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Introduction

In this thesis, we study the dynamics of NLS, in particular, we deal with
the problem of the construction of prime integrals, either in the probabilistic
or in the deterministic case.

In the �rst part of the thesis, we consider the non linear Schrödinger equa-
tion on the one dimensional torus with a defocusing polynomial nonlinearity
and we study the dynamics corresponding to initial data in a set of a large
measure with respect to the Gibbs measure. We prove that along the corre-
sponding solutions the modulus of the Fourier coe�cients is approximately
constant for long time. The proof is obtained by adapting to the context of
Gibbs measure for PDEs some tools of Hamiltonian perturbation theory (see
[6, 31, 21, 22]).

In the second part, we consider the nonlinear Schrödinger equation on the
two dimensional torus with a time-dependent nonlinearity starting with cubic
terms. In this case, using perturbation theory techniques, we construct an
approximate integral of motion that changes slowly for initial data with small
H1-norm, this allows to ensure long time existence of solutions in H1(T2).
The main di�culty is that H1(T2) is not an algebra.

We now describe more in detail the problem we study in the �rst part of
the thesis which is also the main result of the thesis. The system we consider
is the defocousing NLS on the one dimensional torus

iψ̇ = −∆ψ + F ′
(
|ψ|2

)
ψ, x ∈ T, (0.0.1)

where F is a polynomial of degree q ≥ 2, F (x) :=
∑q

j=2 cjx
j, s.t. F (x) ≥ 0

for any x ≥ 0 and c2 6= 0. This is a Hamiltonian system with Hamiltonian
H given by

H = H2 + P (0.0.2)

where

H2 :=
1

2

∫ 2π

0

|∇ψ(x)|2dx,

P =

q∑
j=2

H2j, H2j :=
cj
2j

∫ 2π

0

|ψ(x)|2jdx.
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The associated Gibbs measure is formally de�ned by

dµβ =
e−β(H(ψ)+ 1

2
‖ψ‖2

L2)

Z(β)
dψdψ̄, β > 0 , Z(β) :=

∫
Hs

e−β(H(ψ)+ 1
2
‖ψ‖2

L2)dψdψ̄

(0.0.3)

where β plays the role of the inverse of the temperature.
The measure is supported onHs space with s < 1

2
, so using Gibbs measure

one actually studies solution with low regularity. The parameter β will be
very large so the measure is concentrated on "small" data namely with size
of order β−

1
2 and P can be thought as a small perturbation of H2.

First, in Chapter 2, we recall the results of [30, 16, 18, 19, 25] that show
that the Gibbs measure is well de�ned and invariant and furthermore that
the �ow of (0.0.1) is almost surely globally well-posed on any one of the
spaces Hs with s s.t. 1

2
− 1

q−1
< s < 1

2
.

In Chapter 3, we prove our main result ([10]):

Theorem 0.0.1. There exist β∗, C, C ′ > 0 s.t. for any η1, η2 > 0, β ful�lling

β > max

{
β∗,

C

η
10
7

1 η
5
7
2

}

and any k ∈ Z, there exists a measurable set Jk ⊂ Hs with µβ(Jck) < η2 s.t.,
if the initial datum ψ(0) ∈ Jk then the solution exists globally in Hs and one
has ∣∣∣∣∣ |ψk(t)|2 − |ψk(0)|2

C′

(1+k2)β

∣∣∣∣∣ < η1 , ∀|t| < C ′η1
√
η2β

2+ς , ς =
1

10
. (0.0.4)

Remark 0.0.2. The quantity |ψk|2 appears since it is the action of the lin-
earized system. Theorem 0.0.1 shows that, for general initial data, |ψk|2
moves very little compared to its typical size over a time scale of order β2+ς .

Remark 0.0.3. If one considers (0.0.1) as a perturbation of the cubic inte-
grable NLS, then one has that the main term of the perturbation is (in the
equation) |ψ|4 ψ whose size can be thought to be of order β−5/2 which is of
order β−2 smaller then the linear part. For this reason one can think that
the e�ective perturbation is of size β−2. So one expects to obtain a control
of the dynamics of the actions over a time scale at least of order β2.

Theorem 0.0.1, not only gives a rigorous proof of this fact, but also shows
that this is true over a longer time scale. We do not expect the value of ς to
be optimal.
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Remark 0.0.4. In order to cover times longer than β2, we have to face the
problem of small denominators. Indeed the nonlinear corrections to the fre-
quencies become relevant and an important part of the proof consists in
giving an estimate of the measure of the phase space in which the nonlinear
frequencies are nonresonant.

The proof of our result is based on the generalization to the context of
Gibbs measure for PDEs of Poincaré's method of construction of approxi-
mate integrals of motion ([34, 26]). The standard way of using this method
consists in �rst using a formal algorithm giving the construction of objects
which are expected to be approximate integrals of motion and then adding
estimates in order to show that this actually happens. This is the way we
proceed. So, �rst, we develop a formal scheme of construction of the approx-
imate integrals of motion. This is delicate due to the fact that the linearized
system is completely resonant and we have to �nd a way to use the nonlinear
modulation of the frequencies in order to control each one of the actions.
So we obtain a function Φk which is a modi�cation of the action |ψk|2 and
is expected to be an approximate integral of motion. In the second part
of Chapter 3, we estimate the L2(µβ)-norm of Φ̇k, showing that it is small.
We remark that all the estimates can be done using the Gaussian measure
associated to the linearized system that is absolutely continuous respect to
the Gibbs measure. The main ingredient of this section is the exploitation of
the decay of Fourier modes of functions in the support of the Gibbs measure.
Finally we use the invariance of the Gibbs measure and Chebyshev's theorem
in order to pass from the estimate of Φ̇k to the estimate of |Φk(t) − Φk(0)|.
Finally, we show that this implies the control of |ψk|2.

In the second part of the thesis, we study the following NLS system:

iψt = −2∆ψ + 2a(x, ωt)|ψ|2ψ, x ∈ T2 (0.0.5)

where a is a smooth function quasiperiodic in time and ω ∈ Rd.
We remark that equation (0.0.5) is Hamiltonian with Hamiltonian function
given by

H(ψ, ωt) = H0(ψ) +H1(ψ, ωt), H0(ψ) =

∫
T2

|∇ψ|2dx (0.0.6)

H1(ψ, ωt) =

∫
T2

a(x, ωt)|ψ(x)|4dx.

(0.0.7)

As anticipated above, we construct an approximate integral which is a defor-
mation of the H1-norm ([7]). In dimension 1, this would be a trivial problem
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and a control of the solution over exponentially long time would be possible.
However, the situation is much more complicated in dimension 2, since H1 is
not an algebra. As in Chapter 3, �rst we use a formal algorithm that gives
the construction of the object which is expected to be approximate integral
of motion and then we add estimates in order to show that this actually hap-
pens. The formal algorithm is quite standard, the di�culty comes from the
fact that averaging involves here the study of the Lp-norms of the solution
of the Schrödinger equation on T2. Here the main tool is the Bourgain's
estimate

‖eit∆ψ‖L4
tx
≤ C‖ψ‖Hε , ∀ε > 0

and the interpolation estimate that one deduces from it. Using such estimate
together with some tools coming from Hamiltonian theory, denoting for any
K ∈ N in the usual way

‖ · ‖CK(Td) :=

{
supTd | · | if K = 0,

supTd | · |+
∑K
|α|=1 supTd |Dα · | if K 6= 0,

we are able to make three steps of perturbation theory and to get the following

Theorem 0.0.5. Assume that a ∈ C∞(Td+2) and that the frequency ω is
Diophantine, namely that there exist γ and τ s.t.

|ω · k + k0| ≥
γ

1 + |k|τ
, ∀(k, k0) ∈ Zn+1 \ {0} , (0.0.8)

then, given K ∈ N, there exist ε∗, C > 0 and a functional Φ(3) ∈ C∞(Td;H1(T2,C))
with the following properties∣∣∣∣ ddtΦ(3)(ωt, ψ(t))

∣∣∣∣ ≤ C ‖ψ(t)‖10
H1 , (0.0.9)

sup
‖ψ‖H1<ε∗

∥∥Φ(3)(ωt, ψ)−H0(ψ)
∥∥
CK(Td)

≤ C ‖ψ‖4
H1 . (0.0.10)

Theorem 0.0.6. With the same assumptions and notations, if ε := ‖ψ0‖H1 <
ε∗, then the solution of (0.0.5) with initial data ψ0 exists up to times t s.t.
|t| < ε−6 and ful�lls

‖ψ(t)‖H1 < 2ε . (0.0.11)
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Part I

Probabilistic result
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Chapter 1

Measures on in�nite dimensional

spaces

The contents of this chapter are largely based on some lectures given by
Albeverio in Milan in 2015 and on [1, 33].

In statistical mechanics, to describe a system, moving from detailed infor-
mation about a single particle, to global information, one uses a probabilistic
approach. In particular, in the case of a Hamiltonian system one can use the
Gibbs measure, but in general, in many problems of mathematics, physics
and their applications studied from a probabilistic point of view one can de-
�ne di�erent measures on suitable phase-space, so heuristic integrals of the
following form can arise:

“

∫
Γ

e−sΦ(γ)f(γ)dγ” (1.0.1)

where Φ is a real-valued function lower bounded; f is a complex-valued func-
tion, γ is thought to be a member of some space Γ �on which the integration
extends�, dγ is a heuristic ��at measure�.

If Γ is �nite dimensional, say Γ = Rn, then dγ is thought of as Lebesgue
measure, everything is well known and the measure is absolutely continuous
respect to the Lebesgue measure, instead if Γ is in�nite dimensional, dγ has
no clear meaning. In this �rst chapter we explain how to give a sense to
such expression and to the heuristic integral (1.0.1) in the case of an in�nite
dimensional space, since they arise in many areas of mathematics and physics,
in particular in connection with the solution of partial di�erential equations
like the Schrödinger equation.

In particular, in this �rst chapter, following [1, 33], we give only some
results without proofs, about the non existence of an in�nite dimensional
measure analogous to the Lebesgue measure and about the construction of

9



abstract Wiener space, to conclude with the presentation of Kolmogorov's
Theorem about measures that gives us the possibility to give meaning to the
Gaussian measure on Hs(T), starting from a sequence of �nite dimensional
measures satisfying a suitable condition. This will be an essential point for
the results of the next chapters.

1.1 Di�erence between Borel measures on �-

nite and in�nite dimensional Hilbert spaces

To construct probability measures in in�nite dimensional, the �rst di�-
cult is that there is not an analogous of the Lebesgue measure (a σ-additive
Borel measure invariant under rotations or translation).

In particular, we study the case of H, a (separable) Hilbert space, with
norm ‖ · ‖, scalar product 〈, 〉 and Borel σ-algebra B(H). First, we recall the
de�nition of regular measure.

De�nition 1. Let H be a separable Hilbert space. A Borel measure µ on
(H,B(H)) is called regular if for any B ∈ B(H) we have

µ(B) = inf
B⊆U

U open

µ(U)

and
µ(B) = sup

K⊆B
K compact

µ(K).

In particular the following holds

Proposition 1.1.1. Let H be a separable Hilbert space. Then any positive
�nite measure µ on (H,B(H)) is regular.

Proof. See Lemma 26.2 of [13].

If the dimension ofH is �nite, the Lebesgue measure on Borel σ-algebra of
H can be characterized as the (unique up to multiplicative constants) regular
measure which is invariant under rotations and translations in H while if H
is in�nite dimensional, the following result holds (see [1, 33]):

Theorem 1.1.2. Let H be a separable in�nite dimensional Hilbert space.
Then there cannot exist a σ-additive Borel measure µ which is invariant
under rotations (or translations) and assignes a positive �nite value to any
open ball.
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Remark 1.1.3. This results highlights the impossibility of the existence of any
rotations or translations invariant regular σ-additive Borel measure on an
in�nite dimensional Hilbert space. Hence in in�nite dimensions there cannot
be a direct analogue of the standard Gaussian measure on Rn, namely of

the probability measure µG(dx) = e−‖x‖
2

(2π)
n
2
, x ∈ Rn. In particular, in in�nite

dimensional Hilbert space one have to do some work due to the loosing of
σ-additivity.

1.2 Abstract Wiener spaces

In the present section we give some elements of the theory of abstract
Wiener spaces.

Abstract Wiener spaces are mathematical objects used to construct a
"good" measure on an in�nite dimensional vector-space. Roughly speaking,
they are triples (i,H,B) where B is a Banach space with norm | · |, H is a
real separable in�nite dimensional Hilbert space with inner product 〈, 〉 and
norm ‖ · ‖ contains in B and i is the inclusion of H in B and it is a function
that takes a cylinder set measure (that we will de�ne later) on H to a true
measure on B.

In particular, we shall see that, given a real separable in�nite dimensional
Hilbert space (H, 〈, 〉, ‖ · ‖), there exists a Banach space (B, | · |) where H

is densely embedded and a Borel measure on B whose Fourier transform is
φ(x) = e−

1
2
‖x‖2 , where x ∈ B∗ ⊂ H and ‖ · ‖ is the H-norm. Let us introduce

some de�nitions.

De�nition 2. A Gaussian measure on a Banach space (B, |·|) is a probability
measure on the Borel σ-algebra on B such that for each x ∈ B∗, the random
variable x : B(C)→ R has a Gaussian distribution on R(C).

De�nition 3. A cylinder set Z ⊂ H of a separable Hilbert space H is a set
of the form

Z = {x ∈ H, s.t. Px ∈ F}

with P : H→ H is a projection operator on H with �nite dimensional range,
i.e. PH ≡ Rn(Cn) for some n ∈ N, and F ∈ B(PH) is a Borel set in PH. In
the following we shall denote by σ(Z) the σ-algebra generated by all cylinder
sets.

De�nition 4. A cylinder measure on H is a positive and �nitely additive
set function ν de�ned on the σ-algebra σ(Z) of cylinder sets.
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Let us consider the cylinder measure ν on H given on the cylindrical sets
of H by the following formula

ν({x ∈ H, s.t. Px ∈ F}) = (2π)−
n
2

∫
F

e−
1
2
‖Px‖2d(Px), F ∈ B(PH)

ν is called standard Gaussian measure associated with H.

Remark 1.2.1. By Theorem 1.1.2, if H is in�nite dimensional, then the stan-
dard Gaussian measure associated with H is not σ-additive on σ(Z), so we
cannot work on H but we need to enlarge the space.

De�nition 5. A norm | · | on H is called measurable if for any ε > 0, there
exists Pε : H→ H s.t.

ν({x ∈ H s.t. |P (x)| > ε}) < ε, (1.2.1)

for any P : H→ H s.t. its range is orthogonal to that of Pε in (H, 〈, 〉).

Given | · | a measurable norm, we can construct B the Banach space as
the completion of H in the | · |-norm and i is the inclusion of H in B and it
is continuous. Analogously, the dual map i∗ : B∗ → H∗, which is given by
restriction, i.e. i∗(x) = x|H, is continuous. Identifying H ≡ H∗ we have the
following chain of densely embedded subspaces

B∗ ⊂ H ⊂ B.

The triple (i,H,B) is called an abstract Wiener space.
Let us consider a particular kind of cylinder sets in H. Given y1, ..., yn ∈

B∗, and F ∈ B(Rn), let ZF (y1, ..., yn) be the subset of H

ZF (y1, ..., yn) := {x ∈ H s.t. (i∗y1(x), ..., i∗yn(x)) ∈ F}.

Analogously the subset of B de�ned as

{x ∈ B s.t. (y1(x), ..., yn(x)) ∈ F}, (1.2.2)

is called a cylinder set of B.
The following holds:

Theorem 1.2.2. The σ-algebra on B generated by the cylinder sets of the
form (1.2.2) coincides with the Borel σ-algebra on B. Moreover the Gaussian
measure µ on B is an extension of the standard Gaussian measure ν on H
in the sense that

µ({x ∈ B|(y1(x), ..., yn(x)) ∈ F}) = ν({x ∈ H|(i∗y1(x), ..., i∗yn(x)) ∈ F}).
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1.3 Kolmogorov's Theorem

In this section, we present Kolmogorov's Theorem, that is one of the
basic tools for the construction of probability measures on in�nite dimen-
sional spaces and that guarantees that a suitably "consistent" collection of
�nite-dimensional distributions will de�ne a unique probability measure on
an in�nite dimensional space. The original version of this theorem was es-
tablished by Kolmogorov in the case where Γ = R[0,T ], but it was later gen-
eralized to "projective" limit spaces. We want to present here a su�ciently
powerful version of the theorem but before we need a little introduction. Let
Ω = R[0,T ] = {γ : [0, T ] → R} be the set of all maps from the interval [0, T ]
into R and let F([0, T ]) be the set of all �nite subsets of the interval [0, T ].
We introduce in F([0, T ]) the partial order relation ≤ de�ned by

J ≤ K if J ⊆ K,

as a consequence of de�nition of F([0, T ]), for any J,K ∈ F([0, T ]), there is
an H ∈ F([0, T ]) such that J ≤ H and K ≤ H. Given a J ∈ F([0, T ]) , with
J = {t1, t2, ..., tn}, 0 ≤ t1 < t2... < tn ≤ T , let us consider the set RJ of all
maps from J to R. An element of RJ is an n-ple (γ(t1), γ(t2), ..., γ(tn)) and
clearly RJ is naturally isomorphic to Rn, n being the cardinality of J . Let us
consider on RJ the Euclidean topology and the Borel σ- algebra B(RJ). For
any J ∈ F([0, T ]) let us consider the projection ΠJ : Ω → RJ which assigns
to each path γ ∈ Ω its values at the points of J :

γ 7→ ΠJ(γ) = (γ(t1), γ(t2), ..., γ(tn)), γ ∈ R[0,T ], J = {t1, t2, ..., tn}.

Let us consider the cylinder sets, i e. the subsets of Ω of the form Π−1
J (BJ)

for some J ∈ F([0, T ]) and some Borel set BJ ∈ B(RJ). Let C denote the
set of all cylinder sets, and let A be σ-algebra generated by the cylinder sets.
Given a measure µ on (Ω,A), for any J ∈ F([0, T ]) it is possible to construct
a measure µJ on (RJ ,B(RJ)) as µJ := ΠJ(µ), i.e.

µJ(BJ) := µ(Π−1
J (BJ), BJ ∈ B(RJ).

Given two elements J,K ∈ F([0, T ]), with J ≤ K, let ΠK
J : RK → RJ the

projection map, which is continuous hence Borel measurable. The measures
µJ on (RJ ,B(RJ)) and µK on (RK ,B(RK)) are related by the equation µJ =
ΠK
J (µK), that means

µJ(BJ) := µK((ΠK
J )−1(BJ)), BJ ∈ B(RJ), (1.3.1)

as one can verify by means of the equation ΠJ = ΠK
J ◦ ΠK .
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De�nition 6. A family of measures {µJ}J∈F([0,T ]) satisfying the compatibility
condition (1.3.1) is called a projective family of measures.

However, we are interested in the converse problem, in fact, knowing
that there is a family of measures {µJ}J∈F([0,T ]) satisfying the compatibility
condition (1.3.1), we want to construct a measure µ on (R[0,T ], A) such that
for any J ∈ F([0, T ]) one has that µJ = ΠJ(µ). Kolmogorov's Theorem
guarantees that it is possible and that there exists an unique measure µ on
(R[0,T ], A) such that for any J ∈ F([0, T ]) one has that µJ = ΠJ(µ). So
the theorem guarantees that it is possible to construct a measure on the
(in�nite dimensional) space Ω = R[0,T ] by means of its ��nite dimensional
approximations�.

Theorem 1.3.1 (Kolmogorov's Theorem). For any projective family {µJ}J∈F([0,T ])

of probability measures on (RJ ,B(RJ)) there exists a unique probability mea-
sure µ on (R[0,T ], A) such that

µJ = ΠJ(µ). (1.3.2)

The measure µ described by Kolmogorov's Theorem is said the projective
limit of the projective family {µJ}.
Remark 1.3.2. The result of Kolmogorov's Theorem can be generalized in
several directions. In particular, an other version of the Kolmogorov's The-
orem can be formulated as

Theorem 1.3.3. Suppose that for each n ≥ 1, µn is a Borel probability
measure on Rn(Cn) s.t. for every n, k ≥ 1 and every Borel set E ⊂ Rn(Cn)
one has

µn+k

(
E × Rk(Ck)

)
= µn(E).

Then there exists a unique probability measure µ on the product σ-algebra of
R∞(C∞) such that for any n ≥ 1 and any Borel subset E ⊂ Rn(Cn), the
measure

µ(E × R(C)× R(C)....) = µn(E).

Remark 1.3.4. This last formulation of Kolmogorov's Theorem highlights
the point of view we will use in the next section to construct some Gaussian
measures on Hs(T).

We conclude this section with the description of an important class of
functions on R[0,T ] and of their integral with respect to the measure µ de-
scribed by Kolmogorov's Theorem.

De�nition 7. A function f : R[0,T ] → C of the form

f(γ) = g(γ(t1), ..., γ(tn)), γ ∈ R[0,T ], (1.3.3)
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with 0 ≤ t1 < ... < tn ≤ T and g : Rn → C is a Borel bounded function, is
said cylinder function.

In particular, if J = {t1, ..., tn} the cylinder function (1.3.3) can be written
as f = g ◦ ΠJ . This representation provides an integration formula, indeed
the integral of f with respect to the measure µ, the projective limit of the
family of measures {µJ}, is given by:∫

R[0,T ]

f(γ)dµ(γ) =

∫
R[0,T ]

g ◦ ΠJ(γ)dµ(γ) =

∫
RJ
g(x1, ..., xn)dµj(x1, ..., xn).

1.4 Gaussian measures on Hs(T)
In this section we analyze more in detail the Gaussian measure on Hs.

We consider
dµg,σ = Z−1e−

1
2
‖ψ‖2Hσdψdψ̄.

By Kolmogorov's Theorem, this can be seen as projective limit of

dµg,σ,N = Z−1
N e−

1
2
‖P≤Nψ‖2HσdP≤NψdP≤N ψ̄

= Z−1
N

∏
|n|≤N

e−
1
2
k2σ |ψk|2dψkdψ̄k.

However we can not take a limit as N → ∞ in Hσ(T). In fact we have the
following

Lemma 1.4.1. Let s < σ − 1
2
, M > N ≥ 0, then

E
[
‖P≤Mψ − P≤Nψ‖2

Hs

]
≤ CNα, (1.4.1)

where α = 2(σ − s)− 1 > 0.
Moreover, if s ≥ σ − 1

2
, E [‖P≤Mψ − P≤Nψ‖2

Hs ] is in�nite.

Proof. Using Fourier coordinates, we have

E
[
‖P≤Mψ − P≤Nψ‖2

Hs

]
=

∫
C∞
∑

N<|k|≤M k2s|ψk|2e−
∑
k k

2σ |ψk|2dψkdψ̄k∫
C∞ e

−
∑
k k

2σ |ψk|2dψkdψ̄k
.

Using the substitution ψk =
√

2zk

(1+k2)
σ
2
eiθk and the independence of the vari-

ables, one has that E [‖P≤Mψ − P≤Nψ‖2
Hs ] is equal to∑

N<|k|≤M k2(s−σ)
∫
R+ zke

−zkdzk
∏

j 6=k
∫
R zje

−zjdzj∏
j

∫
R+ zje−zjdzj

=
∑

N<|k|≤M

k2(s−σ) <∞

15



if and only if s < σ − 1
2
.

Moreover, if s < σ − 1
2
, then one has

∑
N<|k|≤M k2(s−σ) ≤ CNα, where

α = 2(σ − s)− 1 > 0.

So, if s < σ − 1
2
, then µg,σ is a probability measure on Hs(T).

Remark 1.4.2. Lemma 1.4.1 implies that

‖P≤Mψ − P≤Nψ‖Hs =∞

only on a set of measure 0, so in particular this means that the subset of
C∞ of sequences {ψk} = ψ that are not Cauchy sequences has measure 0. In
particular this means that

µg,σ(Hs1) = 0

for any s1 ≥ σ − 1
2
.

The following lemma helps to understand well what is the support of µg,σ.

Lemma 1.4.3. Let s < σ − 1
2
, a < 1

2
, then

µg,σ ({‖ψ‖Hs > K}) ≤ Ce−aK
2

for all K > 0.

Proof.

eaK
2

µg,σ ({‖ψ‖Hs < K}) =eaK
2

∫
{‖ψ‖Hs≥K}

dµg,σ ≤
∫
Hs

ea‖ψ‖
2
Hsdµg,σ

=

∫
C∞ e

a‖ψ‖2Hse−‖ψ‖
2
Hσdψdψ̄∫

C∞ e
−‖ψ‖2Hσdψdψ̄

=

∫
C∞ e

−
∑
k(1+k2)σ

(
1− a

(1+k2)σ−s

)
|ψk|2dψdψ̄∫

C∞ e
−
∑
k(1+k2)σ |ψk|2dψdψ̄

=
∏
k

∫
R+ e

−
(

1− a
(1+k2)σ−s

)
zkdzk∫

R+ e
z2kdzk

=
∏
k

∫
R+

e
−
(

1− a
(1+k2)σ−s

)
zkdzk

=
∏
k

(
1 +

2a

(1 + k2)σ−s − 2a

)
= C(s, σ)

where in the fourth line we use the substitution ψk =
√

2zk

(1+k2)
σ
2
eiθk , zk ∈

R+, θk ∈ [2π, 0) and the fact that
∫
R+ e

−zdz = 1.
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Remark 1.4.4. From the previous lemma, if K goes to +∞, we obtain that
for any s < σ − 1

2
,

µg,σ ({‖ψ‖Hs = +∞}) = 0.

In particular, we obtain that, for any s < σ− 1
2
, µg,σ (Hs) = 1, so the support

of µg,σ is Hs for any s < σ − 1
2
.

Remark 1.4.5. One can describe the de�nition of Gaussian measure on Hs(T)
in terms of Wiener space, so H = H1(T) and B = Hs(T) with s < 1

2
.
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Chapter 2

Invariant measures for NLS

In this chapter, following the construction of Bourgain in [16], we con-
struct the Gibbs measure associated to (0.0.1), showing that it is invariant
under the dynamics of the �ow of (0.0.1).

The proof of the invariance of the measure is complicated and the �rst
step is the introduction of a formal de�nition of the invariance of a measure.

To this goal, initially, we consider a �nite dimensional Hamiltonian system
on R2n with Hamiltonian H(p, q) = H(p1, ..., pn, q1, ..., qn). The equations of
the motion are {

ṗj = ∂H
∂qj
,

q̇j = − ∂H
∂pj

j = 1, ..., n, (2.0.1)

or in a compact way
ẋ = X(x)

where x = (p, q) and X(x) is the Hamiltonian vector �eld. Since X is an
Hamiltonian vector �eld one has

divX =
n∑
j=1

[
∂

∂pj
Xj +

∂

∂qj
Xj+n

]

=
n∑
j=1

[
∂

∂pj

∂H

∂qj
− ∂

∂qj

∂H

∂pj

]
= 0.

By Liouville's theorem, we know that d
dt
V ol = divX, so in particular, we

obtain that d
dt
V ol = 0 that means that the Lebesgue measure

dpdq =
n∏
j=1

dpjdqj
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is invariant under the dynamics of (2.0.1). However, if we consider a di�erent
measure this way of proceed fails and to study the evolution of a measure
under the dynamics it is convenient to introduce the following de�nition.

De�nition 8. Given a measure space (Y, µ), we say that the measure is
invariant under a µ-measurable transformation T : Y → Y if µ = µ ◦ T−1,
i.e. for any µ-measurable set A ⊆ Y one has µ(A) = µ(T−1(A)).

In particular, de�ned the Gibbs measure associated to (2.0.1) as

dµβ,H = Z−1e−βH(p,q)dpdq (2.0.2)

where β is the inverse of the temperature, we have

Lemma 2.0.1. µβ,H is invariant under the dynamics of (2.0.1).

Proof. Denoting by Φ(t) the �ow of (2.0.1) at time t, since d
dt
H = 0, for any

µ-measurable set A ⊂ R2n one has

µβ,H(Φ(−t)A) =µβ,H {(p, q) ∈ Φ(−t)A}

=µβ,H {Φ(t)(p, q) ∈ A} = Z−1

∫
A

e−βH(p(t)q(t))dp(t)dq(t)

=Z−1

∫
A

e−βH(p(0)q(0))dp(0)dq(0) = µβ,H(A)

where in the last line we use the invariance ofH and of Lebesgue measure.

Remark 2.0.2. With the same reason, in �nite dimension and with a reason-
able F conserved under the dynamics of (2.0.1), also dµF = Z−1e−F (p,q)dpdq
is invariant.

Since the invariance of the measure depends on the invariance of the
Hamiltonian H, a natural question is if one can construct also in in�nite
dimension some measures that are invariant under the �ow of an Hamiltonian
PDE. In �nite dimension this is trivial due to the invariance of the Lebesgue
measure, while in in�nite dimension this is not so easy since there is not an
analogous of the Lebesgue measure.

2.0.1 Construction of Gibbs measure for defocusing NLS
on the torus

System (0.0.1) is a Hamiltonian system with Hamiltonian given by

H = H2 + P (2.0.3)

19



where

H2 :=
1

2

∫ 2π

0

|∇ψ(x)|2dx,

P =

q∑
j=2

H2j, H2j :=
cj
2j

∫ 2π

0

|ψ(x)|2jdx.

Note that the L2-norm, i.e.
∫ 2π

0
|ψ(x)|2dx, is conserved by (0.0.1). The �ow

of (0.0.1) is almost surely globally well-posed on any one of the spaces Hs

with s ful�lling 1
2
− 1

q−1
< s < 1

2
(see e.g. [16, 18], see also [25]). We �x s

in this range once for all. In analogy with the �nite dimensional case, the
Gibbs measure associated to (0.0.1) is formally de�ned by

dµβ =
e−β(H(ψ)+ 1

2
‖ψ‖2

L2)

Z(β)
dψdψ̄, β > 0 , Z(β) :=

∫
Hs

e−β(H(ψ)+ 1
2
‖ψ‖2

L2)dψdψ̄

(2.0.4)

where β plays the role of the inverse of the temperature.

Remark 2.0.3. Instead of the HamiltonianH, we consider the functionH(ψ)+
1
2
‖ψ‖2

L2 to avoid the problems at frequency 0.

From now on, we shall work using the Fourier coordinates. In these
coordinates, H2 becomes

H2 :=
1

2

∑
k

k2|ψk|2.

De�ne the H1-norm:

‖ψ‖2
H1 :=

∑
k

(1 + k2)|ψk|2,

then we can express H2 + 1
2
‖ψ‖2

L2 = 1
2
‖ψ‖2

H1 and we formally de�ned the
Gaussian measure by

dµg,β :=
e−

β
2
‖ψ‖2

H1

Zg(β)
dψdψ̄, (2.0.5)

with

Zg(β) :=

∫
Hs

e−
β
2
‖ψ‖2

H1dψdψ̄.

To give sense to this expression one can proceed as in Section 1.4 , seeing
it as a projective limit of �nite dimensional Gaussian measures

dµβ,g,N :=
e−

β
2
‖P≤N (ψ)‖2

H1

Zg,N(β)
dP≤NψdP≤N ψ̄ =

e−
β
2

∑
|k|≤N(1+k2)|ψk|2

Zg,N(β)
dP≤NψdP≤N ψ̄,
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Zg,N(β) :=

∫
P≤N (Hs)

e−
β
2

∑
|k|≤N(1+k2)|ψk|2

∏
|k|≤N

dψkdψ̄k,

where P≤N ({ψk}k∈Z) := {ψk}|k|≤N .
Now, we can express (3.1.2) as

dµβ =
e−β(P+ 1

2

∫ 2π
0 (|∇ψ(x)|2+|ψ(x)|2)dx)

Z(β)
dψdψ̄

=
e−βP

Z(β)
Zg(β)

e−
β
2
‖ψ‖2

H1

Zg(β)
dψdψ̄ = e−βP

Zg(β)

Z(β)
µg,βdψdψ̄. (2.0.6)

As in section 1.4, one can prove that the support of the Gaussian measure
µg,β is H

s(T) for s < 1
2
, by Sobolev's inequality, we know that ψ ∈ Lp(T) a.s.

for any p <∞, so in particular, due the de�nition of P and the fact that P
is a positive function, one has

0 < e−βP (ψ) ≤ 1 a.s. (2.0.7)

Moreover, one can prove the following lemma which proof is in Appendix A.

Lemma 2.0.4. There exist β∗, C̃ > 0 s.t. for any β > β∗. one has

1 ≥
∫
Hs

e−βPdµg,β ≥ e−2C̃ . (2.0.8)

In particular, since
∫
Hs e

−βPdµg,β = Z(β)
Zg(β)

, this means that if β is su�-

ciently large

1 ≤ Zg(β)

Z(β)
≤ e2C̃ , (2.0.9)

so, using (2.0.7) and (2.0.9), we can conclude that µβ is a good probability
measure on any Hs, s < 1

2
for β large enough.

Remark 2.0.5. If P would not be a positive function, we could not obtain
estimate (2.0.7) and (2.0.9). In that case we need to introduce an invariant

cuto� in L2-norm to ensure that e−βP Zg(β)

Z(β)
∈ L1(µg,β) and so to de�ne the

Gibbs measure.

One can get the following Lemma, which proof is in Appendix A, that
shows how to control the Gibbs measure of set A with its Gaussian measure.

Lemma 2.0.6. There exist β∗, C̃ > 0 s.t. for any β > β∗ and for any
function µg,β-measurable set A ⊂ Hs, one has:

µβ(A) ≤ µg,β(A)eC̃ .

We emphasize that the constant C̃ is independent of β and q, where q is
the degree of the polynomial F (see (0.0.1)).
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2.1 Truncated approximation to NLS and in-

variance of the Gibbs measure

After giving sense to the de�nition of the Gibbs measure, in this section
we revisit some results of [16] to prove that µβ is an invariant measure under
the �ow of (0.0.1). The main idea of this section is to use a local well
posedness of the �ow of (0.0.1) in Hs space with s < 1

2
to construct a "�nite"

dimensional system that approximates (0.0.1), it will be local well posed
and the associated "�nite" dimensional Gibbs measure would be invariant.
Using this fact, we can obtain the almost sure global well posedness of the
"�nite" dimensional system and �nally the almost sure global well posedness
of (0.0.1) and the invariance of µβ under its dynamics.

Using Fourier coordinates, ψk = 1√
2π

∫ 2π

0
ψ(x)e−ikxdx, �xed N ∈ N, we

can denote by P≤N the Dirichlet projection onto the frequencies {|n| ≤ N}
and set P>N := Id− P≤N . We denote by

EN = P≤NL
2(T) = span{einx : |n| ≤ N},

E⊥N = P>NL
2(T) = span{einx : |n| > N}.

We introduce now the following "truncated" system (FNLS)

iψ̇N = −∆ψN + P≤N

(
F ′
(∣∣P≤NψN ∣∣2)P≤NψN) , x ∈ T, (2.1.1)

that is an approximation of (0.0.1).

Remark 2.1.1. System (2.1.1) is not a �nite dimensional system. It is an
Hamiltonian system with Hamiltonian HN given by

HN = H2 + P̃ (2.1.2)

where

H2(ψN) :=
1

2

∫ 2π

0

|∇ψN(x)|2dx,

P̃ (ψN) =

q∑
j=2

H̃2j(ψ
N), H̃2j(ψ

N) :=
cj
2j

∫ 2π

0

|P≤NψN(x)|2jdx

and the equation of motion are given by ψ̇N = −i∂HN

∂ψ̄N
.

One can get the following result about local existence of the �ow of (0.0.1)
and (2.1.1)
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Proposition 2.1.2. [Prop 3.1 of [19] (N. Burq, P.Gérard and N.Tzvetkov)]
Let

1

2
− 1

q − 1
< s <

1

2
.

Then, for any ψ0 ∈ Hs(T), there exists T > 0 s.t.{
iψ̇ = −∆ψ + F ′ (|ψ|2)ψ, x ∈ T,
ψ(0, x) = ψ0(x)

(2.1.3)

and {
iψ̇N = −∆ψN + P≤N

(
F ′
(
|P≤NψN |2

)
P≤Nψ

N
)
, x ∈ T,

ψN |t=0 = ψ0

(2.1.4)

have respectively a unique solution

ψ, ψN ∈ C([−T, T ], Hs(T)) ∩ Lp([−T, T ], L∞(T))

for some p > q − 1.
Moreover, there exists θ = θ(q) > 0, s.t., given K > 0, for any ψ0 s.t.
‖ψ0‖Hs < K, one has that the corresponding solution ψ(t, x) satis�es

‖ψ(t, x)‖Hs(T) < 2K

‖ψN(t, x)‖Hs(T) < 2K

for any |t| < T ∼ 1
Kθ .

In the following we will denote by Φt
NLS and by Φt

FNLS respectively the
�ow of (0.0.1) and of (2.1.1).

Moreover, we can see (2.1.1) as an in�nite dimensional system of ODEs
for the Fourier coe�cients {ψk}k∈Z, where the high frequencies {|n| > N}
evolve linearly since they evolve according to the following equation:

ψ̇Nk = −ik2ψNk , |k| > N. (2.1.5)

One can introduce the following �nite dimensional system of ODEs:

iφ̇N = −∆φN + P≤N
(
F ′
(
|P≤NφN |2

)
P≤Nφ

N
)
, x ∈ T, (2.1.6)

with φN = P≤Nψ
N , i.e. φNk = 0 for any |k| > N .

This is a Hamiltonian �nite system with Hamiltonian HN,low given by

HN,low = H2,low + P̃ (2.1.7)
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where

H2,low(φN) :=
1

2

∫ 2π

0

|∇φN(x)|2dx,

P̃ (φN) =

q∑
j=2

H̃2j(φ
N), H̃2j(φ

N) :=
cj
2j

∫ 2π

0

|P≤NφN(x)|2jdx.

We denote by ΦFNLSlow(t, τ) the solution maps of (2.1.6) sending initial data
at time τ to solutions at time t, for simplicity, we set

Φt
FNLSlow

:= ΦFNLSlow(t, 0).

Since ΦFNLSlow(t, τ) preserves the L2-norm (‖φN‖2
L2 =

∑
|k|≤N |φNk |2) that is

the Euclidean distance on CN , the �ow of (2.1.6) is globally well posed.

Remark 2.1.3. Since P>NψN evolves linearly, the �ow of system (2.1.5) is
globally well posed, so in particular, we have that the �ow of (2.1.1) is globally
well posed for any N ∈ N and in particular we have the following relations:

Φt
FNLS = Φt

FNLSlow
P≤N + P>N and P≤NΦt

FNLS = Φt
FNLSlow

P≤N .

However, given ψ0 ∈ Hs, denote ψN(t) := ΦFNLS(t)ψ0, there is no uniform
control in N on ‖ψN(t)‖Hs for any time.

The next lemma, that will be proved in Appendix B, shows how the
truncated system (2.1.1) approximates system (0.0.1) as N goes to +∞.

Lemma 2.1.4. [Approximation Lemma]
Let K > 0, T > 0, ψ0 ∈ Hs, with ‖ψ0‖Hs ≤ K. Suppose that for any N ,
ψN(t) = Φt

FNLSψ0 satis�es

‖Φt
FNLS(ψ0)‖Hs ≤ K, |t| ≤ T.

Then, there exists an unique solution ψ(t) := Φt
NLSψ0 to (0.0.1) on [−T, T ]

with initial data ψ0. Moreover, given 0 < s1 < s,

‖ψ(t)− ψN(t)‖Hs1 = ‖Φt
NLSψ0 − Φt

FNLSψ0‖Hs1 → 0, as N →∞. (2.1.8)

Using the de�nition of EN and E⊥N , one can write the Gaussian measure
µg,β on L2(T) as

µg,β = µg,β,N ⊗ µ⊥g,β,N (2.1.9)
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where µg,β,N and µ⊥g,β,N are the marginal distribution of µg,β restricted onto

EN and E⊥N respectively. So, formally, we can write

dµg,β,N =
e−

β
2
‖P≤Nψ‖2H1

Zg,N(β)
dP≤Nψ, Zg,N(β) :=

∫
CN
e−

β
2
‖P≤Nψ‖2H1dP≤Nψ

(2.1.10)

dµ⊥g,β,N =
e−

β
2
‖P>Nψ‖2H1

Ẑg,N(β)
dP>Nψ, Ẑg,N(β) :=

∫
P>N (Hs)

e−
β
2
‖P>Nψ‖2H1dP>Nψ.

(2.1.11)

We consider now the �nite dimensional system (2.1.6), the associated Gibbs
measure µβ,N,low is given by

dµβ,N,low =
e−β(P̃ (φ)+ 1

2
‖φ‖2

H1)

ZN,low(β)
dφdφ̄, β > 0 , (2.1.12)

ZN,low(β) :=

∫
CN
e−β(P̃ (φ)+ 1

2
‖φ‖2

H1)dφdφ̄. (2.1.13)

Since P̃ (φ) + 1
2
‖φ‖2

H1 = HN,low(φ) + 1
2
‖φ‖2

L2 is invariant under the dynamics
of (2.1.6), by Liouville's Theorem, one has that µβ,N,low is invariant under the
�ow of (2.1.6). Moreover, µ⊥g,β,N is invariant under the �ow of (2.1.5) since
P>Nψ evolves linearly and in particular |ψNk (t)|2 = |ψNk (0)|2 for any |k| > N ,
t > 0.

We can now de�ne the Gibbs measure for the truncated system (2.1.1) as

µβ,N := µβ,N,low ⊗ µ⊥g,β,N . (2.1.14)

So, explicitly, we can express dµβ,N in the following way

dµβ,N =
e−β(P̃ (ψ)+ 1

2

∫ 2π
0 (|∇ψ(x)|2+|ψ(x)|2)dx)

ZN(β)
dψdψ̄

=
e−βP̃ (ψ)

ZN(β)
Zg(β)

e−
β
2
‖ψ‖2

H1

Zg(β)
dψdψ̄ = e−βP̃ (ψ) Zg(β)

ZN(β)
µg,βdψdψ̄, (2.1.15)

where

ZN(β) :=

∫
Hs

e−β(P̃ (ψ)+ 1
2
‖ψ‖2

H1)dψdψ̄ (2.1.16)

=

∫
Hs

e−β(
∑q
j=2

cj
2j

∫ 2π
0 |P≤Nψ(x)|2jdx+ 1

2
‖ψ‖2

H1)dψdψ̄. (2.1.17)

As in the case of µβ, with the same reasoning, we can obtain the following
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Lemma 2.1.5. There exists constants β∗, C̃ > 0 s.t. for any β > β∗ and for
any N ∈ N, one has

1 ≥
∫
Hs

e−βP̃dµg,β ≥ e−2C̃ . (2.1.18)

In particular, this means that for any N ∈ N

1 ≤ Zg(β)

ZN(β)
≤ e2C̃ , (2.1.19)

so we can conclude that µβ,N is a good probability measure on any Hs for
any N ∈ N.

The proof of this Lemma and of the next Lemmas of this section are
contained in Appendix A.

Remark 2.1.6. Using the de�nition of µβ,N , the invariance of µβ,N,low under
the �ow of (2.1.6) and the invariance of µ⊥g,β,N under the �ow of (2.1.5), we
conclude that µβ,N is invariant under the �ow of the truncated system (2.1.1).

Lemma 2.1.7. There exist β∗, C̃ > 0 s.t. for any β > β∗, for any N ∈ N
and for any µg,β-measurable set A ⊂ Hs, one has:

µβ,N(A) ≤ µg,β(A)eC̃ .

We emphasize that the constant C̃ is independent of β,N and q, where
q is the degree of the polynomial F (see (0.0.1)).

Lemma 2.1.8. There exists C > 0 s.t. for any ε, β > 0, there exists N0 ∈ N
s.t. for any N > N0 and any µβ-measurable set A ∈ Hs(T), one has

|µβ,N(A)− µβ(A)| < εeC(1+ 1
β ). (2.1.20)

2.1.1 Almost sure global well posedness for NLS

First, in this section we present a result due to Bourgain in [16] that
shows that the �ow of (2.1.1) is well posed except for a set of small measure,
using this result we get the µβ-almost sure global well posedness for the �ow
of (0.0.1).

For any M > 0, we denote by

BM := {ψ ∈ Hs(T) : ‖ψ‖Hs ≤M}.

and we have the following Lemma, which proof is in Appendix A
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Lemma 2.1.9. For any s1 <
1
2
there exists a constant C > 0 s.t. for any

β > 0, a < 1
2
, M > 0, one has

µβ ({‖ψ‖Hs1 > M}) ≤ C(s1)e−aβM
2

.

So, we get the following Lemma about the well posedness of the �ow of
(2.1.1) except for a set of small measure.

Lemma 2.1.10. For any T < ∞, ε > 0, N ∈ N, β ≥ 1, there exists ΩN =
ΩN(T, ε) s.t.

• µβ,N(Ωc
N) < ε.

• For ψ0 ∈ ΩN , there exists an unique solution Φt
FNLS(ψ0) to (2.1.1) s.t.

‖Φt
FNLS(ψ0)‖Hs .

(
log T

ε

β

) 1
2

, |t| ≤ T. (2.1.21)

We emphasize that estimate (2.1.21) is independent of N .

Proof. From local theory, there exists θ = θ(q) > 0 (q is the degree of the
polynomial F (see (0.0.1))) s.t. for any M > 0 and for any initial data
ψ0 ∈ BM one has that Φt

NLS(ψ0) and Φt
FNLS(ψ0) are locally well-posed on

[−δ, δ], δ ∼ (1 + M)−θ uniformly in N (see Prop. 2.1.2 and Prop. 3.1 of
[19]). In particular we know that for any N ∈ N and for any t ∈ [−δ, δ],
Φt
NLS(ψ0),Φt

FNLS(ψ0) ∈ B2M .
We de�ne the set

ΩN := ∩[T
δ

]

j=−[T
δ

]
Φj
FNLS (BM) . (2.1.22)

So

µβ,N (Ωc
N) ≤

[T
δ

]∑
j=−[T

δ
]

µβ,N
(
Φj
FNLS (Bc

M)
)
,

using the invariance of the measure, one gets

µβ,N
(
Φt
FNLS (Bc

M)
)

= µβ,N ((Bc
M)) ,

so in particular

µβ,N (Ωc
N) ≤2

[
T

δ

]
µβ,N (Bc

M) ≤ 2eC̃
[
T

δ

]
µg,β (Bc

M)

≤2eC̃
[
T

δ

]
e−aM

2β . TM θe−aM
2β, (2.1.23)
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where in the �rst line we use Lemma 2.1.7 and in the last line we use Lemma
2.1.9.

Choosing

M ∼

(
log T

ε

β

) 1
2

,

one obtains that
µβ,N (Ωc

N) < ε.

By construction, we have that for any ψ0 ∈ ΩN ,

‖Φjδ
FNLS(ψ0)‖Hs .M, j = 0,±1, ...,±

[
T

δ

]
,

so, by local theory, we have that for any ψ0 ∈ ΩN ,

‖Φt
FNLS(ψ0)‖Hs . 2M ∼ 2

(
log T

ε

β

) 1
2

, |t| ≤ T.

Using this result and the Lemma 2.1.4, one can obtain the following result
that gives the well posedness existence of the �ow of (0.0.1) except for a set
of small measure.

Lemma 2.1.11. For any T <∞, ε > 0, β ≥ 1, there exists Ω = Ω(T, ε) and
C > 0, independent of ε, β, T . s.t.

• µβ(Ωc) < ε.

• For ψ0 ∈ Ω, there exists an unique solution ψ to (0.0.1) on [−T ;T ] s.t.

‖Φt
NLS(ψ0)‖Hs .

(
log T

ε

β

) 1
2

, |t| ≤ T. (2.1.24)

Proof. Let ΩN(T, ε) as in Lemma 2.1.10. By Lemma 2.1.10, one has

‖Φt
FNLS(ψ0)‖Hs ≤ 2M

for any |t| ≤ T and any ψ0 ∈ ΩN(T, ε). By Lemma 2.1.4, given 0 < s1 < s,
there exists N1 ∈ N s.t.

‖Φt
NLS(ψ0)− Φt

NLS(ψ0)‖Hs1 � 1, |t| ≤ T,
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for any N ≥ N1. So, in particular, one has

‖Φt
NLS(ψ0)‖Hs1 .M ∼

(
log T

ε

β

) 1
2

, |t| ≤ T. (2.1.25)

Moreover, by Lemma 2.1.8 and using the fact that β ≥ 1

µβ (Ωc
N(T, ε)) ≤ µβ,N (Ωc

N(T, ε)) + εeC ≤ 2εeC . (2.1.26)

Using this result, we obtain the following theorem that gives the µβ-almost
sure global well posedness for the �ow of (0.0.1).

Theorem 2.1.12. For β ≥ 1, system (0.0.1) is µβ-almost sure global well
posed.

Proof. Given ε > 0, let Tj = 2j, εj = ε
2j
.

We de�ne
Ωj := ΩTj ,εj , Ωε := ∩∞j=1Ωj. (2.1.27)

Then one has

• µβ (Ωc
ε) ≤

∑∞
j=1 µβ

(
Ωc
j

)
≤
∑∞

j=1
ε

2j
= ε.

• If ψ0 ∈ Ωε, then there exists an unique solution ψ on [−Tj, Tj] for any
j ∈ N, so in particular we have global solution for any ψ0 ∈ Ωε.

In particular, denoting by
Σ = ∪ε>0Ωε,

one has

• µβ (Σc) = infε>0 ε = 0.

• If ψ0 ∈ Σ, then ψ0 ∈ Ωε for some ε > 0, so, in particular, there exists a
unique global solution ψ(t) with ψ|t=0 = ψ0.

29



2.1.2 Invariance of Gibbs measure under NLS

Finally, always following [16] and some lectures by Ho, using the µβ-
almost global well posedness of the �ow of (0.0.1), we obtain the main result
of this section about the invariance of µβ under the �ow of (0.0.1).

Theorem 2.1.13. The Gibbs measure µβ is invariant under the �ow of
(0.0.1).

Proof. Since µβ (Σc) = 1 and the �ow of (0.0.1) is reversible, to obtain the
invariance of the Gibbs measure under the �ow of (0.0.1), it is su�cient to
prove that for any µβ-measurable set A ⊂ Σ and for any t ∈ R, one has

µβ(A) ≤ µβ
(
Φt
NLS(A)

)
. (2.1.28)

We denote by F := {F ⊂ Hs, F closed }.
We consider a µβ-measurable set A ⊆ Σ, by inner regularity, there exists

a sequence {Fn} ∈ F s.t. Fn ⊆ A and µβ(A) = limn→∞ µβ(Fn), namely

µβ(A) = sup
F⊆A
F∈F

µβ(F ).

This implies that to obtain the invariance of the measure it is su�cient to
prove (2.1.28) for closed sets. In fact if (2.1.28) holds for closed sets, then

µβ(A) = lim
n→∞

µβ(Fn)

≤ lim sup
n→∞

µβ(Fn)

≤ lim sup
n→∞

µβ
(
Φt
NLS(Fn)

)
≤µβ

(
Φt
NLS(A)

)
where the last line is true since Fn ⊂ A. Given a closed set F ⊂ Hs and
s < σ < 1

2
, we denote by

Kn := {ψ ∈ F : ‖ψ‖Hσ ≤ n} .

Then Kn is a compact set in Hs. We have

µβ(F ) = lim
n→∞

µβ(Kn)

≤ lim sup
n→∞

µβ(Kn)

≤ lim sup
n→∞

µβ
(
Φt
NLS(Kn)

)
≤µβ

(
Φt
NLS(F )

)
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where the last line is true since Kn ⊆ F , so to prove the invariance of the
Gibbs measure, it is su�cient to prove (2.1.28) for compact sets.

Let K be a compact set in Hs, bounded in Hσ, σ < s. By Lemma 2.1.8,
we know that µβ,N ⇀ µβ but, by Portmanteau's theorem, this implies that,
for any ε > 0, one has

µβ
(
Φt
NLS(K) + B̄ε

)
≥ lim supµβ,N

(
Φt
NLS(K) + B̄ε

)
. (2.1.29)

So, using local theory and Lemma 2.1.4, we get that for |t| � 1 and any
0 < ε1 � 1, there exists 0 < ε� 1 and N0 ∈ N s.t. for any N > N0, one has

Φt
FNLS (K +Bε1) ⊂Φt

FNLS (K) +B ε
2

⊂Φt
NLS (K) +Bε, (2.1.30)

where the �rst inclusion is true by local theory, while the second is true by
Lemma 2.1.4. So, in particular we get

µβ,N
(
Φt
FNLS (K +Bε1)

)
≤ µβ,N

(
Φt
NLS (K) +Bε

)
,

but using the invariance of µβ,N respect to Φt
FNLS, we get also

µβ,N (K +Bε1) = µβ,N
(
Φt
FNLS (K +Bε1)

)
≤ µβ,N

(
Φt
NLS (K) +Bε

)
.

(2.1.31)
Hence,

µβ (K) ≤ µβ (K +Bε1) ≤ lim inf
N

µβ,N (K +Bε1)

≤ lim inf
N

µβ,N
(
Φt
FNLS(K) +Bε

)
≤ lim sup

N
µβ,N

(
Φt
FNLS(K) + B̄ε

)
≤µβ

(
Φt
NLS(K) + B̄ε

)
,

where we get the third inequality by (2.1.31) and the last inequality is true
for (2.1.29). So, �nally, sending ε to 0, we get

µβ (K) ≤ µβ
(
Φt
NLS(K)

)
. (2.1.32)

So, we obtain the thesis for compact sets, so, due to the previous observations,
we get the thesis for closed sets and then for any measurable sets in Hs.
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Chapter 3

A large probability averaging

Theorem for the defocusing NLS

Introduction to Chapter 3

This chapter is devoted to the proof of Theorem 0.0.1 and we will follow
[10]. For completeness, we report Theorem 0.0.1.

Theorem 3.0.1. There exist β∗ > 1, C, C ′ > 0 s.t. for any η1, η2 > 0, β
ful�lling

β > max

{
β∗,

C

η
10
7

1 η
5
7
2

}
and any k ∈ Z, there exists a measurable set Jk ⊂ Hs with µβ(Jck) < η2 s.t.,
if the initial datum ψ(0) ∈ Jk then the solution exists globally in Hs and one
has ∣∣∣∣∣ |ψk(t)|2 − |ψk(0)|2

C′

(1+k2)β

∣∣∣∣∣ < η1 , ∀|t| < C ′η1
√
η2β

2+ς , ς =
1

10
. (3.0.1)

Remark 3.0.2. The expectation value of ψk is C1/
√

(1 + k2)β, with a suitable
constant C1.

Remark 3.0.3. This results shows that in Gibbs measure, for large β, with
high probability, the single k-action changes very little during the motion
respect to its expectation value and for large time.
In fact, for example, if we consider

η1 = η
1/2
2 and β = (C + 1)η−20

2 � β∗,
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we get that, for all initial datum ψ(0) ∈ Jk, with µβ(Jck) <
(C+1)1/20

β1/20 , one has∣∣∣∣∣ |ψk(t)|2 − |ψk(0)|2
C′

(1+k2)β

∣∣∣∣∣ < (C + 1)1/40

β1/40
, ∀|t| < C ′β2+ 1

20 . (3.0.2)

Corollary 3.0.4. Under the same assumption of Theorem 0.0.1 and for any
α < 1/2, there exists a measurable set Iα ⊂ Hs with µβ(Icα) < η2 s.t., if the
initial datum ψ(0) ∈ Iα then the solution exists globally in Hs and one has∣∣∣∣ |ψk(t)|2 − |ψk(0)|2

[(1 + k2)αβ]−1

∣∣∣∣ < η1 , ∀|t| < C ′η1
√
η2β

2+ς , ∀k ∈ Z, ς =
1

10
.

(3.0.3)

Corollary 3.0.4 controls all the actions at the same time at the prize of
giving a slightly worst control on the actions with large index.

Theorem 0.0.1 is essentially an averaging theorem for perturbations of a
linear resonant system.

We recall that previous results giving long time stability of the actions
in (0.0.1) have been obtained in [3] and [17]. The �rst two results allow to
control the dynamics for exponentially long times, but only for initial data
close in energy norm to some �nite dimensional manifold, so essentially for
a very particular set of initial data. Bourgain [17] was able to exploit the
nonlinear modulation of the frequencies in order to show that for most (in a
suitable sense, not related to Gibbs measure) initial data in Hs with s � 1
the Sobolev norm of the solution is controlled for times longer then any
inverse power of the small parameter.

Nothing is known for solutions with low regularity as those dealt with in
the present thesis and in [10].

Our result can be compared also to the result of Huang Guan [28], who
proved a large probability averaging theorem for perturbations of KdV equa-
tion. We emphasize that the result of [28] deals with the quite arti�cial case
in which the perturbation is smoothing, namely it maps functions with some
regularity into functions with higher regularity. In our case we deal with the
natural local perturbation given by a polynomial in ψ. Furthermore [28] only
deals with smooth solution. We also recall [29] in which a weaker version of
averaging theorem is obtained for solutions of some NLS-type equations. In
that paper the initial datum is required to be more regular that in Theorem
0.0.1 and the times covered are shorter.

Finally we mention the papers [8, 9, 4] which deal with very smooth
initial data and perturbations of nonresonant linear system. These results
are clearly in a context very di�erent from ours.
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As anticipated in the introduction, �rst, we develop a formal scheme of
construction of the approximate integrals of motion which is slightly di�erent
from the standard one. This is due to the fact that the linearized system is
completely resonant and we have to �nd a way to use the nonlinear modula-
tion of the frequencies in order to control each one of the actions. We have
also to restrict our construction to the region of the phase space in which the
frequencies are nonresonant. This is obtained by eliminating (through cuto�
functions) the regions of the phase space where the linear combinations of
the frequencies that are met along the construction are smaller than δ, where
δ is a parameter that will be determined at the end of the construction.

Once we obtained a function Φk(ψ) close to |ψk|2 which is expected to
be an approximate integral of motion, we need to estimate its derivative in
L2(µβ) showing that it is small. To this end, we �rst recall that all the
estimates can be done by working with the Gaussian measure associated to
the linearized system, then we introduce the class of functions which will
be needed for the construction. Then we show how to control the L2(µβ)
norm of such functions. Essentially using the decay of the Fourier mods of
functions in the support of Gibbs measure, we show that the integral of a
function of our class on the resonant region is small with δ. Then we choose
δ to minimize the L2(µβ) norm of Φ̇k. Finally, using the invariance of Gibbs
measure, we prove Theorem 0.0.1.

3.1 Preliminaries

We recall that the system (0.0.1) is a Hamiltonian system with Hamilto-
nian H given by

H = H2 + P (3.1.1)

where

H2 :=
1

2

∫ 2π

0

|∇ψ(x)|2dx,

P =

q∑
j=2

H2j, H2j :=
cj
2j

∫ 2π

0

|ψ(x)|2jdx.

We consider the Gibbs measure µβ associated to this Hamiltonian, which
is known to be invariant with respect to Φt

NLS ([16, 30, 39, 38]) and that is
formally de�ned as

dµβ =
e−β(H(ψ)+ 1

2
‖ψ‖2

L2)

Z(β)
dψdψ̄, β > 0 , Z(β) :=

∫
Hs

e−β(H(ψ)+ 1
2
‖ψ‖2

L2)dψdψ̄

(3.1.2)
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where β plays the role of the inverse of the temperature.
Given a function f : Hs → C, f ∈ L2(Hs, µβ), we de�ne its average and

its L2-norm with respect to the measure µβ as:

〈f〉 :=

∫
Hs

fdµβ,

‖f‖2
µβ

:=

∫
Hs

|f |2dµβ.

Remark 3.1.1. From the invariance of µβ, one has that the average 〈f〉 and
the L2-norm ‖f‖µβ of the functions are preserved along the �ow, namely
〈f ◦ Φt

NLS〉 = 〈f〉 , ‖f ◦ Φt
NLS‖µβ = ‖f‖µβ for any t.

Given a function f : Hs → C, we denote by

‖f‖2
g,β :=

∫
Hs

|f |2dµg,β

its L2-norm respect to µg,β. From now on, we shall work using the Fourier
coordinates. The following lemmas will be proved in Appendix A.

Lemma 3.1.2. There exist β∗, C̃ > 0 s.t. for any β > β∗ and for any
function f ∈ L2(Hs, µg,β), one has:

‖f‖µβ ≤ ‖f‖g,βeC̃ .

We emphasize that the constant C̃ is independent of β and q.

Lemma 3.1.3. For any q−1
2q

< s1 <
1
2
, there exists Csob, D′ > 0 s.t. for any

β > 0 and any function f ∈ L2(Hs, µg,β), one has

‖f‖µβ ≥ e−
Csob
2β

qmaxj cjD
′j
∥∥∥fχ{‖ψ‖Hs1<D′

β }
∥∥∥
g,β

where χ{U}(ψ) is the characteristic function of the set U .

The next lemma shows that every moment of µβ is well de�ned.

Lemma 3.1.4. There exists β∗ > 0 s.t., for any s1 <
1
2
, n ∈ N, β > β∗, one

has
‖ψ‖nHs1 ∈ L1(Hs, µβ) ∩ L1(Hs, µg,β).

Finally, for the special case of the function |ψk|2, that is the k−action of
the linearized system, we have the following lemma.

Lemma 3.1.5. There exists β∗ > 0, C > 0 s.t. for any β > β∗ s.t.∥∥|ψk|2
∥∥
µβ
≥ C

β (1 + k2)
.
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3.2 Polynomials with frequency dependent co-

e�cients

In this section we introduce a class of function on Hs which will be stable
under the perturbative construction and we prove some results needed for
the rest of the proof.

De�nition 9. Let B1, B2 be two Banach spaces, we say that F (y) : B1 → B2

is a polynomial of degree n if there exists a n-multilinear form F̃ s.t. for any
y ∈ B1, one has F (y) = F̃ (y, y, ..., y︸ ︷︷ ︸

n

).

Remark 3.2.1. In particular a polynomial f : Hs → C of degree n has the
form:

f(ψ) =
∑
l,m

ψlψ̄mfl,m (3.2.1)

where l = {lk}, m = {mk}, lk,mk ∈ N,
∑

k lk + mk = n, fl,m ∈ C, ψl =

...ψ
l−k
−k ...ψ

lk
k ... and the same for ψ̄m.

De�nition 10. We say that a polynomial f of the form (3.2.1) of degree 2n
is of class P2n if it ful�lls the null momentum condition, i.e.

fl,m 6= 0 only if
∑

k∈Supp(l)

k =
∑

k∈Supp(m)

k and
∑
k

lk =
∑
k

mk = n. (3.2.2)

On P2n, we introduce the following norm

|||f ||| := sup
l,m
|fl,m| . (3.2.3)

Remark 3.2.2. In the following, due to (3.2.2), we will write a polynomial
f ∈ P2n also in the equivalent following form, more convenient in a lot of
situations

f(ψ) =
∑

k=(k1,...,k2n)∑n
i=1 ki=

∑2n
i=n+1 ki

fk

n∏
i=1

ψkiψ̄ki+n . (3.2.4)

The next lemma shows that the polynomials of class P2n are smooth
polynomials on Hs1 , 1

2
− 1

n
< s1 <

1
2
.

Lemma 3.2.3. Let n be a positive integer and s1 s.t. 1
2
− 1

2n
< s1 < 1

2
,

f ∈ P2n, then there exists C(s1, n) > 0 s.t.

|f(ψ)| ≤ C(s1, n)‖ψ‖2n
Hs1 |||f |||. (3.2.5)
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Proof.

|f(ψ)| ≤
∑

k1,...,k2n∑n
i=1 ki=

∑2n
i=n+1 ki

|fk1,...,k2n|
2n∏
i=1

|ψki |

≤ |||f |||
∑

k1,...,k2n∑n
i=1 ki=

∑2n
i=n+1 ki

2n∏
i=1

|ψki |.

We de�ne ϕ := {ϕk} := {|ψk|}, ϕ̃ :=
∑

k ϕke
ikx, so, using Sobolev's embed-

ding Hs1 ⊂ L2n for 1
2
− 1

2n
< s1 <

1
2
, one has:

|f(ψ)| ≤ |||f |||
∑

k1,...,k2n∑n
i=1 ki=

∑2n
i=n+1 ki

2n∏
i=1

ϕki = ‖ϕ̃‖2n
L2n|||f |||

≤ C(s1, n)‖ϕ̃‖2n
Hs1 |||f ||| = C(s1, n)‖ψ‖2n

Hs1 |||f |||.

We will also consider the functions f ∈ Cr(`1, P2n), f : `1 3 ω = {ωj} →
f(ψ, ω) =

∑
k=(k1,...,k2n)∑n
i=1 ki=

∑2n
i=n+1 ki

fk(ω)
∏n

i=1 ψkiψ̄ki+n . In the following ωj will be

the nonlinear modulation of the j-th frequency.
Actually we need to keep the information of the size of the di�erent derivative
of f . So, we give the following de�nition.

De�nition 11. We will say that f ∈ P r(2n, {Ai}ri=0) if f ∈ Cr(`1, P2n) and

sup
ω,k
|j|=i

∣∣∣∣∂|j|fk(ω)

∂ωj

∣∣∣∣ < Ai, ∀i = 0, ..., r.

Remark 3.2.4. MaxiAi is a norm for Cr(`1, P2n).

Given a function f ∈ Cr(`1, P2n), we also consider

fph(ψ) := f(ψ, |ψ|2),

conversely, we will say that f̃ : Hs → C is of class P r(2n, {Ai}ri=0) if there
exists a function F (ψ, ω) ∈ P r(2n, {Ai}ri=0) s.t. F (ψ, ω)|ω={|ψk|2}

= f̃(ψ).

Remark 3.2.5. If f ∈ P2n with |||f ||| < ∞, then f ∈ P∞(2n, {Ai}∞i=0) with
A0 = |||f ||| and Ai = 0 for any i ≥ 0. For simplicity, we will write f ∈
P∞(2n, |||f |||).
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Remark 3.2.6. From Lemma 3.2.3, for any n ∈ N and for any s1 s.t.
1
2
− 1

2n
<

s1 <
1
2
, for any r ≥ 0 and for any f ∈ P r(2n, {Ai}ri=0), one has

|f(ψ)| ≤ A0C(s1, n)‖ψ‖2n
Hs1 . (3.2.6)

The connection of the norm of P 0(2n,A0) and the L2-norm is given by

Lemma 3.2.7. Let n be an integer, denoted by Cg(n) := 2n+2[(2n)!]
3
2 (2n −

1)2
(∑

l
1

1+l2

)n
, for any β > 0, and fph ∈ P 0(2n,A0), one has

‖fph‖g,β ≤
A0Cg(n)

βn
. (3.2.7)

Proof. Writing fph =
∑

k=(k1,...,k2n) fk(ψ)
∏n

i=1 ψkiψ̄kn+i , one has

‖fph‖2
g,β =

∫
Hs

|fph|2dµg,β =

∫
Hs

∑
k,j

fk(ψ)f̄j(ψ)
n∏
i=1

ψkiψjn+iψ̄jiψ̄kn+idµg,β.

(3.2.8)
Let s1 be s.t. max

{
s, n−1

2n

}
< s1 <

1
2
, by Lemma 3.2.3, there exists a

constant C s.t. |f |2 ≤ CA2
0‖ψ‖4n

Hs1 , moreover by Lemma 3.1.4, ‖ψ‖4n
Hs1 ∈

L1(Hs, µg,β). So we can exchange the order between the integral and the
series and (3.2.8) becomes∑

k,j

∫
Hs

fk(ψ)f̄j(ψ)
n∏
i=1

ψkiψjn+iψ̄jiψ̄kn+idµg,β =

∑
k,j

∫
Hs fk(ψ)f̄j(ψ)

∏n
i=1 ψkiψjn+iψ̄jiψ̄kn+ie

−β
2

∑
Skj

(1+l2)|ψl|2∏
Skj

dψldψ̄l∏
Skj

∫
Hs e

−β
2

(1+l2)|ψl|2dψldψ̄l
(3.2.9)

where Skj := Supp(k, j). It is useful to use the following notation: given a
set K of indices (k1, ..., k2n) with an even number of components, we denote

K1 := {k1, ..., kn} , K2 := {kn+1, ..., k2n} .

Using the substitution ψl =
√

2zl√
β(1+l2)

eiθl , zl ∈ R+, θl ∈ [0, 2π), one has

that the only integrals di�erent from 0 are the terms in which K1 ∪ J2 =
K2 ∪ J1.

We denote by T the set of (k, j) s.t. K1 ∪ J2 = K2 ∪ J1 and with both k
and j ful�lling the zero momentum condition, namely

∑n
i=1 ki =

∑2n
i=n+1 ki,∑n

i=1 ji =
∑2n

i=n+1 ji. Thus (3.2.9) is bounded by

A2
0

∑
k,j∈T

22n

β2n
∏n

i=1 (1 + k2
i )
(
1 + j2

n+i

) ∫ n∏
i=1

zkizji+ne
−
∑
Skj

zl
∏
Skj

dzl
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≤ A2
0

22n(2n)!

β2n

∑
k,j∈T

1∏n
i=1 (1 + k2

i )
(
1 + j2

n+i

) .
So,

‖fph‖2
g,β ≤

A2
022n(2n)!

β2n

∑
(k,j)∈T

1∏n
i=1 (1 + k2

i )
(
1 + j2

n+i

) . (3.2.10)

Since we sum on (k, j) ∈ T, we have that, having �xed K1 ∪ J2 = K2 ∪ J1 we
have (2n)! way to rearrange K1 ∪ J2 and (2n)! way to rearrange K2 ∪ J1, so∑

(k,j)∈T

1∏n
i=1 (1 + k2

i )
(
1 + j2

n+i

) ≤ [(2n)!]2
∑

k1,...,kn,
jn+1,...,j2n

1∏n
i=1 (1 + k2

i )
(
1 + j2

n+i

)

= [(2n)!]2

(∑
l

1

1 + l2

)2n

.

So, �nally,

‖fph‖2
g,β ≤

A2
022n[(2n)!]3

(∑
i

1
1+i2

)2n

β2n
≤
A2

0C
2
g (n)

β2n

with Cg(n)2 := 22n+4[(2n)!]3(2n− 1)4
(∑

l
1

1+l2

)2n
.

Remark 3.2.8. According to Lemma 3.1.2, one also has

‖fph‖µβ ≤
A0Cg(n)

βn
. (3.2.11)

The Poisson brackets of two functions f, g with f ∈ P2n and g ∈ P r (2m, {Ai}ri=0)
is formally, given by

{f, g} := Lf (g) := −i
∑
k

(
∂f

∂ψk

∂g

∂ψ̄k
− ∂g

∂ψk

∂f

∂ψ̄k

)
.

Remark 3.2.9. If f ∈ Pn, g ∈ Pm, then

{f, g} ∈ Pn+m−2.

Lemma 3.2.10. Consider f ∈ P2n, |||f ||| < D, gph ∈ P r (2m, {Ai}ri=0).
Then

{f, gph} = F1 + F2, (3.2.12)

where
F1 ∈ P r (2n+ 2m− 2, 2nmD{Ai}ri=0) , (3.2.13)

F2 ∈ P r−1(2n+ 2m, 2nD{Ai+1}r−1
i=0 ). (3.2.14)
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Proof. Writing gph =
∑

k=(k1,...k2m) gk ({|ψk|2})ψk1 ...ψkmψ̄km+1 ...ψ̄k2m , then it
is immediate to verify that (3.2.12) holds with

F1 =
∑

k=(k1,...k2m)

gk(
{
|ψj|2

}
)
{
f, ψk1 ...ψkmψ̄km+1 ...ψ̄k2m

}
F2 =

∑
k=(k1,...k2m)

ψk1 ...ψkmψ̄km+1 ...ψ̄k2m
{
f, gk(

{
|ψj|2

}
)
}

=

=
∑

k=(k1,...k2m)

(∑
l

∂gk({|ψj|2})
∂ωl

)
ψk1 ...ψkmψ̄km+1 ...ψ̄k2m

{
f, |ψl|2

}
and, by Remark 3.2.9, F1 ∈ P r (2n+ 2m− 2, 2nmD{Ai}ri=0) and F2 ∈
P r−1(2n+ 2m, 2nD{Ai+1}r−1

i=0 ) hold.

Actually, we shall use a more particular class of functions in which the
range of the indices is subject to a further restriction. This is related to
the fact that in our construction we shall �x an index k corresponding to
the action we want to conserve. To this end, we introduce the following
de�nition:

De�nition 12. Given M > 0, k ∈ Z, a linear combination

G(k1, ..., k2n) :=
2n∑
i=1

aiki

with ai ∈ Z, |ai| ≤M , we will say that the relation

G(k1, ..., k2n) = k

is (M, k)-admissible.

Lemma 3.2.11. Given D > 0, let be f ∈ P2n, |||f ||| < D, gph(ψ, ψ̄) ∈
P r(2m, {Ai}ri=0), M > 0, k ∈ Z.
Assume that

gph =
∑

k=(k1,...,k2m) s.t.
Gk(k1,...,k2m)=k

gk
({
|ψk|2

})
ψk1 ...ψkmψ̄km+1...ψ̄k2m ,

where, for any k, Gk = k is (M, k)-admissible. Then

{f, gph} = F1 + F2
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where

F1 =
∑

k′=(k′1,...,k
′
2n+2m−2)

G̃k′ (k
′
1,...,k

′
2n+2m−2)=k

F1,k′ψk′1 ...ψk′n+m−1
ψ̄k′n+m...ψ̄k′2m+2n−2

, (3.2.15)

F2 =
∑

k′′=(k′′1 ,...,k
′′
2n+2m)

Ĝk′′ (k
′′
1 ,...,k

′′
2n+2m)=k

F2,k′′ψk′′1 ...ψk′′m+n
ψ̄k′′m+n+1

...ψ̄k′′2m+2n
(3.2.16)

where for any k′, k′′, the relations G̃k′ = k, Ĝk′′ = k are (2M, k)-
admissible.

Proof. Writing f =
∑

l=(l1,...l2n) flψl1 ...ψlnψ̄ln+1...ψ̄l2n , by Lemma 3.2.10, we

have F1 ∈ P r (2n+ 2m− 2, 2nmD{Ai}ri=0) , F2 ∈ P r−1(2n+2m, 2nD{Ai}ri=1).
Moreover, each term of F1 is originated by two terms that depend re-

spectively on l = (l1, ...l2n) and k = (k1, ...k2m) s.t.
∑n

i=1 li =
∑2n

i=n+1 li,∑m
i=1 ki =

∑2m
i=m+1 ki and {l1, ...ln} ∩ {km+1, ...k2m} 6= ∅ or {ln+1, ...l2n} ∩

{k1, ...km} 6= ∅. Without losing generality, we can suppose l1 = km+1.
We form a vector of indices k′ = (l2, ...ln, k1, ..., km, ln+1, ...l2n, km+2, ..., k2m)
s.t.

∑n
i=2 li+

∑m
i=1 ki =

∑2n
i=n+1 ki+

∑2m
i=m+2 ki. Moreover, km+1 =

∑m
i=1 ki−∑2m

i=m+2 ki. By hypothesis, we can write Gk(k1, ..., k2m) =
∑2m

i=1 aiki with
ai ∈ N, |ai| < M , so

k = Gk(k1, ..., k2m) =
2m∑
i=1

aiki =
m∑
i=1

(ai + am+1)ki +
2m∑

i=m+2

(ai − am+1)ki =

=
m∑
i=1

biki +
2m∑

i=m+2

biki = G̃k(k1, ..., km, km+2, ..., k2m)

= G̃k′(l2, ..., ln, k1, ..., km, ln+1, ..., l2n, km+2, ..., k2m).

We note that |bi| < 2M and G̃k is a linear combination only of {k1, ..., km, km+2, ..., k2m}
so it is independent of the null-momentum condition related to
(l2, ..., ln, k1, ..., km, ln+1, ..., l2n, km+2, ..., k2m), so we obtain the thesis for F1.
For F2 the situation is simpler. Again each term of F2 is originated by two
terms that depend respectively on l and k s.t.

∑n
i=1 li =

∑2n
i=n+1 li,

∑m
i=1 ki =∑2m

i=m+1 ki and {l1, ...ln}∩{km+1, ...k2m} 6= ∅ or {ln+1, ...l2n}∩{k1, ...km} 6= ∅.
We obtain a vector of indices k′′ = (l1, ..., ln, k1, ..., km, ln+1, ..., l2n, km+1, ..., k2m)
s.t.

∑n
i=1 li +

∑m
i=1 ki =

∑2n
i=n+1 ki +

∑2m
i=m+1 ki and

k = Gk(k1, ...k2m) = G̃k′′(l1, ..., ln, k1, ..., km, ln+1, ..., l2n, km+1, ..., k2m).
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Remark 3.2.12. This result holds also in the particular case in which gk is a
constant independent of {|ψj|2}.

In particular, one can obtain the following improvement of Lemma 3.2.7:

Lemma 3.2.13. Let n be an integer, M > 0, k ∈ Z, let

fph =
∑

k=(k1,...,k2n)
Gk(k1,...,k2n)=k

fk
(
{|ψk|2}

)
ψk1 ...ψknψ̄kn+1...ψ̄k2n ,

s.t. fph ∈ P 0(2n,A0) and for any k, Gk(k1, ..., k2n) = k is (M, k)-admissible.
Then, for any β > 0, one has

‖fph‖g,β ≤
A0Cg(n)M2

(1 + k2) βn
. (3.2.17)

The proof of this lemma is very technical and it is deferred to Appendix
C.0.1.

3.3 Formal construction of perturbed actions

In this section we look for a formal integral of motion which is a higher
order perturbation of Φk,2 := |ψk|2. Thus we �x once for all the value of k.

To present the construction, we describe �rst an equivalent one, which
however is di�cult to manage directly. Since H2 is completely resonant, it
is well known that one can construct, formally a canonical transformation T
which transforms the Hamiltonian into

H2 + Z4 + Z6 +R8 (3.3.1)

with Z4 and Z6 which Poisson commute with H2. In particular Z4 has been
computed in many papers (see e.g. [3] ) and is given by

Z4(ψ) :=
c2

2

(∑
k

|ψk|2
)2

− c2

2

∑
k

|ψk|4 . (3.3.2)

Then, following the ideas by Poincaré, we look for Φ̃k,6, Poisson commut-

ing with H2, s.t. Φ̃
(6)
k := Φk,2 + Φ̃k,6 is an approximate integral of motion of

(3.3.1). Computing the Poisson bracket of this quantity with (3.3.1), one has
that this is a quantity of order at least 8 if{

Z4, Φ̃k,6

}
= {Φk,2, Z6} =: R6 , (3.3.3)
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which is clearly impossible since the l.h.s. is of order 8 and the r.h.s. of order
6, so we will modify it. Since Z4 depends on the actions only, one has

{Z4, ·} = i
∑
j

ωj

(
ψj

∂

∂ψj
− ψ̄j

∂

∂ψ̄j

)
,

with ωj := c2 (|ψj|2 +
∑

k |ψk|2). So one is led to separate the regions where
the ωj's are resonant and those in which they are non resonant. The resonant
regions and the nonresonant regions will be de�ned precisely in the following.
Denote RNR

6 the restriction of Z6 to the nonresonant regions, we will solve
the equation {

Z4, Φ̃k,6

}
= RNR

6 . (3.3.4)

Looking for Φ̃
(6)
k in the class of polynomials with frequency dependent coef-

�cients, the approximate integral of motion that we are going to construct
is given by the sixth order truncation of T−1Φ̃

(6)
k . We proceed now to the

construction of the integral of motion. De�ne the operator LH2 := {H2, ·},
we have that for any f ∈ P2n

LH2f = {H2, f} ≡ −i
∑
l,m

fl,m
〈
k2, (l −m)

〉
ψlψ̄m

where 〈k2, (l −m)〉 :=
∑

j k
2
j (lj −mj).

Equivalently, for any for any f ∈ P2n, we can write

LH2f = −i
∑
k

fk

(∑
k

k2

(
n∑
i=1

δki,k −
2n∑

i=n+1

δki,k

))
n∏
i=1

ψkiψ̄ki+n ,

where δx,y is kronecker's delta.

De�nition 13. We denote by

NH2 := kerLH2 =
{
f ∈ ∪n∈NP2n : fl,m 6= 0⇔

〈
k2, (l −m)

〉
= 0
}
,

RH2 :=
{
f ∈ ∪n∈NP2n : fl,m 6= 0⇔

〈
k2, (l −m)

〉
6= 0
}
.

Remark 3.3.1. LH2 : RH2 → RH2 is formally invertible.

Given a polynomial f , we indicate the projection of f on NH2 by fNH2

and the projection on RH2 by f
RH2 .

In particular, we have

H
RH2
4 :=

c2

4

∑
k1+k2=k3+k4
k21+k22 6=k23+k24

ψk1ψk2ψ̄k3ψ̄k4 ,
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Z4 = H
NH2
4 .

De�ne now

χ4 := −L−1
H2
H
RH2
4 , χ6 := −L−1

H2

(
1

2

{
χ4, H

RH2
4

}
+ {χ4, Z4}+H6

)RH2

,

Φk,4 := Lχ4|ψk|2, Φk,6 :=
1

2
L2
χ4
|ψk|2 + Lχ6|ψk|2

and

Z6 := H
NH2
6 +

(
1

2

{
χ4, H

RH2
4

}
+ {χ4, Z4}

)NH2

,

to proceed, we have to de�ne the resonant/nonresonant decomposition of the
phase-space.

De�nition 14. For any n > 0, we denote by

M2n :=

{
k = {kj} ∈ Z2n s.t.

n∑
j=1

kj =
2n∑

j=n+1

kj,
n∑
j=1

k2
j =

2n∑
j=n+1

k2
j

}

Write
Z6 =

∑
k∈M6

Z̃6,kψk1ψk2ψk3ψ̄k4ψ̄k5ψ̄k6 ,

computing
R6 = {Φk,2, Z6} ,

one gets

R6 =
∑
k∈M6

Z6,k,k (3.3.5)

with

Z6,k,k := −iZ̃6,k (δk1,k + δk2,k + δk3,k − δk4,k − δk5,k − δk6,k)ψk1ψk2ψk3ψ̄k4ψ̄k5ψ̄k6 ,

where δj,k is Kronecker's delta.
We introduce a function ρ ∈ C∞0 , s.t.

ρ(x) =

{
1 if |x| > 2
0 if |x| < 1

. (3.3.6)

Recalling that ωj := c2 (|ψj|2 +
∑

k |ψk|2), we denote by

ak(ψ) :=
1

c2

(ωk1 + ωk2 + ωk3 − ωk4 − ωk5 − ωk6)

=(|ψk1|2 + |ψk2|2 + |ψk3|2 − |ψk4 |2 − |ψk5|2 − |ψk6|2) (3.3.7)
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and, given 0 < δ < 1, we de�ne the decomposition R6 := RNR
6 + RR

6 with

RNR
6 :=

∑
k

Z6,k,kρ

(
ak(ψ)

δ

)
and

RR
6 :=

∑
k

Z6,k,k

(
1− ρ

(
ak(ψ)

δ

))
.

We de�ne Φ̃k,6 to be the solution of equation (3.3.4), which is explicitely
given by

Φ̃k,6 := i
∑
k∈M6

Z6,k,k

c2ak(ψ)
ρ

(
ak(ψ)

δ

)
.

Remark 3.3.2. Φ̃k,6(ψ) ∈ P 2
(

6,
{

Ai
δi+1

}2

i=0

)
⊂ P 2

(
6,
{

A
δi+1

}2

i=0

)
with A :=

maxiAi.

Finally we de�ne the approximate integral of motion is given by

Φ
(6)
k := Φk,2 + Φk,4 + Φk,6 + Φ̃k,6 + Lχ4Φ̃k,6. (3.3.8)

The following lemma gives the structure of its time derivative.

Lemma 3.3.3. Write {
H,Φ

(6)
k

}
= −RR

6 +R

then

R =

q+1∑
j=4

R2j +

q+2∑
j=5

R2j,1 +

q+3∑
j=6

R2j,2 +

q+5∑
j=7

R2j,3, (3.3.9)

with R2j ∈ P2j, and there exists C > 0 s.t.

R2j,l ∈ P 3−l

(
2j,

{
C

δm+l

}3−l

m=0

)
.
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Proof. One has{
H,Φ

(6)
k

}
= {H2,Φk,2}

+ {H2,Φk,4}+ {H4,Φk,2}+
{
H2, Φ̃k,6

}
(3.3.10)

+ {Z6,Φk,2}+
{
Z4, Φ̃k,6

}
+
{
H
RH2
4 , Φ̃k,6

}
+
{
H2, Lχ4Φ̃k,6

}
(3.3.11)

+

n−2∑
j=2

(
{H2j ,Φk,6}+

{
H2j , Lχ4

Φ̃k,6

}
+
{
H2(j+1),Φk,4

}
+
{
H2(j+1), Φ̃k,6

}
+
{
H2(j+2),Φk,2

})
(3.3.12)

+
{
H2(n−1),Φk,6

}
+
{
H2(n−1), Lχ4

Φ̃k,6

}
+ {H2n,Φk,6}+

{
H2n, Φ̃k,6

}
(3.3.13)

+ {H2n,Φk,6}+
{
H2n, Lχ4

Φ̃k,6

}
. (3.3.14)

Due to the construction, we have that {H2,Φk,2} = 0 and {H2,Φk,4} =

−
{
H4, Φ̃k,2

}
. Due to the fact that ak and ρ depend on the actions only and

{Z6,k,k, H2} = 0, one has
{
H2, Φ̃k,6

}
= 0 so that (3.3.10) vanishes.

Since Z4 is a function of the actions only, we have also

{
Z4, Φ̃k,6

}
= i
∑
k

{Z4, Z6,k,k}
ρ
(
ak(ψ)
δ

)
c2ak(ψ)

=
∑
k

Z6,k,kρ

(
ak(ψ)

δ

)
= RNR

6 .

We note that
{
H
RH2
4 , Φ̃k,6

}
= −

{
H2, Lχ4Φ̃k,6

}
in fact, by the de�nition of

χ4 and
{
H2, Φ̃k,6

}
= 0, one has{

H2, Lχ4Φ̃k,6

}
= −

{
H2,

{
L−1
H2
H
RH2
4 , Φ̃k,6

}}
=

=
{
L−1
H2
H
RH2
4 ,

{
Φ̃k,6, H2

}}
+
{

Φ̃k,6, LH2L
−1
H2
H
RH2
4

}
=
{

Φ̃k,6, H
RH2
4

}
.

So, by (3.3.5), line (3.3.11) reduces to
∑

k Z6,k,k

(
ρ
(
ak(ψ)
δ

)
− 1
)

= −RR
6 .

It remains to study now (3.3.12), (3.3.13) and (3.3.14). Using Lemma 3.2.10,
we have {

H2j, Φ̃k,6

}
= F1,j + F2,j,

F1,j ∈ P 2

(
2j + 4,

{
C

δi+1

}2

i=0

)
, F2,j ∈ P 1

(
2j + 6,

{
C

δi+2

}1

i=0

)
,

Lχ4Φ̃k,6 = E1 + E2, E1 ∈ P 2

(
8,

{
C

δi+1

}2

i=0

)
, E2 ∈ P 1

(
10,

{
C

δi+2

}1

i=0

)
,
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so {
H2j, Lχ4Φ̃k,6

}
= F3,j + F4,j + F5,j,

F3,j ∈ P 2

(
2j + 6,

{
C

δi+1

}2

i=0

)
, F4,j ∈ P 1

(
2j + 8,

{
C

δi+2

}1

i=0

)
,

F5,j ∈ P 0

(
2j + 10,

C

δ3

)
,

{H2j,Φk,2} ∈ P2j,

{H2j,Φk,4} ∈ P2j+2,

{H2j,Φk,6} ∈ P2j+4.

3.4 Measure estimates

In this section we estimate ‖Φ(6)
k − |ψk

|2‖2
µβ

and
∥∥∥{H,Φ(6)

k

}∥∥∥
µβ
.

Lemma 3.4.1. There exists a constant C > 0 s.t. for any β > 1, δ ∈ (0, 1)
s.t. 0 < δβ < 1, one has

‖Φ(6)
k − |ψk

|2‖2
g,β ≤

C

(1 + k2)2 min{δ2β6, δ4β10}
, (3.4.1)

‖R‖2
g,β ≤

C

(1 + k2)2 δ6β14
, (3.4.2)

where R is de�ned by (3.3.9).

Proof. We recall that

Φ
(6)
k − |ψk

|2 = Φk,4 + Φk,6 + Φ̃k,6 + Lχ4Φ̃k,6.

By construction, Φk,4 ∈ P4, Φk,6 ∈ P6 and there exists C1 > 0 s.t. Φk,6 ∈
P 2
(

6,
{

C1

δi+1

}2

i=0

)
and, using Lemma 3.2.11, there exists C2 > 0 s.t. Lχ4Φ̃k,6 =

E1 + E2, E1 ∈ P 2
(

8,
{

C2

δi+1

}2

i=0

)
, E2 ∈ P 1

(
10,
{

C2

δi+2

}1

i=0

)
.

Moreover, P 2
(

6,
{

C1

δi+1

}2

i=0

)
⊂ P 0

(
6, C1

δ

)
, P 2

(
8,
{

C2

δi+1

}2

i=0

)
⊂ P 0

(
8, C2

δ

)
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and P 1
(

10,
{

C2

δi+2

}1

i=0

)
⊂ P 0

(
10, C2

δ2

)
. So, using Lemma 3.2.13 with M = 2,

we obtain

‖Φ(6)
k − |ψk

|2‖2
g,β ≤

C

(1 + k2)2

(
1

β4
+

1

β6
+

1

δ2β6
+

1

δ2β8
+

1

δ4β10

)
≤

≤ 5C

(1 + k2)2 min{δ2β6, δ4β10}
where we used 0 < δβ < 1. Using (3.3.9), Lemma 3.3.3, Lemma 3.2.11 and
Lemma 3.2.13 with M = 4, we get

‖R‖2
g,β ≤

C

(1 + k2)2

(
n+1∑
j=4

1

β2j
+

n+2∑
j=5

1

δ2β2j
+

n+3∑
j=6

1

δ4β2j
+

n+5∑
j=7

1

δ6β2j

)
so

‖R‖2
g,β ≤

C

(1 + k2)2 δ6β14
.

It remains to estimate the resonant part, namely
∥∥RR

6

∥∥2

g,β
.

Lemma 3.4.2. There exists a constant C̃ > 0 s.t. for any β > 0 and δ > 0
s.t. 0 < δβ < 1, one has

∥∥RR
6

∥∥2

g,β
≤ C̃

(δβ)
2
3

β6 (1 + k2)2 . (3.4.3)

The very technical proof is deferred to Appendix C. We remark that the
di�cult part consists in showing the presence of (1 + k2)

2
at the denomina-

tors.
Finally, we obtain the following

Lemma 3.4.3. There exists a constant C > 0 s.t. for any β > 0, one has∥∥∥Φ̇
(6)
k

∥∥∥
g,β

=
∥∥∥{H,Φ(6)

k

}∥∥∥
g,β
≤ C

(1 + k2) β3+ 1
10

.

Proof. By Lemma 3.3.3, we know that{
H,Φ

(6)
k

}
= −RR

6 +R.
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Using Lemmas 3.4.3 and 3.4.1, we can choose δ in such a way that (3.4.2)
and (3.4.3) have the same size:

1

δ6β14
=

(δβ)
2
3

β6
.

It follows that δ = 1

β
13
10

and the thesis.

Finally, using these results and Lemma 3.1.2, we obtain

Lemma 3.4.4. There exists β∗, C > 0 s.t. for any β > β∗, one has∥∥∥Φ̇
(6)
k

∥∥∥
µβ
≤ C

(1 + k2) β3+ 1
10

.

Proof. This results is a simple consequence of Lemma 3.4.3 and Lemma 3.1.2.

3.5 Proof of Theorem 0.0.1

Proof of Theorem 0.0.1 Using Chebyshev's inequality, one has

µβ

{
ψ : |Φ(6)

k (ψ(t))− Φ
(6)
k (ψ(0))| > η1‖|ψk|2‖µβ

}
≤

∥∥∥Φ
(6)
k (ψ(t))− Φ

(6)
k (ψ(0))

∥∥∥2

µβ

η2
1‖|ψk|2‖2

µβ

.

(3.5.1)

But Φ
(6)
k (ψ(t))− Φ

(6)
k (ψ(0)) =

∫ t
0

Φ̇
(6)
k (ψ(s))ds, so∥∥∥Φ

(6)
k (ψ(t))− Φ

(6)
k (ψ(0))

∥∥∥
µβ
≤
∫ t

0

∥∥∥Φ̇
(6)
k (ψ(s))

∥∥∥
µβ
ds.

Thanks to the invariance of the measure, the L2(µβ)-norm is conserved under
the dynamics, so for any t ∈ R, we have∥∥∥Φ̇

(6)
k (ψ(t))

∥∥∥
µβ

=
∥∥∥Φ̇

(6)
k (ψ(0))

∥∥∥
µβ

=
∥∥∥Φ̇

(6)
k

∥∥∥
µβ
,

and in particular we obtain∥∥∥Φ
(6)
k (ψ(t))− Φ

(6)
k (ψ(0))

∥∥∥
µβ
≤ t
∥∥∥Φ̇

(6)
k

∥∥∥
µβ
.
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So,

µβ

{
ψ : |Φ(6)

k (ψ(t))− Φ
(6)
k (ψ(0))| > η1‖|ψk|2‖µβ

}
≤ t2

∥∥∥Φ̇
(6)
k

∥∥∥2

µβ

η2
1‖|ψk|2‖2

µβ

≤ η2

(3.5.2)

for any |t| < η1
√
η2β

2+ 1
10

C
, where we used Lemmas 3.1.5 and 3.4.4. Using this

result, we can study the variation of the k-action. In fact

µβ
{
ψ :
∣∣|ψk(t)|2 − |ψk(0)|2

∣∣ > η1‖|ψk|2‖µβ
}
≤ (3.5.3)

≤ µβ

{
ψ :
∣∣∣Φ(6)

k (ψ(t))− Φ
(6)
k (ψ(0))

∣∣∣ > η1

3
‖|ψk|2‖µβ

}
+µβ

{
ψ :
∣∣∣Φ(6)

k − |ψk
|2
∣∣∣ (t) > η1

3
‖|ψk|2‖µβ

}
+µβ

{
ψ :
∣∣∣Φ(6)

k − |ψk
|2
∣∣∣ (0) >

η1

3
‖|ψk|2‖µβ

}

≤ η2

2
+ 18

∥∥∥Φ
(6)
k − |ψk

|2
∥∥∥2

µβ

η2
1 ‖|ψk|2‖2

µβ

≤ η2

for any β > C

η
10
7

1 η
5
7
2

, |t| < η1
√
η2β

2+ 1
10

C
, where we used Chebyshev's inequality,

the conservation of the Gibbs measure, (3.4.1) with δ = 1

β
13
10

and Lemma 3.1.2

to estimate the second and the third term. Then Theorem 0.0.1 is obtained
by reformulating this inequality.

Proof of Corollary 3.0.4 We consider two sequences η1,k := η1(1+k2)
1
2 , η2,k :=

η2
(1+k2)

(∑
j

1
1+j2

)−1

.

For any k ∈ Z and any α < 1/2, we de�ne

Iα,k :=

{
ψ :
∣∣|ψk(t)|2 − |ψk(0)|2

∣∣ ≤ η1

(1 + k2)αβ

}
.

Using Theorem 0.0.1, one has

µβ(Icα,k) ≤ µβ

{
ψ :
∣∣|ψk(t)|2 − |ψk(0)|2

∣∣ > η1

(1 + k2)
1
2β

}
=

µβ

{
ψ :
∣∣|ψk(t)|2 − |ψk(0)|2

∣∣ > η1,k

(1 + k2)β

}
≤ η2,k
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for any |t| < C ′η1
√
η2β

2+ς .
Denote Iα := ∪kIα,k, one has that

µβ (Icα) ≤
∑
k

µβ
(
Icα,k
)
≤ η2. (3.5.4)

51



Part II

Deterministic result
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Chapter 4

Long time existence in H1 for

time-dependent NLS on the 2-d

torus

Introduction to Chapter 4

In this Chapter we follow [7].
We study the NLS equation (0.0.5), namely

iψt = −2∆ψ + 2a(x, ωt)|ψ|2ψ, x ∈ T2.

with ω ∈ Rd and a ∈ C∞(Td+2). We study the possibility of using Hamilto-
nian perturbation theory for the study of the dynamics.

To explain the situation, remark �rst that equation (0.0.5) is Hamiltonian
with Hamiltonian function given by

H(ψ) = H0(ψ) +H1(ψ, ωt), H0(ψ) =

∫
T2

|∇ψ|2dx (4.0.1)

H1(ψ, ωt) =

∫
T2

a(x, ωt)|ψ(x)|4dx. (4.0.2)

which, for small initial data is a perturbation of H0. When written in terms
of the Fourier coe�cients ψ̂k of ψ, H0 takes the very simple form

H0 =
∑
k∈Z2

|k|2
∣∣∣ψ̂k∣∣∣2 ,

which is the sum of in�nitely many harmonic oscillators with integer fre-
quency. It is thus natural to study the completely resonant normal form of
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the system. Consider the standard Sobolev space Hs and denote by Bs(R)
the open ball in Hs of radius R centered at the origin, then Theorem 6.2 of
[12] (which is a development of [11]) gives the following result

Theorem 4.0.1. Assume that the function a is analytic over Td+2, that the
frequency is Diophantine, namely that there exist γ and τ s.t.

|ω · k + k0| ≥
γ

1 + |k|τ
, ∀(k, k0) ∈ Zd+1 \ {0} . (4.0.3)

Fix s > 1, then there exists C, ε > 0 and a canonical transformation T :
Bs(ε)→ Hs s.t.

H ◦ T = H0 + Z +R

with Z independent of time and ful�lling {Z,H0} = 0 and the following
estimates hold

sup
ψ∈Bs(ε)

‖ψ − T(ψ)‖Hs ≤ Cε2,

sup
ψ∈Bs(ε)

|Z(ψ)| ≤ Cε4,

sup
ψ∈Bs(ε)

|R(ψ)| ≤ C exp

[
−
(
C

ε

)2/(τ+1)
]
,

sup
ψ∈Bs(ε)

‖XR(ψ)‖Hs ≤ C exp

[
−
(
C

ε

)2/(τ+1)
]

where XR is the Hamiltonian vector �eld, namely XR := i
(
∂W
∂ψ
,−∂W

∂ψ̄

)
.

Now, the question is what are the dynamical consequences of Theorem
4.0.1? Since Z is a resonant normal form, one can conclude that H0, namely
the square of the H1 norm is an integral of motion for H0 +Z, and therefore
it is almost conserved in the complete system provided some Hs norm, with s
strictly larger than 1, remains smaller than ε for such times. The problem is
that it is impossible to see whether this happens or not, so the above theorem
is useless, unless it is combined with a deeper analysis of the dynamics. For
example in [24, 36, 35] the authors study in detail the form of Z and construct
some particular very interesting solutions which are of interest, but nothing
is known for general solutions.

On the other hand, in dimension 1 the resonant normal form has proved
to be useful for the understanding of remarkable stability properties of the
dynamics [3] in the energy space, so it is natural to try to use Hamiltonian
perturbation to study the 2-d NLS in the energy space.
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The problem is that H1(T2) is not an algebra, and therefore an analogue
of Theorem 4.0.1 is not known in this space.

In this chapter, we use a variant of the normal form theory in order to
construct a function on H1 which is a deformation of H0 and is an approx-
imate integral of motion for initial data which have small H1 norm. We
deduce existence of solutions in H1 for times of order ε−6. For completeness,
we report the main Theorems of this Chapter.

Theorem 4.0.2. Assume that a ∈ C∞(Td+2) and that the frequency ω is
Diophantine (namely it ful�lls (4.0.3)), then there exist ε∗, C > 0 and a
functional Φ(3) ∈ C∞(Td;H1(T2,C)) with the following properties∣∣∣∣ ddtΦ(3)(ωt, ψ(t))

∣∣∣∣ ≤ C ‖ψ(t)‖10
H1 , (4.0.4)

sup
‖ψ‖H1<ε∗

∥∥Φ(3)(ωt, ψ)−H0(ψ)
∥∥
CK(Td)

≤ C ‖ψ‖4
H1 . (4.0.5)

Theorem 4.0.3. With the same assumptions and notations, if ε := ‖ψ0‖H1 <
ε∗, then the solution of (0.0.5) with initial data ψ0 exists up to times t s.t.
|t| < ε−6 and ful�lls

‖ψ(t)‖H1 < 2ε . (4.0.6)

The idea of the proof is to use an algorithm of direct construction of
integrals of motion which originates from celestial mechanics [26] and then
to exploit the explicit expression of the so obtained quantities in order to
estimate their time derivative. The naif idea is that, since H1 is the integral
of a polynomial in ψ(x), one can expect the approximate integral of motion
and its time derivative to have the same structure. If this were true then one
could use the fact that H1 is embedded in Lp, ∀p, in order to get a control
of such a quantity.

This naif idea turns out to be wrong, since the construction of the ap-
proximate integral of motion involves a procedure of averaging with respect
to the �ow of the linearized equation (namely with respect to e−i∆t) and the
Bessel spaces Hs

p , namely the spaces of functions f s.t. (−∆)s/2f ∈ Lp, are
not invariant under such a �ow, if p 6= 2. To overcome this problem, to
estimate the average of the perturbation and to obtain our result, the main
tool we need is the famous L4 estimate by Bourgain, namely

∀ε > 0 ∃ C such that ‖e−i∆tψ‖L4
tx
≤ C‖ψ‖Hε . (4.0.7)

We conclude this introduction by mentioning that we expect the present
result to be the fundamental tool for the extension to dimension 2 of results
of the kind of [5, 3]. We also recall that a preliminary interesting result in
this direction has been recently proved in [32].
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4.1 Formal scheme

4.1.1 Preliminaries

To de�ne precisely the phase space, we �rst consider H1(T2;C) as a real
Hilbert space endowed by the (weak) scalar product

〈ψ1;ψ2〉L2 := 2<
∫
T2

ψ1(x)ψ̄2(x)dx , (4.1.1)

that we use in order to de�ne the L2 gradient of a functionW ∈ C1(H1(T2;C))
by

〈∇L2W ;h〉L2 = dWh . (4.1.2)

Furthermore, in order to giveH1 a symplectic structure, we de�ne the Poisson
operator as the operator of multiplication by i, which in a real Hilbert space
is actually an operator, so that the Hamiltonian vector �eld of a function W
is i∇L2W .

We now extend the phase-space by adding the angles α ∈ Td and their
conjugated variables I ∈ Rd, so that the phase space turns out to be P :=
H1(T2,C)⊕ Rd ⊕ Td. The extended Hamiltonian is

Hext(I, ψ) = Hext
0 (I, α, ψ) +H1(α, ψ), (4.1.3)

where

Hext
0 (I, ψ) =

d∑
j=1

ωjIj +

∫
T2

|∇ψ|2dx

and

H1(α, ψ) =

∫
T2

a(x, α)|ψ(x)|4dx. (4.1.4)

Given a function W ∈ C∞(P) we will denote by XW its Hamiltonian
vector �eld. Remark that

XW =

(
i∇L2W,

∂W

∂α
,−∂W

∂I

)
.

In general the vector �eld is a map from P to its dual P∗ = H−1 ⊕ Rd ⊕ Td.

De�nition 15. Given two functions, F,G ∈ C∞(P), we de�ne their Poisson
brackets by

{F ;G} := dFXG . (4.1.5)

56



In general the Poisson brackets of a couple of smooth functions can fail
to exist. In the following we will use the explicit form of the functions in
order to show that in the cases we meet such a quantity is well de�ned.

We will often denote LF := {F, ·}.

De�nition 16. We say that a function G : H1 → C is in normal form if

{G,H0} = 0.

4.1.2 The algorithm

In this subsection we describe an algorithm due to Giorgilli to construct
approximate integral of motion.

Given a sequence {χn}n≥1, we de�ne recursively

E0 = 1,

and for n ≥ 1,

En =
n∑
j=1

j

n
LχjEn−j.

Given a function W (α, ψ) we de�ne its average by

〈W 〉(ψ) :=
1

(2π)d+1

∫
Td
dα

∫ 2π

0

W (α, e−i∆tψ)dt,

and (again recursively) the sequence {Ψn}n≥1 by:

Ψ1 = H1, (4.1.6)

Ψn = −n− 1

n
Lχn−1H1 −

n−1∑
j=1

j

n
En−j〈Ψj〉, n ≥ 2. (4.1.7)

We have now the following theorem due to Giorgilli (for the proof see [26]).

Theorem 4.1.1. Let χn be a solution of the homological equation

LHext
0
χn + Ψn = 〈Ψn〉 n ≥ 1, (4.1.8)

De�ne Φn := EnH0, �x N and de�ne

Φ(N) := H0 +
N∑
j=1

Φj.

Then one has {
Hext,Φ(N)

}
= {H1,ΦN} .

Actually we are able to develop this construction only for three steps.
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4.1.3 The solutions of the homological equation (4.1.8)

Given a function W (α, ψ), expand it in Fourier series in α, i.e.

W (α, ψ) =
∑
k∈Zd

Ŵk(ψ)eik·α . (4.1.9)

Lemma 4.1.2 (Lemma 6.4 of [12]). Given a function W on P, the solution
of the homological equation

LHext
0
χ+W = 〈W 〉 (4.1.10)

is given by
χ(α, ψ) =

∑
k∈Zd

χ̂k(ψ)eik·α

where

χ0(ψ) =
1

2π

∫ 2π

0

t(W0 − 〈W 〉)(e−i∆tψ)dt, (4.1.11)

and for k 6= 0

χ̂k(ψ) =
e−i2πk·ω

1− e−i2πk·ω

∫ 2π

0

eik·ωtŴk(e
−i∆tψ)dt. (4.1.12)

For the proof see [12].

4.2 Estimate of χi, i = 1, 2, 3

From now on we will use the notation a � b to mean �there exists a
positive constant C s.t. a ≤ Cb�.

We associate to a polynomial W in H1 homogeneous of degree k the
unique symmetric multilinear form W̃ s.t.

W̃ (ψ, ..., ψ) = W (ψ) . (4.2.1)

The same notation will be used for polynomials taking values in Banach
spaces.

For example, one has

H̃1(ψ1, ψ2, ψ3, ψ4) =
1

4!

∑
ς

∫
T2

ψς(1)ψς(2)ψς(3)ψς(4)dx, (4.2.2)
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where the sum is over the permutations of {1, 2, 3, 4}, and

∇̃L2H1(ψ1, ψ2, ψ3) =
1

3!

∑
ς

ψς(1)ψς(2)ψς(3), (4.2.3)

where now ς are permutations of {1, 2, 3}.
We remark that in particular one has

dW (ψ)h = kW̃ (ψ, ..., ψ, h) = 〈∇L2W ;h〉L2 (4.2.4)

which is a formula useful for the study of the property of the gradient of
functions.

Before to present the estimate of χi and of its gradient, we introduce some
spaces of functions that we use in the following and the main technical tools
we need.
First we introduce the Bessel Spaces Hs

p(T2) ([23, 37]), namely the space of

functions ψ ∈ Lp(T2) s.t. (−∆)s/2ψ ∈ Lp(T2), with norm

‖ψ‖Hs
p(T2) = ‖ψ‖Lp(T2) + ‖(−∆)s/2ψ‖Lp(T2). (4.2.5)

We introduce now the main technical tools we need.

Lemma 4.2.1. [Bourgain's estimate] ∀ε > 0 and for any ψ ∈ Hε(T2), one
has

‖ei∆tψ‖L4
tx
� ‖ψ‖Hε(T2). (4.2.6)

Proof. See [14, 15, 20].

Lemma 4.2.2. [Interpolation lemma] Let p ≥ 4, ε > 0, ψ ∈ H1− 4
p

+ε(T2),
then

‖ei∆tψ‖Lptx � ‖ψ‖H1− 4
p+ε

(T2)
.

The proof is postponed to Appendix D.2

Remark 4.2.3.
Let s ∈ R, n ∈ N, then, for any ψ ∈ Hs

p(Tn), one has ei∆t((−∆)s/2ψ) =

(−∆)s/2(ei∆tψ).

From the above Lemmas and by the de�nition of the norm in Bessel space
Hs
p(T2) one immediately gets the following Corollary.

Corollary 4.2.4. ∀ε > 0, p ≥ 4 and for any ψ ∈ Hs+ε(T2), s ∈ R, one has

‖ei∆tψ‖LptHs
p,x
� ‖ψ‖

H
s+1− 4

p+ε
(T2)

. (4.2.7)
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Furthermore, recalling that ‖ψ‖Hs
p(T2) and ‖(I −∆)s/2ψ‖Lp(T2) are equiv-

alent norms, we will use the following Lemma, which proof is postponed to
Appendix D.2.

Lemma 4.2.5. [Leibniz rule for fractional Laplacian on torus, Grafakos-
2018] Let s > 0, n ∈ N, 1 < p, p1, p2, p3, p4 <∞, 1

p1
+ 1

p2
= 1

q1
+ 1

q2
= 1

p
, then

there exists C(s, n, p, p1, p2, q1, q2) > 0 s.t. for any f, g smooth 2π-periodic
functions (in each variable) on Rn, denoting (I −∆)s/2 = Js, one has

‖Js(fg)‖Lp(Tn) ≤ C‖Js(f)‖Lp1 (Tn)‖g‖Lp2 (Tn) + ‖f‖Lq1 (Tn)‖Js(g)‖Lq2 (Tn).
(4.2.8)

Using all these results, we have the following results about the estimate
of χi, Ψi i = 1, 2, 3 and their gradient (for the proof, see Appendix D.1).

Lemma 4.2.6. For any s ≥ 0, ε > 0 one has

∥∥∥〈̃Ψ1〉(α, ψ1, ψ2, ψ3, ψ4)
∥∥∥
CK(Td,R)

� ‖ψ1‖H−s
4∏
j=2

‖ψj‖Hs+2ε , (4.2.9)

‖χ̃1(α, ψ1, ψ2, ψ3, ψ4)‖CK(Td,R) � ‖ψ1‖H−s
4∏
j=2

‖ψj‖Hs+2ε . (4.2.10)

Lemma 4.2.7. For any s ≥ 0, ε > 0 one has∥∥∥〈̃Ψ2〉(α, ψ1, . . . , ψ6)
∥∥∥
CK(Td,R)

� ‖ψ1‖Hε

∏
2≤i≤6

‖ψi‖Hs+1
2+ε , (4.2.11)

‖χ̃2(α, ψ1, . . . , ψ6)‖CK(Td,R) � ‖ψ1‖Hε

∏
2≤i≤6

‖ψi‖Hs+1
2+ε . (4.2.12)

Lemma 4.2.8. For any s ≥ 0, ε > 0, one has

∥∥∥〈̃Ψ3〉(α, ψ1, . . . , ψ8)
∥∥∥
CK(Td,R)

� ‖ψ1‖Hε

8∏
j=2

‖ψj‖Hs+ε+2
3
, (4.2.13)

‖χ̃3(α, ψ1, . . . , ψ8)‖CK(Td,R) � ‖ψ1‖Hε

8∏
j=2

‖ψj‖Hs+ε+2
3
. (4.2.14)

The proofs of these lemmas are very technical and are in Appendix D.1.

60



4.3 Proof of Theorems 0.0.5 and 0.0.6

Lemma 4.3.1. Let W be a homogeneous polynomial of degree n and W̃ the
unique symmetric multilinear form s.t.

W̃ (ψ, ..., ψ) = W (ψ). (4.3.1)

If there exist α, β ∈ R s.t.

|W̃ (ψ1, ..., ψn)| � ‖ψ1‖Hα

n∏
j=2

‖ψj‖Hβ , (4.3.2)

then one has ∥∥∥∇̃L2W (ψ1, ...ψn−1)
∥∥∥
H−α
�

n−1∏
j=1

‖ψj‖Hβ , (4.3.3)

Proof. For any test function h ∈ Hα with ‖h‖Hα = 1, we need to consider

〈∇̃L2W (ψ1, ..., ψn−1);h〉L2 .

For any i = 1, .., n, we denote ϕi = ψi and ϕn = h, so we have

〈∇̃L2W (ψ1, ..., ψn−1);h〉L2 = nW̃ (ψ1, ..., ψn−1, h) = nW̃ (ϕ1, ..., ϕn).

Using (4.3.2), we obtain∣∣∣〈∇̃L2W (ψ1, ..., ψn−1);h〉L2

∣∣∣ � ‖h‖Hα

n∏
j=2

‖ψj‖Hβ ,

so we get the thesis.

Remark 4.3.2. By Lemma 4.3.1 and Lemma 4.2.6, we obtain that for any
s ≥ 0, ε > 0, one has

‖∇̃L2〈Ψ1〉(α, ψ1, ψ2, ψ3)‖CK(Td,Hs) �
3∏
i=1

‖ψi‖Hs+ε , (4.3.4)

‖∇̃L2χ1(α, ψ1, ψ2, ψ3)‖CK(Td,Hs) �
3∏
i=1

‖ψi‖Hs+ε (4.3.5)

and for any s > 0, 0 < ε ≤ s,

‖∇̃L2〈Ψ1〉(α, ψ1, ψ2, ψ3)‖CK(Td,H−s) � ‖ψ1‖H−s+ε
∏

2≤i≤3

‖ψi‖Hs , (4.3.6)

‖∇̃L2χ1(α, ψ1, ψ2, ψ3)‖CK(Td,H−s) � ‖ψ1‖H−s+ε
∏

2≤i≤3

‖ψi‖Hs . (4.3.7)
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Remark 4.3.3. By Lemma 4.3.1, Lemma 4.2.7 and Lemma 4.2.8 we get that
for any s ≥ 0, ε > 0, one has∥∥∥∇̃L2〈Ψ2〉(α, ψ1, . . . , ψ5)

∥∥∥
CK(Td,H−ε)

�
∏

1≤i≤5

‖ψi‖Hs+1
2+ε , (4.3.8)∥∥∥∇̃L2χ2(α, ψ1, . . . , ψ5)

∥∥∥
CK(Td,H−ε)

�
∏

1≤i≤5

‖ψi‖Hs+1
2+ε , (4.3.9)

∥∥∥∇̃L2〈Ψ3〉(α, ψ1, . . . , ψ7)
∥∥∥
CK(Td,H−ε)

�
7∏
j=1

‖ψj‖Hs+ε+2
3
, (4.3.10)

∥∥∥∇̃L2χ3(α, ψ1, . . . , ψ7)
∥∥∥
CK(Td,H−ε)

�
7∏
j=1

‖ψj‖Hs+ε+2
3
. (4.3.11)

Lemma 4.3.4. For any s ∈ (0, 1), ε > 0, one has

‖ψj‖Hs
6(T2) � ‖ψj‖Hs+2

3+ε(T2)
. (4.3.12)

Proof. See Appendix D.2.

Lemma 4.3.5. For any s ∈ (0, 1), ε > 0, we have∥∥∥H̃1(α, ψ1, ψ2, ψ3, ψ4)
∥∥∥
CK(Td,R)

� ‖ψ1‖H−s
4∏
j=2

‖ψj‖Hs+2
3+ε ,

∥∥∥∇̃L2H1 (α, ψ1, ψ2, ψ3)
∥∥∥
CK(Td,Hs)

�
3∏
i=1

‖ψj‖Hs+2
3+ε .

Proof. ∣∣∣H̃1(α, ψ1, ψ2, ψ3, ψ4)
∣∣∣ � ∣∣∣∣∫

T2

a(x, α)ψ1ψ2ψ3ψ4dx

∣∣∣∣
� ‖a(x, α)ψ1‖H−s ·

∥∥∥∥∥
4∏
j=2

ψj

∥∥∥∥∥
Hs

� ‖ψ1‖H−s ·

∥∥∥∥∥
4∏
j=2

ψj

∥∥∥∥∥
Hs

� ‖ψ1‖H−s ·
4∏
j=2

‖ψj‖Hs
6

� ‖ψ1‖H−s ·
4∏
j=2

‖ψj‖Hs+2
3+ε .
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where in the third line we use Lemma 4.2.5, knowing that a ∈ C∞(Td+2),
and in the last line we use Lemma 4.3.4.
Using Lemma 4.3.1, we get also that∥∥∥∇̃L2H1 (α, ψ1, ψ2, ψ3)

∥∥∥
CK(Td,Hs)

�
3∏
i=1

‖ψj‖Hs+2
3+ε .

Lemma 4.3.6. For any ε > 0, one has∥∥∥Φ̃1(α, ψ1, ψ2, ψ3, ψ4)
∥∥∥
CK(Td,R)

�
4∏
i=1

‖ψi‖H 2
3+ε , (4.3.13)

∥∥∥Φ̃2(α, ψ1, ..., ψ6)
∥∥∥
CK(Td,R)

�
6∏
i=1

‖ψi‖H 1
2+ε , (4.3.14)

∥∥∥Φ̃3(α, ψ1, ..., ψ8)
∥∥∥
CK(Td,R)

�
8∏
i=1

‖ψi‖H 2
3+ε , (4.3.15)

∥∥∥∇̃L2Φ3(α, ψ1, ..., ψ7)
∥∥∥
CK(Td,H−ε)

�
7∏
i=1

‖ψi‖H 2
3+ε . (4.3.16)

Proof. By de�nition, we have

Φ1 = E1H0, Φ2 = E2H0, Φ3 = E3H0.

Using the de�nition of Ei and of Ψi for i = 1, 2, 3 and the homological
equation (4.1.8), denoting h =

∑
ωjIj, one has

Φ1 =Ψ1 − 〈Ψ1〉+ {h, χ1} , (4.3.17)

Φ2 =− Lχ1〈Ψ1〉 − 〈Ψ2〉+
1

2
Lχ1 {h, χ1}+ {h, χ2} , (4.3.18)

Φ3 =− 1

2
L2
χ1
〈Ψ1〉+

1

6
L2
χ1
{h, χ1} − Lχ1〈Ψ2〉

− Lχ2〈Ψ1〉+
2

3
Lχ2 {h, χ1} − 〈Ψ3〉+ {h, χ3} . (4.3.19)

To get (4.3.13), we need to estimate
∥∥∥Ψ̃1(α, ψ1, ψ2, ψ3, ψ4)

∥∥∥
CK(Td,R)

,∥∥∥〈̃Ψ1〉(α, ψ1, ψ2, ψ3, ψ4)
∥∥∥
CK(Td,R)

and
∥∥∥{̃h, χ1}(α, ψ1, ψ2, ψ3, ψ4)

∥∥∥
CK(Td,R)

. Us-

ing the fact that Ψ1 = H1, α ∈ C∞(Td), h =
∑
ωjIj and that Lχikh =∑

ωj
∂
∂αj

, by Lemma 4.3.5 and Lemma 4.2.6, one has (4.3.13).
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To prove (4.3.14), it is su�cient to note that∥∥∥Φ̃2(α, ψ1, ..., ψ6)
∥∥∥
CK(Td,R)

�
∥∥∥∇̃L2χ1(α, ψ1, ..., ψ3)

∥∥∥
CK(Td,Hε)

∥∥∥∇̃L2〈Ψ1〉(α, ψ4, ..., ψ6)
∥∥∥
CK(Td,Hε)

+ ‖χ̃2(α, ψ1, ..., ψ6)‖CK(Td,R) +
∥∥∥〈̃Ψ2〉(α, ψ1, ..., ψ6)

∥∥∥
CK(Td,R)

.

So, by Remark 4.3.2 and Lemma 4.2.7, one gets (4.3.14). In a similar way,
we know that∥∥∥Φ̃3(α, ψ1, ..., ψ8)

∥∥∥
CK(Td,R)

�
∥∥∥∇̃L2χ1(α, ψ1, ..., ψ3)

∥∥∥
CK(Td,Hε)

∥∥∥ ˜∇L2Lχ1〈Ψ1〉(α, ψ4, ..., ψ8)
∥∥∥
CK(Td,H−ε)

+
∥∥∥∇̃L2χ1(α, ψ1, ..., ψ3)

∥∥∥
CK(Td,Hε)

∥∥∥ ˜∇L2Lχ1χ1(α, ψ4, ..., ψ8)
∥∥∥
CK(Td,H−ε)

+
∥∥∥∇̃L2χ1(α, ψ1, ..., ψ3)

∥∥∥
CK(Td,Hε)

∥∥∥∇̃L2〈Ψ2〉(α, ψ4, ..., ψ8)
∥∥∥
CK(Td,H−ε)

+
∥∥∥∇̃L2〈Ψ1〉(α, ψ1, ..., ψ3)

∥∥∥
CK(Td,Hε)

∥∥∥∇̃L2χ2(α, ψ4, ..., ψ8)
∥∥∥
CK(Td,H−ε)

+
∥∥∥∇̃L2χ1(α, ψ1, ..., ψ3)

∥∥∥
CK(Td,Hε)

∥∥∥∇̃L2χ2(α, ψ4, ..., ψ8)
∥∥∥
CK(Td,H−ε)

+ ‖χ̃3(α, ψ1, ..., ψ8)‖CK(Td,R) +
∥∥∥〈̃Ψ3〉(α, ψ1, ..., ψ8)

∥∥∥
CK(Td,R)

.

By Lemmas 4.3.1, 4.2.8, Remarks 4.3.2, 4.3.3 and proceeding as in Lemma
4.2.7, we get (4.3.15).
The proof of (4.3.16) is a little more complicated. By the de�nition of Φ3,
we have∥∥∥∇̃L2Φ3(α, ψ1, ..., ψ7)

∥∥∥
CK(Td,H−ε)

�
∥∥∥∇̃L2χ1

(
α, ψ1, ψ2, ˜∇L2Lχ1〈Ψ1〉(α, ψ3, ..., ψ7)

)∥∥∥
CK(Td,H−ε)

(4.3.20)

+
∥∥∥∇̃L2χ1

(
α, ψ1, ψ2, ˜∇L2Lχ1χ1(α, ψ3, ..., ψ7)

)∥∥∥
CK(Td,H−ε)

(4.3.21)

+
∥∥∥∇̃L2χ1

(
α, ψ1, ψ2, ∇̃L2〈Ψ2〉(ψ3, ..., ψ7)

)∥∥∥
CK(Td,H−ε)

(4.3.22)

+
∥∥∥∇̃L2〈Ψ1〉

(
ψ1, ψ2, ∇̃L2χ2(α, ψ3, ..., ψ7)

)∥∥∥
CK(Td,H−ε)

(4.3.23)

+
∥∥∥∇̃L2χ3 (α, ψ1, ψ2, ψ3, ..., ψ7)

∥∥∥
CK(Td,H−ε)

(4.3.24)

+
∥∥∥∇̃L2〈Ψ3〉 (α, ψ1, ψ2, ψ3, ..., ψ7)

∥∥∥
CK(Td,H−ε)

. (4.3.25)
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By Remark 4.3.3, we get the estimate of (4.3.24) and (4.3.25). To obtain the
thesis we estimate explicitly only (4.3.22), since the other terms are similar.
By Remarks 4.3.2, 4.3.3, we have∥∥∥∇̃L2χ1

(
α, ψ1, ψ2, ∇̃L2〈Ψ2〉(α, ψ3, ..., ψ7)

)∥∥∥
CK(Td,H−ε)

�‖ψ1‖Hε‖ψ2‖Hε

∥∥∥∇̃L2〈Ψ2〉(α, ψ3, ..., ψ7)
∥∥∥
CK(Td,H−ε)

�
7∏
i=1

‖ψi‖H 1
2+ε ≤

7∏
i=1

‖ψi‖H 2
3+ε .

Proof of Theorem 0.0.5. We have∣∣∣∣ ddtΦ(3)

∣∣∣∣ = |{Φ3, H1}|

�
∥∥∥∇̃L2Φ3 (α, ψ1, ψ2, ψ3)

∥∥∥
CK(Td,H−ε)

∥∥∥∇̃L2H1 (α, ψ1, ψ2, ψ3)
∥∥∥
CK(Td,Hε)

�‖ψ‖10

H
2
3+ε

where we use Lemma 4.3.6 and Lemma 4.3.5. Using Lemma 4.3.6, we get
(4.0.5).

Proof of Theorem 0.0.6. First remark that local existence in H1 is standard
and that

‖ψ‖2
H1 = ‖ψ‖2

L2 +H0(ψ) ,

thus, exploiting the conservation of the L2 norm and Theorem 0.0.5 one can
bound the H1 norm of the solution for the considered times.
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Appendix A

Lemmas on Gaussian and Gibbs

measure

First, we recall that both Gibbs and Gaussian measures are constructed
with a limit procedure starting from the "�nite dimensional" measure which,
in the Gaussian case, is de�ned by

µβ,g,N :=
e−

β
2
‖P≤N (ψ)‖2

H1

Zg,N(β)
=
e−

β
2

∑
|k|≤N(1+k2)|ψk|2

Zg,N(β)
,

Zg,N(β) :=

∫
P≤N (Hs)

e−
β
2

∑
|k|≤N(1+k2)|ψk|2

∏
|k|≤N

dψkdψ̄k,

where P≤N ({ψk}k∈Z) := {ψk}|k|≤N . (See [16]).

Lemma A.0.1. Let N be an integer, 1 > γ > 0, then there exists C̃(γ) > 0
s.t. for any β > 0 one has∫

P≤N (Hs)

∏
|k|≤N χ

{
|ψk|< 1

(1+k2)
γ
2
√
β

}e−β2 (1+k2)|ψk|2dψkdψ̄k

Zg,N(β)
≥ e−C̃(γ).

Moreover C̃ is independent of N .

Proof. Using the independence of all the variables, one gets∫
P≤N (Hs)

∏
|k|≤N χ

{
|ψk|< 1

(1+k2)
γ
2
√
β

}e−β2 (1+k2)|ψk|2dψkdψ̄k

Zg,N(β)
=
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=
∏
|k|≤N

2π
∫∞

0
χ{

ρk<
1

(1+k2)
γ
2
√
β

}e−β2 (1+k2)ρ2kρkdρk

2π
∫∞

0
e−

β
2

(1+k2)ρ2kρkdρk
=
∏
|k|≤N

∫ (1+k2)
1−γ

2

0
e−zkdzk∫∞

0
e−zkdzk

=

=
∏
|k|≤N

(
1− e−

(1+k2)
1−γ

2

)
≥
∏
k∈Z

(
1− e−

(1+k2)
1−γ

2

)

= e

∑
|k|∈Z log

1−e−
(1+k2)

1−γ

2


= e−C̃(γ).

As N →∞, we get the following lemma

Lemma A.0.2. Let γ be 1 > γ > 0. Then, for any β > 0, one has

lim
N→∞

∫
P≤N (Hs)

∏
|k|≤N χ

{
|ψk|< 1

(1+k2)
γ
2
√
β

}e−β2 (1+k2)|ψk|2dψkdψ̄k

Zg,N(β)

=

∫
Hs

 ∞∏
k∈Z

χ{
|ψk|< 1

(1+k2)
γ
2
√
β

}
 dµg,β.

Proof. For any M > N , M ∈ N, one has

∫
P≤N (Hs)

∏
|k|≤N

χ{
|ψk|< 1

(1+k2)
γ
2
√
β

} e−
β
2

∑
|k|≤N(1+k2)|ψk|2∏

|k|≤N dψkdψ̄k

Zg,N(β)

=

∫
P≤M (Hs)

∏
|k|≤N

χ{
|ψk|< 1

(1+k2)
γ
2
√
β

} e−
β
2

∑
|k|<M(1+k2)|ψk|2∏

|k|<M dψkdψ̄k

Zg,M(β)
.

So, one has

lim
M→∞

∫
P≤M (Hs)

∏
|k|≤N

χ{
|ψk|< 1

(1+k2)
γ
2
√
β

} e−
β
2

∑
|k|<M(1+k2)|ψk|2∏

|k|<M dψkdψ̄k

Zg,M(β)
=

=

∫
Hs

∏
|k|≤N

χ{
|ψk|< 1

(1+k2)
γ
2
√
β

}dµg,β.
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But
∏
|k|≤N χ

{
|ψk|< 1

(1+k2)
γ
2
√
β

} → ∏
k∈Z χ

{
|ψk|< 1

(1+k2)
γ
2
√
β

} a.e. on Hs as N →

∞. Since 1 ∈ L1(Hs, µg,β) and
∏
|k|≤N χ

{
|ψk|< 1

(1+k2)
γ
2
√
β

} ≤ 1, by Lebesgue's

dominated convergence Theorem,

lim
N→∞

∫
Hs

∏
|k|≤N

χ{
|ψk|< 1

(1+k2)
γ
2
√
β

}dµg,β =

∫
Hs

lim
N→∞

∏
|k|≤N

χ{
|ψk|< 1

(1+k2)
γ
2
√
β

}dµg,β =

=

∫
Hs

∏
k∈Z

χ{
|ψk|< 1

(1+k2)
γ
2
√
β

}dµg,β.

Remark A.0.3. From Lemma A.0.1 and Lemma A.0.2, we know that, if 1 >
γ > 0 and β > 0, one has∫

Hs

∏
k∈Z

χ{
|ψk|< 1

(1+k2)
γ
2
√
β

}dµg,β ≥ e−C̃(γ). (A.0.1)

Proof of Lemma 2.0.4 We remark that P =
∑q

j=2H2j =
∑q

j=2
cj
2j
‖ψ‖2j

L2j .
The �rst inequality is obvious.
We analyze now the second inequality. By the de�nition of P , if we �x s1,
by Sobolev's inequality Hs1(T) ⊂ Lr(T) if r ∈ [1, 2

1−2s1
]. Therefore, choosing

q−1
2q

< s1 <
1
2
, there exists a constant Csob s.t.

‖ψ‖L2j < C
1
2j

sob‖ψ‖Hs1 , j = 2, ..., q. (A.0.2)

We �x 1
2

+ s1 < γ < 1, denote D′ :=
∑

j∈Z
1

(1+j2)γ−s1
, then we have:∫

Hs

e−βPdµg,β ≥
∫
Hs

χ{‖ψ‖2Hs1≤D
′
β }e

−βPdµg,β ≥

∫
Hs

χ{‖ψ‖2Hs1≤D
′
β }e

−Csob
β

∑
j=2,...,q
cj≥0

cjD
′j

βj−1


dµg,β ≥

∫
Hs

χ{‖ψ‖2Hs1≤D
′
β }e

−Csob
β

qmaxj cjD
′j
dµg,β

≥ e−
Csob
β

qmaxj cjD
′j
∫
Hs

∏
k∈Z

χ{
|ψk|< 1

(1+k2)
γ
2
√
β

}dµg,β

≥ e−
Csob
β

qmax cjD
′j
e−C̃(γ) ≥ e−2C̃(γ),

where the inequalities in the last line are true thanks to Lemma A.0.2 and
for β su�ciently large.
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Remark A.0.4. µβ is a good probability measure on Hs since µβ < µg,β and

e−2C̃(γ) ≤ Z(β)
Zg(β)

≤ 1.

For the proof is su�cient to note that∫
Hs

e−β(
∑n
i=4

ci
i
‖ψ‖i

Li
)dµg,β =

Z(β)

Zg(β)
.

Using this result, we can obtain Lemma 3.1.2 to estimate the L2-norm in
the Gibbs measure with the norm in Gaussian measure.
Proof of Lemma 3.1.2 We have

‖f‖2
µβ

=

∫
Hs

|f |2dµβ ≤
∫
Hs |f |2dµg,β∫
Hs e−βPdµg,β

and, from Lemma 2.0.4,

‖f‖2
µβ
≤ ‖f‖2

g,βe
2C̃(γ).

Proof of Lemma 2.0.6 It is a simple application of Lemma 3.1.2 with f =
χ(A).

Proof of Lemma 2.1.5 The proof is the same of Lemma 2.0.4. The only
di�erence is that instead of ‖ψ‖L2j , we have to work with ‖P≤Nψ‖L2j , but
again, by Sobolev's inequality, we have

‖P≤Nψ‖L2j < C
1
2j

sob‖P≤Nψ‖Hs1 ≤ C
1
2j

sob‖ψ‖Hs1 , j = 2, ..., q. (A.0.3)

Remark A.0.5. The constant C̃ is independent of N and is the same constant
of Lemma 3.1.2.

Proof of Lemma 2.1.7 It is a simple application of Lemma 2.1.5 with
f = χ(A).

Proof of Lemma 3.1.3 As above we �x q−1
2q

< s1 <
1
2
and 1

2
+ s1 < γ < 1,

we denote D′ :=
∑

j∈Z
1

(1+j2)γ−s1
, so we have:

‖f‖2
µβ

=

∫
Hs

|f |2dµβ ≥
∫
Hs

|f |2e−βPdµg,β ≥

≥
∫
Hs

|f |2χ{‖ψ‖2Hs1≤D
′
β }e

−βPdµg,β ≥
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≥ e−
Csob
β

qmaxj cjD
′j
∫
Hs

|f |2χ{‖ψ‖2Hs1≤D
′
β }dµg,β

= e−
Csob
β

qmaxj cjD
′j
∥∥∥fχ{‖ψ‖2Hs1≤D′β }∥∥∥2

g,β
.

We are now ready to give the proof of Lemma 3.1.5, namely the estimate
from below of the L2-norm of the actions in Gibbs measure.
Proof of Lemma 3.1.5 We �x q−1

2q
< s1 <

1
2
and 1

2
+ s1 < γ < 1, we denote

D′ :=
∑

j∈Z
1

(1+j2)γ−s1
, so

∥∥∥|ψk|2χ{‖ψ‖2Hs1≤Dβ }
∥∥∥2

g,β
≥
∫
Hs

|ψk|4
∏
k∈Z

χ{
|ψj |< 1

(1+j2)
γ
2
√
β

}dµg,β =

lim
N→∞

∫
P≤N (Hs)

|ψk|4
∏

j∈Z χ
{
|ψj |< 1

(1+j2)
γ
2
√
β

}e−β2 ∑|j|<N(1+j2)|ψj |2∏
|j|<N dψjdψ̄j

∫
P≤N (Hs)

e−
β
2

∑
j<N (1+j2)|ψj |2∏

|j|<N dψjdψ̄j
.

(A.0.4)
Using the independence of the variables, we have that (A.0.4) is equal to∫

C |ψk|4χ{
|ψk|< 1

(1+k2)
γ
2
√
β

}e−β2 (1+k2)|ψk|2dψkdψ̄k

∫
C e
−β

2
(1+k2)|ψk|2dψkdψ̄k

×

× lim
N→∞

∫
P−k≤N (Hs)

∏
j∈Z
j 6=k

χ{
|ψj |< 1

(1+j2)
γ
2
√
β

}e−
β
2

∑
|j|<N
j 6=k

(1+j2)|ψj |2∏
|j|<N
j 6=k

dψjdψ̄j

∫
P−k≤N (Hs)

e
−β

2

∑
|j|<N
j 6=k

(1+j2)|ψj |2∏
|j|<N
j 6=k

dψjdψ̄j

,

(A.0.5)

where P−k≤N(Hs) the Dirichlet projection onto the frequencies {|n| ≤ N, n 6= k}.
Furthermore, since∫

C χ
{
|ψk|< 1

(1+k2)
γ
2
√
β

}e−β2 (1+k2)|ψk|2dψkdψ̄k

∫
C e
−β

2
(1+k2)|ψk|2dψkdψ̄k

< 1,
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one has that (A.0.5) is lower than∫
C |ψk|4χ{

|ψk|< 1

(1+k2)
γ
2
√
β

}e−β2 (1+k2)|ψk|2dψkdψ̄k

∫
C e
−β

2
(1+k2)|ψk|2dψkdψ̄k

×

× lim
N→∞

∫
P≤N (Hs)

∏
j∈Z χ

{
|ψj |< 1

(1+j2)
γ
2
√
β

}e−β2 ∑|j|<N(1+j2)|ψj |2∏
|j|<N dψjdψ̄j

∫
P≤N (Hs)

e
−β

2

∑
|j|<N (1+j2)|ψj |2∏

|j|<N dψjdψ̄j

≥
∫ 1

(1+k2)
γ
2
√
β

0 ρ5
ke
−β

2 (1+k2)ρ2kdρk∫∞
0
ρke
−β

2
(1+k2)ρ2kdρk

∫
Hs

∏
k∈Z

χ{
|ψj |< 1

(1+j2)
γ
2
√
β

}dµg,β

≥ 4

β2 (1 + k2)2

∫ (1+k2)
1−γ

2

0

z2
ke
−zkdzke

−2C̃(γ)

≥ e−C̃(γ)

β2 (1 + k2)2

∫ (1+k2)
1−γ

2

0

z2
ke
−zkdzk ≥

e−C̃(γ)

β2 (1 + k2)2

∫ 1
2

0

x2e−xdx,

where in the last line we use Lemma A.0.2. So, for β large enough, using
Lemma 3.1.3, one has

‖|ψk|2‖2
µβ
≥ e−

Csob
β

qmaxj cjD
′q
∥∥∥|ψk|2χ{‖ψ‖2Hs1≤D

′
β }
∥∥∥2

g,β

≥ e−
Csob
β

qmaxj cjD
′q e−C̃(γ)

β2 (1 + k2)2

∫ 1
2

0

x2e−xdzk =
C2

1(γ)

β2 (1 + k2)2 .

The support of the Gaussian measure is described in the following lemma
in which the main part is that we specify the dependence on β of the r.h.s.
Proof of Lemma 2.1.9 We consider

eaβM
2

µβ ({‖ψ‖Hs1 > M}) ≤ e2C̃eaβM
2

µg,β ({‖ψ‖Hs1 > M})

= e2C̃

∫
{‖ψ‖Hs1>M}∩Hs

eaβM
2

dµg,β ≤ e2C̃

∫
{‖ψ‖Hs1>M}∩Hs

ea‖ψ‖
2
Hs1 dµg,β

≤ e2C̃

∫
Hs

eaβ‖ψ‖
2
Hs1 dµg,β = e2C̃

∫
Hs

eaβ
∑
j(1+j2)

s1 |ψj |2dµg,β
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= e2C̃

∫
Hs e

aβ
∑
j(1+j2)

s1 |ψj |2−β2
∑
j(1+j2)|ψj |2∏

j dψjdψ̄j∫
Hs e

−β
2

∑
j(1+j2)|ψj |2∏

j dψjdψ̄j

= e2C̃
∏
j

∫
C e

aβ(1+j2)
s1 |ψj |2−β2 (1+j2)|ψj |2dψjdψ̄j∫

C e
−β

2
(1+j2)|ψj |2dψjdψ̄j

. (A.0.6)

Using the substitution ψj =

√
2zj√

β(1+j2)
eiθj , zj ∈ R+, θj ∈ [0, 2π) and the fact

that
∫
R+ e

−zdz = 1, one has that (A.0.6) is equal to

e2C̃
∏
j

∫ ∞
0

e
−
(

1−2a(1+j2)
s1−1

)
zkdzk

= e2C̃
∏
j

(
1 +

2a

(1 + j2)1−s1 − 2a

)
= C.

Remark A.0.6. From the previous lemma, if M goes to +∞, we obtain that
for any s1 <

1
2
,

µβ ({‖ψ‖Hs1 = +∞}) = 0.

In particular, we obtain that, for any s1 > s, µβ (Hs \Hs1) = 0.
Proof of Lemma 3.1.4 Having �xed β large enough, n > 0, and a < β

2
, there

exists a constant C > 0 s.t. for any x > C, xn < eax
2
, so, one has∫

Hs

‖ψ‖nHs1dµg,β <

∫
{‖ψ‖Hs1<C}∩Hs

‖ψ‖nHs1dµg,β+

∫
{‖ψ‖Hs1>C}∩Hs

ea‖ψ‖
2
Hs1 dµg,β

≤ Cn +

∫
Hs

ea‖ψ‖
2
Hs1 dµg,β = Cn +

∏
j

(
1 +

2a

β (1 + j2)1−s1 − 2a

)
<∞,

where in the last line we proceed as in Lemma 2.1.9. So we proved that
‖ψ‖nHs1 ∈ L1(Hs, dµg,β). By Lemma 3.1.2 we have that ‖ψ‖nHs1 ∈ L1(Hs, dµβ).

Proof of Lemma 2.1.8 We know that

e−β(
∑q
j=2

cj
2j

∫ 2π
0 |P≤Nψ(x)|2jdx) −→ e−β(

∑q
j=2

cj
2j

∫ 2π
0 |ψ(x)|2jdx)

a.s. respect to µg,β for N →∞.

So, by Egorov's Theorem, e−β(
∑q
j=2

cj
2j

∫ 2π
0 |P≤Nψ(x)|2jdx) −→ e−β(

∑q
j=2

cj
2j

∫ 2π
0 |ψ(x)|2jdx)

almost uniformly.
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So in particular e−β(
∑q
j=2

cj
2j

∫ 2π
0 |P≤Nψ(x)|2jdx) −→ e−β(

∑q
j=2

cj
2j

∫ 2π
0 |ψ(x)|2jdx) in

measure.
For any ε > 0, N ∈ N, let

AN,ε =

{
ψ ∈ Hs(T) :

∣∣∣e−β(∑q
j=2

cj
2j

∫ 2π
0 |P≤Nψ(x)|2jdx) − e−β(

∑q
j=2

cj
2j

∫ 2π
0 |ψ(x)|2jdx)

∣∣∣ ≤ 1

2
ε

}
.

By the convergence in measure, for any q ≥ 1, there exists N0,q ∈ N s.t. for

any N > N0,q we have µg,β
(
AcN,ε

)
<
(
ε
4

)2q
. So, in particular, we have∥∥∥e−β(∑q

j=2

cj
2j

∫ 2π
0 |P≤Nψ(x)|2jdx) − e−β(

∑q
j=2

cj
2j

∫ 2π
0 |ψ(x)|2jdx)

∥∥∥
Lq(µg,β)

≤
∥∥∥(e−β(∑q

j=2

cj
2j

∫ 2π
0 |P≤Nψ(x)|2jdx) − e−β(

∑q
j=2

cj
2j

∫ 2π
0 |ψ(x)|2jdx)

)
χAN,ε

∥∥∥
Lq(µg,β)

+
∥∥∥(e−β(∑q

j=2

cj
2j

∫ 2π
0 |P≤Nψ(x)|2jdx) − e−β(

∑q
j=2

cj
2j

∫ 2π
0 |ψ(x)|2jdx)

)
χAcN,ε

∥∥∥
Lq(µg,β)

≤1

2
εµg,β (AN,ε)

1
q

+
∥∥∥e−β(∑q

j=2

cj
2j

∫ 2π
0 |P≤Nψ(x)|2jdx) − e−β(

∑q
j=2

cj
2j

∫ 2π
0 |ψ(x)|2jdx)

∥∥∥
L2q(µg,β)

µg,β
(
AcN,ε

) 1
2q

≤1

2
ε+ 2

(
µg,β

(
AcN,ε

)) 1
2q <

1

2
ε+ 2

( ε
4

)2q

= ε (A.0.7)

where in the fourth line we use the de�nition of AN,ε, in the �fth line we use
Holder inequality and in the last line we use the fact that

µg,β (AN,ε) < 1,∥∥∥e−β(∑q
j=2

cj
2j

∫ 2π
0 |P≤Nψ(x)|2jdx)

∥∥∥
Lq(µg,β)

≤ 1

and ∥∥∥e−β(∑q
j=2

cj
2j

∫ 2π
0 |ψ(x)|2jdx)

∥∥∥
Lq(µg,β)

≤ 1.

So in particular,

e−β(
∑q
j=2

cj
2j

∫ 2π
0 |P≤Nψ(x)|2jdx) −→ e−β(

∑q
j=2

cj
2j

∫ 2π
0 |ψ(x)|2jdx)

in Lq(µg,β)-norm for any q ≥ 1.
This implies the thesis.
In fact, remembering that P̃ =

∑q
j=2

cj
2j

∫ 2π

0
|P≤Nψ(x)|2jdx and

P =
∑q

j=2
cj
2j

∫ 2π

0
|ψ(x)|2jdx, for any ε > 0, there existsN0 = max {N0,1, N0,2},
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s.t. for any N > N0 and for any µβ-measurable set A ⊂ Hs(T), one has

|µβ,N(A)− µβ(A)|

=

∣∣∣∣ Zg,βZN(β)

∫
A

e−βP̃dµg,β −
Zg,β
Z(β)

∫
A

e−βPdµg,β

∣∣∣∣
≤
∣∣∣∣ Zg,βZN(β)

∫
A

(
e−βP̃ − e−βP

)
dµg,β

∣∣∣∣
+

∣∣∣∣∫
A

e−βPdµg,β

(
Zg,β
ZN(β)

− Zg,β
Z(β)

)∣∣∣∣
=

∣∣∣∣ Zg,βZN(β)

∫
Hs

χA

(
e−βP̃ − e−βP

)
dµg,β

∣∣∣∣
+

∣∣∣∣( Zg,β
ZN(β)

− Zg,β
Z(β)

)∫
Hs

e−βPχAdµg,β

∣∣∣∣
≤ Zg,β
ZN(β)

µg,β(A)
1
2

(∫
Hs

∣∣∣e−βP̃ − e−βP ∣∣∣2 dµg,β) 1
2

(A.0.8)

+

∣∣∣∣ Zg,βZN(β)
− Zg,β
Z(β)

∣∣∣∣ ∫
Hs

e−βPdµg,β

≤ Zg,β
ZN(β)

ε+

∣∣∣∣ Zg,βZN(β)
− Zg,β
Z(β)

∣∣∣∣ (A.0.9)

where in line (A.0.8) we use Holder inequality and in line (A.0.9) we use

the fact that µg,β(A) ≤ 1, that

(∫
Hs

∣∣∣e−βP̃ − e−βP ∣∣∣2 dµg,β) 1
2

< ε for any

N > N0,2 and that 0 ≤ e−βP ≤ 1 so
∫
Hs e

−βPdµg,β ≤ 1.
Moreover, since

Zg,β
ZN(β)

=
1∫

Hs e−βP̃dµg

and
Zg,β
Z(β)

=
1∫

Hs e−βPdµg
,

proceeding as in Lemma 2.0.4 and Lemma 2.1.5, we have that there exists
C > 0 independent of N,N0, ε and β s.t.

Zg,β
ZN(β)

≤ eC(1+ 1
β ) (A.0.10)
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and ∣∣∣∣ Zg,βZN(β)
− Zg,β
Z(β)

∣∣∣∣ ≤ ‖e−βP̃ − e−βP‖L1(µg,β)(∫
Hs e−βP̃dµg

) (∫
Hs e−βPdµg

)
≤‖e−βP̃ − e−βP‖L1(µg,β)e

2C(1+ 1
β ). (A.0.11)

Finally, since ‖e−βP̃ − e−βP‖L1(µg,β) < ε for any N > N0,1, we have that, for
any N > max {N0,1, N0,2}

|µβ,N(A)− µβ(A)| ≤ Zg,β
ZN(β)

ε+

∣∣∣∣ Zg,βZN(β)
− Zg,β
Z(β)

∣∣∣∣ ≤ 2εe2C(1+ 1
β ). (A.0.12)

Remark A.0.7. For any ε, β ≥ 1, there exists N0 ∈ N s.t. for any N > N0

and any µβ-measurable set A ∈ Hs(T), one has

|µβ,N(A)− µβ(A)| < ε. (A.0.13)

Proof. We can repeat the same proof of Lemma 2.1.8 but in this case the
last term of (A.0.12) is smaller than 2εe4C , loosing the dependence on β.
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Appendix B

Proof of Lemma 2.1.4

We start this section giving two results that are the key point of the proof
of Proposition 2.1.2 and of Lemma 2.1.4 that were proved by Burq, Gérard
and Tzvetkov in [19, 18].

Theorem B.0.1. Given p1, p2 s.t. 2
p1

+ 1
p2

= 1
2
, p1 ≥ 2, p2 <∞, the solution

ψ of (0.0.1) satis�es for any �nite time interval I,

‖ψ‖Lp1 (I,Lp2 (T)) ≤ C|I|
1
p1 ‖ψ‖

H
1
p1 (T)

. (B.0.1)

Corollary B.0.2. Given p1, p2 s.t. 2
p1

+ 1
p2

= 1
2
, p1 ≥ 2, p2 < ∞, then for

any f ∈ L1([0, T ], H
1
p1 (T)), one has∥∥∥∥∫ t

0

ei(t−τ)∆f(τ)dτ

∥∥∥∥
Lp1 ([0,T ],Lp2 (T))

≤ CT
1
p1 ‖f‖

L1([0,T ],H
1
p1 (T))

. (B.0.2)

We present now the proof of the approximation Lemma 2.1.4 that is a
little modi�cation of the proof by Bourgain in [16].
Proof of Lemma 2.1.4 We �x s1 < s < 1

2
, we choose p1 > q − 1 s.t.

1
2
− 1

p1
< s1. From local theory, we know that the solution of (0.0.1) and of

(2.1.1) corresponding to initial data ψN|t=0
= ψ|t=0 = ψ0 are locally well-posed

on [−t, t], t ∼ (1 + K)−θ uniformly in N , in particular we know that for
any N ∈ N and for any τ ∈ [−t, t], ‖ψ(τ)‖Hs1 , ‖ψN(τ)‖Hs1 ≤ 2K. We �x
0 < δ � K1−q and we consider

Yδ := C([−δ, δ], Hs1) ∩ Lp1([−δ, δ],W σ,p2) (B.0.3)

where p2 is given by 2
p1

+ 1
p2

= 1
2
and σ = s1 − 1

p1
> 1

p2
. We set

‖ψ‖Yδ := max
|t|≤δ
‖ψ(t)‖Hs1 + ‖(1−∆)

σ
2ψ‖Lp1 ([−δ,δ],Lp2 ). (B.0.4)
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By the Duhamel formula, we have

ψ(t) = ei∆tψ0 − i
∫ t

0

ei(t−τ)∆(F (ψ(τ)))dτ,

ψN(t) = ei∆tψ0 − i
∫ t

0

ei(t−τ)∆(P≤NF (P≤Nψ
N(τ)))dτ.

In particular, using Strichartz estimate, we have that, for any t ∈ (0, δ),
‖ψ(t)− P≤NψN(t)‖Yδ is bounded from above by

C‖P>Nψ0‖Hs1 +

∥∥∥∥∫ t

0

ei(t−τ)∆
(
F (ψ(τ))− P≤NF (P≤Nψ

N(τ))
)
dτ

∥∥∥∥
Yδ

.

(B.0.5)

The �rst term of (B.0.5) is bounded by CN s1−s‖ψ0‖Hs ≤ CN s1−sK.
We study the second term of (B.0.5), in particular it is lower than

C

∫ δ

−δ

∥∥ei(t−τ)∆
(
F (ψ(τ))− P≤NF (P≤Nψ

N(τ))
)∥∥

Hs1
dτ

≤C
∫ δ

−δ

∥∥(F (ψ(τ))− P≤NF (P≤Nψ
N(τ))

)∥∥
Hs1

dτ

≤C
∫ δ

−δ
‖(F (ψ(τ))− P≤NF (ψ(τ)))‖Hs1 dτ

+C

∫ δ

−δ

∥∥P≤N (F (ψ(τ))− F (P≤Nψ
N(τ))

)∥∥
Hs1

dτ

≤CN s1−s2δ sup
τ
‖F (ψ(τ))‖Hs1

+C

∫ δ

−δ

(
1 + ‖ψ(τ)‖q−1

L∞ + ‖ψN(τ)‖q−1
L∞

) ∥∥ψ(τ)− P≤NψN(τ)
∥∥
Hs1

dτ (B.0.6)

≤CN s1−s2δ(1 +Kq)

+2Cδγ
(

1 + ‖ψ(τ)‖q−1
Lp1 (L∞) + ‖ψN(τ)‖q−1

Lp1 (L∞)

)∥∥ψ(τ)− P≤NψN(τ)
∥∥
L∞(Hs1 )

(B.0.7)

≤CN s1−s2δ(1 +Kq) (B.0.8)

+2Cδγ
(
1 + ‖ψ(τ)‖Yδ + ‖ψN(τ)‖Yδ

)q−1 ∥∥ψ(τ)− P≤NψN(τ)
∥∥
Yδ
.

with γ = 1− q−1
p1

.
So, we have

‖ψ(t)− P≤NψN(t)‖Yδ ≤ CKN s1−s + 2Cδγ(1 +Kq−1)
∥∥ψ(τ)− P≤NψN(τ)

∥∥
Yδ
,

(B.0.9)

77



and in particular, if we choose δ ≤
(

1
4C(1+Kq−1)

) 1
γ
, we get

‖ψ(t)− P≤NψN(t)‖Yδ ≤ 2CKN s1−s. (B.0.10)

So, for any N , we de�ne α0,N := sup|t|<δ ‖ψ(t) − P≤Nψ
N(t)‖Hs1 and we

conclude that

sup
|t|<δ
‖ψ(t)− P≤NψN(t)‖Hs1 = α0,N ≤ 2CKN s1−s, (B.0.11)

‖ψ(t)‖Hs1 ≤ ‖P≤NψN(t)‖Hs1 + α0,N ≤ K + α0,N (B.0.12)

We denote by ψ′(t) the solution of (0.0.1) corresponding to the initial data
P≤Nψ

N(δ). By regularity, we have

sup
0<t<δ

‖ψ(t+ δ)− ψ′(t)‖Hs1 ≤ 2‖ψ(δ)− P≤NψN(δ)‖Hs1 ≤ 2α0,N . (B.0.13)

So, one has

sup
δ<t<2δ

‖ψ(t)− P≤NψN(t)‖Hs1

≤ sup
0<t<δ

‖ψ(t+ δ)− ψ′(t)‖Hs1 + sup
0<t<δ

‖P≤NψN(t+ δ)− ψ′(t)‖Hs1

≤ 2α0,N + 2CKN s1−s (B.0.14)

where we use (B.0.13) and (B.0.11) to get the last inequality.
So, one has

α1,N := sup
0<t<2δ

‖ψ(t)− P≤NψN(t)‖Hs1

≤ sup
0<t<δ

‖ψ(t)− P≤NψN(t)‖Hs1 + sup
δ<t<2δ

‖ψ(t)− P≤NψN(t)‖Hs1

≤ 2α0,N + 4CKN s1−s (B.0.15)

where we used (B.0.11) and (B.0.14).
We consider now T , we divide [0, T ] in δ interval [tj, tj+1] of length T

δ

where tj = δj, j = 0, ..., T
δ
. Repeating the reasoning above, we obtain{

αj,N := sup0<t<jδ ‖ψ(t)− P≤NψN(t)‖Hs1 ≤ 2αj,N + 4CKN s1−s

α0,N ≤ Cj+1KN s1−s
.

(B.0.16)

So, we obtain

sup
0<t<T

‖ψ(t)− P≤NψN(t)‖Hs1 ≤ C
T
δKN s1−s. (B.0.17)
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We study now ‖ψ(t)− ψN(t)‖Hs1 , in particular, using (B.0.17) and recalling
that P≤Nψ

N(t)− ψN(t) = P>Nψ
N(t) = P>Nψ0, one has

sup
0<t<T

‖ψ(t)− ψN(t)‖Hs1

≤ sup
0<t<T

‖ψ(t)− P≤NψN(t)‖Hs1 + sup
0<t<T

‖P≤NψN(t)− ψN(t)‖Hs1

≤ C
T
δKN s1−s +KN s1−s. (B.0.18)

Since 0 < s1 < s, we get the thesis.
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Appendix C

Technical lemmas for Chapter 3

C.0.1 Proof of Lemma 3.2.13

We recall that, given a set K of indices (k1, ..., k2n) with an even number
of components, we denote

K1 := {k1, ..., kn} , K2 := {kn+1, ..., k2n} .

Lemma C.0.1. Let k ∈ Z2n and j ∈ Z2m be 2 integer vectors, each one
ful�lling the zero momentum condition and an (M, k) admissible condition.

Assume that K1 ∪ J2 = K2 ∪ J1, then there exist x, y ∈ K1 ∪ J2 and a
constant C, s.t. |x|, |y| ≥ |k|/C. Furthermore {x, y} is uniquely determined
by K1 ∪ J2 \ {x, y}.

Proof. For future reference we write the (M, k) admissible conditions for the
two vectors:

2n∑
i=1

aiki = k , (C.0.1)

2n∑
i=1

biji = k . (C.0.2)

We give now a recoursive procedure in order to determine the elements x, y
in the statement.

From (C.0.1) there exists l1 s.t. |kl1| ≥ |k|/2nM . By possibily interchang-
ing K1 ∪ J2 with K2 ∪ J1 and reordering the indexes, we can always assume
that l1 = 1. So we have

|k1| ≥
|k|

2nM
, a1 6= 0 .
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In the following we will make several cases.
We look for the �companion� of k1 in K2 ∪ J1. We have two possibilities:

(A) It belongs to J1 and therefore, by possibly reordering the indexes it is
given by j1 (thus we have k1 = j1).

(B) It belongs to K2 and therefore, by possibly reordering the indexes it is
given by kn+1 (thus we have k1 = kn+1).

We begin by analyzing the case (A). We use the zero momentum condition
on k in order to compute k1 as a function of the other components and we
substitute in (C.0.1), which takes the form

n∑
i=2

(ai − a1)ki +
n∑
i=1

(ai+n + a1)ki+n = k . (C.0.3)

Then there exists at least one of the ki's which has modulus larger then a
constant times |k|. There are two possibilities

(A.1) It belongs to K1, thus (up to reordering) it is given by kn:

|kn| ≥
|k|

2(n− 1)M
& a1 6= an. (C.0.4)

(A.2) It belongs to K2, thus (up to reordering) it is given by k2n:

|k2n| ≥
|k|

2(n− 1)M
& a1 6= −a2n . (C.0.5)

We analyze �rst (A.1). Consider the companion of kn, there are two
further possibilities:

(A.1.1) It belongs to J1, call it jm (thus kn = jm).

(A.1.2) It belongs to K2, call it k2n (thus kn = k2n).

We analyze (A.1.1). In this case, given K1 ∪ J2 \ {k1, kn} also K2 ∪ J1 \
{j1, jm} is �xed. Then (C.0.3) determines kn and then (C.0.1) determines
k1. This concludes the case (A.1.1).

We analyze now (A.1.2). Given K1 ∪ J2 \ {k1, kn} also K2 ∪ J1 \ {j1, k2n}
is �xed. So, also J1 ∪ J2 \ {j1} is determined. Then, by the zero momen-
tum condition on j one determines j1 = k1. Still one has to determine
kn = k2n. To this end one would like to use (C.0.3). This is possible if the
coe�cients of kn and k2n do not cancel out. If this happens, then consider
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k′ := (k1, ..., kn−1, kn+1, ..., k2n−1) and iterate the argument of situation (A)
with it (which also ful�lls the zero momentum condition). Iterating n pos-
sibly decreases by one at each step. Since k′ (and its iterates) has to ful�ll
an (M, k) relation, which in particular is inhomogeneous, the procedure ter-
minates with a nontrivial k′ of dimension at least 2. This concludes this
case.

This concludes the analysis of (A.1).
We now analyze the case (A.2). We have two cases according to the

position of the companinon of k2n.

(A.2.1) It is kn ∈ K1 (thus kn = k2n).

(A.2.2) It is j2m ∈ J2 (thus j2m = k2n).

The situation of the case (A.2.1) is identical to that of (A.1.2) and has already
been analyzed.

We study now (A.2.2). Given K1 ∪ J2 \ {k1, j2m} also K1 ∪K2 \ {k1, k2n}
is determined. But, by the second of (C.0.5), (C.0.3) determines k2n. Then
k1 is determined by (C.0.1).

This concludes the analysis of (A).
We come to (B). Substituting k1 = kn+1 in (C.0.1) we get

(a1 + an+1)k1 +
n∑
i=2

(aiki + ai+nki+n) = k . (C.0.6)

We have two possibilities

(B.1) −a1 6= an+1,

(B.2) −a1 = an+1.

We analyze (B.1). We concentrate on j. By (C.0.2) there exists one of
the ji's which is �big�. There are two cases

(B.1.1) It belongs to J1 and thus it is |j1| ≥ |k|/2mM .

(B.1.2) It belongs to J2 and thus it is |j2m| ≥ |k|/2mM.

Analyze (B.1.1). There are again two cases according to the companion of j1

(B.1.1.1) It belongs to K1, thus it is kn = j1.

(B.1.1.2) It belongs to J2, thus it is jm+1 = j1.
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Analyze (B.1.1.1). Given K1 ∪ J2 \ {k1, kn} also K2 ∪ J1 \ {kn+1, j1} is deter-
mined. Thus also J1 ∪ J2 \ {j1} is determined. So, from the zero momentum
condition also j1 = kn is determined. From (C.0.6) also k1 is determined.

We analyze (B.1.1.2). First we remark that given K1 ∪ J2 \ {k1, j2n} also
K2∪J1\{kn+1, jn} is determined, thusK1∪K2\{k1, kn+1} is determined, and
then, by (C.0.6) also k1 = kn+1 is determined. Then we have to determine
one further large component.

Substituting j1 = jm+1 in (C.0.2) one gets

m∑
i=2

(biji + bi+mji+m) + (b1 + bm+1)j1 = k . (C.0.7)

We have two cases

(B.1.1.2.1) b1 + bm+1 6= 0,

(B.1.1.2.2) b1 + bm+1 = 0.

Case (B.1.1.2.1). Given K1 ∪ J2 \ {k1, jm+1} also K2 ∪ J1 \ {kn+1, j1} is
determined. Thus also J1 ∪ J2 \ {j1, jm+1} is determined, but then one can
use (C.0.7) to compute j1. This concludes the analysis of this case.

Case (B.1.1.2.2). In this case (C.0.7) becomes a (2M, k) admissible condi-
tion for j′ := (j2, ..., jm, jm+2, ..., j2m), which also ful�lls the zero momentum
condition. Thus one is again in the situation (B.1) but with j′ in place of
j. Iterating the construction one decreases m at each step, and therefore the
procedure terminates in a �nite number of steps.

We come to the case (B.1.2). We distinguish two cases according to the
position of the companion of j2m.

(B.1.2.1) It belongs to K2, thus it is k2n.

(B.1.2.2) It belongs to J1, thus it is j2m.

Case (B.1.2.1). Given K1 ∪ J2 \ {k1, j2m} also K2 ∪ J1 \ {kn+1, k2n} is
determined. Thus also J1 ∪ J2 \ {j2m} is determined. Then by the zero
momentum condition on j also j2m = k2n is determined and one can use
(C.0.6) to determine k1.

Case (B.1.2.2). By reasoning in a similar way one determines k1 = kn+1.
Still one has to determine jm = j2m and this can be done exactly (up to a
relabellin of the indexes) as in the case (B.1.1.2). It means that if b1 +bm+1 6=
0 the argument is complete, otherwise we have to start a recoursion as above
in the case (B.1.1.2.2).
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In the case (B.2), (C.0.6) becomes an (M, k) admissible condition for
k′ := (k2, ..., kn, kn+2, ..., k2n) which also ful�lls the zero momentum condition.
Thus the construction is repeated with k′ in place of k and after a �nite
number of steps the construction stops.

We can now prove Lemma 3.2.13.
Proof of Lemma 3.2.13 The proof is similar to that of Lemma 3.2.7. In the
same way, we get an estimate analogous to (3.2.10), the only di�erence is
that the sum is not on T but on the set of (k, j) ful�lling the assumptions of
Lemma C.0.1. We denote this set by T̃.

So, we estimate ∑
(k,j)∈T̃

1∏n
i=1 (1 + k2

i )
(
1 + j2

n+i

) . (C.0.8)

If k = 0, then we can proceed exactly as in Lemma 3.2.7.
If k 6= 0, we note that at most [(2n!)]2 couples (k, j) give the same set
K1 ∪ J2 = K2 ∪ J1. So using Lemma C.0.1, we obtain∑

(k,j)∈T̃

1∏n
i=1 (1 + k2

i )
(
1 + j2

n+i

) (C.0.9)

≤ [(2n)!]2(
1 +

(
k
C

)2
)2

∑
l1,...,l2n−2

1∏2m−2
t=1 (1 + l2t )

(C.0.10)

≤ C

(1 + k2)2

(∑
l

1

(1 + l2)

)n−2

. (C.0.11)

C.0.2 Estimate of the resonant part

First, we introduce a lemma useful to estimate the measure of the resonant
region.
Given n ∈ N and k = (k1, ..., kn) ∈ Zn, we denote by M the cardinality of
Supp(k) and for any ε > 0, we de�ne the non smooth cuto� function

χ(x) =

{
0 if |x| ≥ 1
1 if |x| < 1

, χε(x) := χ
(x
ε

)
.
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Lemma C.0.2. Let 0 < ε, n ∈ N, k = (k1, ..., kn) ∈ Zn, {ai}ni=1 ∈ Zn \ {0}.
Then there exists a constant C(n) > 0 s.t., denoting k̃ := minl∈Supp(k),al 6=0 kl
and ã the correspondent coe�cient in {ai}ni=1,∫

RM
+

(
n∏
i=1

zki

)
χ

(
n∑
i=1

ai
zki
k2
i

)
e−

∑
l∈Supp(k) zl

∏
l∈Supp(k)

dzl ≤ 4ãC(n)k̃2ε.

(C.0.12)

Proof. We have that zle−z < (2l)le−le−
z
2 < (2n)ne−

z
2 , so, denoting by I the

left side of (C.0.12) and using the substitution zl
2

= xl, we have

I ≤ C1(n)

∫
RM
+

χ

(
n∑
i=1

2ai
xki
k2
i

)
e−

∑
l∈Supp(k) xl

∏
l∈Supp(k)

dxl.

We denote A(x) :=
∑

ki 6=k̃
2ai

xki
k2i
. So I is bounded from above by

C(n)

∫
RM−1
+

∏
l∈Supp(k)

l 6=k̃

dxle
−
∑
l∈Supp(k) l 6=k̃ xl

∫ (ε−A(x)) k̃
2

2ã

(−ε−A(x)) k̃
2

2ã

e−xk̃dxk̃

< C(n)

∫
RM−1
+

∏
l∈Supp(k)

l 6=k̃

dxle
−
∑
l∈Supp(k) l 6=k̃ xl

∫ (ε−A(x)) k̃
2

2ã

(−ε−A(x)) k̃
2

2ã

dxk̃ = 4ãC(n)k̃2ε.

Proof of Lemma 3.4.2

∥∥RR
6

∥∥2

g
=

∥∥∥∥∥∑
k∈M6

Z6,k,k(ψ)

(
1− ρ

(
ak(ψ)

δ

))∥∥∥∥∥
2

g

,

so ∥∥RR
6

∥∥2

g
=

=

∫
Hs

(∑
k∈M6

Z6,k,k(ψ)

(
1− ρ

(
ak(ψ)

δ

)))(∑
j∈M6

Z̄6,j,k(ψ)

(
1− ρ

(
aj(ψ)

δ

)))
dµβ

=

∫
Hs

∑
k,j∈M6

Z6,k,k(ψ)Z̄6,j,k(ψ)

(
1− ρ

(
aj(ψ)

δ

))(
1− ρ

(
ak(ψ)

δ

))
dµβ.

(C.0.13)
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As in Lemma 3.2.13, for Lemmas 3.2.3 and 3.1.4, we can exchange the order
between the integral and the series.
So (C.0.13) is equal to∑

k,j∈M6

∫
Hs

Z6,k,k(ψ)Z̄6,j,k(ψ)

(
1− ρ

(
aj(ψ)

δ

))(
1− ρ

(
ak(ψ)

δ

))
dµβ.

We analyze, now one single term of the series, namely:

Z̃6,k (δk1,k + δk2,k + δk3,k − δk4,k − δk5,k − δk6,k) (C.0.14)

× ¯̃Z6,j (δk1,k + δk2,k + δk3,k − δk4,k − δk5,k − δk6,k) (C.0.15)

×
∫ 3∏

i=1

ψjiψk3+iψ̄j3+iψ̄ki

(
1− ρ

(
aj(ψ)

δ

))(
1− ρ

(
ak(ψ)

δ

))
dµβ.

(C.0.16)

We remark that:

ak(ψ) := (|ψk1|2 + |ψk2|2 + |ψk3|2 − |ψk4|2 − |ψk5 |2 − |ψk6|2).

With the transformation ψ = reiθ, denoted by Sk,j := Supp(k, j), the integral
becomes∫
rk∈R+

∏6
i=1 rjirki

(
1− ρ

(
ãj(r)

δ

))(
1− ρ

(
ãk(r)
δ

))
e
−β
∑
l∈Sk,j(1+l2)r2l ∏

k∈Sk,j rldrl∏
l∈Sk,j

∫
R+
e−β(1+l2)r2l lkdrl

×

∫
θk∈[0,2π]

ei(θj1+θj2+θj3+θk4+θk5+θk6−θj4−θj5−θj6−θk1−θk2−θk3 )
∏

l∈Sk,j dθl∏
kl∈Sk,j

∫
θl∈[0,2π]

dθl

where
ãk(r) := (r2

k1
+ r2

k2
+ r2

k3
− r2

k4
− r2

k5
− r2

k6
).

The only terms di�erent from 0 are the terms where

θj1 + θj2 + θj3 + θk4 + θk5 + θk6 = θj4 + θj5 + θj6 + θk1 + θk2 + θk3

or equivalently

{j1, j2, j3, k4, k5, k6} = {j4, j5, j6, k1, k2, k3} .

This implies that the integrals that survive have this form:∫
rk∈R+

r2
j1
r2
j2
r2
j3
r2
k4
r2
k5
r2
k6

(
1− ρ

(
ãj(r)

δ

))(
1− ρ

(
ãk(r)
δ

))
e
−β
∑
l∈Sk,j(1+l2)r2l ∏

l∈Sk,j rldrl∏
l∈Sk,j

∫
R+
e−β(1+l2)r2l rldrl

=
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∫
zk∈R+

zj1zj2zj3zk4zk5zk6

(
1− ρ

(
b̃j(z)

βδ

))(
1− ρ

(
b̃k(z)
βδ

))
e
−
∑
l∈Sk,j

zl∏
l∈Sk,j dzl

β6(1 + j1)2(1 + j2)2(1 + j3)2(1 + k4)2(1 + k5)2(1 + k6)2∏
l∈Sk,j

∫
R+
e−

∑
l zldzl

where

b̃k(z) :=

(
zk1

1 + k2
1

+
zk2

1 + k2
2

+
zk3

1 + k2
3

− zk4
1 + k2

4

− zk5
1 + k2

5

− zk6
1 + k2

6

)
.

We de�ne the non smooth cuto� function χ(x) =

{
0 if |x| ≥ δβ
1 if |x| ≤ δβ

So we can increase the integral with the following integral:

1

β6(1 + j1)2(1 + j2)2(1 + j3)2(1 + k4)2(1 + k5)2(1 + k6)2×

∫ 3∏
i=1

zji

6∏
l=4

zklχ
(
b̃j(z)

)
χ
(
b̃k(z)

)
e
−
∑
l∈Sk,j

zl
∏
l∈Sk,j

dzl. (C.0.17)

We would to know more information on the arguments of the cuto� function
that depend on the form of Z6,k,k and Z6,j,k.
Since in RR

6 there are only terms in which {k1, k2, k3} 6= {k4, k5, k6}, this
implies also that there are only terms in which ki 6= kl for i = 1, 2, 3 l = 4, 5, 6,
since if there exists at least an index i ∈ {1, 2, 3}, and index l ∈ {4, 5, 6} s.t.
ki = kl this implies that {k1, k2, k3} = {k4, k5, k6} and it is absurd.

In fact, without losing generality we can suppose that k1 = k4, this means
that k2 + k3 = k5 + k6 and k2

2 + k2
3 = k2

5 + k2
6, so k2 = k5 and k3 = k6 or

k2 = k6 and k3 = k5, so {k1, k2, k3} = {k4, k5, k6}.
So one has ji 6= jl and ki 6= kl j = 1, 2, 3, l = 4, 5, 6. Moreover we know

that {j1, j2, j3, k4, k5, k6} = {j4, j5, j6, k1, k2, k3} this means {j1, j2, j3} = {k1, k2, k3}
and {k4, k5, k6} = {j4, j5, j6} and {j1, j2, j3, j4, j5, j6} = {k1, k2, k3, k4, k5, k6} =
{j1, j2, j3, k4, k5, k6}

So, up to any permutation of the indices, we have 9 cases:

• if ji 6= jl, ki 6= kl, b̃k(z) = b̃j(z) =
(

zj1
1+j21

+
zj2

1+j22
+

zj3
1+j23
− zk4

1+k24
− zk5

1+k25
− zk6

1+k26

)
,

• if ji 6= jl, k4 = k5, b̃k(z) = b̃j(z) =
(

zj1
1+j21

+
zj2

1+j22
+

zj3
1+j23
− 2

zk4
1+k24
− zk6

1+k26

)
,

• if ji 6= jl, k4 = k5 = k6, b̃k(z) = b̃j(z) =
(

zj1
1+j21

+
zj2

1+j22
+

zj3
1+j23
− 3

zk4
1+k24

)
,

• if j1 = j2, ki 6= kl, b̃k(z) = b̃j(z) =
(

2zj1
1+j21

+
zj3

1+j23
− zk4

1+k24
− zk5

1+k25
− zk6

1+k26

)
,
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• if j1 = j2, k4 = k5, b̃k(z) = b̃j(z) =
(

2zj1
1+j21

+
zj3

1+j23
− 2

zk4
1+k24
− zk6

1+k26

)
,

• if j1 = j2, k4 = k5 = k6, b̃k(z) = b̃j(z) =
(

2zj1
1+j21

+
zj3

1+j23
− 3

zk4
1+k24

)
,

• if j1 = j2 = j3, ki 6= kl, b̃k(z) = b̃j(z) =
(

3
zj1

1+j21
− zk4

1+k24
− zk5

1+k25
− zk6

1+k26

)
,

• if j1 = j2 = j3, k4 = k5, b̃k(z) = b̃j(z) =
(

3
zj1

1+j21
− 2

zk4
1+k24
− zk6

1+k26

)
,

• if j1 = j2 = j3, k4 = k5 = k6, b̃k(z) = b̃j(z) =
(

3
zj1

1+j21
− 3

zk4
1+k24

)
.

We can resume all this cases writing

b̃k(z) = b̃j(z) = b̃kj(z) =

=

(
a1
zj1
j2

1

+ a2
zj2

1 + j2
2

+ a3
zj3

1 + j2
3

− a4
zk4

1 + k2
4

− a5
zk5

1 + k2
5

− a6
zk6

1 + k2
6

)
where ai ∈ {0, 1, 2, 3},

∑6
i=1 ai = 6, and {ai}6

i=1 s.t. if there exists i ∈ {1, 2, 3}
s.t. ai 6= 1, for any l ∈ {1, 2, 3}, l 6= i s.t. al = 0, ji = jl and if there exists
i′ ∈ {4, 5, 6} s.t ai′ 6= 1, for any l′ ∈ {4, 5, 6}, l′ 6= i′ s.t. al′ = 0, ki′ = kl′ . In
this way we can write (C.0.17) as

1

β6
∏3

i=1 (1 + j2
i )
(
1 + k2

3+i

) ∫ 3∏
i=1

zjizk3+iχ
(
b̃kj(z)

)
e
−
∑
l∈Sk,j

zl
∏
l∈Sk,j

dzl

(C.0.18)
where zi ∈ R+.

To obtain the norm of the resonant part, after studying the form of any
terms of the series, we have to estimate the norm of every single term.

Let N be an integer, then Lemma C.0.2 shows that if there exists at least
an index i = 1, 2, 3, ai 6= 0 s.t. |ji| < N or an index l = 4, 5, 6, al 6= 0 s.t.
|kl| < N, then there exists C1 > 0 s.t. (C.0.18) is bounded by

C1
δβN2∏3

i=1 (1 + j2
i )
(
1 + k2

3+i

) .
If every ji and kl really present in the argument of the cuto� is bigger

than N , we adopt an other strategy, because the distance between the two
hyper-planes becomes bigger and non comparable with δβ, so the presence
of the cuto� isn't so essential, because the integral isn't so di�erent from the
integral over all the space. However, if all the indices in the argument of
the cuto� are bigger than N , the denominators β6

∏3
i=1 (1 + j2

i )
(
1 + k2

3+i

)
is
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small and this helps the convergence. Obviously, since there exists at least
an index ji or ki equal to k, this situation is possible only if |k| ≥ N .

We denote by Tk the set of (k, j) ∈ Z12 s.t. {j1, j2, j3, k4, k5, k6} =
{k1, k2, k3, j4, j5, j6},

∑n
i=1 ki =

∑2n
i=n+1 ki,

∑n
i=1 ji =

∑2n
i=n+1 ji, and s.t.

there exists at least an index i ∈ {1, 2, 3, 4, 5, 6} s.t. ki = k and at least
an index l ∈ {1, 2, 3, 4, 5, 6} s.t. jl = k.

So, if k < N , we have∥∥RR
6

∥∥2

g
≤ 9C1

δβN2

β6

∑
j,k∈Tk

|Z̃6,j||Z̃6,k|∏3
i=1 (1 + j2

i )
(
1 + k2

3+i

) .
Instead, if k ≥ N , we have that

∥∥RR
6

∥∥2

g
is bounded by

9C1
δβN2

β6

∑
j,k∈Tk

|Z̃6,j||Z̃6,k|∏3
i=1 (1 + j2

i )
(
1 + k2

3+i

)
+

9

β6

∑
j,k∈Tk s.t
∀i |ji|,|ki|≥N

|Z̃6,j||Z̃6,k|∏3
i=1 (1 + j2

i )
(
1 + k2

3+i

) .
We know also that for every j in the sum there is an index i s.t. ji = k but,
due to the null momentum condition, there must be at least an other index
l s.t. |jl| ≥ |k|

5
and the same holds also for any k. Moreover, from Lemma

3.2.10, |Z̃6,j| are uniformly limited by a constant. So, in both the cases, as
in Theorem 3.2.13, we have∑

j,k∈Tk

|Z̃6,j||Z̃6,k|∏3
i=1 (1 + j2

i )
(
1 + k2

3+i

) ≤ C

(1 + k2)2

∑
l1,l2,l3,l4

1∏4
i=1 (1 + l2i )

and, choosing 0 < ε� 1,∑
j,k∈Tk s.t
∀i |ji|,|ki|≥N

|Z̃6,j||Z̃6,k|∏3
i=1 (1 + j2

i )
(
1 + k2

3+i

) ≤ C

(1 + k2)2

∑
l1,l2,l3,l4
∀i, |li|>N

1∏4
i=1 (1 + l2i )

≤ C

(1 + k2)2N4−4ε

∑
l1,l2,l3,l4
∀i, |li|>N

1∏4
i=1 (1 + l2i )

1+ε
2

.

One has
∑

l1,l2,l3,l4
∀i, |li|>N

1∏4
i=1 (1+l2i )

1+ε
2
∼ 1

N4ε , so, we can take

δβN2 =
1

N4
,
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one has N = 1

(δβ)
1
6
and �nally

δβN2 =
1

N4
= (δβ)

2
3 .

This implies that ∥∥RR
6

∥∥2

g
≤ C̃

(δβ)
2
3

β6 (1 + k2)2 .
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Appendix D

Technical Lemmas for Chapter 4

D.1 Proof of Lemma 4.2.6, 4.2.7, 4.2.8

Proof of Lemma 4.2.6. Since Ψ1 = H1, one has

〈Ψ1〉(α, ψ) =
1

2π

∫ 2π

0

∫
T2

â0(x)
∣∣e−i∆tψ

∣∣4 dxdt. (D.1.1)

The corresponding symmetric multilinear form 〈Ψ1〉(α, ψ1, ψ2, ψ3, ψ4) is de-
�ned by

〈̃Ψ1〉(α, ψ1, ψ2, ψ3, ψ4) =
∑
ς

〈̃Ψ1〉ς(α, ψ1, ψ2, ψ3, ψ4), (D.1.2)

〈̃Ψ1〉ς :=
1

2π

∫ 2π

0

∫
T2

â0(x)e−i∆tψς(1)e
i∆tψς(2)e

−i∆tψς(3)e
i∆tψ̄ς(4)dxdt. (D.1.3)

The estimate of each term of the sum is equal so we just consider the identical
permutation. For any s ≥ 0, ε > 0 , one has∣∣∣〈̃Ψ1〉Id(α, ψ1, ψ2, ψ3, ψ4)

∣∣∣
�

∫ 2π

0

‖e−i∆tψ1‖H−s−ε4,x
· ‖a0(x)

4∏
j=2

(e−i∆tψj)‖Hs+ε
4/3,x

dt (D.1.4)

�
∫ 2π

0

‖e−i∆tψ1‖H−s−ε4,x
· ‖a0‖Cs+ε(T2)

4∏
j=2

‖e−i∆tψj‖Hs+ε
4,x
dt (D.1.5)

� ‖e−i∆tψ1‖L4
tH
−s−ε
4,x
·

4∏
j=2

‖e−i∆tψj‖L4
tH

s+ε
4,x

(D.1.6)

� ‖ψ1‖H−s ·
4∏
j=2

‖ψj‖Hs+2ε , (D.1.7)
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where in line (D.1.4) we use Hölder inequality in space, in line (D.1.5) we
use the product estimate (4.2.8), in line (D.1.6) we use Hölder inequality in
time and in (D.1.7) we use Corollary 4.2.4.
So we conclude the estimate of (4.2.9).
To prove (4.2.10), we start from χ̂10.∣∣∣ ˜̂χ10(α, ψ1, ψ2, ψ3, ψ4)

∣∣∣
�

∑
ς

∫ 2π

0

∣∣∣∣∫
T2

â0(x)e−i∆tψς(1)e
−i∆tψς(2)e

−i∆tψς(3)e
−i∆tψς(4)dx

∣∣∣∣ dt
� ‖ψ1‖H−s ‖ψ2‖Hs+ε ‖ψ3‖Hs+ε ‖ψ4‖Hs+ε , (D.1.8)

where in the last line we proceed as in in the proof of (4.2.9).
Consider now χ̂1k with k 6= 0. One has∣∣∣ ˜̂χ1k(α, ψ1, ψ2, ψ3, ψ4)

∣∣∣
=

∣∣∣∣∣∑
ς

e−i2πk·ω

1− e−i2πk·ω

∫ 2π

0

eik·ωt
∫
T2

âk(x)
∏

1≤i≤4

e−i∆tψς(i)dxdt

∣∣∣∣∣
�

∣∣∣∣ e−i2πk·ω

1− e−i2πk·ω

∣∣∣∣ ∫ 2π

0

∣∣eik·ωt∣∣ ∣∣∣∣∣
∫
T2

âk(x)
∏

1≤i≤4

e−i∆tψidxdt

∣∣∣∣∣
� 1 + |k|τ

γ
·
∫ 2π

0

∣∣eik·ωt∣∣ ∣∣∣∣∣
∫
T2

âk(x)
∏

1≤i≤4

e−i∆tψidxdt

∣∣∣∣∣
� 1 + |k|τ

γ
·
∫ 2π

0

∣∣∣∣∣
∫
T2

âk(x)
∏

1≤i≤4

e−i∆tψidxdt

∣∣∣∣∣
� 1 + |k|τ

γ
‖âk‖Cs+2ε ‖ψ1‖H−s ‖ψ2‖Hs+ε ‖ψ3‖Hs+ε ‖ψ4‖Hs+ε

� 1

1 + |k|T
‖ψ1‖H−s ‖ψ2‖Hs+ε ‖ψ3‖Hs+ε ‖ψ4‖Hs+ε ,

where the last estimate holds ∀ T and is obtained using the standard decay
properties of Fourier coe�cients.
Hence one has

|χ̃1(α, ψ1, ψ2, ψ3, ψ4)| ≤
∑
k∈Zd
|χ̂1k(α, ψ1, ψ2, ψ3, ψ4)| . (D.1.9)

Proof of Lemma 4.2.7. Note that

Ψ2 = −1

2
Lχ1Ψ1 −

1

2
Lχ1〈Ψ1〉 = −1

2
Lχ1H1 −

1

2
Lχ1〈H1〉. (D.1.10)
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To prove the Lemma, it is su�cient to estimate the average of Lχ1H1.
For k 6= 0, one has

Lχ̂1k
H1(α, x, ψ, ψ) = dχ̂1kXH1 (D.1.11)

= i〈∇L2χ̂1k;∇L2H1〉

and note

dχ̂1kXH1

=
4e−i2πk·ω

1− e−i2πk·ω

∫ 2π

0

eik·ωt
∫
T2

âk(x)|e−i∆tψ|2 · e−i∆tψ · e−i∆t
(
a(α, x) |ψ|2 ψ

)
dxdt

and

̂(dχ̂1kXH1)k1

=
4e−i2πk·ω

1− e−i2πk·ω

∫ 2π

0

eik·ωt
∫
T2

âk(x)|e−i∆tψ|2 · e−i∆tψ · e−i∆t
(
âk1−k(x) |ψ|2 ψ

)
dxdt.

The corresponding multilinear form is given by

˜dχ̂1kXH1(α, x, ψ1, ψ2, ψ3, ψ4, ψ5, ψ6)

=
4e−i2πk·ω

1− e−i2πk·ω

∫ 2π

0

eik·ωt
∫
T2

âk(x)A(α, x, ψ1, . . . , ψ6, t)dxdt,

where

A =
1

6!

∑
ς

Aς (D.1.12)

with

Aς := e−i∆tψς(1) · e−i∆tψς(2) · e−i∆tψς(3) · e−i∆t
(
a(α, x)ψς(4)ψς(5)ψς(6)

)
,

(D.1.13)

and

˜̂
(dχ̂1kXH1)k1(α, x, ψ1, ψ2, ψ3, ψ4, ψ5, ψ6)

=
4e−i2πk·ω

1− e−i2πk·ω

∫ 2π

0

eik·ωt
∫
T2

âk(x)Âk1−k(x, ψ1, . . . , ψ6, t)dxdt.

Hence, the multilinear form of 〈 ̂(dχ̂1kXH1)k1〉 is given by

˜〈 ̂(dχ̂1kXH1
)k1〉(α, x, ψ1, . . . , ψ6)

=

∫ 2π

0

4e−i2πk·ω

1− e−i2πk·ω

∫ 2π

0

eik·ωt2
∫
T2

âk(x)Âk1−k(x, e−i∆t2ψ1, . . . , e
−i∆t2ψ6, t1)dxdt1dt2.
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We have a similar expression for the case k = 0.
To prove the Lemma it is su�cient to prove that for any s ≥ 0 and ε > 0,
one has ∣∣∣ ˜〈Lχ1Ψ1〉(α, ψ1, . . . , ψ6)

∣∣∣ � ‖ψ1‖Hε

∏
2≤i≤6

‖ψi‖Hs+1
2+ε . (D.1.14)

To prove estimate (D.1.14), it su�ces to show that for any k it holds∣∣∣ ˜〈Lχ̂1k
Ψ1〉(α, ψ1, . . . , ψ6)

∣∣∣ � 1

(1 + |k|)T1
‖ψ1‖Hε

∏
2≤i≤6

‖ψi‖Hs+1
2+ε , (D.1.15)

for some large T1 > 0. Note that for any k 6= 0 one has,∣∣∣∣ 4e−i2πk·ω

1− e−i2πk·ω

∣∣∣∣ � |k|τγ , (D.1.16)

∣∣eik·ωt2
∣∣ ≤ 1, (D.1.17)

and for any k one has

|âk(x)| � 1

(1 + |k|)T
sup

x∈T2,α∈Td
|a(x, α)| . (D.1.18)

Then one has∣∣∣∣ ˜〈 ̂(dχ̂1kXH1)k1〉
∣∣∣∣

� (1 + |k|)−T+τ

γ

∫ 2π

0

∫ 2π

0

∫
T2

∣∣∣Âk1−k(x, e
−i∆t2ψ1, . . . , e

−i∆t2ψ6, t1)
∣∣∣ dxdt1dt2.

As in D.1.12, we have

Âk1−k :=
∑
ς

(̂Aς)k1−k (D.1.19)

so, we only consider the following term

(̂Aς)k1−k := e−i∆tψς(1) · e−i∆tψς(2) · e−i∆tψς(3) · e−i∆t
(
âk1−k(x))ψς(4)ψς(5)ψς(6)

)
(D.1.20)

and its corresponding Fourier term.
Since (ς(1), ς(2), ς(3), ς(4), ς(5), ς(6)) is a permutation of (1, 2, 3, 4, 5, 6) then
we can have two di�erent cases.
Case. 1. 1 ∈ {ς(1), ς(2), ς(3)}.
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Without loss of generality, we assume 1 = ς(1) and using Hölder inequality
in space, we have∫ 2π

0

∫ 2π

0

∫
T2

∣∣∣(Âς)k1−k(x, e
−i∆t2ψ1, . . . , e

−i∆t2ψ6, t1)
∣∣∣ dxdt1dt2

�
∫ 2π

0

∫ 2π

0

‖e−i∆(t1+t2)ψ1‖H−s−ε4,x
· ‖B1‖Hs+ε

4/3,x
dt1dt2 (D.1.21)

where

B1 = e−i∆(t1+t2)ψς(2)·e−i∆(t1+t2)ψς(3)·e−i∆t1
(
âk1−k(x)e−i∆t2ψς(4)e−i∆t2ψς(5)e

−i∆t2ψς(6)

)
.

Denoting

B2 =
∥∥∥e−i∆(t1+t2)ψς(2)

∥∥∥
Hs+ε

4,x

·
∥∥∥e−i∆(t1+t2)ψς(3)

∥∥∥
Hs+ε

4,x

·B3,

and

B3 =
∥∥∥e−i∆t1

(
âk1−k(x)e−i∆t2ψς(4)e−i∆t2ψς(5)e

−i∆t2ψς(6)

)∥∥∥
Hs+ε

4,x

and using the product estimate (4.2.8), we have that (D.1.21) is controlled
by ∫ 2π

0

∫ 2π

0

‖e−i∆(t1+t2)ψ1‖H−s−ε4,x
·B2dt1dt2. (D.1.22)

Denoting

B4 =
∥∥∥e−i∆(t1+t2)ψς(2)

∥∥∥
L4
t1
Hs+ε

4,x

·
∥∥∥e−i∆(t1+t2)ψς(3)

∥∥∥
L4
t1
Hs+ε

4,x

·B5,

B5 =
∥∥∥e−i∆t1

(
âk1−k(x)e−i∆t2ψς(4)e−i∆t2ψς(5)e

−i∆t2ψς(6)

)∥∥∥
L4
t1
Hs+ε

4,x

and using Hölder inequality in time t1, we get that (D.1.22) is controlled by∫ 2π

0

‖e−i∆(t1+t2)ψ1‖L4
t1
H−s−ε4,x

·B4dt2. (D.1.23)

Finally, denoting

B6 =
∥∥∥âk1−k(x)e−i∆t2ψς(4)e−i∆t2ψς(5)e

−i∆t2ψς(6)

∥∥∥
Hs+2ε
x

,
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we get that (D.1.23) is controlled by∫ 2π

0

‖ψ1‖H−s‖ψ2‖Hs+2ε‖ψ3‖Hs+3ε ·B6dt2 (D.1.24)

� 1

(1 + |k1 − k|)T
‖ψ1‖H−s‖ψ2‖Hs+2ε‖ψ3‖Hs+2ε

6∏
i=4

‖ψi‖Hs+1
3+3ε(D.1.25)

� 1

(1 + |k1 − k|)T
‖ψ1‖H−s

6∏
i=2

‖ψi‖Hs+1
3+3ε , (D.1.26)

where in (D.1.24) we use Corollary 4.2.4 with p = 4 and in line (D.1.25) we
use the product estimate (4.2.8) and 4.2.4 with p = 6.
Case. 2. 1 ∈ {ς(4), ς(5), ς(6)}.
Without loss of generality, we assume 1 = ς(4) and denoting

B7 =
(
e−i∆(t1+t2)ψς(1)

) (
e−i∆(t1+t2)ψς(2)

)(
e−i∆(t1+t2)ψς(3)

)
,

B8 =
(
âk1−k(x)e−i∆t2ψ1e−i∆t2ψς(5)e

−i∆t2ψς(6)

)
and using Hölder inequality in space, we have∫ 2π

0

∫ 2π

0

∫
T2

∣∣∣(Âς)k1−k(x, e
−i∆t2ψ1, . . . , e

−i∆t2ψ6, t1)
∣∣∣ dxdt1dt2

�
∫ 2π

0

∫ 2π

0

‖B7‖Hs
x
· ‖e−i∆t1B8‖H−sx dt1dt2

=
1

(1 + |k1 − k|)T

∫ 2π

0

∫ 2π

0

‖B7‖Hs
x
· ‖B8‖H−sx dt1dt2. (D.1.27)

Denoting

B9 = ‖e−i∆t2ψ1‖Hε
4,x
‖e−i∆t2ψς(5)‖Hε

8,x
‖e−i∆t2ψς(6)‖Hε

8,x
,

B10 = ‖e−i∆t2ψ1‖L4
t2
Hε

4,x
‖e−i∆t2ψς(5)‖L8

t2
Hε

8,x
‖e−i∆t2ψς(6)‖L8

t2
Hε

8,x

and using use the product estimate (4.2.8), we get that (D.1.27) is controlled
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by

1

1 + |k1 − k|T

∫ 2π

0

∫ 2π

0

(
3∏
i=1

‖e−i∆(t1+t2)ψς(i)‖Hs+ε6,x

)
·B9dt1dt2 (D.1.28)

� 1

1 + |k1 − k|T

∫ 2π

0

3∏
i=1

‖e−i∆(t1+t2)ψi‖L6
t1
Hs+ε6,x

B9dt2 (D.1.29)

� 1

1 + |k1 − k|T

(
3∏
i=1

‖ψς(i)‖
H
s+1

3
+2ε

x

)
B10 (D.1.30)

� 1

1 + |k1 − k|T
‖ψ1‖H2ε

(
3∏
i=1

‖ψς(i)‖Hs+1
3
+2ε

)
(D.1.31)

× ‖ψς(5)‖H 1
2
+2ε‖ψς(6)‖H 1

2
+2ε ,

where in line (D.1.29) we use Hölder inequality in t1, in line (D.1.30) we use
�rst Corollary 4.2.4 with p = 6 and then Hölder inequality in t2 and in the
last line we use two times Corollary 4.2.4, once with p = 4 and the second
with p = 8.
So we �nish the proof of (D.1.15) and the proof of (4.2.11). In a similar way
we get also (4.2.12).
Proof of Lemma 4.2.8. Note that

Ψ3 = −1

6
L2
χ1
Z1 −

1

3
Lχ2Z1 −

2

3
Lχ2H1 −

2

3
Lχ1Z2, (D.1.32)

The worst term is 2
3
Lχ2H1, so to obtain the thesis it is su�cient to estimate

its average.
We denote

A(ψ1, . . . , ψ4) =

∫
T2

|ψ1 · · ·ψ4| dx, (D.1.33)

B(ψ1, ψ2, ψ3) = ψ1 · ψ2 · ψ3, (D.1.34)

B1 = B(e−i∆t3ψ3, e
−i∆t3ψ4, e

−i∆t3ψ5) (D.1.35)

and
B2 = B(e−i∆(t2+t3)ψ6, e

−i∆(t2+t3)ψ7, e
−i∆(t2+t3)ψ8)). (D.1.36)

Then we de�ne

A31(ψ1, . . . , ψ8, t1, t2, t3) (D.1.37)

= A(e−i∆(t1+t2+t3)ψ1, e
−i∆(t1+t2+t3)ψ2, e

−i∆(t1+t2)B1, e
−i∆t1B2).

In a similar way, we de�ne

A32(ψ1, . . . , ψ8, t1, t2, t3) (D.1.38)

= A(e−i∆(t1+t2+t3)ψ1, e
−i∆(t1+t2+t3)ψ2, e

−i∆(t1+t2+t3)ψ3, e
−i∆t1B3)
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where
B3 = B(e−i∆(t2+t3)ψ4, e

−i∆(t2+t3)ψ5, e
−i∆t2B4) (D.1.39)

and
B4 = B(e−i∆t3ψ6, e

−i∆t3ψ7, e
−i∆t3ψ8). (D.1.40)

We denote by Ã31 and Ã32 the symmetric multilinear form associated respec-
tively to A31 and A32. Forgetting about the coe�cients due to Fourier expan-

sion, ˜〈Lχ2H1〉 is composed by terms of the form
∫ 2π

0

∫ 2π

0

∫ 2π

0
Ã31dt1dt2dt3 and∫ 2π

0

∫ 2π

0

∫ 2π

0
Ã32dt1dt2dt3, so to show the Lemma it is su�cient to estimate

them.
We start from Ã32 = 1

8!

∑
ς Ã32ς and as in Lemma 4.2.7, we estimate Ã32ς ,

showing that one has∫ 2π

0

∫ 2π

0

∫ 2π

0

∣∣∣Ã32ς

∣∣∣ dt1dt2dt3 � ‖ψ1‖Hε

(
8∏
j=2

‖ψj‖Hs+ε+2
3

)
. (D.1.41)

As in Lemma 4.2.7, here we have more cases to study.
Case 1. 1 ∈ {ς(1), ς(2), ς(3)}. Without loosing generality, we consider 1 =
ς(1).
Proceeding as in Lemma 4.2.7, for any ε > 0, by product estimate (4.2.8)
and Bourgain's estimate (4.2.6), one has∫ 2π

0

∫ 2π

0

∫ 2π

0

∣∣∣Ã32ς

∣∣∣ dt1dt2dt3 (D.1.42)

�
∫ 2π

0

∫ 2π

0

‖ψ1‖Hε

∥∥ψς(2)

∥∥
Hε

∥∥ψς(3)

∥∥
Hε ‖B3‖Hε dt2dt3. (D.1.43)

By product estimate (4.2.8) and Corollary 4.2.4, one has

‖B3‖Hε �
∥∥ψς(4)

∥∥
H2ε+1

3

∥∥ψς(5)

∥∥
H2ε+1

3
‖B4‖Hs+2ε+1

3
(D.1.44)

and
‖B4‖Hε �

∥∥ψς(6)

∥∥
H3ε+2

3

∥∥ψς(7)

∥∥
H3ε+2

3

∥∥ψς(8)

∥∥
H3ε+2

3
. (D.1.45)

Hence, one has (D.1.41) in this case.
Case 2. 1 ∈ {ς(4), ς(5)}Without loosing of generality, we consider 1 = ς(4).
For any ε > 0, by product estimate (4.2.8) and Bourgain's estimate (4.2.6),
one has

∫ 2π

0

∫ 2π

0

∫ 2π

0

∣∣∣Ã32ς

∣∣∣ dt1dt2dt3 (D.1.46)

�
∫ 2π

0

∫ 2π

0

∥∥ψς(1)

∥∥
Hε

∥∥ψς(2)

∥∥
Hs+ε

∥∥ψς(3)

∥∥
Hε ‖B3‖Hε dt2dt3.(D.1.47)
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By product estimate (4.2.8) and Corollary 4.2.4, choosing p1, p2 s.t.
1
p1

+ 1
p2

=
1
4
, one has

‖B3‖Hε � ‖ψ1‖H2ε

∥∥ψς(5)

∥∥
H

2ε+1− 4
p1
‖B4‖

H
2ε+1− 4

p2
(D.1.48)

and

‖B4‖Hε �
∥∥ψς(6)

∥∥
H

3ε+1− 4
p2

+1
3

∥∥ψς(7)

∥∥
H
s+3ε+1− 4

p2
+1

3
‖ψ8‖

H
3ε+1− 4

p2
+1

3
. (D.1.49)

Moreover, choosing p1, p2 s.t.

1− 4

p1

= 1− 4

p2

+
1

3
, (D.1.50)

one has p1 = 12 and p2 = 6, which implies

1− 4

p1

= 1− 4

p2

+
1

3
=

2

3
. (D.1.51)

So, one has (D.1.41) in this case.
Case 3. 1 ∈ {ς(6), ς(7), ς(8)}. Without loosing of generality, we consider
1 = ς(6).
For any ε > 0, by product estimate (4.2.8) and Bourgain's estimate (4.2.6),
one has

∫ 2π

0

∫ 2π

0

∫ 2π

0

∣∣∣Ã32ς

∣∣∣ dt1dt2dt3 (D.1.52)

�
∫ 2π

0

∫ 2π

0

∥∥ψς(1)

∥∥
Hε

∥∥ψς(2)

∥∥
Hε

∥∥ψς(3)

∥∥
Hε ‖B3‖Hε dt2dt3. (D.1.53)

By product estimate (4.2.8) and Corollary 4.2.4, one has

‖B3‖Hε �
∥∥ψς(4)

∥∥
H2ε+1

2

∥∥ψς(5)

∥∥
H2ε+1

2
‖B4‖H2ε (D.1.54)

and
‖B4‖Hε � ‖ψ1‖H3ε

∥∥ψς(7)

∥∥
H3ε+1

2

∥∥ψς(8)

∥∥
H3ε+1

2
. (D.1.55)

Hence, one has (D.1.41)also in this case.

In a similar way we obtain the same estimate also in the case of Ã31. So we
get (4.2.13), in a similar way one gets (4.2.14).
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D.2 Technical Lemmas

Proof of Lemma 4.2.2. By (4.2.6), we know that for every ε > 0 one has

‖eit∆ψ‖L4
tx
≤ C1‖ψ‖Hε(T2).

Moreover, using Sobolev embeddings in 2-dimension, one has

‖eit∆ψ‖L∞tx ≤ C2‖eit∆ψ‖L∞t (0,2π)H1+ε(T2) ≤ C3‖ψ‖H1+ε(T2).

We denote by p0 = ∞, p1 = 4, s0 = 1 + ε, s1 = ε. Using interpolation
theorem, for every θ ∈ (0, 1), we obtain

‖eit∆ψ‖Lpθtx ≤ C‖ψ‖Hsθ (T2)

where 1
pθ

= 1−θ
p0

+ θ
p1

and sθ = (1− θ)s0 + θs1.
In particular, for any p > 4, one has

θ =
4

p
, θ ∈ (0, 1)

and

s =

(
1− 4

p

)
(1 + ε) +

4

p
ε = 1− 4

p
+ ε.

So, for any p > 4, ε > 0, we get

‖eit∆ψ‖Lptx ≤ C‖ψ‖
H

1− 4
p+ε

(T2)
.

Proof of Lemma 4.2.5. Let η̃ be smooth, supported in B(0, 2) and equal to 1
on B(0, 1). Also let η̃R(x) = η̃(x/R) for R > 0. We de�ne

ηR(x1, ..., xn) :=
n∏
i=1

η̃R(xi).

Denoted by Gs the Bessel Kernel

Gs(x) :=
e−|x|

(2π)
n−1
2 2

s
2 Γ
(
s
2

)
Γ
(
n−s+1

2

) ∫ ∞
0

e−|x|t
(
t+

t2

2

)n−s−1
2

dt

for x 6= 0, we can express (I −∆)s/2f = Gs ∗ f , (I −∆)s/2fηR = Gs ∗ fηR
([2]).
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Since f is periodic, f ∈ L∞(Rn) and

fηR → f

pointwise as R→∞, by Dominated Convergence Theorem, one has that

(I −∆)s/2(fηR)→ (I −∆)s/2(f)

pointwise. Moreover the function (I − ∆)s/2(f) is periodic as it is given as
a convolution of a periodic function with a tempered distribution. By the
Kato-Ponce inequality on Rn [27], recalling that (I −∆)s/2 := Js, for s > 0
we have:

‖Js(fgη2
R)‖Lp(Rn)

�‖Js(fηR)‖Lp1 (Rn)‖gηR‖Lp2 (Rn) + ‖fηR‖Lq1 (Rn)‖Js(gηR)‖Lq2 (Rn) (D.2.1)

where 1
p1

+ 1
p2

= 1
q1

+ 1
q2

= 1
p
, 1 < p1, p2, q1, q2 <∞.

If p1 = q1 =∞, this can be modi�ed as follows:

‖Js(fgη2
R)‖Lp(Rn)

�‖Js(fηR)‖L∞(Rn)‖gηR‖Lp(Rn) + ‖fηR‖L∞(Rn)‖Js(gηR)‖Lp(Rn). (D.2.2)

Let vn = |B(0, 1)|. Notice that for 0 < p2 ≤ ∞

‖fηR‖Lp2 (Rn)

(vnRn)
1
p2

→ ‖f‖Lp2 ([0,2π]n) (D.2.3)

as R→∞.
Next we show that for 1 < p1 <∞

‖Js(fηR)‖Lp1 (Rn)

(vnRn)
1
p1

→ ‖Js(f)‖Lp1 ([0,2π]n) (D.2.4)

as R→∞.
First, we notice that for 1 < p1 <∞

‖Js(fηR)− Js(f)ηR‖Lp1 (Rn)

(vnRn)
1
p1

≤ C
2‖Js(f)‖L∞(Rn)‖ηR‖Lp1 (Rn) + ‖f‖L∞(Rn)‖Js(ηR)‖Lp1 (Rn)

(vnRn)
1
p1

(D.2.5)
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by the Kato-Ponce and Hölder inequalities.
By (D.2.3), (D.2.5) is bounded in R, so by the Dominated Convergence
Theorem, letting R→∞, we obtain that

‖Js(fηR)− Js(f)ηR‖Lp1 (Rn)

(vnRn)
1
p1

→ 0. (D.2.6)

Using (D.2.3), (D.2.6) and∣∣∣∣∣‖Js(fηR)‖p1Lp1 (Rn)

vnRn
−
‖Js(f)ηR‖p1Lp1 (Rn)

vnRn

∣∣∣∣∣ ≤ ‖Js(fηR)− Js(f)ηR‖p1Lp1 (Rn)

vnRn

we deduce (D.2.4). To obtain the periodic Kato-Ponce, in the case where
1 < p1, p2, q1, q2 <∞, we divide (D.2.1) by

(vnR
n)

1
p = (vnR

n)
1
p1 (vnR

n)
1
p2 = (vnR

n)
1
q1 (vnR

n)
1
q2

and we use (D.2.4) and (D.2.3).
The rest of the Appendix is devoted to prove Lemma 4.3.4.
We recall that, for any s ∈ (0, 1) and for any n ∈ N the fractional laplacian
is de�ned also in the following way:

(−∆)sψ(x) := Cn,s

∫
Rn

ψ(x)− ψ(y)

|x− y|n+2s
dy (D.2.7)

where

Cn,s :=
4sΓ(n/2 + s)

πd/2|Γ(−s)|
and that

‖ψ‖Hs
p(Tn) :=‖ψ‖Lp(Tn) + ‖(−∆)

s
2ψ‖Lp(Tn).

Moreover, for periodic function ψ on the torus, also (−∆)sψ(x) is periodic,
in fact:

(−∆)sψ(x+ 2π) = Cn,s

∫
Rn

ψ(x+ 2π)− ψ(y)

|x+ 2π − y|n+2s
dy

=Cn,s

∫
Rn

ψ(x)− ψ(y)

|x+ 2π − y|n+2s
dy = Cn,s

∫
Rn

ψ(x)− ψ(ỹ + 2π)

|x− ỹ|n+2s
dỹ

=Cn,s

∫
Rn

ψ(x)− ψ(ỹ)

|x− ỹ|n+2s
dỹ = (−∆)sψ(x).
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So

‖ψ‖Hs
p(Tn) =‖ψ‖Lp([0,2π]n) + ‖(−∆)

s
2ψ‖Lp([0,2π]n)

=‖ψ‖Lp([0,2π]n) +

(∫
[0,2π]n

∣∣∣∣Cn,s ∫
Rn

ψ(x)− ψ(y)

|x− y|n+s
dy

∣∣∣∣p dx) 1
p

.

In particular, for n = 2 and for periodic functions we have the following
lemma which gives us an other equivalent norm on the torus.

Lemma D.2.1. For any s ∈ (0, 1), 1 < p < ∞ there exists two constants
C1(s, p), C2(s, p) > 0, s.t. for any periodic function ψ ∈ Hs

p(T2), one has

‖ψ‖pHs
p(T2) ≤ C1

(
‖ψ‖pLp([0,2π]2) +

∫
[0,2π]2

∣∣∣∣∫
[−2π,4π]2

ψ(x)− ψ(y)

|x− y|2+s
dy

∣∣∣∣p dx)
(D.2.8)

and

C2

(
‖ψ‖pLp([0,2π]2) +

∫
[0,2π]2

∣∣∣∣∫
[−2π,4π]2

ψ(x)− ψ(y)

|x− y|2+s
dy

∣∣∣∣p dx) ≤ ‖ψ‖Hs
p(T2).

(D.2.9)

Proof. We start from (D.2.8). By de�nition, one has

‖ψ‖pHs
p(T2) =

(
‖ψ‖Lp([0,2π]2) +

(∫
[0,2π]2

∣∣∣∣C2,s

∫
R2

ψ(x)− ψ(y)

|x− y|2+s
dy

∣∣∣∣p dx) 1
p

)p

≤ C(p)

(
‖ψ‖pLp([0,2π]2) +

∫
[0,2π]2

∣∣∣∣C2,s

(∫
[−2π,4π]2

ψ(x)− ψ(y)

|x− y|2+s
dy + A

)∣∣∣∣p dx)
(D.2.10)

where

A :=

∫
([−2π,4π]2)c

ψ(x)− ψ(y)

|x− y|2+s
dy.

So we have

‖ψ‖pHs
p(T2) ≤ C(p)

(
‖ψ‖pLp([0,2π]2) +

∫
[0,2π]2

∣∣∣∣∫
[−2π,4π]2

ψ(x)− ψ(y)

|x− y|2+s
dy

∣∣∣∣p dx+

∫
[0,2π]2

|A|p dx
)
.

(D.2.11)

We study now A.
Given K = (k1, k2) ∈ Z2, denoting for any k1, k2 ∈ Z, k1 ≥ 2,

B>
k1,k2

:= [2k1π, 2(k1 + 1)π]× [2k2π, 2(k2 + 1)π],
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for any k1, k2 ∈ Z, k1 ≤ −1,

B<
k1,k2

:= [2(k1 − 1)π, 2k1π]× [2k2π, 2(k2 + 1)π],

for any k1 ∈ {−1, 0, 1} , k2 ∈ Z, k2 ≥ 2,

B∧k1,k2 := [2k1π, 2(k1 + 1)π]× [2k2π, 2(k2 + 1)π]

and for any k1 ∈ {−1, 0, 1} , k2 ∈ Z, k2 ≤ −1,

B∨k1,k2 := [2k1π, 2(k1 + 1)π]× [2(k2 − 1)π, 2k2π],

one has

|A| ≤
∑

k1≥2,k2

∫
B>k1,k2

|ψ(x)|+ |ψ(y)|
|x− y|2+s

dy (D.2.12)

+
∑

k1≤−1,k2

∫
B<k1,k2

|ψ(x)|+ |ψ(y)|
|x− y|2+s

dy (D.2.13)

+
∑

k1∈{−1,0,1},k2≥2

∫
B∧k1,k2

|ψ(x)|+ |ψ(y)|
|x− y|2+s

dy (D.2.14)

+
∑

k1∈{−1,0,1},k2≤−1

∫
B∨k1,k2

|ψ(x)|+ |ψ(y)|
|x− y|2+s

dy. (D.2.15)

We study explicitly the right side of (D.2.12) but one can estimate all the
other terms in a similar way.∑

k1≥2,k2

∫
B>k1,k2

|ψ(x)|+ |ψ(y)|
|x− y|2+s

dy

=
∑

k1≥2,k2=0

∫
B>k1,k2

|ψ(x)|+ |ψ(y)|
|x− y|2+s

dy +
∑

k1≥2,k2>0

∫
B>k1,k2

|ψ(x)|+ |ψ(y)|
|x− y|2+s

dy

+
∑

k1≥2,k2<0

∫
B>k1,k2

|ψ(x)|+ |ψ(y)|
|x− y|2+s

dy

≤
∑

k1≥2,k2=0

1

[2π|k1 − 1|]2+s

∫
B>k1,k2

|ψ(x)|+ |ψ(y)|dy

+
∑

k1≥2,k2>0

1[
2π
√

(k1 − 1)2 + (k2 − 1)2
]2+s

∫
B>k1,k2

|ψ(x)|+ |ψ(y)|dy

+
∑

k1≥2,k2<0

1[
2π
√

(k1 − 1)2 + (k2)2
]2+s

∫
B>k1,k2

|ψ(x)|+ |ψ(y)|dy.
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Since ψ is a periodic function with period 2π in each variable, for any k1, k2,
one has ∫

B>k1,k2

|ψ(x)|+ |ψ(y)|dy =

∫
[0,2π]2

|ψ(x)|+ |ψ(y)|dy.

Moreover, since all the series are convergent, we obtain that∑
k1≥2,k2

∫
B>k1,k2

|ψ(x)|+ |ψ(y)|
|x− y|2+s

dy

≤C̃(s, p)

∫
[0,2π]2

|ψ(x)|+ |ψ(y)|dy = C̃(s, p)
(
(2π)2|ψ(x)|+ ‖ψ‖L1(T2)

)
.

In a similar way, we obtain that

|A| ≤ C̄(s, p)

∫
[0,2π]2

|ψ(x)|+ |ψ(y)|dy = C̄(s, p)
(
|ψ(x)|+ ‖ψ‖L1(T2)

)
.

So, we have∫
[0,2π]2

|A|pdx ≤ ˜̃C(s, p)

(∫
[0,2π]2

|ψ(x)|pdx+ ‖ψ‖pL1(T2)

)
≤ C1‖ψ‖pLp(T2).

(D.2.16)
Using (D.2.16) in (D.2.11), we get (D.2.8).
To prove (D.2.9), it is su�cient to consider∫

[0,2π]2

∣∣∣∣∫
[−2π,4π]2

ψ(x)− ψ(y)

|x− y|2+s
dy

∣∣∣∣p dx
=

∫
[0,2π]2

∣∣∣∣∫
R2

ψ(x)− ψ(y)

|x− y|2+s
dy − A

∣∣∣∣p dx
≤C(p, s)

(∫
[0,2π]2

∣∣∣∣C2,s

∫
R2

ψ(x)− ψ(y)

|x− y|2+s
dy

∣∣∣∣p dx+ ‖ψ‖pLp(T2)

)
= C‖ψ‖pHs

p(T2)

(D.2.17)

where in the last line we use (D.2.16), so we get the thesis.

We use the previous result to show that is equivalent to take the Bessel-norm
of periodic functions on the torus and to take the Bessel-norm of a suitable
non periodic function with compact support. For any periodic ψ with period
2π, we de�ne

ψext(x) :=

{
ψ(x) for x ∈ [−2π, 4π]2

0 otherwise
.
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Lemma D.2.2. Let s ∈ (0, 1), 1 < p <∞ then ‖ψ‖pHs
p(T2) and ‖ψext‖

p
Hs
p([0,2π]2)

are equivalent, i.e. there exist two constant C1, C2 > 0 s.t. for any ψ ∈
Hs
p(T2), one has

C1‖ψ‖pHs
p(T2) ≤ ‖ψext‖

p
Hs
p([0,2π]2) ≤ C2‖ψ‖pHs

p(T2). (D.2.18)

Proof. By de�nition, one has

‖ψext‖pHs
p([0,2π]2) =

(
‖ψext‖Lp([0,2π]2) + ‖(−∆)

s
2ψext‖Lp([0,2π]2)

)p
≤C

(
‖ψext‖pLp([0,2π]2) + ‖(−∆)

s
2ψext‖pLp([0,2π]2)

)
≤C̃

(
‖ψext‖pLp([0,2π]2) +

∫
[0,2π]2

∣∣∣∣∫
R2

ψext(x)− ψext(y)

|x− y|2+s
dy

∣∣∣∣p dx)
=C̃

(
‖ψext‖pLp([0,2π]2) (D.2.19)

+

∫
[0,2π]2

∣∣∣∣∫
[−2π,4π]2

ψext(x)− ψext(y)

|x− y|2+s
dy +

∫
([−2π,4π]2)c

ψext(x)− ψext(y)

|x− y|2+s
dy

∣∣∣∣p dx) .
Using the de�nition of ψext, one has that (D.2.19) is equal to

=C̃
(
‖ψ‖pLp(T2)

+

∫
[0,2π]2

∣∣∣∣∫
[−2π,4π]2

ψ(x)− ψ(y)

|x− y|2+s
dy +

∫
([−2π,4π]2)c

ψ(x)

|x− y|2+s
dy

∣∣∣∣p dx)
≤C1

(
‖ψ‖pLp(T2) +

∫
[0,2π]2

|ψ(x)|p
(∫

([−2π,4π]2)c

1

|x− y|2+s
dy

)p
dx

+

∫
[0,2π]2

∣∣∣∣∫
[−2π,4π]2

ψ(x)− ψ(y)

|x− y|2+s
dy

∣∣∣∣p dx)
≤C2(s, p)

(
‖ψ‖pLp(T2) +

∫
[0,2π]2

∣∣∣∣∫
[−2π,4π]2

ψ(x)− ψ(y)

|x− y|2+s
dy

∣∣∣∣p dx) (D.2.20)

where in the last line we use the fact that∫
([−2π,4π]2)c

1

|x− y|2+s
dy <∞.

So, using Lemma D.2.1, we get

‖ψext‖pHs
p([0,2π]2) ≤ C̃‖ψ‖pHs

p(T2).
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Conversely, by Lemma D.2.1

‖ψ‖pHs
p(T2) ≤C3

(
‖ψ‖pLp(T2) +

∫
[0,2π]2

∣∣∣∣∫
[−2π,4π]2

ψ(x)− ψ(y)

|x− y|2+s
dy

∣∣∣∣p dx)
=C3

(
‖ψext‖pLp(T2) +

∫
[0,2π]2

∣∣∣∣∫
[−2π,4π]2

ψext(x)− ψext(y)

|x− y|2+s
dy

∣∣∣∣p dx)
≤C4

(
‖ψext‖pLp(T2) +

∫
[0,2π]2

∣∣∣∣∫
R2

ψext(x)− ψext(y)

|x− y|2+s
dy

∣∣∣∣p dx
+

∫
[0,2π]2

∣∣∣∣∫
([−2π,4π]2)c

ψext(x)

|x− y|2+s
dy

∣∣∣∣p dx)
≤C4

(
‖ψext‖pLp(T2) +

∫
[0,2π]2

∣∣∣∣∫
R2

ψext(x)− ψext(y)

|x− y|2+s
dy

∣∣∣∣p dx
+

∫
[0,2π]2

|ψext(x)|p
(∫

([−2π,4π]2)c

1

|x− y|2+s
dy

)p
dx

)
≤C5(

(
‖ψext‖pLp(T2) +

∫
[0,2π]2

∣∣∣∣∫
R2

ψext(x)− ψext(y)

|x− y|2+s
dy

∣∣∣∣p dx)
≤C6‖ψext‖pHs

p([0,2π]2).

Lemma D.2.3. [Embeddings] For every s ∈ (0, 1), 1 < p < ∞ and ε > 0
there exist {Ci}4

i=1, Ci > 0 for any i = 1, ..., 4, s.t. for any periodic function
ψ ∈ Hs+2ε

p (T2), one has

‖ψ‖pHs
p(T2) ≤C1‖ψext‖pHs

p([0,2π]2) ≤ C2‖ψext‖pW s+ε,p([0,2π]2) (D.2.21)

≤C3‖ψext‖pHs+2ε
p ([0,2π]2)

≤ C4‖ψ‖pHs+2ε
p (T2)

.

Proof. The proof of this Lemma is a simple consequence of Lemma D.2.2
and of the embeddings showed in Lemma 2.1 of [23] on open domain with
regular boundary.

Proof of Lemma 4.3.4 The proof is a simple consequence of Lemma D.2.3 and
of Sobolev embeddings in Sobolev space W s,p(Ω) where Ω is an open subset
of R2, and for any s ∈ (0, 1), p ≥ 0,

W s,p(Ω) :=

{
ψ ∈ Lp(Ω) :

|ψ(x)− ψ(y)|
|x− y|

d
p

+s
∈ Lp(Ω× Ω

}
.
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