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Abstract. We prove a reducibility result for a class of quasi-periodically forced linear wave equations on the
d-dimensional torus Td of the form

∂ttv −∆v + εP(ωt)[v] = 0

where the perturbation P(ωt) is a second order operator of the form P(ωt) = −a(ωt)∆ − R(ωt), the
frequency ω ∈ Rν is in some Borel set of large Lebesgue measure, the function a : Tν → R (independent of
the space variable) is sufficiently smooth and R(ωt) is a time-dependent finite rank operator. This is the
first reducibility result for linear wave equations with unbounded perturbations on the higher dimensional
torus Td. As a corollary, we get that the linearized Kirchhoff equation at a smooth and sufficiently small
quasi-periodic function is reducible.
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1 Introduction and main result

We consider a linear quasi-periodically forced wave equation of the form

∂ttv −∆v + εP(ωt)[v] = 0, x ∈ Td (1.1)

where T := R/(2πZ), ε > 0 is a small parameter, ω ∈ Ω ⊆ Rν , with Ω a closed bounded domain and the
operator P(ωt) is given by

P(ϕ)[v] := −a(ϕ)∆v −R(ϕ)[v] , ϕ ∈ Tν , v ∈ L2
0(Td,R) (1.2)

with R(ϕ) being an operator of the form

R(ϕ)[v] :=
N∑
k=1

bk(ϕ, x)
∫

Td
ck(ϕ, y)v(y) dy + ck(ϕ, x)

∫
Td
bk(ϕ, y)v(y) dy , ϕ ∈ Tν , v ∈ L2

0(Td,R) .

(1.3)
Here ν, d ≥ 1 are integer numbers, L2

0(Td,R) denotes the space of the real valued L2 functions with zero
average and the functions a : Tν → R, bk, ck : Tν × Td → R, k = 1, . . . , N are assumed to be sufficiently
smooth, namely a ∈ Cq(Tν ,R), bk, ck ∈ Cq(Tν × Td,R) for some q > 0 large enough. Note that the operator
R(ϕ) is symmetric with respect to the real L2-inner product. Our aim is to prove a reducibility result for the
equation (1.1) for ε small enough and for ω in a suitable Borel set of parameters Ωε ⊂ Ω with asymptotically
full Lebesgue measure. The PDE (1.1) may be written as the first order system{

∂tv = ψ

∂tψ =
(

1 + εa(ωt)
)

∆v + εR(ωt)[v]
(1.4)

which is a real Hamiltonian system of the form{
∂tv = ∇ψH(ωt, v, ψ)
∂tψ = −∇vH(ωt, v, ψ)

(1.5)

whose ϕ-dependent Hamiltonian is given by

H(ϕ, v, ψ) :=
1
2

∫
Td

(
ψ2 + (1 + εa(ϕ))|∇v|2

)
dx− ε1

2

∫
Td
R(ϕ)[v] v dx . (1.6)

In (1.5), ∇ψH and ∇vH denote the L2-gradients of the Hamiltonian H with respect to the variables v and
ψ. We assume that the functions bk(ϕ, x), ck(ϕ, x), k = 1, . . . , N have zero average with respect to x ∈ Td,
namely ∫

Td
bk(ϕ, x) dx = 0 ,

∫
Td
ck(ϕ, x) dx = 0 ∀ϕ ∈ Tν , k = 1, . . . , N . (1.7)

In order to precisely state the main result of this paper, let us introduce some more notations. For any
s ≥ 0, we define the Sobolev spaces Hs(Td) = Hs(Td,C), Hs(Td,R) respectively of complex and real valued
functions

Hs(Td) :=
{
u(x) =

∑
j∈Zd

uje
ijx : ‖u‖2Hsx :=

∑
j∈Zd
〈j〉2s|uj |2 < +∞

}
, Hs(Td,R) :=

{
u ∈ Hs(Td) : u = u

}
(1.8)

where
〈j〉 := max{1, |j|} , |j| :=

√
j2
1 + . . .+ j2

d , ∀j = (j1, . . . , jd) ∈ Zd .
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Moreover we define

Hs
0(Td) :=

{
u ∈ Hs(Td) :

∫
Td
u(x) dx = 0

}
, Hs

0(Td,R) :=
{
u ∈ Hs(Td,R) :

∫
Td
u(x) dx = 0

}
(1.9)

and introduce the real subspace Hs
0(Td) of Hs

0(Td)×Hs
0(Td)

Hs
0(Td) :=

{
u := (u, u) : u ∈ Hs

0(Td)
}
, equipped with the norm ‖u‖Hs

x
:= ‖u‖Hsx .

Given a linear operator R : L2
0(Td) → L2

0(Td) (where L2
0(Td) := H0

0 (Td)), we define its Fourier coefficients
with respect to the exponential basis {eij·x : j ∈ Zd \ {0}} of L2

0(Td) as

Rj
′

j :=
1

(2π)d

∫
Td
R[eij′·x]e−ij·x dx , ∀j, j′ ∈ Zd \ {0} . (1.10)

We introduce the linear operator R, defined by R[u] = R[u], for any u ∈ L2
0(Td).

We say that the operator R is block diagonal if Rj
′

j = 0 for any j, j′ ∈ Zd \ {0} with |j| 6= |j′|.
Because of the hyphothesis (1.7) the Hamiltonian vector field

L(ϕ) :=
(

0 1
∆− εP(ϕ) 0

)
(1.2)
=
(

0 1
(1 + εa(ϕ))∆ + εR(ϕ) 0

)
, ϕ ∈ Tν , (1.11)

leaves the space of functions with zero average invariant. More precisely for any 0 ≤ s ≤ q

L(ϕ) : Hs+2
0 (Td,R)×Hs+1

0 (Td,R)→ Hs+1
0 (Td,R)×Hs

0(Td,R) , ∀ϕ ∈ Tν

and therefore we can choose H1
0 (Td,R)× L2

0(Td,R) as phase space for the Hamiltonian H defined in (1.6).
Now we are ready to state the main result of the present paper.

Theorem 1.1. Let ν, d be integer numbers greater or equal than 1. There exists a strictly positive integer
q0 = q0(ν, d) > 1/2 such that for any q ≥ q0 there exists εq = ε(q, ν, d) > 0 and Sq := S(q, ν, d), with
1/2 < Sq < q such that if a ∈ Cq(Tν ,R), bk, ck ∈ Cq(Tν × Td,R), with bk, ck satisfying the hyphothesis (1.7)
for any k = 1, . . . , N , then for any ε ∈ (0, εq) there exists a Borel set Ωε ⊂ Ω of asymptotically full Lebesgue
measure, i.e.

|Ωε| → |Ω| as ε→ 0 , (1.12)

such that the following holds: for all ω ∈ Ωε and ϕ ∈ Tν , there exists a bounded linear invertible operator
W∞(ϕ) =W∞(ϕ;ω) such that for any 1

2 ≤ s ≤ Sq

W∞(ϕ) : Hs
0(Td)→ H

s+ 1
2

0 (Td,R)×Hs− 1
2

0 (Td,R)

satisfying the following property: (v(t, ·), ψ(t, ·)) is a solution of (1.4) in H
s+ 1

2
0 (Td,R)×Hs− 1

2
0 (Td,R) if and

only if
u(t, ·) = (u(t, ·), u(t, ·)) =W∞(ωt)−1[(v(t, ·), ψ(t, ·)))]

is a solution in Hs
0(Td) of the PDE with constant coefficients

∂tu = D∞u , D∞ := i

(
−D(1)
∞ 0

0 D(1)

∞

)

where for any s ≥ 1, D(1)
∞ : Hs

0(Td)→ Hs−1
0 (Td) is a linear, time-independent, L2-self-adjoint, block-diagonal

operator.

The following corollary holds:
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Corollary 1.1. For any ω ∈ Ωε and any initial data (v(0), ψ(0)) ∈ Hs+ 1
2

0 (Td,R)×Hs− 1
2

0 (Td,R) with 1/2 ≤
s ≤ Sq, the solution t ∈ R 7→ (v(t, ·), ψ(t, ·)) ∈ Hs+ 1

2
0 (Td,R)×Hs− 1

2
0 (Td,R) of the Cauchy problem

∂tv = ψ

∂tψ =
(

1 + εa(ωt)
)

∆v + εR(ωt)[v]

v(0, ·) = v(0)

ψ(0, ·) = ψ(0)

(1.13)

is stable, namely

sup
t∈R

(
‖v(t, ·)‖

H
s+ 1

2
x

+ ‖ψ(t, ·)‖
H
s− 1

2
x

)
≤ Cq

(
‖v(0)‖

H
s+ 1

2
x

+ ‖ψ(0)‖
H
s− 1

2
x

)
.

for some constant Cq = C(q, ν, d) > 0.

Remark 1.1. Note that the constants εq, Sq in Theorem 1.1 and the constant Cq in Corollary 1.1 depend
also on the ‖ · ‖q Sobolev norms of the functions a, bk, ck, k = 1, . . . , N appearing in the definition of the
perturbation P given in (1.2), (1.3).

Theorem 1.1 implies a reducibility result for the linearized Kirchhoff equation at a small and sufficiently
smooth quasi-periodic function εv0(ωt, x). The Kirchhoff equation

K(v) := ∂ttv −
(

1 +
∫

Td
|∇v|2 dx

)
∆v = 0 (1.14)

describes nonlinear vibrations of a d-dimensional body (in particular, a string for d = 1 and a membrane
for d = 2). The Cauchy problem for the Kirchhoff equation has been extensively studied, starting from the
pioneering paper of Bernstein [11]. Both local and global existence results have been established for initial
data in Sobolev and analytic class, see [1], [2], [24], [25], [36], [43], [46] and the recent survey [44]. The
existence of periodic solutions for the Kirchhoff equation has been proved by Baldi [3]. This result is proved
via Nash-Moser method and thanks to the special structure of the nonlinearity (it is diagonal in space), the
linearized operator at any approximate solution can be inverted by Neumann series. This approach does not
imply the linear stability of the solutions, since only the first order Melnikov conditions are required along
the proof. In one space-dimension (d = 1), the existence of quasi-periodic solutions and the reducibility
of the linearized equation have been established in [45]. In dimension greater or equal than two, there are
no results concerning the existence of quasi-periodic solutions. It is well-known that a good strategy for
proving the existence and the linear stability of quasi-periodic solutions is to prove the reducibility of the
linearized equations at small quasi-periodic approximate solutions obtained along a suitable iterative scheme.
Hence our result (Theorem 1.2 below) could be used to prove the existence of quasi-periodic solutions for
the nonlinear Kirchhoff equation.
Linearizing the operator K in (1.14) at a quasi-periodic function εv0(ωt, x) and writing the linearized equation
K ′(εv0)[v] = 0 as a first order system, one gets a system of differential equations of the form (1.4) where

a(ϕ) =
∫

Td
|∇v0(ϕ, x)|2 dx , R(ϕ)[v] = −2∆v0(ϕ, x)

∫
Td

∆v0(ϕ, y)v(y) dy , ϕ ∈ Tν , v ∈ L2
0(Td,R) .

Note that the operator R(ϕ) defined above has the same form as the one defined in (1.3), by taking N = 1,
b1 = −∆v0, c1 = ∆v0. We point out that ∆v0 has zero average in x ∈ Td, hence the hyphothesis (1.7) is
satisfied. An immediate consequence of Theorem 1.1 and Corollary 1.1 is then the following

Theorem 1.2. Let q0, q, εq,Sq as in Theorem 1.1 and v0 ∈ Cq+2(Tν × Td,R). Then the conclusions of
Theorem 1.1 and Corollary 1.1 hold for the linearized Kirchhoff equation K ′(εv0)[v] = 0 at the quasi-periodic
function εv0(ωt, x).
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Now we outline some related works concerning the reducibility of quasi-periodically forced linear partial
differential equations. Let us consider a linear differential equation of the form

∂tu = Du+ εP(ωt)u (1.15)

where D is a diagonal operator with discrete spectrum and P(ωt) is a linear quasi-periodically forced vector
field with non constant coefficients. We say that such an equation is reducible if there exists a quasi-
periodically forced change of variable u = Φ(ωt)[v] such that in the new coordinate v, the equation (1.15)
is reduced to constant coefficients. Typically, it is necessary to assume that ε (size of the perturbation) is
small enough and that the frequency ω, together with the eigenvalues of the operator D, satisfy the so-called
second order Melnikov non-resonance conditions. These non resonance conditions involve the differences
of the eigenvalues of the operator D. We point out that the reducibility of linear equations is the main
ingredient for proving the existence of quasi-periodic solutions (KAM tori) for nonlinear PDEs. Indeed
the first reducibility results for linear PDEs have been obtained as a corollary of KAM theorems. We
mention the pioneering papers of Kuksin [39], and Wayne [48] concerning the existence of invariant tori for
Schrödinger and wave equations in one space dimension with Dirichlet boundary conditions and with bounded
perturbations. The first KAM results for PDEs with unbounded perturbations have been obtained by Kuksin
[40], Kappeler-Pöschel [38] for analytic perturbations of the KdV equation. Here the unperturbed vector
field is ∂xxx and the perturbation contains one space derivative ∂x. Concerning unbounded perturbations of
the quantum Harmonic oscillator on the real line, the first result is due to Bambusi-Graffi [10]. In all these
aforementioned results, the perturbation contains derivatives of order δ < n − 1, where n is the order of
the highest derivative appearing in the linear constant coefficients term. In the case of critical unbounded
perturbations, i.e. δ = n − 1, we mention [42], [49] concerning the derivative NLS with Dirichlet boundary
conditions, in which the authors generalized appropriately the so-called Kuksin Lemma, developed in [40]. We
also mention the KAM results for the derivative Klein-Gordon equation [12], [13] in which the generalization
of the Kuksin Lemma developed in [42], [49] does not apply because of the weaker dispersion relation.
It is well known that the ideas used to deal with the case δ ≤ n−1 do not apply in the quasi-linear and fully
nonlinear case, i.e. δ = n. The first KAM results in this case have been obtained in [4], [5], [6] for quasi-
linear perturbations of the Airy, KdV and m-KdV equations, in [30], [31] for quasi-linear Hamiltonian and
reversible NLS equations, in [45] for the Kirchhoff equation and in [18], [19] for the water waves equations.
The key idea in these series of papers is to split the reduction to constant coefficients of the linearized
equation into two parts: the first part is to reduce the equation to another one which is constant coefficients
plus a bounded remainder and this is inspired by the breakthrough result of Iooss, Plotnikov and Toland
[35]. In a second step, one applies a convergent KAM reducibility scheme which reduces quadratically the
size of the perturbation and completes the diagonalization of the equation. This method has been extended
also by Bambusi in [8], [9] to deal with unbounded quasi-periodic perturbations of the Schrödinger operator
on the real line.
Another difficulty for the reduction procedures and the KAM schemes concerns the multiplicity of the
eigenvalues of the unperturbed part of the equation. The first result in this direction is due to Chierchia-You
[23] in which the authors prove a KAM result for analytic bounded perturbations of nonlinear wave equations
with periodic boundary conditions (double eigenvalues). We mention also the more recent papers [17], [30],
[45] concerning Schrödinger and Kirchhoff equations with periodic boundary conditions.
There are very few results for PDEs in higher space dimension since the second order Melnikov non-resonance
conditions are violated, typically due to the high multiplicity of the eigenvalues. The first KAM and re-
ducibility results in higher space dimension have been obtained by Eliasson-Kuksin [26], [27] for the linear
Schrödinger equation on Td with a multiplicative analytic potential and for the nonlinear Schrödinger equa-
tion with a convolution potential. The second order Melnikov non resonance conditions are verified blockwise,
by introducing the notion of Töplitz-Lipschitz Hamiltonians. A KAM result for the completely resonant Non-
linear Schrödinger equation on Td has been proved by Procesi-Procesi [47], by using Quasi-Töplitz Hamil-
tonians. We also mention the KAM theorem for the beam equation obtained by Eliasson-Grebert-Kuksin
in [29]. Recently, Grebert and Paturel [32] proved a reducibility result for the quantum harmonic oscillator
on Rd with an analytic multiplicative potential and in [33] they proved a KAM result for the nonlinear
Klein Gordon equation on the d-dimensional sphere. In [14], [15], [16], the authors proved the existence of
quasi-periodic solutions for Nonlinear wave and Schrödinger equations on Td and on Lie groups, by using
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the multiscale method, introduced by Bourgain [20], [21], [22] in the analytic setup. This approach does
not imply the linear stability of the quasi-periodic solutions since it requires to impose only the first order
Melnikov conditions.
The reduciblity for the quasi-periodically forced Klein-Gordon equation with a small multiplicative potential
∂ttu − ∆u + mu + εV (ωt, x)u = 0 on Td is still open. In [28], Eliasson-Grebert-Kuksin proved that this
equation is almost reducible in the sense that it can be reduced to constant coefficients up to a small
remainder. The aim of the present paper is to provide a class of linear wave equations with unbounded
perturbations on Td which are reducible. We point out that the main difference between Schrödinger and
wave (Klein-Gordon) equations is the following: for the Schrödinger equation, the eigenvalues of the linear
part of the equation grow like ∼ |j|2, j ∈ Zd, whereas the wave equation, written as a first order system in
complex coordinates, has eigenvalues growing as ∼ |j|, j ∈ Zd. It turns out that the second order Melnikov
non-resonance conditions

|ω · `+ µj − µj′ | ≥
γ

〈`〉τ
, ∀(`, j, j′) ∈ Zν × Zd × Zd , (`, |j|, |j′|) 6= (0, |j|, |j|) (1.16)

in the case of the wave (Klein Gordon) equation, i.e. µj ∼ |j|, j ∈ Zd are violated.

In the following we shall explain the main ideas of the proof of Theorem 1.1. The proof consists in reducing
the quasi-periodically forced linear vector field L(ωt) defined in (1.11) to a time-independent block-diagonal
operator. This reduction procedure is split into two parts.

Regularization of the vector field L(ωt). Our first goal is to conjugate the vector field L(ωt) to another one
which is diagonal up to a sufficiently regularizing perturbation. This is achieved by using a change of variables
induced by a reparametrization of time (so that the highest order term has constant coefficients) and time
dependent Fourier multipliers (introduced in Section 2.4), see Section 3. We point out that this procedure
involve only a reduction in time, since our unbounded perturbation P(ωt) is assumed to be diagonal in space
up to the finite rank operator R(ωt), which is already regularizing, see (1.2), (1.3).

KAM reducibility scheme. After the preliminary reduction of the order of derivatives, we deal with a time
dependent vector field which is a small and regularizing perturbation of a diagonal time-independent vector
field. We then perform a KAM reducibility scheme, see Theorem 4.1. The key feature of the scheme is that
since the perturbation is regularizing, along the KAM iteration, we can impose non-resonance conditions
with a loss of derivatives in space, namely

|ω · `+µj −µj′ | ≥
γ

|j|d|j′|d〈`〉τ
, ∀(`, j, j′) ∈ Zν × (Zd \ {0})× (Zd \ {0}) , (`, |j|, |j′|) 6= (0, |j|, |j|) (1.17)

for some constant exponents d and τ large enough and γ ∈ (0, 1). Neverthless, all the canonical transforma-
tions defined along the iteration will be bounded linear operators (on Sobolev spaces), since the regularizing
property of the remainder balances the loss of space derivatives in the Melnikov conditions (1.17). This
strategy will be used also in [7], to prove a KAM result for gravity water waves in finite depth.
The conditions (1.17) are much weaker that the ones given in (1.16) and we are able to prove that they
are fullfilled for a large set of parameters ω. We use the block-decay norm | · |s (see (2.76)) to estimate
the size of the remainders along the iteration. This is convenient since the class of operators having finite
block-decay norm is closed under composition (Lemma 2.7), solution of the homological equation (Lemma
4.1) and projections (Lemma 2.9). This norm is well adapted to finite rank operators of the form (1.3) and
it gives a strong decay of the blocks arising in the spectral decomposition with respect to the eigenspaces of
the operator

√
−∆, see Sections 2.2, 2.3.

The paper is organized as follows. In Section 2 we introduce some notations and abstract technical tools
needed along the proof of Theorem 1.1. The proof of the Theorem is developed in Sections 3-5. In Section
3 we perform the regularization procedure for the linear Hamiltonian vector field L and we conjugate it to
the vector field L4, defined in (3.70). In Section 4, we prove the block-diagonal reducibility of the vector
field L4, showing that it is conjugated to the block diagonal operator D∞ defined in (4.83). In Section 5 we
provide the measure estimate of the set of good parameters Ω2γ

∞ defined in (4.77). Finally, in Section 6, we
conclude the proof of Theorem 1.1 and we prove the Corollary 1.1.
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2 Function spaces, linear operators and norms

For a function u ∈ L2
0(Td) ≡ L2

0(Td,C) we consider its Fourier series

u(x) =
∑

j∈Zd\{0}

uje
ij·x , uj :=

1
(2π)d

∫
Td
u(x)e−ij·x dx , ∀j ∈ Zd \ {0} . (2.1)

We denote by σ0(
√
−∆) the spectrum of the operator

√
−∆ restricted to the zero-average functions, i.e.

σ0(
√
−∆) :=

{
|j| =

√
j2
1 + . . .+ j2

d : j = (j1, . . . , jd) ∈ Zd \ {0}
}

(2.2)

and for any eigenvalue α ∈ σ0(
√
−∆), we denote by Eα the corresponding eigenspace, i.e.

Eα := span{eij·x : j ∈ Zd , |j| = α } . (2.3)

Then, any function u ∈ L2
0(Td) can be written as

u(x) =
∑

α∈σ0(
√
−∆)

uα(x) , uα(x) =
∑
|j|=α

uje
ij·x ∈ Eα (2.4)

and if u ∈ Hs
0(Td) for some s ≥ 0, one has

‖u‖2Hsx =
∑

j∈Zd\{0}

|j|2s|uj |2 =
∑

α∈σ0(
√
−∆)

α2s
∑
|j|=α

|uj |2 =
∑

α∈σ0(
√
−∆)

α2s‖uα‖2L2
x
. (2.5)

We also deal with functions u ∈ L2
0(Tν × Td) = L2(Tν , L2

0(Td)) which can be regarded as ϕ-dependent
family of functions u(ϕ, ·) ∈ L2

0(Td) that we expand in Fourier series as

u(ϕ, x) =
∑

j∈Zd\{0}

uj(ϕ)eij·x =
∑
`∈Zν

j∈Zd\{0}

ûj(`)ei(`·ϕ+j·x) (2.6)

where
uj(ϕ) :=

1
(2π)d

∫
Td
u(ϕ, x)e−ij·x dx , ûj(`) :=

1
(2π)ν+d

∫
Tν+d

u(ϕ, x)e−i(`·ϕ+j·x) dϕ dx .

According to (2.4), we can write

u(ϕ, x) =
∑

α∈σ0(
√
−∆)

uα(ϕ, x) =
∑
`∈Zν

α∈σ0(
√
−∆)

ûα(`)ei`·ϕ (2.7)

where

uα(ϕ, x) :=
∑
|j|=α

uj(ϕ)eij·x , ûα(`) ≡ ûα(`, x) :=
1

(2π)ν

∫
Tν

uα(ϕ, x)e−i`·ϕ dϕ =
∑
|j|=α

ûj(`)eij·x . (2.8)

We define for any s ≥ 0 the Sobolev spaces Hs
0(Tν+d) = Hs

0(Tν+d,C) as

Hs
0(Tν+d) :=

{
u ∈ L2

0(Tν × Td) : ‖u‖2s :=
∑
`∈Zν

j∈Zd\{0}

〈`, j〉2s|ûj(`)|2 < +∞
}
, (2.9)
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where 〈`, j〉 := max{1, |`|, |j|}, and for any ` = (`1, . . . , `ν) ∈ Zν , |`| :=
√
`21 + . . .+ `2ν . One has

‖u‖2s =
∑
`∈Zν

j∈Zd\{0}

〈`, j〉2s|ûj(`)|2 =
∑
`∈Zν

α∈σ0(
√
−∆)

〈`, α〉2s
∑
|j|=α

|ûj(`)|2 =
∑
`∈Zν

α∈σ0(
√
−∆)

〈`, α〉2s‖ûα(`)‖2L2 (2.10)

where 〈`, α〉 := max{1, |`|, α}, for any ` ∈ Zν , α ∈ σ0(
√
−∆).

In a similar way, we define the spaces of real valued functions L2
0(Td,R), L2

0(Tν+d,R), Hs
0(Td,R), Hs

0(Tν+d,R)
and we also deal with Sobolev functions x-independent, belonging to the Sobolev spaceHs(Tν) (orHs(Tν ,R)).
For u ∈ Hs(Tν) we denote by ‖u‖s its Sobolev norm, given by

‖u‖s :=
∑
`∈Zν
〈`〉2s|û(`)|2 , û(`) :=

1
(2π)ν

∫
Tν
u(ϕ)e−i`·ϕ dϕ .

Given a Banach space (E, ‖ · ‖E), we denote by L∞(Tν , E) the space of the essentially bounded functions
Tν → E equipped with the norm

‖u‖L∞(Tν ,E) := esssupϕ∈Tν‖u(ϕ)‖E .

For any p ∈ N we denote by W p,∞(Tν , E) the space of the p-times weakly differentiable functions Tν → E
equipped with the norm

‖u‖Wp,∞(Tν ,E) := max|a|≤p‖∂aϕu‖L∞(Tν ,E) .

In the above formula, for any multi-index a = (a1, . . . , aν) ∈ Nν , we use the notations |a| := a1 + . . . + aν
and ∂aϕ = ∂a1

ϕ1
. . . ∂aνϕν . We also denote by C0(Tν , E) the space of continuous functions Tν → E equipped with

the norm
‖u‖C0(Tν ,E) := supϕ∈Tν‖u(ϕ)‖E

and we denote by Cp(Tν , E) the space of the p-times differentiable functions with continuous derivatives
equipped with the norm

‖u‖Cp(Tν ,E) := max|a|≤p‖∂aϕu‖C0(Tν ,E) .

We recall the standard property
W p+1,∞(Tν , E) ⊂ Cp(Tν , E) . (2.11)

For a function f : Ωo → E, ω 7→ f(ω), where (E, ‖ · ‖E) is a Banach space and Ωo is a subset of Rν , we
define the sup-norm and the lipschitz semi-norm as

‖f‖sup
E,Ωo

:= sup
ω∈Ωo

‖f(ω)‖E , ‖f‖lipE,Ωo := sup
ω1,ω2∈Ωo
ω1 6=ω2

‖f(ω1)− f(ω2)‖E
|ω1 − ω2|

(2.12)

and, for γ > 0, we define the weighted Lipschitz-norm

‖f‖Lip(γ)
E,Ωo

:= ‖f‖sup
E,Ωo

+ γ‖f‖lipE,Ωo . (2.13)

To shorten the above notations we simply omit to write Ωo, namely ‖f‖sup
E = ‖f‖sup

E,Ωo
, ‖f‖lipE = ‖f‖lipE,Ωo ,

‖f‖Lip(γ)
E = ‖f‖Lip(γ)

E,Ωo
. If f : Ωo → C, we simply denote ‖f‖Lip(γ)

C by |f |Lip(γ) and if E = Hs(Tν+d) we

simply denote ‖f‖Lip(γ)
Hs := ‖f‖Lip(γ)

s . Given two Banach spaces E,F , we denote by B(E,F ) the space of the
bounded linear operators E → F . If E = F , we simply write B(E).

Notation: From now on we fix
s0 :=

[ν + d

2

]
+ 1 (2.14)

where for any real number x ∈ R, we denote by [x] its integer part. We write

a .s b ⇐⇒ a ≤ C(s)b
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for some constant C(s) depending on the data of the problem, namely the Sobolev norms ‖a‖s, ‖bk‖s, ‖ck‖s
of the functions a, bk, ck appearing in (1.2), the number ν of frequencies, the dimension d of the space variable
x, the diophantine exponent τ > 0 in the non-resonance conditions, which will be required along the proof.
For s = s0 we only write a . b. Also the small constants δ in the sequel depend on the data of the problem.

We recall the classical estimates for the operator (ω · ∂ϕ)−1 defined as

(ω · ∂ϕ)−1[1] = 0 , (ω · ∂ϕ)−1[ei`·ϕ] =
1

i(ω · `)
ei`·ϕ , ∀` 6= 0 , (2.15)

for ω ∈ DC(γ, τ), where for γ, τ > 0,

DC(γ, τ) :=
{
ω ∈ Ω : |ω · `| ≥ γ

|`|τ
, ∀` ∈ Zν \ {0}

}
. (2.16)

If h(·;ω) ∈ Hs+2τ+1(Tν), with ω ∈ DC(γ, τ), we have

‖(ω · ∂ϕ)−1h‖s ≤ γ−1‖h‖s+τ , ‖(ω · ∂ϕ)−1h‖Lip(γ)
s ≤ γ−1‖h‖Lip(γ)

s+2τ+1 . (2.17)

We also recall some classical Lemmas on the composition operators and on the interpolation. Since the
variables (ϕ, x) have the same role, we present it for a generic Sobolev space Hs(Tn). For any s ≥ 0 integer,
for any domain A ⊆ Rn we denote by Cs(A) the space of the s-times continuously differentiable functions
equipped by the usual ‖ · ‖Cs norm.

Lemma 2.1. (Interpolation) Let u, v ∈ Hs(Tn) with s ≥ sn, sn := [n/2] + 1. Then, there exists an
increasing function s 7→ C(s) such that

‖uv‖s ≤ C(s)‖u‖s‖v‖sn + C(sn)‖u‖sn‖v‖s .

If u(·;ω), v(·;ω), ω ∈ Ωo ⊆ Rν are ω-dependent families of functions in Hs(Tn), with s ≥ sn then the same
estimate holds replacing ‖ · ‖s by ‖ · ‖Lip(γ)

s .

Iterating the above inequality one gets that, for some constant K(s), for any n ≥ 0,

‖uk‖s ≤ K(s)k‖u‖k−1
s0 ‖u‖s (2.18)

and if u(·;ω) ∈ Hs, s ≥ sn is a family of Sobolev functions, the same inequality holds repacing ‖ · ‖s by
‖ · ‖Lip(γ)

s .
We consider the composition operator

u(y) 7→ f(u)(y) := f(y, u(y)) .

The following lemma is a classical result due to Moser.

Lemma 2.2. (Composition operator) Let f ∈ Cs+1(Tn×R,R), with s ≥ sn := [n/2]+1. If u ∈ Hs(Tn),
with ‖u‖sn ≤ 1, then ‖f(u)‖s ≤ C(s, ‖f‖Cs)(1 + ‖u‖s). If u(·, ω) ∈ Hs(Tn), ω ∈ Ωo ⊆ Rν is a family of
Sobolev functions satisfying ‖u‖Lip(γ)

sn ≤ 1, then, ‖f(u)‖Lip(γ)
s ≤ C(s, ‖f‖Cs+1)(1 + ‖u‖Lip(γ)

s ).

Now we state the tame properties of the composition operator u(y) 7→ u(y + p(y)) induced by a diffeo-
morphism of the torus Tn. The Lemma below, can be proved as Lemma 2.21 in [19].

Lemma 2.3. (Change of variables) Let p := p(·;ω) : Rn → Rn, ω ∈ Ωo ⊂ Rν be a family of 2π-periodic
functions satisfying

‖p‖Csn+1 ≤ 1/2 , ‖p‖Lip(γ)
sn ≤ 1 (2.19)

where sn := [n/2] + 1. Let g(y) := y + p(y), y ∈ Tn. Then the composition operator

A : u(y) 7→ (u ◦ g)(y) = u(y + p(y))

9



satisfies for all s ≥ sn, the tame estimates

‖Au‖sn .sn ‖u‖sn , ‖Au‖s ≤ C(s)‖u‖s + C(sn)‖p‖s‖u‖sn+1 . (2.20)

Moreover, for any family of Sobolev functions u(·;ω)

‖Au‖Lip(γ)
sn .sn ‖u‖

Lip(γ)
sn+1 , (2.21)

‖Au‖Lip(γ)
s .s ‖u‖Lip(γ)

s+1 + ‖p‖Lip(γ)
s ‖u‖Lip(γ)

sn+2 , ∀s > sn . (2.22)

The map g is invertible with inverse g−1(z) = z + q(z) and there exists a constant δ := δ(sn) ∈ (0, 1) such
that, if ‖p‖Lip(γ)

2sn+2 ≤ δ, then
‖q‖s .s ‖p‖s , ‖q‖Lip(γ)

s .s ‖p‖Lip(γ)
s+1 . (2.23)

Furthermore, the composition operator A−1u(z) := u(z + q(z)) satisfies the estimate

‖A−1u‖s .s ‖u‖s + ‖p‖s‖u‖sn+1 , ∀s ≥ sn (2.24)

and for any family of Sobolev functions u(·;ω)

‖A−1u‖Lip(γ)
s .s ‖u‖Lip(γ)

s+1 + ‖p‖Lip(γ)
s+1 ‖u‖Lip(γ)

sn+2 , ∀s ≥ sn . (2.25)

2.1 Linear operators

Let R ∈ B(L2
0(Td)). The action of this operator on a function u ∈ L2

0(Td) is given by

R[u] =
∑

j,j′∈Zd\{0}

Rj
′

j uj′e
ij·x (2.26)

where the Fourier coefficients Rj
′

j of R are defined in (1.10). We shall identify the operator R with the
infinite-dimensional matrix of its Fourier coefficiens(

Rj
′

j

)
j,j′∈Zd\{0}

. (2.27)

We define the conjugated operator R by
Ru := Rū . (2.28)

One gets easily that the operator R has the matrix representation(
R−j′−j

)
j,j′∈Zd\{0}

. (2.29)

An operator R is said to be real if it maps real-valued functions on real valued functions and it is easy to
see that R is real if and only if R = R.
We define also the transpose operator RT by the relation

〈R[u] , v〉L2
x

= 〈u , RT [v]〉L2
x
, ∀u, v ∈ L2

0(Td) , ∀ϕ ∈ Tν (2.30)

where
〈u, v〉L2

x
:=
∫

Td
u(x)v(x) , dx , ∀u, v ∈ L2

0(Td) . (2.31)

Note that the operator RT has the matrix representation

(RT )j
′

j = R−j−j′ , ∀j, j′ ∈ Zd . (2.32)

An operator R is said to be symmetric in R = RT .

10



We define also the adjoint operator R∗ as(
R[u] , v

)
L2
x

=
(
u , R∗[v]

)
L2
x
, ∀u, v ∈ L2

0(Td) , (2.33)

where
(
· , ·
)
L2
x

is the scalar product on L2
0(Td), namely(

u , v
)
L2
x

:= 〈u , v〉L2
x

=
∫

Td
u(x)v(x) , dx , ∀u, v ∈ L2

0(Td) . (2.34)

An operator R is said to be self-adjoint if R = R∗. It is easy to see that R∗ = RT and its matrix
representation is given by

(R∗)j
′

j = Rjj′ , ∀j, j′ ∈ Zd \ {0} .

We also define the commutator between two linear operators R, T ∈ B(L2
0(Td)) by [R, T ] := RT − T R.

In the following we also deal with real operators G ∈ B
(
L2

0(Td,R)× L2
0(Td,R)

)
, of the form

G :=
(
A B
C D

)
(2.35)

where A,B,C,D ∈ B(L2
0(Td,R)). By (2.30), the transpose operator GT with respect to the bilinear form

〈(v1, ψ1) , (v2, ψ2)〉L2
x

:= 〈v1, v2〉L2
x

+ 〈ψ1 , ψ2〉L2
x
, (2.36)

∀(u1, ψ1), (u2, ψ2) ∈ L2
0(Td,R)× L2

0(Td,R), is given by

GT =
(
AT CT

BT DT

)
. (2.37)

Then it is easy to verify that G is symmetric, i.e. G = GT if and only if A = AT , B = CT , D = DT . It is
also convenient to regard the real operator G in the complex variables

(v, ψ) = C[(u, u)] , (u, u) = C−1[(v, ψ)] (2.38)

where

C :=
1√
2

(
1 1
1
i − 1

i

)
C−1 =

1√
2

(
1 i
1 −i

)
. (2.39)

The operators C, C−1 satisfies

C : L2
0(Td)→ L2

0(Td,R)× L2
0(Td,R) , C−1 : L2

0(Td,R)× L2
0(Td,R)→ L2

0(Td)

where L2
0(Td) is the real subspace of L2

0(Td)× L2
0(Td) defined by

L2
0(Td) :=

{
(u, u) : u ∈ L2

0(Td)
}
. (2.40)

If G ∈ B
(
L2

0(Td,R)×L2
0(Td,R)

)
is a real operator of the form (2.35), one has that the conjugated operator

R := C−1GC : L2
0(Td)→ L2

0(Td)

has the form

R =
(
R1 R2

R2 R1

)
, R1 :=

A+D − i(B − C)
2

, R2 :=
A−D + i(B + C)

2
. (2.41)

For the sequel, we also introduce for any s ≥ 0, the real subspace of Hs
0(Td)×Hs

0(Td)

Hs
0(Td) :=

(
Hs

0(Td)×Hs
0(Td)

)
∩ L2

0(Td) (2.42)

and we set
‖u‖Hs

x
:= ‖u‖Hsx , ∀u = (u, u) ∈ Hs

0(Td) . (2.43)

It is straightforward to verify that for any s ≥ 0

C : Hs
0(Td)→ Hs

0(Td,R)×Hs
0(Td,R) , C−1 : Hs

0(Td,R)×Hs
0(Td,R)→ Hs

0(Td) . (2.44)
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2.2 Block representation of linear operators

We may regard an operator R : L2
0(Td)→ L2

0(Td) as a block matrix(
[R]βα

)
α,β∈σ0(

√
−∆)

(2.45)

where for all α, β ∈ σ0(
√
−∆) (recall (2.2)), the block-matrix [R]βα is defined by

[R]βα :=
(
Rj
′

j

)
|j|=α , |j′|=β

. (2.46)

Note that the operator [R]βα is a linear operator from Eβ onto Eα where for all α ∈ σ0(
√
−∆), the finite

dimensional space Eα is defined in (2.3). We identify the space B(Eβ ,Eα) of the linear operators from Eβ
onto Eα with the space of the matrices of their Fourier coefficients, namely

B(Eβ ,Eα) '
{
M =

(
M j′

j

)
j,j′∈Zd\{0}
|j|=α , |j′|=β

}
. (2.47)

Indeed if M ∈ B(Eβ ,Eα), its action is given by

Mu(x) =
∑
|j|=α
|j′|=β

M j′

j uj′e
ij·x , ∀u ∈ Eβ , u(x) =

∑
|j′|=β

uj′e
ij′·x . (2.48)

If β = α, we use the notation B(Eα) = B(Eα,Eα) and we denote by Iα the identity operator on the space
Eα, namely

Iα : Eα → Eα , u 7→ u . (2.49)

According to (2.4), (2.45), (2.48), we may write the action of an operator R on a function u(x) as

Ru =
∑

α,β∈σ0(
√
−∆)

[R]βα[uβ ] . (2.50)

If [R]βα = 0, for any α 6= β, we say that R is block-diagonal and we use the notation

R = diagα∈σ0(
√
−∆)[R]αα . (2.51)

The action of a block-diagonal operator R on a function u ∈ L2
0(Td) is given by

Ru =
∑

α∈σ0(
√
−∆)

[R]αα[uα] . (2.52)

Let M ∈ B(Eβ ,Eα). The transpose operator MT ∈ B(Eα,Eβ) has the matrix representation

(MT )j
′

j := M−j−j′ , |j| = β , |j′| = α . (2.53)

The conjugate operator M ∈ B(Eβ ,Eα) is given by

(M)j
′

j := M−j
′

−j , |j| = α , |j′| = β (2.54)

and the adjoint operator M∗ ∈ B(Eα,Eβ) by

M∗ := M
T
. (2.55)

Let α, β, λ ∈ σ0(
√
−∆). Given A ∈ B(Eβ ,Eα), B ∈ B(Eλ,Eβ), the operator AB ∈ B(Eλ,Eα) has the

matrix representation
(AB)j

′

j :=
∑
|k|=β

AkjB
j′

k , ∀|j| = α , |j′| = λ . (2.56)
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Given an operator A ∈ B(Eα), we define its trace as

Tr(A) :=
∑
|j|=α

Ajj . (2.57)

It is easy to check that if A,B ∈ B(Eα), then

Tr(AB) = Tr(BA) . (2.58)

For all α, β ∈ σ0(
√
−∆), the space B(Eβ ,Eα) defined in (2.47), is a Hilbert space equipped by the inner

product given for any X,Y ∈ B(Eβ ,Eα) by

〈X,Y 〉 := Tr(XY ∗) . (2.59)

This scalar product induces the Hilbert-Schmidt norm

‖X‖HS :=
√

Tr(XX∗) =
( ∑
|j|=α
|j′|=β

|Xj′

j |
2
) 1

2
. (2.60)

For any operator X ∈ B(Eβ ,Eα), we define also the operator norm as

‖X‖B(Eβ ,Eα) := sup
{
‖Xu‖L2 : u ∈ Eβ , ‖u‖L2 ≤ 1

}
. (2.61)

First we recall some preliminary properties of these norms.

Lemma 2.4. (i) Let α, β ∈ σ0(
√
−∆), M ∈ B(Eβ ,Eα) and u ∈ Eβ. Then ‖Mu‖L2 ≤ ‖M‖HS‖u‖L2 ,

implying that ‖M‖B(Eβ ,Eα) ≤ ‖M‖HS.
(ii) Let α, β, λ ∈ σ0(

√
−∆), M ∈ B(Eβ ,Eα), X ∈ B(Eλ,Eβ). Then ‖MX‖HS ≤ ‖M‖HS‖X‖HS.

Proof. The proof is a straightforward application of the Cauchy-Schwartz inequality.

Given a linear operator L : B(Eβ ,Eα) → B(Eβ ,Eα), we denote by ‖L‖Op(α,β) its operator norm, when the
space B(Eβ ,Eα) is equipped with the Hilbert-Schmidt norm (2.60), namely

‖L‖Op(α,β) := sup
{
‖L(M)‖HS : M ∈ B(Eβ ,Eα) , ‖M‖HS ≤ 1

}
. (2.62)

We denote by Iα,β the identity operator on B(Eβ ,Eα), namely

Iα,β : B(Eβ ,Eα)→ B(Eβ ,Eα) , X 7→ X . (2.63)

For any operator A ∈ B(Eα) we denote by ML(A) : B(Eβ ,Eα) → B(Eβ ,Eα) the linear operator defined for
any X ∈ B(Eβ ,Eα) as

ML(A)X := AX . (2.64)

Similarly, given an operator B ∈ B(Eβ), we denote by MR(B) : B(Eβ ,Eα)→ B(Eβ ,Eα) the linear operator
defined for any X ∈ B(Eβ ,Eα) as

MR(B)X := XB . (2.65)

By Lemma 2.4-(ii), we have

‖ML(A)‖Op(α,β) ≤ ‖A‖HS , ‖MR(B)‖Op(α,β) ≤ ‖B‖HS . (2.66)

For any α ∈ σ0(
√
−∆), we denote by S(Eα), the set of the self-adjoint operators form Eα onto itself, namely

S(Eα) :=
{
A ∈ B(Eα) : A = A∗

}
(2.67)

and given A ∈ B(Eα) denote by spec(A) the spectrum of A. The next Lemma follows by elementary
arguments of linear algebra and hence its proof is omitted.
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Lemma 2.5. Let A ∈ S(Eα), B ∈ S(Eβ), then the following holds:
(i) The operators ML(A), MR(B) defined in (2.64), (2.65) are self-adjoint operators with respect to the scalar
product defined in (2.59).
(ii) The spectrum of the operator ML(A)±MR(B) satisfies

spec
(
ML(A)±MR(B)

)
=
{
λ± µ : λ ∈ spec(A) , µ ∈ spec(B)

}
.

We also deal with smooth ϕ-dependent families of linear operators

R : Tν → B(L2
0(Td)) , ϕ 7→ R(ϕ) . (2.68)

According to (2.27), for any ϕ ∈ Tν , the operator R(ϕ) has the matrix representation (Rj
′

j (ϕ))j,j′∈Zd\{0}.
We can write the Fourier expansions

R(ϕ) =
∑
`∈Zν
R̂(`)ei`·ϕ , Rj

′

j (ϕ) =
∑
`∈Zν
R̂j
′

j (`)ei`·ϕ , ∀` ∈ Zν , ∀j, j′ ∈ Zd \ {0}

where
R̂(`) :=

1
(2π)ν

∫
Tν
R(ϕ)e−i`·ϕ dϕ ∈ B(L2

0(Td)) , ∀` ∈ Zν , (2.69)

R̂j
′

j (`) :=
1

(2π)ν

∫
Tν
Rj
′

j (ϕ)e−i`·ϕ dϕ , ∀` ∈ Zν , ∀j, j′ ∈ Zd \ {0} . (2.70)

Note that for any ` ∈ Zν , the operator R̂(`) ∈ B(L2
0(Td)) has the matrix representation

R̂(`) =
(
R̂j
′

j (`)
)
j,j′∈Zd\{0} . (2.71)

Furthermore, by (2.45), for any ϕ ∈ Tν , the operatorR(ϕ) has the block representation ([R(ϕ)]βα)α,β∈σ0(
√
−∆)

and for any ` ∈ Zν , R̂(`) has the block representation ([R̂(`)]βα)α,β∈σ0(
√
−∆). For any α, β ∈ σ0(

√
−∆), we

have the Fourier expansion [R(ϕ)]βα =
∑
`∈Zν [R̂(`)]βαe

i`·ϕ with

[R̂(`)]βα :=
1

(2π)ν

∫
Tν

[R(ϕ)]βαe
−i`·ϕ dϕ =

(
R̂j
′

j (`)
)
|j|=α , |j′|=β

∀` ∈ Zν , (2.72)

recall (2.70).
Let R : Tν → B(L2

0(Td)) be differentiable and let ω ∈ Rν . For any ϕ ∈ Tν , the operator ω · ∂ϕR(ϕ) is repre-
sented by the matrix (ω·∂ϕRj

′

j (ϕ))j,j′∈Zd\{0} and its block representation is given by (ω·∂ϕ[R(ϕ)]βα)α,β∈σ0(
√
−∆).

We also note that for any ` ∈ Zν , the operator ω̂ · ∂ϕR(`) admits the block representation (iω·`[R̂(`)]βα)α,β∈σ0(
√
−∆).

Given R : Tν → B(L2
0(Td)), recalling the notation (2.51), we define the block-diagonal operator Rdiag as

Rdiag := diagα∈σ0(
√
−∆)[R̂(0)]αα (2.73)

and for any N ∈ N, we define the smoothing operator ΠNR by

[Π̂NR(`)]βα :=

{
[R̂(`)]βα if max{|`|, α, β} ≤ N
0 otherwise.

(2.74)

It is straightforward to verify that
(ΠNR)diag = ΠNRdiag . (2.75)
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2.3 Block-decay norm for linear operators

Given a smooth ϕ-dependent family R : Tν → B(L2
0(Td)), ϕ 7→ R(ϕ) as in (2.68), we define the block-decay

norm

|R|s := supα,β∈σ0(
√
−∆)

( ∑
`∈Zν
〈`, α, β〉2s‖[R̂(`)]βα‖2HS

)1/2

, 〈`, α, β〉 := max{1, |`|, α, β} . (2.76)

For families of operators of the form R(ω) : ϕ 7→ R(ϕ;ω), ω ∈ Ωo ⊂ Rν , we define the norm

|R|Lip(γ)
s := |R|sup

s + γ|R|lips , (2.77)

|R|sup
s := sup

ω∈Ω0

|R(ω)|s , |R|lips := sup
ω1,ω2∈Ωo
ω1 6=ω2

|R(ω1)−R(ω2)|s
|ω1 − ω2|

.

Moreover, if R : Tν → B(L2
0(Td)), i.e. R has the form

R(ϕ) =
(
R1(ϕ) R2(ϕ)
R2(ϕ) R1(ϕ)

)
, (2.78)

we define
|R|s := |R1|s + |R2|s , |R|Lip(γ)

s := |R1|Lip(γ)
s + |R2|Lip(γ)

s . (2.79)

In the following, we state some properties of this norm. We prove such properties for families of operators
R : Tν → B(L2

0(Td)). If R is an operator of the form (2.78) then the same statements hold with the obvious
modifications.

Lemma 2.6. (i) The norm | · |s is increasing, namely |R|s ≤ |R|s′ , for s ≤ s′.
(ii) The operator Rdiag defined by (2.73), satisfies |Rdiag|s ≤ |R|s, implying that ‖[R]αα‖HS ≤ α−s|R|s for
any α ∈ σ0(

√
−∆)

(iii) Items (i), (ii) hold, replacing | · |s by | · |Lip(γ)
s .

Proof. The proof is elementary. It follows directly by the definitions (2.76), (2.77), hence we omit it.

Lemma 2.7. Let R, T be operators of the form (2.78). Then for any s ≥ s0 (recall (2.14))

|RB|s .s |R|s|B|2s0 + |R|2s0 |B|s .

If R = R(ω), T = T (ω) are Lipschitz with respect to the parameter ω ∈ Ωo ⊆ Ω, then the same estimate
holds replacing | · |s by | · |Lip(γ)

s .

Proof. According to the notations (2.45), (2.46), for any ϕ ∈ Tν , the operator R(ϕ)B(ϕ) has the block
representation

R(ϕ)T (ϕ) =
(

[R(ϕ)T (ϕ)]βα
)
α,β∈σ0(

√
−∆)

`∈Zν
, [R(ϕ)T (ϕ)]βα =

∑
α1∈σ0(

√
−∆)

[R(ϕ)]α1
α [T (ϕ)]βα1

and for all ` ∈ Zν
[R̂T (`)]βα =

∑
α1∈σ0(

√
−∆),`′∈Zν

[R̂(`− `′)]α1
α [T̂ (`′)]βα1

.

Then, using Lemma 2.4-(ii), we get that for any α, β ∈ σ0(
√
−∆)∑

`∈Zν
〈`, α, β〉2s‖[R̂T (`)]βα‖2HS ≤

∑
`∈Zν

( ∑
`′∈Zν

α1∈σ0(
√
−∆)

〈`, α, β〉s‖[R̂(`− `′)]α1
α ‖HS‖[T̂ (`′)]βα1

‖HS
)2

. (2.80)
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Using that for any α, β, α1 ∈ σ0(
√
−∆), `, `′ ∈ Zν , 〈`, α, β〉s .s 〈`− `′, α, α1〉s + 〈`′, α1, β〉s , we get

(2.80) .s (I) + (II) (2.81)

where

(I) :=
∑
`∈Zν

( ∑
`′∈Zν

α1∈σ0(
√
−∆)

〈`− `′, α, α1〉s‖[R̂(`− `′)]α1
α ‖HS‖[T̂ (`′)]βα1

‖HS
)2

(2.82)

(II) :=
∑
`∈Zν

( ∑
`′∈Zν

α1∈σ0(
√
−∆)

〈`′, α1, β〉s‖[R̂(`− `′)]α1
α ‖HS‖[T̂ (`′)]βα1

‖HS
)2

. (2.83)

Using that, by Lemma 7.1-(i),
∑

`′∈Zν
α1∈σ0(

√
−∆)

〈`′, α1〉−2s0 ,
∑
α1∈σ0(

√
−∆) α

−2s0
1 < +∞ (recall that s0 > (ν +

d)/2), applying the Cauchy Schwartz inequality, one gets

(I) .
∑
`∈Zν

∑
`′∈Zν

α1∈σ0(
√
−∆)

〈`− `′, α, α1〉2s‖[R̂(`− `′)]α1
α ‖2HS〈`′, α1〉2s0‖[T̂ (`′)]βα1

‖2HS

.s

∑
`′∈Zν

α1∈σ0(
√
−∆)

〈`′, α1〉2s0‖[T̂ (`′)]βα1
‖2HS

∑
`∈Zν
〈`− `′, α, α1〉2s‖[R̂(`− `′)]α1

α ‖2HS

.s

∑
`′∈Zν

α1∈σ0(
√
−∆)

1
α2s0

1

〈`′, α1〉4s0‖[T̂ (`′)]βα1
‖2HS

∑
`∈Zν
〈`− `′, α, α1〉2s‖[R̂(`− `′)]α1

α ‖2HS

.s

∑
α1∈σ0(

√
−∆)

α−2s0
1

(
sup

α1∈σ0(
√
−∆)

∑
`′∈Zν

〈`′, α1〉4s0‖[T̂ (`′)]βα1
‖2HS

)(
sup

α,α1∈σ0(
√
−∆)

∑
k∈Zν
〈k, α, α1〉2s‖[R̂(k)]α1

α ‖2HS
)

(2.76)

.s |B|22s0 |R|
2
s . (2.84)

Similarly one proves that (II) .s |T |2s|R|22s0 and then, recalling (2.80), (2.81) one proves |RT |s .s

|T |2s0 |R|s + |T |s|R|2s0 . The estimate for the norm | · |Lip(γ)
s follows easily by the previous one, by applying

the triangular inequality.

For all n ≥ 1, iterating the estimate of Lemma 2.7 we get

|Rn|2s0 ≤ [C(s0)]n−1|R|n2s0 and |Rn|s ≤ nC(s)n|R|n−1
2s0
|R|s , ∀s ≥ 2s0 , (2.85)

and the same bounds also hold for the norm | · |Lip(γ)
s if R is Lipschitz continuous with respect to the

parameter ω.

Lemma 2.8. Let Φ = exp(Ψ) with Ψ := Ψ(ω), depending in a Lipschitz way on the parameter ω ∈ Ωo ⊂ R,
such that |Ψ|Lip(γ)

2s0
≤ 1, |Ψ|Lip(γ)

s < +∞, with s ≥ 2s0. Then

|Φ±1 − Id|s .s |Ψ|s , |Φ±1 − Id|Lip(γ)
s .s |Ψ|Lip(γ)

s . (2.86)

Proof. The claimed estimates can be proved by using the Taylor expansion of Φ±1 − Id = exp(±Ψ) − Id,
using the condition |Ψ|Lip(γ)

2s0
≤ 1 and by applying the estimates (2.85).

Lemma 2.9. The operator Π⊥NR := R−ΠNR (recall (2.74)) satisfies

|Π⊥NR|s ≤ N−b|R|s+b , |Π⊥NR|Lip(γ)
s ≤ N−b|R|Lip(γ)

s+b , b ≥ 0, (2.87)

where in the second inequality R is Lipschitz with respect to the parameter ω ∈ Ωo ⊆ Ω.
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Proof. We have that for all b ∈ N, α, β ∈ σ0(
√
−∆)∑

`∈Zν
〈`, α, β〉2s‖[Π̂⊥NR(`)]βα‖2HS

(2.74)
=

∑{
`:〈`,α,β〉>N

}〈`, α, β〉2s‖[R̂(`)]βα‖2HS

≤ N−2b
∑
`∈Zν
〈`, α, β〉2(s+b)‖[R̂(`)]βα‖2HS

(2.76)

≤ N−2b|R|2s+b ,

and the lemma follows.

Lemma 2.10. Let us define the operator

R(ϕ)[h] := q(ϕ, x)
∫

Td
g(ϕ, y)h(y) dy , h ∈ L2

0(Td) q , g ∈ Hs
0(Tν+d) , s ≥ s0 . (2.88)

Then
|R|s .s ‖g‖s0‖q‖s + ‖g‖s+s0‖q‖0 .

Moreover if the functions g and q are Lipschitz with respect to the parameter ω ∈ Ωo ⊆ Ω, then the same
estimate holds replacing | · |s by | · |Lip(γ)

s and ‖ · ‖s by ‖ · ‖Lip(γ)
s .

Proof. A direct calculation shows that for all ` ∈ Zν and for all j, j′ ∈ Zd \ {0}

R̂j
′

j (`) =
∑
`′∈Zν

q̂j(`− `′)ĝ−j′(`′) .

Using definition (2.60), the Cauchy Schwartz inequality (using that
∑
`′∈Zν 〈`′〉−2s0 < +∞) we get

‖[R̂(`)]βα‖2HS =
∑
|j|=α
|j′|=β

|R̂j
′

j (`)|2 ≤
∑
|j|=α
|j′|=β

(∑
`′

|q̂j(`− `′)||ĝ−j′(`′)|
)2

≤
∑
|j|=α

∑
|j′|=β

∑
`′

|q̂j(`− `′)|2〈`′〉2s0 |ĝ−j′(`′)|2

(2.4),(2.8)
=

∑
`′

‖q̂α(`− `′)‖2L2〈`′〉2s0‖ĝβ(`′)‖2L2 . (2.89)

Now for all α, β ∈ σ0(
√
−∆),

∑
`∈Zν
〈`, α, β〉2s‖[R̂(`)]βα‖2HS

(2.89)

≤
∑

`,`′∈Zν
〈`, α, β〉2s‖q̂α(`− `′)‖2L2〈`′〉2s0‖ĝβ(`′)‖2L2 . (2.90)

Using that 〈`, α, β〉2s .s 〈`− `′, α〉2s + 〈`′, β〉2s we get

(2.90) .s

∑
`

∑
`′

〈`− `′, α〉2s‖q̂α(`− `′)‖2L2〈`′〉2s0‖ĝβ(`′)‖2L2

+
∑
`

∑
`′

〈`′, β〉2s‖q̂α(`− `′)‖2L2〈`′〉2s0‖ĝβ(`′)‖2L2

.s

∑
`′

〈`′〉2s0‖ĝβ(`′)‖2L2

∑
`

〈`− `′, α〉2s‖q̂α(`− `′)‖2L2

+
∑
`′

〈`′, β〉2(s+s0)‖ĝβ(`′)‖2L2

∑
`

‖q̂α(`− `′)‖2L2

(2.10)

.s ‖g‖2s0‖q‖
2
s + ‖g‖2s+s0‖q‖

2
L2 (2.91)

and hence the lemma follows.
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For a ϕ-independent linear operator R ∈ B(L2
0(Td)) having the block-matrix representation (2.45), the

block-decay norm (2.76) becomes

|R|s = sup
α,β∈σ0(

√
−∆)

〈α, β〉s‖[R]βα‖HS , 〈α, β〉 := max{α, β} . (2.92)

The following Lemma holds:

Lemma 2.11. (i) Let R ∈ B(L2
0(Td)) satsfy |R|s+2s0 < +∞, for s ≥ 0. Then R ∈ B(L2

0(Td), Hs
0(Td)) and

‖R‖B(L2
0,H

s
0 ) . |R|s+2s0 . As a consequence R ∈ B(Hs

0), with ‖R‖B(Hs0 ) ≤ ‖R‖B(L2
0,H

s
0 ) . |R|s+2s0 .

(ii) Let k ∈ N and R : Tν → B(L2
0(Td)) with |R|s+k+2s0 < +∞. Then R ∈ W k,∞

(
Tν ,B(L2

0, H
s
0)
)

and for
any a ∈ Nν , |a| ≤ k, one has

‖∂aϕR‖L∞(Tν ,B(Hs0 )) . sup
ϕ∈Tν

|∂αϕR(ϕ)|s+2s0 . |R|s+|a|+2s0 .

Proof. Proof of (i). Let u ∈ L2
0(Td). By (2.52), (2.5), one has that

‖R[u]‖2Hsx =
∑

α∈σ0(
√
−∆)

α2s
∥∥∥ ∑
β∈σ0(

√
−∆)

[R]βα[uβ ]
∥∥∥2

L2
.

∑
α∈σ0(

√
−∆)

( ∑
β∈σ0(

√
−∆)

αs‖[R]βα[uβ ]‖L2

)2

. (2.93)

Using Lemma 2.4-(i) and recalling (2.92), one gets

‖R[u]‖2Hsx .
∑

α∈σ0(
√
−∆)

( ∑
β∈σ0(

√
−∆)

αs+s0βs0

αs0βs0
‖[R]βα‖HS‖uβ‖L2

)2

.
∑

α∈σ0(
√
−∆)

1
α2s0

( ∑
β∈σ0(

√
−∆)

〈α, β〉s+2s0

βs0
‖[R]βα‖HS‖uβ‖L2

)2

. |R|2s+2s0

∑
α∈σ0(

√
−∆)

1
α2s0

( ∑
β∈σ0(

√
−∆)

1
βs0
‖uβ‖L2

)2

. (2.94)

By the Cauchy-Schwartz inequality

(2.94) . |R|2s+2s0

∑
α,β∈σ0(

√
−∆)

1
α2s0β2s0

∑
β∈σ0(

√
−∆)

‖uβ‖2L2

(2.5)

. |R|2s+2s0‖u‖L2 (2.95)

by applying Lemma 7.1-(i) (note that 2s0 = 2([(ν + d)/2] + 1) > ν + d) and then the claim follows.

Proof of (ii).For any α, β ∈ σ0(
√
−∆) and for any multi-index a ∈ Nν , |a| ≤ k one has that the operator

∂aϕR(ϕ) admits the block-matrix representation

∂aϕR(ϕ) =
(
∂aϕ[R(ϕ)]βα

)
α,β∈σ0(

√
−∆)

.

Expanding in Fourier series ∂aϕ[R(ϕ)]βα, one has

∂aϕ[R(ϕ)]βα =
∑
`∈Zν

i|a|`a[R̂(`)]βαe
i`·ϕ,

and by the Cauchy-Schwartz inequality

‖∂aϕ[R(ϕ)]βα‖HS ≤
∑
`∈Zν
|`||a|‖[R̂(`)]βα‖HS .

( ∑
`∈Zν
〈`〉2(|a|+s0)‖[R̂(`)]βα‖2HS

) 1
2
. (2.96)

Thus by (2.96), for any α, β ∈ σ0(
√
−∆), for any ϕ ∈ Tν , one has

〈α, β〉2s‖∂aϕ[R(ϕ)]βα‖2HS
(2.96)

.
∑
`∈Zν
〈`, α, β〉2(s+|a|+s0)‖[R̂(`)]βα‖2HS

(2.76)

. |R|2s+|a|+s0

and then the lemma follows by recalling (2.92) and by applying item (i).
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2.4 A class of ϕ-dependent Fourier multipliers

For any m ∈ R, we define the class Sm of Fourier multipliers of order m as

Sm :=
{
r : σ0(

√
−∆)→ C : sup

α∈σ0(
√
−∆)

|r(α)|α−m < +∞
}

where we recall that the set σ0(
√
−∆) is defined in (2.2). To any symbol r ∈ Sm, we associate the linear

operator Op(r) defined by

Op(r)u(x) :=
∑

j∈Zd\{0}

r(|j|)ujeij·x , ∀u ∈ Hm
0 (Td) . (2.97)

We denote by OPSm the class of the operators associated to the symbols in Sm.
In the following we deal with ϕ-dependent families of Fourier multipliers r : Tν×σ0(

√
−∆)→ C, r(ϕ, ·) ∈ Sm.

The action of the operator Op(r) = Op(r(ϕ, |j|)) on Sobolev functions u ∈ Hs
0(Tν+d) is given by

Op(r)u(ϕ, x) :=
∑

j∈Zd\{0}

r(ϕ, |j|)uj(ϕ)eij·x =
∑

`,`′∈Zν
j∈Zd\{0}

r̂(`− `′, |j|)ûj(`′)ei(`·ϕ+j·x) . (2.98)

Note that, using the representation (2.7), the action of the operator Op(r) on a function u(ϕ, x) can be
written as

Op(r)u(ϕ, x) =
∑

α∈σ0(
√
−∆)

r(ϕ, α)uα(ϕ, x) =
∑

`,`′∈Zν
α∈σ0(

√
−∆)

r̂(`− `′, α)ûα(`′, x)ei`·ϕ . (2.99)

The following elementary properties hold:

Op(r) = Op(r) = Op(r)∗ , Op(r)T = Op(r) (2.100)

(recall (2.28), (2.30), (2.33)). The above properties imply that

Op(r) = Op(r)∗ if and only if r(ϕ, α) = r(ϕ, α) , ∀(ϕ, α) ∈ Tν × σ0(
√
−∆) . (2.101)

Let R = Op(r) ∈ OPSm, B = Op(b) ∈ OPSm′ . Then the composition operator R ◦ B is given by

R ◦ B = Op(r) ◦Op(b) = Op(rb) ∈ OPSm+m′ . (2.102)

Note that R ◦ B = B ◦ R.
For an operator R = Op(r) ∈ OPSm, for any s ≥ 0, m ∈ R, we define the family of norms

||Op(r)||m,s := sup
α∈σ0(

√
−∆)

‖r(·, α)‖sα−m (2.103)

and if r = r(ϕ, α;ω), ω ∈ Ωo ⊆ Ω is Lipschitz with respect to the parameter ω ∈ Ωo then we define

||Op(r)||Lip(γ)
m,s = ||Op(r)||sup

m,s + γ||Op(r)||lipm,s (2.104)

where

||Op(r)||sup
m,s := sup

ω∈Ωo

||Op(r)(ω)||m,s , ||Op(r)||lipm,s := sup
ω1,ω2∈Ωo
ω1 6=ω2

||Op(r)(ω1)−Op(r)(ω2)||m,s
|ω1 − ω2|

.

We also deal with operators

R =
(

Op(r1) Op(r2)
Op(r2) Op(r1)

)
, r1, r2 ∈ Sm . (2.105)
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With a slight abuse of notations we still denote by OPSm the class of operators of the form (2.105). For
such operators, we define the norms ||R||m,s := ||Op(r1)||m,s + ||Op(r2)||m,s and ||R||Lip(γ)

m,s := ||Op(r1)||Lip(γ)
m,s +

||Op(r2)||Lip(γ)
m,s . In the following, we state some properties of the norm || · ||m,s. We prove such properties for

operators R(ϕ) = Op(r(ϕ, ·)). If R is an operator of the form (2.105) then the same statements hold with
the obvious modifications.
It is immediate to verify that

|| · ||m,s ≤ || · ||m,s′ , ∀s ≤ s′ , ∀m ∈ R , (2.106)

|| · ||m,s ≤ || · ||m′,s , ∀m ≥ m′ , ∀s ≥ 0 (2.107)

and the same inequality holds for the corresponding Lipschitz norms.

Lemma 2.12. Let R = Op(r) with ||R||0,s < +∞, s ≥ s0. Then for any u ∈ Hs
0(Tν+d)

‖Ru‖s .s ||R||0,s‖u‖s0 + ||R||0,s0‖u‖s .

The same statements hold, replacing ‖ · ‖s by ‖ · ‖Lip(γ)
s and || · ||0,s by || · ||Lip(γ)

0,s . If R is an operator of the form
(2.105), then a similar estimate holds.

Proof. The claimed estimate follows by the same arguments used to prove Lemma 2.13 in [19], hence the
proof is omitted. Actually our case is even simpler since the symbol r does not depend on the variable
x ∈ Td.

Lemma 2.13. Let R = Op(r), with ||R||0,s0+1 < +∞. Then R ∈ C1(Tν ,B(Hs
0)) for any s ≥ 0 and

‖R‖C1(Tν ,B(Hs0 )) . ||R||0,s0+1.

Proof. Let R = Op(r) ∈ OPS0. Since ||R||0,s0+1 < +∞, by the definition (2.103), the symbol r(·, α) is in
Hs0+1(Tν) for any α ∈ σ0(

√
−∆). Hence, by the Sobolev embedding r(·, α) ∈ C1(Tν) with ‖r(·, α)‖C1(Tν) .

‖r(·, α)‖s0+1 . ||R||0,s0+1 for any α ∈ σ0(
√
−∆). Since ‖R‖C1(Tν ,B(Hs0 )) ≤ supα∈σ0(

√
−∆) ‖r(·, α)‖C1(Tν) for

any s ≥ 0, the claimed statement follows.

Lemma 2.14. Let m,m′ ∈ R and R ∈ OPSm, B ∈ OPSm
′

be two operators of the form (2.105) with
||R||m,s , ||B||m′,s < ∞, with s ≥ s0. Then the operator RB ∈ OPSm+m′ has still the form (2.105) and it
satisfies the estimate

||RB||m+m′,s .s ||R||m,s||B||m′,s0 + ||R||m,s0 ||B||m′,s .

The same estimate holds replacing the norm || · ||m,s by the norm || · ||Lip(γ)
m,s , if R and B are Lipschitz with

respect to the parameter ω ∈ Ωo.

Proof. The claimed statement follows by using the property (2.102), the definition (2.103) and the interpo-
lation Lemma 2.1.

Note that the above lemma implies that if R ∈ OPSm, then Rk ∈ OPSkm for any k ≥ 1 and

||Rk||km,s0 ≤ C(s0)k−1||R||km,s0 , ||Rk||km,s ≤ kC(s)k||R||k−1
m,s0 ||R||m,s , s ≥ s0 . (2.108)

The same estimate holds replacing || · ||m,s by || · ||Lip(γ)
m,s .

Lemma 2.15. Let Ψ(ϕ) ∈ OPS−m, ϕ ∈ Tν , m ≥ 0, with

||Ψ||−m,s0 ≤ 1. (2.109)

Then the operator Φ(ϕ) := exp(Ψ(ϕ)) satisfies Φ(ϕ)− Id ∈ OPS−m, ∀ϕ ∈ Tν , with

||Φ− Id||−m,s .s ||Ψ||−m,s . (2.110)

Moreover the operator

Φ≥2(ϕ) :=
∑
k≥2

Ψ(ϕ)k

k!
∈ OPS−2m , ∀ϕ ∈ Tν (2.111)
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and it satisfies the estimate
||Φ≥2||−2m,s .s ||Ψ||−m,s||Ψ||−m,s0 . (2.112)

If the operator Ψ depends in a Lipschitz way on the parameter ω ∈ Ωo ⊆ Ω and ||Ψ||Lip(γ)
−m,s0 ≤ 1, then the

estimates (2.110), (2.112) hold replacing the norm || · ||−m,s by the norm || · ||Lip(γ)
−m,s .

Proof. The Lemma follows by using the Taylor expansion of the operator Φ− Id, the definition (2.111), the
estimate (2.108) and the condition (2.109).

In the next lemma we compare the block-decay norm | · |s defined in (2.76) with the norm || · ||m,s defined
in (2.103).

Lemma 2.16. Let s ≥ 0 and R(ϕ) ∈ OPS−s− d−1
2 , ϕ ∈ Tν . Then

|R|s . ||R||−s− d−1
2 ,s .

The same estimate holds replacing | · |s by | · |Lip(γ)
s and || · ||−s− d−1

2 ,s by || · ||Lip(γ)

−s− d−1
2 ,s

if the operator R depends
in a Lipschitz way on the parameter ω ∈ Ωo ⊆ Ω.

Proof. Let R = Op
(
r
)
. By the representation (2.99), for any ϕ ∈ Tν , the operator R(ϕ) is block-diagonal

(recall the definition (2.51)) and it has the block representation

R(ϕ) = diagα∈σ0(
√
−∆)[R(ϕ)]αα , [R(ϕ)]αα = r(ϕ, α)Iα , ∀α ∈ σ0(

√
−∆)

and for any ` ∈ Zν
[R̂(`)]αα = r̂(`, α)Iα , ∀α ∈ σ0(

√
−∆) , ∀` ∈ Zν

where we recall that Iα : Eα → Eα is the identity. Hence, using that ‖Iα‖HS . α
d−1
2 (see (2.60)), recalling

the definition (2.76), one gets

|R|2s = sup
α∈σ0(

√
−∆)

∑
`∈Zν
〈`, α〉2s‖[R̂(`)]αα‖2HS = sup

α∈σ0(
√
−∆)

∑
`∈Zν
〈`, α〉2s|r̂(`, α)|2‖Iα‖2HS

. sup
α∈σ0(

√
−∆)

∑
`∈Zν
〈`, α〉2s|r̂(`, α)|2αd−1 . sup

α∈σ0(
√
−∆)

‖r(·, α)‖2sα2s+d−1 . ||R||2−s− d−1
2 ,s

(2.113)

which is the claimed estimate.

2.5 Hamiltonian formalism

We define the symplectic form W as

W[z1, z2] := 〈z1, Jz2〉L2
x
, J =

(
0 1
−1 0

)
, ∀z1, z2 ∈ L2

0(Td,R)× L2
0(Td,R) . (2.114)

Definition 2.1. A ϕ-dependent linear vector field X(ϕ) : L2
0(Td,R) × L2

0(Td,R) → L2
0(Td,R) × L2

0(Td,R),
ϕ ∈ Tν , is Hamiltonian, if X(ϕ) = JG(ϕ), where J is given in (2.114) and the operator G(ϕ) is symmetric
for every ϕ ∈ Tν .

Definition 2.2. A ϕ-dependent map Φ(ϕ) : L2
0(Td,R) × L2

0(Td,R) → L2
0(Td,R) × L2

0(Td,R), ϕ ∈ Tν is
symplectic if for any ϕ ∈ Tν , for any z1, z2 ∈ L2

0(Td,R)× L2
0(Td,R),

W[Φ(ϕ)[z1] , Φ(ϕ)[z2]] =W[z1, z2] ,

or equivalently Φ(ϕ)TJΦ(ϕ) = J for any ϕ ∈ Tν .
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Assume to have a differentiable map ϕ ∈ Tν 7→ Φ(ϕ) ∈ B
(
L2

0(Td,R)×L2
0(Td,R)

)
and let us consider the

quasi-periodically forced linear Hamiltonian PDE

∂tz = X(ωt)z , X(ϕ) := JG(ϕ) , ϕ ∈ Tν , z ∈ L2
0(Td,R)× L2

0(Td,R) . (2.115)

Under the change of coordinates z = Φ(ωt)h, the above PDE is transformed into the equation

∂th = X+(ωt)h , (2.116)

where X+(ωt) is the transformed vector field under the action of the map Φ(ωt) (push-forward), namely

X+(ϕ) = Φω∗X(ϕ) := Φ(ϕ)−1X(ϕ)Φ(ϕ)− Φ(ϕ)−1ω · ∂ϕΦ(ϕ), ∀ϕ ∈ Tν . (2.117)

It turns out that, since X(ϕ) is a Hamiltonian vector field and Φ(ϕ) is symplectic, the transformed vector
field X+(ϕ) is still Hamiltonian, namely it has the form given in Definition (2.1).

2.5.1 Hamiltonian formalism in complex coordinates

In this section we describe how the Hamiltonian structure described before, reads in the complex coor-
dinates introduced in (2.38), (2.39). Let JG(ϕ), ϕ ∈ Tν be a linear Hamiltonian vector field, with
G(ϕ) ∈ B

(
L2

0(Td,R) × L2
0(Td,R)

)
being a symmetric operator as in (2.35). The conjugated vector field

R(ϕ) := C−1JG(ϕ)C ∈ B(L2
0(Td)) has the form

R(ϕ) = i
(
R1(ϕ) R2(ϕ)
−R2(ϕ) −R1(ϕ)

)
, (2.118)

where

R1(ϕ) := −A(ϕ)−D(ϕ) + iB(ϕ)− iB(ϕ)T , R2(ϕ) := −A(ϕ) +D(ϕ)− iB(ϕ)− iB(ϕ)T (2.119)

(recall that the operator R is defined in (2.28)). Note that the operators R1(ϕ), R2(ϕ) are linear operators
acting on complex valued L2 functions L2

0(Td). Furthermore, since G(ϕ) is symmetric, i.e. A(ϕ) = A(ϕ)T ,
B(ϕ) = C(ϕ)T , D(ϕ) = D(ϕ)T , it turns out that

R1(ϕ) = R1(ϕ)∗ , R2(ϕ) = R2(ϕ)T , ∀ϕ ∈ Tν . (2.120)

We refer to an operator R of the form (2.118), with R1 and R2 satisfying (2.120), as a Hamiltonian vector
field in complex coordinates. The operator R(ϕ) in (2.118) satisfies

R(ϕ)[u] = iJ∇uH(ϕ,u) , u := (u, ū) , ∇uH = (∇uH,∇ūH) , (2.121)

where the real Hamiltonian H has the form

H(ϕ,u) := 〈G(ϕ)[u] , u〉 , G(ϕ) :=
(
R2(ϕ) R1(ϕ)
R1(ϕ) R2(ϕ)

)
, (2.122)

i.e.
H(ϕ, u, ū) =

∫
Td
R1(ϕ)[u]ū dx+

1
2

∫
Td
R2(ϕ)[u] , u dx+

1
2

∫
Td
R2(ϕ)[ū] ū dx . (2.123)

and
∇uH =

1√
2

(
∇vH− i∇ψH

)
, ∇uH =

1√
2

(
∇vH+ i∇ψH

)
.

By (2.120) we deduce that
G(ϕ) = G(ϕ)T , ∀ϕ ∈ Tν .

The symplectic form W defined in (2.114) reads in the coordinates u = (u, ū) as.

Γ[u1,u2] = i
∫

Td
(u1ū2 − ū1u2) dx = i〈u1 , Ju2〉L2

x
, ∀u1,u2 ∈ L2

0(Td) (2.124)

where
〈u1,u2〉L2

x
:=
∫

Td
u1u2 + u1u2 dx , ∀u1,u2 ∈ L2

0(Td) . (2.125)
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Definition 2.3. A ϕ-dependent family of linear operators Φ(ϕ) : L2
0(Td)→ L2

0(Td), ϕ ∈ Tν is symplectic if

Γ[Φ(ϕ)[u1],Φ(ϕ)[u2]] = Γ[u1,u2] , ∀u1,u2 ∈ L2
0(Td) , ∀ϕ ∈ Tν .

It is well known that if R(ϕ) is an operator of the form (2.118), (2.120),namely by (2.121), it is a
linear Hamiltonian vector field associated to the real quadratic Hamiltonian H in (2.123), the operator
Φ(ϕ) = exp(R(ϕ)) is a symplectic. Assume that the map ϕ ∈ Tν 7→ Φ(ϕ) ∈ B(L2

0(Td)) is a differentiable
family of maps and let ϕ ∈ Tν 7→ X (ϕ) ∈ B(L2

0(Td)) be a differentiable families of Hamiltonian vector fields,
i.e. X (ϕ) = iJG(ϕ), G(ϕ) = G(ϕ)T for any ϕ ∈ Tν . Arguing as in (2.115), (2.116), under the transformation
u = Φ(ωt)h, the PDE

∂tu = X (ωt)u , ω ∈ Rν , t ∈ R , (2.126)

transforms into the PDE

∂th = X+(ωt)h , X+(ϕ) := Φω∗X (ϕ) = Φ(ϕ)−1X (ϕ)Φ(ϕ)− Φ(ϕ)−1ω · ∂ϕΦ(ϕ) , ∀ϕ ∈ Tν . (2.127)

If Φ(ϕ) is symplectic then the vector field X+(ϕ) is Hamiltonian, i.e. it satisfies (2.118), (2.120). In the
following, we will consider also reparametrizations of time of the form

τ = t+ α(ωt) ,

where α : Tν → R is a sufficiently smooth function with ‖α‖C1 small enough. Then the function t 7→ t+α(ωt)
is invertible and its inverse is given by

t = τ + α̃(ωτ) .

by setting v(t) := A(ωt)u := u(t+ α(ωt)), the PDE (2.126) is transformed into

∂τv = JG+(ωτ)v , G+(ϑ) :=
1

ρ(ϑ)
G(ϑ+ ωα̃(ϑ)) , ρ(ϑ) := 1 + ω · ∂ϕα

(
ϑ+ ωα̃(ϑ)

)
(2.128)

which is still a Hamiltonian equation.

3 Regularization procedure of the vector field L(ϕ).

As described in the introduction, in this section we carry out the first part of the reduction procedure of
the vector field L(ϕ), defined in (1.11), to a block-diagonal operator with constant coefficients. Our purpose
is to transform the vector field L(ϕ) into the vector field L4(ϕ) which is a regularizing perturbation of a
time-independent diagonal operator, see (3.70). The regularizing perturbation R4 defined in (3.71) is the
sum of a finite rank operator and a ϕ-dependent Fourier multiplier of order −M where the constant M is
fixed in (3.68). In the following subsections, we describe in details all the steps needed to transform the
vector field L(ϕ) into the vector field L4(ϕ).

3.1 Symplectic symmetrization of the highest order

We start by symmetryzing the highest order of the vector field

L(ϕ) =
(

0 1
(1 + εa(ϕ))∆ + εR(ϕ) 0

)
, ϕ ∈ Tν

where we recall the definitions given in (1.11), (1.3). For any ϕ ∈ Tν , let us consider the transformation

S(ϕ) : Hs
0(Td,R)×Hs

0(Td,R)→ H
s+ 1

2
0 (Td,R)×Hs− 1

2
0 (Td,R) ,

(
u
ψ

)
7→

β(ϕ)|D|− 1
2u

1
β(ϕ)

|D| 12ψ

 (3.1)

where β : Tν → R is a function close to 1 to be determined and for all m ∈ R, the operator |D|m is defined
by

|D|m(eij·x) = |j|meij·x ∀j 6= 0 . (3.2)
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For any ϕ ∈ Tν , the inverse of the operator S(ϕ) is given by

S(ϕ)−1 : Hs
0(Td,R)×Hs−1

0 (Td,R)→ H
s− 1

2
0 (Td,R)×Hs− 1

2
0 (Td,R) ,

(
u
ψ

)
7→

 1
β(ϕ)

|D| 12u

β(ϕ)|D|− 1
2ψ

 . (3.3)

By (2.117), the push-forward of the vector field L(ϕ) by means of the transformation S(ϕ) is given by

L1(ϕ) := Sω∗L(ϕ) = S(ϕ)−1L(ϕ)S(ϕ)− S(ϕ)−1ω · ∂ϕS(ϕ)

=
(

−β−1(ϕ)(ω · ∂ϕβ(ϕ)) β−2(ϕ)|D|
(1 + εa(ϕ))β2(ϕ)|D|−1∆ + εβ2(ϕ)|D|− 1

2R(ϕ)|D|− 1
2 −β(ϕ)(ω · ∂ϕβ−1(ϕ))

)
(3.4)

and we look for β : Tν → R such that

β−2(ϕ) = (1 + εa(ϕ))β2(ϕ) , (3.5)

namely we choose

β(ϕ) :=
1

[1 + εa(ϕ)]
1
4
. (3.6)

Since

β(ϕ)ω · ∂ϕβ−1(ϕ) = −ω · ∂ϕβ(ϕ)
β(ϕ)

and −∆ = |D|2

we get that

L1(ϕ) =
(

−a0(ϕ) a1(ϕ)|D|
−a1(ϕ)|D|+ εR(1)(ϕ) a0(ϕ)

)
, (3.7)

where

a0(ϕ) :=
ω · ∂ϕβ(ϕ)
β(ϕ)

, a1(ϕ) :=
√

1 + εa(ϕ) , R(1)(ϕ) := β2(ϕ)|D|− 1
2R(ϕ)|D|− 1

2 . (3.8)

Since β is a real-valued function, the operator S(ϕ) is real for any ϕ ∈ Tν and a direct verification shows
that it is also symplectic. Hence the transformed vector field L1(ϕ) is still real and Hamiltonian. Note that
by (3.6), (3.8), the functions β, a1 and the operator R(1) does not depend on the parameter ω ∈ Ω, whereas
the function a0(ϕ) = a0(ϕ;ω) depends on ω ∈ Ω.
Now we give some estimates on the coefficients of the vector field L1(ϕ).

Lemma 3.1. Let q > s0 + 1. Then there exists δq ∈ (0, 1) small enough such that for any ε ∈ (0, δq), for
any s0 ≤ s ≤ q − 1, the following holds: the functions β, a0, a1 defined in (3.6), (3.8) satisfy the estimates

‖β±1 − 1‖s, ‖a1 − 1‖s , ‖a0‖Lip(γ)
s .q ε . (3.9)

The remainder R(1)(ϕ) in (3.8) has the form

R(1)(ϕ)[v] =
N∑
k=1

b
(1)
k (ϕ, x)

∫
Td
c
(1)
k (ϕ, y)v(y) dy + c

(1)
k (ϕ, x)

∫
Td
b
(1)
k (ϕ, y)v(y) dy , (3.10)

ϕ ∈ Tν , v ∈ L2
0(Td,R) (then it is symmetric R(1)(ϕ) = R(1)(ϕ)T , for all ϕ ∈ Tν) with

‖b(1)
k ‖s, ‖c

(1)
k ‖s .q 1 , ∀k = 1, . . . , N . (3.11)

Furthermore, for any s ≥ 1/2, the maps

ϕ 7→ S(ϕ) , Tν → B
(
Hs

0(Td,R)×Hs
0(Td,R), Hs+ 1

2
0 (Td,R)×Hs− 1

2
0 (Td,R)

)
,

ϕ 7→ S(ϕ)−1 , Tν → B
(
H
s+ 1

2
0 (Td,R)×Hs− 1

2
0 (Td,R), Hs

0(Td,R)×Hs
0(Td,R)

)
are C1 maps.
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Proof. The estimates (3.9) follows by the definitions (3.6), (3.8) and by Lemmata 2.1, 2.2. Let us prove the
estimates (3.11). By (3.8), recalling the definition of R(ϕ) given in (1.3), using that |D|− 1

2 is symmetric,
one has that the operator R(1)(ϕ) has the form (3.10) with

b
(1)
k (ϕ, x) := β(ϕ)|D|− 1

2 bk(ϕ, x) , c
(1)
k (ϕ, x) := β(ϕ)|D|− 1

2 ck(ϕ, x) , k = 1, . . . , N .

Then the claimed estimates follow by applying the estimate (3.9) and applying the interpolation Lemma 2.1.
A direct verification shows that R(1)(ϕ) = R(1)(ϕ)T for any ϕ ∈ Tν .

3.2 Complex variables

Now we write the vector field L1(ϕ) defined in (3.7) in the complex coordinates introduced in (2.38), (2.39).
More precisely, we conjugate the vector field L1(ϕ) by means of the transformation C defined in (2.39). Since
C is ϕ-independent, we get that by (2.117), the push-forward L2(ϕ) := Cω∗L1(ϕ) = C−1L1(ϕ)C is given by

L2(ϕ) =
(
−ia1(ϕ)|D|+ iεR(2)(ϕ) −a0(ϕ) + iεR(2)(ϕ)
−a0(ϕ)− iεR(2)(ϕ) ia1(ϕ)|D| − iεR(2)(ϕ)

)
, R(2)(ϕ) :=

R(1)(ϕ)√
2

. (3.12)

Since a1 and a0 are real valued functions and R(1)(ϕ) (and then R(2)(ϕ)) is symmetric and real, the operator
L2(ϕ) is a Hamiltonian vector field in complex coordinates, in the sense of the Definition (2.118). We recall
that the transformations C, C−1 satisfy the property (2.44).

3.3 Quasi-periodic reparametrization of time

The aim of this Section is to reduce to constant coefficients the term a1(ϕ)|D| in the operator L2(ϕ) defined
in (3.12). In order to do this, let us consider a function α : Tν → R (to be determined) and define a
reparametrization of time of the form

R→ R , t 7→ t+ α(ωt) , ω ∈ Ω . (3.13)

It is easy to verify that if ‖α‖C1 is small enough, the above function is invertible and its inverse has the form

τ 7→ τ + α̃(ωτ) . (3.14)

Note that the reparametrization of time (3.13) induces also a diffeomorphism of the torus Tν

Tν → Tν , ϕ 7→ ϕ+ α(ϕ) (3.15)

whose inverse is given by
Tν 7→ Tν , ϑ 7→ ϑ+ α̃(ϑ) . (3.16)

The corresponding composition operators A,A−1 acting on the periodic functions h : Tν ×Td → C are given
by

Ah(ϕ, x) := h(ϕ+ ωα(ϕ), x) , A−1h(ϑ, x) := h(ϑ+ ωα̃(ϑ), x) . (3.17)

According to (2.128), under the reparametrization of time defined by

A(ωt)v(t, x) := v(t+ α(ωt), x) , A(ωt)−1v(τ, x) := v(τ + α̃(ωτ), x) , (3.18)

the vector field L2(ϕ) transforms into the vector field

L3(ϑ) :=
1

ρ(ϑ)
L2(ϑ+ ωα̃(ϑ))

=
1

ρ(ϑ)

(
−i(A−1a1)(ϑ)|D|+ iεR(2)(ϑ+ ωα̃(ϑ)) −(A−1a0)(ϑ) + iεR(2)(ϑ+ ωα̃(ϑ))
−(A−1a0)(ϑ)− iεR(2)(ϑ+ ωα̃(ϑ)) +i(A−1a1)(ϑ)|D| − iεR(2)(ϑ+ ωα̃(ϑ))

)
(3.19)
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where
ρ(ϑ) := 1 + ω · ∂ϕα(ϑ+ ωα̃(ϑ)) = A−1[1 + ω · ∂ϕα](ϑ) . (3.20)

We want to choose the function α(ϕ) so that

(A−1a1)(ϑ)
ρ(ϑ)

= m, ∀ϑ ∈ Tν , (3.21)

for some constant m ∈ R to be determined. The above equation leads to

m
(
1 + ω · ∂ϕα(ϕ)

)
= a1(ϕ) ∀ϕ ∈ Tν . (3.22)

Integrating on Tν we fix the value of m as

m :=
1

(2π)ν

∫
Tν
a1(ϕ) dϕ (3.23)

and then, assuming that ω ∈ DC(γ, τ), for some γ, τ > 0 (see the definition (2.16)), we get

α(ϕ) = (ω · ∂ϕ)−1
[a1

m
− 1
]
(ϕ) (3.24)

where the operator (ω · ∂ϕ)−1 is defined by (2.15). Note that, since the function a1 is real valued, then m is
real and α is a real valued function.
By (3.19)-(3.24), the vector field L3(ϑ) has then the form

L3(ϑ) :=
(
−im|D|+ iεR(3)(ϑ) a2(ϑ) + iεR(3)(ϑ)
a2(ϑ)− iεR(3)(ϑ) im|D| − iεR(3)(ϑ)

)
(3.25)

where
a2(ϑ) := ρ−1(ϑ)A−1[a0](ϑ) , R(3)(ϑ) := ρ(ϑ)−1R(2)(ϑ+ ωα̃(ϑ)) . (3.26)

The operator L3(ϑ) is still a Hamiltonian vector field in complex coordinates, since L2(ϑ) is Hamiltonian
and the reparametrization of time A preserves the Hamiltonian structure (see Section 2.5.1). We point out
that by (3.23), (3.8), the constant m is independent of the parameter ω ∈ Ω, whereas by (3.24), (3.17),
(3.20), (3.26), the functions α, α̃, ρ, a2 and the operator R(3) depends in a Lipschitz way with respect to the
parameter ω ∈ DC(γ, τ).

Lemma 3.2. Let τ > 0, γ ∈ (0, 1) and ω ∈ DC(γ, τ) (recall (2.16)). Then there exists a constant σ =
σ(τ) > 0 such that if q > s0 + σ, there exists δq ∈ (0, 1) such that if εγ−1 ≤ δq, for all s0 ≤ s ≤ q − σ the
following estimates hold:

|m− 1| , ‖a2‖Lip(γ)
s , ‖ρ±1 − 1‖Lip(γ)

s .q ε, ‖α‖Lip(γ)
s , ‖α̃‖Lip(γ)

s .q εγ
−1 (3.27)

The symmetric operator R(3)(ϑ) defined in (3.26) has the form

R(3)(ϑ)[u] =
N∑
k=1

b
(3)
k (ϑ, x)

∫
Td
c
(3)
k (ϑ, y)v(y) dy + c

(3)
k (ϑ, x)

∫
Td
b
(3)
k (ϑ, y)v(y) dy , (3.28)

ϕ ∈ Tν , v ∈ L2
0(Td), with

‖b(3)
k ‖

Lip(γ)
s , ‖c(3)

k ‖
Lip(γ)
s .q 1 , k = 1, . . . , N . (3.29)

Proof. The estimates (3.27) follow by (3.23), (3.24), (3.26) and by the estimates (3.9) by applying Lemmata
2.1, 2.2, 2.3. The formula (3.28) follows by (3.10), (3.12), (3.26), by defining b

(3)
k := 2−

1
4 ρ−

1
2 b

(1)
k , c(3)

k :=
2−

1
4 ρ−

1
2 c

(1)
k , k = 1, . . . , N and the estimates (3.29) follow by (3.11), (3.27) and Lemmata 2.1, 2.3.
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3.4 Symplectic reduction up to order |D|−M .

Introducing the notation

T :=
(
−Id 0

0 Id

)
, Id : L2

0(Td)→ L2
0(Td) is the identity (3.30)

and renaming the variable ϑ = ϕ, we can write the vector field in (3.25) as

L3(ϕ) = imT |D|+A2(ϕ) + εR3(ϕ) , (3.31)

where

A2(ϕ) :=
(

0 a2(ϕ)
a2(ϕ) 0

)
, R3(ϕ) := i

(
R(3)(ϕ) R(3)(ϕ)
−R(3)(ϕ) −R(3)(ϕ)

)
, ϕ ∈ Tν (3.32)

and the operator R(3)(ϕ), defined in (3.26), has the form (3.28). The aim of this section is to conjugate
L3(ϕ) to the vector field L4(ϕ) defined in (3.70) which is the sum of a diagonal operator and a regularizing
remainder. Since the operator R(3)(ϕ) is finite rank operator of the form (3.28), it is already regularizing.
Hence in the following two Sections 3.4.1, 3.4.2, we neglect the operator R3(ϕ) in (3.31) and we work with
the vector field

L
(0)
3 (ϕ) := imT |D|+A2(ϕ) , ϕ ∈ Tν . (3.33)

We compute the complete conjugation of L3 in Section 3.31.

3.4.1 Block-decoupling up to order |D|−M .

Given a positive integer M , our goal is to conjugate the operator L(0)
3 in (3.33) to the operator L(M)

3 in
(3.51) whose off-diagonal part QM is an operator of order −M . This is achieved by applying iteratively
M -times a conjugation map which transforms the off-diagonal block operator into a 1-smoother ones. For
such a procedure we will use the class of ϕ-dependent Fourier multipliers introduced in Section 2.4.
We describe the inductive step of such a procedure. We assume that q > s0 + σ + M , where the constant
σ = σ(τ) is given in Lemma 3.2 and M ∈ N is the number of the steps of this regularization procedure. In
this section we use the following notation: If n ∈ {1, . . . ,M}, s ≥ 0, we write

a .n,s b ⇐⇒ a ≤ C(n, s)b

for some constant C(n, s) > 0 (that may depend also on d, τ, ν).
At the n-th step, we have a Hamiltonian vector field

L
(n)
3 (ϕ) = imT |D|+Rn(ϕ) +Qn(ϕ) , (3.34)

where Rn(ϕ) = Rn(ϕ;ω), Qn(ϕ) = Qn(ϕ;ω), ω ∈ DC(γ, τ) are Hamiltonian vector fields of the form

Rn := i
(

Op(rn) 0
0 −Op(rn)

)
, Qn := i

(
0 Op(qn)

−Op(qn) 0

)
(3.35)

and rn(ϕ, ·) ∈ S−1, qn(ϕ, ·) ∈ S−n. Moreover they satisfy the estimates

||Rn||Lip(γ)
−1,s , ||Qn||Lip(γ)

−n,s .n,q ε , ∀s0 ≤ s ≤ q − n− σ (3.36)

where σ = σ(τ) > 0 is given in Lemma 3.2. Recall that the definition of the norm || · ||m,s is given in (2.103).
Initialization. The Hamiltonian vector field L(0)

3 (ϕ) in (3.33) satisfies the assumptions (3.34)-(3.36), with
R0(ϕ) = 0 and Q0(ϕ) = A2(ϕ) ∈ OPS0, by Lemma 3.2.

inductive step. We consider a symplectic transformation of the form

Vn := exp(iVn) (3.37)
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where the operator Vn has the form

Vn :=
(

0 Op(vn)
−Op(vn) 0

)
, vn ∈ S−n−1 . (3.38)

We write

Vn = Id + iVn + Vn,≥2 , Vn,≥2 :=
∑
k≥2

ik

k!
V kn . (3.39)

In the above formula, with a slight abuse of notations we denote by Id : L2
0(Td)→ L2

0(Td) the identity on the
space L2

0(Td). Note that, by Lemma 2.15, one gets Vn,≥2 ∈ OPS−2(n+1). We now compute the push-forward
(Vn)ω∗L

(n)
3 (ϕ). By (2.127) one has

(Vn)ω∗L
(n)
3 (ϕ) = Vn(ϕ)−1

(
L

(n)
3 (ϕ)Vn(ϕ)− ω · ∂ϕVn(ϕ)

)
. (3.40)

Since ω · ∂ϕVn(ϕ) = ω · ∂ϕ
(
Vn(ϕ)− Id

)
, by Lemmata 2.14, 2.15, one has

−Vn(ϕ)−1ω · ∂ϕVn(ϕ) = −Vn(ϕ)−1ω · ∂ϕ
(
Vn(ϕ)− Id

)
∈ OPS−n−1 . (3.41)

Moreover

L
(n)
3 (ϕ)Vn(ϕ)

(3.34)
= iVn(ϕ)mT |D|+ [imT |D|, iVn(ϕ)] +Qn(ϕ) +Rn(ϕ)
+ [imT |D|,Vn,≥2(ϕ)] + (Rn(ϕ) +Qn(ϕ))(Vn(ϕ)− Id) . (3.42)

Note that [imT |D|,Vn,≥2(ϕ)] ∈ OPS−2n−1 ⊂ OPS−n−1, (Rn(ϕ) + Qn(ϕ))(Vn(ϕ) − Id) ∈ OPS−n−2 ⊂
OPS−n−1, therefore the only off-diagonal term of order −n (which we want to eliminate) is given by
[imT |D|, iVn(ϕ)] +Qn(ϕ). We want to choose Vn(ϕ) so that

[imT |D|, iVn(ϕ)] +Qn(ϕ) = 0 . (3.43)

By a direct calculation, one has

[imT |D|, iVn(ϕ)] +Qn(ϕ) =

 0 Op
(

2m|j|vn(ϕ, |j|) + iqn(ϕ, |j|)
)

Op
(

2m|j|vn(ϕ, |j|) + iqn(ϕ, |j|)
)

0

 .

(3.44)

Then [imT |D|, iVn] +Qn = 0 if we choose the symbol vn so that

vn(ϕ, α) := − iqn(ϕ, α)
2mα

, ∀ϕ ∈ Tν , ∀α ∈ σ0(
√
−∆) . (3.45)

Note that since qn(ϕ, ·) ∈ S−n, the symbol vn(ϕ, ·) ∈ S−n−1 for any ϕ ∈ Tν .

Lemma 3.3. For any s0 ≤ s ≤ q − n − σ, the operators Vn(ϕ),Vn(ϕ) − Id ∈ S−n−1 and Vn,≥2(ϕ) ∈
OPS−2(n+1), see (3.38), (3.39) (which depend on the parameter ω ∈ DC(γ, τ)) satisfy the estimates

||Vn||Lip(γ)
−n−1,s , ||V±1

n − Id||−n−1,s , ||Vn,≥2||−2(n+1),s .n,q ε . (3.46)

Proof. The estimate for the operator Vn follows by the definitions (3.38), (3.45) and by the estimates (3.27),
(3.36). The estimates for Vn(ϕ) − Id and Vn,≥2(ϕ) follow by applying Lemma 2.15, using the estimate on
Vn(ϕ).
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By (3.40)-(3.43), one gets
L

(n+1)
3 (ϕ) = imT |D|+Rn(ϕ) + Pn(ϕ) , (3.47)

where

Pn := (V−1
n − Id)Rn + V−1

n

(
[imT |D|,Vn,≥2] + (Rn +Qn)(Vn − Id)− ω · ∂ϕ(Vn − Id)

)
. (3.48)

Note that Pn is the only operator which contains off-diagonal terms. In the next lemma we provide some
estimates on the remainder Pn.

Lemma 3.4. For any s0 ≤ s ≤ q − σ − n − 1, the operator Pn(ϕ) = Pn(ϕ;ω) ∈ OPS−n−1, ω ∈ DC(γ, τ)
satisfies the estimates

||Pn||Lip(γ)
−n−1,s .n,q ε . (3.49)

Proof. The Lemma follows by Lemma 3.3, the estimates (3.36), by applying the property (2.107) and Lemma
2.14 to estimate all the terms in (3.48).

By (3.47) and (3.49) the vector field L
(n+1)
3 (ϕ) has the same form (3.34)-(3.35) with Rn+1(ϕ), Qn+1(ϕ)

that satisfy the estimates (3.36) at the step n + 1. Since L
(n)
3 is a Hamiltonian vector field and Vn is

symplectic, the vector field L(n+1)
3 is still Hamiltonian. We can repeat iteratively the procedure of Lemmata

3.3 and 3.4. Applying it M -times, we derive the following proposition.

Proposition 3.1. Let γ ∈ (0, 1), τ > 0, M ∈ N, q > s0 + σ + M . Then there exists a constant δq ∈ (0, 1)
(possibly smaller than the one appearing in Lemma 3.2) such that for εγ−1 ≤ δq, for any s0 ≤ s ≤ q−σ−M ,
for any ω ∈ DC(γ, τ), the following holds: the symplectic invertible map ṼM (ϕ) := V0(ϕ) ◦ . . . ◦ VM−1(ϕ) ∈
OPS0 satisfies the estimate

||Ṽ±1
M ||

Lip(γ)
0,s , ||ṼTM ||

Lip(γ)
0,s .M,q 1 , (3.50)

and the push forward L
(M)
3 (ϕ) := (ṼM )ω∗L

(0)
3 (ϕ) of the Hamiltonian vector field L

(0)
3 (ϕ) in (3.33) is the

Hamiltonian vector field
L

(M)
3 (ϕ) = imT |D|+RM (ϕ) +QM (ϕ) (3.51)

where RM (ϕ) = RM (ϕ;ω), QM (ϕ) = QM (ϕ;ω), ω ∈ DC(γ, τ) have the form

RM := i
(

Op(rM ) 0
0 −Op(rM )

)
, rM (ϕ, ·) ∈ S−1 , (3.52)

QM := i
(

0 Op(qM )
−Op(qM ) 0

)
, qM (ϕ, ·) ∈ S−M (3.53)

and satisfy the estimates

||RM ||Lip(γ)
−1,s , ||QM ||Lip(γ)

−M,q .M,s ε , ∀s0 ≤ s ≤ q − σ −M . (3.54)

Proof. We need only to prove the estimates (3.50). For any n = 1, . . . ,M − 1 one has

||Vn||0,s ≤ 1 + ||Vn − Id||0,s
(2.107)

≤ 1 + ||Vn − Id||−n−1,s

(3.46)

.n,s 1 ,

for any s0 ≤ s ≤ q−n−σ. Since n ≤M , one has that the above estimate holds for any s0 ≤ s ≤ q−σ−M .
Applying Lemma 2.14 and using the above estimate one gets the estimate (3.50) for ṼM . The estimates for
Ṽ−1
M follow by similar arguments and the estimates for ṼTM follow since ||ṼTM ||0,s ≤ ||ṼM ||0,s and then the lemma

is proved.

The operator L(M)
3 (ϕ) in (3.51) is a space-diagonal operator up to the smoothing remainder QM (ϕ) ∈

OPS−M . The prize which has been paid is that there is a loss of regularity of M derivatives with respect to
the variable ϕ. In any case, the number of regularizing steps M will be fixed in (3.68).
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3.4.2 Reduction to constant coefficients of the diagonal reminder RM

Our next aim is to eliminate the ϕ dependence from the diagonal remainder RM (ϕ) of the Hamiltonian
vector field L

(M)
3 (ϕ) defined in (3.51). In order to achieve this purpose, we look for a transformation of the

form

E(ϕ) := exp(iE(ϕ)) , E(ϕ) :=
(

Op(e(ϕ, |j|)) 0
0 −Op(e(ϕ, |j|))

)
, e(ϕ, ·) ∈ S−1 . (3.55)

Note that for any ϕ ∈ Tν ,

E(ϕ)±1 =
(

Op
(
exp(±ie(ϕ, |j|))

)
0

0 Op
(
exp(±ie(ϕ, |j|))

)) (3.56)

and

E(ϕ)−1ω · ∂ϕE(ϕ) =

Op
(

iω · ∂ϕe(ϕ, ·)
)

0

0 Op
(

iω · ∂ϕe(ϕ, ·)
)
 . (3.57)

Therefore by (2.117), (3.56), (3.57) and recalling the properties stated in (2.100), the vector field L(M)
4 (ϕ) :=

Eω∗L(M)
3 (ϕ) is given by

L
(M)
4 := E−1L

(M)
3 E − E(ϕ)−1ω · ∂ϕE

=

Op
(
exp(−ie)

)(
im|D|+ iOp(rM )

)
Op
(
exp(ie)

)
0

0 Op
(
exp(−ie)

)(
im|D|+ iOp(rM )

)
Op
(
exp(ie)

)


+ E−1QME −

Op
(

iω · ∂ϕe
)

0

0 Op
(

iω · ∂ϕe
)


=

(
im|D|+ Op

(
irM − iω · ∂ϕe

)
0

0 −im|D|+ Op
(

irM − iω · ∂ϕe
))+ E−1QME . (3.58)

Note that to shorten notations, in the above chain of equalities, we avoided to write the dependence on ϕ.
In order to eliminate the ϕ-dependence from the symbol rM (ϕ, |j|), we need to solve the equation

−ω · ∂ϕe(ϕ, |j|) + rM (ϕ, |j|) = c(|j|) ∈ R , ∀j ∈ Zd \ {0} , ∀ϕ ∈ Tν

or equivalently

− ω · ∂ϕe(ϕ, α) + rM (ϕ, α) = c(α) , ∀(ϕ, α) ∈ Tν × σ0(
√
−∆) , c(α) ∈ R . (3.59)

Integrating with respect to ϕ the above equation, we determine the value of the constant c(α), namely

c(α) :=
1

(2π)ν

∫
Tν
rM (ϕ, α) dϕ , ∀α ∈ σ0(

√
−∆) (3.60)

and then we choose

e(ϕ, α) := (ω · ∂ϕ)−1
(
rM (ϕ, α)− c(α)

)
, ∀(ϕ, α) ∈ Tν × σ0(

√
−∆) , (3.61)

(note that ω ∈ DC(γ, τ) and recall the definition (2.15)). By (3.58), (3.59), (3.53), (3.56) one gets

L
(M)
4 (ϕ) = Eω∗L(M)

3 (ϕ) = iDMT +QM,4(ϕ) , (3.62)
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where the diagonal operator DM is defined as

DM := m|D|+ Op(c(|j|)) = diagj∈Zd\{0}
(
m|j|+ c(|j|)

)
(3.63)

and

QM,4(ϕ) := E(ϕ)−1QM (ϕ)E(ϕ) = i
(

0 Op(qM,4)
−Op(qM,4) 0

)
, qM,4 := qMexp(−2ie) . (3.64)

Lemma 3.5. Let γ ∈ (0, 1), τ > 0, M ∈ N, q > s0 + σ + 2τ + M + 1. Then there exists a constant
δq ∈ (0, 1) (possibly smaller than the one appearing in Proposition 3.1) such that for εγ−1 ≤ δq, for any
s0 ≤ s ≤ q −M − σ − 2τ − 1, the following holds: for any α ∈ σ0(

√
−∆), the constant c(α) = c(α;ω), given

in (3.60), is real and defined for all the parameters ω ∈ DC(γ, τ). Furthermore it satisfies the Lipschitz
estimate

sup
α∈σ0(

√
−∆)

|c(α)|Lip(γ)α .M,q ε , (3.65)

The symplectic invertible operator E(ϕ) = E(ϕ;ω) ∈ OPS0, ω ∈ DC(γ, τ), defined in (3.55) satisfies the
estimates

||E±1||Lip(γ)
0,s , ||ET ||Lip(γ)

0,s .M,q 1 (3.66)

The Hamiltonian vector field QM,4(ϕ) = QM,4(ϕ;ω) ∈ OPS−M , ω ∈ DC(γ, τ) defined in (3.64) satisfies the
estimates

||QM,4||Lip(γ)
−M,s .M,q ε (3.67)

Proof. Since the remainder RM in (3.52) is a Hamiltonian vector field, then Op(rM ) is self-adjoint, hence
by (2.101) the symbol rM (ϕ, α) is real, implying that, by (3.60), c(α) is real for any α ∈ σ0(

√
−∆). The

estimate (3.65) follows by (3.60), (3.54). The estimates (3.66) follow by (3.56), (3.61), (3.54), (3.65) (using
also Lemma 2.2 to estimate ‖exp(ie)‖s.)
The estimate (3.67) follows by Lemma 2.14 and by the estimates (3.54), (3.66).

3.4.3 Conjugation of the operator L3 in (3.31)

Now we compute the conjugation of the vector field L3 = L
(0)
3 + R3 in (3.31) (see (3.32), (3.33)). First,

we link the number of regularization steps with the regularity q of the functions a(ϕ), bk(ϕ, x), ck(ϕ, x),
k = 1, . . . , N (recall (1.2), (1.3)). We define

M = M(q) := [q/2] , µ = µ(τ, d) :=
d− 1

2
+ σ + 2τ + 1 (3.68)

and we define the map
T := ṼM ◦ E . (3.69)

By (3.51), (3.62) one gets that

L4(ϕ) := (T )ω∗L3(ϕ) = iDMT +R4(ϕ) (3.70)

where the diagonal operator DM is defined in (3.63), T is defined in (3.30) and the operator R4 is defined
by

R4(ϕ) := QM,4(ϕ) + εT (ϕ)−1R3(ϕ)T (ϕ) , ϕ ∈ Tν . (3.71)

Lemma 3.6. Let γ ∈ (0, 1), τ > 0, q > 2(s0 +µ), where µ is defined in (3.68). Then there exists δq ∈ (0, 1)
(possibly smaller than the one appearing in Lemma 3.5) such that if εγ−1 ≤ δq, for all s0 ≤ s ≤ [q/2] − µ,
the following holds: the symplectic invertible operator T (ϕ) = T (ϕ;ω) ∈ OPS0, ω ∈ DC(γ, τ) defined in
(3.55) satisfies the estimates

||T ±1||Lip(γ)
0,s , ||T T ||Lip(γ)

0,s .q 1 . (3.72)

As a consequence one has T ±1 ∈ C1
(
Tν ,B(Hs

0(Td))
)
.
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The remainder R4(ϕ) = R4(ϕ;ω), ω ∈ DC(γ, τ) defined in (3.71) satisfies the estimates

|R4|Lip(γ)
s .q ε (3.73)

where the block-decay norm | · |Lip(γ)
s is defined in (2.76)-(2.79).

Proof. By the choices of the constants in (3.68), one has that if s0 ≤ s ≤ [q/2]− µ, then

s+
d− 1

2
≤M and s0 ≤ s ≤ q −M − σ − 2τ − 1 .

The estimates (3.72) follow by Lemma 2.14 and by the estimates (3.50), (3.66). The fact that T ±1 ∈
C1
(
Tν ,B(Hs

0(Td))
)

follows by applying Lemma 2.13.
Now we prove the estimate (3.73). We estimate separately the two terms in (3.71).
Estimate of QM,4. By Lemma 2.16 one gets

|QM,4|Lip(γ)
s . ||QM,4||Lip(γ)

−s− d−1
2 ,s

.

hence we can apply the estimate (3.67), obtaining that ||QM,4||Lip(γ)

−s− d−1
2 ,s

. ||QM,4||Lip(γ)
−M,s .M,q ε .q ε, since the

constant M = M(q) = [q/2].
Estimate of T −1R3T . Recalling the definition of R3 given in (3.32) and using that the operator R(3) has
the form (3.28), defining

B1,k := (ib(3)
k ,−ib(3)

k ) , B2,k := (b(3)
k , b

(3)
k ) , C1,k := (ic(3)

k ,−ic(3)
k ) , C2,k := (c(3)

k , c
(3)
k ) , k = 1, . . . , N

we have that for u = (u, u) ∈ L2
0(Td),

R3[u] =
N∑
k=1

B1,k〈C2,k , u〉L2
x

+ C1,k〈B2,k , u〉L2
x

where we recall that the bilinear form 〈· , ·〉L2
x

is defined in (2.125). Thus

(T −1R3T )[u] =
N∑
k=1

B̃1,k〈C̃2,k , u〉L2
x

+ C̃1,k〈B̃2,k , u〉L2
x
,

B̃1,k := T −1B1,k , B̃2,k := T TB2,k , C̃1,k := T −1C1,k , C̃2,k := T TC2,k , k = 1, . . . , N .

The operator εT −1R3T satisfies the claimed inequality, by applying the estimates (3.29), (3.72) and Lem-
mata 2.12, 2.10.

4 Block-diagonal reducibility

In this section we carry out the second part of the reduction of L(ϕ) to a block-diagonal operator with
constant coefficients. Our goal is to block-diagonalize the linear Hamiltonian vector field L4(ϕ) obtained
in (3.70). We are going to perform an iterative Nash-Moser reducibility scheme for the linear Hamiltonian
vector field

L0(ϕ) := L4(ϕ) = D0 +R0(ϕ) , (4.1)

where

D0 = i

(
−D(1)

0 0
0 D(1)

0

)
, D(1)

0 := DM = diagj∈Zd\{0}
(
m|j|+ c(|j|)

)
(4.2)

(see (3.63)) and R0(ϕ) := R4(ϕ), ϕ ∈ Tν , is a Hamiltonian vector field of the form

R0(ϕ) = i

(
R(1)

0 (ϕ) R(2)
0 (ϕ)

−R(2)

0 (ϕ) −R(1)

0 (ϕ)

)
, R(1)

0 (ϕ) = R(1)
0 (ϕ)∗ , R(2)

0 (ϕ) = R(2)
0 (ϕ)T (4.3)
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satisfying, by (3.73), the estimate

|R0|Lip(γ)
s .q ε , ∀s0 ≤ s ≤ [q/2]− µ (4.4)

where the constant µ is defined in (3.68). Note that, according to the block representation (2.45), the
operator D(1)

0 can be written as

D(1)
0 = diagα∈σ0(

√
−∆)µ

0
αIα , µ0

α := mα+ c(α) , ∀α ∈ σ0(
√
−∆) (4.5)

where Iα : Eα → Eα is the identity (recall (2.3), (2.51)) and the real constants m and c(α) satisfy the
estimates (3.27), (3.65). We define

N−1 := 1 , Nk := Nχk

0 ∀k ≥ 0 , χ := 3/2 (4.6)

(then Nk+1 = Nχ
k , ∀k ≥ 0) and for τ, d > 0, we define the constants

s0 := 2s0, a := 4τ + 8d + 3 , b := a + 1 , Sq := [q/2]− µ− b , with q > 2(s0 + µ+ b) . (4.7)

In order to state the theorem below, we recall the definition of the space S(Eα), α ∈ σ0(
√
−∆) given in (2.67),

the definition of the norm ‖ · ‖Op(α,β), α, β ∈ σ0(
√
−∆) given in (2.62), the identity Iα,β , α, β ∈ σ0(

√
−∆) in

(2.63), the definition of ML(A) in (2.64) and the definition of MR(B) in (2.65).

Theorem 4.1. (KAM reducibility) Let γ ∈ (0, 1), τ, d > 0 and let q satisfy (4.7). There exist, N0 =
N0(q, τ, d, ν, d) ∈ N large enough, δq = δ(q, τ, d, ν, d) ∈ (0, 1) (possibly smaller than the one appearing in
Lemma 3.6) such that, if

εγ−1 ≤ δq (4.8)

then, for all k ≥ 0:

(S1)k There exists a Hamiltonian vector field

Lk(ϕ) := Dk +Rk(ϕ) , ϕ ∈ Tν , (4.9)

Dk = i

(
−D(1)

k 0

0 D(1)
k

)
, D(1)

k := diagα∈σ0(
√
−∆)[D

(1)
k ]αα , [D(1)

k ]αα ∈ S(Eα) , ∀α ∈ σ0(
√
−∆) ,

(4.10)
defined for all ω ∈ Ωγk, where Ωγ0 := DC(γ, τ) (see (2.16)) and for k ≥ 1,

Ωγk :=
{
ω ∈ Ωγk−1 : ‖A−k−1(`, α, β)−1‖Op(α,β) ≤

αdβd〈`〉τ

γ
, ∀(`, α, β) ∈ Zν × σ0(

√
−∆)× σ0(

√
−∆) ,

(`, α, β) 6= (0, α, α) , 〈`, α, β〉 ≤ Nk−1 and ‖A+
k−1(`, α, β)−1‖Op(α,β) ≤

〈`〉τ

γ〈α+ β〉
,

∀(`, α, β) ∈ Zν × σ0(
√
−∆)× σ0(

√
−∆) , 〈`, α, β〉 ≤ Nk−1

}
. (4.11)

The operators A±k−1(`, α, β) : B(Eβ ,Eα)→ B(Eβ ,Eα) are defined by

A−k−1(`, α, β) := ω · `Iα,β +ML([D(1)
k−1]αα)−MR([D(1)

k−1]ββ) , (4.12)

A+
k−1(`, α, β) := ω · `Iα,β +ML([D(1)

k−1]αα) +MR([D(1)
k−1]ββ) . (4.13)

For k ≥ 0, for all α ∈ σ0(
√
−∆), the self-adjoint operator [D(1)

k ]αα ∈ S(Eα) satisfies

‖[D(1)
k −D

(1)
0 ]αα‖

Lip(γ)
HS .q εα

−Sq ∀α ∈ σ0(
√
−∆) . (4.14)
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The remainder Rk is Hamiltonian and ∀s ∈ [s0, Sq],

|Rk|Lip(γ)
s ≤ |R0|Lip(γ)

s+b N−ak−1 , |Rk|Lip(γ)
s+b ≤ |R0|Lip(γ)

s+b Nk−1 . (4.15)

Moreover, for k ≥ 1,
Lk(ϕ) = (Φk)ω∗Lk−1(ϕ) , Φk−1 := exp(Ψk−1) (4.16)

where the map Ψk−1 is a Hamiltonian vector field and satisfies

|Ψk−1|Lip(γ)
s ≤ |R0|Lip(γ)

s+b γ−1N2τ+4d+1
k−1 N−ak−2 . (4.17)

(S2)k For all α ∈ σ0(
√
−∆), there exists a Lipschitz extension to the set DC(γ, τ), that we denote by

[D̃(1)
k ]αα(·) : DC(γ, τ)→ S(Eα) of [D(1)

k ]αα(·) : Ωγk → S(Eα) satisfying, for k ≥ 1,

‖[D̃(1)
k ]αα − [D̃(1)

k−1]αα‖
Lip(γ)
HS . α−Sq |Rk−1|Lip(γ)

Sq
. N−ak−2α

−Sq |R0|Lip(γ)
Sq+b . (4.18)

Remark 4.1. The constants τ, d > 0 in (4.11) will be fixed in the formula (5.1), in Section 5, in order to
prove the measure estimate of the set Ω2γ

∞ defined in (4.77) (see Theorem 5.1).

4.1 Proof of Theorem 4.1

Proof of (Si)0, i = 1, 2. Properties (4.9)-(4.15) in (S1)0 hold by (4.1)-(4.4) with [D(1)
0 ]αα given in (4.5) (for

(4.15) recall that N−1 := 1, see (4.6)). Moreover, since the constants m and c(α) = c(α;ω) are real, [D(1)
0 ]αα

is self-adjoint, then there is nothing else to verify.
(S2)0 holds, since the constant m is independent of ω and c(α) = c(α;ω), α ∈ σ0(

√
−∆), is already

defined for all ω ∈ DC(γ, τ).

4.2 The reducibility step

We now describe the inductive step, showing how to define a symplectic transformation Φk := exp(Ψk) so
that the transformed vector field Lk+1(ϕ) = (Φk)ω∗Lk(ϕ) has the desired properties. To simplify notations,
in this section we drop the index k and we write + instead of k+ 1. At each step of the iteration we have a
Hamiltonian vector field

L(ϕ) = D +R(ϕ) , (4.19)

where

D := i

(
−D(1) 0

0 D(1)

)
, D(1) := diagα∈σ0(

√
−∆)[D

(1)]αα , [D(1)]αα ∈ S(Eα) ∀α ∈ σ0(
√
−∆) (4.20)

and R(ϕ) is a Hamiltonian vector field, namely it has the form

R = i

(
R(1) R(2)

−R(2) −R(1)

)
, R(1)(ϕ) = R(1)(ϕ)∗ , R(2)(ϕ) = R(2)(ϕ)T , ∀ϕ ∈ Tν . (4.21)

Let us consider a transformation

Φ(ϕ) := exp(Ψ(ϕ)) , Ψ(ϕ) := i

(
Ψ(1)(ϕ) Ψ(2)(ϕ)
−Ψ

(2)
(ϕ) −Ψ

(1)
(ϕ)

)
, ϕ ∈ Tν (4.22)

with Ψ(1)(ϕ) = Ψ(1)(ϕ)∗, Ψ(2)(ϕ) = Ψ(2)(ϕ)T , for all ϕ ∈ Tν . Writing

Φ = Id + Ψ + Ψ≥2 , Ψ≥2 :=
∑
k≥2

Ψk

k!
. (4.23)
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By (2.127) we have Φω∗L(ϕ) = Φ(ϕ)−1
(
L(ϕ)Φ(ϕ) − ω · ∂ϕΦ(ϕ)

)
. By the expansion (4.23), recalling the

definition of the projector operator ΠNR given in (2.74), one gets that

L(ϕ)Φ(ϕ)− ω · ∂ϕΦ(ϕ) = Φ(ϕ)D +
(
− ω · ∂ϕΨ + [D,Ψ(ϕ)] + ΠNR(ϕ)

)
+ Π⊥NR(ϕ)

−ω · ∂ϕΨ≥2(ϕ) + [D,Ψ≥2(ϕ)] +R(ϕ)(Φ(ϕ)− Id) , (4.24)

We want to determine the operator Ψ(ϕ) so that

− ω · ∂ϕΨ(ϕ) + [D,Ψ(ϕ)] + ΠNR(ϕ) = ΠNRdiag , (4.25)

where recalling the definitions (2.73), (2.74)

ΠNRdiag := i

(
ΠNR(1)

diag 0

0 −ΠNR
(1)

diag

)
. (4.26)

Lemma 4.1. (Homological equation) For all ω ∈ Ωγk+1 (see (4.11)), there exists a solution Ψ of the
homological equation (4.25), which is Hamiltonian and satisfies

|Ψ|Lip(γ)
s . N2τ+4d+1γ−1|R|Lip(γ)

s . (4.27)

Proof. Recalling (4.21), (4.22), The equation (4.25) is split in the two equations

− iω · ∂ϕΨ(1)(ϕ) + [D(1),Ψ(1)(ϕ)] + iΠNR(1)(ϕ) = iΠNR(1)
diag , (4.28)

− iω · ∂ϕΨ(2)(ϕ) + (D(1)Ψ(2)(ϕ) + Ψ(2)(ϕ)D(1)
) + iΠNR(2)(ϕ) = 0 . (4.29)

Using the decomposition (2.45) and recalling (2.72), the equations (4.28), (4.29) become for any α, β ∈
σ0(
√
−∆), ` ∈ Zν

ω · `[Ψ̂(1)(`)]βα + [D(1)]αα[Ψ̂(1)(`)]βα − [Ψ̂(1)(`)]βα[D(1)]ββ = −i[Π̂NR
(1)

(`)]βα + i[Π̂NR
(1)

diag(`)]
β
α (4.30)

ω · `[Ψ̂(2)(`)]βα + [D(1)]αα[Ψ̂(2)(`)]βα + [Ψ̂(2)(`)]βα[D(1)
]ββ = −i[Π̂NR

(2)
(`)]βα . (4.31)

By the Definitions (4.12), (4.13), namely setting

A−(`, α, β) := ω · `Iα,β +ML([D(1)]αα)−MR([D(1)]ββ) , A+(`, α, β) := ω · `Iα,β +ML([D(1)]αα) +MR([D(1)
]ββ)

(4.32)
the equations (4.30), (4.31) can be written in the form

A−(`, α, β)[Ψ̂(1)(`)]βα = −i[Π̂NR
(1)

(`)]βα + i[Π̂NR
(1)

diag(`)]
β
α , A+(`, α, β)[Ψ̂(2)(`)]βα = −i[Π̂NR

(2)
(`)]βα .

Then, since ω ∈ Ωγk+1, recalling the Definition (2.74), we can define for any (`, α, β) ∈ Zν × σ0(
√
−∆) ×

σ0(
√
−∆)

[Ψ̂(1)(`)]βα :=

{
iA−(`, α, β)−1[R̂(1)(`)]βα if (`, α, β) 6= (0, α, α) , 〈`, α, β〉 ≤ N
0 otherwise

(4.33)

[Ψ̂(2)(`)]βα :=

{
iA+(`, α, β)−1[R̂(2)(`)]βα if 〈`, α, β〉 ≤ N
0 otherwise.

(4.34)

We have

‖A−(`, α, β)−1‖Op(α,β) ≤
αdβd〈`〉τ

γ
, ‖A+(`, α, β)−1‖Op(α,β) ≤

〈`〉τ

γ(α+ β)
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and since [Ψ̂(1)(`)]βα, [Ψ̂(2)(`)]βα are non zero only if 〈`, α, β〉 ≤ N , we get immediately that

‖[Ψ̂(1)(`)]βα‖HS ≤ Nτ+2dγ−1‖[R̂(1)(`)]βα‖HS , ‖[Ψ̂(2)(`)]βα‖HS ≤ Nτγ−1‖[R̂(2)(`)]βα‖HS . (4.35)

Hence, recalling the definition (2.76) of the block-decay norm, one gets that

|Ψ(1)|s . Nτ+2dγ−1|R(1)|s , |Ψ(2)|s . Nτγ−1|R(2)|s (4.36)

Now, let ω1, ω2 ∈ Ωγk+1. As a notation for any function f = f(ω) depending on the parameter ω, we write
∆ωf := f(ω1)− f(ω2) . By (4.33), one has

∆ω[Ψ̂(1)(`)]βα = i∆ωA−(`, α, β)−1[R̂(1)(`;ω1)]βα + iA−(`, α, β;ω2)−1∆ω[R̂(1)(`)]βα . (4.37)

As in (4.35), one gets

‖A−(`, α, β;ω2)−1∆ω[R̂(1)(`)]βα‖HS . Nτ+2dγ−1‖∆ω[R̂(1)(`)]βα‖HS , (4.38)

hence it remains to estimate only the first term in (4.37). We have

∆ωA−(`, α, β)−1 = −A−(`, α, β;ω1)−1
(

∆ωA−(`, α, β)
)
A−(`, α, β;ω2)−1 , (4.39)

Therefore

‖∆ωA−(`, α, β)−1‖Op(α,β) ≤
N2τα2dβ2d

γ2
‖∆ωA−(`, α, β)‖Op(α,β) . (4.40)

Moreover

∆ωA−(`, α, β) = (ω1 − ω2) · ` Iα,β +ML(∆ω[D(1)]αα)−MR(∆ω[D(1)]ββ) (4.41)

and using that, by (4.5), (4.14)

[D(1)(ω)]αα = µ0
α(ω)Iα + [D(1)−D(1)

0 ]αα , with ‖[D(1)−D(1)
0 ]αα‖

Lip(γ)
HS .q εα

−Sq , ∀α ∈ σ0(
√
−∆) , (4.42)

we get

ML(∆ω[D(1)]αα)−MR(∆ω[D(1)]ββ) = ∆ω

(
µ0
α − µ0

β

)
Iα,β +ML(∆ω[D(1) −D(1)

0 ]αα)−MR(∆ω[D(1) −D(1)
0 ]ββ) .

Using that the constant m is independent of ω, i.e. ∆ωm = 0 and by recalling (4.5), (3.65), one gets

|∆ω(µ0
α − µ0

β)| . |∆ωc(α)|+ |∆ωc(β)| . sup
α∈σ0(

√
−∆)

|c(α)|lip|ω1 − ω2| . γ−1 sup
α∈σ0(

√
−∆)

|c(α)|Lip(γ)|ω1 − ω2|

.q εγ
−1|ω1 − ω2| . (4.43)

By (4.42), (4.43) and using the property (2.66) one gets

‖ −ML(∆ω[D(1)]αα) +MR(∆ω[D(1)]ββ)‖Op(α,β).|∆ω(µα0 − µ
β
0 )|‖Iα,β‖Op(α,β)

+ ‖MR(∆ω[D(1) −D(1)
0 ]ββ)−ML(∆ω[D(1) −D(1)

0 ]αα)‖Op(α,β)

.q εγ
−1|ω1 − ω2| . (4.44)

Recalling (4.41), we get the estimate

‖∆ωA−(`, α, β)‖Op(α,β) ≤
(
C〈`〉+ C ′(q)εγ−1

)
|ω1 − ω2| ,

for some constants C,C ′(q) > 0, hence, by (4.40), by taking δq in (4.8) small enough (so that C ′(q)εγ−1 ≤ 1),
one gets that for 〈`, α, β〉 ≤ N

‖∆ωA−(`, α, β)−1‖Op(α,β) . N2τ+4d+1γ−2|ω1 − ω2| .

36



The above estimate implies that

‖
{

∆ωA−(`, α, β)−1
}

[R̂(1)(`;ω1)]βα‖HS . N2τ+4d+1γ−2‖[R̂(1)(`;ω1)]βα‖HS |ω1 − ω2| . (4.45)

By (4.37), (4.38), (4.45) we get the estimate

‖∆ω[Ψ̂(1)(`)]βα‖HS . Nτ+2dγ−1‖∆ω[R̂(1)(`)]βα‖HS +N2τ+4d+1γ−2‖[R̂(1)(`;ω1)]βα‖HS . (4.46)

Thus (4.36), (4.46) and the Definitions (2.76), (2.77) imply

|Ψ(1)|Lip(γ)
s . N2τ+4d+1γ−1|R(1)|Lip(γ)

s .

The estimate of Ψ(2) in terms of R(2) follows by similar arguments and then (4.27) is proved.

By (4.24), (4.25), we get

L+(ϕ) := Φω∗L(ϕ) = D+ +R+(ϕ) , ϕ ∈ Tν , (4.47)

D+ := D+ΠNRdiag , R+ := (Φ−1−Id)ΠNRdiag+Φ−1
(

Π⊥NR−ω·∂ϕΨ≥2+[D,Ψ≥2]+R(Φ−Id)
)
. (4.48)

Lemma 4.2 (The new block-diagonal part). The new block-diagonal part is given by

D+ := D + ΠNRdiag = i

(
−D(1)

+ 0
0 D(1)

+

)
, D(1)

+ := D(1) + ΠNR(1)
diag = diagα∈σ0(

√
−∆)[D

(1)
+ ]αα , (4.49)

where

[D(1)
+ ]αα :=

{
[D]αα + [R̂(1)(0)]αα if α ≤ N
[D]αα otherwise.

(4.50)

As a consequence
‖[D(1)

+ ]αα − [D]αα‖
Lip(γ)
HS . α−Sq |R|Lip(γ)

Sq
, ∀α ∈ σ0(

√
−∆) (4.51)

Proof. Notice that, since R(1)(ϕ) is selfadjoint, the operators [R̂(1)(0)]αα : Eα → Eα are self-adjoint, i.e.
[R̂(1)(0)]αα ∈ S(Eα), for any α ∈ σ0(

√
−∆) and using that [D(1)]αα is self-adjoint, we get that [D(1)

+ ]αα is
self-adjoint for all α ∈ σ0(

√
−∆). The formula (4.50) follows by (4.49) and recalling the definitions (2.73),

(2.74). The estimate (4.51) follows by

sup
α∈σ0(

√
−∆)

αSq‖[D(1)
+ ]αα − [D]αα‖

Lip(γ)
HS

(4.50)

≤ sup
α∈σ0(

√
−∆)

αSq‖[R̂(1)(0)]αα‖
Lip(γ)
HS

Lemma 2.6
≤ |R|Lip(γ)

Sq
(4.52)

which implies the estimate (4.51).

4.3 The iteration

Let k ≥ 0 and let us suppose that (Si)k are true. We prove (Si)k+1. To simplify notations, in this proof we
write | · |s for | · |Lip(γ)

s .
Proof of (S1)k+1. Since the self-adjoint operators [D(1)

k ]αα ∈ S(Eα) are defined on Ωγk , the set Ωγk+1 is
well-defined and by Lemma 4.1, the following estimates hold on Ωγk+1

|Ψk|s .s N
2τ+4d+1
k γ−1|Rk|s

(4.15)

.s N2τ+4d+1
k N−ak−1γ

−1|R0|s+b , ∀s ∈ [s0, [q/2]− µ]. (4.53)

In particular, by (4.8), (4.7), (4.6), taking δq small enough,

|Ψk|s0 ≤ 1 . (4.54)
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By (4.54), we can apply Lemma 2.8 to the map Φ±1
k := exp(±Ψk), obtaining that

|Φ±1
k − Id|s .s |Ψk|s , |Φ±1

k − Id|s .s |Ψk|s , ∀s ∈ [s0, [q/2]− µ] . (4.55)

By (4.47) we get Lk+1(ϕ) := (Φk)ω∗Lk(ϕ) = Dk+1 +Rk+1(ϕ), where Dk+1 := Dk + ΠNk(Rk)diag and

Rk+1 := (Φ−1
k − Id)ΠNk(Rk)diag + Φ−1

k

(
Π⊥NkRk − ω · ∂ϕΨk,≥2 + [Dk,Ψk,≥2] +Rk(Φk − Id)

)
. (4.56)

Note that, since Rk is defined on Ωγk and Ψk is defined on Ωγk+1, the remainder Rk+1 is defined on Ωγk+1 too.
Since the remainder Rk is Hamiltonian, the map Ψk is Hamiltonian, then Φk is symplectic and the operator
Lk+1 is Hamiltonian.

Now let us prove the estimates (4.15) for Rk+1. Applying Lemmata 2.6, 2.7, 2.8 and the estimates (4.54),
(4.53), (4.55), for any s ∈ [s0, [q/2]− µ], we get

|(Φ−1
k − Id)ΠNk(Rk)diag|s , |Φ−1

k Rk(Φk − Id)|s .s N
2τ+4d+1
k γ−1|Rk|s|Rk|s0 (4.57)

and
|Φ−1
k Π⊥NkRk|s .s |Π⊥NkRk|s +N2τ+4d+1

k γ−1|Rk|s|Rk|s0 . (4.58)

Then, it remains to estimate the term Φ−1
k

(
−ω ·∂ϕΨk,≥2 +[Dk,Ψk,≥2]

)
in (4.56). A direct calculation shows

that for all n ≥ 2

−ω · ∂ϕ(Ψn
k ) + [Dk,Ψn

k ] =
∑

i+j=n−1

Ψi
k(−ω · ∂ϕΨk + [Dk,Ψk])Ψj

k

(4.25)
=

∑
i+j=n−1

Ψi
k

(
ΠNk(Rk)diag −ΠNkRk

)
Ψj
k , (4.59)

therefore using (4.54), (4.53), Lemmata 2.6, 2.7 and the estimate (2.85) we get that for any n ≥ 2, for any
s ∈ [s0, [q/2]− µ]∣∣∣− ω · ∂ϕ(Ψn

k ) + [Dk,Ψn
k ]
∣∣∣
s
≤ n2C(s)n

(
|Ψk|n−1

s0
|Rk|s + |Ψk|n−2

s0
|Ψk|s|Rk|s0

)
(4.53),(4.54)

≤ 2n2C(s)nN2τ+4d+1
k γ−1|Rk|s|Rk|s0 . (4.60)

The estimate (4.60) implies that∣∣∣ω · ∂ϕΨk,≥2 + [Dk,Ψk,≥2]
∣∣∣
s

.
∑
n≥2

1
n!

∣∣∣ω · ∂ϕ(Ψn
k ) + [Dk,Ψn

k ]
∣∣∣
s

(4.60)

. N2τ+4d+1
k γ−1|Rk|s|Rk|s0

∑
n≥2

C(s)nn2

n!

.s N
2τ+4d+1
k γ−1|Rk|s|Rk|s0 . (4.61)

Using again (4.53)-(4.55) and Lemma 2.7 we get∣∣∣Φ−1
k

(
− ω · ∂ϕΨk,≥2 + [Dk,Ψk,≥2]

)∣∣∣
s

.s N
2τ+4d+1
k γ−1|Rk|s|Rk|s0 , ∀s ∈ [s0, [q/2]− µ] . (4.62)

Collecting the estimates (4.57)-(4.62) we obtain

|Rk+1|s .s |ΠNkRk|s +N2τ+4d+1
k γ−1|Rk|s|Rk|s0 , ∀s ∈ [s0, [q/2]− µ] . (4.63)

Recalling that Sq = [q/2] − µ − b, see (4.7), using the smoothing property (2.87) and by (4.8), (4.15), one
gets for any s ∈ [s0, Sq]

|Rk+1|s .s N
−b
k |Rk|s+b +N2τ+4d+1

k γ−1|Rk|s|Rk|s0 , |Rk+1|s+b .s |Rk|s+b . (4.64)
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By the second inequality in (4.64)

|Rk+1|s+b ≤ C(s)|Rk|s+b

(4.15)

≤ C(s)|R0|s+bNk−1 ≤ |R0|s+bNk ,

provided Nχ−1
k−1 ≥ C(s) for any k ≥ 0, which is verified by taking N0 > 0 large enough. Therefore, the second

inequality in (4.15) for Rk+1 has been proved. Let us prove the first inequality in (4.15) at the step k + 1.
We have

|Rk+1|s
(4.15)

.s N−bk Nk−1|R0|s+b +N2τ+4d+1
k N−2a

k−1γ
−1|R0|s0+b|R0|s+b ≤ |R0|s+bN

−a
k ,

provided

Nb−a
k N−1

k−1 ≥ 2C(s) , γ−1|R0|s0+b ≤
N2a
k−1N

−a−2τ−4d−1
k

2C(s)
, ∀k ≥ 0

which are verified by (4.4), (4.6), (4.7) and (4.8), by taking N0 > 0 large enough and δq small enough.
The estimate (4.14) for [D(1)

k+1]αα − [D(1)
0 ]αα follows, since

‖[D(1)
k+1]αα − [D(1)

0 ]αα‖
Lip(γ)
HS ≤

k∑
j=0

‖[D(1)
j+1]αα − [D(1)

j ]αα‖
Lip(γ)
HS

(4.51),(4.15)

.q α−Sq |R0|Lip(γ)
Sq+b

∑
j≥0

N−aj−1

(4.4)

.q α
−Sqε .

Proof of (S2)k+1 We now construct a Lipschitz extension of the function ω ∈ Ωγk+1 7→ [D(1)
k+1(ω)]αα ∈

S(Eα), for any α ∈ σ0(
√
−∆). We apply Lemma M.5 in [41] to functions with values in S(Eα). Recall

that the space S(Eα) is a Hilbert subspace of B(Eα) equipped by the scalar product defined in (2.59), thus
Lemma M.5 in [41] can be applied, since it holds for functions with values in a Hilbert space. By the inductive
hyphothesis, there exists a Lipschitz function [D̃(1)

k ]αα : DC(γ, τ)→ S(Eα), satisfying [D̃(1)
k (ω)]αα = [D(1)

k (ω)]αα,
for all ω ∈ Ωγk . For any α ∈ σ0(

√
−∆), let us define Fk,α(ω) := [D(1)

k+1(ω)]αα − [D(1)
k (ω)]αα, ω ∈ Ωγk+1. By the

estimate (4.51) one has that

‖Fk,α‖Lip(γ)
HS ≤ α−Sq |Rk|Lip(γ)

Sq

(4.15)

≤ α−Sq |R0|Sq+bN
−a
k−1

and then by Lemma M.5 in [41] there exists a Lipschitz extension F̃k,α : DC(γ, τ) → S(Eα) still satisfying
the above estimate. Then we define

[D̃(1)
k+1]αα := [D̃(1)

k ]αα + F̃k,α , ∀α ∈ σ0(
√
−∆)

and the claimed estimate (4.18) holds at the step k + 1.

Corollary 4.1. (KAM transformation) Let q/2 > s0 + µ + b + 2s0 + 2 (recall (3.68), (4.7)). Then
∀ω ∈ ∩k≥0Ωγk the sequence

Φ̃k := Φ0 ◦ Φ1 ◦ · · · ◦ Φk (4.65)

is in C1(Tν ,B(Hs
0)) for any 0 ≤ s ≤ Sq − 2− 2s0 (recall the definition of Sq given in (4.7)) and it converges

in ‖ · ‖Lip(γ)
C1(Tν ,B(Hs

0)) to an operator Φ∞ which satisfies

∥∥Φ±1
∞ − Id

∥∥Lip(γ)

C1(Tν ,B(Hs
0))

.q εγ
−1 . (4.66)

Moreover Φ±1
∞ is symplectic.

Proof. To simplify notations, we write | · |s instead of | · |Lip(γ)
s . First, note that for any k ≥ 0

Φk = exp(Ψk) = Id +Mk , Mk :=
∑
j≥1

Ψj
k

j!
(4.67)
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with

|Mk|s
(2.86)

.s |Ψk|s
(4.17)

.s |R0|Lip(γ)
s+b γ−1N2τ+4d+1

k N−ak−1

(4.4)

.q εγ
−1N2τ+4d+1

k N−ak−1 , ∀s0 ≤ s ≤ Sq . (4.68)

Therefore, by applying Lemma 2.11-(ii) one gets that for any 0 ≤ s ≤ Sq− 2− 2s0,Mk ∈W 2,∞(Tν ,B(Hs
0))

with ‖Mk‖W 2,∞(Tν ,L(Hs
0)) .q εγ

−1N2τ+4d+1
k N−ak−1. By the property (2.11), applied with p = 1 and E =

B(Hs
0), one gets that Mk ∈ C1(Tν ,B(Hs

0)) and

‖Mk‖C1(Tν ,B(Hs
0)) ≤ ‖Mk‖W 2,∞(Tν ,B(Hs

0)) .q εγ
−1N2τ+4d+1

k N−ak−1 , ∀0 ≤ s ≤ Sq − 2− 2s0 . (4.69)

Therefore one gets that Φk ∈ C1(Tν ,B(Hs
0)) and hence Φ̃k ∈ C1(Tν ,B(Hs

0)) for any k ≥ 0, using the algebra
property of the space C1(Tν ,B(Hs

0)). By (4.65)-(4.67), for any k ≥ 0, one gets

Φ̃k+1 = Φ̃kΦk+1 = Φ̃k + Φ̃kMk+1 , (4.70)

therefore (4.69) imply that

‖Φ̃k+1‖C1(Tν ,B(Hs
0)) ≤ ‖Φ̃k‖C1(Tν ,B(Hs

0))(1 + εk(q)) , εk(q) := C(q)εγ−1N2τ+4d+1
k+1 N−ak . (4.71)

Iterating the above inequality, one then prove that for any k ≥ 0

‖Φ̃k‖C1(Tν ,B(Hs
0)) ≤

k−1∏
j=0

(1 + εj(q)) . (4.72)

Using that

ln
( k−1∏
j=0

(1 + εj(q))
)

=
k−1∑
j=0

ln(1 + εj(q)) ≤
∑
j≥0

εj(q)
(4.71),(4.7),(4.8)

≤ C1(q) ,

One gets that
‖Φ̃k‖C1(Tν ,B(Hs

0)) ≤ exp(C1(q)) =: C2(q) , ∀ν ≥ 0 . (4.73)

Now we show that (Φ̃k)k≥0 is a Cauchy sequence with respect to the norm ‖ · ‖C1(Tν ,B(Hs
0)). One has

‖Φ̃k+j − Φ̃k‖C1(Tν ,B(Hs
0)) ≤

k+j−1∑
i=k

‖Φ̃i+1 − Φ̃i‖C1(Tν ,B(Hs
0))

(4.70)

.
k+j−1∑
i=k

‖Φ̃i‖C1(Tν ,B(Hs
0))‖Mi+1‖C1(Tν ,B(Hs

0))

(4.73),(4.69)

.q εγ−1
∑
i≥k

N2τ+4d+1
i+1 N−ai .q εγ

−1N2τ+4d+1
k+1 N−ak → 0 (4.74)

by using (4.6), (4.7). Thus Φ̃k converges with respect to the norm ‖ · ‖C1(Tν ,B(Hs
0)) to an operator Φ∞ which

satisfies the estimate
‖Φ∞ − Id‖C1(Tν ,B(Hs

0)) .q εγ
−1 .

Similarly, one can show that
Φ̃−1
k = Φ−1

k ◦ . . . ◦ Φ−1
0

is a Cauchy sequence and since Φ̃−1
k Φ̃k = Id for any k ≥ 0, Φ̃−1

k converges to Φ−1
∞ and the estimate (4.66)

for Φ−1
∞ holds. Since Φk is symplectic for any k ≥ 0, Φ∞ is a symplectic map too.

Let us define for all α ∈ σ0(
√
−∆), for all ω ∈ DC(γ, τ), the self-adjoint blocks [D(1)

∞ (ω)]αα as

[D(1)
∞ (ω)]αα := lim

ν→+∞
[D̃(1)
ν (ω)]αα (4.75)

It could happen that Ωγk0 = ∅ (see (4.11)) for some k0. In such a case the iterative process of Theorem 4.1

stops after finitely many steps. However, we can always set [D̃(1)
k ]αα := [D̃(1)

k0
]αα, ∀k ≥ k0, for all α ∈ σ0(

√
−∆)

and the functions [D(1)
∞ (·)]αα : DC(γ, τ)→ S(Eα) are always well defined.
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Corollary 4.2. (Final blocks) For any k ≥ 0, α ∈ σ0(
√
−∆),

‖[D(1)
∞ ]αα − [D̃(1)

k ]αα‖
Lip(γ)
HS .q α

−SqεN−ak−1 , ‖[D
(1)
∞ ]αα − [D̃(1)

0 ]αα‖
Lip(γ)
HS .q α

−Sqε . (4.76)

Proof. The bound (4.76) follows by (4.18), (4.15), (4.4) by summing the telescoping series.

Now we define the set

Ω2γ
∞ :=

{
ω ∈ DC(γ, τ) : ‖A−∞(`, α, β;ω)−1‖Op(α,β) ≤

αdβd〈`〉τ

2γ
, ∀(`, α, β) ∈ Zν × σ0(

√
−∆)× σ0(

√
−∆) ,

(`, α, β) 6= (0, α, α) , ‖A+
∞(`, α, β;ω)−1‖Op(α,β) ≤

〈`〉τ

2γ〈α+ β〉
,∀(`, α, β) ∈ Zν × σ0(

√
−∆)× σ0(

√
−∆)

}
(4.77)

where the operators A±∞(`, α, β) = A±∞(`, α, β;ω) : B(Eβ ,Eα)→ B(Eβ ,Eα) are defined for any ω ∈ DC(γ, τ),
(`, α, β) ∈ Zν × σ0(

√
−∆)× σ0(

√
−∆) as

A−∞(`, α, β) := ω · `Iα,β +ML([D(1)
∞ ]αα)−MR([D(1)

∞ ]ββ) (4.78)

A+
∞(`, α, β) := ω · `Iα,β +ML([D(1)

∞ ]αα) +MR([D(1)

∞ ]ββ) . (4.79)

Lemma 4.3. One has
Ω2γ
∞ ⊂ ∩k≥0Ωγk . (4.80)

Proof. It suffices to show that for any k ≥ 0, Ω2γ
∞ ⊆ Ωγk . We argue by induction. For k = 0, since

Ωγ0 = DC(γ, τ), it follows from the definition (4.77) that Ω2γ
∞ ⊆ Ωγ0 . Assume that Ω2γ

∞ ⊆ Ωγk for some k ≥ 0
and let us prove that Ω2γ

∞ ⊆ Ωγk+1. Let ω ∈ Ω2γ
∞ . By the inductive hyphothesis ω ∈ Ωγk , hence by Theorem

4.1, the operators [D(1)
k (ω)]αα ∈ S(Eα) are well defined for all α ∈ σ0(

√
−∆) and [D(1)

k (ω)]αα = [D̃(1)
k (ω)]αα.

Let (`, α, β) ∈ Zν × σ0(
√
−∆) × σ0(

√
−∆) with (`, α, β) 6= (0, α, α), 〈`, α, β〉 ≤ Nk. By the definitions

(4.12), (4.13), also the operators A±k (`, α, β;ω) are well defined. Since ω ∈ Ω2γ
∞ , the operator A−∞(`, α, β;ω)

is invertible and we may write

A−k (`, α, β;ω) = A−∞(`, α, β;ω) + ∆−∞(`, α, β;ω) = A−∞(`, α, β;ω)
(
Iα,β + A−∞(`, α, β;ω)−1∆−∞(`, α, β;ω)

)
where

∆−∞(`, α, β;ω) := ML

(
[D(1)
k (ω)]αα − [D(1)

∞ (ω)]αα
)
−MR

(
[D(1)
k (ω)]ββ − [D(1)

∞ (ω)]ββ
)
.

By the property (2.66) and by the estimate (4.76)

‖∆−∞(`, α, β;ω)‖Op(α,β) .q N
−a
k−1ε(α

−Sq + β−Sq ) . (4.81)

Since 〈`, α, β〉 ≤ Nk, one has

‖A−∞(`, α, β;ω)−1∆−∞(`, j, j′;ω)‖Op(α,β) .q
〈`〉ταdβd

γ
N−ak−1ε(α

−Sq + β−Sq )

.q N
τ+2d
k N−ak−1εγ

−1
(4.7)−(4.8)

≤ 1
2
. (4.82)

for N0 > 0 in (4.8) large enough and δq in (4.8) small enough. Thus the operator A−k (`, α, β;ω) is invertible,
with inverse given by the Neumann series. Hence

‖A−k (`, α, β;ω)−1‖Op(α,β) ≤
‖A−∞(`, α, β;ω)−1‖Op(α,β)

1− ‖A−∞(`, α, β;ω)−1∆−∞(`, α, β;ω)‖Op(α,β)

(4.82)

≤ 2‖A−∞(`, α, β;ω)−1‖Op(α,β)

(4.77)

≤ 〈`〉ταdβd

γ
.

By similar arguments, one can also obtain that ‖A+
k (`, α, β;ω)−1‖Op(α,β) ≤ 〈`〉τ

γ(α+β) , for any (`, α, β) ∈
Zν × σ0(

√
−∆)× σ0(

√
−∆) with 〈`, α, β〉 ≤ Nk, then ω ∈ Ωγk+1 and the proof is concluded.
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To state the main result of this section we introduce the operator

D∞ = D∞(ω) := i

(
−D(1)
∞ (ω) 0
0 D(1)

∞ (ω)

)
, D(1)

∞ (ω) := diagα∈σ0(
√
−∆)[D

(1)
∞ (ω)]αα , (4.83)

for any ω ∈ DC(γ, τ), where the self-adjoint operators [D(1)
∞ (ω)]αα ∈ S(Eα), α ∈ σ0(

√
−∆), are defined in

(4.75). For any ω ∈ DC(γ, τ), the vector field D∞(ω) is a ϕ-independent block-diagonal bounded linear
operator D∞(ω) : Hs

0 → Hs−1
0 , for any s ≥ 1.

Theorem 4.2. Let q/2 > s0 + µ̄+ b+ 2s0 + 2. Then there exists a constant δq = δ(q, τ, d, ν, d) > 0 (possibly
smaller than the one in (4.8)) such that if

εγ−1 ≤ δq , (4.84)

on the set Ω2γ
∞ , the Hamiltonian vector field L0(ϕ) in (4.1) is conjugated to the Hamiltonian vector field D∞

by Φ∞, namely for all ω ∈ Ω2γ
∞ ,

D∞(ω) = (Φ∞)ω∗L0(ϕ;ω) . (4.85)

Proof. Since Ω2γ
∞

(4.80)

⊆ ∩k≥0Ωγk , the estimate (4.66) holds on the set Ω2γ
∞ , and

‖Φ±1
∞ − Id‖Lip(γ)

C1(Tν ,B(Hs
0)).qεγ

−1 , ∀0 ≤ s ≤ Sq − 2s0 − 2 .

By (4.16), (4.65), for any k ≥ 1, we get

Lk(ϕ) = (Φ̃k−1)ω∗L0 = Φ̃k(ϕ)−1
(
L0(ϕ)Φ̃k(ϕ)−ω ·∂ϕΦ̃k(ϕ)

)
= Dk+Rk(ϕ) , Φ̃k = Φ0 ◦ . . .◦Φk . (4.86)

Note that, for all k ≥ 0, for any s ∈ [0, Sq]

|D(1)
∞ −D

(1)
k |

Lip(γ)
s ≤ |D(1)

∞ −D
(1)
k |

Lip(γ)
Sq

= sup
α∈σ0(

√
−∆)

αSq‖[D(1)
k ]αα − [D(1)

∞ ]αα‖
Lip(γ)
HS

(4.76)

.q εN−ak−1
k→+∞→ 0 and |Rk|Lip(γ)

s

(4.15),(4.4)

.q εN−ak−1
k→+∞→ 0 . (4.87)

Hence, |Lk − D∞|Lip(γ)
s

k→+∞→ 0 for all s0 ≤ s ≤ Sq. By applying Lemma 2.11 and the property (2.11),
Rk ∈W 1,∞(Tν ,B(Hs

0)) ⊆ C0(Tν ,B(Hs
0)) for any 0 ≤ s ≤ Sq − 2s0 − 1 with

‖Rk‖C0(Tν ,B(Hs
0)) ≤ ‖Rk‖W 1,∞(Tν ,B(Hs

0)) . |Rk|s+2s0+1 → 0

and
‖Dk −D∞‖B(Hs

0) ≤ |Dk −D∞|s+2s0 → 0 .

Thus, Lk → D∞ with respect to the norm ‖ · ‖C0(Tν ,B(Hs
0)), for any 0 ≤ s ≤ Sq − 2s0 − 1. Since, by Lemma

4.1, Φ̃±1
k

k→+∞→ Φ±1
∞ with respect to the norm ‖ · ‖Lip(γ)

C1(Tν ,B(Hs
0)), formula (4.85) follows by taking the limit for

k → +∞ in (4.86).

5 Measure estimates

In this Section we estimate the measure of the set Ω2γ
∞ defined in (4.77). We fix the constants τ and d in

(4.77) as
d := 2d , τ := ν + 4d . (5.1)

We prove the following Theorem:

Theorem 5.1. Under the same assumptions of Theorem 4.2, one has

|Ω \ Ω2γ
∞ | = O(γ) .
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The rest of this section is devoted to the proof of Theorem 5.1.
By the definition (4.77) one can write that

Ω \ Ω2γ
∞ =

(
Ω \DC(γ, τ)

)
∪
(
DC(γ, τ) \ Ω2γ

∞
)
. (5.2)

By a standard volume estimate one has

|Ω \DC(γ, τ)| . γ . (5.3)

Using again the definition (4.77), we write

DC(γ, τ) \ Ω2γ
∞ =

⋃
(`,α,β)∈Zν×σ0(

√
−∆)×σ0(

√
−∆)

(`,α,β) 6=(0,α,α)

R(`, α, β)
⋃

(`,α,β)∈Zν×σ0(
√
−∆)×σ0(

√
−∆)

Q(`, α, β) , (5.4)

where for any (`, α, β) ∈ Zν × σ0(
√
−∆)× σ0(

√
−∆), (`, α, β) 6= (0, α, α),

R(`, α, β) :=
{
ω ∈ DC(γ, τ) : A−∞(`, α, β;ω) is not invertible or it is invertible and

‖A−∞(`, α, β;ω)−1‖Op(α,β) >
αdβd〈`〉τ

2γ

}
(5.5)

and for any (`, α, β) ∈ Zν × σ0(
√
−∆)× σ0(

√
−∆)

Q(`, α, β) :=
{
ω ∈ DC(γ, τ) : A+

∞(`, α, β;ω) is not invertible or it is invertible and

‖A+
∞(`, α, β;ω)−1‖Op(α,β) >

〈`〉τ

2γ(α+ β)

}
. (5.6)

By (4.5), for any α ∈ σ0(
√
−∆), we can write

[D(1)
∞ ]αα = µ0

αIα +R∞,α , R∞,α := [D(1)
∞ ]αα − [D(1)

0 ]αα ∈ S(Eα)

which is self-adjoint and Lipschitz continuous with respect to the parameter ω ∈ DC(γ, τ). We set

spec(R∞,α(ω)) :=
{
r

(α)
k (ω) , k = 1, . . . , dα

}
with r

(α)
1 (ω) ≤ r(α)

2 (ω) ≤ . . . ≤ r(α)
nα (ω) , (5.7)

where nα is the dimension of the finite dimensional space Eα

nα = card
{
j ∈ Zd \ {0} : |j| = α

}
' αd−1 . (5.8)

By the property (7.2), one has that

|r(α)
k (ω)| ≤ ‖R∞,α‖B(Eα)

Lemma 2.4−(i)

≤ ‖R∞,α‖HS
(4.76)

.q εα−Sq (5.9)

uniformly for any ω ∈ DC(γ, τ).
Furthermore, by Lemma 7.2-(i) the functions ω 7→ r

(α)
k (ω) are Lipschitz with respect to ω, since

|r(α)
k (ω1)− r(α)

k (ω2)| ≤ ‖R∞,α(ω1)−R∞,α(ω2)‖B(Eα)

Lemma 2.4−(i)

≤ ‖R∞,α(ω1)−R∞,α(ω2)‖HS

≤ ‖R∞,α‖lipHS |ω1 − ω2|
(4.76)

.q εγ−1α−Sq |ω1 − ω2| . (5.10)

We also set

spec([D(1)
∞ (ω)]αα) :=

{
λ

(α)
k (ω) , k = 1, . . . , nα

}
with λ

(α)
1 (ω) ≤ λ(α)

2 (ω) ≤ . . . ≤ λ(α)
nα (ω) .
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By Lemma 7.2-(ii) we have that

λ
(α)
k (ω) = µ0

α(ω) + r
(α)
k (ω)

(4.5)
= mα+ r

(α)
k (ω) , r

(α)
k := c(α) + r

(α)
k , ∀k = 1, . . . , nα . (5.11)

By the estimates (3.65), (5.9), (5.10), one gets

|r(α)
k |

Lip(γ) .q εα
−1 , ∀α ∈ σ0(

√
−∆) , ∀k = 1, . . . , nα . (5.12)

By the definitions (4.78), (4.79) and by Lemmata 2.5, 7.2-(ii) the operators A±∞(`, α, β) : B(Eβ ,Eα) →
B(Eβ ,Eα) are self-adjoint with respect to the scalar product (2.59) and the following holds:
for any (`, α, β) ∈ Zν × σ0(

√
−∆)× σ0(

√
−∆), (`, α, β) 6= (0, α, α)

spec
(
A−∞(`, α, β;ω)

)
=
{
ω · `+ λ

(α)
k (ω)− λ(β)

j (ω) , k = 1, . . . , nα , j = 1, . . . , nβ
}

and for any (`, α, β) ∈ Zν × σ0(
√
−∆)× σ0(

√
−∆)

spec
(
A+
∞(`, α, β;ω)

)
=
{
ω · `+ λ

(α)
k (ω) + λ

(β)
j (ω) , k = 1, . . . , nα , j = 1, . . . , nβ

}
.

Therefore, recalling the definitions (5.5), (5.6) and also by applying Lemma 7.2-(iii), one has

R(`, α, β) ⊆ R̃(`, α, β) :=
nα⋃
k=1

nβ⋃
j=1

R̃kj(`, α, β) , ∀(`, α, β) ∈ Zν×σ0(
√
−∆)×σ0(

√
−∆) , (`, α, β) 6= (0, α, α) ,

(5.13)

Q(`, α, β) ⊆ Q̃(`, α, β) :=
nα⋃
k=1

nβ⋃
j=1

Q̃kj(`, α, β) , ∀(`, α, β) ∈ Zν × σ0(
√
−∆)× σ0(

√
−∆) (5.14)

where for any (`, α, β) ∈ Zν × σ0(
√
−∆)× σ0(

√
−∆), (`, α, β) 6= (0, α, α), k = 1, . . . , nα, j = 1, . . . , nβ

R̃kj(`, α, β) :=
{
ω ∈ DC(γ, τ) : |ω · `+ λ

(α)
k (ω)− λ(β)

j (ω)| < 2γ
〈`〉ταdβd

}
(5.15)

and for any (`, α, β) ∈ Zν × σ0(
√
−∆)× σ0(

√
−∆), k = 1, . . . , nα, j = 1, . . . , nβ

Q̃kj(`, α, β) :=
{
ω ∈ DC(γ, τ) : |ω · `+ λ

(α)
k (ω) + λ

(β)
j (ω)| < 2γ(α+ β)

〈`〉τ
}
. (5.16)

Thus, by (5.4) one has

DC(γ, τ) \ Ω2γ
∞ ⊆

⋃
(`,α,β)∈Zν×σ0(

√
−∆)×σ0(

√
−∆)

(`,α,β)6=(0,α,α)

R̃(`, α, β)
⋃

(`,α,β)∈Zν×σ0(
√
−∆)×σ0(

√
−∆)

Q̃(`, α, β) . (5.17)

Lemma 5.1. (i) If R̃(`, α, β) 6= ∅, then |α − β| . 〈`〉. Moreover for any α, β ∈ σ0(
√
−∆), α 6= β, then

R̃(0, α, β) = ∅.
(ii) If Q̃(`, α, β) 6= ∅, then α, β . 〈`〉. Moreover for any α, β ∈ σ0(

√
−∆) then Q̃(0, α, β) = ∅.

Proof. We prove item (i). The proof of item (ii) is similar. Assume that R̃(`, α, β) 6= ∅. Then there exist
k ∈ {1, . . . , nα}, j ∈ {1, . . . , nβ} such that R̃kj(`, α, β) 6= ∅. For any ω ∈ R̃kj(`, α, β), one has

|ω · `+ λ
(α)
k (ω)− λ(β)

j (ω)| < 2γ
〈`〉ταdβd

and using (5.11) and the estimates (3.27), (5.12), for ε small enough, one gets that

|λ(α)
k − λ(β)

j | ≥
1
2
|α− β| − C(q)ε(α−1 + β−1) (5.18)
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implying that

|α− β| ≤ |ω||`|+ 2γ
〈`〉ταdβd

+ C(q)ε(α−1 + β−1) . 〈`〉 .

Now we show that if α, β ∈ σ0(
√
−∆) with α 6= β, then R̃kj(0, α, β) = ∅ for any k ∈ {1, . . . , nα}, j ∈

{1, . . . , nβ}. By using (5.18) and Lemma 7.1-(ii), for ε small enough one gets

|λ(α)
k − λ(β)

j | ≥ C1

( 1
α

+
1
β

) α,β≥1

≥ C1

αβ
, (5.19)

for some constant C1 > 0 implying that R̃kj(0, α, β) = ∅ by the definition (5.15), since d > 1 and taking
0 < γ < C1. Item (i) then follows by recalling the definition of R̃(`, α, β) in (5.13).

Lemma 5.2. For εγ−1 small enough, the following holds:
(i) For any (`, α, β) ∈ Zν × σ0(

√
−∆)× σ0(

√
−∆), (`, α, β) 6= (0, α, α), if R̃(`, α, β) 6= ∅ then |R̃(`, α, β)| .

γαd−1−dβd−1−d〈`〉−τ−1.
(ii) For any (`, α, β) ∈ Zν × σ0(

√
−∆) × σ0(

√
−∆), if Q̃(`, α, β) 6= ∅ then |Q̃(`, α, β)| . γαd−1βd−1〈α +

β〉〈`〉−τ−1.

Proof. Let us prove item (i). The proof of item (ii) can be done by using similar arguments. Let (`, α, β) ∈
Zν × σ0(

√
−∆)× σ0(

√
−∆) with (`, α, β) 6= (0, α, α). By (5.13), it is enough to estimate the measure of the

set R̃kj(`, α, β) for any k = 1, . . . , nα, j = 1, . . . , nβ . Since, by Lemma 5.1-(i), ` 6= 0, we can write

ω =
`

|`|
s+ v , with v · ` = 0 .

and we define
φ(s) := |`|s+ λ

(α)
k (s)− λ(β)

j (s) , (5.20)

λ
(α)
k (s) := λ

(α)
k

( `
|`|
s+ v

)
, ∀α ∈ σ0(

√
−∆) , ∀k = 1, . . . , nα

and according to (5.11), (5.12)

λ
(α)
k (s) = mα+ r

(α)
k (s) , |r(α)

k |
Lip(γ) .q ε α

−1 . (5.21)

Using that | · |lip ≤ γ−1| · |Lip(γ), recalling that m does not depend on ω (see Section 3.3), one gets

|φ(s1)− φ(s2)| ≥
(
|`| − (|r(α)

j |
lip + |r(β)

k |
lip)
)
|s1 − s2| ≥

(
|`| − γ−1(|r(α)

j |
Lip(γ) + |r(β)

k |
Lip(γ))

)
|s1 − s2|

(5.21)

≥
(
|`| − C(q)εγ−1

)
|s1 − s2|≥

|`|
2
|s1 − s2| (5.22)

for εγ−1 small enough. The above estimate implies that∣∣∣{s :
`

|`|
s+ v ∈ R̃kj(`, α, β)

}∣∣∣ . γ

αdβd〈`〉τ+1

and by Fubini Theorem we get |R̃kj(`, α, β)| . γ
αdβd〈`〉τ+1 . Finally recalling (5.8) and (5.13), we get the

claimed estimate for the measure of R̃(`, α, β) and the proof is concluded.

Proof of Theorem 5.1 concluded. By (5.17), by applying Lemmata 5.1, 5.2 and recalling the definitions
of the constants τ and d made in (5.1), one gets the estimate

|DC(γ, τ) \ Ω2γ
∞ | .

∑
`∈Zν , j,j′∈Zd

γ

〈j〉d+1−d〈j′〉d+1−d〈`〉τ+1
+

∑
`∈Zν , j,j′∈Zd
|j|,|j′|.〈`〉

γ

〈`〉τ+1−2d
. γ . (5.23)

Hence, the Theorem 5.1 follows by (5.2), (5.3), (5.23).
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6 Proof of Theorem 1.1 and Corollary 1.1.

In this section we prove Theorem 1.1 and Corollary 1.1. We define

W1(ϕ) := S(ϕ) ◦ C , W2(ϕ) := T (ϕ) ◦ Φ∞(ϕ) , ϕ ∈ Tν (6.1)

where the maps S, C, T are defined in (3.1), (2.39), (3.69) and the map Φ∞ is given in Corollary 4.1. We
define the constants

q = q(ν, d) := 2(s0 + µ+ b + 2s0 + 2)

and for any q > q, we define

Sq = S(q, ν, d) := Sq − 2− 2s0 = [q/2]− µ− b− 2s0 − 2

where we recall the definitions (3.68), (4.7), (5.1). By Lemmata 3.1, 3.6, 2.13 and Corollary 4.1 one gets that
for εγ−1 ≤ δq (for some constant δq small enough depending on q, ν, d), for any ϕ ∈ Tν , for any ω ∈ Ω2γ

∞ the
maps Wi(ϕ) =Wi(ϕ;ω), i = 1, 2 are bounded and invertible with

W1(ϕ) : Hs
0(Td)→ H

s+ 1
2

0 (Td,R)×Hs− 1
2

0 (Td,R) , W1(ϕ)−1 : Hs+ 1
2

0 (Td,R)×Hs− 1
2

0 (Td,R)→ Hs
0(Td) ,

for any 1/2 ≤ s ≤ Sq and

W2(ϕ)±1 : Hs
0(Td)→ Hs

0(Td) , ∀0 ≤ s ≤ Sq .

Let 1/2 ≤ s ≤ Sq and (v(0), ψ(0)) ∈ Hs+ 1
2 (Td,R) × Hs− 1

2 (Td,R). For any ω ∈ Ω2γ
∞ , defining W∞(ϕ) :=

W1(ϕ) ◦ A ◦W2(ϕ), by the change of variable

(v(t, ·), ψ(t, ·)) =W∞(ωt)[u(t, ·)] , u = (u, u) (6.2)

(recall that A is the reparametrization of time defined in (3.18)), the Cauchy problem{
(∂tv, ∂tψ) = L(ωt)[(u, ψ)] .
(v(0, ·), ψ(0, ·)) = (v(0), ψ(0)) .

(6.3)

is transformed into{
∂tu = D∞u
u(0, ·) = u(0)

, u(0) = (u(0), u(0)) =W2(0)−1 ◦W1(0)−1[(v(0), ψ(0))] (6.4)

where the operator D∞ =

(
−iD(1)

∞ 0
0 iD(1)

∞

)
is defined in (4.83). Note that, since for any α ∈ σ0(

√
−∆), the

block [D(1)
∞ ]αα is self-adjoint, one has that the operator D(1)

∞ is self-adjoint, i.e.

D(1)
∞ =

(
D(1)
∞
)∗
. (6.5)

Then, we consider the Cauchy problem {
∂tu = −iD(1)

∞ u

u(0, ·) = u(0) .
(6.6)

We prove that
‖u(t, ·)‖Hsx = ‖u(0)‖Hsx , ∀t ∈ R . (6.7)

Since D(1)
∞ is a block-diagonal operator, one can easily verify that the commutator [|D|s,D(1)

∞ ] = 0 and
therefore

∂t‖h(t, ·)‖2Hsx = −
(

i(D(1)
∞ −

(
D(1)
∞
)∗)|D|sh, |D|sh)

L2
x

(6.5)
= 0
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which implies (6.7).
Now, by (6.2) one has that for any 1/2 ≤ s ≤ Sq

‖(u(t, ·), ψ(t, ·))‖
H
s+ 1

2
x ×H

s− 1
2

x

.q‖A ◦W2(ωt)[u(t, ·)]‖Hs
x

(3.18)

.q ‖W2(ωτ + ωα(ωτ))[u(τ + α(ωτ), ·)]‖Hs
x

.q‖u(τ + α(ωτ), ·)‖Hs
x

(6.7)

.q ‖u0‖Hs
x

(6.4)

.q ‖(v(0), ψ(0))‖
H
s+ 1

2
x ×H

s− 1
2

x

.

Set γ = εa, with 0 < a < 1 and Ωε := Ω2γ
∞ . Then εγ−1 = ε1−a and hence the smallness condition

εγ−1 ≤ δq is fullfilled by taking ε small enough. Furthermore, by Theorem 5.1, since γ = εa, we get that
(1.12) holds and therefore Theorem 1.1 and Corollary 1.1 have been proved.

7 Appendix

We prove some elementary properties of the set σ0(
√
−∆) defined in (2.2).

Lemma 7.1. (i) Let p > d. Then
∑
α∈σ0(

√
−∆) α

−p < +∞. If p > d+ ν,
∑

`∈Zν
α∈σ0(

√
−∆)

〈`, α〉−p < +∞.

(ii) Let α, β ∈ σ0(
√
−∆) with α 6= β. Then there exists a constant C > 0 such that |α−β| ≥ C(α−1 +β−1).

Proof. Proof of (i). By the definition (2.2) one has that∑
α∈σ0(

√
−∆)

α−p ≤
∑
j∈Zd
〈j〉−p ,

∑
`∈Zν

α∈σ0(
√
−∆)

〈`, α〉−p ≤
∑
`∈Zν
j∈Zd

〈`, j〉−p .

the first series on the right hand side converges if p > d and the second one for p > ν + d.
Proof of (ii). First, we note that if x, y ∈ N, x 6= y one has that

|
√
x−√y| ≥ max

{ 1√
x
,

1
√
y

}
≥ C

( 1√
x

+
1
√
y

)
,

for some constant C > 0. Since by the definition of σ0(
√
−∆), if α, β ∈ σ0(

√
−∆), α 6= β, they are square

roots of integer numbers, i.e. α2, β2 ∈ N, the claimed inequality follows.

Now we recall some well known facts concerning linear self-adjoint operators on finite dimensional Hilbert
spaces. Let H a finite dimensional Hilbert space of dimension n equipped by the inner product 〈· , ·〉H. Let
us denote by B(H) the space of the linear operators from H onto itself, equipped by the operator norm
‖ · ‖B(H). For any self-adjoint operator A : H → H, we order its eigenvalues as

spec(A) :=
{
λ1(A) ≤ λ2(A) ≤ . . . ≤ λn(A)

}
. (7.1)

We recall the well known property
‖A‖B(H) = maxλ∈spec(A)|λ| . (7.2)

Moreover the following lemma holds

Lemma 7.2. Let H be a Hilbert space of dimension n. Then the following holds:
(i) Let A1, A2 : H → H be self-adjoint operators. Then their eigenvalues, ranked as in (7.1), satisfy the
Lipschitz property

|λk(A1)− λk(A2)| ≤ ‖A1 −A2‖B(H) , ∀k = 1, . . . , n .

(ii) Let A = ηIdH +B, where η ∈ R, IdH : H → H is the identity and B : H → H is selfadjoint. Then

λk(A) = η + λk(B) , ∀k = 1, . . . , n .

(iii) Let A : H → H be self-adjoint and assume that spec(A) ⊂ R \ {0}. Then A is invertible and its inverse
satisfies

‖A−1‖B(H) =
1

mink=1,...,n |λk(A)|
.
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Ser. Mat. 4, 1726, 1940.

[12] M. Berti, L. Biasco P., M. Procesi, KAM theory for the Hamiltonian DNLW. Ann. Sci. Éc. Norm. Supér.
(4), Vol. 46, fascicule 2, 301-373, 2013.

[13] M. Berti, L. Biasco, M. Procesi, KAM theory for the reversible derivative wave equation. Arch. Rational
Mech. Anal., 212, 905-955, 2014.

[14] M. Berti, P. Bolle, Sobolev quasi periodic solutions of multidimensional wave equations with a multi-
plicative potential. Nonlinearity 25, 2579-2613, 2012.

[15] Berti M., Bolle P., Quasi-periodic solutions with Sobolev regularity of NLS on Td with a multiplicative
potential. Eur. Jour. Math. 15, 229-286, 2013.

[16] Berti M., Corsi L., Procesi M., An abstract Nash-Moser theorem and quasi-periodic solutions for NLW
and NLS on compact Lie groups and homogeneous manifolds. Comm. Math. Phys. 334, no. 3, 1413-1454,
2015.

[17] M. Berti, T. Kappeler, R. Montalto, Large KAM tori for perturbations of the dNLS equation. Preprint
arXiv:1603.09252, 2016.

[18] M. Berti, R. Montalto, Quasi-periodic water waves. J. Fixed Point Theory Appl., doi:10.1007/s11784-
016-0375-z, 2016.

[19] M. Berti, R. Montalto, Quasi-periodic standing wave solutions for gravity-capillary water waves, to
appear on Memoirs of the Amer. Math. Society. Preprint arXiv:1602.02411v1, 2016.

48



[20] J. Bourgain, Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations
and applications to nonlinear PDE. Internat. Math. Res. Notices no. 11, 1994.

[21] J. Bourgain, Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations.
Annals of Math. 148, 363-439, 1998.

[22] J. Bourgain, Green’s function estimates for lattice Schrödinger operators and applications. Annals of
Mathematics Studies 158, Princeton University Press, Princeton, 2005.

[23] L. Chierchia, J. You, KAM tori for 1D nonlinear wave equations with periodic boundary conditions.
Comm. Math. Phys. 211, 497-525, 2000.

[24] P. D’Ancona, S. Spagnolo, Global solvability for the degenerate Kirchhoff equation with real analytic
data. Invent. Math. 108, 247-262, 1992.

[25] R.W. Dickey, Infinite systems of nonlinear oscillation equations related to the string. Proc. Amer. Math.
Soc. 23, no.3, 459-468, 1969.

[26] L. H. Eliasson, S. Kuksin, On reducibility of Schrödinger equations with quasiperiodic in time potentials.
Comm. Math. Phys. 286, 125-135, 2009.

[27] L. H. Eliasson, S. Kuksin, KAM for non-linear Schrödinger equation. Annals of Math. 172, 371-435,
2010.

[28] L.H. Eliasson, B. Grebert, S. Kuksin. Almost reducibility for Klein gordon equations with quasiperiodic
in time potentials, work in preparation.

[29] L.H. Eliasson, B. Grebert, S. Kuksin, KAM for the nonlinear beam equation. Geom. Funct. Anal. Vol.
26, 1588-1715, 2016.

[30] R. Feola, KAM for quasi-linear forced hamiltonian NLS. Preprint arXiv:1602.01341, 2016.

[31] R. Feola, M. Procesi, Quasi-periodic solutions for fully nonlinear forced reversible Schrödinger equations.
J. Differential Equations 259, no. 7, 3389-3447, 2015.

[32] B. Grebert, E. Paturel, On reducibility of quantum harmonic oscillator on Rd with quasiperiodic in time
potential. Preprint arXiv:1603.07455, 2016.

[33] B. Grebert, E. Paturel, KAM for the nonlinear Klein Gordon equation on Sd. Boll. Unione Mat. Ital.
9, 237-288, 2016.

[34] B. Grebert, L. Thomann, KAM for the quantum harmonic oscillator. Comm. Math. Phys. 307, no. 2,
383-427, 2011.

[35] G. Iooss, P.I. Plotnikov, J.F. Toland, Standing waves on an infinitely deep perfect fluid under gravity.
Arch. Ration. Mech. Anal. 177, no. 3, 367-478, 2005.

[36] J. L. Lions, On some questions in boundary value problems of mathematical physics. Contemporary
developments in continuum mechanics and PDEs, G.M. de la Penha, L.A. Medeiros eds., North-Holland,
Amsterdam, 1978.

[37] J. Liu , X. Yuan, A KAM theorem for Hamiltonian partial differential equations with unbounded
perturbations. Comm. Math. Phys., 307(3), 629–673, 2011.
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