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Canonical coordinates with tame estimates for the

defocusing NLS equation on the circle

Thomas Kappeler∗, Riccardo Montalto†

Abstract. In a case study for integrable PDEs, we construct real analytic, canonical coordinates for the
defocusing NLS equation on the circle, specifically taylored towards the needs in perturbation theory. They
are defined in neighbourhoods of families of finite dimensional invariant tori and are shown to satisfy together
with their derivatives tame estimates. When expressed in these coordinates, the dNLS Hamiltonian is in
normal form up to order three.
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1 Introduction

In form of a case study for integrable PDEs, the goal of this paper is to construct canonical coordinates for
the defocusing NLS (dNLS) equation, specifically taylored to the needs in perturbation theory. We consider
the dNLS equation in one space dimension

i∂tu = −∂2
xu+ 2|u|2u , x ∈ T := R/Z (1.1)

on the Sobolev space Hs
C
≡ Hs(T,C) of complex valued functions on T, whose distributional derivatives

up to order s ∈ Z≥0 are in L2(T,C). Equation (1.1) can be viewed as a Hamiltonian PDE, obtained by
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restricting the Hamiltonian system on the phase spaceHs
c := Hs

C
×Hs

C
with Poisson bracket and Hamiltonian

given by

{F ,G}(u, v) = −i

∫ 1

0

(∂uF∂vG − ∂vF∂uG)dx, Hnls(u, v) =

∫ 1

0

(∂xu∂xv + u2v2)dx (1.2)

to the real subspace Hs
r of Hs

c consisting of elements (u, v) with v = u. Here F ,G are C1-smooth complex
valued functionals on Hs

c with sufficiently regular L2-gradients. Equation (1.1) can then be rewritten as
∂tu = −i∂vHnls |v=u. The dNLS equation is an integrable PDE and according to [9], admits global Birkhoff
coordinates on Hs

C
with s ∈ Z≥0. To state the main results of this paper we first need to describe these

coordinates in more detail: for any s ∈ Z≥0, let

hs
C ≡ hs(Z,C) :=

{
x = (xn)n∈Z ⊆ C : ‖x‖s < +∞

}
, ‖x‖s :=

∑

n∈Z

〈n〉2s|xn|2, 〈n〉 := max{1, |n|} ,

hs ≡ hs(Z,R) :=
{
(xn)n∈Z ∈ hs

C : xn ∈ R ∀n ∈ Z
}

and
hs
c := hs

C × hs
C , hs

r := hs × hs .

Note that the Sobolev space Hs
C
can then be described by

Hs
C =

{
u =

∑

n∈Z

une
2πinx : (un)n∈Z ∈ hs

C

}
, ‖u‖s := ‖(un)n∈Z‖s .

Furthermore let

ℓ1,2 ≡ ℓ1,2(Z,R) :=
{
x = (xn)n∈Z ⊂ R : ‖x‖1,2 :=

∑

n∈Z

〈n〉2|xn| < +∞
}
,

ℓ1,2+ :=
{
(xn)n∈Z ∈ ℓ1,2 : xn ≥ 0 , ∀n ∈ Z

}

and define the following version Fnls of the Fourier transform, introduced in [9],

Fnls : H0
c → h0

c , (u, v) 7→
(
− 1√

2
(u−n + vn), −

i√
2
(u−n − vn)

)
, (1.3)

where un denotes the nth Fourier coefficient of u, un :=
∫ 1

0 u(x)e−2πinx dx. Note that for v = u, one has
vn = u−n for any n ∈ Z, implying that

Fnls(u, u) =
(
−
√
2Re(u−n) ,

√
2Im(u−n)

)
.

The inverse of Fnls is then given by

F−1
nls : h0

c → H0
c ,

(
(xn)n∈Z, (yn)n∈Z

)
7→
(
− 1√

2

∑

n∈Z

(x−n − iy−n)e
2πinx , − 1√

2

∑

n∈Z

(xn + iyn)e
2πinx

)
.

Finally we recall that a possibly nonlinear map F : U → Y of a subset U of a Banach space X into another
Banach space Y is said to be bounded if F (V ) is bounded for any bounded subset V in U .

Theorem 1.1 ([9], [12]). There exists a neighbhorhood W of H0
r in H0

c and an analytic map

Φnls : W → h0
c , (u, v) 7→

(
(xn)n∈Z, (yn)n∈Z

)

with Φnls(0) = 0 such that the following holds:

(B1) For any s ∈ Z≥0, Φ
nls(Hs

r ) ⊆ hs
r and Φnls : Hs

r → hs
r is a real analytic diffeomorphism.

(B2) The map Φnls is canonical, meaning that on W, {xn, yn} = −1 and all the other brackets between
coordinate functions vanish.
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(B3) The Hamiltonian Hnls := Hnls◦(Φnls)−1, defined on h1
r, is a function of the actions In := (x2

n+y2n)/2,
n ∈ Z, only and Hnls : ℓ1,2+ → R, I 7→ Hnls(I) is real analytic.

(B4) The differential d0Φ
nls of Φnls at 0 is the Fourier transform Fnls defined in (1.3).

(B5) The nonlinear parts Anls := Φnls − Fnls of Φnls and Bnls := Ψnls − F−1
nls of Ψnls := (Φnls)−1 are one

smoothing, meaning that for any s ∈ Z≥1,

Anls : Hs
r → hs+1

r and Bnls : hs
r → Hs+1

r

are real analytic and bounded.

The maps Φnls,Ψnls are referred to as Birkhoff maps and the coordinates ((xn, yn))n∈Z as Birkhoff coordi-
nates for the dNLS equation.

Birkhoff coordinates are a tool to study perturbations of the dNLS equation far away from the equilibrium.
In particular, in [2] they were used to show the existence of finite dimensional invariant tori of large size
for Hamiltonian perturbations of this equation, involving no derivatives of u. So far, no such results have
been obtained for perturbations involving ∂xu (and possibly ∂2

xu) – see [2], [4], [5], [6], [7], [8], [11], [15] for
results on perturbations of the dNLS equation on the circle obtained so far. In view of the recent results
in [1] concerning the existence of small quasi-periodic solutions of quasi-linear Hamiltonian perturbations of
the KdV equation and our results in [2] described above, we expect that Hamiltonian perturbations of the
dNLS equation, involving ∂xu (and possibly ∂2

xu), also admit large quasi-periodic solutions, also referred to
as multi-solitons. For this purpose, the scheme developed in [2] has to be considerably refined. In particular,
canonical coordinates are needed which together with their derivatives satisfy tame estimates. In [17],
such estimates were derived for Φnls and its inverse, but so far are not available for their derivatives. In this
paper, we prove how to use the Birkhoff coordinates to construct near bounded, integrable, finite dimensional
subsystems of the dNLS equation, local canonical coordinates so that they satisfy tame estimates and the
dNLS Hamiltonian, when expressed in these coordinates, is in normal form up to order three – see Theorem
1.2 for a precise statement. In future work, we will use these coordinates as a starting point for applying
a KAM scheme to reduce certain linear operators with tame estimates , which come up in the Nash Moser
iteration, to operators with constant coefficients. Recently, such schemes have been further developed in
significant ways. In the context of the dNLS equation, results of this type in [3] will be particularly relevant.

To state our main result, we need to introduce some more notation. For any S ⊆ Z with |S| < +∞, let
S⊥ := Z \ S. By a slight abuse of notation, we identify hs

c with CS ×CS × hs
⊥c and hs

r with RS ×RS × hs
⊥r

where
hs
⊥c := hs(S⊥,C)× hs(S⊥,C) , hs

⊥r := hs(S⊥,R)× hs(S⊥,R) .

Accordingly, an element z ∈ h0
c is written as

z = (zS , z⊥) , zS =
(
(xj)j∈S , (yj)j∈S

)
, z⊥ =

(
(xj)j∈S⊥ , (yj)j∈S⊥

)
,

and as norm we choose ‖z‖s := ‖zS‖+ ‖z⊥‖s where

‖zS‖ ≡ ‖zS‖0 :=
(∑

j∈S

|xj |2 + |yj |2
) 1

2

, ‖z⊥‖s :=
( ∑

j∈S⊥

〈j〉2s(|xj |2 + |yj|2)
) 1

2

.

Furthermore, we introduce the bilinear form

(z⊥, z
′
⊥)r :=

∑

j∈S⊥

xjx
′
j + yjy

′
j , z⊥ = (x⊥, y⊥), z′⊥ = (x′

⊥, y
′
⊥) ∈ h⊥c . (1.4)

and write the sequence of actions I = (Ik)k∈Z as (IS , I⊥) where

IS := (Ik)k∈S , I⊥ := (Ik)k∈S⊥ , Ik ≡ Ik(z) =
|zk|2
2

=
x2
k + y2k
2

, ∀k ∈ Z .
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Finally, we introduce the dNLS frequencies

ωnls
k (I) := ∂IkH

nls(I) , k ∈ Z . (1.5)

They satisfy asymptotics of the form ωk(I) = 4k2π2 +O(1) as k → ±∞. More precisely, the map

ℓ1,2+ → ℓ∞, (Ik)k∈Z 7→ (ωnls
n (I) − 4π2n2)n∈Z

is real analytic and bounded – see Proposition 5.3 in Subsection 5.2 below. The main result of this paper is
the following one.

Theorem 1.2. Let S ⊆ Z be finite. For any compact subset K ⊆ RS × RS, there exists an open, bounded,
complex neighbourhood V ⊆ h0

c of K × {0} and a bounded analytic map

Ψ : V → H0
c , (zn)n∈Z 7→ w

so that the following holds:

(C1) For any s ∈ Z≥0, Ψ(V ∩ hs
r) ⊆ Hs

r and Ψ : V ∩ hs
r → Hs

r is a real analytic diffeomorphism onto its
image.

(C2) Ψ is canonical, meaning that on Ψ(V∩h0
r), {xn, yn} = −1 for any n ∈ Z, whereas all the other brackets

between coordinate functions vanish.

(C3) The transformation Ψ is related to Ψnls = (Φnls)−1 by

Ψ |K×{0}= Ψnls |K×{0} , dΨ(z) = dΨnls(z) , ∀z ∈ K × {0} .

(C4) The Hamiltonian H := Hnls◦Ψ, defined on V∩h1
r, is in normal form up to order three. More precisely,

H(z) = Hnls(IS , 0) +
∑

n∈S⊥

ωnls
n (IS , 0)In(z) + P3(z)

where the Hamiltonian P3 : V ∩ h0
r → R is real analytic. Furthermore, P3 satisfies the following tame

estimates: for any s ∈ Z≥0, z ∈ V ∩ hs
r , ẑ ∈ hs

c,

‖∇P3(z)‖s .s ‖z⊥‖s‖z⊥‖0 , ‖d∇P3(z)[ẑ]‖s .s ‖z⊥‖s‖ẑ‖0 + ‖z⊥‖0‖ẑ‖s (1.6)

and for any k ∈ Z≥2, ẑ1, . . . , ẑk ∈ hs
c,

‖dk∇P3(z)[ẑ1, . . . , ẑk]‖s .s

k∑

j=1

‖ẑj‖s
∏

i6=j

‖ẑi‖0 + ‖z⊥‖s
k∏

j=1

‖ẑj‖0 .

Here, the meaning of .s is the standard one. So e.g. ‖∇P3(z)‖s .s ‖z⊥‖s‖z⊥‖0 says that there exists
a constant C ≡ C(s) > 0 so that

‖∇P3(z)‖s ≤ C‖z⊥‖s‖z⊥‖0 , ∀ z ∈ V ∩ hs
r .

(C5) The nonlinear maps B := Ψ − F−1
nls : V ∩ h0

r → H0
r and A := Ψ−1 − Fnls : Ψ(V) ∩ H0

r → h0
r are real

analytic maps and so is

A : V ∩ h0
r → L(H0

c , h
0
c), z 7→ A(z) := dΨ(z)−1 − Fnls.

On V ∩h0
r, the maps B and A satisfy the following estimates: for any z ∈ V ∩h0

r, k ∈ Z≥1, ẑ1, . . . , ẑk ∈
h0
c, and ŵ ∈ H0

c ,

‖B(z)‖0 . 1 , ‖dkB(z)[ẑ1, . . . , ẑk]‖0 .k

k∏

j=1

‖ẑj‖0 ,
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‖A(z)[ŵ]‖0 . ‖ŵ‖0 , ‖dk
(
A(z)[ŵ]

)
[ẑ1, . . . , ẑk]‖0 .k ‖ŵ‖0

k∏

j=1

‖ẑj‖0 .

Furthermore, B is one smoothing, meaning that for any s ∈ Z≥1, B : V ∩ hs
r → Hs+1

r is real analytic,
and satisfies the following tame estimates: for any k ∈ Z≥1, z ∈ V ∩ hs

r, and ẑ1, . . . , ẑk ∈ hs
c,

‖B(z)‖s+1 .s 1 + ‖z⊥‖s , ‖dkB(z)[ẑ1, . . . , ẑk]‖s+1 .s,k

k∑

j=1

‖ẑj‖s
∏

i6=j

‖ẑi‖0 + ‖z⊥‖s
k∏

j=1

‖ẑj‖0 .

Similarly, the maps A and A are one smoothing, meaning that for any s ∈ Z≥1, A : Ψ(V ∩hs
r) → hs+1

r

and A : V ∩ hs
r → L(Hs

c , h
s+1
c ) are real analytic. Moreover, A satisfies the following tame estimates:

for any z ∈ V ∩ hs
r, ŵ ∈ Hs

c ,

‖A(z)[ŵ]‖s+1 .s ‖z⊥‖s‖ŵ‖0 + ‖ŵ‖s

and for any k ∈ Z≥1, ẑ1, . . . , ẑk ∈ hs
c,

‖dk
(
A(z)[ŵ]

)
[ẑ1, . . . , ẑk]‖s+1 .s,k

(
‖z⊥‖s‖ŵ‖0 + ‖ŵ‖s

) k∏

j=1

‖ẑj‖0 + ‖ŵ‖0
k∑

j=1

‖ẑj‖s
∏

i6=j

‖ẑi‖0 .

Remark 1.1. Note that in Theorem 1.2, apart from being compact, no further assumptions on K are being
made. In particular, K may contain the equilibrium point 0 in which case K does not admit action-angle
coordinates. In subsequent work, the estimates for A(z) = dΨ(z)−1−Fnls will be used to study perturbations
of the dNLS equation. Since such estimates are not needed for A(Ψ(z)), we have not included them in
Theorem 1.2.

Outline of the construction of Ψ: Let V be of the form V = VS × V⊥ ⊂ h0
c where VS is a bounded, open

neighbourhood of K in CS×CS and V⊥ an open ball in h0
⊥c, centered at {0}. By Theorem 1.1, VS and V⊥ can

be chosen so that the Birkhoff map Ψnls is defined on V and all the estimates of Ψnls and its derivatives used
in the sequel are uniform on V . The canonical map Ψ is then defined to be the composition Ψ := ΨL ◦ΨC

where ΨL is the Taylor expansion of Ψnls of order one in the normal directions z⊥ around (zs, 0),

ΨL(zS , z⊥) := Ψnls(zS , 0) + dΨnls(zS , 0)[0, z⊥] , (1.7)

and ΨC , referred to as symplectic corrector, is chosen so that ΨL ◦ΨC becomes symplectic and satisfies the
claimed tame estimates.
In his pioneering work [14], Kuksin presents a general scheme for proving KAM type theorems for semilinear
Hamiltonian perturbations of integrable PDEs in one space dimension, such as the Korteweg de Vries (KdV)
or the sine Gordon (sG) equations, which possess a Lax pair formulation and admit finite dimensional
integrable subsystems, foliated by invariant tori. One of the key elements of his work is a normal form theory
for such PDEs. Expanding on work of Krichever [13], Kuksin considers bounded integrable finite dimensional
subsystems (iSS) of such an integrable PDE (iPDE) which admit action-angle coordinates. In the case of
the KdV and the sG equations, the angle variables are given by the celebrated Its Matveev formulas. These
action-angle coordinates are complemented by infinitely many coordinates whose construction is based on a
set of time periodic solutions, referred to as Floquet solutions, of the partial differential equation obtained
by linearizing iPDE along solutions in iSS. The resulting coordinate transformation, denoted in [14] by Φ, is
typically not symplectic and to obtain canonical coordinates, an additional coordinate transformation needs
to be applied. In [14], Kuksin constructs such a transformation, which he denotes by φ, using arguments
of Moser and Weinstein in the given infinite dimensional setup – see [14], Lemma 1.4 and Section 7.1. To
construct the map ΨC we follow the same scheme of proof. Actually, the following result holds.
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Theorem 1.3. Assume that in addition to the assumptions made in Theorem 1.2, the set K is contained
in (R \ 0)S × (R \ 0)S. Then, up to normalizations and natural identifications, ΨL coincides with the map
Φ, obtained by applying the scheme of construction in [14] to the dNLS equation. As a consequence, so does
Ψ = ΨL ◦ΨC with Φ ◦ φ.

Since Birkhoff coordinates provide a concise, self-contained, and efficient framework for proving Theorem
1.2 – in particular the claimed tame estimates, the main goal of our study – Theorem 1.3 also provides in
the case of the dNLS equation a valuable alternative for proving the normal form result for this equation,
obtained by applying the scheme of proof in [14]. Note also that the assumptions on K in Theorem 1.2 are
slightly weaker than the ones made in the setup of [14].

Organization: The maps ΨL and ΨC are introduced and studied in Sections 3 and 4 respectively, after a
short Section 2, describing the Hamiltonian setup. In Section 5, we prove Theorem 1.2: in Subsection 5.1,
we show that the composition Ψ = ΨL ◦ ΨC satisfies the analytic properties, stated in Theorem 1.2, and in
the subsequent Subsection 5.2, the expansion of the dNLS Hamiltonian in the new coordinates is computed
up to order three. In Subsection 5.3 we summarize the proof of Theorem 1.2. Finally, in Section 6 we prove
Theorem 1.3. In Appendix A, we recall an infinite dimensional version of the Poincaré Lemma, needed in
Section 4 (cf from [14], [16]).

Notation: For any C1 map F : h0
c → X with X being a Banach space, we denote by d⊥F (z) the differential

of F at z with respect to the variable z⊥,

d⊥F (z)[ẑ⊥] =
∑

j∈S⊥

x̂j∂xj
F (z) + ŷj∂yj

F (z) , ẑ⊥ :=
(
(x̂j)j∈S⊥ , (ŷj)j∈S⊥

)
∈ h0

⊥c ,

where for any j ∈ S⊥, ∂xj
F, ∂yj

F ∈ X denote the partial derivatives of F with respect to the variables xj

respectively yj. Similarly, we define the gradient with respect to the variable z⊥ as

∇⊥F :=
(
(∂xj

F )j∈S⊥ , (∂yj
F )j∈S⊥

)
.

The gradient of F with respect to zS is denoted by

∇SF :=
(
(∂xj

F )j∈S , (∂yj
F )j∈S

)

and the differential of F at z with respect to zS by dSF (z),

dSF (z)[ẑS ] =
∑

j∈S

x̂j∂xj
F (z) + ŷj∂yj

F (z) , ẑS :=
(
(x̂j)j∈S , (ŷj)j∈S

)
∈ C

S × C
S .

For the partial derivatives of F with respect to zj , j ∈ S, we use the multi-index notation and write for any
α, β ∈ ZS

≥0

∂α,β
S F :=

(∏

j∈S

∂αj
xj
∂βj
yj

)
F .

If not stated otherwise, K denotes a compact subset of RS × RS and V an open, bounded neighborhood of
K×{0} in h0

c of the form VS ×V⊥ where V⊥ is a ball in h⊥c, centered at 0. We write V⊥(δ) to indicate that
the radius of the ball V⊥ is δ > 0. Finally, we frequently will use the symbols ., .s, . . . to express that a
quantity is bounded by another one up to a constant which is ’universal’, respectively depends only on the
Sobolev index s. E.g., given two real valued functionals A,B on V we write A .s B if there is a constant
C ≡ C(s) so that A(z) ≤ CB(z) for any z ∈ V ∩ hs

r.

2 Hamiltonian setup

In this preliminary section we discuss the Hamiltonian setup, introduced in Section 1, in more detail and
introduce some additional notations.
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The Hamiltonian vector field associated to a sufficiently smooth functional F : H0
c → C and the Poisson

bracket (1.2) on H0
c is denoted by

XF = iJ∇F , ∇F := (∇uF ,∇vF)

where ∇uF , ∇vF denote the L2 gradients with respect to u and v, namely

dF [(û, 0)] =

∫

T

∇uF û dx , dF [(0, v̂)] =

∫

T

∇vF v̂ dx ,

J :=

(
0 −Id
Id 0

)
: H0

c → H0
c , (2.1)

and Id : H0
C
→ H0

C
is the identity operator. Furthermore we introduce the non degenerate bilinear form

〈·, ·〉r : H0
c ×H0

c → C

defined for any w = (u, v), w′ = (u′, v′) ∈ H0
c by

〈w,w′〉r :=

∫

T

u(x)u′(x) dx +

∫

T

v(x)v′(x) dx . (2.2)

The subscript r indicates that in the latter integrals, no complex conjugation appears. The Poisson bracket
(1.2) then reads

{F ,G} = 〈∇F , iJ∇G〉r
and the symplectic form, associated to it, is the two form

Λ[ŵ, ŵ′] := −i〈J−1ŵ, ŵ′〉r = i〈Jŵ, ŵ′〉r = i

∫

T

(
ûv̂′ − v̂û′

)
dx , ∀ ŵ = (û, v̂), ŵ′ = (û′, v̂′) ∈ H0

c . (2.3)

For any sufficiently smooth functionals F ,G : H0
c → C, one has

Λ(XF , XG) = {F ,G} .

In terms of the Fourier coefficients of ŵ and ŵ′, Λ[ŵ, ŵ′] can be expressed as

Λ[ŵ, ŵ′] = i
∑

k∈Z

(ûkv̂
′
−k − v̂−kû

′
k)

and hence Λ can be conveniently written as

Λ = i
∑

k∈Z

duk ∧ dv−k ,

where (
duk ∧ dv−k

)
[(û, v̂), (û′, v̂′)] = ûkv̂

′
−k − v̂−kû

′
k , ∀k ∈ Z .

In addition, we define the one form λ on H0
c as

λ ≡ λ(w) = i
∑

k∈Z

ukdv−k .

Its action on a function ŵ = (û, v̂) ∈ H0
c is given by

λ[ŵ] = i

∫

T

u(x)v̂(x) dx = i
∑

k∈Z

ukv̂−k .

The exterior differential of λ, defined by dλ = i
∑

k∈Z
duk ∧ dv−k, thus satisfies dλ = Λ.
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The Poisson bracket on the model space h0
c is determined by defining it for the coordinate functions,

{xn, ym}M = −δnm , {yn, xm}M = δnm , {xn, xm}M = 0 , {yn, ym}M = 0 , ∀n,m ∈ Z .

By a slight abuse of terminology in connection with the definition (1.4), we also denote by
(
·, ·
)
r
the non

degenerate bilinear form
(
·, ·
)
r
: h0

c × h0
c → C

(
z, z′

)
r
:= x · x′ + y · y′ , ∀z = (x, y), z′ = (x′, y′) ∈ h0

c (2.4)

where x · x′ :=
∑

k∈Z
xkx

′
k. Given two sufficiently smooth functionals F,G : h0

c → C, one has

{F,G}M = −
∑

k

(
∂xk

F∂yk
G− ∂yk

F∂xk
G
)
=
(
∇F, J∇G

)
r

where

J :=

(
0 −Id
Id 0

)
: h0

c → h0
c ,

Id : h0
c → h0

c is the identity operator and

∇F = (∇xF,∇yF ) , ∇xF = (∂xk
F )k∈Z , ∇yF = (∂yk

F )k∈Z .

The Hamiltonian vector field XF of F : h0
c → C, corresponding to the Poisson bracket {·, ·}M , is then given

by
XF = J∇F

and the symplectic form ΛM , associated to it, by

ΛM [ẑ, ẑ′] :=
(
J−1ẑ, ẑ′

)
r
= ŷ · x̂′ − x̂ · ŷ′ , ∀ẑ = (x̂, ŷ), ẑ′ = (x̂′, ŷ′) ∈ h0

c . (2.5)

Note that
ΛM = −

∑

k∈Z

dxk ∧ dyk

where as above, for any k ∈ Z, the two form dxk ∧ dyk is defined as

(dxk ∧ dyk)[(x̂, ŷ), (x̂
′, ŷ′)] = x̂kŷ

′
k − ŷkx̂

′
k .

Then
ΛM (XF , XG) =

(
∇F, J∇G

)
r
= {F,G}M .

The one form associated to ΛM is defined as

λM ≡ λM (z) :=
∑

k∈Z

yk d xk . (2.6)

Its action on a vector ẑ = (x̂, ŷ) ∈ h0
c is given by

λM [ẑ] =
∑

k∈Z

yk x̂k .

The exterior differential of λM then satisfies dλM = ΛM .
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3 The map ΨL

In this section, we study the map ΨL introduced in (1.7). In particular, we prove tame estimates and one
smoothing properties for ΨL. First we introduce some more notations. Denote by ΠS and Π⊥ the standard
projections

ΠS : (CS × C
S)× h0

⊥c → (CS × C
S)× {0} , z = (zS , z⊥) 7→ (zS , 0) (3.1)

Π⊥ : (CS × C
S)× h0

⊥c → {0} × h0
⊥c , z = (zS , z⊥) 7→ (0, z⊥) . (3.2)

The formula (1.7) for ΨL(z) with z = (zS , z⊥) then reads

ΨL(z) = Ψnls(ΠSz) + d⊥Ψ
nls(ΠSz)[z⊥] . (3.3)

For a quite explicit formula for d⊥Ψ
nls(ΠSz)[z⊥], we refer to Appendix B. The map ΨL is defined on

Vmax := Vmax
S × hs

⊥c , Vmax
S := ΠSΦ

nls(W)

where W ⊆ H0
c is the domain of definition of the Birkhoff map Φnls of Theorem 1.1. Note that

R
S × R

S ⊆ Vmax
S ⊆ C

S × C
S , h0

r ⊂ Vmax ⊂ h0
c , ΨL(0) = 0 .

Furthermore, the differential dΨL(z) of ΨL at z = (zS , z⊥) ∈ Vmax applied to a vector ẑ = (ẑS , ẑ⊥) ∈ h0
c is

given by

dΨL(z)[ẑS , ẑ⊥] = dSΨ
nls(ΠSz)[ẑS] + d⊥Ψ

nls(ΠSz)[ẑ⊥] + dS
(
d⊥Ψ

nls(ΠSz)[z⊥]
)
[ẑS ] (3.4)

= dΨnls(ΠSz)[ẑ] + d2Ψnls(ΠSz)[ΠS ẑ,Π⊥z] . (3.5)

Note that the latter expression is independent of Π⊥ẑ and that by Theorem 1.1, dΨL(0) = dΨnls(0) = F−1
nls .

First we establish the following auxiliary results.

Lemma 3.1. (i) The map ΨL : Vmax → H0
c is analytic and for any s ∈ Z≥0, the restriction ΨL |hs

r
: hs

r → Hs
r

is real analytic. Furthermore, for any zS ∈ RS × RS and any s ∈ Z≥0, dΨL(zS , 0) : h
s
c → Hs

c is a linear
isomorphism.
(ii) For any compact subset K ⊆ RS ×RS, there exists a ball V⊥ in h0

⊥r, centered at 0, so that the restriction
ΨL : K × V⊥ → H0

r is one to one. Furthermore, after shrinking the radius of the ball V⊥, if necessary, the
map ΨL : K × V⊥ → H0

r is a local diffeomorphism.

Proof. (i) The claimed analyticity follows from the definition of ΨL and the corresponding properties of
Ψnls, stated in Theorem 1.1. Concerning the statement on the differential dΨL(zS , 0), note that by (3.5),
dΨL(zS , 0) = dΨnls(zS, 0) and hence by Theorem 1.1, dΨL(zS , 0) : h

s
c → Hs

c is a linear isomorphism for any
s ∈ Z≥0.
(ii) Let K ⊆ RS × RS be a given compact subset. Assume that there exists no ball V⊥ in h0

⊥r, centered at

0, so that ΨL |K×V⊥
is 1-1. Then there exist two sequences z(j) = (z

(j)
S , z

(j)
⊥ ), j ≥ 1, and z̃(j) = (z̃

(j)
S , z̃

(j)
⊥ ),

j ≥ 1, in K × h0
⊥r such that for any j ≥ 1

z(j) 6= z̃(j), ΨL(z
(j)) = ΨL(z̃

(j)), lim
j→∞

z
(j)
⊥ = lim

j→∞
z̃
(j)
⊥ = 0 .

Since by assumption K is compact, there exist subsequences of (z(j))j≥1, (z̃
(j))j≥1, denoted for simplicity in

the same way, such that (z
(j)
S )j≥1, (z̃

(j)
S )j≥1 converge. Denote their limits by z

(∞)
S and z̃

(∞)
S , respectively.

Then
lim
j→∞

z(j) = (z
(∞)
S , 0), lim

j→∞
z̃(j) = (z̃

(∞)
S , 0)

are elements in K×{0}. By the continuity of ΨL, one has ΨL(z
(∞)
S , 0) = ΨL(z̃

(∞)
S , 0) and since ΨL and Ψnls

coincide on Vmax
S ×{0} it then follows from Theorem 1.1 that z

(∞)
S = z̃

(∞)
S . By item (i) and the local inversion

theorem one then concludes that in contradiction to our assumption, z(j) = z̃(j) for j sufficiently large. This
proves the first part of item (ii). Since according to item (i), for any given zS ∈ K, dΨL(zS , 0) : h

0
c → H0

c is
a linear isomorphism, dΨL(z) is such an operator for z in a whole neighborhood of (zS , 0). Using that K is
compact it then follows that after shrinking the radius of the ball V⊥, if necessary, ΨL : K × V⊥ → H0

r is a
local diffeomorphism.
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Proposition 3.1. For any compact subset K ⊆ RS × RS there exists an open complex neighbourhood V of
K × {0} in h0

c of the form VS × V⊥ where VS is compact with VS ⊆ Vmax
S and V⊥ ⊂ h0

⊥c is an open ball,
centered at 0, so that the restriction of ΨL to V has the following properties:
(L1) ΨL is analytic on V and

ΨL |VS×{0}= Ψnls |VS×{0} , dΨL(zS , 0) = dΨnls(zS , 0) , ∀zS ∈ VS . (3.6)

Furthermore, ΨL : V ∩ h0
r → H0

r is a real analytic diffeomorphism onto its image.
(L2) The map BL := ΨL − F−1

nls : V → H0
c is analytic and one smoothing. More precisely, the analytic map

BL is given by
BL(z) = Bnls(ΠSz) + d⊥B

nls(ΠSz)[z⊥] (3.7)

with Bnls being the map introduced in Theorem 1.1, and for any s ∈ Z≥1, BL : V ∩ hs
r → Hs+1

r is real
analytic. Furthermore

d⊥BL(z) = d⊥B
nls(ΠSz) , d2⊥BL(z) = 0 , ∀z ∈ V

and for any z ∈ V ∩ h0
r, α, β ∈ ZS

≥0,

‖∂α,β
S BL(z)‖0 .α,β 1 , ‖∂α,β

S d⊥BL(z)[ẑ⊥]‖0 .α,β ‖ẑ⊥‖0 , ∀ẑ⊥ ∈ h0
⊥c (3.8)

and for any s ∈ Z≥1, z ∈ V ∩ hs
r,

‖∂α,β
S BL(z)‖s+1 .s,α,β 1 + ‖z⊥‖s , ‖∂α,β

S d⊥BL(z)[ẑ⊥]‖s+1 .s,α,β ‖ẑ⊥‖s , ∀ẑ⊥ ∈ hs
⊥c . (3.9)

(L3) For any s ∈ Z≥1, the restriction ΨL |V∩hs
r
is a map V∩hs

r → Hs
r which is a real analytic diffeomorphism

onto its image.
(L4) The map AL := Ψ−1

L −Fnls : ΨL(V) → h0
c is analytic and one smoothing, meaning that for any s ∈ Z≥1,

AL : ΨL(V) ∩Hs
r → hs+1

r is real analytic.

Remark 3.1. For convenience, in the sequel, we always choose V⊥ to be a ball of radius smaller than one.

Proof. Choose VS to be an open bounded neighbourhood of K in CS × CS so that VS ⊆ Vmax
S and V⊥ an

open ball in h0
⊥c, centered at 0, so that item (ii) of Lemma 3.1 applies to V := VS × V⊥, implying that

ΨL : V ∩ h0
r → H0

r , is 1-1 and a local diffeomorphism. The identities (3.6) hold by the definition of ΨL and
the analyticity of ΨL, stated in (L1), follows by Lemma 3.1(i). One then concludes that

ΨL : V ∩ h0
r → H0

r

is a real analytic diffeomorphism onto its image. (L2) follows from the definition of ΨL, Theorem 1.1, the
compactness of VS , and standard estimates in Sobolev spaces. Concerning (L3), first note that by Theorem
1.1, for any s ∈ Z≥1, the restriction ΨL |V∩hs

r
is a map with values in Hs

r and as such real analytic. By item
(L1), ΨL |V∩hs

r
is 1− 1 and so is its differential dΨL(z) : h

s
c → Hs

c at any point z ∈ V ∩hs
r. Since by (L2) the

map BL is one smoothing, dΨL(z) : h
s
c → Hs

c is Fredholm and hence a linear isomorphism, implying that
ΨL : V ∩hs

r → Hs
r is a real analytic diffeomorphism onto its image. Finally, item (L4) follows from (L3) and

Theorem 1.1.

Whereas the tame estimates (3.9) for BL are an immediate consequence of the definition of ΨL, Theorem
1.1 and the compactness of VS , this is not so for AL. Actually, for the applications in perturbation theory
considered in subsequent work, we only need to derive tame estimates for

AL : V ∩ h0
r → L(H0

c , h
0
c) , z 7→ AL(z) := dAL(ΨL(z)) = dΨL(z)

−1 − Fnls (3.10)

with V denoting the neighborhood of K × {0} of Proposition 3.1. By formula (3.5), for any z ∈ V ∩ h0
r, the

operator dΨL(z) ∈ L(h0
c , H

0
c ) can be written as

dΨL(z) = T (z) +R(z) , T (z) := dΨnls(ΠSz) (3.11)
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with R(z) ∈ L(h0
c , H

0
c ) given by

R(z) : h0
c → H0

c , ẑ 7→ R(z)[ẑ] := d2Ψnls(ΠSz)[ΠS ẑ,Π⊥z] = d2Bnls(ΠSz)[ΠS ẑ,Π⊥z] . (3.12)

Since by Theorem 1.1, respectively Proposition 3.1, the operators T (z), dΨL(z) : h
0
c → H0

c are invertible, so
is T (z)−1dΨL(z) = Id + T (z)−1R(z), implying that

dΨL(z)
−1 =

(
Id + T (z)−1R(z)

)−1T (z)−1 = T (z)−1 − T (z)−1R(z)S(z) (3.13)

where
S(z) :=

(
Id + T (z)−1R(z)

)−1T (z)−1 ∈ L(H0
c , h

0
c) . (3.14)

Furthermore, by Theorem 1.1

T (z)−1 =
(
dΨnls(ΠSz)

)−1
= dΦnls(ΠSz) = Fnls + dAnls(Ψnls(ΠSz)) .

Altogether, it follows that for any z ∈ V ∩ h0
r, the operator AL(z) = dΨL(z)

−1 − Fnls : h0
c → H0

c can be
written as

AL(z) = dAnls(Ψnls(ΠSz))− T (z)−1R(z)S(z) . (3.15)

Finally we note that by (L4) of Proposition 3.1, AL = dAL ◦ΨL is one smoothing. More precisely, for any
s ∈ Z≥1, the restriction of AL to V ∩ hs

r is a real analytic map,

AL : V ∩ hs
r → L(Hs

c , h
s+1
c ) , z 7→ AL(z) .

Proposition 3.2 (Tame estimates for AL). After shrinking, if necessary, the radius of the ball V⊥ in
V = VS × V⊥ of Proposition 3.1, the map AL satisfies for any z ∈ V ∩ h0

r, ŵ ∈ h0
c,

‖AL(z)[ŵ]‖0 . ‖ŵ‖0

and for any k ∈ Z≥1, ẑ1, . . . , ẑk ∈ h0
c,

‖dk
(
AL(z)[ŵ]

)
[ẑ1, . . . , ẑk]‖0 .k ‖ŵ‖0

k∏

j=1

‖ẑj‖0 .

Furthermore, for any s ∈ Z≥1, z ∈ V ∩ hs
r, ŵ ∈ Hs

c ,

‖AL(z)[ŵ]‖s+1 .s ‖z⊥‖s‖ŵ‖0 + ‖ŵ‖s (3.16)

and for any k ≥ 1, ẑ1, . . . , ẑk ∈ hs
c,

‖dk
(
AL(z)[ŵ]

)
[ẑ1, . . . , ẑk]‖s+1 .s,k

(
‖z⊥‖s‖ŵ‖0 + ‖ŵ‖s

) k∏

j=1

‖ẑj‖0 + ‖ŵ‖0
k∑

j=1

‖ẑj‖s
∏

i6=j

‖ẑi‖0 . (3.17)

Proof. First we prove estimate (3.16). The starting point is formula (3.15) for AL(z). The two terms
dAnls(Ψnls(ΠSz)) and T (z)−1R(z)S(z) are estimated separately. By Theorem 1.1, {Ψnls(ΠSz) | z ∈ V ∩h0

r}
is a relatively compact subset of Hs

r for any s ∈ Z≥0, and Anls, Bnls are one smoothing maps. It implies
that for any s ∈ Z≥1,

‖dAnls(Ψnls(ΠSz))[ŵ]‖s+1 .s ‖ŵ‖s , ∀ z ∈ V ∩ h0
r, ∀ ŵ ∈ Hs

c . (3.18)

Since ‖ΠS ẑ‖s .s ‖ΠS ẑ‖0 for any z ∈ h0
c , the linear operator R(z), defined in (3.12), satisfies

‖R(z)[ẑ]‖s+1 .s ‖z⊥‖s‖ΠS ẑ‖s .s ‖z⊥‖s‖ΠS ẑ‖0 ∀z ∈ V ∩ h0
r, ∀ ẑ ∈ h0

c . (3.19)

Furthermore, also by Theorem 1.1, one has for any s ∈ Z≥0,

‖T (z)−1[ŵ]‖s .s ‖ŵ‖s , ∀ z ∈ V ∩ h0
r, ∀ ŵ ∈ Hs

c . (3.20)
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Combining (3.18)-(3.20), formula (3.15) leads to the estimate

‖AL(z)[ŵ]‖s+1 ≤ ‖dAnls(Ψnls(ΠSz))[ŵ]‖s+1 + ‖T (z)−1R(z)S(z)[ŵ]‖s+1

.s ‖ŵ‖s + ‖z⊥‖s‖ΠSS(z)[ŵ]‖0 . (3.21)

It remains to estimate ‖S(z)[ŵ]‖0. Recall that by (3.14), S(z) =
(
Id+ T (z)−1R(z)

)−1T (z)−1. By Theorem
1.1 there exists C0 > 0 so that

‖T (z)−1R(z)[ẑ]‖0 ≤ C0‖z⊥‖0‖ΠS ẑ‖0 ∀z ∈ V ∩ h0
r, ∀ ẑ ∈ h0

c . (3.22)

Shrinking the radius of the ball V⊥ in h0
⊥c , if necessary, so that C0‖z⊥‖0 ≤ 1/2 for any z⊥ ∈ V⊥, the

Neumann series of the operator
(
Id + T (z)−1R(z)

)−1
absolutely converges in L(h0

c , h
0
c) and the operator

norm of
(
Id + T (z)−1R(z)

)−1
in L(h0

c , h
0
c) is bounded by 2. Hence

‖S(z)[ŵ]‖0 .s ‖ŵ‖0 , ∀ z ∈ V ∩ h0
r, ∀ ŵ ∈ H0

c , (3.23)

implying together with (3.21) the claimed estimate (3.16).
Finally let us prove the estimate (3.17) for the derivatives of AL(z). By formula (3.15) for any k, s ∈ Z≥1,
z ∈ V ∩ hs

r, ŵ ∈ Hs
c , and ẑ1, . . . , ẑk ∈ hs

c,

‖dk
(
AL(z)[ŵ]

)
[ẑ1, . . . , ẑk]‖s+1 ≤ ‖dk

(
dAnls(Ψnls(ΠSz))[ŵ]

)
[ẑ1, . . . , ẑk]‖s+1

+ ‖dk
(
T (z)−1R(z)S(z)[ŵ]

)
[ẑ1, . . . , ẑk]‖s+1 . (3.24)

By Theorem 1.1, one concludes that

‖ dk
(
dAnls(ΨL(ΠSz))[ŵ]

)
[ẑ1, . . . , ẑk] ‖s+1 .s,k ‖ŵ‖s

k∏

j=1

‖ẑj‖0 . (3.25)

Furthermore

‖ dk
(
T (z)−1[ŵ]

)
[ẑ1, . . . , ẑk] ‖s .s,k ‖ŵ‖s

k∏

j=1

‖ẑj‖0 , (3.26)

‖ dk
(
R(z)[ẑ]

)
[ẑ1, . . . , ẑk] ‖s+1 .s,k ‖z⊥‖s‖ẑ‖0

k∏

j=1

‖ẑj‖0 + ‖ẑ‖0
k∑

j=1

‖ẑj‖s
∏

i6=j

‖ẑj‖0 , (3.27)

and

‖dk
(
S(z)[ŵ]

)
[ẑ1, . . . , ẑk]‖0 .s ‖ŵ‖0

k∏

j=1

‖ẑj‖0 . (3.28)

Combining the estimates (3.26)-(3.28) and using the product rule implies that

‖dk
(
T (z)−1R(z)S(z)[ŵ]

)
[ẑ1, . . . , ẑk]‖s+1 .s,k

(
‖z⊥‖s‖ŵ‖0 + ‖ŵ‖s

) k∏

j=1

‖ẑj‖0 + ‖ŵ‖0
k∑

j=1

‖ẑj‖s
∏

i6=j

‖ẑi‖0 . (3.29)

The three estimates (3.24), (3.25), (3.29) together yield (3.17).

In the remaining part of this section we describe the pullback Ψ∗
LΛ by ΨL of the standard symplectic

form Λ on H0
r , introduced in (2.3). It turns out that Ψ∗

LΛ is not the symplectic form ΛM of (2.5), making
it necessary to construct the symplectic corrector ΨC – see Section 4 below.
Given a bounded linear operator P : h0

c → h0
c , its transpose Pt : h0

c → h0
c is defined to be the operator

determined by (
P [ẑ], ẑ′

)
r
=
(
ẑ,Pt[ẑ′]

)
r
, ∀ẑ, ẑ′ ∈ h0

c , (3.30)
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where the blilinear form (·, ·)r on h0
c is defined in (2.4). Similarly, for a bounded linear operatorQ : h0

c → H0
c ,

we denote its transpose by Qt : H0
c → h0

c , determined by

〈Q[ẑ], ŵ〉r =
(
ẑ , Qt[ŵ]

)
r
, ∀ẑ ∈ h0

c , ŵ ∈ H0
c , (3.31)

where the bilinear form 〈·, ·〉r on H0
c is the one introduced in (2.2). We now compute the pullback Ψ∗

LΛ(z)
at z = (zS , z⊥) ∈ h0

c applied to ẑ = (ẑS, ẑ⊥), ẑ
′ = (ẑ′S , ẑ

′
⊥). By the definition of the pullback and the one of

Λ in (2.3) we have

Ψ∗
LΛ(z)[ẑ, ẑ

′] = Λ(ΨL(z)) [dΨL(z)[ẑ], dΨL(z)[ẑ
′]] = i〈JdΨL(z)[ẑ], dΨL(z)[ẑ

′]〉r . (3.32)

By formula (3.5) for dΨL(z),

dΨL(z)[ẑ] = dΨnls(ΠSz)[ẑ] + dS
(
d⊥Ψ

nls(ΠSz)[z⊥]
)
[ẑS] ,

one gets

Ψ∗
LΛ(z)[ẑ, ẑ

′] = (I) + (II) + (III) + (IV ) (3.33)

where

(I) :=i
〈
JdΨnls(ΠSz)[ẑ], dΨ

nls(ΠSz)[ẑ
′]
〉
r
= ((Ψnls)∗Λ)(ΠSz)[ẑ, ẑ

′] , (3.34)

(II) :=i
〈
JdΨnls(ΠSz)[ẑ], dS

(
d⊥Ψ

nls(ΠSz)[z⊥]
)
[ẑ′S ]

〉
r
. (3.35)

Writing dΨnls(ΠSz)[ẑ] as dSΨ
nls(ΠSz)[ẑS] + d⊥Ψ

nls(ΠSz)[ẑ⊥] one gets

(II) = i
〈
JdSΨ

nls(ΠSz)[ẑS] , dS
(
d⊥Ψ

nls(ΠSz)[z⊥]
)
[ẑ′S ]

〉
r

+ i
〈
Jd⊥Ψ

nls(ΠSz)[ẑ⊥] , dS
(
d⊥Ψ

nls(ΠSz)[z⊥]
)
[ẑ′S]

〉
r
. (3.36)

Similarly one has

(III) :=i
〈
JdS

(
d⊥Ψ

nls(ΠSz)[z⊥]
)
[ẑS ] , dΨ

nls(ΠSz)[ẑ
′]
)〉

r

= i
〈
JdS

(
d⊥Ψ

nls(ΠSz)[z⊥]
)
[ẑS ] , dSΨ

nls(ΠSz)[ẑ
′
S]
〉
r

+ i
〈
JdS

(
d⊥Ψ

nls(ΠSz)[z⊥]
)
[ẑS] , d⊥Ψ

nls(ΠSz)[ẑ
′
⊥]
〉
r

(3.37)

and finally

(IV ) :=i
〈
JdS

(
d⊥Ψ

nls(ΠSz)[z⊥]
)
[ẑS ] , dS

(
d⊥Ψ

nls(ΠSz)[z⊥]
)
[ẑ′S]

〉
r

(3.38)

Since by Theorem 1.1, Ψnls is symplectic, one has (Ψnls)∗Λ = ΛM . Hence for any z ∈ V , Ψ∗
LΛ(z) can be

written as
Ψ∗

LΛ(z) = ΛM + ΛL(z) , ΛL(z)[ẑ, ẑ
′] :=

(
L(z)[ẑ], ẑ′

)
r
, (3.39)

where L(z) : CS × CS × h0
⊥c → CS × CS × h0

⊥c is the linear operator of the form

L(z) =

(
LS
S(z) L⊥

S (z)
LS
⊥(z) 0

)
. (3.40)
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By the computations above, LS
S(z) : C

S×CS → CS×CS, L⊥
S (z) : h

0
⊥c → CS×CS , and LS

⊥(z) : C
S×CS → h0

⊥c

are the linear operators defined by (z ∈ V ∩ h0
r, ẑS ∈ CS × CS , ẑ⊥ ∈ h0

⊥c)

LS
S(z)[ẑS] := i

((〈
JdSΨ

nls(ΠSz)[ẑS] , ∂xj
d⊥Ψ

nls(ΠSz)[z⊥]
〉
r

)
j∈S(〈

JdSΨ
nls(ΠSz)[ẑS] , ∂yj

d⊥Ψ
nls(ΠSz)[z⊥]

〉
r

)
j∈S

)

+ i

((〈
JdS

(
d⊥Ψ

nls(ΠSz)[z⊥]
)
[ẑS ] , ∂xj

Ψnls(ΠSz)
〉
r

)
j∈S(〈

JdS
(
d⊥Ψ

nls(ΠSz)[z⊥]
)
[ẑS ] , ∂yj

Ψnls(ΠSz)
〉
r

)
j∈S

)

+ i

((〈
JdS

(
d⊥Ψ

nls(ΠSz)[z⊥]
)
[ẑS ] , ∂xj

d⊥Ψ
nls(ΠSz)[z⊥]

〉
r

)
j∈S(〈

JdS
(
d⊥Ψ

nls(ΠSz)[z⊥]
)
[ẑS ] , ∂yj

d⊥Ψ
nls(ΠSz)[z⊥]

〉
r

)
j∈S

)
(3.41)

and similarly

L⊥
S (z)[ẑ⊥] := i

((〈
Jd⊥Ψ

nls(ΠSz)[ẑ⊥] , ∂xj
d⊥Ψ

nls(ΠSz)[z⊥]
〉
r

)
j∈S(〈

Jd⊥Ψ
nls(ΠSz)[ẑ⊥] , ∂yj

d⊥Ψ
nls(ΠSz)[z⊥]

〉
r

)
j∈S

)
, (3.42)

LS
⊥(z)[ẑS] := i

((〈
JdS

(
d⊥Ψ

nls(ΠSz)[z⊥]
)
[ẑS ] , ∂xj

Ψnls(ΠSz)
〉
r

)
j∈S⊥(〈

JdS
(
d⊥Ψ

nls(ΠSz)[z⊥]
)
[ẑS ] , ∂yj

Ψnls(ΠSz)
〉
r

)
j∈S⊥

)
. (3.43)

The operator valued map z 7→ L(z) has the following properties:

Lemma 3.2. The map L : V ∩ h0
r → L(h0

c , h
0
c), z 7→ L(z) is real analytic. For any z ∈ V ∩ h0

r, ẑ ∈ h0
c,

‖L(z)[ẑ]‖0 . ‖z⊥‖0‖ẑ‖0

and for any k ∈ Z≥1, ẑ1, . . . , ẑk ∈ h0
c,

‖dk
(
L(z)[ẑ]

)
[ẑ1, . . . , ẑk]‖0 .k ‖ẑ‖0

k∏

j=1

‖ẑj‖0 .

Furthermore, the map L is one smoothing, meaning that for any s ∈ Z≥1, L : V∩hs
r → L(h0

c , h
s+1
c ), z 7→ L(z)

is real analytic and satisfies the following estimates: for any z ∈ V ∩ hs
r, ẑ ∈ hs

c,

‖L(z)[ẑ]‖s+1 .s ‖z⊥‖s‖ẑ‖0 (3.44)

and for any k ∈ Z≥1, z ∈ V ∩ hs
r, ẑ1, . . . , ẑk ∈ hs

c,

‖dk
(
L(z)[ẑ]

)
[ẑ1, . . . , ẑk]‖s+1 .s,k ‖ẑ‖0

k∑

j=1

‖ẑj‖s
∏

i6=j

‖ẑi‖0 + ‖ẑ‖0‖z⊥‖s
k∏

j=1

‖ẑj‖0 . (3.45)

In particular, L(z) = 0 for any z ∈ V ∩ h0
r with z⊥ = 0. Finally, L(z) = −L(z)t or, more explicitly, for any

z ∈ V ∩ h0
r,

LS
S(z)

t = −LS
S(z), L⊥

S (z)
t = −LS

⊥(z), LS
⊥(z)

t = −L⊥
S (z) . (3.46)

Proof. The analyticity of L follows by Theorem 1.1, using again that dSd⊥Ψ
nls = dSd⊥B

nls. Since Jt = −J,
one reads off from the expressions (3.41)-(3.43) that (3.46) holds. The estimates (3.44) and (3.45) follow from
Theorem 1.1 by differentiating the expressions in the definitions of LS

S(z), L
⊥
S (z), and LS

⊥(z) with respect to
z.

4 The symplectic corrector ΨC

In this section we construct the coordinate transformation ΨC on V ∩ h0
r so that the composition ΨL ◦ ΨC

is symplectic. As mentioned in the introduction, we follow Kuksin’s scheme of proof in [14], which uses
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arguments of Moser and Weinstein in the given infinite dimensional setup. The map ΨC will be defined
as the time one flow of an appropriately chosen non autonomous vector field. In the sequel, V denotes the
neighborhood of K × 0, given by Proposition 3.1 and Proposition 3.2.

For any z ∈ V define the following two and one forms on h0
c ,

Λ0 := ΛM , Λ1(z) := Ψ∗
LΛ(z) = ΛM + ΛL(z) , (4.1)

λ0 := λM , λ1(z) := Ψ∗
Lλ(z) . (4.2)

Analysis of the two form Λ1(z): Note that dλi = Λi, i = 0, 1, and

Λ1 − Λ0 = ΛL = d(λ1 − λ0) . (4.3)

In particular, the two form ΛL is closed. By (2.5), (3.39) one has

Λ1(z)[ẑ, ẑ
′] =

(
L1(z)[ẑ], ẑ

′
)
r
, L1(z) := J−1 + L(z) .

For any τ ∈ [0, 1], define the two form Λτ = Λτ (z),

Λτ := τΛ1 + (1− τ)Λ0 , (4.4)

which can be written as

Λτ (z)[ẑ, ẑ
′] =

(
Lτ (z)[ẑ], ẑ

′
)
r
, Lτ (z) = J−1 + τL(z) . (4.5)

It turns out that for any τ ∈ [0, 1] and z ∈ V ∩ h0
r, the map Lτ (z) is invertible and one smoothing. More

precisely, the following holds:

Lemma 4.1. After shrinking the ball V⊥ ⊂ h0
⊥c in V = VS ×V⊥, if necessary, one has that for any s ∈ Z≥0,

z ∈ V ∩ hs
r, and τ ∈ [0, 1], the operator Lτ (z) : hs

c → hs
c is invertible and for any k ∈ Z≥1, z ∈ V ∩ h0

r,
ẑ, ẑ1, . . . , ẑk ∈ h0

c ,

‖(Lτ (z)
−1 − J)[ẑ]‖0 . ‖z⊥‖0‖ẑ‖0 , ‖dk

(
Lτ (z)

−1[ẑ]
)
[ẑ1, . . . , ẑk]‖0 .k ‖ẑ‖0

k∏

j=1

‖ẑj‖0 .

Moreover for any s ∈ Z≥1 and τ ∈ [0, 1], the map

L−1
τ − J : V ∩ hs

r → L(hs
c, h

s+1
c ), z 7→ Lτ (z)

−1 − J

is real analytic and the following tame estimates hold: for any k ∈ Z≥1, z ∈ V ∩ hs
r, ẑ, ẑ1, . . . , ẑk ∈ hs

c,

‖(Lτ (z)
−1 − J)[ẑ]‖s+1 .s ‖z⊥‖s‖ẑ‖0 ,

‖dk
(
Lτ (z)

−1[ẑ]
)
[ẑ1, . . . , ẑk]‖s+1 .s,k ‖ẑ‖0

k∑

j=1

‖ẑj‖s
∏

i6=j

‖ẑi‖0 + ‖ẑ‖0‖z⊥‖s
k∏

j=1

‖ẑj‖0 .

Proof. For any τ ∈ [0, 1], we write

Lτ (z) = J−1
(
Id + Lτ (z)

)
, Lτ (z) := τJL(z) .

By (3.40) and Theorem 1.1, the operator Lτ (z) satisfies the estimate ‖Lτ (z)[ẑ]‖0 ≤ C0‖z⊥‖0‖ẑ‖0, for any
z ∈ V ∩h0

r and ẑ ∈ h0
c for some constant C0 > 0. By shrinking the ball V⊥, if necessary, one has that for any

z⊥ ∈ V⊥, C0‖z⊥‖0 ≤ 1/2, implying that the operator Lτ (z) is invertible and its inverse Lτ (z)
−1 is given by

the Neumann series
Lτ (z)

−1 = J +
∑

n≥1

(−1)nLτ (z)
nJ . (4.6)
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By Lemma 3.2, for any s, n ∈ Z≥1 and τ ∈ [0, 1], one has

‖Lτ(z)
nJ [ẑ]‖s+1 ≤ C(s)‖z⊥‖s‖Lτ (z)

n−1J [ẑ]‖0 ≤ C(s)(C0‖z⊥‖0)n−1‖z⊥‖s‖ẑ‖0 (4.7)

for some constant C(s) > 0. Since C0‖z⊥‖0 ≤ 1/2, one gets

‖(Lτ (z)
−1 − J)[ẑ]‖s+1 .s ‖z⊥‖s‖ẑ‖0 .

The estimates for the derivatives dk
(
Lτ (z)

−1[ẑ]
)
follow by differentiating the expression (4.6) with respect

to z and applying the estimates for dk
(
L(z)[ẑ]

)
of Lemma 3.2.

Since by (4.3), the two form ΛL = Λ1 − Λ0 is closed and by Lemma 3.2, for any z ∈ V ∩ h0
r, ΛL(ΠSz) = 0,

we can apply Lemma 7.1 in Appendix A. It says that the one form

λL(z)[ẑ] :=

∫ 1

0

ΛL(zS , tz⊥)[(0, z⊥), (ẑS , tẑ⊥)] dt (4.8)

satisfies dλL = ΛL. By (3.39), (3.40), the one form λL(z) can be written as

λL(z)[ẑ] =

∫ 1

0

(
L(zS , tz⊥)(0, z⊥), (ẑS , tẑ⊥)

)
r
dt =

∫ 1

0

L⊥
S (zS , tz⊥)[z⊥] · ẑS dt .

Moreover, using that by (3.42), L⊥
S (zS , tz⊥) = tL⊥

S (zS , z⊥), it turns out that

λL(z)[ẑ] =
(
E(z) , ẑ

)
r
, E(z) := (ES(z), 0) ∈ C

S × C
S × h0

⊥c (4.9)

where

ES(z) :=
1

2
L⊥
S (z)[z⊥] =

i

2

((〈
Jd⊥Ψ

nls(ΠSz)[z⊥] , ∂xj
d⊥Ψ

nls(ΠSz)[z⊥]
〉
r

)
j∈S(〈

Jd⊥Ψ
nls(ΠSz)[z⊥] , ∂yj

d⊥Ψ
nls(ΠSz)[z⊥]

〉
r

)
j∈S

)
. (4.10)

One of the features of λL(z) is that it is quadratic in z⊥. In more detail, we have the following

Lemma 4.2. For any s ∈ Z≥0, the map E : V ∩ h0
r → hs

r is real analytic and satisfies the following tame
estimates: for any z ∈ V ∩ h0

r, ẑ ∈ h0
c,

‖E(z)‖s .s ‖z⊥‖20 , ‖dE(z)[ẑ]‖s .s ‖z⊥‖0‖ẑ‖0 ,

and any k ≥ 2, ẑ1, . . . , ẑk ∈ h0
c,

‖dkE(z)[ẑ1, . . . , ẑk]‖s .s,k

k∏

j=1

‖ẑj‖0 .

Proof. The lemma follows by the properties of the map Ψnls, stated in Theorem 1.1, and the fact that
E = ΠSE, ‖ΠSz‖s .s ‖z‖0 for any vector z ∈ h0

c , and V⊥ ⊂ h0
⊥c is a ball of radius smaller than 1.

Outline of the construction of ΨC: Following arguements of Moser and Weinstein, our candidate for
ΨC is Ψ0,1

X where X ≡ X(z, τ) ∈ h0
r is a non autonomous vector field with well defined flow Ψτ0,τ

X , 0 ≤
τ0, τ ≤ 1, so that (Ψ0,1

X )∗Λ1 = Λ0. Here z ∈ V and the flow is normalized by Ψτ0,τ0
X (z) = z. To see how to

choose X(z, τ), consider the pullback of the two form Λτ by Ψ0,τ
X , (Ψ0,τ

X )∗Λτ . Since (Ψ0,0
X )∗ = Id, one has

(Ψ0,0
X )∗Λ0 = Λ0. The desired identity (Ψ0,1

X )∗Λ1 = Λ0 then follows provided that (Ψ0,τ
X )∗Λτ is independent

of τ , i.e., ∂τ
(
(Ψ0,τ

X )∗Λτ

)
= 0. Since ∂τΛτ = Λ1 − Λ0 = dλL, it turns out that the latter identity holds if

λL + Λτ [X(·, τ), · ] = 0. When expressed in terms of the bilinear form (·, ·)r and taking into account the
representation (4.5) of Λτ and (4.9) of λL, the latter identity reads

(
E(z) , ẑ

)
r
+
(
Lτ (z)[X(z, τ)], ẑ

)
r
= 0 . (4.11)

We choose the vector field X(z, τ) so that (4.11) is satisfied.

16



Vector field X(z, τ) and its flow: Motivated by (4.11), the non autonomous vector field X(z, τ) is defined
by

X(z, τ) := −Lτ (z)
−1E(z) , z ∈ VS × V⊥ , τ ∈ [0, 1] . (4.12)

Lemmata 4.1, 4.2 lead to the following

Lemma 4.3. The vector field X : (V ∩ h0
r) × [0, 1] → h0

r is real analytic and one smoothing, meaning that
for any s ∈ Z≥1

X : (V ∩ hs
r)× [0, 1] → hs+1

r

is real analytic. In addition, the following tame estimates hold: for any τ ∈ [0, 1], z ∈ V ∩ h0
r, ẑ ∈ h0

c,

‖X(z, τ)‖0 . ‖z⊥‖20 , ‖dX(z, τ)[ẑ]‖0 . ‖z⊥‖0‖ẑ‖0 (4.13)

and for any k ≥ 2, ẑ1, . . . , ẑk ∈ h0
c ,

‖dkX(z, τ)[ẑ1, . . . , ẑk]‖0 .k

k∏

j=1

‖ẑj‖0 .

Moreover, for any s ∈ Z≥1, z ∈ V ∩ hs
r, ẑ ∈ hs

c,

‖X(z, τ)‖s+1 .s ‖z⊥‖s‖z⊥‖0 , ‖dX(z, τ)[ẑ]‖s+1 .s ‖z⊥‖0‖ẑ‖s + ‖z⊥‖s‖ẑ‖0 (4.14)

and for any k ≥ 2, ẑ1, . . . , ẑk ∈ hs
c,

‖dkX(z, τ)[ẑ1, . . . , ẑk]‖s+1 .s,k

k∑

j=1

‖ẑj‖s
∏

i6=j

‖ẑi‖0 + ‖z⊥‖s
k∏

j=1

‖ẑj‖0 .

Proof. The lemma follows from Lemmata 4.1, 4.2.

We now want to study the flow of the non autonomous differential equation

∂τz = X(z, τ) . (4.15)

Recall that for any r > 0, we denote by V⊥(r) the ball in h0
⊥c of radius r, centered at 0, and for any

τ0, τ ∈ [0, 1] by Ψτ0,τ
X the flow map of the differential equation (4.15), satisfying Ψτ0,τ0

X (z) = z. By a
standard contraction argument, there exists an open neighborhood V ′

S ⊆ VS of K in CS ×CS and δ > 0 with
V⊥(2δ) ⊂ V⊥ such that for any τ, τ0 ∈ [0, 1]

Ψτ0,τ
X : V ′

δ ∩ h0
r → V2δ ∩ h0

r , V ′
δ := V ′

S × V⊥(δ) , V2δ := VS × V⊥(2δ) (4.16)

is well defined and real analytic. In the next lemma we state the smoothing estimates for Ψτ0,τ
X − ιd where

ιd denotes the identity map on V ′
δ ∩ h0

r.

Lemma 4.4. By choosing 0 < δ < 1 smaller, if necessary, it follows that for any τ, τ0 ∈ [0, 1], the map
Ψτ0,τ

X − ιd : V ′
δ ∩ h0

r → h0
r is one smoothing, meaning that for any s ∈ Z≥1, the map

Ψτ0,τ
X − ιd : V ′

δ ∩ hs
r → hs+1

r

is real analytic. Furthermore, the following tame estimates hold: for any z ∈ V ′
δ ∩ h0

r, ẑ ∈ h0
c,

‖Ψτ0,τ
X (z)− z‖0 . ‖z⊥‖20 , ‖(dΨτ0,τ

X (z)− Id)[ẑ]‖0 . ‖z⊥‖0‖ẑ‖0 (4.17)

and for any k ≥ 2, ẑ1, . . . , ẑk ∈ h0
c ,

‖dkΨτ0,τ
X (z)[ẑ1, . . . , ẑk]‖0 .k

k∏

j=1

‖ẑj‖0
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whereas for any s ∈ Z≥1, z ∈ V ′
δ ∩ hs

r, ẑ ∈ hs
c,

‖Ψτ0,τ
X (z)− z‖s+1 .s ‖z⊥‖s‖z⊥‖0 , ‖(dΨτ0,τ

X (z)− Id)[ẑ]‖s+1 .s ‖z⊥‖0‖ẑ‖s + ‖z⊥‖s‖ẑ‖0 (4.18)

and for any k ≥ 2, ẑ1, . . . , ẑk ∈ hs
c,

‖dkΨτ0,τ
X (z)[ẑ1, . . . , ẑk]‖s+1 .s,k

k∑

j=1

‖ẑj‖s
∏

i6=j

‖ẑi‖0 + ‖z⊥‖s
k∏

j=1

‖ẑj‖0 .

Proof. For any τ0, τ ∈ [0, 1] and z ∈ V ′
δ ∩ h0

r, the flow Ψτ0,τ
X (z) satisfies the integral equation

Ψτ0,τ
X (z) = z +

∫ τ

τ0

X(Ψτ0,t
X (z), t) dt . (4.19)

In view of the estimate (4.14) of the vector field X(z, τ), we first estimate ‖Π⊥Ψ
τ0,τ
X (z)‖s for z ∈ V ′

δ ∩ hs
r

with s ∈ Z≥0. Applying the operator Π⊥ to both sides of the identity (4.19), one gets

Π⊥Ψ
τ0,τ
X (z) = Π⊥z +

∫ τ

τ0

Π⊥X(Ψτ0,t
X (z), t) dt .

By Lemma 4.3, for any τ, τ0 ∈ [0, 1], one has

‖Π⊥Ψ
τ0,τ
X (z)‖s ≤ ‖z⊥‖s + C(s)

∣∣∣
∫ τ

τ0

‖Π⊥Ψ
τ0,t
X (z)‖s‖Π⊥Ψ

τ0,t
X (z)‖0 dt

∣∣∣ (4.20)

for some constant C(s) > 0, only depending on s. Then by shrinking δ > 0, if necessary, so that for
z⊥ ∈ V⊥(δ), we have supτ0,τ∈[0,1] ‖Π⊥Ψ

τ0,τ
X (z)‖0 ≤ 1, the above estimate becomes

‖Π⊥Ψ
τ0,τ
X (z)‖s ≤ ‖z⊥‖s + C(s)

∣∣∣
∫ τ

τ0

‖Π⊥Ψ
τ0,t
X (z)‖sdt

∣∣∣ . (4.21)

By the Gronwall inequality one then gets

sup
τ0,τ∈[0,1]

‖Π⊥Ψ
τ0,τ
X (z)‖s .s ‖z⊥‖s , ∀z ∈ V ′

δ ∩ hs
r . (4.22)

Now let us prove (4.18). By (4.19), using again Lemma 4.3, one gets for any s ∈ Z≥1, τ0, τ ∈ [0, 1], and
z ∈ V ′

δ ∩ hs
r

‖Ψτ0,τ
X (z)− z‖s+1 ≤

∣∣∣
∫ τ

τ0

‖X(Ψτ0,t
X (z), t)‖s+1 dt

∣∣∣ .s sup
t∈[0,1]

‖Π⊥Ψ
τ0,t
X (z)‖s sup

t∈[0,1]

‖Π⊥Ψ
τ0,t
X (z)‖0

(4.22)

.s ‖z⊥‖s‖z⊥‖0 , (4.23)

which is the first claimed inequality in (4.18). To prove the one for the differential dΨτ0,τ
X − Id, differentiate

(4.19) with respect to z. Using the chain rule one gets

dΨτ0,τ
X (z)[ẑ] = ẑ +

∫ τ

τ0

dX(Ψτ0,t
X (z), t)[dΨτ0,t

X (z)[ẑ]] dt . (4.24)

By applying the estimates of dX(·, τ) of Lemma 4.3, it follows that for any s ∈ Z≥0 there is a constant
C(s) > 0 such that

‖dΨτ0,τ
X (z)[ẑ]‖s ≤ ‖ẑ‖s + C(s)

∣∣∣
∫ τ

τ0

(
‖Π⊥Ψ

τ0,t
X (z)‖s‖dΨτ0,t

X (z)[ẑ]‖0 + ‖Π⊥Ψ
τ0,t
X (z)‖0‖dΨτ0,t

X (z)[ẑ]‖s
)
dt
∣∣∣

(4.22)

≤ ‖ẑ‖s + C1(s)
∣∣∣
∫ τ

τ0

(
‖z⊥‖s‖dΨτ0,t

X (z)[ẑ]‖0 + ‖z⊥‖0‖dΨτ0,t
X (z)[ẑ]‖s

)
dt
∣∣∣ (4.25)
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for some constant C1(s) > C(s) > 0. For s = 0, using that ‖z⊥‖0 ≤ δ < 1, (4.25) becomes

‖dΨτ0,τ
X (z)[ẑ]‖0 ≤ ‖ẑ‖0 + 2C1(0)

∣∣∣
∫ τ

τ0

‖dΨτ0,t
X (z)[ẑ]‖0 dt

∣∣∣

and hence by the Gronwall inequality

‖dΨτ0,τ
X (z)[ẑ]‖0 . ‖ẑ‖0 .

For s ∈ Z≥1, substitute the latter estimate into (4.25) to get, again using that ‖z⊥‖0 < δ < 1

‖dΨτ0,τ
X (z)[ẑ]‖s ≤ ‖ẑ‖s + C2(s)‖z⊥‖s‖ẑ‖0 + C2(s)

∣∣∣
∫ τ

τ0

‖dΨτ0,t
X (z)[ẑ]‖s dt

∣∣∣ (4.26)

for some constant C2(s) > C1(s). Then using again the Gronwall inequality one concludes that for any
0 ≤ τ0 ≤ 1,

sup
τ∈[0,1]

‖dΨτ0,τ
X (z)[ẑ]‖s .s ‖ẑ‖s + ‖z⊥‖s‖ẑ‖0 . (4.27)

We are now ready to prove the second estimate in (4.18). By (4.24) and the smoothing estimates on dX(·, τ)
of Lemma 4.3, one gets that for any s ∈ Z≥1, 0 ≤ τ0 ≤ 1,

‖
(
dΨτ0,τ

X (z)− Id
)
[ẑ]‖s+1 .s sup

t∈[0,1]

‖Π⊥Ψ
τ0,t
X (z)‖s sup

t∈[0,1]

‖dΨτ0,t
X (z)[ẑ]‖0

+ sup
t∈[0,1]

‖Π⊥Ψ
τ0,t
X (z)‖0 sup

t∈[0,1]

‖dΨτ0,t
X (z)[ẑ]‖s

(4.22),(4.27)

.s ‖z⊥‖s‖ẑ‖0 + ‖z⊥‖0‖ẑ‖s ,
where we used again that ‖z⊥‖0 < δ < 1. Hence the claimed estimate for dΨτ0,τ

X (z) − Id in (4.18) is
established. The estimates for the higher order derivatives dkΨτ0,τ

X , k ≥ 2, follow by similar arguments,
differentiating k-times the equation (4.19) with respect to z.

Definition of ΨC and its properties: Our candidate for the symplectic corrector is the time one flow
map of X(z, τ),

ΨC := Ψ0,1
X : V ′

δ ∩ h0
r → h0

r . (4.28)

Clearly, ΨC is one to one and its inverse is given by the backward flow of the PDE (4.15), namely Ψ−1
C = Ψ1,0

X .
Hence the maps Ψ±1

C satisfy the estimates stated in Lemma 4.4. Furthermore, recall that for any τ ∈ [0, 1],
the two form Λτ admits the representation (4.5). Then the following Darboux lemma holds.

Proposition 4.1. The map ΨC is a symplectic corrector, i.e., for any z ∈ V ′
δ ∩ h0

r, Ψ
∗
CΛ1(z) = Λ0.

Proof. For any τ ∈ [0, 1], consider the two form (Ψ0,τ
X )∗Λτ . Since Ψ0,0

X = Id, one has (Ψ0,0
X )∗Λ0 = Λ0 and

hence it suffices to prove that the map τ 7→ (Ψ0,τ
X )∗Λτ is constant or, equivalently,

∂τ
(
(Ψ0,τ

X )∗Λτ

)
= 0 , ∀τ ∈ [0, 1] .

By Cartan’s identity (see for instance Lemma 1.2 in [14]) and the fact that Λτ is closed, it follows that

∂τ
(
(Ψ0,τ

X )∗Λτ

)
= (Ψ0,τ

X )∗
(
∂τΛτ + d(Λτ [X(·, τ), · ])

)
.

Since ∂τΛτ
(4.4)
= Λ1 − Λ0 = ΛL and ΛL

(4.8)
= dλL, it remains to prove that

d
(
λL + Λτ

[
X(·, τ), ·

])
= 0 .

By (4.5), (4.9), (4.12), one has for any τ ∈ [0, 1], z ∈ V ′
δ ∩ h0

r, and ẑ ∈ h0
c

λL(z)[ẑ] + Λτ [X(z, τ), ẑ] =
(
E(z), ẑ

)
r
−
(
Lτ (z)Lτ (z)

−1E(z), ẑ
)
r
= 0 .

It means that
λL + Λτ [X(·, τ), · ] = 0 , ∀τ ∈ [0, 1] ,

proving the proposition.
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As a consequence of Lemma 4.4 we get the following

Corollary 4.1. (i) For any s ∈ Z≥0, the map ΨC : V ′
δ ∩ hs

r → hs
r is a real analytic diffeomorphism onto

its image and its nonlinear part is one smoothing, meaning that for any s ∈ Z≥1, the map BC := ΨC − ιd :
V ′
δ ∩hs

r → hs+1
r is real analytic. Furthermore, BC satisfies the following tame estimates: for any z ∈ V ′

δ ∩h0
r,

ẑ ∈ h0
c,

‖BC(z)‖0 . ‖z⊥‖20 , ‖dBC(z)[ẑ]‖0 . ‖z⊥‖0‖ẑ‖0
and for any k ≥ 2, ẑ1, . . . , ẑk ∈ h0

c ,

‖dkBC(z)[ẑ1, . . . , ẑk]‖0 .k

k∏

j=1

‖ẑj‖0 ,

whereas for any s ∈ Z≥1, z ∈ V ′
δ ∩ hs

r, ẑ ∈ hs
c,

‖BC(z)‖s+1 .s ‖z⊥‖s‖z⊥‖0 , ‖dBC(z)[ẑ]‖s+1 .s ‖z⊥‖0‖ẑ‖s + ‖z⊥‖s‖ẑ‖0

and for any k ≥ 2, ẑ, ẑ1, . . . , ẑk ∈ hs
c,

‖dkBC(z)[ẑ1, . . . , ẑk]‖s+1 .s,k

k∑

j=1

‖ẑj‖s
∏

i6=j

‖ẑi‖0 + ‖z⊥‖s
k∏

j=1

‖ẑj‖0 .

(ii) The map AC := Ψ−1
C − ιd : ΨC(V ′

δ)∩ h0
r → h0

r is real analytic and satisfies the following tame estimates:
for any z ∈ ΨC(V ′

δ) ∩ h0
r, ẑ ∈ h0

c,

‖AC(z)‖0 . ‖z⊥‖20 , ‖dAC(z)[ẑ]‖0 . ‖z⊥‖0‖ẑ‖0

and for any k ≥ 2, ẑ1, . . . , ẑk ∈ h0
c ,

‖dkAC(z)[ẑ1, . . . , ẑk]‖0 .k

k∏

j=1

‖ẑj‖0 .

Furthermore, for any s ∈ Z≥1, AC : ΨC(V ′
δ) ∩ hs

r → hs+1
r is real analytic and satisfies the following tame

estimates: for any z ∈ ΨC(V ′
δ) ∩ hs

r, ẑ ∈ hs
c,

‖AC(z)‖s+1 .s ‖z⊥‖s‖z⊥‖0 , ‖dAC(z)[ẑ]‖s+1 .s ‖z⊥‖0‖ẑ‖s + ‖z⊥‖s‖ẑ‖0

and for any k ≥ 2, ẑ1, . . . , ẑk ∈ hs
c,

‖dkAC(z)[ẑ1, . . . , ẑk]‖s+1 .s,k

k∑

j=1

‖ẑj‖s
∏

i6=j

‖ẑi‖0 + ‖z⊥‖s
k∏

j=1

‖ẑj‖0 .

Proof. The claimed results are a special case of Lemma 4.4, since ΨC = Ψ0,1
X and Ψ−1

C = Ψ1,0
X .

An immediate consequence of Corollary 4.1 is the following result, needed in Subsection 5.2.

Corollary 4.2. The Taylor expansion of the map BC = ΨC − ιd around ΠSz up to order three is of the
form

BC(z) = BC
2 (z) +BC

3 (z) , z ∈ V ′
δ ∩ h0

r ,

where

BC
2 (z) :=

1

2
d2BC(ΠSz)[Π⊥z,Π⊥z] (4.29)

and BC
3 (z) is the Taylor remainder term

BC
3 (z) :=

1

2

∫ 1

0

(1− t)2d3BC(ΠSz + tΠ⊥z)[Π⊥z,Π⊥z,Π⊥z] dt . (4.30)
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The maps BC
i : V ′

δ ∩ h0
r → h0

r, i = 2, 3, are real analytic and BC
3 satisfies the following estimates: for any

z ∈ V ′
δ ∩ h0

r, ẑ, ẑ1, ẑ2 ∈ h0
c,

‖BC
3 (z)‖0 . ‖z⊥‖30 , ‖dBC

3 (z)[ẑ]‖0 . ‖z⊥‖20‖ẑ‖0 , ‖d2BC
3 (z)[ẑ1, ẑ2]‖0 . ‖z⊥‖0‖ẑ1‖0‖ẑ2‖0

and for any k ≥ 3, ẑ1, . . . , ẑk ∈ h0
c ,

‖dkBC
3 (z)[ẑ1, . . . , ẑk]‖0 .k

k∏

j=1

‖ẑj‖0 .

Furthermore, for any s ∈ Z≥1, B
C
i : V ′

δ∩hs
r → hs+1

r , i = 2, 3, are real analytic and BC
3 satisfies the following

tame estimates: for any z ∈ V ′
δ ∩ hs

r, ẑ, ẑ1, ẑ2 ∈ hs
c,

‖BC
3 (z)‖s+1 .s ‖z⊥‖s‖z⊥‖20 , ‖dBC

3 (z)[ẑ]‖s+1 .s ‖z⊥‖20‖ẑ‖s + ‖z⊥‖s‖z⊥‖0‖ẑ‖0 ,

‖d2BC
3 (z)[ẑ1, ẑ2]‖s+1 .s ‖z⊥‖0

(
‖ẑ1‖0‖ẑ2‖s + ‖ẑ1‖s‖ẑ2‖0

)
+ ‖z⊥‖s‖ẑ1‖0‖ẑ2‖0

and for any k ≥ 3, ẑ, ẑ1, . . . , ẑk ∈ hs
c,

‖dkBC
3 (z)[ẑ1, . . . , ẑk]‖s+1 .s,k

k∑

j=1

‖ẑj‖s
∏

i6=j

‖ẑi‖0 + ‖z⊥‖s
k∏

j=1

‖ẑj‖0 .

Proof. Note that by Corollary 4.1, BC(ΠSz) = 0 and dBC(ΠSz) = 0. Thus BC(z) = BC
2 (z) +BC

3 (z) is the
Taylor expansion of BC around ΠSz with Taylor remainder term given by (4.30). The claimed analyticity
and tame estimates follow from Corollary 4.1.

5 Proof of Theorem 1.2.

In this section we prove Theorem 1.2. First we introduce and discuss our new canonical coordinates and
then express the Hamiltonian of the defocusing NLS equation in the new coordinates.

5.1 New canonical coordinates

Our candidate of the canonical transformation is the map

Ψ := ΨL ◦ΨC : V ′
δ → H0

c (5.1)

where V ′
δ is the neighborhood introduced in (4.16).

Proposition 5.1. By shrinking 0 < δ < 1, if necessary, it follows that for any s ∈ Z≥0, Ψ : V ′
δ ∩ hs

r → Hs
r

is a real analytic symplectic diffeomorphism onto its image with the property that its nonlinear part B :=
Ψ− F−1

nls : V ′
δ ∩ h0

r → H0
r satisfies the following estimates: for any k ∈ Z≥1, z ∈ V ′

δ ∩ h0
r, ẑ1, . . . , ẑk ∈ h0

c,

‖B(z)‖0 . 1 , ‖dkB(z)[ẑ1, . . . , ẑk]‖0 .k

k∏

j=1

‖ẑj‖0 .

Furthermore, B is one smoothing, meaning that for any s ∈ Z≥1, the map B : V ′
δ ∩ hs

r → Hs+1
r is real

analytic, and it satisfies the following tame estimates: for any k ∈ Z≥1, z ∈ V ′
δ ∩ hs

r, and ẑ1, . . . , ẑk ∈ hs
c,

‖B(z)‖s+1 .s 1 + ‖z⊥‖s , ‖dkB(z)[ẑ1, . . . , ẑk]‖s+1 .s,k

k∑

j=1

‖ẑj‖s
∏

i6=j

‖ẑi‖0 + ‖z⊥‖s
k∏

j=1

‖ẑj‖0 .
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Proof. By Proposition 3.1 and Corollary 4.1 one has that for any s ∈ Z≥0, the map Ψ = ΨL ◦ΨC : V ′
δ∩hs

r →
Hs

r is real analytic and

Ψ∗Λ = (ΨL ◦ΨC)
∗Λ = Ψ∗

CΨ
∗
LΛ

(4.1)
= Ψ∗

CΛ1
Proposition 4.1

= Λ0
(4.1)
= ΛM , (5.2)

implying that Ψ is symplectic. Recalling that ΨL = F−1
nls +BL (see (3.7)) and using that, by Corollary 4.1,

ΨC = ιd+BC , a direct calculation shows that for any z ∈ V ′
δ ∩ h0

r

B(z) = Ψ(z)− F−1
nls(z) = F−1

nls(BC(z)) +BL(ΨC(z)) (5.3)

The claimed estimates for B then follow from the estimates of Proposition 3.1 and the ones of Corollary
4.1.

Substituting formula (3.7) for BL one gets

Ψ(z) =F−1
nls(z) + F−1

nls(BC(z)) +Bnls
(
ΠSz +ΠSBC(z)

)
+ d⊥B

nls
(
ΠSz +ΠSBC(z)

)
[z⊥ + π⊥BC(z)] (5.4)

where according to Corollary 4.2,

BC(z) =
1

2
d2BC(ΠSz)[Π⊥z,Π⊥z] +

1

2

∫ 1

0

(1− t)2d3BC(ΠSz + tΠ⊥z)[Π⊥z,Π⊥z,Π⊥z] dt .

Next, we state and prove the one smoothing property and tame estimates for the map

A(z) := dΨ(z)−1 − Fnls , z ∈ V ′
δ ∩ h0

r . (5.5)

By the chain rule,

dΨ(z)−1 = dΨC(z)
−1
(
dΨL(ΨC(z))

)−1
. (5.6)

Note that by Corollary 4.1,

dΨC(z)
−1 = dΨ−1

C (ΨC(z)) = Id + dAC(ΨC(z)) ,

and that by (3.10), dΨL(z)
−1 = Fnls +AL(z). Hence (5.6) can be written as

dΨ(z)−1 = Fnls +A(z) , A(z) := AL(ΨC(z)) + dAC(ΨC(z))dΨL(ΨC(z))
−1 . (5.7)

Proposition 5.2 (Tame estimates for A). For any s ∈ Z≥1, the map A : V ′
δ ∩ hs

r → L(Hs
c , h

s+1
c ) is real

analytic and satisfies the following tame estimates: for any z ∈ V ′
δ ∩ h0

r, ŵ ∈ H0
c ,

‖A(z)[ŵ]‖0 . ‖ŵ‖0

and for any k ≥ 1, ẑ1, . . . , ẑk ∈ h0
c ,

‖dk
(
A(z)[ŵ]

)
[ẑ1, . . . , ẑk]‖0 .k ‖ŵ‖0

k∏

j=1

‖ẑj‖0 .

Moreover, for any s ∈ Z≥1, z ∈ V ′
δ ∩ hs

r, w ∈ Hs
c ,

‖A(z)[ŵ]‖s+1 .s ‖z⊥‖s‖ŵ‖0 + ‖ŵ‖s

and for any k ≥ 1, ẑ1, . . . , ẑk ∈ hs
c,

‖dk
(
A(z)[ŵ]

)
[ẑ1, . . . , ẑk]‖s+1 .s,k

(
‖z⊥‖s‖ŵ‖0 + ‖ŵ‖s

) k∏

j=1

‖ẑj‖0 + ‖ŵ‖0
k∑

j=1

‖ẑj‖s
∏

i6=j

‖ẑi‖0 .

Proof. The claimed estimates for A follow by Lemma 3.2 and Corollary 4.1 by the chain and product
rules.
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5.2 The defocusing NLS Hamiltonian in new coordinates

In this subsection we prove the expansion of Hnls ◦Ψ, stated in (C3) of Theorem 1.2. Recall from (1.2) that
the Hamiltonian of the defocusing NLS equation is given by

Hnls(w) =

∫ 1

0

(∂xu∂xv + u2v2)dx , w = (u, v) ∈ H1
r .

By Theorem 1.1, Hnls := Hnls ◦Ψnls only depends on the actions. By a slight abuse of notation we write

Hnls = Hnls(I) , I = (Ik)k∈Z ∈ ℓ1,2+ , Ik ≡ Ik(z) = |zk|2/2 = (x2
k + y2k)/2 ∀k ∈ Z (5.8)

and denote by ωnls
k (I) the dNLS frequencies,

ωnls
k (I) := ∂IkH

nls(I) , k ∈ Z . (5.9)

The properties of the frequency map I 7→ ω(I) := (ωk(I))k∈Z , needed in the sequel, are summarized in the
following

Proposition 5.3. (dNLS frequencies) The map

ℓ1,2+ → ℓ∞, (Ik)k∈Z 7→ (ωnls
n (I)− 4π2n2)n∈Z (5.10)

is real analytic and bounded.

Proof. See e.g. Theorem 3.2 in [2].

With the notation introduced above, the L2-gradient ∇Hnls(z) is then given by

∇Hnls(z) = Ωnls(I)[z] , z ∈ h1
r , I ≡ I(z) = (In(z))n∈Z

where for any I ∈ ℓ1,2+ , Ωnls(I) : h1
r → h−1

r is the diagonal operator

Ωnls(I) :=

(
diagk∈Zω

nls
k (I) 0

0 diagk∈Zω
nls
k (I)

)
. (5.11)

Further note that since Hnls(z) = Hnls(Ψnls(z)) one has by the chain rule

Ωnls(I)[z] = ∇Hnls(z) = (dΨnls(z))t∇Hnls(Ψnls(z)) , ∀z ∈ V ∩ h1
r (5.12)

where V is the neighborhood of h0
r in h0

c of Theorem 1.1, V = Φnls(W). For later use we record that (5.12),
evaluated at z with z = ΠSz, reads

Ωnls(IS , 0)[ΠSz] = (dΨnls(ΠSz))
t∇Hnls(Ψnls(ΠSz))

implying that
Π⊥(dΨ

nls(ΠSz))
t∇Hnls(Ψnls(ΠSz)) = 0 . (5.13)

The equations of motion, associated to the Hamiltonian Hnls are given by

∂tz = JΩnls(I)[z] , J =

(
0 −Id
Id 0

)
. (5.14)

According to the splitting z = (zS , z⊥) ∈ CS × CS × h0
⊥c, we can decompose the equation (5.14) as

{
∂tzS = JΩnls

S (I)[zS ]

∂tz⊥ = JΩnls
⊥ (I)[z⊥]

(5.15)
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where

Ωnls
S (I) :=

(
diagk∈Sω

nls
k (I) 0

0 diagk∈Sω
nls
k (I)

)
, Ωnls

⊥ (I) :=

(
diagk∈S⊥ωnls

k (I) 0
0 diagk∈S⊥ωnls

k (I)

)
.

(5.16)
Similarly, by a slight abuse of terminology, we identify I = (Ik)k∈Z with (IS , I⊥),

I = (IS , I⊥) , IS := (Ik)k∈S , I⊥ := (Ik)k∈S⊥ . (5.17)

Note that although the frequencies ωk(I) are functions of all the action variables In, n ∈ Z, the system
(5.15) decouples since the action variables are invariant in time and depend only on the initial data. Now

let us assume that z(t) = (zS(t), 0) is a solution of (5.15) with initial data z(0) = (z
(0)
S , 0) and consider

the equation obtained from (5.15) by linearizing it along (zS(t), 0) with initial data given by ẑ(0) = (0, ẑ
(0)
⊥ )

and ẑ
(0)
⊥ ∈ h1

⊥r and denote by ẑ(t) the corresponding solution which evolves in h1
r. By a straightforward

computation one verifies that the differential of Ωnls(I) at (z
(0)
S , 0) in direction (0, ẑ

(0)
⊥ ) vanishes, implying

that ẑ(t) = (0, ẑ⊥(t)) where ẑ⊥(t) is the solution of

∂tẑ⊥(t) = JΩ⊥(IS , 0)[ẑ⊥(t)] , ẑ⊥(0) = ẑ
(0)
⊥ . (5.18)

Since by Theorem 1.1, Ψnls : h1
r → H1

r is symplectic it follows that

ŵ(t) := dΨnls(zS(t), 0)[(0, ẑ⊥(t))] = d⊥Ψ
nls(zS(t), 0)[ẑ⊥(t)] (5.19)

is a solution of the equation obtained by linearizing the dNLS equation along Ψnls(zS(t), 0). More precisely,

∂tŵ(t) = iJd∇Hnls(Ψnls(zS(t), 0))[ŵ(t)] , ŵ(0) = dΨnls(z
(0)
S , 0)[(0, ẑ

(0)
⊥ )] . (5.20)

On the other hand, by differentiating formula (5.19) with respect to t, one gets

∂tŵ(t) = d⊥Ψ
nls(zS(t), 0)[∂tẑ⊥(t)] + dS

(
d⊥Ψ

nls(zS(t), 0)[ẑ⊥(t)]
)
[∂tzS(t)]

= d⊥Ψ
nls(zS(t), 0)

[
JΩnls

⊥ (IS , 0)ẑ⊥(t)
]
+ dS

(
d⊥Ψ

nls(zS(t), 0)[ẑ⊥(t)]
)
[JΩnls

S (IS , 0)zS(t)] . (5.21)

Comparing (5.20) and (5.21) one gets

iJd∇Hnls(Ψnls(zS(t), 0))
[
d⊥Ψ

nls(zS(t), 0)ẑ⊥
]
= d⊥Ψ

nls(zS(t), 0)
[
JΩnls

⊥ (IS , 0)ẑ⊥(t)
]

+ dS
(
d⊥Ψ

nls(zS(t), 0)[ẑ⊥(t)]
)
[JΩnls

S (IS , 0)zS(t)] . (5.22)

The latter identity implies that for any zS ∈ RS × RS , ẑ⊥ ∈ h1
⊥r,

iJd∇Hnls(Ψnls(zS , 0))
[
dΨnls(zS , 0)[(0, ẑ⊥)]

]
= dΨnls(zS , 0)JΩ

nls(IS , 0)[(0, ẑ⊥)]

+ dS
(
d⊥Ψ

nls(zS , 0)[ẑ⊥]
)
[JΩnls

S (IS , 0)zS] . (5.23)

Solving for JΩnls(IS , 0)[(0, ẑ⊥)], one gets

JΩnls(IS , 0)[(0, ẑ⊥)] = (dΨnls(zS , 0))
−1iJd∇Hnls(Ψnls(zS , 0))

[
dΨnls(zS , 0) (0, ẑ⊥)

]

− (dΨnls(zS , 0))
−1dS

(
d⊥Ψ

nls(zS , 0)[ẑ⊥]
)
[JΩnls

S (IS , 0)zS] . (5.24)

Since Ψnls is symplectic, one has

(dΨnls(zS , 0))
−1iJ = J(dΨnls(zS , 0))

t , (dΨnls(zS , 0))
−1 = J(dΨnls(zS , 0))

tiJ

and hence (5.24) reads

Ωnls(IS , 0)[(0, ẑ⊥)] = (dΨnls(zS , 0))
td∇Hnls(Ψnls(zS , 0))dΨ

nls(zS , 0)[(0, ẑ⊥)]−R(1)(zS)[ẑ⊥] (5.25)

where R(1)(zS) : h
0
⊥c → h0

c is the bounded linear operator, defined by

R(1)(zS)[ẑ⊥] := dΨnls(zS , 0)
tiJdS

(
d⊥Ψ

nls(zS , 0)[ẑ⊥]
)
[JΩnls

S (IS , 0)zS] . (5.26)

For later use we record the following estimates for R(1)(zS).
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Lemma 5.1. The map VS ∩(RS×RS) → L(h0
⊥c, h

0
c), zS 7→ R(1)(zS) is real analytic and bounded. Moreover

it is one smoothing, meaning that for any s ∈ Z≥1, VS ∩ (RS × RS) → L(hs
⊥c, h

s+1
c ), zS 7→ R(1)(zS) is real

analytic. Furthermore, for any s ∈ Z≥1, α, β ∈ ZS
≥0, zS ∈ VS ∩ (RS × RS),

‖∂α,β
S R(1)(zS)‖L(h0

⊥c
,h0

c)
.α,β 1 , ‖∂α,β

S R(1)(zS)‖L(hs
⊥c

,h
s+1
c ) .s,α,β 1 .

Proof. By Theorem 1.1, Ψnls = F−1
nls +Bnls and hence dS

(
d⊥Ψ

nls(zS , 0)[ẑ⊥]
)
= dS

(
d⊥B

nls(zS , 0)[ẑ⊥]
)
. The

claimed statements then follow from Theorem 1.1.

We also need to record some properties of the operator Ωnls
⊥ (I) for I = (IS , 0). Write

Ωnls
⊥ (IS , 0) = D2

⊥ +Ω
(0)
⊥ (IS , 0) , (5.27)

where

D⊥ :=

(
diagn∈S⊥(2πn) 0

0 diagn∈S⊥(2πn)

)
, (5.28)

and

Ω
(0)
⊥ (IS , 0) :=

(
diagn∈S⊥(ωnls

n (IS , 0)− 4π2n2) 0
0 diagn∈S⊥(ωnls

n (IS , 0)− 4π2n2)

)
. (5.29)

Lemma 5.2. For any s ∈ Z≥0, the map VS∩(RS×RS) → L(hs
⊥c, h

s
⊥c), zS 7→ Ω

(0)
⊥ (IS(zS), 0) is real analytic

and bounded.

Proof. The lemma is a straightforward application of Proposition 5.3, since for any α, β ∈ ZS
≥0

sup
n∈S⊥

|∂α,β
S

(
ωnls
n (IS , 0)− 4π2n2

)
| .α,β 1

and
‖∂α,β

S Ω
(0)
⊥ (IS , 0)‖L(hs

⊥c
, hs

⊥c
) . sup

n∈S⊥

|∂α,β
S

(
ωnls
n (IS , 0)− 4π2n2

)
| .α,β 1

uniformly on VS ∩ (RS × RS).

After this preliminary discussion, we can now study the transformed HamiltonianHnls◦Ψ where Ψ = ΨL◦ΨC

is the symplectic transformation introduced in Subsection 5.1. We split the analysis into two parts. First
we expand H(1) := Hnls ◦ΨL and then we analyze H(2) = H(1) ◦ΨC .

Expansion of Hnls ◦ΨL

To expand Hnls ◦ΨL, it is useful to write Hnls in the form

Hnls(w) = Hnls
2 (w) +Hnls

4 (w) (5.30)

where

Hnls
2 (w) :=

1

2

〈
D2w , w

〉
r
, Hnls

4 (w) :=

∫

T

u2v2 dx , (5.31)

and the operator D2 is defined as

D2 :=

(
0 −∂xx

−∂xx 0

)
.

Note that D2 = Dt
2. The Hamiltonian equations associated to (5.30) can be written as

∂tw = iJ∇Hnls(w) , J =

(
0 −Id
Id 0

)
, ∇Hnls = (∇uHnls,∇vHnls) (5.32)
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where
∇Hnls(w) = D2w +∇Hnls

4 (w) , d∇Hnls(w) = D2 + d∇Hnls
4 (w) . (5.33)

The Taylor expansion of Hnls around Ψnls(ΠSz) up to order three reads

Hnls(Ψnls(ΠSz) + w) = Hnls(Ψnls(ΠSz)) + 〈∇Hnls(Ψnls(ΠSz)), w〉r +
1

2
〈d∇Hnls(Ψnls(ΠSz))[w] , w〉r

+ T (1)
3 (zS , w) (5.34)

where T (1)
3 (zS , w) is the Taylor remainder term of order three, given by

T (1)
3 (zS , w) :=

1

2

∫ 1

0

(1− t)2d3Hnls(Ψnls(ΠSz) + tw)[w,w,w] dt

(5.30),(5.31)
=

1

2

∫ 1

0

(1− t)2d3Hnls
4 (Ψnls(ΠSz) + tw)[w,w,w] dt . (5.35)

For later use we record that the third derivative of Hnls
4 at w0 = (u0, v0) ∈ H1

r in direction w = (u, v) in H1
r

can be computed as

d3Hnls
4 (w0)[w,w,w] = 12

∫ 1

0

(
u0uv

2 + u2v0v
)
dx . (5.36)

Substituting for w the function d⊥Ψ
nls(ΠSz)[z⊥] (= dΨnls(ΠSz)[Π⊥z]) and taking into account that by

(3.3), ΨL(z) = Ψnls(ΠSz) + d⊥Ψ
nls(ΠSz)[z⊥] yields

H(1)(z) = Hnls(ΨL(z)) = Hnls(Ψnls(ΠSz)) + 〈∇Hnls(Ψnls(ΠSz)), dΨ
nls(ΠSz)[Π⊥z]〉r

+
1

2

〈
d∇Hnls(Ψnls(ΠSz))

[
dΨnls(ΠSz)[Π⊥z]

]
, dΨnls(ΠSz)[Π⊥z]

〉
r

+ T (1)
3

(
zS, dΨ

nls(ΠSz)[Π⊥z]
)
.

Writing the right hand side of the latter identity in a more convenient form one gets

H(1)(z) = Hnls(Ψnls(ΠSz)) +
(
Π⊥(dΨ

nls(ΠSz))
t∇Hnls(Ψnls(ΠSz)), Π⊥z

)
r

+
1

2

(
Π⊥(dΨ

nls(ΠSz))
td∇Hnls(Ψnls(ΠSz))dΨ

nls(ΠSz)[Π⊥z] , Π⊥z
)
r

+ T (1)
3

(
zS , dΨ

nls(ΠSz)[Π⊥z]
)
. (5.37)

Recall that Hnls = Hnls ◦Ψnls. Hence by Theorem 1.1 one gets

Hnls(Ψnls(ΠSz)) = Hnls(IS , 0) . (5.38)

Furthermore by (5.13),
Π⊥(dΨ

nls(ΠSz))
t∇Hnls(Ψnls(ΠSz)) = 0 . (5.39)

Next, the term in (5.37), which is quadratic in z⊥, can be written as

1

2

(
Π⊥(dΨ

nls(ΠSz))
td∇Hnls(Ψnls(ΠSz))dΨ

nls(ΠSz)[Π⊥z], Π⊥z
)
r

(5.25)
=

1

2

(
Ωnls(IS , 0)[Π⊥z], Π⊥z

)
r
+

1

2

(
R(1)(zS)[z⊥], z⊥

)
r
. (5.40)

Substituting (5.38)-(5.40) into (5.37) then yields

H(1)(z) = Hnls(IS , 0) +
1

2

(
Ωnls

⊥ (IS , 0)[z⊥], z⊥
)
r
+ P(1)

2 (z) + P(1)
3 (z) (5.41)

where

P(1)
2 (z) :=

1

2

(
R(1)(zS)[z⊥], z⊥

)
r
, P(1)

3 (z) := T (1)
3

(
zS , dΨ

nls(ΠSz)[Π⊥z]
)
. (5.42)

26



Lemma 5.3. (i) For any s ∈ Z≥0, P(1)
2 : V ∩ hs

r → R is real analytic and the following estimates hold: for
any s ∈ Z≥0, z ∈ V ∩ hs

r,

‖∇P(1)
2 (z)‖s .s ‖z⊥‖s

and for any k ∈ Z≥1, ẑ1, . . . , ẑk ∈ hs
c,

‖dk∇P(1)
2 (z)[ẑ1, . . . , ẑk]‖s .s,k

k∑

j=1

‖ẑj‖s
∏

i6=j

‖ẑi‖0 + ‖z⊥‖s
k∏

j=1

‖ẑj‖0 .

(ii) For any s ∈ Z≥0, P(1)
3 : V ∩ hs

r → R is real analytic and the following estimates hold: for any s ∈ Z≥0,
z ∈ V ∩ hs

r, ẑ ∈ hs
c,

‖∇P(1)
3 (z)‖s .s ‖z⊥‖s‖z⊥‖0 , ‖d∇P(1)

3 (z)[ẑ]‖s .s ‖z⊥‖s‖ẑ‖0 + ‖z⊥‖0‖ẑ‖s

and for any k ∈ Z≥2, ẑ1, . . . , ẑk ∈ hs
c,

‖dk∇P(1)
3 (z)[ẑ1, . . . , ẑk]‖s .s,k

k∑

j=1

‖ẑj‖s
∏

i6=j

‖ẑi‖0 + ‖z⊥‖s
k∏

j=1

‖ẑj‖0 .

Proof. Item (i) follows from Lemma 5.1 and item (ii) from (5.42), (5.35), (5.36), and Theorem 1.1.

Expansion of H(2) := H(1) ◦ΨC

To study the expansion of the composition H(2) = H(1) ◦ ΨC of the Hamiltonian H(1) with the symplectic
corrector ΨC , constructed in Section 4, we separately expand the compositions of the terms on the right
hand side of the identity (5.41) with ΨC . In addition to the projectors ΠS ,Π⊥, defined in (3.1), (3.2), we
also introduce the following versions of them,

πS : CS × C
S × h0

⊥c → C
S × C

S , z = (zS , z⊥) → zS , (5.43)

π⊥ : CS × C
S × h0

⊥c → h0
⊥c , z = (zS , z⊥) → z⊥ . (5.44)

Term Hnls(IS , 0): It is convenient to define

hnls(zS) := Hnls(IS , 0) (5.45)

where we recall that by (5.8), (5.17)

IS = IS(zS) =
(1
2
(x2

j + y2j )
)
j∈S

, zS =
(
(xj)j∈S , (yj)j∈S

)
∈ R

S × R
S .

By Corollaries 4.1, 4.2 ΨC(z), defined for z ∈ V ′
δ∩h0

r , is of the form ΨC(z) = z+BC(z) = z+BC
2 (z)+BC

3 (z).
Hence the Taylor expansion of hnls(πSΨC(z)) around zS reads

hnls(πSΨC(z)) = hnls(zS) +∇Sh
nls(zS) · πSB

C
2 (z) + P(2a)

3 (z) , (5.46)

where P(2a)
3 (z) is the Taylor remainder term of order three, given by

P(2a)
3 (z) := ∇Sh

nls(zS) · πSB
C
3 (z) +

∫ 1

0

(1− t)dS∇Sh
nls(zS + t πSBC(z))[πSBC(z)] · πSBC(z) dt . (5.47)

In the next lemma we provide estimates for the Hamiltonian P(2a)
3 (z).
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Lemma 5.4. For any s ∈ Z≥0, P(2a)
3 ◦ΨC : V ′

δ ∩ hs
r → R is real analytic. Furthermore, ∇P(2a)

3 satisfies the
following tame estimates: for any s ∈ Z≥0, z ∈ V ′

δ ∩ hs
r, ẑ ∈ hs

c,

‖∇P(2a)
3 (z)‖s .s ‖z⊥‖s‖z⊥‖0 , ‖d∇P(2a)

3 (z)[ẑ]‖s .s ‖z⊥‖s‖ẑ‖0 + ‖z⊥‖0‖ẑ‖s

and for any k ∈ Z≥2, ẑ1, . . . , ẑk ∈ hs
c,

‖dk∇P(2a)
3 (z)[ẑ1, . . . , ẑk]‖s .s,k

k∑

j=1

‖ẑj‖s
∏

i6=j

‖ẑi‖0 + ‖z⊥‖s
k∏

j=1

‖ẑj‖0 .

Proof. The Lemma follows by differentiating P(2a)
3 and applying the estimates of Corollaries 4.1, 4.2.

Term HΩ(z) :=
1
2

(
Ωnls

⊥ (IS , 0)z⊥, z⊥
)
r
: To begin with let us point out that the expansion of the composition

of the termHΩ(z) with the transformation ΨC needs special care. To expain this in more detail, write 2HΩ(z)
in the form (

Ωnls
⊥ (IS , 0)z⊥, z⊥

)
r
=
(
D2

⊥z⊥, z⊥
)
r
+
(
Ω

(0)
⊥ (IS , 0)z⊥, z⊥

)
r

where D⊥ is the diagonal operator defined in (5.28). When composed with ΨC = ιd + BC , the term(
D2

⊥z⊥, z⊥
)
r
becomes

(
D2

⊥[z⊥ + π⊥BC(z)], z⊥ + π⊥BC(z)
)
r
=
(
D2

⊥[z⊥], z⊥
)
r
+
(
D2

⊥[z⊥], π⊥BC(z)
)
r

+
(
D2

⊥[π⊥BC(z)], z⊥
)
r
+
(
D2

⊥[π⊥BC(z)], π⊥BC(z)
)
r

(5.48)

where π⊥ is defined in (5.44). By (4.29) - (4.30), it then follows that the difference

1

2

(
D2

⊥[z⊥ + π⊥BC(z)], z⊥ + π⊥BC(z)
)
r
− 1

2

(
D2

⊥[z⊥], z⊥
)
r

belongs to the error term P3(z) in Theorem 1.2. Since BC is only one smoothing, the two terms

(
D2

⊥[z⊥], π⊥BC(z)
)
r
,

(
D2

⊥[π⊥BC(z)], z⊥
)
r

could prevent that P3 satisfies the estimates (1.6), stated in Theorem 1.2.
To proceed, recall that ΨC = Ψ0,1

X where Ψτ0,τ
X is the flow map, defined in (4.16). We have

HΩ(ΨC(z)) = HΩ(z) + P(2b)
3 (z) , P(2b)

3 (z) := HΩ(ΨC(z))−HΩ(z) . (5.49)

Using the mean value theorem and recalling (4.16), one has

P(2b)
3 (z) =

∫ 1

0

PΩ(Ψ
0,τ
X (z), τ) dτ (5.50)

where for any τ ∈ [0, 1], the Hamiltonian PΩ(z, τ) is defined by

PΩ(z, τ) :=
(
∇HΩ(z), X(z, τ)

)
r
. (5.51)

One has that

(
∇HΩ(z), X(z, τ)

)
r
=

1

2
∇SHΩ(z) · πSX(z, τ) +

(
Ωnls

⊥ (IS , 0)z⊥, π⊥X(z, τ)
)
r
. (5.52)

By (4.12), the vector field X(z, τ) was chosen to be

X(z, τ) = −Lτ (z)
−1E(z)
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where E(z) is given by (4.10) and Lτ (z)
−1 by the Neumann series (4.6) in Lemma 4.1. Hence

X(z, τ) = −Lτ (z)
−1E(z) = −JE(z)−

∑

n≥1

(−1)nτn(JL(z))nJE(z)

= −JE(z) + τJL(z)
∑

n≥0

(−1)nτn(JL(z))nJE(z)

= −JE(z) + τJL(z)X(z, τ) . (5.53)

Since E = ΠSE and J t = −J , the last term in (5.52) becomes
(
Ωnls

⊥ (IS , 0)z⊥, π⊥X(z, τ)
)
r
=
(
Ωnls

⊥ (IS , 0)z⊥, π⊥τJL(z)X(z, τ)
)
r

= −τ
(
JΩnls

⊥ (IS , 0)z⊥, π⊥L(z)X(z, τ)
)
r
. (5.54)

By (3.40), the component L⊥
⊥(z) of L(z) vanishes. Hence using the projections introduced in (5.43), (5.44),

one has
π⊥L(z)X(z, τ) = LS

⊥(z)πSX(z, τ) .

Substituting the latter expression into (5.54) then leads to
(
Ωnls

⊥ (IS , 0)z⊥, π⊥X(z, τ)
)
r
= −τ

(
JΩnls

⊥ (IS , 0)z⊥, L
S
⊥(z)πSX(z, τ)

)
r

= −τ LS
⊥(z)

tJΩnls
⊥ (IS , 0)z⊥ · πSX(z, τ)

(3.46)
= τ L⊥

S (z)JΩ
nls
⊥ (IS , 0)z⊥ · πSX(z, τ) . (5.55)

Note that by the definition (3.42),

L⊥
S (z)JΩ

nls
⊥ (IS , 0)z⊥ =



(
i
〈
Jd⊥Ψ

nls(ΠSz)[JΩ
nls
⊥ (IS , 0)z⊥] , ∂xj

d⊥Ψ
nls(ΠSz)[z⊥]

〉
r

)
j∈S(

i
〈
Jd⊥Ψ

nls(ΠSz)[JΩ
nls
⊥ (IS , 0)z⊥] , ∂yj

d⊥Ψ
nls(ΠSz)[z⊥]

〉
r

)
j∈S


 . (5.56)

Let us take a closer look at the expression

d⊥Ψ
nls(ΠSz)[JΩ

nls
⊥ (IS , 0)z⊥] = dΨnls(ΠSz)[JΩ

nls(IS , 0)(0, z⊥)] .

Substituting for JΩnls(IS , 0)(0, z⊥) the right hand side of the identity (5.25), one gets

dΨnls(ΠSz)[JΩ
nls(IS , 0)(0, z⊥)] = dΨnls(ΠSz)J(dΨ

nls(ΠSz))
td∇Hnls(Ψnls(ΠSz)dΨ

nls(ΠSz)[(0, ẑ⊥)]

− dΨnls(ΠSz)JR(1)(zS)[ẑ⊥] .

Note that the first term on the right hand side of the latter identity can be simplified. Since Ψnls is
symplectic,

dΨnls(ΠSz)J(dΨ
nls(ΠSz))

t = iJ ,

one has

dΨnls(ΠSz)J(dΨ
nls(ΠSz))

td∇Hnls(Ψnls(ΠSz))dΨ
nls(ΠSz)[(0, ẑ⊥)] =

iJd∇Hnls(Ψnls(ΠSz))dΨ
nls(ΠSz)[(0, z⊥)] = iJd∇Hnls(Ψnls(ΠSz))d⊥Ψ

nls(ΠSz)[z⊥] . (5.57)

Combining the above identities, the component i
〈
Jd⊥Ψ

nls(ΠSz)[JΩ
nls
⊥ (IS , 0)z⊥] , ∂xj

d⊥Ψ
nls(ΠSz)[z⊥]

〉
r
on

the right hand side of (5.56) becomes, for j ∈ S arbitrary,

i
〈
Jd⊥Ψ

nls(ΠSz)[JΩ
nls
⊥ (IS , 0)z⊥] , ∂xj

d⊥Ψ
nls(ΠSz)[z⊥]

〉
r

=
〈
d∇Hnls(Ψnls(ΠSz))d⊥Ψ

nls(ΠSz)[z⊥] , ∂xj
d⊥Ψ

nls(ΠSz)[z⊥]
〉
r

− i
〈
JdΨnls(ΠSz)JR(1)(zS)[z⊥] , ∂xj

d⊥Ψ
nls(ΠSz)[z⊥]

〉
r

(5.58)
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which in view of d∇Hnls(w) = D2 + d∇Hnls
4 (w) (cf (5.33)) leads to

i
〈
Jd⊥Ψ

nls(ΠSz)[JΩ
nls
⊥ (IS , 0)z⊥] , ∂xj

d⊥Ψ
nls(ΠSz)[z⊥]

〉
r

=
〈
D2d⊥Ψ

nls(zS , 0)[z⊥] , ∂xj
d⊥Ψ

nls(ΠSz)[z⊥]
〉
r

+
〈
d∇Hnls

4 (Ψnls(ΠSz))d⊥Ψ
nls(ΠSz)[z⊥] , ∂xj

d⊥Ψ
nls(ΠSz)[z⊥]

〉
r

− i
〈
JdΨnls(ΠSz)JR(1)(zS)[z⊥] , ∂xj

d⊥Ψ
nls(ΠSz)[z⊥]

〉
r
. (5.59)

Since D2 = Dt
2, the first term on the right hand side on the latter identity can be written as

〈
D2d⊥Ψ

nls(ΠSz)[z⊥] , ∂xj
d⊥Ψ

nls(ΠSz)[z⊥]
〉
r
=

1

2
∂xj

〈
D2d⊥Ψ

nls(ΠSz)[z⊥] , d⊥Ψ
nls(ΠSz)[z⊥]

〉
r

=
1

2
∂xj

〈
D2dΨ

nls(ΠSz)[(0, z⊥)] , dΨ
nls(ΠSz)[(0, z⊥)]

〉
r

=
1

2
∂xj

(
(dΨnls(ΠSz))

tD2dΨ
nls(ΠSz)[(0, z⊥)] , (0, z⊥)

)
r
, (5.60)

which can be further transformed as follows: using D2 = d∇Hnls − d∇Hnls
4 (cf (5.33)) and taking into

account that by (5.25),

(dΨnls(zS , 0))
td∇Hnls(Ψnls(zS , 0))dΨ

nls(zS , 0)[(0, z⊥)] = Ωnls(IS , 0)[(0, z⊥)] +R(1)(zS)[z⊥]

one is lead to

1

2
∂xj

(
(dΨnls(ΠSz))

tD2dΨ
nls(ΠSz)[(0, z⊥)] , (0, z⊥)

)
r
=

1

2
∂xj

(
Ωnls(IS , 0)[(0, z⊥)], (0, z⊥)

)
r
+

1

2
∂xj

(
R(1)(zS)[z⊥], (0, z⊥)

)
r
− 1

2
∂xj

〈
d∇Hnls

4 (Ψnls(ΠSz))d⊥Ψ
nls(zS , 0)[z⊥] , d⊥Ψ

nls(ΠSz)[z⊥]
〉
r
.

Let us analyze ∂xj

(
Ωnls(IS , 0)[(0, z⊥)], (0, z⊥)

)
r
=
(
∂xj

Ωnls
⊥ (IS , 0)z⊥, z⊥

)
r
in more detail. Substituting for

Ωnls
⊥ (IS , 0) the expression D2

⊥ + Ω
(0)
⊥ (IS , 0) (cf (5.27)) and using that

(
∂xj

D2
⊥z⊥, z⊥

)
r
= 0 for any j ∈ S,

one concludes that
(
∂xj

Ωnls
⊥ (IS , 0)z⊥, z⊥

)
r
=
(
∂xj

Ω
(0)
⊥ (IS , 0)z⊥, z⊥

)
r
, ∀ j ∈ S .

The above identities then imply that (5.60) becomes

〈
D2d⊥Ψ

nls(ΠSz)[z⊥] , ∂xj
d⊥Ψ

nls(ΠSz)[z⊥]
〉
r
=

1

2

(
∂xj

Ω
(0)
⊥ (IS , 0)z⊥, z⊥

)
r
+

1

2

(
∂xj

R(1)(wS)z⊥, (0, z⊥)
)
r

− 1

2
∂xj

〈
d∇Hnls

4 (Ψnls(ΠSz))d⊥Ψ
nls(ΠSz)[z⊥] , d⊥Ψ

nls(ΠSz)[z⊥]
〉
r
. (5.61)

With (5.60) - (5.61), the identity (5.59) becomes

i
〈
Jd⊥Ψ

nls(ΠSz)[JΩ
nls
⊥ (IS , 0)z⊥] , ∂xj

d⊥Ψ
nls(ΠSz)[z⊥]

〉
r
=
(
Rxj

(zS)[z⊥], z⊥
)
r
, (5.62)

where for any j ∈ S, Rxj
(zS) : h

0
⊥c → h0

⊥c is the linear operator defined by

1

2
∂xj

Ω
(0)
⊥ (IS , 0) +

1

2
π⊥∂xj

R(1)(zS)−
1

2
∂xj

(
(d⊥Ψ

nls(zS , 0))
t d∇Hnls

4 (Ψnls(ΠSz))d⊥Ψ
nls(ΠSz)

)
+

(
∂xj

d⊥Ψ
nls(ΠSz)

)t
d∇Hnls

4 (Ψnls(ΠSz))d⊥Ψ
nls(ΠSz)− i

(
∂xj

d⊥Ψ
nls(ΠSz)

)t
J dΨnls(ΠSz)JR(1)(zS) .

(5.63)

Arguing similarly as above one obtains

i
〈
Jd⊥Ψ

nls(ΠSz)[JΩ
nls
⊥ (IS , 0)z⊥] , ∂yj

d⊥Ψ
nls(ΠSz)[z⊥]

〉
r
=
(
Ryj

(zS)[z⊥] , z⊥
)
r

(5.64)
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where Ryj
(zS) : h

0
⊥c → h0

⊥c is given by

1

2
∂yj

Ω
(0)
⊥ (IS , 0) +

1

2
π⊥∂yj

R(1)(zS)−
1

2
∂yj

(
(d⊥Ψ

nls(zS , 0))
t d∇Hnls

4 (Ψnls(ΠSz))d⊥Ψ
nls(ΠSz)

)
+

(
∂yj

d⊥Ψ
nls(ΠSz)

)t
d∇Hnls

4 (Ψnls(ΠSz))d⊥Ψ
nls(ΠSz)− i

(
∂yj

d⊥Ψ
nls(ΠSz)

)t
JdΨnls(ΠSz)JR(1)(zS) .

(5.65)

In the next lemma we state estimates for the operators Rxj
(zS) and Ryj

(zS).

Lemma 5.5. For any j ∈ S and s ∈ Z≥0, the maps

Rxj
: VS ∩ (RS ×R

S) → L(hs
⊥c, h

s
⊥c), zS 7→ Rxj

(zS) , Ryj
: VS ∩ (RS ×R

S) → L(hs
⊥c, h

s
⊥c), zS 7→ Ryj

(zS)

are real analytic and bounded. Furthermore, for any α, β ∈ ZS
≥0,

‖∂α,β
S Rxj

(zS)‖L(hs
⊥c

,hs
⊥c

), ‖∂α,β
S Ryj

(zS)‖L(hs
⊥c

,hs
⊥c

) .s,α,β 1 .

Proof. The lemma follows from Theorem 1.1 and Lemmata 5.1 , 5.2.

Finally, by (5.51), (5.52), (5.55), (5.56), (5.62), (5.64) and writing

πSX(z, τ) =
((
Xj,+(z, τ)

)
j∈S

,
(
Xj,−(z, τ)

)
j∈S

)
∈ R

S × R
S

one sees that the Hamiltonian PΩ(z, τ), defined by (5.51), can be written in the form

1

2
∇SHΩ(z) · πSX(z, τ) +

∑

j∈S

Xj,+(z, τ)
(
Rxj

(zS)[z⊥], z⊥
)
r
+
∑

j∈S

Xj,−(z, τ)
(
Ryj

(zS)[z⊥], z⊥
)
r
. (5.66)

In the next lemma we state estimates for the Hamiltonian P(2b)
3 , defined in (5.50).

Lemma 5.6. For any s ∈ Z≥0, the Hamiltonian P(2b)
3 : V ′

δ ∩ hs
r → R is real analytic. Moreover, it satisfies

the following tame estimates: for any s ∈ Z≥0, z ∈ V ′
δ ∩ hs

r, ẑ, ẑ1, ẑ2 ∈ hs
c,

‖∇P(2b)
3 (z)‖s .s ‖z⊥‖s‖z⊥‖20 , ‖d∇P(2b)

3 (z)[ẑ]‖s .s ‖z⊥‖s‖z⊥‖0‖ẑ‖0 + ‖z⊥‖20‖ẑ‖s ,

‖d2∇P(2b)
3 (z)[ẑ1, ẑ2]‖s .s ‖z⊥‖s‖ẑ1‖0‖ẑ2‖0 + ‖z⊥‖0

(
‖ẑ1‖s‖ẑ2‖0 + ‖ẑ1‖0‖ẑ2‖s

)
,

and for any k ∈ Z≥3, ẑ1, . . . , ẑk ∈ hs
c,

‖dk∇P(2b)
3 (z)[ẑ1, . . . , ẑk]‖s+1 .s,k

k∑

j=1

‖ẑj‖s
∏

i6=j

‖ẑi‖0 + ‖z⊥‖s
k∏

j=1

‖ẑj‖0 .

Proof. The lemma follows by (5.50), (5.66), and Lemmata 4.3, 4.4, 5.2, 5.5 .

Term P(1)
2 : Recall that the Hamiltonian P(1)

2 was introduced in (5.42). For z ∈ V ′
δ ∩ h0

r one has ΨC(z) =

z +BC(z) and hence the Taylor expansion of P(1)
2 (ΨC(z)) around z reads

P(1)
2 (ΨC(z)) = P(1)

2 (z) + P(2c)
3 (z) , P(2c)

3 (z) :=

∫ 1

0

(
∇P(1)

2 (z + tBC(z)) , BC(z)
)
r
dt . (5.67)

The following lemma holds:
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Lemma 5.7. For any s ∈ Z≥0, the Hamiltonian P(1)
2 ◦ ΨC : V ′

δ ∩ hs
r → R is real analytic. Moreover, the

Hamiltonian P(2c)
3 , defined in (5.67), satisfies the following tame estimates: for any s ∈ Z≥0, z ∈ V ′

δ ∩ hs
r,

ẑ ∈ hs
c,

‖∇P(2c)
3 (z)‖s .s ‖z⊥‖s‖z⊥‖0 , ‖d∇P(2c)

3 (z)[ẑ]‖s .s ‖z⊥‖s‖ẑ‖0 + ‖z⊥‖0‖ẑ‖s ,
and for any k ∈ Z≥2, ẑ1, . . . , ẑk ∈ hs

c,

‖dk∇P(2c)
3 (z)[ẑ1, . . . , ẑk]‖s .s,k

k∑

j=1

‖ẑj‖s
∏

i6=j

‖ẑi‖0 + ‖z⊥‖s
k∏

j=1

‖ẑj‖0 .

Proof. The lemma follows by differentiating P(2c)
3 and applying Corollary 4.1 and Lemma 5.3 (i).

Term P(1)
3 : By (5.42), P(1)

3 is given by T (1)
3

(
zS , dΨ

nls(ΠSz)[Π⊥z]
)
where T (1)

3 is the Taylor remainder

term of order three, introduced in (5.35). Using the estimates of P(1)
3 of Lemma 5.3 (ii), the Hamiltonian

P(1)
3 ◦ΨC can be estimated as follows:

Lemma 5.8. For any s ∈ Z≥0, P(1)
3 ◦ ΨC : V ′

δ ∩ hs
r → R is real analytic. Moreover, the following tame

estimates hold: for any s ∈ Z≥1, z ∈ V ′
δ ∩ hs

r, ẑ ∈ hs
c,

‖∇(P(1)
3 ◦ΨC)(z)‖s .s ‖z⊥‖s‖z⊥‖0 , ‖d∇(P(1)

3 ◦ΨC)(z)[ẑ]‖s .s ‖z⊥‖s‖ẑ‖0 + ‖z⊥‖0‖ẑ‖s ,

and for any k ∈ Z≥2, ẑ1, . . . , ẑk ∈ hs
c,

‖dk∇(P(1)
3 ◦ΨC)(z)[ẑ1, . . . , ẑk]‖s .s,k

k∑

j=1

‖ẑj‖s
∏

i6=j

‖ẑi‖0 + ‖z⊥‖s
k∏

j=1

‖ẑj‖0 .

Proof. The lemma follows by differentiating the Hamiltonian P(1)
3 ◦ ΨC and applying Corollary 4.1 and

Lemma 5.3 (ii).

By (5.41), (5.46), (5.49), (5.67) one gets that the Hamiltonian H(2) := H(1) ◦ΨC = Hnls ◦ΨL ◦ΨC has the
form

H(2)(z) = Hnls(IS , 0) +
1

2

(
Ωnls

⊥ (IS , 0)[z⊥], z⊥
)
r
+ P2(z) + P3(z) (5.68)

where for any z ∈ V ′
δ ∩ h0

r,

P2(z) := ∇S hnls(zS) · πSB
C
2 (z) + P(1)

2 (z) , (5.69)

P3(z) := P(2a)
3 (z) + P(2b)

3 (z) + P(2c)
3 (z) + P(1)

3 (ΨC(z)) . (5.70)

Note that P2 is quadratic with respect to z⊥, whereas P3 is a remainder term of order three in z⊥. Being
quadratic with respect to z⊥, P2 can be written as

P2(z) =
1

2

(
d⊥(∇⊥P2(ΠSz))[z⊥], z⊥

)
r
.

We prove the following

Lemma 5.9. The Hamiltonian P2 vanishes on V ′
δ ∩ h0

r.
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Proof. By Corollary 4.1, ΨC(ΠSz) = ΠSz and dΨC(ΠSz) = Id. Hence by the chain rule and formula (3.5),
the map Ψ = ΨL ◦ΨC satisfies

dΨ(ΠSz) = dΨL(ΠSz) = dΨnls(ΠSz) . (5.71)

Recall that we denoted by ŵ(t) the solution of equation (5.20), obtained by linearizing the dNLS equation

along w(t) = Ψnls(ΠSz(t)) with initial data ŵ(0) = dΨ(nls)(ΠSz(t))(0, ẑ
(0)
⊥ ) and by ẑ(t) = (0, ẑ⊥(t)) the one

of the equation obtained by linearizing the dNLS equation, expressed in Birkhoff coordinates (cf (5.14)),

along (zS(t), 0) = ΠSz(t) with initial data (0, ẑ
(0)
⊥ ). Since Ψnls is symplectic, ŵ(t) = dΨnls(ΠSz(t))[ẑ(t)]. We

remark that (zS(t), 0) = ΠSz(t) is also a solution of the Hamiltonian equation ∂tz
(2) = J∇H(2)(z(2)) with

H(2) given by (5.68). Denote by ẑ(2)(t) = (0, ẑ
(2)
⊥ (t)) the solution of the equation obtained by linearizing

∂tz
(2) = J∇H(2)(z(2)) along ΠSz(t) with the same initial data (0, ẑ

(0)
⊥ ) as above. Since Ψ is symplectic,

ŵ(t) = dΨ(ΠSz(t))[ẑ
(2)(t)], implying together with dΨ(ΠSz) = dΨnls(ΠSz) (cf (5.71) above) that ẑ

(2)(t) =
ẑ(t) for any t. By (5.18), ẑ⊥(t) satisfies

∂tẑ⊥(t) = JΩnls
⊥ (IS , 0)[ẑ⊥(t)] (5.72)

whereas by (5.68), one has

∂tẑ
(2)
⊥ (t) = Jd⊥∇H(2)(ΠSz(t))[z

(2)
⊥ (t)] = JΩnls

⊥ (IS , 0)[ẑ
(2)
⊥ (t)] + Jd⊥∇⊥P2(ΠSz(t))[ẑ

(2)
⊥ (t)] . (5.73)

In particular, it follows that d⊥∇⊥P2(ΠSz(0))[ẑ
(0)
⊥ ] = 0. Since P2(z) is quadratic in z⊥ and the initial data

zS(0) ∈ πS(V ′
δ ∩ h0

r), ẑ
(0)
⊥ ∈ h0

⊥c are arbitrary, it follows that P2(z) = 0 for any z ∈ V ′
δ ∩ h0

r, which proves
the claimed statement.

As a consequence of Lemma 5.9, formula (5.68) becomes

H(2)(z) = Hnls(IS , 0) +
1

2

(
Ωnls

⊥ (IS , 0)[z⊥], z⊥
)
r
+ P3(z) . (5.74)

The Hamiltonian P3, introduced in (5.70), satisfies the following tame estimates.

Lemma 5.10 (Tame estimates of P3). For any s ∈ Z≥0, the Hamiltonian P3 : V ′
δ ∩ hs

r → R is real analytic
and satsfies the following tame estimates: for any z ∈ V ′

δ ∩ hs
r, ẑ ∈ hs

c,

‖∇P3(z)‖s .s ‖z⊥‖s‖z⊥‖0 , ‖d∇P3(z)[ẑ]‖s .s ‖z⊥‖s‖ẑ‖0 + ‖z⊥‖0‖ẑ‖s

and for any k ∈ Z≥2, ẑ1, . . . , ẑk ∈ hs
c,

‖dk∇P3(z)[ẑ1, . . . , ẑk]‖s .s

k∑

j=1

‖ẑj‖s
∏

i6=j

‖ẑi‖0 + ‖z⊥‖s
k∏

j=1

‖ẑj‖0 .

Proof. The claimed statements follow from Lemmata 5.4, 5.6, 5.7, and 5.8.

5.3 Summary of the proof of Theorem 1.2

Theorem 1.2 is a direct consequence of Propositions 5.1, 5.2, formula (5.74), and Lemma 5.10.

6 Proof of Theorem 1.3

Within this proof, it is convenient to use complex Birkhoff coordinates, given by ζn := (xn− iyn)/
√
2, n ∈ Z.

A solution z(t) = (x(t), y(t)) of the dNLS equation in Birkhoff coordinates then satisfies the equations

∂tζn = −iωnls
n ζn, n ∈ Z , (6.1)
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where
ωnls
n ≡ ωnls

n (IS , I⊥) = ∂InH
nls(IS , I⊥) .

Linearize (6.1) at a solution ζ(t) of the form (ζS(t), 0). For initial data of the form ζ̂(0) = (0, ζ̂⊥(0)), the

corresponding solution ζ̂(t) = (ζ̂S(t), ζ̂⊥(t)) of the linearized equation satisfies

ζ̂S(t) ≡ 0 , ∂tζ̂n(t) = −iωnls
n (IS , 0) ζ̂n(t), n ∈ S⊥.

Note that the latter equation are reduced to constant coefficients and hence

ζ̂⊥(t) = (e−iωn(IS ,0)tζ̂n(0))n∈S⊥ .

Since Ψnls is symplectic, the solution of the equation, obtained by linearizing the dNLS equation along
Ψnls(zS(t), 0), with initial data dΨnls(0, ζ̂⊥(0)), is given by

ŵ(t) = dΨnls(zS(t), 0)[0, ζ̂⊥(t)]

We now consider the special solutions ζ̂±,j(t) = e±iωj(IS ,0)t ζ̂±,j(0), j ∈ S⊥, corresponding to the initial data

ζ̂±,j(0) = (e(1,j) ± ie(2,j))/
√
2 , e(1,j) = ((δnj)n∈Z, 0), e(2,j) = (0, (δnj)n∈Z) .

Note that these solutions are periodic in time and that dΨnls(z(t))[ζ̂±,j(t)] can be written as

ŵ±,j(t) = e±iωj(IS ,0)t dΨnls(zS(t), 0)[ζ̂
±,j(0)] .

In the terminology of [14], ŵ+,j(t), ŵ−,j(t), j ∈ S⊥, are Floquet solutions with Floquet exponents±ωj(IS , 0).
Furthermore, by Theorem 1.1,

{ dΨnls(zS(t), 0)[ζ̂
σ,j(0)] : j ∈ S⊥, σ ∈ {±}}

is a complete set of Floquet solutions in the sense of [14]. One then concludes that up to normalisations (cf
Appendix B) and natural identifications (such as the identifications of action angle with Birkhoff coordinates),
the map Φ1, obtained by applying the scheme of construction of [14] to the dNLS equation, coincides with
the map

R
S × R

S → L(hs
⊥r, H

s
r ) , zS 7→ dΨnls(zS , 0)

∣∣
hs
⊥r

.

Since according to [14], the map Φ(z) can be chosen of the form Ψnls(zS , 0)+Φ1(z) and since the symplectic
corrector ΨC is constructed following the scheme in [14], one concludes that again up to normalisations and
natural identifications, Ψ = ΨL ◦ΨC coincides with the map Φ ◦ φ obtained by applying the scheme of [14]
to the dNLS equation. �

Remark 6.1. In the terminology of [14], the system of the Floquet exponents ±ωj(IS , 0), j ∈ S⊥, is
nonresonant – see e.g. [2] where the relevant properties of the dNLS frequencies are discussed.

7 Appendix A: a version of the Poincaré lemma

We follow the general approach of [16], Chapter V, and restrict to the finite dimensional setup as the
extension to infinite dimension is straightforward by restriction, see [14], Lemma 1.1. Let E = Rn and
denote by Lr

a(E) the space of multilinear continuous alternating forms of degree 0 ≤ r ≤ n. Let U ⊆ E be
an open nonempty set and consider

ω : U → Lr
a(E) .

For any z ∈ U , denote by
ω(z)[ξ1, . . . , ξr] ∈ R

34



the value of ω(z) when evaluated at ξ1, . . . , ξr ∈ E. Similarly, if ξj = ξj(z) ∈ E, j = 1, . . . , r, are vector
fields on U , then we denote by ω[ξ1, . . . , ξr] the function

U → R , z 7→ ω(z)[ξ1(z), . . . , ξr(z)] .

Furthermore, we denote by ω′(z) · ξ, ξ ∈ E, the alternating r-form

∂ε |ε=0 ω(z + εξ) ∈ Lr
a(E) . (7.1)

The exterior differential dω of ω, evaluated at z ∈ U , ξ1, . . . , ξr+1 ∈ E, is then given by the formula

r+1∑

j=1

(−1)j+1ω′(z) · ξj [ξ1, . . . , ξj−1, ξj+1, . . . , ξr+1] , (7.2)

also referred to as Cartan’s formula. Let us now consider the case where

E = R
n1 × R

n2 , n = n1 + n2 , n2 ≥ 1 ,

U = U1 × U2 ⊆ R
n1 × R

n2 ,

and U2 is a ball in Rn2 centered at 0. We denote the elements of U by z = (x, y) and the ones of E by
ξ = (v, w) ∈ Rn1 × Rn2 . For any r-form ω on U , denote by ωC the (r − 1)-form on U , obtained by the cone
construction: for any x ∈ U1, y ∈ U2, v1, . . . , vr−1 ∈ Rn1 , and w1, . . . , wr−1 ∈ Rn2 ,

ωC(x, y)[(v1, w1), . . . , (vr−1, wr−1)] =

∫ 1

0

ω(x, ty)[(0, y), (v1, tw1), . . . , (vr−1, twr−1)] dt . (7.3)

Note that since U2 is a ball in Rn2 , centered at 0, for any 0 ≤ t ≤ 1, (x, ty) is in U1 × U2 and hence ω(x, ty)
in (7.3) is well defined.

Lemma 7.1 (Poincaré lemma). Assume that ω is a r-form on U = U1 × U2, with 1 ≤ r ≤ n and n2 ≥ 1,
satisfying

ω(x, 0)[(v1, 0), . . . , (vr, 0)] = 0 , ∀ x ∈ U1 , ∀ v1, . . . , vr ∈ R
n1 . (7.4)

Then
d(ωC) + (dω)C = ω . (7.5)

In particular, if in addition ω is closed, dω = 0, then d(ωC) = ω .

8 Appendix B: formulas for dΨnls(zS, 0)[(0, z⊥)]

Note that for z = (zS , z⊥) with zS ∈ RS × RS and z⊥ = ((xj)j∈S⊥ , (yj)j∈S⊥) ∈ h0
⊥r,

dΨnls(zS , 0)[(0, z⊥)] =
∑

j∈S⊥

xjdΨ
nls(zS , 0)[e

(1,j)] +
∑

j∈S⊥

yjdΨ
nls(zS , 0)[e

(2,j)]

where for any j ∈ S⊥,
e(1,j) = ((δnj)n∈Z, 0), e(2,j) = (0, (δnj)n∈Z) .

It turns out that for j ∈ S⊥, dΨnls(zS , 0)[e
(1,j)] and dΨnls(zS , 0)[e

(2,j)] can be computed quite explicitly.
Consider the Hamiltonian equation with Hamiltonian given by the coordinate function xj , ∂tw = iJ∂xj , and
denote by w(t) its solution with initial data w(0) = (zS , 0). Then z(t) := Φnls(w(t)) solves

∂tz = dΦnls(w(t)) ∂tw(t) = dΦnls(w(t)) iJ∂xj . (8.1)

Since by Theorem 1.1, Φnls is symplectic, one has ∂tz = Je(1,j) = e(2,j). When combined with (8.1) it
implies that dΨnls(z(t))[e(2,j)] = iJ∂xj. Similarly, one derives the corresponding identity for the coordinate
function yj . When evaluated at t = 0 we then obtain

dΨnls((zS , 0))[e
(2,j)] = iJ∂xj = (−i∂vxj , i∂uxj) , dΨnls((zS , 0))[e

(1,j)] = iJ∂yj = (−i∂vyj , i∂uyj) .
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By the definition of xj , yj in [9], p 113, one has for a potential w ∈ H0
r with Birkhoff coordinates (zS , 0)

(referred to as S−gap potential)

xj =
ξj√
8
(eiβjzj + e−iβjzj) , yj =

ξj√
8 i

(eiβjzj − e−iβjzj) ,

where z±j = γje
±iηj if γj 6= 0 and z

±
j = 0 otherwise. We refer to [9] for the definitions of ξj , ηj , and βj . Since

w is assumed to be a S−gap potential, it follows that for any j ∈ S⊥,

∂xj =
ξj√
8
(eiβj∂z+j + e−iβj∂z−j ) , ∂yj =

ξj√
8 i

(eiβj∂z+j − e−iβj∂z−j ) ,

where by formula (17.3) in [9],

∂z±j = 2(∂τj − ∂µj)±
(
i2δ(µj)∂φj + 2φj (i∂δ |λ=µj

+iδ̇(µj)∂µj)
)
.

We refer to [9] for the definitions of the various quantities as well as for formulas of the gradients in the latter
expression. Each of the two components of these gradients are shown to be a linear combination of quadratic
expressions in the entries of the fundamental solution M = M(x, λ) of the Zakharov Shabat operator

L :=

(
i 0
0 −i

)
∂x +

(
0 u
ū 0

)
, w = (u, v) = (u, ū) .

In fact, in [10], it has been proved that

∂z±j =
(
(Kj2 ± iHj2)

2, (Kj1 ± iHj1)
2
)

where

Hj = (Hj1, Hj2) =
1

‖M1 +M2‖L2

(M1 +M2) |λ=µj

denotes the L2−normalized eigenfunction of L for the Dirichlet eigenvalue µj , M1, M2 are the two columns
of M , and Kj = (Kj1,Kj2) is the L2−normalized solution of LF = µjF, which is L2−orthogonal to Hj and
satisfies the additional normalization condition −i(Kj1(0)−Kj2(0)) > 0.
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