.
In the opposite limits (j_δj ≪ j_θj), SO;opt tends to coincide
with the transverse spin component SX. If the system is
exactly in the ground state, a spin projection along any
direction in the xz plane corresponds in fact to an optimal
observable (see below).
Parameter estimation with an arbitrary observable.—

Given the expression of the SLD, one can readily derive the
highest achievable precision in the estimation of the
parameter λ. This is given, through the quantum Cramer-
Rao bound, by the quantum Fisher information H ¼
TrðρλL2

λÞ [1,5]. In the present case, H is given by [27]

H ¼ _δ2ðhS2Zi − hSZi2Þ þ 4_θ2hS2Xitanh2ðδ=2Þ: ð5Þ

The expectation values that appear in the above expression
are given by hSZi ¼ ð1=2Þf1=2 − ðSþ 1=2ÞfSþ1=2, hS2Zi ¼
SðSþ 1Þ þ f1=2hSZi [where we have introduced the abbre-
viation fa ≡ cothðaδÞ], and hS2Xi ¼ 1

2
½SðSþ 1Þ − hS2Zi�.

The quantum Fisher information can thus be expressed
in terms of thermodynamic quantities that are routinely
measured in magnetic systems, such as the magnetization
and the magnetic susceptibility.
Equation (5) also shows that one may decompose the

quantum Fisher information into the sum of two contri-
butions,H ¼ hC _δ

2 þ hQ _θ
2. The term hC, to which we refer

in the following as classical, is determined by the depend-
ence of δ on λ. This contribution is proportional to the
fluctuations in the longitudinal spin projection, which
result from the incoherent mixture of the Hamiltonian
eigenstates jMZi. The term hQ, hereafter referred to as
quantum, depends on the changes of the field direction n̂Z
and is proportional to the fluctuations of the transverse spin
components. These are of genuine quantum origin, and are,
in fact, present also if the system state coincides with a
Hamiltonian eigenstate (see below).
In order to better understand the behavior of the quantum

Fisher information, we separately plot the classical and
quantum contributions as functions of δ, for a few specific
values of the spin length [Figs. 1(b), 1(c)]. The term hC,
which can be related to the sensing of the field intensity,
vanishes in the limit of infinite δ, where ρλ coincides with

FIG. 1. (a) Schematics of the problem: a spin of length S is
coupled to a parameter-dependent magnetic field BðλÞ, and is in
equilibrium with a heat bath at a temperature T. The value of λ is
inferred from the measurement outcome of a spin observable SO.
Panels (b) and (c) show the temperature dependence of the
classical (hC) and quantum (hQ) components of the quantum
Fisher information, normalized, respectively, to SðSþ 1Þ=3 and
2S. The quantum Fisher information is plotted for different values
of the spin length (see labels).
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the ground state jMZ ¼ −Si. It increases monotonically for
decreasing δ, and achieves its maximum SðSþ 1Þ=3 for
δ ¼ 0. Therefore, quite remarkably, one obtains a quadratic
scaling of the quantum Fisher information with the system
size for a highly mixed state and a seemingly classical term,
related to thermal fluctuations of the spin projection SZ.
The quantum component hQ, which can be related to the
sensing of the field direction, vanishes for δ ¼ 0, and
approaches a linear dependence on tanhðδ=2Þ for large
values of the spin length. In the low-temperature limit, ρλ
tends to the stateMZ ¼ −S and hQ approaches the value of
2S. A further discussion on the temperature dependence of
the classical and quantum terms is given in Ref. [27].
The result concerning the low-temperature limit can be

generalized by considering an arbitrary Hamiltonian eigen-
state, ρλ ¼ jMZihMZj. In such a case, the quantum Fisher
information reads

H ¼ 2_θ2½SðSþ 1Þ −M2
Z�: ð6Þ

The highest achievable precision in the parameter estima-
tion thus scales linearly with the system size (S) in the case
of a coherent state (MZ ¼ �S), and quadratically for
MZ ¼ 0. Therefore, quite counterintuitively, a state char-
acterized by a vanishing expectation value of all spin
projections (hSi ¼ 0) presents the strongest dependence
on the orientation of the quantization axis. On the other
hand, one should consider that the spin-coherent states
MZ ¼ �S are semiclassical in nature, while the MZ ¼ 0
state presents highly nonclassical features. This is some-
how reflected in the linear (also referred to as shot noise)
and in the quadratic (or Heisenberg) scaling with the
system size S of the measurement accuracy allowed by
the two kinds of states [28].
Parameter estimation with a given observable.—We

have shown above that the spin projection along a suitable,
temperature-dependent direction represents an optimal
observable for precisely estimating the parameter λ.
From a practical standpoint, it is also important to establish
how robust such an estimation protocol is, with respect to
small deviations from optimality. More generally, one
might ask what precision can be achieved by measuring
a spin projection SO ¼ n̂O · S along an arbitrary direction
n̂O ¼ ½sinðθ þ ϕÞ; 0; cosðθ þ ϕÞ�. In order to answer these
questions, we compute hereafter the classical Fisher infor-
mation of SO: Fðρλ; SOÞ ¼

P
S
MO¼−Sð∂λpMO

Þ2=pMO
[1],

where, the probabilities corresponding to the pos-
sible measurement outcomes are given by pMO

¼P
MZ

pMZ
hMOjMZi2, with jMOi the eigenstates of SO

[27]. The classical Fisher information essentially quantifies
the sensitivity of the probability distribution fpMO

g to the
precise value of λ and gives, through the Cramer-Rao
bound, the highest precision that is achievable in a
parameter estimation based on the measurement of the
observable SO.

For the sake of the following discussion, we decompose
F into the sum of three independent contributions, accord-
ing to the following expression:

F ¼
X

η;χ¼θ;δ

Aηχðδ;ϕÞ_η _χ : ð7Þ

Here, Aθθ (Aδδ) accounts for the dependence of ρλ on the
field orientation (intensity) alone, as reflected by the
probabilities pMO

. The term Aδθ ¼ Aθδ, instead, results
from the dependence of the equilibrium state on both ΔðλÞ
and θðλÞ, and accounts for the interplay between the two.
As representative examples of the dependence of the

classical Fisher information on δ ¼ Δ=kBT and ϕ, we
consider the cases of two different spin lengths, namely,
S ¼ 1 and S ¼ 5 (Fig. 2). As can be seen from the plots
(and from other cases [27]), Aθθ strongly increases with δ,
and achieves its maximum of 2S in the low-temperature

FIG. 2. Dependence of the Fisher information on the measured
spin projection SO and on the ratio between Hamiltonian and
thermal energy scales. The normalized terms Aθθ (a,d) and Aδδ (b,
e) are the ones that enter the expression of F given in Eq. (7). The
overall value of the Fisher information is normalized to the
quantum Fisher information (c), (f), for _δ ¼ _θ. The panels on the
left-hand side refer to the case S ¼ 1, those on the right to S ¼ 5.
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limit (large δ). As to the dependence on the observable SO,
this is very weak, apart from the dips corresponding to n̂O
parallel (ϕ ¼ 0) or antiparallel (ϕ ¼ π) to the field ori-
entation n̂Z [see panels (a),(d)]. This contribution to the
Fisher information, related to the dependence of the
measurement statistics on the field orientation, is thus
largely insensitive to deviations of the observable from
optimality. The contribution Aδδ, instead, increases for
decreasing values of δ, i.e., for high temperatures or small
field intensities [panels (b),(e)]. For δ ≪ 1 and ϕ ¼ 0; π,
such term achieves a maximum, whose value quite remark-
ably corresponds to SðSþ 1Þ=3, and thus scales quadrati-
cally with the spin length S. Besides, we note that the
variation of Aδδ with δ becomes more rapid for larger values
of S. The absolute value of the classical Fisher information
contextually reflects the dependence of the equilibrium
state on λ and the capability of the observable SO to capture
such dependence. In order to single out the latter effect and
to assess the robustness of the estimation protocol with
respect to small deviations of the observable SO from
optimality, we finally consider the ratio between the
classical and the quantum Fisher information [panels (d),
(f)]. As clearly emerges from the plots, the value of F=H
remains close to the theoretical maximum of 1 in a wide
region of the parameter space. This extends from the low-
(δ ≫ 1) to the high-temperature regime (δ ≪ 1), where the
classical Fisher information is dominated by the terms Aθθ

and Aδδ, respectively.
In the zero-temperature limit, where ρλ coincides with

the Hamiltonian ground state jMZ ¼ −Si, the maximum
precision in the parameter estimation can be obtained with
arbitrary observables SO. In fact, if the system is in an
arbitrary eigenstate jMZi of H, the expression of F takes a
simple analytical form:

F ¼ ðn̂O · n̂XÞ2
ðn̂O · n̂XÞ2 þ ðn̂O · n̂YÞ2

2½SðSþ 1Þ −M2
Z�_θ2; ð8Þ

where we have relaxed the assumption that n̂O lies in the xz
plane. From this, one can easily verify that F ¼ H when-
ever n̂O⊥n̂Y. Therefore, beyond what is suggested by the
zero-temperature limit of Lλ, any spin projection SO
oriented along the xz plane corresponds to an optimal
observable if the system is prepared in an arbitrary state
jMZi, including the ground state MZ ¼ −S of the Zeeman
Hamiltonian. If instead SO has an out-of-plane component,
the directions in the xz plane are no longer equivalent, and
only the component along X contributes to the Fisher
information.
So far, we have considered the case where the parameter

estimation is based on the outcome of a projective
measurement, whose statistics is given by the probabilities
pMO

. In an ensemble measurement, the outcome is deter-
ministically given by hSOi ¼ TrðρλSOÞ, from which one
infers the value of λ, and is affected by an uncertainty

VarðSOÞ ¼ TrðρλS2OÞ − hSOi2. The precision in the param-
eter estimation can thus be identified with the ratio P ¼
j∂λhSOij2=VarðSOÞ [28]. After expressing the above quan-
tities in terms of the expectation values of SZ and S2Z, which
are known functions of δ, one obtains

P ¼ ½_θhSZi sinϕ − _δ cosϕðhS2Zi − hSZi2Þ�2
hS2Xisin2ϕþ ðhS2Zi − hSZi2Þcos2ϕ

≤ F: ð9Þ

Interestingly, the numerical calculations show that the
value of P is either equal or slightly below that of F
throughout the parameter space [27]. Besides, one can
show that P ¼ F ¼ H at any temperature for an optimal
observable [corresponding to ϕ ¼ ϕopt, see Eq. (4)], and for
arbitrary observables (i.e., for any value of ϕ) in the low-
temperature limit. In the qubit case (S ¼ 1=2), the precision
P can be expressed in a simple analytical form in terms of ϕ
and θ,

P¼ F ¼ f2_θ sinϕ tanhðδ=2Þ þ _δ cosϕ½1− tanh2ðδ=2Þ�g2
4fsin2ϕþ cos2ϕ½1− tanh2ðδ=2Þ�g ;

ð10Þ

and coincides with the classical Fisher information in all the
parameter space (see Ref. [29] for further results on the
qubit case). All this implies that an ensemble measurement
allows parameter estimation with essentially the same
precision as a (single) projective measurement. In the latter
case, however, the precision can be increased, in principle
indefinitely, by repeating the measurement many times.
Discussion and conclusions.—The classical and the

quantum Fisher information present contributions that scale
either linearly or quadratically with the spin length.
Relatively large values of S can be achieved at the single-
molecule level, in systems whose size is of the order of 1 nm
[30–32]. The total spin length can be increased (on average)
by orders of magnitude, if one passes from single molecules
to spin ensembles. The density operator of these systems can
be written as a mixture of different contributions, each one
corresponding to a different value of S. In such a case, being
that the angle ϕopt is independent on the spin length, the
optimal observable SO;opt and the quantum Fisher informa-
tion are equally well defined, and coincide with the expres-
sions given above for the case of a specific spin length.
Individual spins and spin ensembles thus offer two alter-
native routes to achieve precise parameter estimation: in the
former case, where projective measurements can be imple-
mented, one can exploit the repetition of the read out; in the
latter case, where ensemble measurements are typically
performed, one can benefit from the length of the collective
spin.
In conclusion, we have considered the problem of

sensing a magnetic field by measuring an arbitrary
spin S at equilibrium. The highest achievable precision,
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as quantified by the quantum Fisher information, can be
expressed in terms of the spin magnetization and of the
magnetic susceptibility, and, at finite temperatures, results
from a classical and a quantum contribution. These con-
tributions can be related to the sensing of the field intensity
and direction, respectively, they scale linearly and quad-
ratically with the spin length, and are predominant in the
high- and low-temperature limits.
The optimal observable is represented by the spin

projection along a direction whose dependence on the
temperature is universal (i.e., identical for all spin lengths),
and is shown to allow a maximally precise parameter
estimation also by means of ensemble measurements. This,
along with the universal character of the optimality con-
dition, has potential implications for the metrological use of
many-spin systems, where S is not a well-defined quantum
number but has a large average value. If the system is
initialized in an arbitrary eigenstate of the Hamiltonian, the
highest precision in the parameter estimation can be
achieved by measuring a spin projection along an infinite
set of optimal directions. Finally, the highest precision that
is achievable in the field sensing by measuring a generic
spin projection is close to that allowed by the optimal
observable even for significant deviations from the optimal
angle, thus proving the robustness of the scheme with
respect to imperfections.
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