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Coherent and incoherent multiple scattering
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We compare two different models of transport of light in a disordered system with a spherical Gaussian
distribution of scatterers. A coupled dipole model, taking into account all interference effects, is compared to
an incoherent model, using a random walk of particles. Besides the well-known coherent backscattering effect
and a well pronounced forward lobe, the incoherent model reproduces extremely well all scattering features. In
an experiment with cold atoms, we use the momentum recoil imparted on the center of mass of the sample as a
partial probe of the light-scattering properties. We find that the force acting on the center of mass of the atoms is
not well suited to exhibit the coherence effects in light propagation under multiple-scattering conditions.
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I. INTRODUCTION

Coherence effects in the transport of wave in disordered
systems are at the heart of many phenomena in various areas
of research. In this work, we focus on light propagation,
even though many if not most features could be extended
to different types of waves, be it acoustic waves, plasmons,
heat, antennas, or matter waves such as electrons or ultracold
atoms. In mesoscopic physics, coherences are fundamental for
weak [1,2] and strong localization of light [3–11]. Coherences
are also at work in the universal conductance fluctuations [12],
modifications of the local density of states [13], or extraordi-
nary optical transmission [14]. Cooperative emission of light
as discussed by Dicke in the 1950s [15] and the response of
a cloud of cold atoms excited by an external laser [16] are
also based on coherence effects, such as quantum memories
using electromagnetic induced transparency in three-level
systems [17]. The recent development of ultrastable atomic
clocks also relies on optical transitions in the presence of many
atoms [18] where the impact of residual multiple scattering
deserves particular attention.

Whereas a rigorous investigation of light propagation in
the presence of many scatterers requires taking into account
the effects of interferences, in most situations interference
effects can be neglected and a radiative transfer equation is
thus often used in optics, allowing a practical approach to
scattering of light in complex media. In this work, we compare
an approximate model, based on such an incoherent random
walk of photons, to a more rigorous approach, based on a
microscopic coupled dipole model. Cold atoms provide an
excellent medium to study these fundamental effects. This
ensemble of resonant point scatterers are free of defects and
absorption and the coupled dipole model is expected to provide
an excellent description of the scattering properties of this
sample (despite some limitations, which will be discussed at
the end of the work). We stress that despite the apparent simple
situation, no analytical result is available for a disordered

system of N coupled dipoles. This problem has the full
complexity of a true many-body problem [19] and one thus
needs to resort to numerical or experimental answers to this
question. Indeed, if the amplitudes of N coupled dipoles are
to be found, this amounts to solving N coupled equations,
even though this can be considered as a linear optics problem
described by the propagation of a low intensity or single photon
field.

This paper is constructed as follows. First we present the
results of numerical simulations using both a random walk
of photons (RW) and a coupled dipole approach (CD), where
the many-body problem is solved by tracing over the photon
degrees of freedom. Then we compare the numerical results
from both the RW and CD models to experimental data
obtained by monitoring the radiation pressure force on the
center of mass of the atomic cloud as a probe of the emission
diagram.

II. RANDOM-WALK MODEL

The radiative transfer equation [20,21] is a very useful
and often used model to describe the multiple-scattering
regime that takes place in optically thick media. In such a
system one photon undergoes a large amount of independent
scattering events from randomly positioned particles and
therefore interferences between different paths are supposed
to be smeared out by the disorder. Then, the transport
properties are mostly independent from the wave nature of
light and from the particular nature of the scatterers. Such an
incoherent model of multiple scattering of photons undergoing
a random walk inside the sample provides a good description
of these systems, in particular when considering configuration
averaged signals. For this incoherent random-walk model,
we perform a Monte Carlo simulation where photons are
isotropically scattered after a distance lsc(r) = 1/[n(r)σsc],
where σsc is the scattering cross section and n(r) = n0e

−r2/(2σ 2
R )

is the spatial density distribution of the cold atom cloud
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FIG. 1. (Color online) Emission diagram (log scale) normalized
to the independent N atom case, for the RW approach (black points)
and the CD model (blue line) with b = 8.

considered in this work, well described by a spherical Gaussian
distribution of size σR and center density n0. The optical
thickness along one line of sight across the center of the
cloud is defined as b = ∫

n(0,0,z)σscdz = √
2πn0σscσR =√

2πσR/lsc(r = 0). By integrating the extinction over the
whole transverse size of the cloud (

∫
dxdye−b(x,y)), it is

possible to obtain the total extinction of an incident flux of
photons, corresponding to a total scattering cross section for
this random-walk model given by σRW = 2πσ 2

REin(b), where
Ein(b) is the entire function Ein(b) = ∫ b

0 (1 − e−t )dt/t →
b→0

b. To compute the emission diagram, averaged over the az-
imuthal angle φ, I (θ ) for this specific geometry, we simulated
the trajectories of 105 photons arrived along the z axis, over a
uniform disk of radius R = 4.36σR for a sample of b = 8. With
≈28.2% of this “plane” wave diffused, this corresponds to a
scattering cross section for the Gaussian cloud σRW ≈ 16.8σ 2

R ,
very close to the analytical value 2πσ 2

REin(8) ≈ 16.7σ 2
R . For

each photon, we record the direction of emission obtaining the
angular emission diagram IRW (θ ) (see Fig. 1).

III. COUPLED DIPOLE MODEL

We now compare this random-walk approach to a model
of coupled dipoles that accounts for the interference between
the radiation of all the atoms. Even though light scattering in
three dimensions requires to take into account the polarization
as well as the near-field dipole-dipole coupling, a better
comparison to our isotropic random-walk approach is obtained
using a scalar model for the dipole-dipole coupling. In the
steady-state regime, the N dipoles with amplitudes βj and
position rj , illuminated by a quasiresonant plane wave with
wave vector k0 = k0ẑ, obey the equation [16]

(
iδ − �

2

)
βj = i

	0

2
eik0·rj + �

2

∑
m�=j

βm

exp(ik0|rj − rm|)
ik0|rj − rm| ,

(1)

where ωa is the resonance frequency, δ = ωa − ωk0 is the laser
detuning, � is the atomic transition linewidth, 	0 = dE0/�

is the Rabi frequency, and d is the dipole matrix element.
This many-body problem with interference has been derived
from a quantum formalism where a single photon is shared
between all atoms through a superposition of states [16],
but also from a classical approach where the atoms are
considered as oscillators [22]. The relevant parameters to
describe light scattering in dilute clouds of two-level systems
is the resonant optical thickness of the cloud, which is given by
b0 = 2N/(k0σR)2 with an on-resonant scattering cross section
for a single atom given in the scalar model by σsc = λ2/π . The
detuning dependent optical thickness then reads b = b(δ) =
b0/(1 + 4δ2/�2). From (1), the far-field intensity in a direction
k and at a distance r can be calculated using [23]

4πr2I (k̂) = �ωk0�

N∑
j,m=1

βjβ
∗
me−ik0k̂(rj −rm). (2)

All numerical CD results data shown in this paper have been
obtained using an average over 20 different configurations of
the atomic distribution. We point out that the interferences are
not only present in the emission term (2) (Rayleigh scattering),
but already in the steady-state value of the atomic dipoles (1).
We can now compare the angular emission diagrams obtained
from the coherent CD equations to those from the incoherent
RW model. In Fig. 1 we have normalized the emission diagram
of the CD model to the emission diagram of N independent
atoms (obtained by using a very large sample size with
vanishing optical thickness). The emission diagram of the RW
model has been normalized such that

PCD

PRW

= σCD

σRW

, (3)

where PCD (respectively PRW ) is the scattered power of
the CD (respectively RW) model for the same incident
intensity. PCD and σCD can be obtained from integration
of the emission diagram

∫
I (k̂)dk̂ or also from σCD =

− 4π

k2
0

�
	0

Im[
∑

j βj e
−ik0·rj ] [23]. The total cross section for

the incoherent scattering σRW is obtained from the analytical
expression given above. For the parameters in Fig. 1 (b = 8,
σR = 20/k0, δ = 0), we obtain σCD = 24.5σ 2

R and σRW =
16.7σ 2

R . The difference in these total scattering cross sections
is mainly explained by the additional strong forward lobe in
the CD (see Fig. 1), and can also be understood as the origin
of the extinction paradox [23].

As one can clearly see in Fig. 1, the RW model in this
multiple-scattering regime is very close to the coherent CD
model, except for the coherent backscattering cone and the
forward lobe, with an angular width given by the inverse
size of the sample. The quantitative agreement between the
RW and the CD model in all angles except the forward
and backward direction suggests that interferences indeed
appear washed out under multiple-scattering conditions, as
naively expected. We note however that interferences might
nevertheless be relevant in multiple scattering, when spatially
dense samples are considered and one expects to approach the
Anderson localization transition or when going beyond the
average emission diagram in steady state.

043833-2



COHERENT AND INCOHERENT MULTIPLE SCATTERING PHYSICAL REVIEW A 89, 043833 (2014)

IV. EXPERIMENTAL RESULTS

The differences between coherent and incoherent scattering
have been addressed in the past, including experiments on cold
atoms, with the possibility to exploit the detuning as a relevant
control parameter. The enhanced backscattering cone, visible
only in the CD model and absent in the RW model, has been
extensively studied more than ten years ago [24]. The most
important difference between coherent and incoherent multiple
scattering with a Gaussian-shaped sample is the pronounced
forward lobe. Detecting light scattered in a direction close to
the incident radiation is notoriously difficult as most detecting
schemes will be saturated by the large incident radiation.
An elegant technique has been used in [25] but has not
been implemented so far with atomic clouds. An alternative
approach to indirect probe features of cooperative scattering
by laser cooled atoms has been used in the single-scattering
limit in [26], where the modification of the atomic motion
induced by light scattering has been used as a measure of
cooperative scattering. It is therefore interesting to investigate
how the radiation pressure force on the center of mass of the
atoms extends into the multiple-scattering limit.

We have therefore used the same experimental setup and
protocol as in [26], and used values of the laser frequency
around the atomic resonance (δ ≈ 0), thus entering the
multiple-scattering limit. We apply the following experimental
procedure to probe the coherence of the multiple-scattering
regime in our cold atom cloud. First, we load a magneto-optical
trap (MOT) with 3 × 107 atoms of 87Rb in 50 ms using the
setup described in [26]. We then apply a 50-ms temporal dark
MOT period where the intensity of the repumping laser is
reduced by a factor of 10 and the cooling laser is tuned to
−10 � from the F = 2 → F ′ = 3 D2 line. This allows us to
compress the cloud and to produce a smooth Gaussian-shaped
distribution of atoms. To control the optical thickness at the
end of this dark MOT period, the repumper detuning is varied
between −7 � and −2.5 �, keeping the desired amount of
atoms in the F = 2 state without affecting size (σR = 270 μm,
kσR ≈ 2 × 103), shape, and temperature (∼20 μK) of the
cloud. Here we focus on moderate values of optical thickness,
as this allowed for more systematic data without drifts of
the relevant parameters. We then switch off all laser beams
and magnetic-field gradients, leaving the atoms in free fall.
We then apply a horizontal, circularly polarized “pushing”
beam, tuned close to the F = 2 → F ′ = 3 transition for
50 μs. The pushing beam has a waist w0 = 12 mm and its
carefully calibrated intensity is adjusted to have a saturation
parameter s = 8 × 10−2. Each atom in the F = 2 state scatters
on average 80 photons. Such a small number of scattered
photons prevents any depumping effect into the F = 1 state
during the pushing process. After a time-of-flight expansion
of 12 ms, we image the position of the atomic cloud via
standard off-resonant (detuning δ ≈ −2 �) absorption scheme.
The absorption image gives the position of the center of mass
of the atomic cloud after time of flight and thus the average
radiation pressure force. Each experimental point (see Fig. 2)
is an average over ten realizations. We normalize the measured
average radiation pressure force by the single atom force F1,
where F1 is computed without any adjustable parameter from
the measured intensity of the pushing beam (known within
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FIG. 2. (Color online) Normalized radiation pressure force act-
ing on the center of mass of the atomic cloud as a function of the laser
detuning δ (in unit of �), at constant saturation parameter s(δ). The
experimental result for b0 = 2.19 (red circles) are compared to the
coherent CD model (b0 = 2.19, blue line) and incoherent RW model
(black squares) with corresponding optical thickness b(δ).

5% accuracy and taking into account losses by the vacuum
windows). The experimental value of the optical thickness b0

is obtained by standard absorption imaging, using a linearly
polarized laser beam. We note that such a transmission
measurement is best described by atoms in a statistical
mixture of the Zeeman sublevels in the ground state, with a
corresponding average squared Clebsch-Gordon coefficient of
(2F ′ + 1)/3(2F + 1) = 7/15. The effective resonant optical
thickness for a spherical Gaussian cloud of atoms distributed
in a statistical mixture of the Zeeman sublevels is thus given
by b0 = 2F ′+1

3(2F+1)
3N

kσ 2
R

, in contrast to a situation where all atoms
would be pumped with a circularly polarized laser beam into
the stretched state |F = 2,mF = +2〉.

In Fig. 2, we show the experimental result of the intrinsic
radiation pressure force, proportional to the displacement of
the center of mass of the atomic cloud (red spheres) as a
function of the pushing beam detuning δ, where we keep
the saturation parameter s = s0/(1 + 4δ2/�2) constant. We
clearly see an important reduction of the intrinsic radiation
pressure force around the resonance. Note that with this
experimental protocol, the mass of the atomic sample to be
displaced as well as the single atom response are kept constant,
allowing us to highlight the collective behavior.

We now turn to the comparison between the experimental
data and our coherent and incoherent models. Momentum
conservation arguments allow us to directly connect the far-
field emission diagram of a sample to the momentum transfer
to the center of mass of the sample. We stress that it is important
not only to consider the shape of the emission diagram, but also
the total scattered power, which can depend on the shape and
opacity of the sample. Defining the intrinsic radiation pressure
force along êz by Fz = (1/N)

∑
j Fj , where Fj is the force

acting on atom j [16], we obtain the following relation:

Fz

F1
= σtot

Nσ1
〈1 − cos(θ )〉, (4)

where cos θ = k̂ · ẑ is the angle of the direction of emitted
photon with the laser axis. We note that this relation holds
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both for the incoherent RW and coherent CD model. In (4),
F1 is the radiation pressure force for a single atom, and σtot

is the total scattering of the sample, which is different in
the RW and the CD model. One can see from (4) that the
emission diagram associated with the total power scattered
from the incident beam allows us to predict the intrinsic force,
proportional to the acceleration of the center of mass of the
sample. The numerical results of our CD solution (blue line)
also show a strong reduction of the force. To come forward
with a simple interpretation of these results, one can associate
the term corresponding to σtot

Nσ1
as a “shadow” effect, where that

part of the force is obtained with only taking into account the
attenuation of the incident laser beam. The recoil due to the
rescattered photons is then properly taken into account by the
last term of (4): − σtot

Nσ1
〈cos(θ )〉, related to the emission diagram

of the photons. As shown in Fig. 2 the experimental result
compares reasonably well both the CD and RW model when
using the optical thickness evaluated for a statistical mixture of
Zeeman sublevels, assumed to be a good approximation under
multiple-scattering conditions, when the local polarization is
well approximated by a field with random polarization.

V. DISCUSSION

In order to probe coherence effects under multiple-
scattering conditions, it is important to check to what extent an
incoherent model also explains similar features. When looking
at the prediction of the incoherent model, we find that there is
no significant difference in the regime of parameters studied.
This very close match between the incoherent and coherent
models can be explained by the fact that the emission diagram
only differs at two angles. In the backward direction, the
coherent backscattering cone should result in a small increase
of the intrinsic radiation pressure force in the coherent model
compared to an incoherent model. However, the enhancement
factor in the backward direction is less than 2 and the angular
range of enhanced backscattering is very small for a dilute
sample of atoms. On the other hand, the more important
emission intensity in the forward lobe does not result in a
significant change in the intrinsic radiation pressure force, as
in this direction (θ ≈ 0) the momentum transfer to the atoms is
vanishing: 〈1 − cos(θ )〉 ≈ 0. It thus turns out that under these
conditions, the intrinsic radiation pressure force is not a good
measure to detect differences between coherent and incoherent
scattering. We further investigate the range of validity of the
RW model in Fig. 3, where we plot the intrinsic force extracted
from the experimental data for various b0, the RW simulation,
and the CD simulation as a function of b(δ). The RW simula-
tion is by definition a function of b(δ) only. A close inspection
of the experimental and CD result shows small deviations from
the RW model, including a red or blue asymmetry, visible at
small b(δ). The origin of this asymmetry remains unknown.
However, we observed it on CD data for much higher b0

than experimentally measured. When looking for coherence
effects, one does indeed expect to find cooperative signatures
for large b0 and large detunings, where a mean-field approach
is assumed to be valid [26]. Another feature not included
in the RW model are Mie resonances expected in the CD
model for large b0 [27]. We also note a small deviation of the
experimental results compared to both the RW and CD model
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FIG. 3. (Color online) Normalized radiation pressure force as a
function of the optical thickness. The experimental data for b0 = 0.96
(green triangles) and b0 = 2.9 (red diamonds) are compared to the
results of the CD simulations, obtained for b0 = 0.96 (green dash-
dotted line), b0 = 2.9 (red dotted line), and b0 = 10 (blue plain line),
and of the RW model (gray squares). For the experimental data and
the CD model, b(δ) is varied at fixed b0 by changing the detuning. The
CD data are superimposed as b(δ) appears as a universal parameter,
and fluctuations are very small.

close to resonance (δ = 0) (see Figs. 2 and 3). This difference
would correspond to a slightly smaller atom-light coupling
than obtained from a statistical mixture of atoms in the Zeeman
sublevels, which would however be rather surprising.

Finally, we plotted in Fig. 4 various data extracted from
our CD simulation using the same Gaussian sphere that gives
the emission diagram plotted in Fig. 1. Figure 4(a) represents
the attenuation e−b0 of the incident laser field at the position êz

and along the transverse direction êr . Figure 4(b) represents the
dipole excitation relative to the single atom limit |βj |2/|β1|2.
For an integrated opacity b0 > 1 (white line), one expects
the atomic dipoles to be less excited by the incident laser
field. Those atoms in the shadow are indeed significantly less
excited. Figure 4(c) represents the phase of the atomic dipoles.
Most of the atomic cloud has a phase φ = 0 corresponding
to the laser field. In other words, almost the entire cloud is
synchronized with the incident laser field even for b0 > 1.
This is somewhat in contradiction to what one would expect
from a RW hypothesis, where in the multiple-scattering regime
the phase is randomized after few scattering events and
interference effects are smeared out by the disorder. This result
is however in good agreement with the Ewald-Oseen extinction
theorem [28] which specifies that the radiation from the atoms
exactly cancels the electromagnetic field of the incident laser
beam and replaces it by a field with a speed c/n where n is
the index of refraction of the medium. As shown in [28], not
only is the surface layer of the atomic cloud synchronized
but the entire cloud participates to the cancellation of the
incident field. This is in contrast with the common belief that
optically thick samples are well described by the RW approach
where the phase of a photon is randomized after few diffusion
events, but is in agreement with related work [29,30] where a
small persisting coherent component in the forward scattered
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FIG. 4. (Color online) (a) Local optical thickness b0 seen by the
laser field propagating along the direction êz. The white line represents
the multiple-scattering limit b0 = 1. (b) Excitation amplitude of the
atomic dipole compared to the single atom limit |βj |2/|β1|2. (c) Phase
of the atomic dipole φj . φ = 0 corresponds to the laser field phase
corrected from its propagation along êz. (d) Local force compared to
the single atom case Fz/F1. All data are computed for a Gaussian
sphere with b0 = 8.

field has been reported. Figure 4(d) represents the local force.
Although the atoms at the entrance of the cloud undergo a
force larger than the single-atom force, those in the shadow are
subjected to a lower force, resulting in a total force below the
single-atom one, in agreement with the measurement reported
in Fig. 3.

VI. CONCLUSION

In summary, we have compared an incoherent and a
coherent model for multiple scattering. The most prominent
differences are the well-known coherent backscattering cone
and an important forward lobe. We have compared the
predictions of these two models to the experimental result
of the intrinsic radiation pressure force acting on the center of
mass of the atomic cloud and found that this force is not a good
candidate to detect coherence effects in multiple scattering.
Using an effective coupling strength for the atom light coupling
in multiple scattering, we find a satisfactory quantitative
agreement between the experiment and the numerical model. It
would be interesting to study how these results compare to pre-
vious theoretical and experimental results, where a mean-field
approach in terms of single-photon superradiance has been
used. A precise experimental study of how multiple scattering
sets in and to what extent a RW model can explain the whole
range from large to small optical thickness is a complex task,
as one needs to take into account the various Zeeman sublevels
of the rubidium atoms. We expect that alternative observables
beyond average values of the center-of-mass displacement of
the cloud, such as correlations in the scattered light or heating
of the cloud, might be good candidates to look for features of
cooperativity in scattering of light by cold atoms.
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