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Introduction

In this thesis, we study the dynamics of NLS, in particular, we deal with
the problem of the construction of prime integrals, either in the probabilistic
or in the deterministic case.

In the first part of the thesis, we consider the non linear Schrédinger equa-
tion on the one dimensional torus with a defocusing polynomial nonlinearity
and we study the dynamics corresponding to initial data in a set of a large
measure with respect to the Gibbs measure. We prove that along the corre-
sponding solutions the modulus of the Fourier coefficients is approximately
constant for long time. The proof is obtained by adapting to the context of
Gibbs measure for PDEs some tools of Hamiltonian perturbation theory (see
[6, BT 2], 22]).

In the second part, we consider the nonlinear Schrodinger equation on the
two dimensional torus with a time-dependent nonlinearity starting with cubic
terms. In this case, using perturbation theory techniques, we construct an
approximate integral of motion that changes slowly for initial data with small
H'-norm, this allows to ensure long time existence of solutions in H!(T?).
The main difficulty is that H'(T?) is not an algebra.

We now describe more in detail the problem we study in the first part of
the thesis which is also the main result of the thesis. The system we consider
is the defocousing NLS on the one dimensional torus

iy =AY+ F' ([*) ¢, z €T, (0.0.1)
where F is a polynomial of degree ¢ > 2, F(x) := > !, cja?, s.t. F(z) >0

for any x > 0 and ¢y # 0. This is a Hamiltonian system with Hamiltonian
H given by

H=Hy+P (0.0.2)
where
1 2m )
Hy = 3 |Vi(x)|“dx,
0
q Ca 2T )
P=3Hy, Hyi=gk | o)
0

Jj=2



The associated Gibbs measure is formally defined by
~B(H@)+4[v]2,)
Z(B)

e

dpg = dwdd_}, B>0, Z(B):= /S e—ﬁ(H(d’)-i—%WHiQ)dwd@

(0.0.3)

where [ plays the role of the inverse of the temperature.

The measure is supported on H® space with s < %, so using Gibbs measure
one actually studies solution with low regularity. The parameter [ will be
very large so the measure is concentrated on "small" data namely with size
of order 6’% and P can be thought as a small perturbation of Hs.

First, in Chapter 2, we recall the results of [30], 16, 18| 19, 25] that show
that the Gibbs measure is well defined and invariant and furthermore that
the flow of is almost surely globally well-posed on any one of the
spaces H® with s s.t. % - qul <s< %

In Chapter 3, we prove our main result (|[10]):

Theorem 0.0.1. There ezist §*,C,C" > 0 s.t. for anyny,ne > 0, 5 fulfilling

e,
ﬁ>max{ﬁ ,ﬁ}
m' 1y

and any k € Z, there exists a measurable set Jy C H® with ug(ds) < n2 s.t.,
if the initial datum ¥(0) € Jy then the solution exists globally in H® and one
has

1
<m, Y[t < Clmympt, o= — . (0.0.4)

'wk I~ [(0)P
10

1+k2)[3

Remark 0.0.2. The quantity |1x|* appears since it is the action of the lin-
earized system. Theorem shows that, for general initial data, |iy|?
moves very little compared to its typical size over a time scale of order 5*<.

Remark 0.0.3. If one considers as a perturbation of the cubic inte-
grable NLS, then one has that the main term of the perturbation is (in the
equation) |1|* ¢ whose size can be thought to be of order §75/2 which is of
order 372 smaller then the linear part. For this reason one can think that
the effective perturbation is of size 372. So one expects to obtain a control
of the dynamics of the actions over a time scale at least of order [32.

Theorem [0.0.1] not only gives a rigorous proof of this fact, but also shows
that this is true over a longer time scale. We do not expect the value of ¢ to
be optimal.



Remark 0.0.4. In order to cover times longer than 5%, we have to face the
problem of small denominators. Indeed the nonlinear corrections to the fre-
quencies become relevant and an important part of the proof consists in
giving an estimate of the measure of the phase space in which the nonlinear
frequencies are nonresonant.

The proof of our result is based on the generalization to the context of
Gibbs measure for PDEs of Poincaré’s method of construction of approxi-
mate integrals of motion (|34} 26]). The standard way of using this method
consists in first using a formal algorithm giving the construction of objects
which are expected to be approximate integrals of motion and then adding
estimates in order to show that this actually happens. This is the way we
proceed. So, first, we develop a formal scheme of construction of the approx-
imate integrals of motion. This is delicate due to the fact that the linearized
system is completely resonant and we have to find a way to use the nonlinear
modulation of the frequencies in order to control each one of the actions.
So we obtain a function ®, which is a modification of the action |iy|* and
is expected to be an approximate integral of motion. In the second part
of Chapter 3, we estimate the L?(u5)-norm of &y, showing that it is small.
We remark that all the estimates can be done using the Gaussian measure
associated to the linearized system that is absolutely continuous respect to
the Gibbs measure. The main ingredient of this section is the exploitation of
the decay of Fourier modes of functions in the support of the Gibbs measure.
Finally we use the invariance of the Gibbs measure and Chebyshev’s theorem
in order to pass from the estimate of @, to the estimate of |®y(t) — P (0)].
Finally, we show that this implies the control of ||

In the second part of the thesis, we study the following NLS system:
i), = =20 + 2a(x, wt)|Y|*p, r € T? (0.0.5)

where a is a smooth function quasiperiodic in time and w € R,
We remark that equation (0.0.5)) is Hamiltonian with Hamiltonian function
given by

H(w,t) = Ho(¥) + Halt), Ho(0) = [ [Vul'ds (0:0.6)
Hi(¢Y,wt) = /11‘2 a(x, wt) () dx.

(0.0.7)

As anticipated above, we construct an approximate integral which is a defor-
mation of the H'-norm ([7]). In dimension 1, this would be a trivial problem
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and a control of the solution over exponentially long time would be possible.
However, the situation is much more complicated in dimension 2, since H'! is
not an algebra. As in Chapter 3, first we use a formal algorithm that gives
the construction of the object which is expected to be approximate integral
of motion and then we add estimates in order to show that this actually hap-
pens. The formal algorithm is quite standard, the difficulty comes from the
fact that averaging involves here the study of the LP-norms of the solution
of the Schréodinger equation on T?. Here the main tool is the Bourgain’s
estimate

le" el s, < Cllv]

and the interpolation estimate that one deduces from it. Using such estimate
together with some tools coming from Hamiltonian theory, denoting for any
K € N in the usual way

|«HKd-={$mWW' it K =0,
CRTD - Suppa | - | + X |a=1 SUPTa [DY [ i K #£0,

He, Ve >0

we are able to make three steps of perturbation theory and to get the following

Theorem 0.0.5. Assume that a € C®(T?) and that the frequency w 1is
Diophantine, namely that there exist v and T s.t.

Y n+1
k4 ko > ——— V(k,k Z 0 0.0.8
okt hol > g Wkk) €27 {0} (0.08)

then, given K € N, there exist ¢,, C' > 0 and a functional ®® € C>=(T?, H'(T?,C))
with the following properties

d

09t u(0)| < C eI (0.0.9)
sup [ 09wt ) — Hol) | e pmay < C 114 (0.0.10)

1l 1 <ex
Theorem 0.0.6. With the same assumptions and notations, if € := ||| <

€, then the solution of (0.0.5) with initial data gy exists up to times t s.t.
t| < € ¢ and fulfills

[P < 26 . (0.0.11)



Part 1

Probabilistic result



Chapter 1

Measures on infinite dimensional
spaces

The contents of this chapter are largely based on some lectures given by
Albeverio in Milan in 2015 and on [1], 33].

In statistical mechanics, to describe a system, moving from detailed infor-
mation about a single particle, to global information, one uses a probabilistic
approach. In particular, in the case of a Hamiltonian system one can use the
Gibbs measure, but in general, in many problems of mathematics, physics
and their applications studied from a probabilistic point of view one can de-
fine different measures on suitable phase-space, so heuristic integrals of the
following form can arise:

cc/e—sq)(”/)f(zy)d/y” (101)
r

where @ is a real-valued function lower bounded; f is a complex-valued func-
tion, 7 is thought to be a member of some space I' “on which the integration
extends”, dv is a heuristic “flat measure”.

If I is finite dimensional, say I' = R”, then dv is thought of as Lebesgue
measure, everything is well known and the measure is absolutely continuous
respect to the Lebesgue measure, instead if I' is infinite dimensional, dy has
no clear meaning. In this first chapter we explain how to give a sense to
such expression and to the heuristic integral in the case of an infinite
dimensional space, since they arise in many areas of mathematics and physics,
in particular in connection with the solution of partial differential equations
like the Schrodinger equation.

In particular, in this first chapter, following [I 33|, we give only some
results without proofs, about the non existence of an infinite dimensional
measure analogous to the Lebesgue measure and about the construction of



abstract Wiener space, to conclude with the presentation of Kolmogorov’s
Theorem about measures that gives us the possibility to give meaning to the
Gaussian measure on H*(T), starting from a sequence of finite dimensional
measures satisfying a suitable condition. This will be an essential point for
the results of the next chapters.

1.1 Difference between Borel measures on fi-
nite and infinite dimensional Hilbert spaces

To construct probability measures in infinite dimensional, the first diffi-
cult is that there is not an analogous of the Lebesgue measure (a o-additive
Borel measure invariant under rotations or translation).

In particular, we study the case of H, a (separable) Hilbert space, with
norm || - ||, scalar product (,) and Borel g-algebra B(JH). First, we recall the
definition of regular measure.

Definition 1. Let H{ be a separable Hilbert space. A Borel measure p on
(FH,B(H)) is called regular if for any B € B(H) we have

p(B) = Inf  pu(U)
U open

and

uw(B)=  sup  p(K).
KCB
K compact

In particular the following holds

Proposition 1.1.1. Let H be a separable Hilbert space. Then any positive
finite measure p on (H,B(H)) is regular.

Proof. See Lemma 26.2 of [13]. O

If the dimension of H is finite, the Lebesgue measure on Borel og-algebra of
H can be characterized as the (unique up to multiplicative constants) regular
measure which is invariant under rotations and translations in H while if
is infinite dimensional, the following result holds (see [II, 33]):

Theorem 1.1.2. Let H be a separable infinite dimensional Hilbert space.
Then there cannot exist a o-additive Borel measure p which 1s invariant
under rotations (or translations) and assignes a positive finite value to any
open ball.

10



Remark 1.1.3. This results highlights the impossibility of the existence of any
rotations or translations invariant regular o-additive Borel measure on an
infinite dimensional Hilbert space. Hence in infinite dimensions there cannot
be a direct analogue of the standard Gaussian measure on R", namely of

ezl

(2m)2
dimensional Hilbert space one have to do some work due to the loosing of

o-additivity.

the probability measure pg(dr) = x € R”. In particular, in infinite

1.2 Abstract Wiener spaces

In the present section we give some elements of the theory of abstract
Wiener spaces.

Abstract Wiener spaces are mathematical objects used to construct a
"good" measure on an infinite dimensional vector-space. Roughly speaking,
they are triples (i, 3, B) where B is a Banach space with norm |- |, H is a
real separable infinite dimensional Hilbert space with inner product (,) and
norm | - || contains in B and i is the inclusion of H in B and it is a function
that takes a cylinder set measure (that we will define later) on H to a true
measure on B.

In particular, we shall see that, given a real separable infinite dimensional
Hilbert space (3, (,),|| - ||), there exists a Banach space (B, |- |) where H
is densely embedded and a Borel measure on B whose Fourier transform is
o(z) = e2I7I” where z € B* C H and ||-|| is the H-norm. Let us introduce
some definitions.

Definition 2. A Gaussian measure on a Banach space (B, |-]) is a probability
measure on the Borel og-algebra on B such that for each z € B*, the random
variable z : B(C) — R has a Gaussian distribution on R(C).

Definition 3. A cylinder set Z C H of a separable Hilbert space H is a set
of the form
Z ={xeH, st. PreF}

with P : H{ — JH is a projection operator on H with finite dimensional range,
i.e. PH =R"(C") for some n € N, and F' € B(PH) is a Borel set in PH. In
the following we shall denote by o(Z) the o-algebra generated by all cylinder
sets.

Definition 4. A cylinder measure on H is a positive and finitely additive
set function v defined on the o-algebra (2) of cylinder sets.

11



Let us consider the cylinder measure v on I given on the cylindrical sets
of J by the following formula

v({z € H, sit. Pr e F}) = (2n)"2 / e 2P’ q(Px), F € B(PH)

v is called standard Gaussian measure associated with FH.

Remark 1.2.1. By Theorem if I is infinite dimensional, then the stan-
dard Gaussian measure associated with H is not o-additive on o(Z), so we
cannot work on H but we need to enlarge the space.

Definition 5. A norm |- | on H is called measurable if for any € > 0, there
exists P.: H — H s.t.

v({x € Hst. |P(z)| > €}) <e, (1.2.1)

for any P : H — 3 s.t. its range is orthogonal to that of P. in (X, (,)).

Given | - | a measurable norm, we can construct B the Banach space as
the completion of H in the |- |-norm and ¢ is the inclusion of H in B and it
is continuous. Analogously, the dual map * : B* — H*, which is given by
restriction, i.e. i*(z) = x5, is continuous. Identifying JH = J{* we have the
following chain of densely embedded subspaces

B* C H C B.

The triple (i, H, B) is called an abstract Wiener space.
Let us consider a particular kind of cylinder sets in H. Given yy, ..., y, €
B* and F € B(R"), let Zp(y1, ..., yn) be the subset of H

Zr(yiy ooy yn) i={x € Hst. (i"yi(x),...,i%yn(2)) € F}.

Analogously the subset of B defined as

{z € Bst. (yi(z),...,yn(x)) € F}, (1.2.2)

is called a cylinder set of B.
The following holds:

Theorem 1.2.2. The o-algebra on B generated by the cylinder sets of the
form coincides with the Borel o-algebra on B. Moreover the Gaussian
measure (1 on B is an extension of the standard Gaussian measure v on H
in the sense that

p{z € Bl(wi(2), -, yn(@)) € F}) = v({z € H|(yi(x), ., 7"ya(2)) € F}).

12



1.3 Kolmogorov’s Theorem

In this section, we present Kolmogorov’s Theorem, that is one of the
basic tools for the construction of probability measures on infinite dimen-
sional spaces and that guarantees that a suitably "consistent” collection of
finite-dimensional distributions will define a unique probability measure on
an infinite dimensional space. The original version of this theorem was es-
tablished by Kolmogorov in the case where I' = R%7) but it was later gen-
eralized to "projective" limit spaces. We want to present here a sufficiently
powerful version of the theorem but before we need a little introduction. Let
Q = RO = {~:[0,7] — R} be the set of all maps from the interval [0, 7]
into R and let F([0,77]) be the set of all finite subsets of the interval [0, 7.
We introduce in F([0,7]) the partial order relation < defined by

J<Kif JCK,

as a consequence of definition of F([0,T1), for any J, K € F([0,T1]), there is
an H € F([0,T]) such that J < H and K < H. Given a J € F([0,7]) , with
J={ti,ta, ..., tn}, 0 <ty < ty... <t, <T, let us consider the set R/ of all
maps from J to R. An element of R” is an n-ple (v(t1),7(t2), ..., v(t,)) and
clearly R’ is naturally isomorphic to R”, n being the cardinality of J. Let us
consider on R’ the Euclidean topology and the Borel o- algebra B(R”). For
any J € F([0,T]) let us consider the projection IT; : Q — R which assigns
to each path ~ €  its values at the points of J:

Y= HJ(V) = (7(t1)77(t2)7 77(tn))7 Y S R[QT}? J = {t17t27 7tn}

Let us consider the cylinder sets, i e. the subsets of Q of the form IT,'(B,)
for some J € F([0,7]) and some Borel set By € B(R). Let C denote the
set of all cylinder sets, and let A be o-algebra generated by the cylinder sets.
Given a measure p on (2, A), for any J € F([0,77) it is possible to construct
a measure gy on (R7, B(R7)) as py := I;(u), i.e.

/LJ(BJ) = /,L(H;l(BJ>, BJ S %(R‘U

Given two elements J, K € F([0,T]), with J < K, let II¥ : RX — R’ the
projection map, which is continuous hence Borel measurable. The measures
pyon (RY B(R7)) and g on (RE, B(RE)) are related by the equation p; =
1% (ux ), that means

ps(By) = px ()7 (By)), By € B(R), (1.3.1)

as one can verify by means of the equation I1; = IT¥ o .

13



Definition 6. A family of measures {1} sex(j0,77) satisfying the compatibility
condition ((1.3.1)) is called a projective family of measures.

However, we are interested in the converse problem, in fact, knowing
that there is a family of measures {17} jeF (o) satisfying the compatibility
condition (1.3.1)), we want to construct a measure y on (RO A) such that
for any J € F([0,7]) one has that pu; = II;(u). Kolmogorov’s Theorem
guarantees that it is possible and that there exists an unique measure p on
(RO A) such that for any J € F([0,T]) one has that pu; = I;(x). So
the theorem guarantees that it is possible to construct a measure on the
(infinite dimensional) space @ = R by means of its “finite dimensional
approximations”.

Theorem 1.3.1 (Kolmogorov’s Theorem). For any projective family {1.;} ses (o)
of probability measures on (R7, B(RY)) there exists a unique probability mea-
sure ju on (RIOT1 A) such that

py =Ty (p). (1.3.2)

The measure i described by Kolmogorov’s Theorem is said the projective
limit of the projective family {js}.
Remark 1.3.2. The result of Kolmogorov’s Theorem can be generalized in
several directions. In particular, an other version of the Kolmogorov’s The-
orem can be formulated as

Theorem 1.3.3. Suppose that for each n > 1, u, is a Borel probability
measure on R"(C") s.t. for every n,k > 1 and every Borel set E C R"(C")
one has
Hn+k (E X Rk(ck)) = Mn(E)-
Then there exists a unique probability measure i on the product o-algebra of
R>°(C*) such that for any n > 1 and any Borel subset E C R"(C"), the
measure
u(E x R(C) x R(C)....) = pn(E).

Remark 1.3.4. This last formulation of Kolmogorov’s Theorem highlights
the point of view we will use in the next section to construct some Gaussian
measures on H*(T).

We conclude this section with the description of an important class of
functions on RI®?! and of their integral with respect to the measure p de-
scribed by Kolmogorov’s Theorem.

Definition 7. A function f : RTI — C of the form
f() = g(y(tr), -,y (), v € RO, (1.3.3)

14



with 0 <t < ...<t, <T and g : R* — C is a Borel bounded function, is
said cylinder function.

In particular, if J = {ty, ..., ¢, } the cylinder function can be written
as f = g oll;. This representation provides an integration formula, indeed
the integral of f with respect to the measure p, the projective limit of the
family of measures {p,}, is given by:

/R[O’T] f()du(y) = /R[O’T} g o IL;(v)du(v) :/ 921, oy ) dpi (1, oy ).

R

1.4 Gaussian measures on H*(T)

In this section we analyze more in detail the Gaussian measure on H”.
We consider
ditg o = 71 5lltl%e dipdi.

By Kolmogorov’s Theorem, this can be seen as projective limit of

d#’g,o‘,N _ Z;{le—%HPSNwH%m dPSNwdpgN@/_J
= Zy" [T e dyndii.
[n|<N

However we can not take a limit as N — oo in H?(T). In fact we have the
following

Lemma 1.4.1. Let s < 0 — %, M > N >0, then

E [||P<yt — P<yt]

7] < CON?, (1.4.1)

where a = 2(0 —s) — 1 > 0.
Moreover, if s > 0 — 3, E[||[P<yt) — P<yt)]

2] is infinite.
Proof. Using Fourier coordinates, we have

2] = Jewo 2on<ipi<n k2 g |2e™ 2ok K510 iy,
"ol f(Coo e~ >k k%'wk'dekdd_}k

E [|| P<pt> — P<nt)|

Using the substitution v, = (1+—V12;’;%ei9k and the independence of the vari-

ables, one has that E [| P<p¢ — P<yv|

%5] 1s equal to

ZN<|k|§M f2=o) fR+ zpe *dzy, Hj;ék fR zje I dz; _ Z E26579) o

A zie %dz;
H] fR+ J J N<|k|§M

15



if and only if s < 0 — %

Moreover, if s < o — %, then one has ZN<|k|§M k*5=0) < C'N®, where

a=2c—s)—1>0. O

So, if s < o — 3, then y,, is a probability measure on H*(T).
Remark 1.4.2. Lemma [1.4.1] implies that

[ P<ap — Pen|

Hs:OO

only on a set of measure 0, so in particular this means that the subset of
C* of sequences {1} = 1 that are not Cauchy sequences has measure 0. In
particular this means that
fg,o(H™) =0
for any s; > o0 — %
The following lemma helps to understand well what is the support of 14 .

Lemma 1.4.3. Lets<a——,a< , then

o (e > K)) < €t

for all K > 0.
Proof.

e (0l < K}) = / Aty < / e gy
(s> K} e
Jooe el e =11 5e dapda)
T o e e gy
f(coc e S (1+k2)° (17W)ij‘2dwd&
a Jo € TROHRTIAE G
H fR+e 1 W)dezk
fR+ e*tdz,
_H/ 1 (1+k2)‘7 s) dek
R+

- 1;[ (1 T k2§j—s - 2a) = Cl(s,0)

where in the fourth line we use the substitution v, = %ewk, Zr €
R*, ), € [2m,0) and the fact that [p, e *dz = 1. O

16



Remark 1.4.4. From the previous lemma, if K goes to +00, we obtain that

1

for any s <o — 3,

tgo ({I[] s = +00}) = 0.

In particular, we obtain that, for any s < o — %, Hgo (H®) =1, so the support
of pgo is H® for any s < o — %
Remark 1.4.5. One can describe the definition of Gaussian measure on H*(T)

in terms of Wiener space, so H = H'(T) and B = H*(T) with s < 3.

17



Chapter 2

Invariant measures for NLS

In this chapter, following the construction of Bourgain in [16], we con-
struct the Gibbs measure associated to (0.0.1]), showing that it is invariant
under the dynamics of the flow of (0.0.1)).

The proof of the invariance of the measure is complicated and the first
step is the introduction of a formal definition of the ‘nvariance of a measure.

To this goal, initially, we consider a finite dimensional Hamiltonian system
on R?" with Hamiltonian H(p,q) = H(p1,...,Pn, q1, -, qn)- The equations of
the motion are

pi = oH
ooty j=1,..n, (2.0.1)
45 = " op;
or in a compact way
= X(x)

where © = (p,q) and X(z) is the Hamiltonian vector field. Since X is an
Hamiltonian vector field one has

"o 0
divX = [—X + X n}
; (9pj J (9qj Al

_y [ia_H_ia_H}_o

By Liouville’s theorem, we know that %Vol = divX, so in particular, we
obtain that d%Vol = (0 that means that the Lebesgue measure

dpdq = | [ dp;dg;

Jj=1

18



is invariant under the dynamics of (2.0.1]). However, if we consider a different
measure this way of proceed fails and to study the evolution of a measure
under the dynamics it is convenient to introduce the following definition.

Definition 8. Given a measure space (Y, u), we say that the measure is
invariant under a p-measurable transformation 7 :Y — Y if y = po T,
i.e. for any pu-measurable set A C Y one has u(A) = u(T71(A)).

In particular, defined the Gibbs measure associated to (2.0.1)) as
dus.g = Z e PHPDdpdq (2.0.2)

where [ is the inverse of the temperature, we have

Lemma 2.0.1. pug g is invariant under the dynamics of (2.0.1)).

Proof. Denoting by ®(t) the flow of (2.0.1) at time ¢, since £ H = 0, for any
p-measurable set A C R?" one has

toa,i (D(—t)A) =pp u {(p. q) € ®(—t)A}

“tup (OO, ) € A} = 27 [ MO dy(t)dg
A

_g / e~ PH @O0 4y (0)dg(0) = g 1(A)
A

where in the last line we use the invariance of H and of Lebesgue measure. [

Remark 2.0.2. With the same reason, in finite dimension and with a reason-
able F' conserved under the dynamics of (2.0.1)), also dur = Z e P9 dpdq
is tnvariant.

Since the invariance of the measure depends on the invariance of the
Hamiltonian H, a natural question is if one can construct also in infinite
dimension some measures that are invariant under the flow of an Hamiltonian
PDE. In finite dimension this is trivial due to the invariance of the Lebesgue
measure, while in infinite dimension this is not so easy since there is not an
analogous of the Lebesgue measure.

2.0.1 Construction of Gibbs measure for defocusing NLS
on the torus

System ((0.0.1)) is a Hamiltonian system with Hamiltonian given by

H=Hy+P (2.0.3)
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where

1 2
o= [ Vo),
0
q Ca 27 ‘
P:ZH% Hy; 3:2_; ; [ (2)[¥ de.

=2

Note that the L%-norm, i.e. fo% W (x)|*dz, is conserved by (0.0.1). The flow
of is almost surely globally well-posed on any one of the spaces H*
with s fulfilling § — qul < s < i (see e.g. |16, [18], see also [25]). We fix s
in this range once for all. In analogy with the finite dimensional case, the
Gibbs measure associated to (0.0.1)) is formally defined by

o BHW)+E1WI2,)
Z(B)

dpg = dwdﬁz, B>0, Z(B):= /S e—ﬁ(H(’l/J)+%WHiz)d¢dd_J

(2.0.4)

where [ plays the role of the inverse of the temperature.

Remark 2.0.3. Instead of the Hamiltonian H, we consider the function H (y))+
l1¥[132 to avoid the problems at frequency 0.

From now on, we shall work using the Fourier coordinates. In these
coordinates, H, becomes

1
Hy =5 zk: k2| 2.

Define the H'-norm:

1l =D (L + k)l

k

then we can express My + 3||¢||7. = 3[v[|%: and we formally defined the

(& 1

g
with

Zy(8) = /S €f§||w||§{1d¢d@;‘

To give sense to this expression one can proceed as in Section[I.4], seeing
it as a projective limit of finite dimensional Gaussian measures

o~ 5 I1P<n ()2,

d . e~ % Siwren (1HF)
Hb.gN == Zg7N(5)

Zgn(B)

dPSNd)dPgN@Z) =
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Zy(B) = /P (H)e—ézM(HkQ)W [T dvdi.
<N (H?®

< Ik|<N

where Pey ({¥k}rez) = {¢k}|k|§N-
Now, we can express (3.1.2)) as

o~ B(PHE (VY @) P+ (@) P)dz)

= Z(® )
c—BP W78 )
=23 LDy Wdd = P G g rasdbdb. (200

As in section one can prove that the support of the Gaussian measure
1g,5 is H*(T) for s < 3, by Sobolev’s inequality, we know that 1) € LP(T) a.s.
for any p < oo, so in particular, due the definition of P and the fact that P
is a positive function, one has

0<e PP <1 as. (2.0.7)
Moreover, one can prove the following lemma which proof is in Appendix [A]

Lemma 2.0.4. There exist 5*,C > 0 s.t. for any B > B*. one has

1> / e Py, 5 > e2C. (2.0.8)

In particular, since st e PPdu, 5 = ZZQ((%)), this means that if g is suffi-
ciently large

Zg(ﬁ) 2C
L= 7 5

so, using (2.0.7) and (2.0.9), we can conclude that ug is a good probability
measure on any H°, s < % for 3 large enough.

(2.0.9)

Remark 2.0.5. If P would not be a positive function, we could not obtain

estimate (2.0.7) and (2.0.9). In that case we need to introduce an invariant

cutoff in L2-norm to ensure that e#FZ) ¢ L'(uy5) and so to define the

) Z(B)
(Gibbs measure.

One can get the following Lemma, which proof is in Appendix [A] that
shows how to control the Gibbs measure of set A with its Gaussian measure.

Lemma 2.0.6. There exist 3*,C > 0 s.t. for any B > B* and for any
function iy g-measurable set A C H®, one has:

5(4) < pys(A)eC

We emphasize that the constant C is independent of 8 and q, where ¢ is
the degree of the polynomial F' (see (0.0.1])).
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2.1 Truncated approximation to NLS and in-
variance of the Gibbs measure

After giving sense to the definition of the Gibbs measure, in this section
we revisit some results of [16] to prove that us is an invariant measure under
the flow of (0.0.I). The main idea of this section is to use a local well
posedness of the flow of in H* space with s <  to construct a "finite"
dimensional system that approximates , it will be local well posed
and the associated "finite" dimensional Gibbs measure would be invariant.
Using this fact, we can obtain the almost sure global well posedness of the
"finite" dimensional system and finally the almost sure global well posedness
of and the invariance of ug under its dynamics.

Using Fourier coordinates, v, = \/%7 fO%w(a:)e_ikmdx, fixed N € N, we
can denote by P<y the Dirichlet projection onto the frequencies {|n| < N}
and set P.y :=Id — P<n. We denote by

Ey = P<yL*(T) = span{e™ : |n| < N},

Ex = PoyL*(T) = span{e™ : |n| > N}.
We introduce now the following "truncated" system (FNLS)

i = —ApY + Pey (F' (|Paxt™[") Payt™), w €T, (2.1.1)

that is an approximation of ((0.0.1).
Remark 2.1.1. System (2.1.1)) is not a finite dimensional system. It is an
Hamiltonian system with Hamiltonian Hy given by

Hy=H,+ P (2.1.2)
where
1 2 N )
m() =5 [ 190 @),
0
B 7. B Co 2T .
POOM) = 32 Ay 0¥), Al0™)i= 2 [ Pexe(@) e
j=2 0
and the equation of motion are given by YN = —i%]—g.

One can get the following result about local existence of the flow of (0.0.1)
and (EL1)
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Proposition 2.1.2. [Prop 3.1 of [19] (N. Burq, P.Gérard and N.Tzvetkov)]

Let
1 1 - <1
— - <5< -,
2 qg—1 2

Then, for any vy € H*(T), there exists T > 0 s.t.

»(0, ) = o(z)
and
N = —APN + Py (F' (|Pentp™|?) PeyypN), z €T,
N (2.1.4)
(0 [t=0 — Yo

have respectively a unique solution
o™ € O([-T,T), H*(T)) N L([-T, T}, L*(T))

for some p > q— 1.
Moreover, there exists 0 = 0(q) > 0, s.t., given K > 0, for any vy s.t.
|ol|l s < K, one has that the corresponding solution (t, x) satisfies

[(, )|
1™ (¢, )]

H(T) < 2K

Jor any [t| <T ~ 5.

In the following we will denote by ®%,, ¢ and by %, s respectively the

flow of (0.0.1) and of (2.1.1]).
Moreover, we can see (2.1.1) as an infinite dimensional system of ODEs

for the Fourier coefficients {1 }rez, where the high frequencies {|n| > N}
evolve linearly since they evolve according to the following equation:

YN = —ik%YN, k| > N. (2.1.5)
One can introduce the following finite dimensional system of ODEs:

i = AN + Pey (F' (|P<nd™?) Payg™), 2 €T, (2.1.6)

with ¢V = Poyy, ie. ¢ =0 for any |k| > N.
This is a Hamiltonian finite system with Hamiltonian Hy ;o given by

HN,low = H2,low + P (217)
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where

2
Ha o (¢ = —/ (Vo™ (z)2da,
0

25(0"), Haj(¢N) := &/Qﬂ\P<N¢N($)|2jdﬂf-
J ) J 2] 0 S

We denote by ®ryrs,,, (t, 7) the solution maps of (2.1.6)) sending initial data
at time 7 to solutions at time ¢, for simplicity, we set

t —
(I)FNLSlow T (bFNLSlow <t7 O)

Since ®rnrs,,,, (t,7) preserves the L2-norm (|[¢V[|7. = 32 <y |64 [?) that is
the Euclidean distance on CV, the flow of (2.1.6) is globally well posed.

Remark 2.1.3. Since P.y9Y evolves linearly, the flow of system (2.1.5)) is
globally well posed, so in particular, we have that the flow of (2.1.1)) is globally
well posed for any N € N and in particular we have the following relations:

t — Pt t —_ ot
Prnrs = Prnis,, P<v + Pon and Pan®py g = Prnpg,, P<n-

However, given vy € H?, denote ¢V (t) := ®pnrs(t)to, there is no uniform
control in N on ||y ()| gs for any time.

The next lemma, that will be proved in Appendix B} shows how the
truncated system (2.1.1)) approximates system (0.0.1) as N goes to +oc.

Lemma 2.1.4. [Approzimation Lemma/
Let K > 0,7 > 0,v9 € H®, with ||[¢o||lg: < K. Suppose that for any N,

PN (t) = By g0 satisfies
[P nrs (o)l < K, |t| <T.

Then, there exists an unique solution (t) := P, by to (0.0.1) on [T, T]
with initial data 1g. Moreover, given 0 < s < s,

[ (t) = ™ (1)]

Using the definition of Ey and Ey, one can write the Gaussian measure
pigp on L*(T) as

Hs1 — ||(I)§VLS¢0 - (I)%NLS¢O| g1 — 0, as N — oo. (2.1.8)

Mg, = HgpN & ﬂ;ﬁ,N (2-1-9)
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where 143 n and ,u;@ n are the marginal distribution of p, g restricted onto
Ex and Ex respectively. So, formally, we can write

€_§”P§N¢“?{1

_B 2
d,LLg“BJ\]' = Z—dP§N¢7 Zg,N(/B) = / e 2||P§N¢“H1dPSN77Z)
g7N(/B) CcN
(2.1.10)
_B 2
dut B s IP> Nl ip ) B 5Pl
Mg”&]\[ - s >N¢7 Zg,N(ﬁ) = e 2 zH d P, NQ/}
Zgn(B) Py (H?)
(2.1.11)

We consider now the finite dimensional system (2.1.6), the associated Gibbs
measure [ig now 1S given by
o B(P@) 3119112 )
ZN,low(B)
ZN,low(ﬁ) — / —B(P(6)+3 ”¢HH1)d¢d¢ (2.1.13)
CN

dodo, B> 0, (2.1.12)

d/JJB,N,low =

Since P(¢) + 1(|[1%: = Hyow(¢) + 1[|¢[2. is invariant under the dynamics
of (2.1.6), by Liouville’s Theorem, one has that 115 n 0w 1S iInvariant under the
flow of (2.1.6). Moreover, pi 5 y is invariant under the flow of since
P. n1) evolves linearly and in particular ¢ (£)]? = [ (0)]? for any |k| > N,
t>0.

We can now define the Gibbs measure for the truncated system (2.1.1)) as

BN = HB.Niow @ fig g N- (2.1.14)
S0, explicitly, we can express dug n in the following way

o B(PW)+] [T (0@ +(@)?)do)

dppn = B dipdi)
_e—ﬁﬁ’(w e 2Vl =5l P 0 Zo(B) _
where
Zn(B) ::/g BPWIT3IIG) dopi (2.1.16)
_ / BT 3 I3 1P P e 4112 ) g i (2.1.17)

As in the case of g, with the same reasoning, we can obtain the following
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Lemma 2.1.5. There exists constants 3*,C > 0 s.t. for any 8 > 5* and for
any N € N, one has

1> / e PPdpg s > 2. (2.1.18)
In particular, this means that for any N € N
Z4(B) :
1< 5L < e, 2.1.19
Zv(5) (2:1:19)

so we can conclude that pg n is a good probability measure on any H*® for
any N € N.

The proof of this Lemma and of the next Lemmas of this section are
contained in Appendix [A]

Remark 2.1.6. Using the definition of pg y, the invariance of g n 0 under

the flow of (2.1.6) and the invariance of y 5 v under the flow of (2.1.3)), we
conclude that pg v is invariant under the flow of the truncated system (2.1.1)).

Lemma 2.1.7. There exist B*,C’ > 0 s.t. for any B > B*, for any N € N
and for any iy g-measurable set A C H®, one has:

pp.N(A) < ngg(A)eC.
We emphasize that the constant C' is independent of 3, N and ¢, where
q is the degree of the polynomial F' (see (0.0.1)).

Lemma 2.1.8. There exists C' > 0 s.t. for any €, > 0, there exists Ny € N
s.t. for any N > Ny and any pg-measurable set A € H*(T), one has

. (A) = pa(A)] < (7). (2.1.20)

2.1.1 Almost sure global well posedness for NLS

First, in this section we present a result due to Bourgain in [I6] that
shows that the flow of (2.1.1)) is well posed except for a set of small measure,
using this result we get the pg-almost sure global well posedness for the flow

of (0.0).

For any M > 0, we denote by

By = A{¢ € H*(T) : [|¢|

and we have the following Lemma, which proof is in Appendix [A]
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Lemma 2.1.9. For any s; < % there exists a constant C' > 0 s.t. for any
5>0,a<%,M>0, one has

ps ({11

So, we get the following Lemma about the well posedness of the flow of
(2.1.1)) except for a set of small measure.

Lemma 2.1.10. For any T < oco,e > 0, N € N, § > 1, there exists Qy =
QOn(T,€) s.t.

gor > M}) < C(sy)e M,

o s nN(02Y) <e
o For 1y € Qy, there exists an unique solution Ly (o) to (2.1.1) s.t.

log% ?
e S 3 |t < T (2.1.21)

We emphasize that estimate (2.1.21)) us independent of N.

19515 (o))

Proof. From local theory, there exists § = 6(q) > 0 (g is the degree of the
polynomial F' (see (0.0.1)))) s.t. for any M > 0 and for any initial data
Yo € By one has that @4, o(vo) and Py (o) are locally well-posed on
[—0,6], 6 ~ (1 + M)~? uniformly in N (see Prop. and Prop. 3.1 of
[19]). In particular we know that for any N € N and for any ¢t € [0, 0],
Oy 15(Y0), Ppnps(tho) € Bau

We define the set

T )
Q=N ®zs (Bur) (2.1.22)

So
(] ‘
HB,N Qy) < HB,N ((D%’NLS (Bzcw)) )

=[5

>[5

using the invariance of the measure, one gets

s (Penrs (Biy)) = nsn (Biy))

so in particular

C T C 5 T C
pan () <2 [3] pg.n (Byy) < 2e€ [ﬂ tg,5 (Bis)

T
<2¢C [5] e~ M8 < OB (2.1.23)
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where in the first line we use Lemma and in the last line we use Lemma
2.1.0
Choosing

one obtains that
pan () <e

By construction, we have that for any ¢y € Qp,

j T
) .
107, s ()l < M, j = 0,41, ..., % H |

so, by local theory, we have that for any vy € Qy,

logL\?
195 (t0) |72+ §2M~2< [Jf) < T

]

Using this result and the Lemma|2.1.4] one can obtain the following result
that gives the well posedness existence of the flow of (0.0.1)) except for a set
of small measure.

Lemma 2.1.11. For any T < 0o,e > 0, 8 > 1, there exists Q = Q(T,€) and
C > 0, independent of €, 5, T. s.t.

o 1p(82) <e.
e For g € Q, there exists an unique solution v to (0.0.1) on [=T;T] s.t.

1
log Z '\ ?
e < <Oiﬁ> < (2.1.24)

1215 (o)l

Proof. Let Qn(T,€) as in Lemma [2.1.10, By Lemma [2.1.10| one has

125 Ls(¥o)l

for any |t| < T and any ¢y € Qn(T,€). By Lemma [2.1.4] given 0 < s1 < s,
there exists NV; € N s.t.

1@ s(th) = Phyrs (o)

H5§2M

JECERSS ]-7 |t| S T7
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for any N > Nj. So, in particular, one has

log L 2
[P rs (o) s < M ~ ( 56) Lt < T, (2.1.25)

Moreover, by Lemma [2.1.8 and using the fact that g > 1
s (Q5(T,€)) < pan (5 (T €)) + ee€ < 2eeC. (2.1.26)

]

Using this result, we obtain the following theorem that gives the piz-almost
sure global well posedness for the flow of (0.0.1).

Theorem 2.1.12. For § > 1, system (0.0.1)) is pg-almost sure global well
posed.

Proof. Given € >0, let T; = 27, ¢; = 5.
We define
Qj = QT%EJ, Qe =N Qj. (2127)

7=1
Then one has

® g Q) < E;}; Hs (Qj) < E;}; 2% =€

o If ¢y € (), then there exists an unique solution ¢ on [—Tj,T}] for any
j € N, so in particular we have global solution for any 1, € €.

In particular, denoting by
Y= Ue>OQe7

one has
® g (EC) = inf5>0 e = 0.

o If ¢y € X, then ¢y € () for some € > 0, so, in particular, there exists a
unique global solution v (t) with 1,_, = .

]
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2.1.2 Invariance of Gibbs measure under NLS

Finally, always following [I6] and some lectures by Ho, using the ps-
almost global well posedness of the flow of (0.0.1), we obtain the main result
of this section about the invariance of pz under the flow of (0.0.1]).

Theorem 2.1.13. The Gibbs measure pg is invariant under the flow of
[0.0.1).

Proof. Since pg (X¢) = 1 and the flow of (0.0.1)) is reversible, to obtain the
invariance of the Gibbs measure under the flow of (0.0.1), it is sufficient to
prove that for any pg-measurable set A C ¥ and for any ¢ € R, one has

1s(A) < pg ((I%VLS(A)) : (2.1.28)

We denote by F := {F C H* F closed }.
We consider a pig-measurable set A C ¥, by inner regularity, there exists
a sequence {F,} € Fs.t. F,, C A and pug(A) = lim,, 0 us(F,), namely

p5(A) = sup pig(F).
FCA
Feg

This implies that to obtain the invariance of the measure it is sufficient to

prove (2.1.28) for closed sets. In fact if (2.1.28]) holds for closed sets, then

pp(A) = lim pg(F,)
<limsup pg(F,)

n—o0

<limsup pg (Y 5(Fn))

<ps (CDIEVLS(A))

where the last line is true since F,, C A. Given a closed set ' C H*® and
s<o< %, we denote by

Kn:={¢y e F:|¢llur <n}.

Then K, is a compact set in H®. We have
p(F) = lim pug(Ky)

<limsup pg(Ky)

n—0o0

<limsup pg (P g(Ky))

n—o0

<wgp ((I)I;VLS(F))
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where the last line is true since K,, C F, so to prove the invariance of the
Gibbs measure, it is sufficient to prove for compact sets.

Let K be a compact set in H®, bounded in H?, ¢ < s. By Lemma [2.1.8
we know that pgn — pg but, by Portmanteau’s theorem, this implies that,
for any € > 0, one has

pg (Pl ps(K) + Be) > limsup pgn (P s(K) + Be) . (2.1.29)

So, using local theory and Lemma [2.1.4] we get that for |{| < 1 and any
0 < €1 < 1, there exists 0 < e < 1 and Ny € N s.t. for any N > Ny, one has

Prnps (K + Be,) COpyps (K) + Be
CPl, 5 (K)+ B, (2.1.30)

where the first inclusion is true by local theory, while the second is true by
Lemma So, in particular we get

Hg,.N (CD%NLS (K + B€1)) < Hg.N (¢§VLS (K)+ Be) ;

but using the invariance of ug y respect to @k, o, we get also

paN (K + Be,) = pgn (CD%NLS (K + B€1)) < Hg.N (®§VLS (K)+ Be) .
(2.1.31)
Hence,

ns (K) < s (K + Bo,) <liminf s (K + B.,)
< limNinf 1B,N (‘I)%NLS(K) + B€)
< limNsup HB,N ((I)%NLS(K) + BE)
<pg (Pyps(K) + Be)

where we get the third inequality by (2.1.31) and the last inequality is true
for (2.1.29)). So, finally, sending € to 0, we get

pp (K) < pg (q)?VLS(K)) : (2.1.32)

So, we obtain the thesis for compact sets, so, due to the previous observations,
we get, the thesis for closed sets and then for any measurable sets in H*. [
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Chapter 3

A large probability averaging
Theorem for the defocusing NLS

Introduction to Chapter

This chapter is devoted to the proof of Theorem and we will follow
[10]. For completeness, we report Theorem [0.0.1]

Theorem 3.0.1. There exist f* > 1,C,C" > 0 s.t. for any m,m2 > 0, 5

fulfilling
., C
B > max {5 ,ﬁ}
m' ns

and any k € Z, there exists a measurable set Jx C H® with pg(dy) < n2 s.t.,
if the initial datum ¥(0) € Jx then the solution exists globally in H® and one
has

1
<mo VI < CmymptTt o= (3.0.0)

'wk () ~ [:(0)P

1+k2)B

Remark 3.0.2. The expectation value of ¢ is C1/+/(1 + k2)/3, with a suitable
constant (.

Remark 3.0.3. This results shows that in Gibbs measure, for large 3, with
high probability, the single k-action changes very little during the motion
respect to its expectation value and for large time.

In fact, for example, if we consider

m=mn'"and B = (C+ 1) % > g%,
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we get that, for all initial datum (0) € Ji, with dJe) < w, one has
g Hp\dx 31720

(C + 1)1/40
51/40

- , V|t < C'p% . (3.0.2)

(1+%%)B

‘ ()2 — [t (0)

Corollary 3.0.4. Under the same assumption of Theorem and for any
a < 1/2, there exists a measurable set I, C H® with pg(3¢) < na s.t., if the
initial datum 1 (0) € I, then the solution exists globally in H® and one has

‘Iibk(t)IQ — [k (0)?
[(1+x2)e5] ™

1
107
(3.0.3)

Corollary controls all the actions at the same time at the prize of
giving a slightly worst control on the actions with large index.

<m , V]t\ < C/nl\/%ﬁ%K , Yk € Z, S

Theorem is essentially an averaging theorem for perturbations of a
linear resonant system.

We recall that previous results giving long time stability of the actions
in have been obtained in [3] and [I7]. The first two results allow to
control the dynamics for exponentially long times, but only for initial data
close in energy norm to some finite dimensional manifold, so essentially for
a very particular set of initial data. Bourgain [I7] was able to exploit the
nonlinear modulation of the frequencies in order to show that for most (in a
suitable sense, not related to Gibbs measure) initial data in H*® with s > 1
the Sobolev norm of the solution is controlled for times longer then any
inverse power of the small parameter.

Nothing is known for solutions with low regularity as those dealt with in
the present thesis and in [10)].

Our result can be compared also to the result of Huang Guan [28], who
proved a large probability averaging theorem for perturbations of KdV equa-
tion. We emphasize that the result of [28] deals with the quite artificial case
in which the perturbation is smoothing, namely it maps functions with some
regularity into functions with higher regularity. In our case we deal with the
natural local perturbation given by a polynomial in ). Furthermore [28] only
deals with smooth solution. We also recall [29] in which a weaker version of
averaging theorem is obtained for solutions of some NLS-type equations. In
that paper the initial datum is required to be more regular that in Theorem
and the times covered are shorter.

Finally we mention the papers [8, O [4] which deal with very smooth
initial data and perturbations of nonresonant linear system. These results
are clearly in a context very different from ours.
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As anticipated in the introduction, first, we develop a formal scheme of
construction of the approximate integrals of motion which is slightly different
from the standard one. This is due to the fact that the linearized system is
completely resonant and we have to find a way to use the nonlinear modula-
tion of the frequencies in order to control each one of the actions. We have
also to restrict our construction to the region of the phase space in which the
frequencies are nonresonant. This is obtained by eliminating (through cutoff
functions) the regions of the phase space where the linear combinations of
the frequencies that are met along the construction are smaller than §, where
0 is a parameter that will be determined at the end of the construction.

Once we obtained a function ®,(¢)) close to |1)|* which is expected to
be an approximate integral of motion, we need to estimate its derivative in
L*(p15) showing that it is small. To this end, we first recall that all the
estimates can be done by working with the Gaussian measure associated to
the linearized system, then we introduce the class of functions which will
be needed for the construction. Then we show how to control the L?(iup)
norm of such functions. Essentially using the decay of the Fourier mods of
functions in the support of Gibbs measure, we show that the integral of a
function of our class on the resonant region is small with 6. Then we choose
§ to minimize the L?(ug) norm of ®,. Finally, using the invariance of Gibbs
measure, we prove Theorem [0.0.1]

3.1 Preliminaries

We recall that the system (0.0.1)) is a Hamiltonian system with Hamilto-
nian H given by

H=H,+P (3.1.1)
where
1 27 )
Hy=3 [ Vo),
0
q Ca 21 '
P= ZHZja Hyj = i [ (x)[¥ de.
0

j=2

We consider the Gibbs measure p5 associated to this Hamiltonian, which
is known to be invariant with respect to ®%;, ¢ ([16, 30, 39, 38]) and that is
formally defined as

o BHWT3V]2,)

Z(B)

dug = dpdi, >0, Z(B):= / 6—5(H<w)+éuwuiz)d¢d@

(3.1.2)
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where [ plays the role of the inverse of the temperature.
Given a function f : H® — C, f € L*(H*, ug), we define its average and
its L?-norm with respect to the measure ug as:

(fy = [ fdus,
HS

1, = [ 1P,

Remark 3.1.1. From the invariance of 113, one has that the average (f) and
the L*norm | f||,, of the functions are preserved along the flow, namely

(fo®irs) =(f), lIfo ¢§VLS”uB = Hf”lw for any ¢.
Given a function f: H® — C, we denote by

112, = / FPdugs
HS

its L?-norm respect to p, 5. From now on, we shall work using the Fourier
coordinates. The following lemmas will be proved in Appendix [A]

Lemma 3.1.2. There exist 3*,C > 0 s.t. for any B > B* and for any
function f € L*(H®, uyz), one has:

1F 1Ly < N fllg."

We emphasize that the constant C' is independent of 3 and g.

Lemma 3.1.3. For any % <8 < %7 there exists Cypp, D' > 0 s.t. for any
B >0 and any function f € L*(H*, ), one has

Hf”y,ﬁ Z 6_0257517qmaxj ch/j

IX (il <53,

where x (1 (V) is the characteristic function of the set U.
The next lemma shows that every moment of p5 is well defined.

Lemma 3.1.4. There exists * > 0 s.t., for any s; < %, neN, > 5% one
has

115 € LHH?, 1g) N LHH®, 1g,5).
Finally, for the special case of the function [¢x|?, that is the k—action of
the linearized system, we have the following lemma.

Lemma 3.1.5. There exists 5* > 0,C > 0 s.t. for any 5 > B* s.t.

C
I, > 5y

35



3.2 Polynomials with frequency dependent co-
efficients

In this section we introduce a class of function on H*® which will be stable
under the perturbative construction and we prove some results needed for
the rest of the proof.

Definition 9. Let By, By be two Banach spaces, we say that F(y) : By — By
is a polynomial of degree n if there exists a n-multilinear form F' s.t. for any

y € By, one has F(y) = F(y,y, ..., y).
—_—

Remark 3.2.1. In particular a polynomial f : H® — C of degree n has the
form:

F@) =Y 0™ fim (3.2.1)
ly,m

where | = {ls}, m = {my}, lpy,mp € N, > I +my = n, fi, € C, ¢ =
l_*,f b and the same for ¢™.

Definition 10. We say that a polynomial f of the form (3.2.1)) of degree 2n
is of class Py, if it fulfills the null momentum condition, i.e.

fin#Oonlyif > k= > kand Y L= mp=n. (322)
k k

keSupp(l) keSupp(m)

On P,,, we introduce the following norm

A = sluplfz,ml. (3.2.3)

Remark 3.2.2. In the following, due to (3.2.2)), we will write a polynomial
f € Ps, also in the equivalent following form, more convenient in a lot of
situations

fw) = > 8 . (3.2.4)

k=(k1,....k2n) i=1
> kz:Z?ZnH ki

The next lemma shows that the polynomials of class P, are smooth
polynomials on H*', % - % < s < %

Lemma 3.2.3. Let n be a positive integer and s; s.t. % — % < 851 < %,
f € Pay, then there exists C(s;,n) > 0 s.t.
|F ()] < Clsi,n) ¢l A (3.2.5)
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Proof.
|f(1/))| < Z |fk1 ----- k2n|H|1/}k

k1, k22n
Z?:l ki:2i2n+1 ki

< {171 Z HI%

77777 2n

Zifl k" Zz n+1

We define ¢ := {pr} = {|il}, ¢ =D, @kei’”, so, using Sobolev’s embed-
ding H®* C L*" for § — 5~ < s1 < %, one has:

[F <l > Hsok 1Bl 11111

kl 77777 k22n
Z?=1 ki:Zi2n+1 ki

< C(st,n)I@llgs 111 = C sy, n) ¥l

[F1I1-

Hs1 Hs1

]

We will also consider the functions f € C™(¢*, Py,), f: ' 5 w={w;} —

fh,w) =" bk Srw) [Ty ¥k, .- In the following w; will be
Z?—1 ki:szn+1 k;
the nonlinear modulation of the j-th frequency.

Actually we need to keep the information of the size of the different derivative
of f. So, we give the following definition.

Definition 11. We will say that f € P"(2n, {A;}7_,) if f € CT(¢}, Py,) and

131
sup 6f—k(w) <A, Vi=0,..r
w,k awj
|j]=i

Remark 3.2.4. Max; A; is a norm for C" (1, Py,).

Given a function f € C"(¢', Py,), we also consider

fon(¥) = f(&, [¥]),
conversely, we will say that f : H* — C is of class P"(2n, {Ai}i—o) if there
exists a function F(¢,w) € P"(2n,{A;}_,) s.t. F(@Zz,w)‘w:{lwkm = f(¥).

Remark 3.2.5. If f € Py, with |||f]|| < oo, then f € P>(2n,{A;}2,) with
Ao = |||f|l| and A; = 0 for any ¢ > 0. For simplicity, we will write f €
P 2n, |[£11])-
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1

Remark 3.2.6. From Lemma for any n € N and for any s1 s.t. £ —5- <

sy < 3, for any r > 0 and for any f € P"(2n,{A;};_,), one has
[F()] < AC (51, n) |13 (3.2.6)

The connection of the norm of P°(2n, Ag) and the L?-norm is given by

Lemma 3.2.7. Let n be an integer, denoted by Cy(n) := 2”*2[(271)!}%(271 -
)% (Y, #)n, for any 8> 0, and f,, € P°(2n, Ay), one has
A()O (n)
[ forllgs < 5—f‘ (3.2.7)

Proof. Writing fon = 3", gy fe(¥) TTisy ¥k, one has

-----

1 fonll2 s = /H | fonPdpig s = /H %fk(@b)fj(@b)g%i%nﬁ%iwknﬁdﬂgﬁ-

(3.2.8)

Let s; be s.t. max{s - 1} < 5 < %, by Lemma there exists a
constant C s.t. |f[*> < C’AZHM .., moreover by Lemma, 4 |||, €
LY(H®, j155). So we can exchange the order between the mtegral and the

series and ((3.2.8) becomes

Z . fk‘(w)f_.j(/l/})Hwki¢jn+ir&ji&kn+idﬂgﬁ =
° i=1

k7j

Joe Fe@) () Ty %-%W%zﬂ;kw ~3 X, (1482l [, dirdi,
Z j

b [Ls,, S e 21 dyydiy
(3.2.9)
where Si; := Supp(k,j). It is useful to use the following notation: given a
set K of indices (ki, ..., ko) with an even number of components, we denote

Kl = {kla ) kn} y K2 = {kn+1’ HAS) an} .

Using the substitution v; = \/%ewl, z € RY 6, € [0,27), one has

that the only integrals different from 0 are the terms in which Ky U J, =
K2 U Jl.

We denote by T the set of (k,7) s.t. Ky U Jy = Ky U J; and with both &
and j fulfilling the zero momentum condition, namely S k; = S22k,

1=n+1
S i =00 i Thus (3:2.9) is bounded by
22n
2 -5, 2l
A Z/BQ?LH 1(1+k2 1+]+ /szzjz+n & Hle

k]e‘]‘ Sk]
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221(2p)! )
S Ag " . .
g kJZG‘I [T, (1+k7) (1 + J?m)

So,

A222” 2n)! 1
1 fonll2s < — (3.2.10)
! k%rf Hz 1 (1+ kZ) (1 +]T2L+i)

Since we sum on (k, j) € T, we have that, having fixed Ky U J, = Ky U J; we
have (2n)! way to rearrange K; U Jy and (2n)! way to rearrange Ky U Jy, so

1 ) 1
Z Hz L1+ k?) (1 +j721+i) <[zl Zm H?:l (1+k?) (1 + 52 )

So, finally,
A3 (2n)P (T ) _ AC2()
”fPhHgﬁ — 6271 S 6271
with C,(n)? := 22"™[(2n)!]3(2n — 1)* (Zl #)%
0
Remark 3.2.8. According to Lemma [3.1.2] one also has
AgCy(n
ol < 22C2) Bi( ) (3.2.11)

The Poisson brackets of two functions f, g with f € P, and g € P" (2m,{A;}}_,)
is formally, given by

B y of dg  0dg Of
{f.g} = Ls(g) == sz:<a¢k O 8%(92/7;{)‘

Remark 3.2.9. If f € P,, g € P, then

{f; g} € Poym—2.
Lemma 3.2.10. Consider f € Pa,, |||f|l| < D, gn € P (2m,{A;}I_,)-

Then
{f90m} = F1 + I, (3.2.12)

where
Fy e P"(2n+2m —2,2nmD{A;}_,) , (3.2.13)
Fy e P"Y(2n + 2m, 2nD{Ai+1}::—5). (3.2.14)
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is immediate to verify that (3.2.12)) holds with

F = Z gL P ) s o b Vb Vi }

k=(k1,..-kam)
Fy = Z Uty oo Ut Vs - Vbig > 9 ({0517} } =
k=(k1,-kam)
0 |2 _ _
= > (Z %W) Uhy o+ Dk Oy Ok L 10117 }
k=(k1,kam) \ 1

and, by Remark 3.2.9) Fi € P"(2n+2m —2,2nmD{A;}/_;) and F» €
Pr=Y(2n + 2m, 2nD{ A1 }:=5) hold.
O
Actually, we shall use a more particular class of functions in which the
range of the indices is subject to a further restriction. This is related to
the fact that in our construction we shall fix an index k corresponding to
the action we want to conserve. To this end, we introduce the following
definition:

Definition 12. Given M > 0, k € Z, a linear combination

2n
G(kl, ceey ]{Zgn) = Z aiki
=1

with a; € Z, |a;| < M, we will say that the relation
Gk, ., kan) = K

is (M, k)-admissible.

Lemma 3.2.11. Given D > 0, let be f € P, |||f|Il < D, gun(¥,%) €
Pr(2m,{A;}_y), M >0,k € Z.
Assume that

Gph = Z g ({10’ }) Vky ot V1. kg

k=(k1,....k2m) S.1.
Gi(k1,....k2m)=k

where, for any k, Gy = k is (M, k)-admissible. Then

{f:gph} =+ F
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Fy = E Fuptbw - w Wk
~k,:(k/l 7777 k“’2n+2m—2)
Gir (K15 sk fom —2) =k

F2 = E FQJCII/I/)kN Q/Jk/':”rn
K= o 2)
Gk//(k‘lll ..... ké/ﬂ+2m) k

Dl (3.2.15)

u

m+n+1

kg, (3.2.16)

where for any K, k', the relations Gy = k, G = k are (2M,k)-
admissible.

Proof. Writing f = >,_q, 4,y fithy -1, ¢, %1, by Lemma we

have F} € P" (2n+ 2m — 2,2nmD{A;}_,), Fy € P (2n+2m, 2nD{A;}}_)).
Moreover, each term of F) is originated by two terms that depend re-

spectively on | = (I1,...loy) and k = (ki ..kop) st S0l = S0 L,

Zﬁl k}z = Zz m+1 ]{7 and {lh . ln} N {km+1, ...kgm} 7£ g or {ln—f—l; lgn} N
{ky1, ...k} # @. Without losing generality, we can suppose I} = k1.
We form a vector of indices &' = (la, ...Ln, K1y ooy Ky bty -lony Kmt2y ooy k2m)

st Y or oLk —ZZ st Fi +Zl " o ki Moreover, kp, g = 30" ki —
Zl m+2k‘ By hypothesis, we can write Gy(ky, ..., ko) = mel a;k; with
a; € N, |a;| < M, so

k= Gk, ... ko) = Zalk _Z a; + Q1 )i + Z — Qg1 )by =
=1

t=m+2
m 2m ~
= biki+ > biki = Gk, o By Kinsz, o Fom)
=1 i=m-+2

= Grlay oo oy Kty ooy Fos Lty s Loy Koo +oes Ko )-

We note that |b;| < 2M and G}, is a linear combination only of {ky, ..., km, kmaa, ...,

so it is independent of the null-momentum condition related to

Loy ooy by K1y ooy By U1y <5 Lony Kty -y k2 ), SO we obtain the thesis for Fj.
For F, the situation is simpler. Again each term of F5 is originated by two
terms that depend respectively on [ and ks.t. S0 1 = 32" st bis Doy

Zz m+1 ]C and {lh . .ln}ﬂ{ka, ka} 7é @ or {ln+1, lgn}m{]fl, m} 7é @
We obtain a vector of indices £” = (1, ... ln, Evy ooy ks bnsts oo lony K1y <y Kom)

st Doy L+ 20 k= Zz nt1 Fi +Zz "1 ki and
k= Gk(k}l, ka) == Gk”(lh ceey ln; kl, -~-7km7ln+17 -~-7l2n7 km+17 ceey ka)
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Remark 3.2.12. This result holds also in the particular case in which g is a
constant independent of {|¢;]*}.

In particular, one can obtain the following improvement of Lemma [3.2.7

Lemma 3.2.13. Let n be an integer, M > 0, k € 7Z, let

fon = Z Fie ({0kP}) Vry oo ronir. Ui

s.t. fon € P°(2n, Ag) and for any k, Gi(ky, ..., kay) = k is (M, k)-admissible.
Then, for any B > 0, one has

Ang(Tl)M2

Ty (3.2.17)

”fthgﬁ <

The proof of this lemma is very technical and it is deferred to Appendix
[C.0.11

3.3 Formal construction of perturbed actions

In this section we look for a formal integral of motion which is a higher
order perturbation of @y := |1x|%. Thus we fix once for all the value of k.

To present the construction, we describe first an equivalent one, which
however is difficult to manage directly. Since Hj is completely resonant, it
is well known that one can construct, formally a canonical transformation 7'
which transforms the Hamiltonian into

Hy+ Zy+ Zs + Ry (3.3.1)

with Z; and Zg which Poisson commute with H,. In particular Z, has been
computed in many papers (see e.g. [3] ) and is given by

Zi() =3 (Z w) =Sl (33.2)

Then, following the ideas by Poincaré, we look for CFIVDKG, Poisson commut-

ing with Hs, s.t. Cﬂf) = Dy + ékyﬁ is an approximate integral of motion of

(3.3.1). Computing the Poisson bracket of this quantity with (3.3.1), one has
that this is a quantity of order at least 8 if

{24,<i>k76} = {Byo, Zs) = R , (3.3.3)
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which is clearly impossible since the L.h.s. is of order 8 and the r.h.s. of order
6, so we will modify it. Since Z; depends on the actions only, one has

0 - 0
Zy,- :E . — —p— |
e Zj“’f@fawj %wj)

with w; 1= ¢ (J¢0;]* + 32, [¥k]?). So one is led to separate the regions where
the w;’s are resonant and those in which they are non resonant. The resonant
regions and the nonresonant regions will be defined precisely in the following.
Denote RY % the restriction of Zg to the nonresonant regions, we will solve
the equation

{24,ci>k76} — RVR | (3.3.4)

Looking for @ff) in the class of polynomials with frequency dependent coef-
ficients, the approximate integral of motion that we are going to construct
is given by the sixth order truncation of T‘léf{ﬁ). We proceed now to the
construction of the integral of motion. Define the operator Ly, := {Hs, },
we have that for any f € P,

Lp,f = {HQ’ f} = _iZfl7m <k27 (l - m)>¢l7j]m
lm

where (K2, (I —m)) := 32, k3 (l; —m;).
Equivalently, for any for any f € P,,, we can write

n 2n n
LHzf = —1 Z fk (Z K (Z 51@-,1@ - Z 5kz7k)> H wk’iijkwm
k k =1 i=1

i=n+1
where 0, is kronecker’s delta.

Definition 13. We denote by
Ny, :=kerLy, = {f € UnenPon @ fim #0 & <k2, (1 — m)> = 0} ,

RH2 = {f € UneNP2n : fl,m 7£ 0= <k27 (l - m>> 7é 0} :
Remark 3.3.1. Ly, : Ry, — Ry, is formally invertible.

Given a polynomial f, we indicate the projection of f on Ny, by fVNt
and the projection on Ry, by fFm.

In particular, we have
R C2 T
H,™ = i Y kUi,

k1+ko=k3z+ky
k2 +k3#kZ+k3
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Np,

Define now

Ry,

R
{X4,H4 HZ} +{X4,Z4}+H6) ;

N | —

1 4R _
X4 = —LHiH4 2 ve = —LHl <

1
(I)k74 = LX4|¢k|27 cI)k,6 = -L? |wk|2 + LX6|wk|2

2

and

Ny 1 Ry Nty
Z6 Z:H6 2+ §{X4,H4 2}+{X4,Z4} ,

to proceed, we have to define the resonant/nonresonant decomposition of the
phase-space.

Definition 14. For any n > 0, we denote by

n 2n n 2n
My {k::{k;j}GZQn st Soki= 3k SR = S kf}
=1 =1

j=n+1 j=n+1
Write .
Zo =Y Lokt Uty Uryry Uty Ve
keMg

computing

:RG = {(I)kz, ZG} s
one gets

Re = Z Z6 k.x (3.3.5)

keMg

with

Zo k= —1 261 (Ory i + Oy + Okae — Okse — Ok — Okoe) Vhy o Vs Vs Uks Uk

where 0, is Kronecker’s delta.
We introduce a function p € €, s.t.

[ Lif fx] > 2
p(x) = { 0if o] <1 ° (3.3.6)

Recalling that w; := ¢ (|¢;1* + X, [¥]?), we denote by

1
ar(1) = (Why + Why + Why — Wiy — Wiy — Wie)

=1t [* + ko + [0 |* = e | — [0005)* — |10 |*) (3.3.7)
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and, given 0 < § < 1, we define the decomposition Rg := RV + RE with

fRéVR = Z Z6 k. xP (%((;b))
k

- T -0 (4)

We define i)kﬁ to be the solution of equation (3.3.4)), which is explicitely

i b
given by _ Zon 0 ()
w0 =12, caan(9)” ( 0 ) '

keMeg

and

Remark 3.3.2. yo(v) € P* (6, {z4}7,) € P* (6, {z#r}1,) with A :=
max; Az

Finally we define the approximate integral of motion is given by
(I)l((ﬁ) = q)k,Q + (I)k,4 + (I)k,6 + (i)k,G + LX4§)k,6- (338)

The following lemma gives the structure of its time derivative.

Lemma 3.3.3. Write
{H0l} = -2+ R

then
q+1 q+2 q+3 q+5

R = Z Ryj + Z Roj1 + Z Rajo + Z Ry; 3, (3.3.9)
j=4 j=5 j=6 J=7

with Ryj € Pyj;, and there exists C' > 0 s.t.

) ' o3
Raji € p3 <297 {W} _0> .
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Proof. One has

{H o } = {Hy, By}

+ {Ha, P a} + {Ha, P2} + {Hz,(i)k,ﬁ} (3.3.10)
+1{Z6, Pr2} + {Z4, ik,e} + {HfH2 , ék,s} + {HQ, LX4(i>k76} (3.3.11)
n—2
+y ({H2j7 B0} + {H2j7 LXﬁ)k#G} 4 {Hyg a1y, ®pad + {H2<j+1)7 ék,ﬁ} + {Hyjio, qm})
- (3.3.12)
+ {Hay(n—1), Prs} + {Hz(n—m Lx4(i’k,6} +{Hapn, Pr 6} + {Hzn, (i)kﬁ} (3.3.13)
+{H2p, Pre} + {H2n, Lx4ék,6} . (3.3.14)

Due to the construction, we have that {Hs, Py} = 0 and {Hs, Px4} =
- {H4, (i)k,g}. Due to the fact that a; and p depend on the actions only and

{Z6 jx, Ha} = 0, one has {Hz, ék,g} = 0 so that (3.3.10) vanishes.
Since Z, is a function of the actions only, we have also

(¢)

") 5 () -

We note that {Hf%,(i)kﬁ} = — {HQ, LX4<i>k’6} in fact, by the definition of
x4 and {HQ, Ci>k76} = 0, one has

~ _ R ~
{HQ,Lm@kﬁ} _ {HQ, {LH;H4 H2,<1>k76}} _
_ R = = _ R = R
— {LHinl H27{®k,67H2}}+{®k767LH2LHlH4 H?} — {@1{’6,_H4 H2}.
So, by (B-3.3), line reduces to 3 Zox (p (“42) = 1) = =R,

It remains to study now ([3.3.12]), (3-3:13) and (.3.14). Using Lemma[3.2.10

we have

P
{Z4u(I)k6} = ZZ {Z4726k:k}

{H2j7 (i)k,ﬁ} =F;+ Iy,

c\’ ¢’
Fl,j c P2 (2] _|_4’ {6i+1 }0> FQJ < Pl (2] +6 {5z+2} 0) ;
~ ¢\ c\
Lx4q)k,6 — El + EQ, E1 - P2 (87 {5i+1 }‘_0> y E2 € Pl <10 {51-4-2} _0> y
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SO
{Hajs Luus | = Fog + Fig + By,

C )2 c O\t
e (eo{galL) mer (o))

C
Fs; € P’ (Qj + 10, ﬁ) ,
{Haj, Pr2} € Py,
{Hyj, Pra} € Pajyo,
{H2j> (I)k:,ﬁ} € Pajia.

3.4 Measure estimates

In this section we estimate ||®{” — ¥, *[17, and H {H, @ff)}

Hp

Lemma 3.4.1. There exists a constant C > 0 s.t. for any > 1, § € (0,1)
s.t. 0 <68 <1, one has

C

(©)
12" — [ [*llg.5 < TERE TR (3.4.1)

P — (3.4.2)
gﬁ (1 —|—k2)2 56ﬁ14

where R is defined by (3.3.9)).
Proof. We recall that
- ’%’2 =Py y + Py + (i)k,G + Lx4&)k,6-

By construction, ®y4 € Py, $xg € Fs and there exists C; > 0 s.t. $yp €
P? <6 {51+1 }2 ) and, using Lemma|3.2.11| there exists Cy > 0s.t. LX4<i>k,6 =

By + By, By € P (8, {#)0,), Ba e P! (10, {35} )
Moreover, P2 (6, {;%}7,) © P°(6,9), P* (s, {#}L,) ¢ P°(s.9)
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and P! (10, {3}, ) € P° (10, %) . So, using Lemma|3.2.13 with M = 2,

) 52
we obtain
© C 1111 1
180 ~ 6P < s (i+ 3+ 3 + 33 + ) <

< 5C
= (1+x2)*min{5246, 54410}

where we used 0 < 03 < 1. Using (3.3.9), Lemma [3.3.3] Lemma [3.2.11| and
Lemma (3.2.13| with M = 4, we get

n+1 n+2 n+3 n+5 )

||RHgﬁ— 1+k2 (Z@+252523+Z5452]+256529

SO

C

It remains to estimate the resonant part, namely HR?H; 5

Lemma 3.4.2. There exists a constant C > 0 s.t. for any 8> 0 and § > 0
s.t. 0 <08 < 1, one has

- (68)5

HRgHz,B < Cm- (3.4.3)

The very technical proof is deferred to Appendix [C] We remark that the
difficult part consists in showing the presence of (1 + k2) at the denomina-
tors.

Finally, we obtain the following

Lemma 3.4.3. There exists a constant C' > 0 s.t. for any § > 0, one has

B - H{H q)f‘G)} -

Hci)(ﬁ)
k — 1

98 (1+k2) B0
Proof. By Lemma [3.3.3] we know that

{H, c1>§f)} — —RE 4R,
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Using Lemmas [3.4.3 and [3.4.1) we can choose ¢ in such a way that (3.4.2)
and (3.4.3) have the same size:

1L (dp)s
56 514 - 36
It follows that 6 = — and the thesis. O

310
Finally, using these results and LLemma |3.1.2] we obtain
Lemma 3.4.4. There exists 5*,C > 0 s.t. for any > B*, one has

C

401, < s
pe (14 k2) B3+ 10

Proof. This results is a simple consequence of Lemma|3.4.3|and Lemma(3.1.2
m

3.5 Proof of Theorem [0.0.1

Proof of Theorem Using Chebyshev’s inequality, one has

o (1)) — 0 (1(0))||

s {1 191 (1) = 9 @(O)] > m [, } <

Hp
i 1Yk,

‘ (3.5.1)
But & (1(1)) — & (1(0)) = [i &Y (1(s))ds, so

|

Thanks to the invariance of the measure, the L?(u5)-norm is conserved under
the dynamics, so for any ¢t € R, we have

¢£ﬁ)(¢(t)) — @1((6) (@D(O))HW = /Ot ‘

<i>£f><w<s>>))w ds.

|60wen| =& won| =[] .
©p KB Hp
and in particular we obtain
|2 w®) - 0wy <t
Hs aZe]
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So,

e
s {0 100 (1) = o WO > mlll, | <t T <7
(3.5.2)
for any [t| < @, where we used Lemmas |3.1.5{ and |3.4.4] Using this

result, we can study the variation of the k-action. In fact

s {0 < 1O — O] > millllly } < (3.5.3)
< s {0+ [ @ (W 1) - o @(O)] > Tl }
s {0 [0 = 1| () > el )
g {0 |0 = 10,2 0) > Tl }
<™ 8 "o F <
=02 n% |||wk\2||,iﬁ -
for any 8 > 10 T It] < nl*ﬁ’B , where we used Chebyshev’s inequality,

771 772
i — 1
the conservation of the Gibbs measure, (3.4.1)) with 6 = Pt and Lemma/3.1.2

to estimate the second and the third term. Then Theorem [0.0.1] is obtained
by reformulating this inequality.

O
Proof of Corollary|3.0.4 We consider two sequences 1, i, := = (1+k? ) Noj i=

N
(= <Zj 1+j2> :

For any k € Z and any a < 1/2, we define

Ja,kiz{ Hwk ‘_Wk ’|— 1+k2a5}

Using Theorem [0.0.1] one has

¢ . 2 _ 2 m .
p(Jo ) < g {w k@) = [k (0)] > —(1 N k2)§ﬁ} —

i {0 O = WO > 2 <

20



for any [t| < C'mi\/ma3*t.
Denote J, := UJ, , one has that

s (35) <> s (354) < o (3.5.4)
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Deterministic result
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Chapter 4

Long time existence in H! for
time-dependent NLS on the 2-d
torus

Introduction to Chapter

In this Chapter we follow [7].
We study the NLS equation ((0.0.5), namely

i), = —2A% + 2a(z, wt)|Y|*Y, z € T

with w € R? and a € C°°(T%*?). We study the possibility of using Hamilto-
nian perturbation theory for the study of the dynamics.

To explain the situation, remark first that equation (0.0.5]) is Hamiltonian
with Hamiltonian function given by

H(w) = Ho(w) + Hawt), Ho(w) = [ [VoPde (40
Hy(¢Y,wt) = /T2 a(x, wt)|[(z)|[*de. (4.0.2)

which, for small initial data is a perturbation of Hy. When written in terms
of the Fourier coefficients v, of v, Hy takes the very simple form

Ho="Y_ [k* |

keZ?

‘ 2

b

which is the sum of infinitely many harmonic oscillators with integer fre-
quency. It is thus natural to study the completely resonant normal form of
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the system. Consider the standard Sobolev space H® and denote by Bs(R)
the open ball in H?® of radius R centered at the origin, then Theorem 6.2 of
[12] (which is a development of [I1]) gives the following result

Theorem 4.0.1. Assume that the function a is analytic over T2, that the
frequency 1s Diophantine, namely that there exist v and T s.t.

v 1
> T V(k, ko) € Z4\ {0} . (4.0.3)

Fix s > 1, then there exists C,e > 0 and a canonical transformation T :
Bg(€) — H* s.t.
HoT=Hy+Z+R

with Z independent of time and fulfilling {Z, Hy} = 0 and the following
estimates hold

sup [l — T()||s < C€,

EBs(€)
C 2/(t+1)
(5

sup |Z(¢)] < Ce,
o\ /(D)
()

PEB;(€)
sup |R(Y)] < Cexp
where Xg s the Hamiltonian vector field, namely Xp =1 (

HEBs (e)

sup || Xg(¥)|ms < Cexp
PEBs(e)

aw _8_Vz>
oy oy )

Now, the question is what are the dynamical consequences of Theorem
[4.0.1)? Since Z is a resonant normal form, one can conclude that Hy, namely
the square of the H' norm is an integral of motion for Hy+ Z, and therefore
it is almost conserved in the complete system provided some H® norm, with s
strictly larger than 1, remains smaller than € for such times. The problem is
that it is impossible to see whether this happens or not, so the above theorem
is useless, unless it is combined with a deeper analysis of the dynamics. For
example in |24} 36], 35] the authors study in detail the form of Z and construct
some particular very interesting solutions which are of interest, but nothing
is known for general solutions.

On the other hand, in dimension 1 the resonant normal form has proved
to be useful for the understanding of remarkable stability properties of the
dynamics [3] in the energy space, so it is natural to try to use Hamiltonian
perturbation to study the 2-d NLS in the energy space.
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The problem is that H'(T?) is not an algebra, and therefore an analogue
of Theorem is not known in this space.

In this chapter, we use a variant of the normal form theory in order to
construct a function on H! which is a deformation of Hy and is an approx-
imate integral of motion for initial data which have small H' norm. We
deduce existence of solutions in H' for times of order e ¢. For completeness,
we report the main Theorems of this Chapter.

Theorem 4.0.2. Assume that a € C®(T?) and that the frequency w is
Diophantine (namely it fulfills (4.0.3)), then there ezist €,,C > 0 and a
functional ®3) € C°(T¢; H'(T?,C)) with the following properties

d

GOVt vl < Clo. (£0.4)
sup | @@ (wt, 1) = Ho(W)|| ey < C 1401131 - (4.0.5)
191l 1 <ex
Theorem 4.0.3. With the same assumptions and notations, if € := |||l <

€x, then the solution of (0.0.5) with initial data v exists up to times t s.i.
t| < €% and fulfills

[P < 26 . (4.0.6)

The idea of the proof is to use an algorithm of direct construction of
integrals of motion which originates from celestial mechanics [26] and then
to exploit the explicit expression of the so obtained quantities in order to
estimate their time derivative. The naif idea is that, since H; is the integral
of a polynomial in 1 (z), one can expect the approximate integral of motion
and its time derivative to have the same structure. If this were true then one
could use the fact that H' is embedded in L?, Vp, in order to get a control
of such a quantity.

This naif idea turns out to be wrong, since the construction of the ap-
proximate integral of motion involves a procedure of averaging with respect
to the flow of the linearized equation (namely with respect to e7*2t) and the
Bessel spaces H,, namely the spaces of functions f s.t. (—=A)2f € LP, are
not invariant under such a flow, if p # 2. To overcome this problem, to
estimate the average of the perturbation and to obtain our result, the main
tool we need is the famous L* estimate by Bourgain, namely

Ve > 0 3 C such that ||e_iAt¢HL;xgc < C|l¥|lge - (4.0.7)

We conclude this introduction by mentioning that we expect the present
result to be the fundamental tool for the extension to dimension 2 of results
of the kind of [5, [3]. We also recall that a preliminary interesting result in
this direction has been recently proved in [32].
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4.1 Formal scheme

4.1.1 Preliminaries

To define precisely the phase space, we first consider H'(T?;C) as a real
Hilbert space endowed by the (weak) scalar product

(h1;109) 2 = 2N N Uy (2))e(z)da | (4.1.1)

that we use in order to define the L? gradient of a function W € C1(H'(T?; C))
by

Furthermore, in order to give H' a symplectic structure, we define the Poisson
operator as the operator of multiplication by i, which in a real Hilbert space
is actually an operator, so that the Hamiltonian vector field of a function W
is iV2W.

We now extend the phase-space by adding the angles a € T? and their
conjugated variables I € R? so that the phase space turns out to be P :=
HY(T?,C) ® RY® T?. The extended Hamiltonian is

H”t(I, ) = H{jxt([, a, V) + Hy(a, ), (4.1.3)
where
d
ngt(Lw) = ijlj +/ |V¢|2dx
j=1 B
and

Hi(a,v) = /11‘2 a(z, a)|[y(z)[*dx. (4.1.4)

Given a function W € C*(P) we will denote by Xy its Hamiltonian
vector field. Remark that

. ow oW
XW = (IVLQVV, %,—W) .

In general the vector field is a map from P to its dual P* = H~' @ R? @ T9.

Definition 15. Given two functions, F, G € C*(P), we define their Poisson
brackets by
{F;G} :=dF Xg . (4.1.5)
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In general the Poisson brackets of a couple of smooth functions can fail
to exist. In the following we will use the explicit form of the functions in
order to show that in the cases we meet such a quantity is well defined.

We will often denote Lp := {F,-}.

Definition 16. We say that a function G : H' — C is in normal form if

(G, Hy} = 0.

4.1.2 The algorithm

In this subsection we describe an algorithm due to Giorgilli to construct
approximate integral of motion.
Given a sequence {x,},~,, we define recursively

Ey=1,

and for n > 1,
— j
E,=)_ Ly .
j=1
Given a function W («, 1) we define its average by
1 2 .
W)(W) = =77 | d W (e, e 24 dt
W)= s [ do [ Wlae e

and (again recursively) the sequence {¥,} ., by:

U, = Hy, (4.1.6)
n—1 —j
W, = — " Ly, 1 — ; EEn—j<\I/j>, n > 2. (4.1.7)

We have now the following theorem due to Giorgilli (for the proof see [26]).

Theorem 4.1.1. Let x,, be a solution of the homological equation
LngtXn + ‘Ijn = <an> n Z 17 (418)
Define &, .= E, Hy, fir N and define

N
oW i Hy+ S0,
j=1

Then one has
{Hemt7 CI)(N)} = {H,, ®y}.

Actually we are able to develop this construction only for three steps.
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4.1.3 The solutions of the homological equation (4.1.8)
Given a function W (a, ), expand it in Fourier series in a, i.e.
W) =Y Wi(w)ere . (4.1.9)
kezd

Lemma 4.1.2 (Lemma 6.4 of [12]). Given a function W on P, the solution
of the homological equation

LngtX + W = <W> (4110)
s given by
Xl 0) =) Ri(h)e
kezd
where
1 2w N
Xo(¥) = o i t(Wo — (W) (e ap)dt, (4.1.11)
and for k # 0
R e—i27rk-w 2 ot Y
W) = T e e Wi (e 24 dt. (4.1.12)

For the proof see [12].

4.2 Estimate of y;, i =1,2,3

From now on we will use the notation a < b to mean “there exists a
positive constant C' s.t. a < CD".

We associate to a polynomial W in H' homogeneous of degree k the
unique symmetric multilinear form W s.t.

W, ...0) = W) . (4.2.1)

The same notation will be used for polynomials taking values in Banach
spaces.
For example, one has

— 1 . .
Hi (Y1, 2, ¥3,¢4) = 1 Z /11‘2 Ve(1)Ve(2)Ve(3) Ve ()T, (4.2.2)
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where the sum is over the permutations of {1,2,3,4}, and
—~— 1 -
Vi Hi (1, ¢2,13) = 3 Z V) Ve(2)Ve(3)5 (4.2.3)
S

where now ¢ are permutations of {1,2,3}.
We remark that in particular one has

AW ()b = kW (), ..., b, h) = (V2 W h) 12 (4.2.4)

which is a formula useful for the study of the property of the gradient of
functions.

Before to present the estimate of x; and of its gradient, we introduce some
spaces of functions that we use in the following and the main technical tools
we need.

First we introduce the Bessel Spaces HS(T?) ([23, 37]), namely the space of

functions v € LP(T?) s.t. (—=A)*?y € LP(T?), with norm

[l g vy = WMl zecrzy + (= A)*2| Locre). (4.2.5)

We introduce now the main technical tools we need.

Lemma 4.2.1. [Bourgain’s estimate] Ye > 0 and for any ¢ € H(T?), one
has

e s =2 (1l e (o). (4.2.6)
Proof. See [14], 15}, 20)]. O

Lemma 4.2.2. [Interpolation lemmal Let p > 4, ¢ > 0, ¢ € Hl_%“Le(T?),
then

L [ (o

The proof is postponed to Appendix
Remark 4.2.3.
Let s € R, n € N, then, for any ¢ € H3(T"), one has e"((—A)*/2) =
()2 (i),

From the above Lemmas and by the definition of the norm in Bessel space
H;(’]I‘Q) one immediately gets the following Corollary.

Corollary 4.2.4. Ve > 0, p > 4 and for any ¢ € H*™¢(T?), s € R, one has

e Yl s, < (19

tp,x

)

(4.2.7)

4 .
Hs+17§+6(11,2)
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Furthermore, recalling that ||| gs(r2) and [|(1 — A)*?9)|| 1o(g2) are equiv-
alent norms, we will use the following Lemma, which proof is postponed to

Appendix

Lemma 4.2.5. [Leibniz rule for fractional Laplacian on torus, Grafakos-
2018] Let s > 0,n € N, 1 < p,p1,p2,p3, ps < 00, p%%—p% = qil + q% = Il), then
there exists C(s,n,p,p1, P2, q1,q2) > 0 s.t. for any f,g smooth 2mw-periodic
functions (in each variable) on R, denoting (I — A)*/? = J,, one has

| Js(fg)lrcrny < CNTs(F)llzeronyl|gll o2y + HfHqu(Tn)IIJS(g)Hqu(n(m- |
1.2.8

Using all these results, we have the following results about the estimate
of xi, ;i =1,2,3 and their gradient (for the proof, see Appendix |D.1)).

Lemma 4.2.6. For any s > 0, € > 0 one has

4
H(‘I’1>(@a¢1,¢27¢3,¢4) - = |1 - H 190 || zrs-ee, (4.2.9)
’ 2

CE(T ,
j=
4
X (v, 91, . s, )l ome ey = 1l r—s [T 11l rosae. (4.2.10)
j=2
Lemma 4.2.7. For any s > 0, € > 0 one has
[ vl ) % Wl T 1l 621
Xz (e rs s ) lomegramy = 1nllee [T 19l g (4.2.12)
2<i<6
Lemma 4.2.8. For any s >0, ¢ > 0, one has
- 8
| v )| oy 2 W TT ey (4:2.03)
b j:2
8
a0 v,y )l o pagy = M0 lgre [T I3 - (4.2.14)
j=2

The proofs of these lemmas are very technical and are in Appendix [D.T]
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4.3 Proof of Theorems [0.0.5 and [0.0.6

Lemma 4.3.1. Let W be a homogeneous polynomial of degree n and W the
unique symmetric multilinear form s.t.

W, ... ) = W(y). (4.3.1)
If there exist a, 5 € R s.t.

W (1, oo )| = e [T 050 2o (4.3.2)
7j=2
then one has »
|Vew @ v = T sl (43.3)
j=1

Proof. For any test function h € H* with [|h|/g= = 1, we need to consider

<V/L;ﬁ/(l/)1, e lbn—l)% h>L2-

For any « = 1, .., n, we denote p; = 1; and ¢,, = h, so we have
<VL2W(¢17 s 1%—1)5 h>L2 = nw(wb e wnflﬂ h) = nw(@lu i Spn)
Using (4.3.2), we obtain

‘(V/f;ﬁ/(@/ﬁ, ---;¢n—1);h>L2

n
=< hllae T 1l e
j=2

so we get the thesis. O

Remark 4.3.2. By Lemma and Lemma we obtain that for any
s >0, e >0, one has

3
||VL2<‘I’1>(047¢17¢2,1/J3)’|CK(W,HS) = H H%‘HHH% (4-3-4)
i=1
—_ — 3
IV X1 (v, b, 0, ¥3) [l o ma gy = ] T 10l e (4.3.5)
i=1
and for any s > 0,0 < e < s,
IV 22 (W0 (v, 4, 2, )l omeqmagr—sy = NWallg-eve [T Iilles,  (4.3.6)
2<i<3
IV L2x1 (@, o1, o, )| o pa sy = b lzr—sve T Iledillire- (4.3.7)
2<i<3
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Remark 4.3.3. By Lemma [4.3.1] Lemma [4.2.7] and Lemma [4.2.8| we get that

for any s > 0,¢ > 0, one has

V(e ) L 19l
Viexa(a, ¥r, ... 9s5) oK (14 F— 4 H 2]
1<i<5
V(B (e, )|y 3 H 465 s
—_— 7
Vizxs(o, ..o, 1r) oK (T4, U 1451 prstetd -
Lemma 4.3.4. For any s € (0,1), € > 0, one has

1451

Proof. See Appendix [D.2]
Lemma 4.3.5. For any s € (0,1), € > 0, we have

w2y = 05l g oy -

Hs+%+e 9

|, 00|y = el [T
, L

|V (@er, 0, 09)|

3
CK (T4, Hs) Hl |w] HS+ te
Proof.

DRI

/ a(x, c)rpapsipade
T2

4
= la(z, a)n - - Hl/)j
Jj=2 Hs
=l -
Hs
4
N [ Py | WOTIP
j=2
4
< Nallg—e - TT I e
j=2
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where in the third line we use Lemma 4.2.5, knowing that a € C°°(T4*?),
and in the last line we use Lemma 3.4
Using Lemma [4.3.1} we get also that

|V (o whw%¢9HCKT”{,<IIH¢AHW§H.

i=1

0
Lemma 4.3.6. For any € > 0, one has
4
AR RN ] meﬁm (4.3.13)
@@%wwﬂmmMjﬂwmﬁm (43.14)
8
| ) ) (1 (43.15)
7
V2 0s(cr, U, - ,¢7)HCK p = Hy;wiy\]{§+e. (4.3.16)

Proof. By definition, we have
¢y = E1Hy, @2 = FEaHy, $3 = E3H,.

Using the definition of FE; and of ¥, for + = 1,2,3 and the homological
equation (4.1.8)), denoting h = > w;I;, one has

Py =V — (1) +{h, x1}, (4.3.17)
By =~ Ly, (W) — (W) + 5Ly, (o} + {hva) (4.3.18)
By = = SL2,000) + 212, {hoxa} = Ly (¥2)
— Ly (W) + §Lx2 {h,xa} = (¥3) + {h, xs} . (4.3.19)
To get (4.3.13)), we need to estimate H\fllvl(oz, V1, o, 13, 14) oK TR’
H<‘1’1 s 1, 2, 13, 104) Crenig) and H{h7X1 s 1,92, 3, ¢a) HcK(TdR Us-

ing the fact that ¥, = Hy, a € C®(T), h = Y w;l; and that L,, h =
Zwm , by Lemma |4.3.5| and Lemma [4.2.6 one has (4.3.13]).
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To prove (4.3.14), it is sufficient to note that
’ q)2<a7 wh teey wﬁ)

<HVle 1, 13) H
CK(Td,He)

+ ||X2(OZ7¢1, "'71/}6)”01((']1"17]1{) + H \IJQ 1/}17 .. ¢6 HCK T4 R)
So, by Remark and Lemma [4.2.7, one gets (4.3.14). In a similar way,

we know that

’cK (T4 R)

[T

CK(T4,He¢)

3(c, ¢, - ’¢8)HCK (T4,R)
= || Vi2xi(a, ¥, ..., 13) S VL;X‘I’1>(O‘7¢4" ’QZJS)HM T, H <)
[V (s v, .o ) et V2L x1(ct, a, ooy 1s) OK (T4, <)
+ V/L\/m(a,%,u-,%) CK (T4,H¢) V;?\Ijﬁ( W1y Us) HCK T4, H-
X V%ﬁ( b1, s 1h3) HC’K o HVL2X2 a,¢4,...,¢8)‘cK(Td7H_E)
+ V/L\/m(a,@bl,...,¢3)HCK(T(17H€) ‘meQ(a,w,-~~a¢8)HcK(Td,H6)

+ HX3(O&, wlv ceey w8>||CK(’]I‘d,R) + H <‘I]3>(Oé7 wb seey ¢8) HCK(Td,R) .
By Lemmas [4.3.1] g 2.8, Remarks and proceeding as in Lemma,

Wegetl431

The proof of (4.3. 16i is a little more complicated. By the definition of ®3,
we have

VL2(I)3(04,¢1,- ﬂ%)H
CK (T, H~¢)
j VL2X1 a7¢17¢27vL2LX1< 1><a7w37"'7¢7>)HcK(Td o) (4320)
+|Vizxa <@>¢1,¢2,VL2LXIX1(047¢3, ---ﬂﬂ?)) HcK T, H—) (4.3.21)
+ 1| Veexa (a1, 2, Vi (W2) (U3, ..., ¢7>HCK(WH (4.3.22)
2 (W 2 . 4.3.2
+ ([ V2 (W) <¢1,¢2,VL Xa(a, s, .. ’w7)HCK(’]I‘dH (4.3.23)
+ vL2X3 (a7¢15¢27¢37” ¢7>H (4324)
CK (Td H—¢)
+ vL2<\IJ3> (aa¢1,¢27¢3>- 7¢7) CK (T4, 1~ ) (4325)
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By Remark 4.3.3] we get the estimate of (4.3.24]) and (4.3.25)). To obtain the
thesis we estimate explicitly only (4.3.22)), since the other terms are similar.

By Remarks we have

—_——

HV/L\/m (Oé,wl,%,Vm(‘I’zﬂaa%, --ﬂﬁ?))
=z el ||V 22002) (0, s, i)

7 7
=TT 0wl 50 < T 00,50
i=1 i=1

HCK(Td,He)

He He

CK (Td,H~)

Proof of Theorem [0.0.5. We have

d
— 30| = |{®,, H
‘dt |{ 3 1}|
<[5 a0, S (s, b
= H 12®3 (a, Y1, 02, 93) ox(rag-e || P (e, 1, 92, 3) CK (T4, He)

where we use Lemma [4.3.6| and Lemma Using Lemma we get
(4.0.5]). O

Proof of Theorem [0.0.6. First remark that local existence in H' is standard
and that

1l = 1Nz + Ho(v)

thus, exploiting the conservation of the L? norm and Theorem one can
bound the H! norm of the solution for the considered times. O
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Appendix A

Lemmas on Gaussian and Gibbs
measure

First, we recall that both Gibbs and Gaussian measures are constructed
with a limit procedure starting from the "finite dimensional" measure which,
in the Gaussian case, is defined by

e aIPen @} =5 Sikan (1Rl

HooN =g N B Zgn(B) ’

nm [ A ] s
P (HS®)

< |k|<N

where Poy ({rtrez) = {utn<n- (See [16]).

Lemma A.0.1. Let N be an integer, 1 >~ > 0, then there exists C'(y) > 0
s.t. for any 8 > 0 one has

[¥r]<

_B 2 2 -
ngN(HS) H|k|§N X{ }e 2(1+k )|wk| dwkdwk

1
(1+£2)2 VB

ZQJV (5

> =0,

Moreover C' is independent of N.

Proof. Using the independence of all the variables, one gets

[Yr]<

_B 2 2 _
fPSN(Hs) HIkISN X{ }e 2(1+k )W}k‘ dwkdﬁ)k

(1+42)2 3

Zgn(B)
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0o _B 2 2
2m fo X ) e 2<1+k )p’“pkdpk (1+k2)177
{pk<(1+k2)%ﬁ}

= 11 By R
B —S(14k? B fooo e *kdzy, B

o0 2
k|<N 2m fo e 2 7k prdpy, lk|<N

= H (1 —e” (sz) 7) > <1 —e” <1+Lz) 7)
lk|<N kEZ

(102)

Z\k|ez log (1—6_ 2 )

=e — 0O,

As N — oo, we get the following lemma

Lemma A.0.2. Let v be 1 >~ > 0. Then, for any 8 > 0, one has

_B -
fPSN(HS)H|k|§NX . e 2<1+k2)‘¢k\2dwkd¢k
N—oo Zg,N(/B)
e / HX L d/"LQ,B‘
i (s )
Proof. For any M > N, M € N, one has
_B _
/ H . e 2 Z|k\gN(1+k2)\¢k\2 HIkISN dipedidy,
s R S Z
P<n(HS®) |k|<N {|wk|<(1+k2l)%\/§} g7N(6)

_B 2 2 _
:/ H y e Ziutar (1447 0 i< ns dodidn
Py (HS) k|<N {|¢k|<lv} ZQ,M(6>

(1+k2)2 VB
So, one has
) e 5 Siwranr (1467 e ? H\k|<M diprdiy,
Mo P (H?) |k|§NX{|wk|<(l+k;)%\/B} Zym(B) -

-,

d,ug 8-
s 1 ’
k<N {'w’“'ﬂwz);’ﬁ}
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[Yr]<

}%erzx{ }a.e. on H* as N —

S — k| < ——L7—
(1+K2)2 VB (1+k2)2 VB
oo. Since 1 € L'(H*, pyp) and []<x X{

< 1, by Lebesgue’s
Yil< }

S T
(1+52)2 VB
dominated convergence Theorem,

lim dpig, :/ lim X dpg s =
N—oo Hs W’k|<7 gﬁ s N—oo H |'¢)k|< 11 g/B
|kI<N (1+k2)2\f |k|<N 1+k2)2 /B
— / H X ) dug7ﬁ.
He pem W)kkm
]

Remark A.0.3. From Lemma and Lemma [4.0.2] we know that, if 1 >
v > 0 and > 0, one has

/ HX 1 dpgp > e ¢, (A.0.1)
" kez {WW}

Proof of Lemma|2.0.4| We remark that P = 3% , Ha; = 3% , 5t )15,
The first inequality 1s obvious.
We analyze now the second inequality. By the deﬁnition of P, if we fix sq,
by Sobolev’s inequality H*'(T) C L"(T) if r € [1, —=—]. Therefore, choosing

1 g, < L there exists a constant Clpp S.t.
q 2

712

[¥[l 225 < CsobH%/)lleu J=2 0 (A.0.2)
We fix % + 51 <7y <1, denote D' := ZjeZ W, then we have:

—BP AP
/Se d“g’ﬁz/ Xz, <2 )€ QHgp =

C c,; DJ
Z] =2,...,q9 JJ T c :
X e Cj’Zd ? dpg g > X e 5Ob‘1maxj CjD/Jd/,L
{1 <5} 9.8 = {lIp112s, <2} 9.8
_— g7
Hs keZ {wk<(1}

1+k2)%\/3

_%sob DI _ O _9C
> B amaxei DT —Cr) > ¢ 20(7)7

where the inequalities in the last line are true thanks to Lemma and
for 3 sufficiently large. ]

68



Remark A.0.4. pg is a good probability measure on H? since pig < ji4 3 and
7200 < ZBL <1,
S 7,5 S

For the proof is sufficient to note that

—B(S vl _ Z(P)
e W = 7,6)

Using this result, we can obtain Lemma to estimate the L?-norm in
the Gibbs measure with the norm in Gaussian measure.

Proof of Lemma We have

st f|2d:ug,,3
st e PPdpg

1912, = [ 1#Pdus <
HS
and, from Lemma [2.0.4

IFI2, < 1F15,56°

O
Proof of Lemma It is a simple application of Lemma with f =

X(A).
0

Proof of Lemma The proof is the same of Lemma The only
difference is that instead of |[¢||z2;, we have to work with ||P<y| 725, but
again, by Sobolev’s inequality, we have

| P<nt)|| 2 < Czjb||P<N¢||Hsl < C2Jb||@/1||Hm J=2,...,q. (A.0.3)

[]

Remark A.0.5. The constant C is independent of N and is the same constant
of Lemma B3.1.2

Proof of Lemma It is a simple application of Lemma [2.1.5] with

f=x(4). -
Proof of LemmaAs above we fix L1 < s, <3 L and %—I— 51 <y <1,

we denote D' := 3", W, SO we have

112, = /H f2dus > /H 2P dyigp >

2 ) _8P
= /H X gz, <zrye™ dugs 2
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_ Csob

=¢ e X iz, <2y o

Csob
B

=€

oD
gmax; c; D ‘

2
‘fX{nzpuzslg%’} s

O
We are now ready to give the proof of Lemma namely the estimate
from below of the L?-norm of the actions in Gibbs measure.

Proof of Lemma |3.1.5| We fix qQ;ql < 51 < %and % + 51 < v < 1, we denote

2
I Z 1
D= JEL (14452)7 751 50

2
> i |l BY
’9,5 /Hs ’ k| H

|¢.|<%
keZ { T (+2)2 VB

HWk'zX{nwn? <2}

HS1 =

}dﬂgﬁ =

e sl —y—
)2

_B5y i2) (e |2 -
wk‘4 HjEZX{ }6 2 Z\J\<N(1+J )l"/}]‘ H|j|<N dwjdwj

lim
N—oo

_B 5. D) 12 —
Jp_ye € 2 2y W] L dibydi

(A.0.4)
Using the independence of the variables, we have that (A.0.4)) is equal to

1
(1+12)

Jlo SO g i

-2 Z|j|<N(1+j2)|¢j|2

_B 2 2 -
I 1l x {w }e 2 (1) 10 g i
'k %\/E

X

; T (1+2)2 VB
X lim - : 7
N—roo —2 ZJj|< N U1 ]
Jozgme 7 [Lijj<n dibjdi);
N J7#k
(A.0.5)

where P_y (H*) the Dirichlet projection onto the frequencies {|n| < N, n # k}.
Furthermore, since

f(C X{ 6_g(l+k2)wk‘2d¢kd&k

| < L —
(1h2)3 VB

LRI i

<1,
N

c€ 2
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one has that (A.0.5)) is lower than

< —Lr—
(+2)% 5

C €*§(1+k2)|¢k|2d¢kd&k d
_Bs. +3%) sl | | )
}6 5 ZU\<N(1 J )l%l lil<N d% wj

fc |¢k|4X{ }€_g<1+k2)|wkl2d¢kd¢k

X

[¥;1<

fPSN(HS) [ez X{

1
(1+j2)%\/ﬁ

_g . 1+'2 w7.2 —
e 2 HUileN U T i

X lim
N—oo

1
T
2

f0(1+k2) ﬁpie—g(uﬁ)pﬁdpk

> — X dpg,
Jo pee 7R g, /H keZ {ij|<(1} !

X
14+52)2 VB

(1)

4 = :
e
0

1—
() 7

e—CO) 5 ) e—C0) 7,
> —2/ Zee Fdz > —2/ re Ydx,
p2(1+%2)" Jo p2(1+%2)" Jo
where in the last line we use Lemma [A.0.2] So, for § large enough, using
Lemma [3.1.3] one has

Csob / 2
2112 > o 8 gmax; c; D9 2 ,
|I|¢k| ”,ug Z € |¢k| X{”T/’”?{slﬁ%} of
— Zsob max, c;D'q 6_6’(7) % 2 — 012 (7)
> B IMAGE —Q/xexdzk:—Z.
B (1+%*)" Jo 5% (1+%?)

The support of the Gaussian measure is described in the following lemma
in which the main part is that we specify the dependence on 3 of the r.h.s.
Proof of Lemma We consider

M s ([l > M) < e g5 (ol s > M)

_ 620/ QM gy 620/ eIV gy,
{llll gsy >MInHs {Ill gs1 >MInH®

< 620/ cBIEI1% s, djy 5 = 62(5/ eaﬁzj(l-l-ﬁ)sllebdlugﬂ
Hs °
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s1 . ) _
B A B A LT
8 2
ste 5 2251452 Iy H dwjdwj
B(1+52) " 152~ (144 o5 2 dip; d¢
ZCH Jee

I e~ 2+ qopy o
Using the substitution ¢, = TaiE V(zj%ewﬂ', z; € RT, 0; € [0,27) and the fact
j

that [, e *dz = 1, one has that (A.0.6) is equal to

QCH/ 1 2a(1+52)"
:e2éH(1+ 2a )ZC.
j 1+ = 2a

(A.0.6)

1—1

>de2k

]

Remark A.0.6. From the previous lemma, if M goes to 400, we obtain that
for any s; < %,

pg ({||||gsr = +00}) = 0.

In particular, we obtain that, for any s; > s, ug (H*\ H**) = 0.
Proof of Lemma m Having fixed (8 large enough, ;’L > 0, and a < g, there
exists a constant C' > 0 s.t. for any z > C, 2™ < e*", so, one has

| Wl < [ it
He bl g1 <CINH? bl s >CINH?

2 2a
§0“+/ eIVl g :C"+|I(1+ )<oo,
. Hg,5 ; 6 (1 + j2)1—81 — %2

where in the last line we proceed as in Lemma So we proved that

||| % € LY(H®, duy ). By Lemma(3.1.2lwe have that ||[¢||%., € L'(H®, dug).
O]

il

HS1 dlu B

Proof of Lemma We know that

o By I IPenb(@)Pda) L ~B(dy 3 I3 l(e) P )

a.s. respect to g3 for N — oo.

2m

So, by Egorov’s Theorem, ¢~ (Zi=2 % o IPnv@ )y o=B(X5s 25 o W@ da)
almost uniformly.
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So in particular e B(Z= 25 Jo T |P<n (@) da) L, AL 2 25 Jo " (@) dx) in

measure.
< 1

—€0.
-2

For any € > 0, N € N, let
By the convergence in measure, for any ¢ > 1, there exists Ny, € N s.t. for

ANe — {¢ c HS(T) . ‘6*5( ;] 2 2] 027r|P<N7/’( )\dez) _ 675( Jq QQJ 027r |1L1(:1:)|23dx)

any N > No, we have g5 (A%.) < (i)Qq. So, in particular, we have

6_6( j=2 2] 2T ‘P<N¢(x)|2jdx) — e_B( j=2 2; 2y (= |2]dx)

Lq(#g,ﬁ)
< (e—ﬁ( 1o B T PN @Pdr) _ (S 3 T e FJdI)) X4
= Ml La(ug )
—I'_ (6_5( j=2 2] fo |P<N¢( )|2de) _ 6_5( j=2 2] fOQﬂ |w ‘2Jd55>> XAC
Noe Lq(.u'g,ﬁ)
1 1
§§€Mg,ﬁ (An,)e
+ H@*B( j=2 2; LT ‘P<N1/’(x)|2jdx) — 676( j=2 2] Ly e |2jdm) Hg.B (A§V e)qu
L2q(“gﬁ) 7 7
1 1 1 2q
<2e+2(,ug5( y: ))2q<§6+2(§> =¢ (A.0.7)

where in the fourth line we use the definition of Ay, in the fifth line we use
Holder inequality and in the last line we use the fact that

Hg.8 (AN,€) < 17

_B( =2 2] f027r|P<N7/1( )|2jdr) <1

Li(pg,8) o

and
< 1.

He,ﬁ( 1y 5 I @) Pd)
L(pg,3)

So in particular,

(S5 3 7 IPen i@ dr) —B(X0s 3 5 (@) Pide)

€ — €

in L9y 3)-norm for any ¢ > 1.
This implies the thesis.
In fact, remembermg that P =59 4 OQW |P<nt(z)|¥dz and

3221

P = Z] — gg " (z)[¥dz, for any € > 0, there exists Ny = max { Ny 1, No2},
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s.t. for any N > N, and for any ug-measurable set A C H*(T), one has

5.0 (A) = sl A)|
|y s = 55 [
< % /A (e*‘”3 —e’””’) dpig,p
o| e (25 - 725)

_ | Zas - / a (777 = ) dig

Zn
9,8 g, —BP
+ — / e " xadpy,
( B) "~ 2(B)) Ju. O AP
Zy 4

< e PP —e_ﬁP‘Qd,ug,g)2 (A.0.8)
ZgB . Zgﬁ —BPd
\Zn(8) ~ Z(5) /H Ho
Zg:ﬁ Zng _ ZQ»B ‘ A 0 9
=z Zn3) ~ 2(9) (409)

where in line (A.0.8) we use Holder inequality and in line (A.0.9) we use

the fact that p,s(A) < 1, that ( S e

. 2 2
AP — e*ﬁp‘ dugﬁ) < € for any

N > Ny and that 0 < e PP <1 s0 Lo e PPdu, 5 < 1.
Moreover, since
Zg,ﬂ _ 1

Zn(B) ~ [,.ePPdp,

and
Zy 1

Z(8) ~ [y Pdpy

proceeding as in Lemma and Lemma [2.1.5] we have that there exists
C > 0 independent of N, Ny, € and 5 s.t.

Zop o (14}
MR (1+5) (A.0.10)
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and

Zyp  Zys le™?" — e[l pa 0
ZnB)  ZBO T ([ €7PPdpg) (fyge e=PPelpsg)
<J|eP — P || 1, 2 0B, (A.0.11)

Finally, since ||e=#F — e PP\ L1y, ) < € for any N > Ny, we have that, for
any N > max {NO,17 NO,Q}

Zg8 28 248 20(141
o (A) = pa(A)] < 7 Bave+ ‘zNw) - z(@‘ <20, 4012

O

Remark A.0.7. For any €, 8 > 1, there exists Ny € N s.t. for any N > N,
and any pg-measurable set A € H*°(T), one has

1 (A) = pa(A)] < e (4.0.13)

Proof. We can repeat the same proof of Lemma but in this case the
last term of (A.0.12) is smaller than 2ee*“, loosing the dependence on 3. [
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Appendix B

Proof of Lemma 2.1.

We start this section giving two results that are the key point of the proof
of Proposition 2] and of Lemma [2.1.4] that were proved by Burq, Gérard
and Tzvetkov in [19 18].

Theorem B.0.1. Given py,ps s.t. p% + p% = %, p1 > 2, po < 00, the solution
Y of (0.0.1) satisfies for any finite time interval I,

[l oy < CHIF R g (B.0.1)
Corollary B.0.2. Given pi,py s.t. 2+ = =3, p1 > 2, pa < 00, then for
any f € L1<[07T]>Hé(T)), one has
t
W=mAf(1)d < CTw ||f|| (B.0.2)
€ T)dT 0.
/0 LP1([0,T),LP2(T)) 1([0,17, le (T))"

We present now the proof of the approximation Lemma that is a
little modification of the proof by Bourgain in [16].
Proof of Lemma “ We fix 51 < s < , we choose p; >q—1 s.t.

5 — — < s1. From local theory, we know that the solution of (0.0.1)) and of

Correspondmg to initial data 1/1|t:0 Y,y = o are locally well-posed

n [—t,t], t ~ (1 + K)7% uniformly in N, in particular we know that for
any N € N and for any 7 € [—t,t], [|0(7)||z=1, [N (7| < 2K. We fix
0 < § < K% and we consider

Yy i= C([=6, 0], H*) N L ([—6, 6], Wo2) (B.0.3)

Wherepgisgivenbyp%—l—p%:%andazsl—pil>pi2. We set

[y o= max [l () |+ 11 = D)2l Lo -55),L22)- (B.0.4)

lt|<é
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By the Duhamel formula, we have

Bt) = 3y — i / DA (F (7)) )dr,

PN (t) = eBhapy — Z'/t DR (P F(Peyp™ (7)))dr.

0
In particular, using Strichartz estimate, we have that, for any ¢ € (0,0),
l0(t) — P<yv™ (t)]]y, is bounded from above by

C||Psnbol

s+ H/Ot eilt=)A (F((1)) = P<nF(P<yv™ (7)) dr

Ys

(B.0.5)

The first term of (B.0.5)) is bounded by C N ~5||¢)g|| s < CN5 K.
We study the second term of (B.0.5)), in particular it is lower than

6 .
C/ |2 (F(0(7)) = Pen F(Pan o™ (7)) || o, d7
< / |(F((r)) = Pax F(Pxt™ (7)) | o, d7
<c / I(F(6(7)) = Pen F(m) e, d7
e / 1Pen (PO = PPt ()

<ON*255up || F((7)) | o

dr (B.0.6)

)
0 /_5<1+Hw< VL 4 [N (D) [[6() = Pent™ ()]
<CN*—*25(1 + K9)

2007 (14 [ 5d ooy + 1Y (DG ) ) [07) = Peat™ ()] e ey

(B.0.7)
<CON*#7%25(1 4+ K1) (B.0.8)
12067 (1+ ||¢<T>||Y5 Il [6(0) = Pt (7)),
with y=1-— %=

p1
So, we have

[9(t) = Penyp™ (#)lly; < CEN*7 42087 (1 + K1) [[9o(1) — Peny™ (1), -
(B.0.9)
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O

and in particular, if we choose ¢ < (W) , we get

|1h(t) — P<yt™ (t)]ly, < 20K N 7%, (B.0.10)

So, for any N, we define agny = supy; [[¢(t) — P<y¥™ (t)|| = and we

conclude that

sup [[(t) — Paxt™ (t) || g = ag v < 20KN*°, (B.0.11)
[t|<d
[0z < [ P<yt™ (#)lms1 + aon < K + agn (B.0.12)

We denote by ¢/(t) the solution of (0.0.1)) corresponding to the initial data
PyyN (0). By regularity, we have

Sup. [ (t +8) — ' (t) || zrr < 2[|00(8) — Penp™ (6)]

0<t<

a1 < 200 (B.0.13)

So, one has

sup [[¢(t) — Py (1)]

O<t<26 e
< sup [0t +6) = &' (8[| + sup [|[Pany™(t +8) — ¢/ (t)]
0<t<o 0<t<d

S 2@0,]\[ + 20K N*®™3 (B014)
where we use (B.0.13)) and (B.0.11)) to get the last inequality.

So, one has

ary = sup [¥(t) = Pexy™ ()|
0<t<26

< sup [[9(t) = Peny™ ()|l + sup [|(#) - Peyp™ ()] 1

0<t<d o<t<2

< 2apy +4CKN*~* (B.0.15)

where we used (B.0.11)) and (B.0.14)).

We consider now T, we divide [0,7] in & interval [t;,¢;41] of length &
where t; =07, j =0, ..., %. Repeating the reasoning above, we obtain

Hs1

i = $UPgpss I1(E) = Pent™ (B)]l s < 20 + ACK N*—
Qo.N < Oj—HKNsl—s

(B.0.16)

So, we obtain

sup |¢(t) — Pany™ (t))]

0<t<T

o < CTEKNS. (B.0.17)
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We study now |[|1(t) — ¥V (t)|| =1, in particular, using (B.0.17) and recalling
that Peyy™(t) — N (t) = Poay™(t) = Psnto, one has

sup [[0(0) — ()

Hs1
0

< sup [[¢(t) = P<yto™ (8)|l e + sup [[Penytp™ (8) — ™ (2) || s
0<t<T 0<t<T
< C5KN*"° + KN*%. (B.0.18)
Since 0 < s1 < s, we get the thesis. O]
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Appendix C

Technical lemmas for Chapter

C.0.1 Proof of Lemma [3.2.13

We recall that, given a set K of indices (ky, ..., ka,) with an even number
of components, we denote

Kl = {]{]17 7]{”} y K2 = {kn+17 ...,an} .

Lemma C.0.1. Let k € Z>" and j € Z*™ be 2 integer vectors, each one
fulfilling the zero momentum condition and an (M,k) admissible condition.

Assume that K1 U Jy = Ky U Jy, then there exist x,y € K1 U Jy and a
constant C, s.t. |x|, |y| > |k|/C. Furthermore {x,y} is uniquely determined

by K1 U Jo\ {z,y}.

Proof. For future reference we write the (M, k) admissible conditions for the
two vectors:

2n

i=1
2n
i=1

We give now a recoursive procedure in order to determine the elements z,y
in the statement.

From there exists Iy s.t. |k;,| > |k|/2nM. By possibily interchang-
ing K; U Jy with Ky U J; and reordering the indexes, we can always assume
that {{ = 1. So we have
k|

UﬁlZ—QnM a17é0.
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In the following we will make several cases.
We look for the “companion” of k; in Ky U J;. We have two possibilities:

(A) Tt belongs to J; and therefore, by possibly reordering the indexes it is
given by j; (thus we have k; = j).

(B) It belongs to K5 and therefore, by possibly reordering the indexes it is
given by k11 (thus we have k; = kj,11).

We begin by analyzing the case (A). We use the zero momentum condition
on k in order to compute k; as a function of the other components and we
substitute in (C.0.1]), which takes the form

n

> (0 —a)k; + Zn:(am +a))kign =k . (C.0.3)

=2 i=1

Then there exists at least one of the k;’s which has modulus larger then a
constant times |k|. There are two possibilities

(A.1) It belongs to Kj, thus (up to reordering) it is given by k,:

k
|kn| > 5 X & ay # ay. (C.0.4)

(n—1)M
(A.2) It belongs to Ks, thus (up to reordering) it is given by koy,:

k
‘k2n| 2 9 | | & aq 7& —Qop - (C05)

(n—1)M

We analyze first (A.1). Consider the companion of k,, there are two
further possibilities:

(A.1.1) Tt belongs to Ji, call it j,, (thus k, = j,).
(A.1.2) Tt belongs to Ky, call it ko, (thus k, = ko).

We analyze (A.1.1). In this case, given Ky U Jy \ {k1, k,} also Ko U Jy \
{j1,jm} is fixed. Then determines k, and then determines
k1. This concludes the case (A.1.1).

We analyze now (A.1.2). Given K7 U Jy\ {k1, k,} also Ko U Jy \ {J1, kan }
is fixed. So, also J; U Jy \ {j1} is determined. Then, by the zero momen-
tum condition on j one determines j; = k;. Still one has to determine
ky, = ka,. To this end one would like to use (C.0.3). This is possible if the
coefficients of k,, and k5, do not cancel out. If this happens, then consider
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k' = (k1,....kn_1,kny1, ..., kon_1) and iterate the argument of situation (A)
with it (which also fulfills the zero momentum condition). Iterating n pos-
sibly decreases by one at each step. Since k' (and its iterates) has to fulfill
an (M, k) relation, which in particular is inhomogeneous, the procedure ter-
minates with a nontrivial &’ of dimension at least 2. This concludes this
case.

This concludes the analysis of (A.1).

We now analyze the case (A.2). We have two cases according to the
position of the companinon of ky,.

(A21) It is ]Cn € K1 (thllS k?n = kgn).
(A22) It is jgm € J2 (thus jgm = k’gn)

The situation of the case (A.2.1) is identical to that of (A.1.2) and has already
been analyzed.
We study now (A.2.2). Given K; U Jo \ {k1, jom } also K3 U Ko \ {k1, ko }

is determined. But, by the second of (C.0.5), (C.0.3) determines ky,. Then
ki is determined by (C.0.1)).

This concludes the analysis of (A).
We come to (B). Substituting ky = k41 in (C.0.1]) we get

(a1 + an+1)k1 -+ Z(azkl -+ ai+nki+n> =k. (006)
1=2
We have two possibilities
(B].) —Qaq 7£ Ap41,
(B2) —a1 = Ap41-

We analyze (B.1). We concentrate on j. By (C.0.2)) there exists one of
the 7;’s which is “big”. There are two cases

(B.1.1) It belongs to J; and thus it is [j;| > |k|/2mM.
(B.1.2) It belongs to Jy and thus it is |ja.,| > |k|/2mM.
Analyze (B.1.1). There are again two cases according to the companion of j;
(B.1.1.1) Tt belongs to K7, thus it is k, = ji.

(B.1.1.2) Tt belongs to Jo, thus it is j,, 11 = Jji-
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Analyze (B.1.1.1). Given K3 U Jo\ {k1, k,} also Ko U Jy \ {kny1,j1} is deter-
mined. Thus also J; U Jy \ {j1} is determined. So, from the zero momentum
condition also j; = k, is determined. From also k is determined.

We analyze (B.1.1.2). First we remark that given K; U Jy \ {k1, j2n} also
KyUJi\{kn+1, jn} is determined, thus KUK\ {k1, ki1 } is determined, and
then, by also ky = k,, 1 is determined. Then we have to determine
one further large component.

Substituting j; = jm+1 in (C.0.2)) one gets

Z(biji + bitmJitm) + (b1 + b)) =k (C.0.7)

i=2
We have two cases

(B.1.1.2.1) by 4+ byy1 # 0,

(B.1.1.2.2) by + b1 = 0.

Case (B1121) Given Kl U JQ \ {]{17jm+1} also K2 U Jl \ {/{Zn+1,j1} is
determined. Thus also Jy U Jo \ {1, Jm+1} is determined, but then one can
use to compute j;. This concludes the analysis of this case.

Case (B.1.1.2.2). In this case becomes a (2M, k) admissible condi-
tion for j' := (Ja, s Jms Jms2, - Jom), Which also fulfills the zero momentum
condition. Thus one is again in the situation (B.1) but with j’ in place of
J. Iterating the construction one decreases m at each step, and therefore the
procedure terminates in a finite number of steps.

We come to the case (B.1.2). We distinguish two cases according to the
position of the companion of jg,,.

(B.1.2.1) It belongs to K, thus it is ko,.

(B.1.2.2) Tt belongs to Ji, thus it is jo,.

Case (B.1.2.1). Given Kj U Jo \ {k1,jom} also Ko U Jy \ {kni1, kon} is
determined. Thus also J; U Js \ {jom} is determined. Then by the zero
momentum condition on j also js,, = kg, is determined and one can use
to determine k;.

Case (B.1.2.2). By reasoning in a similar way one determines ky = k1.
Still one has to determine j,, = ja,, and this can be done exactly (up to a
relabellin of the indexes) as in the case (B.1.1.2). It means that if by +b,,,1 #
0 the argument is complete, otherwise we have to start a recoursion as above
in the case (B.1.1.2.2).
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In the case (B.2), (C becomes an (M, k) admissible condition for
E = (kay ooy kny koo, ooy k;gn) which also fulfills the zero momentum condition.
Thus the construction is repeated with &’ in place of k& and after a finite

number of steps the construction stops.
]

We can now prove Lemma |3.2.13]
Proof of Lemma The proof is similar to that of Lemma In the
same way, we get an estimate analogous to , the only difference is
that the sum is not on T but on the set of (k, j) fulﬁlhng the assumptions of

Lemma | We denote this set by 7.
So, we estlmate

1
Z Hz 1 (1 + kz) (1 +]n+1)

(k,j)eT

(C.0.8)

If k =0, then we can proceed exactly as in Lemma [3.2.7]
If k # 0, we note that at most [(2n!)]*> couples (k,j) give the same set
Ky U Jy = Ky U Jp. So using Lemma, we obtain

1
D IRy e (©09)

(k,g)eT

(m)® _ | (C.0.10)

C 1\
< 1T (zl: m) : (C.0.11)

]

C.0.2 Estimate of the resonant part

First, we introduce a lemma useful to estimate the measure of the resonant
region.
Given n € N and k = (ky,...,k,) € Z", we denote by M the cardinality of
Supp(k) and for any € > 0, we define the non smooth cutoff function

[ 0if |z >1 Rz
X(x)_{ if o] <1 ° X(®) '_X(E>'
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Lemma C.0.2. Let 0 <e, n €N, k= (ky,....,k,) € Z", {a;}~, € Z"\ {0}.
Then there exists a constant C'(n) > 0 s.t., denoting k= MmN Supp(k) a0 Ki
and a the correspondent coefficient in {a;}"_,

L1 () s s
RY

=1 =1 leSupp(k)
(C.0.12)

so, denoting by I the

Proof. We have that dem < (2D)le7le™3 < (2n)"e 3,
Z =y, we have

left side of (C.0.12)) and using the substitution

1< Ol / <Z 2@2 k;2 > e 2ateSupp(k) T H dx;.

leSupp(k)

We denote A(x) := Zk,#,} 2ai%. So I is bounded from above by

(—A@) 5
/ I due s 14 / : e~Tida;
RM 1 ( )

leSupp(k) _E_A(m))%
1£k
(e— A(w))
/ H dx ¢ SeSupp(k) 127 / , dag = 4aC(n )E2e.
M—1 k
RY ZGSupp (—e—A(z )) 2%
1k

Proof of Lemma

2

%l =

3 o) (120 (%57)

SO
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As in Lemma [3.2.13] for Lemmas [3.2.3] and [3.1.4] we can exchange the order
between the integral and the series.

So (|C.0.13) is equal to

5 [ st s-0(242)) (-0 (5

k,jeEMeg

We analyze, now one single term of the series, namely:

Z 1 (ks e + Orye + O — Ohoge — Ok e — Ong ) (C.0.14)
XZGJ (Ok1k + Okoxe & Oy — Okyx — Oksx — Okg ) (C.0.15)
3
X /iji¢k3+i¢j3+iwki (1 -p (#)) (1 - P ( k((;b))) dﬂ’ﬁ'
i=1
(C.0.16)

We remark that:

ak(w) = (‘wkl‘z + ‘wkz‘z + ’¢k3‘2 - ’wk4’2 - ‘w/%’? - ‘w’%lz)'

With the transformation ¢ = re?, denoted by Sk,; = Supp(k, j), the integral
becomes

6 —BYies, (1412)r?
frk€R+ Hi:l T3 Tk; (1 —p < )) ( —p ( >> (& k,j ersk,j /rldrl
B(1+12)r?
[Lies, y fuh e Hydry
(05, +0;,+0;,+0 ,+0 Op.—0;,—0;.—0;.—0r —0, —0
(041 +055 405 +0k 05 +0k—05, =055 —0j6 =0k, =0k, —Oky) HZGS]@J' db,

HkleSk,j f916[0,27r} do,

v fekE[O,Zﬂ

where
aR(r) == (1, + Thy Ty = Thy — Thy — Ti)-

The only terms different from 0 are the terms where
0, + 0, +0;, +0p, + 0y, + 04, =0, +0;, +0;s + Or, + Op, + O,
or equivalently
{15 92, J3s kas ks, ke } = {Ja, Js, Jor K1, ko, Kz}
This implies that the integrals that survive have this form:
frk€R+ TJ21 7“]227’3237“,%47“,%57”%6 (1 s (%T(ﬂ)) (1 P (akT(T)>> e_ﬁ Zlesk,j (1‘”2)7’? HlESk,j Tld?”l

—B(1+12)r} n
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kaeﬂh Zj1 %42 % s Pk Fhs Pl ( ( )) ( ( )>> ¢ iesy 7 HleSk] dz
B9+ 1)* (1 + 2)" (1 + Js)* (1 + ka)* (1 + ks) (1 + ko) T, o, € =171z

where

~ 2k 2k 2k 2k 2k 2k

b — 1 2 3 4 5 6 ]

#(2) <1+k$ TR TR iye 11k 1+k§)

0if |x| > 5
We define the non smooth cutoff function y(z) = { Lif 2] < 63
So we can increase the integral with the following integral:
1

B+ G2+ 2 2Lt oL+ k)P (L+ k(L1 ko)

/HZJZHZkl ( ) (bk( )) e ey H dz. (C.0.17)

lES}g’j

We would to know more information on the arguments of the cutoff function
that depend on the form of Zg;x and Zg ;.

Since in RE there are only terms in which {ki, ko, k3} # {ku, ks, ke}, this
implies also that there are only terms in which k; # k; fort=1,2,31=4,5,6,
since if there exists at least an index ¢ € {1,2,3}, and index [ € {4,5,6} s.t.
k; = k; this implies that {ky, ko, k3} = {ky, k5, k¢} and it is absurd.

In fact, without losing generality we can suppose that k; = kg4, this means
that ko + k3 = ks + ke and k2 + k2 = k2 + k2, so ky = ks and k3 = kg or
ko = k¢ and k3 = ks, so {ki, ko, ks} = {ka, ks, ke }.

So one has j; # j;and k; # k; 7 =1,2,3, 1 = 4,5,6. Moreover we know
that {jl,jg,j37 k?47 k?57 kfﬁ} = {j47j57j67 k‘l, kQ, k’g} this means {jl,jg,jg} = {k’l, k’g, k’g}
and {k4, ks, ke} = {Ja, J5, Jo } and {41, j2, 3, Ja, J5, Jo } = {k1, ko, k3, ka, ks, ke } =
{71, 72, Js, ka, ks, ke }

So, up to any permutation of the indices, we have 9 cases:

e . ) 7 _~‘ - Zjq Zjo Zj3 . Zky . Zkg . Zkg
o if i # i ki # ki bi(2) = by(2) = (1ﬂ2+1ﬂ2+m e ey ),

4 1f.]z 7é ]la k4 k57 bk( ) Z;J(Z) = (13;2 + 1232 + 1+] 21?22 - 1?25) ’

o if ]2 7& jl7 ]{34 = k?5 = kﬁ, Ek(Z) = B](Z> = (12;2 + 12?2 + 12; - 3;&22) s

e s 7 7 o 2Zj1 Zjg Zky 2k Zkg
o if j1 = jao, ki # ki, br(2) = b(2) = (1+j§ 142~ 1+kZ  14k2  1+kZ )
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e - . 7 7 2Zj1 Zjg Zky Zkg
[ ) —= = = . = - o —
if j1 = Jo, ka = ks, by(2) = b;(2) <1+]f 1457 21+k§ 1+kZ )

fod 2z 2 2k
o if ji = jo, by = k5 = kg, bk( ) =b(z) = <1+le% 14:332, N 31:2};) ’

o if j1 = jo = js, ki # ky, bk( ) = b, (Z) = <31i;§ - 1?22 o i:kg o 1?23) ’

Y 1f]1 —j2 —j37 k?4 - k57 bk( ) - ]<Z> - <31131 _211622 N 1i}j]2(23) ’

o Ui = o = o ka = by = ko, Bi(2) = By(2) = (352 — 3%

We can resume all this cases writing

bi(2) = bj(2) = biy(2) =

J— Zj?) _ Zk4 _ ’Zk5 - Zkﬁ

B ( 2 JranJr]Q T R T M STy a61+k2)
where a; € {0,1,2,3}, 320 1 a; = 6, and {a;}S_, s.t. if there exists ¢ € {1,2,3}
s.t. a; #£ 1, forany [ € {1,2,3}, | # i s.t. a; = 0, j; = j; and if there exists
i e {4,5,6} s.t ay # 1, for any I € {4,5,6}, I' #4' s.t. ap =0, ky = kyp. In
this way we can write (C.0.17) as

1 - 2
”zz b )e 1€85,; ||dz
/86 H?:1 (1 + ]Z 1 + k3+z / Ji k3+z k.]( ) l

lGSkJ‘

(C.0.18)

where z; € R,

To obtain the norm of the resonant part, after studying the form of any
terms of the series, we have to estimate the norm of every single term.

Let N be an integer, then Lemma shows that if there exists at least
an index i = 1,2,3, a; # 0 s.t. |j;] < N or an index [ = 4,5,6, a; # 0 s.t.
|k;| < N, then there exists C; > 0 s.t. is bounded by

SBN?
3 - :
[T= (T +37) (1 + k3+z)

If every j; and k; really present in the argument of the cutoff is bigger
than N, we adopt an other strategy, because the distance between the two
hyper-planes becomes bigger and non comparable with §3, so the presence
of the cutoff isn’t so essential, because the integral isn’t so different from the

integral over all the space. However, if all the indices in the argument of
the cutoff are bigger than N, the denominators 5% [[,_, (1 + j2) (1 +k3,,) is

1
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small and this helps the convergence. Obviously, since there exists at least
an index j; or k; equal to k, this situation is possible only if |k| > N.

We denote by Ty the set of (k,7) € Z' s.t. {Jji, 72, J3, ka, ks, ke} =
(K, ko ks, jas s o}y Doiq ki = Dorir Kis Sy di = Yoimay Jis and st
there exists at least an index ¢ € {1,2,3,4,5,6} s.t. k; = k and at least
an index [ € {1,2,3,4,5,6} s.t. j; = k.

So, if k < N, we have

55]\72 Z |Z6,j||26,k|
pe jkeTk H?:1 (1+72) (14 K3,,)

Instead, if k > N, we have that ||JQ§H§ is bounded by

%l < 9¢,

SBN? Z | Zo.j\| Zo |

9C, :
B . keTk H?:l (147 (1+k3,)

9 |Zﬁj 26 k|
+25 L .
B 2 [T, (1 +52) (1+k3,)

jkeTx S.t
Vi |gil,[ki| >N

We know also that for every j in the sum there is an index ¢ s.t. j; = k but,
due to the null momentum condition, there must be at least an other index

lst. |5l > % and the same holds also for any k. Moreover, from Lemma

3.2.10, |Zs ;| are uniformly limited by a constant. So, in both the cases, as
in Theorem [3.2.13] we have

Z | Zs.;1| Zo 1] C Z 1
[T (1452 (1+K3,) — (1+k2)? [l 1+

J,k€Tk l1,l2,l3,la

and, choosing 0 < € < 1,

Z | Zo.31| Z 1| C Z 1
[T, (+52) (1 +k,) — (1 +k2)? T, (143
jkeTe 8.1 =1 g 341 l1,l2,13,l4 =1 1
Vi | il ks | >N Vi, || >N

C 1
l1,l2,l3,l4 Hz’:l (1 + lz)
Vi, || >N

One has > 1, 15ty ————T5 ~ ~uz, S0, We can take
4 N
Vi, [L|>N T, (1+2) 2

1
2 _
6/8]\[ — m,
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one has N = —1+ and finally

(68)8

SBN? = % = (6p)3.

Wi

This implies that

R||2 ~ (5ﬁ)§
||fRG Hg B 066 (1 + k2>2'
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Appendix D

Technical Lemmas for Chapter

D.1 Proof of Lemma [4.2.6], [4.2.7], 4.2.8
Proof of Lemma [4.2.6] Since ¥; = Hj, one has

(T (a, ) = %/Ow/qrzao(x)}e_imwrdxdt. (D.1.1)

The corresponding symmetric multilinear form (V) (a, ¥, 19, 13, 14) is de-
fined by

(W) (e, o, . 5, 0ha) = Z <TI’\1/><((%1/11,¢2,¢3,¢4), (D.1.2)

/ / CLO = t¢g 1)6At¢§(2)€_1At7,Dg ‘Atzﬁg(@dxdt. (D13)
T2

The estimate of each term of the sum is equal so we just consider the identical
permutation. For any s > 0, € > 0, one has

‘<‘I’1>1d(aa Y1, 12, s, W)‘

21 4
—iA —1A
< /0 e 205 o< - laol H2 ) (D1.4)
]:
21 A A
j /0 He_l twluH;;fe . Ha0’ Cste(T?) H He_l t@ﬁj‘ HZrdt (D15)
j=2
4
< e e - TL el s (D.L6)
j=
4
< Wl T lesee, (D.17)
j=2
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where in line (D.1.4) we use Hoélder inequality in space, in line (D.1.5) we
use the product estimate (4.2.8)), in line (D.1.6) we use Holder inequality in

time and in (D.1.7) we use Corollary [4.2.4
So we conclude the estimate of (4.2.9)).

To prove (4.2.10), we start from Y.
5510(047 ¢17 77b27 1/J37 ¢4)

2T
= Z/ /2 ao(x)e_lAt¢€(1)e_lAtqu)g(z)@_lAt¢g(3)€_lAt¢g(4)dx dt
¢ 70 T

= | V3] Hote s (D.1.8)

where in the last line we proceed as in in the proof of (4.2.9).
Consider now Y1 with & # 0. One has

Nk, 1, U, s, )|

—127rk ‘w g A
_ el t —i t
o 1 — e~ 1 _ —i2nkw / “ \/I[‘Q a'k w<(l)d$dt
S

1<z<4

Hste Hste |W4‘

6—127rk w / .
j T a1 ik-wt / e lAtwidxdt
1— 6—127rk-w 0 ’ ‘ - 124
1 k T 2 ) R .
j + | | . / |€1k-wt| / a/k(ﬂf) H e*lAtd}idajdt
7 0 T2 1<i<4
1 k, T 21 R '
j + | | . / / a/k;(l') H e—lAt/widxdt
7 0 T2 1<i<d
14 |k|™ -
j ,y’ ’ ||a/k‘| C'st2e d)lHHfs ¢2| Hs+te Q/]3| Hs+e 1/}4| Es+e
= 1+ ’k’T ”wl |HS‘*'€ H¢3‘ Hs+e |W4\ Hs+e

where the last estimate holds V 7" and is obtained using the standard decay
properties of Fourier coefficients.
Hence one has

X1 (0 P, s s, )| < D X, v, s, 40a)] (D.1.9)
kezd
O
Proof of Lemma |4.2.7, Note that
1 1 1 1
\112 - _ELXllljl — §LX1 <\I/1> - _§LX1H1 - §LX1 <H1> (D]_]_O)
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To prove the Lemma, it is sufficient to estimate the average of L, H;.
For k # 0, one has

L)?lkHl(aw%a w@) = d;elkXHl (D.l.ll)
= i<vL2§(\1k§ VL2H1>

and note

d?lkXHl
4e—i27rk-w

2m
— s | @@l T (ol ) 0] ) dode
- 0 T2

and
(dXIkXHl
—127rkw 21 . A . A ,
= 1_6 am/ et / TIAL|2 L oAl T (G, (@) [9]P ) dadt.
T

The corresponding multilinear form is given by

XmkXI-h a, T, wla %7 w?n 1/)4, 7v/}L"'n w6>

—127rkw 27
T ] ei2nkw / e wt/ Ala, 2,91, ..., 1), t)dxdt,
where X
=52 A (D.1.12)
S
with
‘A§ = e_lAtwg(l) . 6—1At¢§(2) . e—iAt¢§(3) . e—iAt (a(a’ I)¢§(4)’¢}§(5_)w§(6)) :
(D.1.13)
and

(dXIkXHl kl Oé x ¢17¢27¢37¢47¢5a¢6)
7127rkw 27
— 1k wt
Tl — e 127rk‘w/ /Tz ay(x -Akl x, 1, ..., e, t)dxdt.

Hence, the multilinear form of <(dX1kXH1) k) 18 given by

(AR X 1), ) 2,00, -, )

2m 4671271’](,‘-00 27 L R A A
et R A A
= —_— e A () Ay —r (T, 672291, o e T 0206, ty )dadty dt .
i2rk-w
o l—e 0 T2
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We have a similar expression for the case k = 0.
To prove the Lemma it is sufficient to prove that for any s > 0 and € > 0,

one has
< T Il

2<i<6

e~

(L)@t vo)| = Il

(D.1.14)

H9+§+€

To prove estimate (D.1.14), it suffices to show that for any £ it holds

—_—— 1
(Lo Wi b, 00)| 3 e e TT il e, (D115)
(L+ [k 2<i<o
for some large T} > 0. Note that for any k # 0 one has,
46—127Tk~w |k|1’
'1 g ot (D.1.16)
|eFtz] <1, (D.1.17)
and for any k one has
1
lag(z)| < sup |a(z,a)|. (D.1.18)

(1 + |k|)T z€T2,acTd

Then one has

—_——

\<<d>z@1>kl>

(1+’k’)—T+T /27r/27r/
Y 0 0 T2

As in[D.1.12] we have

ﬁk1—/€<x7 e_iAth)h s 7€_iAt21/}6a tl) d$dt1dt2

—_

Ak =Y (A, (D.1.19)
S
so, we only consider the following term

—_—

(A, i =€ 2Mhay - €78 9 - BNy - €7 (g1 (2)) (1) U (5) Ui(6) )
(D.1.20)

and its corresponding Fourier term.

Since (s(1),5(2),5(3),5(4),5(5),5(6)) is a permutation of (1,2,3,4,5,6) then
we can have two different cases.

Case. 1. 1 € {¢(1),¢(2),<(3)}.
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Without loss of generality, we assume 1 = ¢(1) and using Holder inequality
in space, we have

[1 .

27 27 )
= / / |e7 A0 F 2y || o e || By |
o Jo b

By = e 1At (5) e IAMEH ) (g1 <5k1fk(1‘)671&2¢<(4)6*“2%(5)671%%(6)) :

(J/q\c)krk(ﬂ?, e By L e R 2 t1)| dedtidis

where

Denoting

B2 = He_iA(tl'i't2)77Z)§(2)‘

AR ‘

: B37

s+e s+e
H4,z H4,z

and

I e e )|

s+e
H4,z

and using the product estimate (4.2.8)), we have that (D.1.21]) is controlled
by

2m 2m
/ / ||e—1A<t1+t2>¢1||HZ;% - Bydtdts. (D.1.22)
o Jo ’
Denoting
B, = HefiA(tlthz) ‘ . He*iA(tl%fz) ’ . B ,
4 Vg(2) ot e Vs (3) o pee 5
_ || —ian (~ —iAt TRt At
Bs = He 1 (akl’k(m)e PoyeT T2 s)e 2¢<(6))’ L} Hyte

and using Holder inequality in time ¢;, we get that (D.1.22) is controlled by

2m
/ ||e7 ittty Iz e - Badt. (D.1.23)
0 :
Finally, denoting

By = [ —slw)e ™ e B e i |

H£+26 ’
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we get that (D.1.23) is controlled by

2
/ ||q/)1||H*5 ¢2| Hs+2e ¢3| Hs+3e * Bﬁdt2 (D124)
0 1 .
= (1 + ‘kl _ k|>T”w1HH75 ¢2| Hs+2e ¢3| Hs+2e r{ H¢2| HS+%+(3D.1.25)
1 0 :
= (1 + ‘kl _ k‘)TH@Z}lHH*S H ||¢z| pstitse (D.1.26)
1=2

where in (D.1.24) we use Corollary 4.2.4| with p = 4 and in line (D.1.25]) we
use the product estimate (4.2.8]) and [4.2.4] with p = 6.

Case. 2. 1 € {¢(4),5(5),<(6)}.
Without loss of generality, we assume 1 = ¢(4) and denoting

B, = (efiA(t1+t2)¢g(1)) (efiA(tlthZ)wg@)) <671A(t1+t2)¢§(3)) ’

B = (@ -sl0)e 02, e B e S0

and using Holder inequality in space, we have

/27T /2”/ (‘;L\C)klfk(r,eiiAtQ'l/}l,...,eiiAtQ'l/Jﬁ,tl) dxdt,dty
027‘(‘ 027r "
= / / 1Ball s - [le™5% Bs|l s dtdty
’ 01 2w 2
- e ] 1 1Bl i @120

Denoting

By = [l || [le™ " ¢es) llmg e 7o lla

Byg = ||6_1At2¢1”L§2H;Z |6_1At2wc(5)”L§2H§w |6_1At2w§(6)”L§2H§w

and using use the product estimate (4.2.8]), we get that (D.1.27) is controlled
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1 27 27 3 .
m/ / (H lle A(“”z)wc(i)IHg;e) - Bodtydt;  (D.1.28)
! 0o Joo \izg ’

1 27 3 A
<~ - —iA(titt2) ), s+e Bodt D.1.2
T 1|k kT /0 1;[1 e Vill g aye Bodtz ( 9)
1 3
< - . . B D.1.
= 1—|—|k1 —k:|T (]:[1 ||1/’<(z)|H;+§+2e> 10 ( 30)
1 3
= mH?ﬁlHH% (}:[1 ||¢<(i)||Hs+§+2s> (D'1'31)

X ||7/}§(5)HH%+2€ ||¢§(6)HH%+2€’

where in line (D.1.29)) we use Holder inequality in ¢, in line (D.1.30]) we use
first Corollary with p = 6 and then Hoélder inequality in ¢5 and in the
last line we use two times Corollary once with p = 4 and the second
with p = 8.

So we finish the proof of (D.1.15)) and the proof of (4.2.11)). In a similar way

we get also (4.2.12)). m
Proof of Lemma Note that
1 1 2 2
\Ijg - —gLilzl — §LXQZl - §LX2H1 - gLX1Z2, (D132)

The worst term is %LXQ Hi, so to obtain the thesis it is sufficient to estimate
its average.

We denote
AWr,.. ) = | -l da, (D.1.33)
TQ
B(h1, o, h3) = 1 - ho - ¢, (D.1.34)
By = B(e %)y, e85y, e 7188y (D.1.35)
and
B2 — B(e_iA(t2+t3)¢6, e—iA(t2+t3)1/)7, e_iA(t2+t3)¢8)). (D136)
Then we define
Az (Y1, ¥s b, 1o, t3) (D.1.37)

_ A(efiA(tﬁtants)%’ efiA(t1+t2+t3)w27 efiA(tlthQ)Bl’ efiAtlBQ)'
In a similar way, we define

Az2 (Y1, ., ¥s, 1, 1o, 13) (D.1.38)
— A(efiA(t1+t2+t3)1/}1’efiA(t1+t2+ts)¢2 efiA(t1+t2+t3)w37671At1B3)

)
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where _ _ _
B3 = B(G_IA(t2+t3)’¢4, G_IA(t2+t3)1/J5, 6_1At2 B4) (D139)

and
By = B(e ABg, e B, TR E)g). (D.1.40)

We denote by ]l; and ;l;; the symmetric multilinear form associated respec-
tively to Asz; and Ags. Forgetting about the coefficients due to Fourier expan-
sion, (Ly,H;) is composed by terms of the form fo% 0% OQF Asidtidtadts and

2m 2w

o Jo
them. -

We start from ;l;,; = é Zg Zl\g/% and as in Lemma {4.2.7, we estimate Ass,
showing that one has

/2’“ /2” /% (HII%\IHQ+6+3> . (D.1.41)

As in Lemma [4.2.7] here we have more cases to study.

Case 1. 1 € {¢(1),5(2),<(3)}. Without loosing generality, we consider 1 =
¢(1).

Proceeding as in Lemma [4.2.7] u for any € > 0, by product estimate ([4.2.8))
and Bourgain’s estimate (| , one has

2 2T 2
/ / / dtdtydty (D.1.42)
/ / %1l &7 S 2)‘ H )|

By product estimate and Corollary m, one has
HB3| He j HwC(ZL)HHQH—% }|¢§(5)}|H25+% ||B4HHS+26+% (D.1.44)

027r Zg,/zdtldtgdtg, so to show the Lemma it is sufficient to estimate

Asac | dtrdtadts = || Y1l

—

‘A32§

Bs|

He He dtgdtg (D143)

and

”B4 He = qubc ())HHSeJr3 ch HH36+% H¢§(8)HH3€+% . (D145)
Hence, one has in this case.

Case 2. 1€ {§(4), §(5)} Without loosing of generality, we consider 1 = ¢(4).
For any € > 0, by product estimate (4.2.8]) and Bourgain’s estimate (4.2.6)),

one has
2T 27 27
L
21 27
I

—

‘A32§

dtydtydts (D.1.46)

@
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By product estimate and Corollary n, choosing pi, pa s.t. -+ - =
1, one has

| B3

e 2 ‘Wl”H?e ¢<(5)||H2e+1—% HB4HH2e+17% (D-1-48)
and

|| Bl

5+35+17i ||¢8|| 35+1,A 1 . (D149)

H +3

He = H¢§ H 35+17%+% H¢<(7)‘

Moreover, choosing p1, ps s.t.

4 4 1
l—-—=1——+4 -, (D.1.50)
D1 p2 3
one has p; = 12 and p, = 6, which implies
4 4 1 2

l1—-——=1——4+ == —. D.1.51
D1 p2 3 3 ( )

So, one has (D.1.41)) in this case.

Case 3. 1 € {¢(6),<(7),<(8)}. Without loosing of generality, we consider
1 =¢(6).
For any € > 0, by product estimate (4.2.8) and Bourgain’s estimate (4.2.6)),

one has
27 27 2
/ / / it dtydts (D.1.52)
0 0 0
27 21
/ / 2)‘ H 3)‘ H
0 0

By product estimate (4.2.8)) and Corollary one has

He 2 quz)g HH26+% ||¢§(5)||H2e+% ||B4”H26 (D154)

e dtadts. (D.1.53)

| B3|

and

1Ball gre = 191l ggse ||| jaecs [[¥so) || yaess (D.1.55)
Hence, one has (D.1.41)also in this case.

In a similar way we obtain the same estimate also in the case of ;l\;:l So we

get (4.2.13), in a similar way one gets (4.2.14)). O
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D.2 Technical Lemmas
Proof of Lemma[£.2.2] By ([4.2.6), we know that for every ¢ > 0 one has

le"2¢ s, < Cull¥]

Moreover, using Sobolev embeddings in 2-dimension, one has

He (’]1‘2) .

le* 0l < Colle" e ammsem < Collllmeer),

We denote by po = oo, p1 = 4, sp = 1 + €, s3 = e. Using interpolation
theorem, for every 6 € (0,1), we obtain

le* %%l < ClIY o

where pie = 1p—’()9 + pil and sg = (1 —0)so + 0s;.

In particular, for any p > 4, one has

4
f=—-,0€ (0,1
p (0,1)

and . ) .
s = (1——> (I4+e)+-€e=1——+e
p p p
So, for any p > 4,¢ > 0, we get
itA
”e wHsz < CHQpHHlngre(,Ip)-

]
Proof of Lemma4.2.5. Let 77 be smooth, supported in B(0,2) and equal to 1
on B(0,1). Also let 7g(x) = n(x/R) for R > 0. We define

n

Nr(x1, ..., y) == H nr(x;).

i=1
Denoted by G, the Bessel Kernel

e o0 2\
Gs(x) = —— / eIt (t+—) dt
T e (T () 2

for  # 0, we can express (I — A)*/2f = G+ f, (I — A)*?fng = Gy * fnr
([2]).-

100



Since f is periodic, f € L*(R") and

Inr— f

pointwise as R — oo, by Dominated Convergence Theorem, one has that

(1 = A)P2(fir) — (1 = A)(f)

pointwise. Moreover the function (I — A)*/2(f) is periodic as it is given as
a convolution of a periodic function with a tempered distribution. By the
Kato-Ponce inequality on R™ [27], recalling that (I — A)¥/2 := J,, for s > 0
we have:

1 75(f ) || o emy
j”Js(fT/R)HLPI (R™) ||g77R||LP2(]Rn) + ||fﬁR||Lq1 (R™) ||J5(g773)||Lq2(]Rn) (D.Q.l)

1,1 1,11
Wherep—l+p—2=q—1+q—2=5, 1 <p1,p2,q1,q2 < o0.

If p1 = q1 = 00, this can be modified as follows:

| Ts(fgm2)| o ®n)
SN s (fr) || oo @mllgnrl| Loy + || f0r| Lo @) | Js(9nR) | @y (D.2.2)

Let v, = |B(0,1)]. Notice that for 0 < py < oo

||f77RHLP2 R~
_(1 ) | 1l o2 (f0,2717) (D.2.3)

(v, ™) P2

as R — oo.
Next we show that for 1 < p; < o0

| Js(fnr)|l et (e
1

(0, ) L L5 ()Nl zer (f0,27]m) (D.2.4)
Up L") P1

as R — oo.
First, we notice that for 1 < p; < oo

| Js(fnr) — Js(f)nrllLer @rny
(Uan)i
2/ o ()l oo @my Inrll Loy @ey + (1 | zoe @y | Ts () || o1 ey
(v, Rr)or

<C

(D.2.5)
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by the Kato-Ponce and Holder inequalities.
By (D.2.3), (D.2.5) is bounded in R, so by the Dominated Convergence
Theorem, letting R — oo, we obtain that

| Js(fnr) — Js(f )77R||Lp1 (R™)

— 0. (D.2.6)
(vnR")pl
Using (D.2.3)), (D.2.6) and
| Js(fnr)] ]lel(Rn) _ 1Js(F)nrlly LP1(R™) HJ (fnr) = Js(F)nrl; LP1(R")
Uan Uan o Uan

we deduce (D.2.4). To obtain the periodic Kato-Ponce, in the case where
1 < p1,p2,q1,q2 < 00, we divide (D.2.1)) by

(UaR™)7 = (0, R")71 (v, R")72 = (0, R")7r (v, R") 7

and we use (D.2.4) and (D.2.3). O

The rest of the Appendix is devoted to prove Lemma [4.3.4]
We recall that, for any s € (0,1) and for any n € N the fractional laplacian
is defined also in the following way:

Vi) ~vl)

—A)(x) :=C,4 D.2.7
() () = Cus | 0 (D.2.7)
where
o 4°T'(n/2 + s)
T w20 ()
and that

sy =[10ll oy + [[(—A) 29| Lo in).

Moreover, for periodic function ¢ on the torus, also (—A)%)(z) is periodic,
in fact:

: _ Y(@ +2m) — ()
() 9tatom) = G [ ST

Y(z) —(y) W) — P +2m)

= Cns =

/R" |z + 2 — zgl”“sd S Jan |z — gt 4y
e~ (~Ay (o)

R |x—y

:Cn,s
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So

srn) =¥l zeo2e1m) + I1(=2) 20| Lo(o,2mim)
1
Y(x) —1(y) »
=9l Lo 0,27y + (/ s dx
[0,27]™

re T =y
In particular, for n = 2 and for periodic functions we have the following
lemma which gives us an other equivalent norm on the torus.

Chs dy

Lemma D.2.1. For any s € (0,1), 1 < p < oo there exists two constants
Ci(s,p),Ca(s,p) > 0, s.t. for any periodic function ¢ € H;(']I‘2)7 one has

Y(z) —¥(y)
(] Sc(lbpp W-i-/ / —dy dx
| |HP(T2) AL (0,2 0.2r2 |J[—2man2 |2 — y[***
(D.2.8)
and
o) =), 7
(| &y :
2 Lr([0,27]2) o022 | |2 4 ]az _ y’2+s 5(T2)-
(D.2.9)

Proof. We start from (D.2.8]). By definition, one has

1\ P
Hy(T2) = (WHLP([O,%P) + (/ d:c) )
[0,27]2

<>(kum vt s ( [.. U0y )| )

(D.2.10)
- ¥(z) —vly)
A= /({ et dy.

|z —yl**

b(x) = ¥(y)

R2 |95 - y|2+s

02,3 dy

where

So we have
p
b < CO) (1910 + [,

We study now A.
Given K = (ky, ko) € Z2, denoting for any ki, ko € Z, k; > 2,

1]

[ vy,
[~2m 4n]?

|.Z' _ y|2+s

p
dx —|—/ |A|P da:) :
[0,27]2

(D.2.11)

BE 1, = [2kym, 2(ky + 1)) x [2kom, 2(ky 4 1)7],
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for any ki, ke € Z, k1 < —1,

BE 4, = [20k1 — 1), 2ky7] X 2k, 2(ky + 1)7],
for any ky € {—1,0,1} ko € Z, ko > 2,

By, g, = [2k1m, 2(ky + 1)7] x 2k, 2(ky + 1) 7]
and for any ky € {—1,0,1} ,ky € Z, ky < —1,

By gy o= 2k, 2(ky + 1)7] x [2(ky — 1)7, 2kym],

one has
ERS / ()] + |2@i(sy)|dy (D.2.12)

k12>2,ko Bk>1,k2 |$ B y|

. [Y(x)] + I;/i(syﬂdy (D.2.13)
k1<—1,k2 B’€<1’k2 |$ B y|

S [¢(@)] + Ii(sy)ldy (D.2.14)
b {101} ka2 B 1, |JJ - y|

S / [¥()] + |21ﬁ£y>!dy. (D.2.15)
k1€{-1,0,1},ka<—1 B \x a y\

We study explicitly the right side of (D.2.12) but one can estimate all the

other terms in a similar way.

V(@) + 1w

k12>2,ka

) 9(@)| + 1) 0(@)| + 1)
_kzk:/B e A

>
k1,ko k1>2,ka>0 k1,ko

()] + [ ()|
> /B>k =g

k1>2,ka<0 " Zky,kg

< 3 o [ @)+ )l

o 127y — 1>

k12>2,ko= k1.kg
1
+ 3 = [ @I+l
k1>2,k2>0 [QW\/(kl —1)2 4 (kg — 1)2} By ks
1
3 = [ @I el

k1>2,ko<0 |:27T\/(]€1 —1)2+ (kg)Q] Bi) ks
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Since 1 is a periodic function with period 27 in each variable, for any ki, ko,
one has

()] + [(y)ldy = / ()] + [(y)dy.

BE 1y [0,27]2

Moreover, since all the series are convergent, we obtain that

[ e,

|l‘ _y’2+s

>
k1>2,ko k1,ko

SC’(s,p)/[02 . [W(@)| + [o(y)ldy = C(s,p) ((2m)?|¢ ()] + ]| 1 (x2)) -
In a similar way, we obtain that

4] < C(s.p) / (@) + [$)ldy = Os.p) (10(@)] + 19l 1) -

[0,27]2

So, we have

[ waras<éen ([ 1wt + ol ) < Gl
[0,27]2 [0,27]2
(D.2.16)

Using (D.2.16)) in (D.2.11)), we get (D.2.8)).
To prove (D.2.9), it is sufficient to consider

_ p
[ V@) =) [,
[0,27]2 |J[—2n,4x] [z — y|?+s
:/ —¢() szES)d —A cl:z:
[0,27]2 |JR2 |z =y
U(x) —¥(y)
<co9) ([ lew [ 0ay ot 6l ) = Clllyge

( ) 10,21 R? |I _ y|2+s LP(T?) p(T)

(D.2.17)

where in the last line we use (D.2.16)), so we get the thesis. m

We use the previous result to show that is equivalent to take the Bessel-norm
of periodic functions on the torus and to take the Bessel-norm of a suitable
non periodic function with compact support. For any periodic ¢ with period
27, we define

Y(x) for z € [—2, 4n)?

0 otherwise

) i= §
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Lemma D.2.2. Let s € (0,1), 1 < p < oo then |9} +(12) and ||ezt]| -+ ((0.27]2)

are equivalent, i.e. there exist two constant C’l,Cg > 0 s.t. for any (IS
H(T?), one has

Cill|

]IJLI;(’IV) S ||7v/}e:ct|

1;1;([0,27@2) < Col|Y|

%E(Tg). (D.2.18)
Proof. By definition, one has
s p

||weme 5([0,27]2) = (Hwewt”LP [0,27]2) + “<_A)2¢emt||LP([0,27r}2))
<00w@mmm% S [GNELT

~ ¢emt( ) - wert(y) P
<C (H¢ext“ip([o,2ﬂ2) +/ dx

[0,27]2

R2 |z — y|*ts
:CN’ <||wemt||ip([072ﬂ2) (D219)

_ _ p
+/ / ¢ext($) 7fegct(y) dy—l—/ wext(x) '(fea:t<y) dy‘ d[E) )
o2m2 | J[—2manz T —y[*T (—2manj2)e [T —y[*s

Using the definition of .., one has that (D.2.19) is equal to

dy

=C (WHZ@W)

[ vy, 6@
[0,27)2 |J[—2m,47]2 [z —y ([~2m,47]2)° Yl
1 p
W e / P(x)P (/ —dy) dx
<H HL ) [0,27r]2| @)l ([ 2, 4m)2 |z — y[?+s
Y(x) —P(y) )
+/ / —dy dx
[0,27]2 |J[—2 4x]2 |z — y[**s
Y(z) — YY)
<cuon (Wi | S0,
2(5:2) { I¥llzecre o2r? | -amanp T — y[>**

where in the last line we use the fact that

1
/ Ty < oo
([—2m,47]2)¢ |z —y
So, using Lemma [D.2.7] we get
Hwext|

p
dx)

d:z:) (D.2.20)

Hp(0,2x2) < ClIV 7

Hs(T2)"
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Conversely, by Lemma

p
d;z:)

/ ¢ext (37) - ¢emt(y) dy
[—2m,4r]?

|z —y[**

Plr) —Ply
e e R =

(0,272 [z — y[?+s

:OS (||¢e$t||ip(’]r2) +/
[0,27]2
ext\L) — Yex
<Cj (l|¢ext||lzp(T2)+/ w t( ) w t(y)
0

[0,27)2 |JR2 |z — y|?+s
p
+ / / ¢emt('r2z_s dy df]?)
[0,27]2 |J (=27 am)2)e [T — |
§C4 (Hwel’t”ip('ﬂﬂ) +/
[0,27]2

Veat (T) — Veat (y) i
R2 |:L’ — y|2+s
1 p
+/ ¢ex s p (/ —dy) daj’)
0,272 | t( )| (=2 4r]2)° |Qj — y|2+s
SCE)((Hwezt“ip(TQ) + /[ . wext<$) — wezt(y)
0,27

R2 |z — y|?+s
SCG||¢ext|

P
dx)

p

dx

P

dx

dy

p
d:v)

P
Hg([0,27]2)"
[

Lemma D.2.3. [Embeddings| For every s € (0,1), 1 < p < oo and € > 0
there exist {C;}_;, C; >0 for any i = 1,...,4, s.t. for any periodic function
Y € H5(T?), one has

4]

%E(Tz) Scl Hwel‘t|
§C3Hwext|

%5([0727@2) S 02 Hwext ’l%/s+e,p([0727r]2) (D221)
Hr(oznp) = Call¥!

p
Hybe(r)’

Proof. The proof of this Lemma is a simple consequence of Lemma
and of the embeddings showed in Lemma 2.1 of [23] on open domain with
regular boundary. O

Proof of Lemma The proof is a simple consequence of Lemma[D.2.3|and
of Sobolev embeddings in Sobolev space W*P()) where (2 is an open subset
of R?, and for any s € (0,1),p > 0,

mey:{weywwp@@tﬁﬁﬂeL%QxQ}

|z —yl» "

107



Bibliography

[1]

2|

3]

4]

[5]

(6]

7l

8]

9]

Sergio Albeverio and Sonia Mazzucchi. An introduction to infinite-
dimensional oscillatory and probabilistic integrals. In Stochastic anal-
ysis: a series of lectures, volume 68 of Progr. Probab., pages 1-54.
Birkhéuser/Springer, Basel, 2015.

N. Aronszajn and K. T. Smith. Theory of Bessel potentials. I. Ann.
Inst. Fourier (Grenoble), 11:385-475, 1961.

D. Bambusi. Nekhoroshev theorem for small amplitude solutions in
nonlinear Schrédinger equations. Math. Z., 230(2):345-387, 1999.

D. Bambusi. Birkhoff normal form for some nonlinear PDEs. Comm.
Math. Phys., 234(2):253-285, 2003.

D. Bambusi and F. Avanzini. Stabilty properties in hamiltonian pertur-
bations of resonant pde’s with symmetry: the case of NLS. Quaderno
GNFM, (54):5-18, 1998.

D. Bambusi, A. Carati, A. Maiocchi, and A. Maspero. Some analytic
results on the FPU paradox. In Hamiltonian partial differential equations
and applications, volume 75 of Fields Inst. Commun., pages 235-254.
Fields Inst. Res. Math. Sci., Toronto, ON, 2015.

D. Bambusi, H. Cong, and L. Turri. Long time existence in H' for
time-dependent NLS on the 2-d torus. In preparation.

D. Bambusi, J.M. Delort, B. Grébert, and J. Szeftel. Almost global
existence for Hamiltonian semi-linear Klein-Gordon equations with
small Cauchy data on Zoll manifolds. Comm. Pure Appl. Math.,
60(11):1665,1690, 2007.

D. Bambusi and B. Grébert. Birkhoff normal form for partial differential
equations with tame modulus. Duke Math. J., 135(3):507-567, 2006.

108



[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

D. Bambusi, A. M. Maiocchi, and L. Turri. A large prob-
ability averaging theorem for the defocousing NLS. Preprint:
http://arziv.org/abs/1805.10072, 2018.

D. Bambusi and N. N. Nekhoroshev. A property of exponential stability
in the nonlinear wave equation close to main linear mode. Physica D,
122:73-104, 1998.

Dario Bambusi. Long time stability of some small amplitude solutions in
nonlinear Schrédinger equations. Comm. Math. Phys., 189(1):205-226,
1997.

Heinz Bauer. Measure and integration theory, volume 26 of De Gruyter
Studies in Mathematics. Walter de Gruyter & Co., Berlin, 2001. Trans-
lated from the German by Robert B. Burckel.

J. Bourgain. Exponential sums and nonlinear Schrodinger equations.
Geom. Funct. Anal., 3(2):157-178, 1993.

J. Bourgain. Fourier transform restriction phenomena for certain lattice
subsets and applications to nonlinear evolution equations. Geometric
and Functional Analysis, 3:107-156 and 209-262, 1993.

J. Bourgain. Periodic nonlinear Schrodinger equation and invariant mea-
sures. Comm. Math. Phys., 166(1):1-26, 1994.

J. Bourgain. On diffusion in high-dimensional Hamiltonian systems and
PDE. J. Anal. Math., 80:1-35, 2000.

N. Burq, P. Gérard, and N. Tzvetkov. The Schrédinger equation on a
compact manifold: Strichartz estimates and applications. In Journées
“Bquations auzx Dérivées Partielles” (Plestin-les-Gréves, 2001), pages
Exp. No. V, 18. Univ. Nantes, Nantes, 2001.

N. Burq, P. Gérard, and N. Tzvetkov. Strichartz inequalities and the
nonlinear Schrodinger equation on compact manifolds. Amer. J. Math.,
126(3):569-605, 2004.

N. Burq, P. Gérard, and N. Tzvetkov. Bilinear eigenfunction estimates

and the nonlinear Schrodinger equation on surfaces. Invent. Math.,
159(1):187-223, 2005.

A. Carati. An averaging theorem for Hamiltonian dynamical systems in
the thermodynamic limit. J. Stat. Phys., 128(4):1057-1077, 2007.

109



[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

32|

A. Carati and A. Maiocchi. Exponentially long stability times for a
nonlinear lattice in the thermodynamic limit. Comm. Math. Phys.,
314(1):129-161, 2012.

A. Cesaroni, M. Cirant, S. Dipierro, M. Novaga, and E. Valdinoci.
On stationary fractional mean field games. arXiv:1705.10123v1, 2017,
Preprint.

J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao. Transfer of
energy to high frequencies in the cubic defocusing nonlinear Schrédinger
equation. Invent. Math., 181(1):39-113, 2010.

James Colliander and Tadahiro Oh. Almost sure well-posedness of the
cubic nonlinear Schrodinger equation below L*(T). Duke Math. J.,
161(3):367-414, 2012.

A. Giorgilli and L. Galgani. Formal integrals for an autonomous Hamil-
tonian system near an equilibrium point. Celestial Mech., 17(3):267-280,
1978.

Loukas Grafakos. Fractional differentiation: Leibniz meets Holder. In
Excursions in harmonic analysis. Vol. 5, Appl. Numer. Harmon. Anal.,
pages 17-33. Birkhduser/Springer, Cham, 2017.

G. Huang. An averaging theorem for a perturbed KdV equation. Non-
linearity, 26(6):1599-1621, 2013.

G. Huang, S. Kuksin, and A. Maiocchi. Time-averaging for weakly non-
linear CGL equations with arbitrary potentials. In Hamiltonian partial
differential equations and applications, volume 75 of Fields Inst. Com-
mun., pages 323-349. Fields Inst. Res. Math. Sci., Toronto, ON, 2015.

J. L. Lebowitz, H. A. Rose, and E. R. Speer. Statistical mechanics of
the nonlinear Schriodinger equation. J. Statist. Phys., 50(3-4):657-687,
1988.

A. Maiocchi, D. Bambusi, and A. Carati. An averaging theorem for
FPU in the thermodynamic limit. J. Stat. Phys., 155(2):300-322, 2014.

A. Maspero and M. Procesi. Long time stability of small finite gap solu-
tions of the cubic nonlinear Schrédinger equation on T?2. J. Differential
FEquations, 265(7):3212-3309, 2018.

110



[33]

[34]

[35]

[36]

[37]

38

[39]

Sonia Mazzucchi. Mathematical Feynman path integrals and their ap-
plications. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ,
2009.

H. Poincaré. Les méthodes nouvelles de la mécanique céleste, Volume 3.
Gauthier-Villars, Paris, 1899.

C. Procesi and M. Procesi. A KAM algorithm for the resonant non-linear
Schrodinger equation. Adv. Math., 272:399-470, 2015.

M. Procesi and C. Procesi. A normal form for the Schrodinger equation
with analytic non-linearities. Comm. Math. Phys., 312(2):501-557, 2012.

Luz Roncal and Pablo Rail Stinga. Fractional Laplacian on the torus.
Commun. Contemp. Math., 18(3):1550033, 26, 2016.

Laurent Thomann and Nikolay Tzvetkov. Gibbs measure for the periodic
derivative nonlinear Schriédinger equation. Nonlinearity, 23(11):2771-
2791, 2010.

Nikolay Tzvetkov. Invariant measures for the defocusing nonlinear
Schrodinger equation. Ann. Inst. Fourier (Grenoble), 58(7):2543-2604,
2008.

111



	Introduction
	I Probabilistic result
	Measures on infinite dimensional spaces
	 Difference between Borel measures on finite and infinite dimensional Hilbert spaces
	Abstract Wiener spaces
	Kolmogorov's Theorem
	Gaussian measures on Hs(T)

	Invariant measures for NLS
	Construction of Gibbs measure for defocusing NLS on the torus 
	Truncated approximation to NLS and invariance of the Gibbs measure
	Almost sure global well posedness for NLS
	Invariance of Gibbs measure under NLS


	A large probability averaging Theorem for the defocusing NLS
	Preliminaries
	Polynomials with frequency dependent coefficients
	Formal construction of perturbed actions
	Measure estimates
	Proof of Theorem 0.0.1


	II Deterministic result
	Long time existence in H1 for time-dependent NLS on the 2-d torus
	Formal scheme
	Preliminaries
	The algorithm
	The solutions of the homological equation (4.1.8)

	Estimate of i, i=1,2,3
	Proof of Theorems 0.0.5 and 0.0.6 


	Lemmas on Gaussian and Gibbs measure
	Proof of Lemma 2.1.4
	Technical lemmas for Chapter 3
	Proof of Lemma 3.2.13
	Estimate of the resonant part

	Technical Lemmas for Chapter 4
	Proof of Lemma 4.2.6, 4.2.7, 4.2.8
	Technical Lemmas


