A reducibility result for a class of linear wave
equations on T?

Riccardo Montalto *

Abstract. We prove a reducibility result for a class of quasi-periodically forced linear wave equations on the
d-dimensional torus T? of the form
Ouv — Av + eP(wt)[v] =0

where the perturbation P(wt) is a second order operator of the form P(wt) = —a(wt)A — R(wt), the
frequency w € R” is in some Borel set of large Lebesgue measure, the function a : TV — R (independent of
the space variable) is sufficiently smooth and R(wt) is a time-dependent finite rank operator. This is the
first reducibility result for linear wave equations with unbounded perturbations on the higher dimensional
torus T¢. As a corollary, we get that the linearized Kirchhoff equation at a smooth and sufficiently small
quasi-periodic function is reducible.
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1 Introduction and main result
We consider a linear quasi-periodically forced wave equation of the form
v — Av + eP(wt)[v] =0, 2 €T? (1.1)

where T := R/(27Z), € > 0 is a small parameter, w € Q C R, with Q a closed bounded domain and the
operator P(wt) is given by

P(o)lv] = —a(p)Av — R(p)[], ¢ eT”, veLj(T"R) (1.2)

with R(¢) being an operator of the form

N
R(p)[v] := ;bk(% x) /Td ce(p,y)v(y) dy + c(p, x) /W be(p.y)v(y)dy,  @eT”, wveL(TLR).

(1.3)
Here v,d > 1 are integer numbers, LZ(T¢,R) denotes the space of the real valued L? functions with zero
average and the functions a : TV — R, by, ¢, : TV x T¢ — R, k = 1,..., N are assumed to be sufficiently

smooth, namely a € C¢(T?,R), by, ¢, € CI(T” x T4, R) for some g > 0 large enough. Note that the operator
R(p) is symmetric with respect to the real L?-inner product. Our aim is to prove a reducibility result for the
equation for € small enough and for w in a suitable Borel set of parameters (). C €2 with asymptotically
full Lebesgue measure. The PDE (1.1)) may be written as the first order system

8{0 = ’(/} .
opp = (1 + Ea(wt)) Av + eR(wt)[v] (1.4)

which is a real Hamiltonian system of the form

O = VyH(wt,v,1) (15)
O = =V, H(wt, v, 1) '
whose p-dependent Hamiltonian is given by
1 1
H(p,v,9) := = / (1/;2 +(1+ 5a(g0))|Vv|2) dr —e= / R(p)[v]vde. (1.6)
2 Td 2 Td
In (L.5), VyH and V,H denote the L?-gradients of the Hamiltonian H with respect to the variables v and
1. We assume that the functions by (¢, ), cx (¢, ), k = 1,..., N have zero average with respect to x € T,
namely
/ br(p,x)dr =0, / cx(p,x)de =0 VYoeT”, k=1,...,N. (1.7)
Td Td

In order to precisely state the main result of this paper, let us introduce some more notations. For any
s > 0, we define the Sobolev spaces H*(T?) = H*(T%, C), H*(T%,R) respectively of complex and real valued
functions

HY(T) = {u(z) = > we?” : Jlullfs = > () |u;* < +o0},  HY(TLR) = {u € H(T%) : u =7}
JEZL JEezd

() =max{L,[jl}, |jl=\if+... 455, Vi= (.0 €27

(1.8)

where



Moreover we define
H§(T%) == {u e H(T%) : / u(x)de =0}, H§(TR) = {ue H(T"R): / u(z)de =0}  (1.9)
Td Td
and introduce the real subspace Hy(T¢) of H3(T?) x Hg(T?)
H(TY) = {u:= (u,u) 1 u € H{(T")}, equippedwiththenorm |ullgs = ||ula: -

Given a linear operator R : L2(T¢) — L2(T?) (where L2(T?) := HJ(T%)), we define its Fourier coefficients
with respect to the exponential basis {e¥'* : j € Z?\ {0}} of L3(T?) as

. 1 . ..
A ij'-x),—ij-x Y d
R; @) Joa RleV “le dx, V4,5 € Z*\ {0}. (1.10)

We introduce the linear operator R, defined by R[u] = R[a], for any u € LZ(T9).

We say that the operator R is block diagonal if R;:/ =0 for any j,j’ € Z%\ {0} with |j| # |5/|.
Because of the hyphothesis (1.7 the Hamiltonian vector field

0 1\ @2 0 1 »
Lp) = (AEP(QD) O) = ((1 +ea(p)A+eR(p) O) ’ pel”, (L11)

leaves the space of functions with zero average invariant. More precisely for any 0 < s < ¢
L(p) : Hy*(T, R) x H*(T%,R) — H; ™ (T%,R) x H§(T",R), VpeT”

and therefore we can choose H} (T4, R) x LZ(T¢,R) as phase space for the Hamiltonian H defined in (.6)).
Now we are ready to state the main result of the present paper.

Theorem 1.1. Let v,d be integer numbers greater or equal than 1. There exists a strictly positive integer
g0 = qo(v,d) > 1/2 such that for any q > qo there exists ¢4 = e(q,v,d) > 0 and &, := &(q,v,d), with
1/2 < &, < q such that if a € CI(T",R), by, cx € C1(T” x T4, R), with by, cx satisfying the hyphothesis (1.7)
foranyk=1,...,N, then for any ¢ € (0,&,) there exists a Borel set Q. C Q of asymptotically full Lebesgue
measure, i.e.

Q] — 9] as e—0, (1.12)
such that the following holds: for all w € Q. and p € T, there exists a bounded linear invertible operator
Woo () = Woo(p;w) such that for any 3 < s < &,

W) : H(T%) — Hy'" 3 (T R) x Hy 3 (T, R)

satisfying the following property: (v(t,-),¥(t,-)) is a solution of in Hg+%(']l‘d,R) X Hg_%(Td,R) if and
only if
u(t7 ) = (U(t, ')?ﬂ(tv )) = WOO(Wt)_l[(U(tH ')a d}(tv )))]

is a solution in H(T?) of the PDE with constant coefficients

(1)

_pl
oyu = Dsu, Dy =1 7(()1)
0 Do

where for any s > 1, Dg) c Hy (T4 — HE™H(T9) is a linear, time-independent, L?-self-adjoint, block-diagonal
operator.

The following corollary holds:



1 s_1 .

Corollary 1.1. For any w € Q. and any initial data (v(®), () € H§+2 (T, R) x H, (T4 R) with 1/2 <
1 a1

s < &, the solution t € R — (v(t,-),¥(t,-)) € HS+2 (TY,R) x H, (T4 R) of the Cauchy problem

8tv = 'll)

oy = (1 + Ea(wt))Av + eR(wt)[v]
v(0,-) = v

1/}(0’ ) = 1;[}(0)

(1.13)

is stable, namely

. . ©) (0)
up ([t ey + 0608 oy ) < Callo@ ey + 19N oy)

for some constant Cy = C(q,v,d) > 0.

Remark 1.1. Note that the constants €4, &4 in Theorem [I.1] and the constant C, in Corollary[1.7) depend
also on the || - ||4 Sobolev norms of the functions a, by, cx, k = 1,...,N appearing in the definition of the

perturbation P given in (L.2), (1.3).

Theorem implies a reducibility result for the linearized Kirchhoff equation at a small and sufficiently
smooth quasi-periodic function evg(wt, z). The Kirchhoff equation

K () := v — (1 +/ Vo2 dx) Av =0 (1.14)
’]Td

describes nonlinear vibrations of a d-dimensional body (in particular, a string for d = 1 and a membrane
for d = 2). The Cauchy problem for the Kirchhoff equation has been extensively studied, starting from the
pioneering paper of Bernstein [11]. Both local and global existence results have been established for initial
data in Sobolev and analytic class, see [1], [2], [24], [25], [36], [43], [46] and the recent survey [44]. The
existence of periodic solutions for the Kirchhoff equation has been proved by Baldi [3]. This result is proved
via Nash-Moser method and thanks to the special structure of the nonlinearity (it is diagonal in space), the
linearized operator at any approximate solution can be inverted by Neumann series. This approach does not
imply the linear stability of the solutions, since only the first order Melnikov conditions are required along
the proof. In one space-dimension (d = 1), the existence of quasi-periodic solutions and the reducibility
of the linearized equation have been established in [45]. In dimension greater or equal than two, there are
no results concerning the existence of quasi-periodic solutions. It is well-known that a good strategy for
proving the existence and the linear stability of quasi-periodic solutions is to prove the reducibility of the
linearized equations at small quasi-periodic approximate solutions obtained along a suitable iterative scheme.
Hence our result (Theorem below) could be used to prove the existence of quasi-periodic solutions for
the nonlinear Kirchhoff equation.

Linearizing the operator K in at a quasi-periodic function evg(wt, x) and writing the linearized equation
K'(gvg)[v] = 0 as a first order system, one gets a system of differential equations of the form where

a(p) = /W [Vuo(p, )P dz,  R(p)[v] = —2Av(p, x) /w Avg(p,y)v(y)dy, @ €T, wve Lj(T4LR).

Note that the operator R(p) defined above has the same form as the one defined in (1.3)), by taking N =1,
by = —Awp, ¢; = Avg. We point out that Avy has zero average in € T¢, hence the hyphothesis (I.7) is
satisfied. An immediate consequence of Theorem [[.1] and Corollary [[.1]is then the following

Theorem 1.2. Let qo,q,e4,6, as in Theorem and vy € CIT2(T x ’]I'dJR). Then the conclusions of
Theorem 1.1 and Corollary[1.1] hold for the linearized Kirchhoff equation K'(gvo)[v] = 0 at the quasi-periodic
function evg(wt, x).



Now we outline some related works concerning the reducibility of quasi-periodically forced linear partial
differential equations. Let us consider a linear differential equation of the form

Opu = Du + eP(wt)u (1.15)

where D is a diagonal operator with discrete spectrum and P(wt) is a linear quasi-periodically forced vector
field with non constant coefficients. We say that such an equation is reducible if there exists a quasi-
periodically forced change of variable u = ®(wt)[v] such that in the new coordinate v, the equation
is reduced to constant coefficients. Typically, it is necessary to assume that e (size of the perturbation) is
small enough and that the frequency w, together with the eigenvalues of the operator D, satisfy the so-called
second order Melnikov non-resonance conditions. These non resonance conditions involve the differences
of the eigenvalues of the operator D. We point out that the reducibility of linear equations is the main
ingredient for proving the existence of quasi-periodic solutions (KAM tori) for nonlinear PDEs. Indeed
the first reducibility results for linear PDEs have been obtained as a corollary of KAM theorems. We
mention the pioneering papers of Kuksin [39], and Wayne [48] concerning the existence of invariant tori for
Schrédinger and wave equations in one space dimension with Dirichlet boundary conditions and with bounded
perturbations. The first KAM results for PDEs with unbounded perturbations have been obtained by Kuksin
[40], Kappeler-Poschel [38] for analytic perturbations of the KdV equation. Here the unperturbed vector
field is 04, and the perturbation contains one space derivative d,. Concerning unbounded perturbations of
the quantum Harmonic oscillator on the real line, the first result is due to Bambusi-Graffi [I0]. In all these
aforementioned results, the perturbation contains derivatives of order § < n — 1, where n is the order of
the highest derivative appearing in the linear constant coefficients term. In the case of critical unbounded
perturbations, i.e. 6 =n — 1, we mention [42], [49] concerning the derivative NLS with Dirichlet boundary
conditions, in which the authors generalized appropriately the so-called Kuksin Lemma, developed in [40]. We
also mention the KAM results for the derivative Klein-Gordon equation [12], [13] in which the generalization
of the Kuksin Lemma developed in [42], [49] does not apply because of the weaker dispersion relation.

It is well known that the ideas used to deal with the case 6 < n—1 do not apply in the quasi-linear and fully
nonlinear case, i.e. 6 = n. The first KAM results in this case have been obtained in [4], [5], [6] for quasi-
linear perturbations of the Airy, KdV and m-KdV equations, in [30], [31] for quasi-linear Hamiltonian and
reversible NLS equations, in [45] for the Kirchhoff equation and in [18], [T9] for the water waves equations.
The key idea in these series of papers is to split the reduction to constant coefficients of the linearized
equation into two parts: the first part is to reduce the equation to another one which is constant coefficients
plus a bounded remainder and this is inspired by the breakthrough result of Iooss, Plotnikov and Toland
[35]. In a second step, one applies a convergent KAM reducibility scheme which reduces quadratically the
size of the perturbation and completes the diagonalization of the equation. This method has been extended
also by Bambusi in [§], [9] to deal with unbounded quasi-periodic perturbations of the Schrédinger operator
on the real line.

Another difficulty for the reduction procedures and the KAM schemes concerns the multiplicity of the
eigenvalues of the unperturbed part of the equation. The first result in this direction is due to Chierchia-You
[23] in which the authors prove a KAM result for analytic bounded perturbations of nonlinear wave equations
with periodic boundary conditions (double eigenvalues). We mention also the more recent papers [17], [30],
[45] concerning Schrédinger and Kirchhoff equations with periodic boundary conditions.

There are very few results for PDEs in higher space dimension since the second order Melnikov non-resonance
conditions are violated, typically due to the high multiplicity of the eigenvalues. The first KAM and re-
ducibility results in higher space dimension have been obtained by Eliasson-Kuksin [26], [27] for the linear
Schrodinger equation on T¢ with a multiplicative analytic potential and for the nonlinear Schrédinger equa-
tion with a convolution potential. The second order Melnikov non resonance conditions are verified blockwise,
by introducing the notion of T6plitz-Lipschitz Hamiltonians. A KAM result for the completely resonant Non-
linear Schrédinger equation on T¢ has been proved by Procesi-Procesi [47], by using Quasi-Téplitz Hamil-
tonians. We also mention the KAM theorem for the beam equation obtained by Eliasson-Grebert-Kuksin
in [29]. Recently, Grebert and Paturel [32] proved a reducibility result for the quantum harmonic oscillator
on RY with an analytic multiplicative potential and in [33] they proved a KAM result for the nonlinear
Klein Gordon equation on the d-dimensional sphere. In [I4], [I5], [I6], the authors proved the existence of
quasi-periodic solutions for Nonlinear wave and Schrédinger equations on T and on Lie groups, by using



the multiscale method, introduced by Bourgain [20], [2I], [22] in the analytic setup. This approach does
not imply the linear stability of the quasi-periodic solutions since it requires to impose only the first order
Melnikov conditions.

The reduciblity for the quasi-periodically forced Klein-Gordon equation with a small multiplicative potential
O — Au + mu + eV (wt,x)u = 0 on T? is still open. In [28], Eliasson-Grebert-Kuksin proved that this
equation is almost reducible in the sense that it can be reduced to constant coefficients up to a small
remainder. The aim of the present paper is to provide a class of linear wave equations with unbounded
perturbations on T? which are reducible. We point out that the main difference between Schrédinger and
wave (Klein-Gordon) equations is the following: for the Schrédinger equation, the eigenvalues of the linear
part of the equation grow like ~ |j|2,j € Z?, whereas the wave equation, written as a first order system in
complex coordinates, has eigenvalues growing as ~ |j|,7 € Z%. It turns out that the second order Melnikov
non-resonance conditions

w - Lty — py| 2 V(€,4,5") € 2" x 24 x 27, (4,14],15']) # (0,41, l4]) (1.16)

.
@’
in the case of the wave (Klein Gordon) equation, i.e. u; ~ |j|, j € Z? are violated.

In the following we shall explain the main ideas of the proof of Theorem The proof consists in reducing
the quasi-periodically forced linear vector field £(wt) defined in (L.11)) to a time-independent block-diagonal
operator. This reduction procedure is split into two parts.

Regularization of the vector field L(wt). Our first goal is to conjugate the vector field £L(wt) to another one
which is diagonal up to a sufficiently regularizing perturbation. This is achieved by using a change of variables
induced by a reparametrization of time (so that the highest order term has constant coefficients) and time
dependent Fourier multipliers (introduced in Section , see Section |3l We point out that this procedure
involve only a reduction in time, since our unbounded perturbation P(wt) is assumed to be diagonal in space
up to the finite rank operator R(wt), which is already regularizing, see (1.2), (1.3).

KAM reducibility scheme. After the preliminary reduction of the order of derivatives, we deal with a time
dependent vector field which is a small and regularizing perturbation of a diagonal time-independent vector
field. We then perform a KAM reducibility scheme, see Theorem The key feature of the scheme is that
since the perturbation is regularizing, along the KAM iteration, we can impose non-resonance conditions
with a loss of derivatives in space, namely

jw - €y — pyr| = m , V(05,5 € 27 x (ZT\A{0}) x (ZI\{0}),  (L15],15"1) # (0,131, 14]) (1.17)
for some constant exponents d and 7 large enough and « € (0,1). Neverthless, all the canonical transforma-
tions defined along the iteration will be bounded linear operators (on Sobolev spaces), since the regularizing
property of the remainder balances the loss of space derivatives in the Melnikov conditions . This
strategy will be used also in [7], to prove a KAM result for gravity water waves in finite depth.

The conditions are much weaker that the ones given in and we are able to prove that they
are fullfilled for a large set of parameters w. We use the block-decay norm | - |5 (see (2.76)) to estimate
the size of the remainders along the iteration. This is convenient since the class of operators having finite
block-decay norm is closed under composition (Lemma , solution of the homological equation (Lemma
and projections (Lemma [2.9). This norm is well adapted to finite rank operators of the form and
it gives a strong decay of the blocks arising in the spectral decomposition with respect to the eigenspaces of

the operator v —A, see Sections

The paper is organized as follows. In Section [2] we introduce some notations and abstract technical tools
needed along the proof of Theorem [I.I} The proof of the Theorem is developed in Sections B}f5} In Section
we perform the regularization procedure for the linear Hamiltonian vector field £ and we conjugate it to
the vector field L4, defined in . In Section 4] we prove the block-diagonal reducibility of the vector
field L4, showing that it is conjugated to the block diagonal operator D, defined in . In Section [5| we
provide the measure estimate of the set of good parameters Q2 defined in . Finally, in Sectionwe
conclude the proof of Theorem [I.I] and we prove the Corollary [I.1]
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2 Function spaces, linear operators and norms
For a function u € L3(T?) = LZ(T9, C) we consider its Fourier series
. 1 .
u(zr) = Z uje uj = 7/ u(x)e ¥ dx, Vi e zi\{0}. (2.1)
. (27T)d Td
jEZ\{0}

We denote by o¢(v/—A) the spectrum of the operator v/ —A restricted to the zero-average functions, i.e.

oo(V=A) i={ljl = \J2 + .. 43315 = G sda) € 29\ {0} } (2.2)

and for any eigenvalue a € o¢(v/—A), we denote by E,, the corresponding eigenspace, i.e.
E, :=span{eV®:j €2 |j|=a}. (2.3)
Then, any function u € L3(T?) can be written as

wa) = Y (@), ullz)= > ue’’ ek, (2.4)
aéag(m) |_]|=Ot

and if u € H(T?) for some s > 0, one has
lallfy = D> i1PlwlP= Y o® Y = Y a®fulis. (2.5)
jezi\{o} acoo(vV—=2A) |jl=a acoo(vV—=2A)

We also deal with functions u € L3(T" x T¢) = L?(T", L3(T%)) which can be regarded as ¢-dependent
family of functions u(yp,-) € L3(T?) that we expand in Fourier series as

ulp,r) = > up(p)ed T = N wy(0)eleri o) (2.6)
JEZIN\{0} Lez”
jezi\{o}

where
1 1

uj(p) == G /11‘d u(p,x)e T da, U (0) = 2ryrd /Twrd u(ip, 2)e 1T do d

According to (2.4), we can write

u(@vx) = Z ua(wvm) = Z ﬁa(g)eww (27)

agoo(vV—-A4) c ZG(ZV %)
acoplv—
where
i - A 1 —if- ~ ij-x
ua(p,z) = > ui(@)e?", Ua(l) =Ta(l,2) ::W/ﬂl‘ ua(p,2)e P dp = W(0)ed . (28)
ljl=a ’ ljl=a

We define for any s > 0 the Sobolev spaces Hg(T"*?) = H§(T**+4,C) as

Hy(T) = {u e LT x T« ull2:= > (€.5)*]8;(0)] < +o0}, (2.9)
Lez”
jez\{o}



where (¢, 7) := max{1, |[¢|,|j|}, and for any £ = ({1,...,0,) € Z", |{| := \/£3 + ... + £2. One has
lall2 =3 @Hl@@OF = Y (a)* Y @mOF= Y (La)*[EOlF:  (2.10)

ez’ eez” ljl=a eez”
jezi\{o} a€ao(V—A) agao(V—A)
where (£, «) := max{1,|¢|,a}, for any ¢ € Z",« € go(v/—A).
In a similar way, we define the spaces of real valued functions L3(T%, R), L2(T*+¢,R), H3(T? R), H5(T*+¢, R)
and we also deal with Sobolev functions z-independent, belonging to the Sobolev space H*(T") (or H*(T",R)).
For u € H*(T") we denote by ||u||s its Sobolev norm, given by

e QSﬂ 2 n :L u efif-ap
fulle = S OFROP. 60 = g [ u(e)e e d.

Lezv

Given a Banach space (E,|| - ||g), we denote by L>°(T, E) the space of the essentially bounded functions
T — E equipped with the norm

[ull oo 1+, By = esssupgeqe [lu(e)| £ -

For any p € N we denote by W»>°(T", E) the space of the p-times weakly differentiable functions TV — E
equipped with the norm

||UHWP,OO(’H‘V,E) = max‘a|§p||3gu||Loo(TV7E) .
In the above formula, for any multi-index a = (a1, ...,a,) € N”, we use the notations |a| := a1 + ... + ay

and 93 = 0g! ... 0z . We also denote by C°(T¥, E) the space of continuous functions T — E equipped with
the norm

lullco(rv, By := sup,erv [[u(P)] e
and we denote by CP(TY, E) the space of the p-times differentiable functions with continuous derivatives
equipped with the norm
||UHC})(TL/’E) = max‘a|§p||82u||CO(TVVE) .

We recall the standard property
werhee(mv E) c CP(TY, E). (2.11)

For a function f : Q, — E, w — f(w), where (E,|| - ||g) is a Banach space and 2, is a subset of R”, we
define the sup-norm and the lipschitz semi-norm as

| f(w1) = flw2)ll

u 1i
110, = suw [lfle, IflEgq, = sup (2.12)
weN, w1,w2EQ |w1 - (“JZ‘
UJ1#UJ2
and, for v > 0, we define the weighted Lipschitz-norm
Li su li
AR = 1115 %, + 1 FI (2.13)
To shorten the above notations we simply omit to write Q,, namely || f[|5" = [If]%%, £ = ||f\|gjﬂo,
IFIEPD = (I FIIERY. I f = Qy — C, we simply denote ||f]|¢™™ by [f[“P0) and if E = H*(T"+) we
simply denote ||f||Llp = ||f||§ip(”). Given two Banach spaces E, F, we denote by B(FE, F') the space of the
bounded linear operators F — F. If E = F, we simply write B(E).
Notation: From now on we fix p
S0 1= [”;r } +1 (2.14)

where for any real number z € R, we denote by [z] its integer part. We write

a<sb <<= a<C(s)b



for some constant C(s) depending on the data of the problem, namely the Sobolev norms ||al|s, [|bk]ls, ||cklls
of the functions a, by, cx, appearing in , the number v of frequencies, the dimension d of the space variable
x, the diophantine exponent 7 > 0 in the non-resonance conditions, which will be required along the proof.
For s = sy we only write a < b. Also the small constants § in the sequel depend on the data of the problem.

We recall the classical estimates for the operator (w - d,)~! defined as

(W-0,)" 1] =0, (w-39,) '] = o) e YL#0, (2.15)
for w € DC(~, 1), where for v,7 > 0,
DC(y,7) == {w €0 |w-f| > MZIY Ve e ZV\ {0}} . (2.16)
If h(;;w) € H3F27H(TY), with w € DC(v, ), we have
l@ - ,) " hlls < v lhllorr s N 8p)RIEPOD <M RIEEL (2.17)

We also recall some classical Lemmas on the composition operators and on the interpolation. Since the
variables (¢, z) have the same role, we present it for a generic Sobolev space H*(T™). For any s > 0 integer,
for any domain A C R™ we denote by C*(A) the space of the s-times continuously differentiable functions
equipped by the usual || - ||cs norm.

Lemma 2.1. (Interpolation) Let u,v € H*(T™) with s > sy, sy := [n/2] + 1. Then, there exists an
increasing function s — C(s) such that

uv|ls < C(s)llulls|lvlls, + C(sn)llulls, V] -

Ifu(;w), v(w), w € Qy, CRY are w-dependent families of functions in H®(T™), with s > s,, then the same

estimate holds replacing || - ||s by || - HLlp(’Y)

Tterating the above inequality one gets that, for some constant K (s), for any n > 0,

lu*lls < K ()" [lull & lulls (2.18)

< so |

and if u(;w) € H®, s > s, is a family of Sobolev functions, the same inequality holds repacing || - ||s by
Lip(7)
|- 115

We consider the composition operator

u(y) = £(u)(y) = [y, u(y)) .
The following lemma is a classical result due to Moser.
Lemma 2.2. (Composition operator) Let f € C5T1(T" xR, R), with s > s, := [n/2]+1. Ifu € H*(T"),
with |Julls, <1, then ||£(u)]ls < C(s,||flles)(1 + ||ulls).- If u(-7w) € H(T"), w € Q, C R” is a family of
Sobolev functions satisfying ||u|[5PY) < 1, then, ||£(w)|[5SPY) < C(s, || fllces ) (1 + [[ul[FPO).

Now we state the tame properties of the composition operator u(y) — u(y + p(y)) induced by a diffeo-
morphism of the torus T™. The Lemma below, can be proved as Lemma 2.21 in [19].

Lemma 2.3. (Change of variables) Let p := p(;w) : R® - R", w € Q, C R” be a family of 2w-periodic
functions satisfying
Ipllcenrs <1/2, 5P <1 (2.19)

where s, :=[n/2]+ 1. Let g(y) :=y + p(y), y € T". Then the composition operator

Az u(y) — (uog)(y) =uly +p(y))



satisfies for all s > s,, the tame estimates

| Aw||s

sn Son ulls, s Aulls < C()llulls + Clsn)lplls[[wlls,41- (2.20)

Moreover, for any family of Sobolev functions u(-;w)

L
| Auf|EPO) < lul B (2.21)
Li L
| Au|| PO < | SR 4 || EPO) ) FPG) L s > s, (2.22)

The map g is invertible with inverse g~*(z) = z + q(2) and there exists a constant § := §(sy,) € (0,1) such
that, if ||p||I2J;p+2 < 0, then

i Li
lalls So lipllss— als™ S ol (2.23)

Furthermore, the composition operator A~ u(z) := u(z + q(2)) satisfies the estimate
1A ulls S5 lulls + Ipllsllulls,+1, Vs > sn (2.24)
and for any family of Sobolev functions u(-;w)

_ i Li Li Li
1A= | 5P < [l S 4 |pl| P | SRS s > sy, (2.25)

2.1 Linear operators
Let R € B(L2(T9)). The action of this operator on a function u € LZ(T%) is given by
Rlu= > Riujpel (2.26)

3,5' €24\{0}

where the Fourier coefficients R;:l of R are defined in (1.10). We shall identify the operator R with the
infinite-dimensional matrix of its Fourier coefficiens

(Rgl)j,j’ezd\{o} . (2.27)

We define the conjugated operator R by o o
Ru :=Ru. (2.28)

One gets easily that the operator R has the matrix representation

(R:gl)j,j’ezd\{o} . (2.29)

An operator R is said to be real if it maps real-valued functions on real valued functions and it is easy to
see that R is real if and only if R = R.
We define also the transpose operator R” by the relation

(R[u], v)r2 = (u, RT[v])2,  Vu,v € LYT?), VeeT” (2.30)

where

(u,v)p2 = /d u(z)v(x),dx, Yu,v € L3(T?). (2.31)
T
Note that the operator R” has the matrix representation
' _ -3 - d
(R )j - R-j/ ’ V],] S/ (232)

An operator R is said to be symmetric in R = RT.
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We define also the adjoint operator R* as

(Rlu], v) o = (u, R*[v]) ., Yu,v€ LE(TY), (2.33)
where ( , ~)L2 is the scalar product on L3(T?), namely
(u,v),, = (u, V)L = / u(x)v(z),dr, Yu,v € LET?). (2.34)
T - Td

An operator R is said to be self-adjoint if R = R*. It is easy to see that R* = ﬁT and its matrix
representation is given by L

(RS =R%,, Vi €24\ {0}.
We also define the commutator between two linear operators R, 7 € B(L3(T%)) by [R,T]:=RT — TR.

In the following we also deal with real operators G € B(L%(']I‘d, R) x L&(T4, R)>7 of the form

A B
G:= (C’ D> (2.35)
where A, B, C, D € B(L3(T¢,R)). By (2.30)), the transpose operator G with respect to the bilinear form
((v1,91), (v2,%2)) 2 = (vi,v2) 2 + (Y1, Y2)r2, (2.36)
v(ulawl)a (uQa ¢2) € Lg(TdaR) X L%(TdvR)a is given by
AT CT
GT = (BT DT> . (2.37)

Then it is easy to verify that G is symmetric, i.e. G = GT if and only if A = AT, B=C", D= DT. It is
also convenient to regard the real operator G in the complex variables

(v,9) = C[(w,@)], (u,7) =C~"[(v,9))] (2.38)
where
1l /11 ,1:L 1 i
(b L) el ) (23

The operators C,C~! satisfies
C:L3(T%) — LE(TY R) x LA(T4 R), C~':LiT%R) x L3(T4 R) — LZ(T%)
where L3(T?) is the real subspace of L3(T9) x LZ(T¢) defined by
L3(T?) := {(u,7) s uw € L§(T)} . (2.40)
IfG e B(L%(T‘ﬂR) X L%(Td,R)) is a real operator of the form ([2.35)), one has that the conjugated operator
R :=C'GC: L3(T%) — L3(T)

has the form

(R R _A+D-i(B-0) _A-D+i(B+0C)
For the sequel, we also introduce for any s > 0, the real subspace of Hg(T%) x H§(T%)
H; (TY) = (Hg(Td) x Hg(Td)) N L2(TY) (2.42)
and we set
lallag = llullz;, Vo= (u,7) € HY(TY). (2.43)
It is straightforward to verify that for any s > 0
C: Hy(T) — Hj(T% R) x H(T*,R), C~': H§(T* R) x Hj(T* R) — H{(T%). (2.44)

11



2.2 Block representation of linear operators

We may regard an operator R : L(T¢) — LZ(T?) as a block matrix

(R12) (2.45)
a,B€00(vV—A)
where for all o, 8 € o9(v/—A) (recall (2.2)), the block-matrix [R]? is defined by
R = (R] . 2.46
R ! )m=a,|j'\=5 (246)

Note that the operator [R]? is a linear operator from Eg onto E, where for all a € o¢(v/—A), the finite
dimensional space E, is defined in (2.3). We identify the space B(Eg,E,) of the linear operators from Eg
onto E, with the space of the matrices of their Fourier coefficients, namely

B(Es,E,) ~ {M - (M;) Szt o) } (2.47)
lil=a.15'|=8

Indeed if M € B(Eg,E,), its action is given by

Mu(z) = Z Mj/uj/eij'g”, VueEg, u(z)= Z uj/eij/'“’. (2.48)
|7|=a l5'1=8
l5'1=8

If 8 = «, we use the notation B(E,) = B(E,,E,) and we denote by I, the identity operator on the space
E., namely

I,:E, — E,, U u. (2.49)
According to (2.4), (2.45), (2.48]), we may write the action of an operator R on a function u(x) as
Ru= > [R]5[ug]. (2.50)
a,B€00(V=A)

If [R]? =0, for any o # 3, we say that R is block-diagonal and we use the notation
R = diag,¢,,(v=n)[Rla - (2.51)
The action of a block-diagonal operator R on a function u € LZ(T¢) is given by
Ru= Y  [R]aud]. (2.52)
acoo(vV=4A)

Let M € B(Eg,E,). The transpose operator ML € B(E,, Eg) has the matrix representation
(M)} =M, |jl=6, || =a. (2.53)
The conjugate operator M € B(Eg, E,) is given by

(M); =M il =a, |f1=8 (2:54)
and the adjoint operator M* € B(E,,Eg) by

M =11 . (2.55)

Let o, 8, A € oo(v—A). Given A € B(Eg,E,), B € B(Ex,Eg), the operator AB € B(Ey,E,) has the
matrix representation

(AB)} = Y AjBl, Vjl=a, lil=A (2.56)
k=5
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Given an operator A € B(E,,), we define its trace as

Tr(A) = Y Al (2.57)

|7l=c
It is easy to check that if A, B € B(E,), then
Tr(AB) = Tr(BA) . (2.58)

For all o, 8 € oo(v/—A), the space B(Eg, E,) defined in (2.47), is a Hilbert space equipped by the inner
product given for any X,Y € B(Eg, E,) by

(X,Y) = Tr(XY™"). (2.59)

This scalar product induces the Hilbert-Schmidt norm

Nl

|Xlms = VXX = (3 1x7 )" (2.60)
li|=c
l5'1=8

For any operator X € B(Eg,E,), we define also the operator norm as
||X||B(Eﬁ’Ea) = sup{HXuHLz cu€eBg, | ullpe < 1} . (2.61)
First we recall some preliminary properties of these norms.

Lemma 2.4. (i) Let o, € oo(vV—A), M € B(Eg,E,) and v € Eg. Then |Mu||2 < [|[M| as|u| Lz,
implying that || M ||, E.) < [|M|[ms-
(Z’L) Let a, B, )\ € 0‘0(\/ —A), M e B(EQ,EQ), X € B(]E,\,EB). Then HMXHHS < HMHHSHXHHS

Proof. The proof is a straightforward application of the Cauchy-Schwartz inequality. O

Given a linear operator L : B(Eg, E,) — B(Eg, E,), we denote by ||L||op(a,s) its operator norm, when the
space B(Eg, Ey) is equipped with the Hilbert-Schmidt norm (2.60), namely

| Ellopes) = sup { | LMl s : M € BEg,Ea), |[M|as <1} (2.62)

We denote by I, g the identity operator on B(Eg,E,), namely
Ing: B(Eg,Ey) — B(Eg,Eq), X—X. (2.63)
For any operator A € B(E,) we denote by M (A) : B(Eg,E,) — B(Eg, Ey) the linear operator defined for

any X € B(Eg,E,) as
Mp(A)X = AX . (2.64)

Similarly, given an operator B € B(Eg), we denote by Mg(B) : B(Eg,Ey) — B(Eg, Ey) the linear operator
defined for any X € B(Eg, E,) as
Mr(B)X := XB. (2.65)

By Lemma [2.4}(ii), we have
ML (A)lopa,p) < |Alas s |Mr(B)|lopa,s) < [|Bllas - (2.66)

For any a € o¢(v/—A), we denote by S(E,,), the set of the self-adjoint operators form E,, onto itself, namely
amg:{AeB@@:AzAﬂ (2.67)

and given A € B(E,) denote by spec(A) the spectrum of A. The next Lemma follows by elementary
arguments of linear algebra and hence its proof is omitted.
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Lemma 2.5. Let A € S(E,), B € S(Ep), then the following holds:
(i) The operators My, (A), Mr(B) defined in (2.64)), (2.65) are self-adjoint operators with respect to the scalar

product defined in (2.59).
(i) The spectrum of the operator M (A) + Mr(B) satisfies
spec(ML(A) + MR(B)) = {)\ tp:Aespec(d), pe spec(B)} :
We also deal with smooth p-dependent families of linear operators

R:T" — B(LA(TY), ¢ R(p). (2.68)

According to (2.27)), for any ¢ € T”, the operator R(p) has the matrix representation (R;l(g@))jd‘lezd\{o}.
We can write the Fourier expansions

R(e) = D RO, Ri(p)= DRy (O, ez, vjj e\ {o)

Lezv Lezvr
where )
R() = —— | R(p)e ¥ dpe B(LATY)), Vlez, (2.69)
(2m) Jrv
A~ ! 1 v .
J — J —il-p v . d
R () = o /VRJ (e dp,  Veez’, Vij ezi\{o}. (2.70)

Note that for any ¢ € Z”, the operator R(£) € B(L3(T?)) has the matrix representation

R() = (R} (g))j,j’eld\{o} . (2.71)
Furthermore, by (2.45)), for any ¢ € T, the operator R(¢) has the block representation ([R(@)]g)aﬁego(m)
and for any ¢ € Z, R(¢) has the block representation ([ﬁ(ﬂ)}g)aﬂ@o(m). For any o, 8 € go(vV—A), we
have the Fourier expansion [R(¢)]5 =3 ,cz0 [R(0))2e4% with

S L

L R N - v .
ROL = G /Tumwa w=(Rj®) . wer, (2.72)

recall (2.70)).

Let R : T — B(L3(T%)) be differentiable and let w € R”. For any ¢ € T, the operator w - ,R(y) is repre-
sented by the matrix (w-&pRg/ (#));,jreza\ {0y and its block representation is given by (w-0,, [R(go)]g)aﬂe%(m).
We also note that for any ¢ € Z¥, the operator w@?@(ﬁ) admits the block representation (iw-é[ﬁ(ﬁ)]ﬁ)aﬁego(m).

(e

Given R : TV — B(L3(T?)), recalling the notation (2.51]), we define the block-diagonal operator Ryiqq as

~

Rdiag = diagaeao(\/j) [R(O)]g (273)

and for any N € N, we define the smoothing operator IIyR by

— R(0))8 if max{|l|,a, B} < N
0 otherwise.
It is straightforward to verify that
(IINR)diag = NINRdiag - (2.75)
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2.3 Block-decay norm for linear operators
Given a smooth ¢-dependent family R : TV — B(L2(T9)), ¢ — R(p) as in (2.68)), we define the block-decay
norm
25 (| [ £112 1/2
Rls = 50, ey vy (30 o IR ). (fonB) = max{L |08} (276)

Lezv

For families of operators of the form R(w) : ¢ — R(p;w), w € Q, C R”, we define the norm

RIFPO) = RIS + 7[RI, 2.77)
. R -R
R = sup [RE)l., (R = sup D= Rlenlle
w€eN wl,w;?éGQo |w1 - w2|
w1 Fwa

Moreover, if R : TV — B(L2(T%)), i.e. R has the form

_ (Ri(p) Ralp)
"= (R mi) 279

we define . _ _
IRls = Rils +|Rals,  [RIEPD) = |Ry|FPO) + |Ry[LP1) (2.79)

In the following, we state some properties of this norm. We prove such properties for families of operators
R : T — B(L:(T%)). If R is an operator of the form (2.78) then the same statements hold with the obvious
modifications.

Lemma 2.6. (i) The norm |- |4 is increasing, namely |R|s < |R|s, for s <.

(i) The operator Raiag defined by (E73), satisfies [Raiagls < [Rls, implying that |[R)2] s < a~*|R]s for
any a € og(vV—A)

(#31) Items (1), (i7) hold, replacing |- |s by | - |£71p(7).

Proof. The proof is elementary. It follows directly by the definitions (2.76]), (2.77]), hence we omit it. O

Lemma 2.7. Let R, T be operators of the form (2.78)). Then for any s > sqo (recall (2.14))
|RB|S Ss |R|S|B|250 + |R|250|B|s :

If R = R(w), T = T(w) are Lipschitz with respect to the parameter w € Q, C §, then the same estimate

holds replacing | - |s by | - |I;ip(7)'

Proof. According to the notations (2.45), (2.46]), for any ¢ € T”, the operator R()B(y¢) has the block
representation

R@T () = (ROTON) 0 pevomy: ROTEE= Y RETEI,
tez” ai€oo(vV—A4)

and for all ¢ € Z¥ - R R
[RT ()] = >, [R(€ =T ()2, -
OélGO’O(\/*A),Z/GZV
Then, using Lemma (1), we get that for any a, 8 € oo(v/—A)

— ~ ~ 2
S o FIRTOREs <3 (X aB IR - O usIT @, Ins) - (280)
VA=V/d ey eleZ”
alEUO(M)
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USng that for any O‘7ﬂ7 o1 € UO( Vv _A)a év t'e lea <£a a’/[)'>s SS <€ - €/7a7a1>8 + <€/a a17ﬂ>s , we get
[@2.80) <, (I) + (II) (2.81)

where

=Y (-t IR O asIT @, Ins) (28)

Lezr ez

a1EUD(M)
2
=3 (> (a8 NRE= N2 s TN, lus) (2.83)
Lezr ez’
aleao(\/fA)

Using that, by Lemma (1), > vemr (U, aq)7?0, Yo coo(v=E) oy 20 < 400 (recall that sg > (v +
(7] an(\/ 7A)
d)/2), applying the Cauchy Schwartz inequality, one gets

NS> Y =taa)([RI = O sl a)* ([T W2, s

Lezv o ez

a1€oo(vV—4)
Se D> e [TE s D (0= a0)*(|[R(C— )] s
ver” Lezv
a1€09(v—A)
1 S S «
S Y == a) [ TR s D a,a) [[R(E— )2 s
ez A tezr
a1€09(vV/—A)
S X (s Y e ITON IEs) (s Y ke RIS s
04160‘0( /TA) a1€00(V—A) ey a,a1€o9(vV/—A) kezv
1 )
s B3, IR|Z (2.84)

Similarly one proves that (IT) <, |T|2|R[3,, and then, recalling (2.80), (2.81) one proves |RT|s <

T |25, |R|s + |T|s|R|2s,. The estimate for the norm | - |5*" follows easily by the previous one, by applying
the triangular inequality. O

For all n > 1, iterating the estimate of Lemma [2.7] we get
[R"|2sy < [C(s0)]" '[RI3s,  and  [R"[s <nC(s)"[RI55,! R, Vs > 2s0, (2.85)

and the same bounds also hold for the norm | - [£P(7)

parameter w.

if R is Lipschitz continuous with respect to the

Lemma 2.8. Let ® = exp(7) with U := U(w), depending in a Lipschitz way on the parameter w € Q, C R,
such that |\IJ|2IP(7) <1, \‘I’|Llp < +oo, with s > 2sg. Then
O+ —1d|s S [Uls,  [@FF —1d[JPD) <, [w|FPO). (2.86)

Proof. The claimed estimates can be proved by using the Taylor expansion of ®*! — Id = exp(+¥) — Id,
using the condition |\I/|12“;§(7) < 1 and by applying the estimates ([2.85]). O

Lemma 2.9. The operator IIyR := R —IINyR (recall (2.74)) satisfies
IYR|s < NP R|p,  [HERIVPO) < NPIR[ZEY b >0, (2.87)
s+

where in the second inequality R is Lipschitz with respect to the parameter w € Q, C .
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Proof. We have that for all b € N, «, 5 € go(vV—A)

S (e, A= IMEROLIZs B Y (e, AZIROE s

tez” {ewap>n}
SN0, B2 [RO)G s 2y IR
LeLY
and the lemma follows. O

Lemma 2.10. Let us define the operator
R =ale.o) [ gloh)dy. he LT qge BT, szs.  (289)
']I‘,

Then
IRls Ss lgllsollalls + lglls+sollallo -

Moreover if the functions g and q are Lipschitz with respect to the parameter w € Q, C §, then the same

Llp("/) by || - ”EP(’Y)'

estimate holds replacing | - |s by | - and || - ||

Proof. A direct calculation shows that for all £ € Z¥ and for all j,j' € Z4\ {0}

Ry(0)= 3 @t — )5y (t).

ez

Using definition , the Cauchy Schwartz inequality (using that ), ;. (')~ Zs0 < 400) we get

ROl = 3 R 0F < 5 (31~ )1g-») ) <3 X Sl - ORE g ()P

I\j}llzo[; ‘\J\I—% ljl=alj'|l=p ¢

J 1= J

24,23 . soll~

BB $™ G, (0= )12 ()2 155 ()12 - (2.89)
el

Now for all «, 8 € oo(v/—A),

> (e, B [R(£)] s S Z (€0 B)* [[da (£ = E)II72 () [Ga ()17 (2.90)
LEL

Lezv
Using that (¢, a, 8)%° g (0 — 0, ) + (', 3)%° we get
Ss Z Z(ﬁ =0, 0)*|[da (€ = O)[|72(C) > [a(£)]17-
+ZZ (€, 8)* [Ga(l = )17 () @s (¢ 7
Ss Z<5'>2S°||9,6( iz D (=€ a)*|[dalt - )7

L

+ Z@’, B2 |Gs(¢)IIF2 Y Ndall — £)II7:
14

! glZ lgll? + llgll3 4, llallZ (2.91)

and hence the lemma follows. O
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For a ¢-independent linear operator R € B(L3(T%)) having the block-matrix representation (2.45)), the
block-decay norm ([2.76)) becomes

Rls= suwp (., 8)°|[RISus, (a,f) :=max{a,5}. (2.92)
a,Be00(vV—A)

The following Lemma holds:

Lemma 2.11. (i) Let R € B(L3(T%)) satsfy |R|st2s, < +00, for s > 0. Then R € B(LQ(Td) H(T?)) and
||’R||B(Lz Hy) S S |Rls+2s0- As a consequence R € B(HE), with ||R||B(H§) < ||R||B(Lz Hy) S S IR s+2s0 -

(ii) Let k € N and R : TV — B(L3(T%)) with |R|sskt2s, < +00. Then R € Wk OO(11”’,8([%,]{0)) and for
any a € N, |a|] < k, one has

105 R Lo (v B(Hg) S Sujlri |05 R(0) 51250 S IR st|al+2s0 -
Proof. PROOF OF (i). Let u € L§(T%). By (2.52), (2.5), one has that
2

2
IRWl = > o X m®éwl|, s X (X alREm:) . (299
acoo(vV—-4) BEao(V—-A) a€oo(V—A) pBeoo(V-A)
Using Lemma [2.4}(i) and recalling (2.92), one gets

as+50580 2
IREMG: s > (X “auge IRRlsluslie)
a€oo(vV—A4) Beoo(V-A)

s+2sg
s Y o X R sl

acoo(vV—A) Beoo(V=A)
1 1 2
SRR 2 s X gulwle) (2.94)
acoo(v—A) BEoo(V—A)
By the Cauchy-Schwartz inequality
1
B SRRz 2 w2 sl S (R 0l (2.95)
a,f€a0(vV=A) Beoo(vV=A4)

by applying Lemma [7.1}(i) (note that 2sy = 2([(v 4+ d)/2] + 1) > v + d) and then the claim follows.

PROOF OF (i%).For any «, 8 € o¢(v/—A) and for any multi-index a € N”, |a| < k one has that the operator
93 R(p) admits the block-matrix representation

92R(¢) = (02IR(9))
Expanding in Fourier series g [R(¢)])2, one has

ﬁ_z \a\ga 129@

Lezv

a,BEo0(vV=A)

and by the Cauchy-Schwartz inequality

102 (RN Ns < 3 10RO ms < (30X ROEIRs) (2.96)

Lezv Lezr

N|=

Thus by (2.96), for any «, 5 € oo(v/—A), for any ¢ € T, one has

(, B)** 10g[R(¢)]als ’ D (e, P [R(O]2 s ’ R

Lezr
and then the lemma follows by recalling (2.92)) and by applying item (7). O

s+\a|+50
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2.4 A class of p-dependent Fourier multipliers

For any m € R, we define the class S™ of Fourier multipliers of order m as

S™i={r:o0(V-A)—=C: sup [|r(a)]a”" < +oo}
acog(vV/—A)

where we recall that the set gg(v/—A) is defined in (2.2]). To any symbol r € S™, we associate the linear
operator Op(r) defined by

Op(r)u(x) := Z (|5 uje? ", Yu € HJ'(TY). (2.97)
jezi\{o}

We denote by OPS™ the class of the operators associated to the symbols in S™.
In the following we deal with ¢-dependent families of Fourier multipliers r : T xoo(v/—A) — C, r(p, ) € S™.
The action of the operator Op(r) = Op(r(¢p, |5])) on Sobolev functions u € H(T"*4) is given by

Op(ru(p,x) = > r(p,lilui(p)e?™ = Y T~ |j)a;(¢)e ). (2.98)
jezd\{0} L err
jez*\{0}

Note that, using the representation (2.7)), the action of the operator Op(r) on a function u(p,z) can be
written as

Op(r)u(cp, :E) = Z T‘(QD, a)ua (‘Pa ZE) - Z ?(e - E/a O‘)ﬁa (6/, x)eif*p . (299)
acoo(vV—-4) L' er”
acog(vV—A)

The following elementary properties hold:

Op(r) = Op(7) = Op(r)*, Op(r)" = Op(r) (2.100)

(recall (2.28]), (2.30), (2.33))). The above properties imply that

Op(r) = Op(r)* if and only if (v, a) =r(p,a), V(p,a) € TV x og(V—=A). (2.101)
Let R = Op(r) € OPS™, B = Op(b) € OPS™ . Then the composition operator R o B is given by
R o B = Op(r) o Op(b) = Op(rb) € OPS™ ™ . (2.102)

Note that Ro B = BoR.
For an operator R = Op(r) € OPS™, for any s > 0, m € R, we define the family of norms

|Op(r)lm,s == sup_|lr(-,a)[sa™™ (2.103)
acoo(vV—A)

and if r = r(p, q;w), w € Q, C Q is Lipschitz with respect to the parameter w € 2, then we define

|Op(r)[52) = [Op(r)[2®, + y|Op(r)[EP, (2.104)
where
. Op(r)(wi) — Op(r)(w
(OB, = sup [0B()@)hms» 10000, = sup (ORI Z 0PI ol
' weQ, ' wl,w;GQD lwi — wal
wiFw

We also deal with operators

_— (Op(n; Op(?"z)) e S™. (2.105)

19



With a slight abuse of notations we still denote by OPS™ the class of operators of the form . For
such operators, we define the norms |R}m, s := |Op(r1)lm,s + |Op(r2)|m,s and HRH%?S(’Y) = ||Op(r1)|%1i?sm +
[Op(rs) EZ(A’). In the following, we state some properties of the norm | - |,,,s. We prove such properties for
operators R(¢) = Op(r(y,-)). If R is an operator of the form then the same statements hold with
the obvious modifications.

It is immediate to verify that
| lns <1 lmys s Vs <8, YmeR, (2.106)

[ lms <1 lmrs, Ym>m', Vs>0 (2.107)
and the same inequality holds for the corresponding Lipschitz norms.
Lemma 2.12. Let R = Op(r) with |R|o,s < +00, s > sg. Then for any u € Hg(T" )
[Ruly S [Rlo.s el + Rlos 1l

The same statements hold, replacing || - ||s by || - ||£ip(ﬂ’) and |-

(2.105), then a similar estimate holds.

.
0, by |-[52¢

. If R is an operator of the form

Proof. The claimed estimate follows by the same arguments used to prove Lemma 2.13 in [I9], hence the
proof is omitted. Actually our case is even simpler since the symbol r does not depend on the variable

r € T O
Lemma 2.13. Let R = Op(r), with |R|o.sy+1 < +oo. Then R € CYHT¥,B(H)) for any s > 0 and
IRllcrrv Bms)) S IR
Proof. Let R = Op(r) € OPS°. Since |R|o,sy+1 < 400, by the definition (2.103), the symbol r(-,«) is in
H#ot(T) for any a € oo(v/—A). Hence, by the Sobolev embedding r(-,a) € C*(T¥) with ||r(-, )¢ (mv) S

(-, ) llso+1 S [Rlo,se+1 for any a € oo(vV—A). Since ||Rllc1(rv 5(13)) < SUPaecoy(v=a) I7(s)llcr(1v) for
any s > 0, the claimed statement follows. O

0,s0+1-

Lemma 2.14. Let m,m’ € R and R € OPS™, B € OPS™ be two operators of the form (2.105)) with
[Rlm.s s |Blms < oo, with s > sg. Then the operator RB € OPS™™ has still the form (2.105) and it
satisfies the estimate

[RBlntm,s Ss [Rlm,s|Blme,so + [Rlm,s|Blme s -

The same estimate holds replacing the norm |- | s by the norm |- %nif)s(w, if R and B are Lipschitz with
respect to the parameter w € €,.

Proof. The claimed statement follows by using the property (2.102)), the definition (2.103)) and the interpo-
lation Lemma 2.1l O

Note that the above lemma implies that if R € OPS™, then R*¥ € OPS*™ for any k > 1 and
|Rk‘|km780 < C(SO)k_luRlﬁm,so ) |Rk|km,s < kc(s)k"le_l ”le’s ;8280 (2'108)

m,So

The same estimate holds replacing |- |,n,s by | - \|172f)s(7)

Lemma 2.15. Let ¥(p) € OPS™, ¢ € TV, m > 0, with
) sy < 1. (2.109)

Then the operator ®(p) := exp(¥(yp)) satisfies P(p) —1d € OPS™™, Vo € T, with

”(I) - Id”—m,s Ss ‘l\Illfm,s . (2110)
Moreover the operator
IOESY )" € OPS™2™m  VpeT” (2.111)
>2\p) = Kl ) P .
k>2
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and it satisfies the estimate

|(I)>2|—2m s Ss |\I’”—m s|¥—m,s0 - (2.112)
If the operator ¥ depends in a Lipschitz way on the parameter w € Q, C Q and |\If\|L15l sy < 1, then the
estimates (2.110), (2.112)) hold replacing the norm | - |—m,s by the norm |- \|Llp

Proof. The Lemma follows by using the Taylor expansion of the operator ® — Id, the definition (2.111]), the

estimate (2.108) and the condition (2.109).
O

In the next lemma we compare the block-decay norm |- | defined in (2.76)) with the norm |- |, s defined

in (2.103).
Lemma 2.16. Let s > 0 and R(p) € OPS~~“%", o € T". Then

Rls SIRI-

s— —s'

The same estimate holds replacing | -|s by |- |Llp " and [ ] g a1, by |\Li:(7d)_1 , if the operator R depends
ERt —s= 5,

in a Lipschitz way on the parameter w € Q, C Q.

Proof. Let R = Op(r). By the representation (2.99), for any ¢ € T”, the operator R(y) is block-diagonal
(recall the definition ([2.51))) and it has the block representation

R(p) = diag,c,v=m[R(@]a:  [R(p)a =7(p,a)la, VYa€oo(V-A)

and for any ¢ € 7V R
RO =7, )]y, VYa€oy(vV-4A), VeZ

where we recall that 1, : E, — E, is the identity. Hence, using that ||l | gs < T (see (2.60)), recalling

the definition ([2.76]), one gets

RZ= sup > (La)*[ROEIHs = suwp > (o) |F(l,a)?|Llks
a€oo(v/—A) ez agoo(V—A4) gz
S osup Y (L) a)fet™t S sup r(a)2a® T SIRE (2.113)
a€ao(V=R) pegv acao(vV—A) 2
which is the claimed estimate. O

2.5 Hamiltonian formalism

We define the symplectic form W as

Wiz, 2] == (21, J22) 2, J = (01 (1)> . V1,29 € L2(TY R) x LE(T% R). (2.114)

Definition 2.1. A p-dependent linear vector field X (p) : L3(T4,R) x LE(T¢,R) — L3(T9,R) x LZ(T¢,R),
p € T%, is Hamiltonian, if X (@) = JG(p), where J is given in (2.114) and the operator G(p) is symmetric
for every ¢ € TV.

Definition 2.2. A ¢-dependent map ®(p) : LE(T¢,R) x LE(T4,R) — LZ(T4,R) x LE(T4,R), p € T is
symplectic if for any p € TV, for any 21, zo € L3(T4, R) x L2(T4,R),

W@ (p)[21], ©(p)[22]] = Wz1, 22]

or equivalently ®(p)T J®(¢) = J for any ¢ € T.
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Assume to have a differentiable map ¢ € T — ®(¢) € B(L(T*,R) x L3(T%,R)) and let us consider the
quasi-periodically forced linear Hamiltonian PDE

Oz =X(wt)z,  X(p):=JG(p), ¢eT’, zeLi(T%R)x LiT4LR). (2.115)
Under the change of coordinates z = ®(wt)h, the above PDE is transformed into the equation
dh = X4 (wt)h, (2.116)
where X (wt) is the transformed vector field under the action of the map ®(wt) (push-forward), namely
Xi(p) = ©uuX(p) i= () ' X (p)B(p) — B(p) w0 ®(p), VpeT”. (2.117)
It turns out that, since X () is a Hamiltonian vector field and ®(p) is symplectic, the transformed vector
field X (¢p) is still Hamiltonian, namely it has the form given in Definition (2.1).
2.5.1 Hamiltonian formalism in complex coordinates

In this section we describe how the Hamiltonian structure described before, reads in the complex coor-
dinates introduced in , l Let JG(p), ¢ € T” be a linear Hamiltonian vector field, with
G(p) € B (L%(']I‘d X L2 T4, R being a symmetric operator as in . The conjugated vector field
R(p) :==C1IG(p)C € B(LE( Td has the form

_ . Bilp)  Ra(p)
W“(—Rzm —le))’ (2.118)

where
Ri(p) := —A(p) — D(p) +iB(p) —iB(p)", Ra(p) := —A(p) + D(p) —iB(yp) —iB(p)" (2.119)

(recall that the operator R is defined in (2.28))). Note that the operators R;(¢), Ra() are linear operators
acting on complex valued L? functions L2(T%). Furthermore, since G(¢) is symmetric, i.e. A(¢) = A(¢)7,
B(p) = C(¢)T, D(p) = D(p)7, it turns out that

Ri(p) = Ri(p)*,  Ra(p) = Ra(p)",  VepeT” (2.120)

We refer to an operator R of the form (2.118]), with R; and R satisfying (2.120]), as a Hamiltonian vector
field in complex coordinates. The operator R(yp) in (2.118)) satisfies

R(p)u] =iJVyH(p,u), u:=(u,a), VoH=(V,H,ViH), (2.121)
where the real Hamiltonian 7 has the form
Ra(p) Ri(@))
H(p, Gg(p)u],u)y, @G = ( , 2.122
(o) = (Gl w. G() = (7)) (2122
ie. L L
H(p,u,a) = / Ri(p)[uludx + = | Ra(p)u],udz+ = | Ro(p)[a]ude. (2.123)
Td 2 Td 2 Td
and .
V.H=—=(V,H—-iVyH), VzH=—(V,H+iVy,H).
\[( P ) \/5( P )
By (2.120) we deduce that

Gp)=6(p)", VpeT”.
The symplectic form W defined in (2.114]) reads in the coordinates u = (u, @) as.

F[ul, UQ] = 1/ (Ul’ag — 'U,:[UQ) dr = i<u1 R Ju2>Li , Yup,ug € L(Q)(Td) (2.124)
Td

where
<111, u2>L§ = / uUg + U U dx Yui,us € Lg(Td) . (2125)
Td
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Definition 2.3. A p-dependent family of linear operators ®(¢) : L2(T9) — L2(T%), ¢ € T" is symplectic if
L[ (p)[wi], D(0)[ue]] = Tlur, u],  Vuy,up € L§(TY), Vo eT”.

It is well known that if R(p) is an operator of the form (2.118)), (2.120),namely by (2.121), it is a
linear Hamiltonian vector field associated to the real quadratic Hamiltonian H in (2.123)), the operator

() = exp(R(p)) is a symplectic. Assume that the map ¢ € T" — ®(p) € B(L3(T?)) is a differentiable
family of maps and let ¢ € T" — X () € B(L3(T%)) be a differentiable families of Hamiltonian vector fields,

ie. X(p) =iJG(p), G(p) = G(p)T for any ¢ € T”. Arguing as in (2.115), (2.116]), under the transformation
u = ¢(wt)h, the PDE
Opu = X (wt)u, welR”, teR, (2.126)

transforms into the PDE
Oh =X, (whh, Xy(p) = Pu.X(p) = (o) ' X(p)P(p) — () 'w-0,P(p), VYeeT’. (2.127)

If ®(p) is symplectic then the vector field X () is Hamiltonian, i.e. it satisfies (2.118)), (2.120). In the
following, we will consider also reparametrizations of time of the form

T=1t+ a(wt),

where o : T” — R is a sufficiently smooth function with ||||¢1 small enough. Then the function t — t+a(wt)
is invertible and its inverse is given by
t=7+a(wr).

by setting v(t) := A(wt)u := u(t + a(wt)), the PDE is transformed into
0v = JG (wr)v,  Gi(9):= ﬁgw +wa®), p)=1+w- ag,a(ﬁ + waw)) (2.128)

which is still a Hamiltonian equation.

3 Regularization procedure of the vector field L(yp).

As described in the introduction, in this section we carry out the first part of the reduction procedure of
the vector field L(¢p), defined in , to a block-diagonal operator with constant coefficients. Our purpose
is to transform the vector field L£(p) into the vector field £4(¢) which is a regularizing perturbation of a
time-independent diagonal operator, see (3.70). The regularizing perturbation R4 defined in is the
sum of a finite rank operator and a (p-dependent Fourier multiplier of order —M where the constant M is
fixed in . In the following subsections, we describe in details all the steps needed to transform the
vector field L(p) into the vector field L4(¢p).

3.1 Symplectic symmetrization of the highest order
We start by symmetryzing the highest order of the vector field

0 1 ,
Llp) = <(1 +ca(9)A + eR(p) 0> » peT

where we recall the definitions given in (1.11)), (1.3]). For any ¢ € T”, let us consider the transformation
2y (Al
— 1
1/1) = —I|DI*¢
Ble)

where 8 : T — R is a function close to 1 to be determined and for all m € R, the operator |D|™ is defined
by

S(p) : HY(T* R) x Hy(T* R) — H;" (T4 R) x HS (T4 R), ( (3.1)

DI () = |j|™e Vi # 0. (3.2)
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For any ¢ € T”, the inverse of the operator S(yp) is given by

S(p)~': HY(TLR) x HE YT, R) — HS 3 (T4 R) x H * (T4, R), (ZZ) - (( )f1|9[|)|22 . (3.3)

By (2.117), the push-forward of the vector field £(¢) by means of the transformation S(¢) is given by
Li(p) := S () = S(p) T L(9)S(p) — 5( )W - 0,8(p)

( 5 p)(w  0,6(9)) PRI BT
0+l AIDI A DI RGP Bl 00 (0) |

and we look for 3 : T — R such that

B72(p) = (1 +ea(9)B%(v) (3.5)
namely we choose . . .
T Mt eato)t |
Since
Bl 0,67 o) = -0 and —a = P
we get that
_ —ao(y) a1 ()| D|
6160 = (ool s o) iy ) 87
where

ag(p) = w'géf)(go), ar(p) == V1 +ea(p), RW(p):=3p)|D|"2R(¢)|D| % . (3.8)

Since 3 is a real-valued function, the operator S(p) is real for any ¢ € T and a direct verification shows
that it is also symplectic. Hence the transformed vector field £;(¢p) is still real and Hamiltonian. Note that
by , , the functions 3, a; and the operator R()) does not depend on the parameter w € €, whereas
the function ag(¢) = ag(p;w) depends on w € Q.

Now we give some estimates on the coefficients of the vector field £4(p).

Lemma 3.1. Let ¢ > so + 1. Then there ezists 64 € (0,1) small enough such that for any € € (0,6,), for
any sop < s < q—1, the following holds: the functions 3, ag, a1 defined in (3.6]), (3.8) satisfy the estimates

165 =1, llax = 15, laolls™ Sq e (3.9)

The remainder R™M () in - ) has the form

RO = Y4 (o) [ e+ o) [ 80 mom . (3.10)

k=1
p € TV, v € L3(T4R) (then it is symmetric RV (¢) = RMW (p)T, for all o € T) with
1B s, 1l Sg 1, Vhk=1,...,N. (3.11)
Furthermore, for any s > 1/2, the maps
o S(p), T — B(H3(T",R) x Hi(T%R), Hy* (T4 R) x Hy * (T4,R)),
o Sp) ™ T B(HYTH (I R) x HY (T R), (T R) x H3(T R))

are Ct maps.
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Proof. The estimates (3.9) follows by the definitions (3.6)), (3.8) and by Lemmata Let us prove the
estimates (3.11). By (3.8), recalling the definition of R(¢) given in (1.3), using that [D|~2 is symmetric,
one has that the operator R () has the form (3.10) with

b (g, ) == B(p)| D Fbi(p,x), i (p,2) = B(@)|D| 2en(p,z), k=1,...,N.

Then the claimed estimates follow by applying the estimate (3.9 and applying the interpolation Lemma
A direct verification shows that R™) () = R (¢)7 for any ¢ € T". O

3.2 Complex variables

Now we write the vector field £;(p) defined in (3.7 in the complex coordinates introduced in (2.38)), (2.39).
More precisely, we conjugate the vector field £ (¢) by means of the transformation C defined in (2.39)). Since

C is p-independent, we get that by (2.117)), the push-forward La(¢) := CuuL1(p) = C1L1(p)C is given by

_ (—ia1(@)| D] +ieRP (p)  —ao(p) +ieRP) () @ . RM(0)
e = (R bl rey) R e

Since a; and ag are real valued functions and R(Y) () (and then R(?) (i) is symmetric and real, the operator
L2(p) is a Hamiltonian vector field in complex coordinates, in the sense of the Definition ([2.118)). We recall
that the transformations C,C~" satisfy the property ([2.44)).

3.3 Quasi-periodic reparametrization of time

The aim of this Section is to reduce to constant coefficients the term a;(¢)|D| in the operator Lo(p) defined
in (3.12). In order to do this, let us consider a function « : T — R (to be determined) and define a
reparametrization of time of the form

R—-R, t—t+awt), we. (3.13)
It is easy to verify that if ||a|/c: is small enough, the above function is invertible and its inverse has the form
T T+ alwT). (3.14)

Note that the reparametrization of time induces also a diffeomorphism of the torus T
T =T, ¢~ p+alp) (3.15)

whose inverse is given by
™—T", 9—94+al). (3.16)

The corresponding composition operators A, A~! acting on the periodic functions h : T x T% — C are given
by
Ah(p, ) := h(p +walp),z), A h(, ) := h(0 +wa(?), ). (3.17)

According to (2.128)), under the reparametrization of time defined by
A(wt)v(t,z) = v(t + a(wt),z), Awt) 'v(r,z) = v(T + a(wr),z), (3.18)

the vector field L2(¢) transforms into the vector field

L5(0) = —— Lo(0 + wa(0))

1
p(9)
1 <—i(A_1a1)(19)|D| +ieRP (I + wa(¥))  —(Aag)(0) +ieRP (9 4 wa(v)) ) (3.19)

p() \ —(A7tag)(®¥) —ieRP (I + wa(¥))  +i(A ra1)(¥)|D| — ieRP (9 + wa(v)) ‘
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where
p(¥) =1+ w:d,a(d +wa(d) = Al +w - dpal(d). (3.20)

We want to choose the function a(¢) so that

(A~ "a)(9)
p(9)

for some constant m € R to be determined. The above equation leads to

—m, YieT, (3.21)

m(l+w-0pa(p)) =a1(p) VeeT”. (3.22)

Integrating on T" we fix the value of m as

= ﬁ /TV a1 (p) de (3.23)

and then, assuming that w € DC(v,7), for some ,7 > 0 (see the definition (2.16])), we get

—1[a1
a(e) = (@-9,) 7[5 1] (0) (3.24)
where the operator (w-8,) ! is defined by (2.15)). Note that, since the function a; is real valued, then m is
real and « is a real valued function.

By (3.19)-(3.24])), the vector field £3(«9) has then the form

~[(—im|D|+ieRBPI (W) az(V) +ieR) (V)
Ls(0) = < aa(d) — ROD)  imiD] —iiR<3)(19)> (3.25)
where
wr(@) = (DA ool @),  ROW) = p(0) RO + (). (3.26)

The operator L3(¢) is still a Hamiltonian vector field in complex coordinates, since L2(¢) is Hamiltonian
and the reparametrization of time A preserves the Hamiltonian structure (see Section [2.5.1)). We point out
that by (3.23)), , the constant m is independent of the parameter w € €, whereas by (3.24), (3.17),
, 1) the functlons a,@, p,az and the operator R(3) depends in a Lipschitz way with respect to the
parameter w € DC(,T).

Lemma 3.2. Let 7 > 0, v € (0,1) and w € DC(v,7) (recall (2.16)). Then there ezists a constant o =
o(T) > 0 such that if ¢ > so + o, there exists §, € (0,1) such that if ey~ < 4,, for all so < s < q— o the
following estimates hold:

e U e o e O L e [ e (3.27)

The symmetric operator R () defined in (3.26) has the form

N
RO =3 0000 [ A0+l 00) [ 000, @2

o €T, ve L3(T?), with

B EPO P EPD) < 1) k=1,...,N. (3.29)

Proof. The estimates follow by (3.23)), (3.24]), (3.26) and by the estimates by applying Lemmata
The formula ) follows by [B-10), B-12), B 26|) by deﬁnlng b =91 p_fb(l), ().~
2_%/)_%0,c yk=1,...,N and the estimates ( - ) follow by (3.11] and Lemmata O
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3.4 Symplectic reduction up to order |D|™M.

Introducing the notation

T := (‘Old 1(31) , Id: L3(TY) — L2(T?) isthe identity (3.30)

and renaming the variable ¥ = ¢, we can write the vector field in (3.25) as

Ls3(p) = imT|D| + Az2(p) + eRs(p), (3.31)
where
0 a E ) RG) )
Asy(p) = <a2(¢) 2(()@) . Rale) ;—1<_R(3)(8) _R(ggfg)> , pEeT (3.32)

and the operator R®)(y), defined in (3.26)), has the form (3.28). The aim of this section is to conjugate
L3(p) to the vector field L£4(¢) defined in (3.70) which is the sum of a diagonal operator and a regularizing

remainder. Since the operator R(*)(y) is finite rank operator of the form 7 it is already regularizing.
Hence in the following two Sections we neglect the operator R3(p) in and we work with
the vector field

LY (@) :=imT|D| + As(¢), @€ T. (3.33)

We compute the complete conjugation of L3 in Section [3.31}

3.4.1 Block-decoupling up to order |D|~M.

Given a positive integer M, our goal is to conjugate the operator Léo) in to the operator LgM) in
whose off-diagonal part @,; is an operator of order —M. This is achieved by applying iteratively
M-times a conjugation map which transforms the off-diagonal block operator into a 1-smoother ones. For
such a procedure we will use the class of ¢-dependent Fourier multipliers introduced in Section [2.4]

We describe the inductive step of such a procedure. We assume that ¢ > sg + o + M, where the constant
o = o(r) is given in Lemma and M € N is the number of the steps of this regularization procedure. In
this section we use the following notation: If n € {1,..., M}, s > 0, we write

a<psb <<= a<C(n,s)b

for some constant C(n, s) > 0 (that may depend also on d, 7,v).
At the n-th step, we have a Hamiltonian vector field

LS (9) = imT|D| + Ra(9) + Qn(e) (3.34)

where R, (¢) = Rp(p;w), Qn(p) = Qn(p;w), w € DC(~,7) are Hamiltonian vector fields of the form

— Op(r") 0 R 0 Op(Qn)
R, :=1i ( 0 _Op(r) Qn =1 —Op(a) 0 (3.35)
and 7, (p,-) € S7Y qn(p,+) € ST™. Moreover they satisfy the estimates
RSP QY Snge, Vso<s<q-n—o (3.36)

where 0 = o(7) > 0 is given in Lemma[3.2] Recall that the definition of the norm |- |, s is given in (2.103).

INITIALIZATION. The Hamiltonian vector field Lgo)(w) in (3.33)) satisfies the assumptions (3.34))-(3.36)), with
Ro() =0 and Qo(p) = Aa(p) € OPS°, by Lemma[3.2]

INDUCTIVE STEP. We consider a symplectic transformation of the form

Vp = exp(iVy,) (3.37)
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where the operator V,, has the form

o 0 Op(’l)n) —n—1
V, = (Op(vn) o) mes™ (3.38)
We write "
Va=Id+ iV, +Vas2,  Vaszi= Y. %Vf . (3.39)

In the above formula, with a slight abuse of notations we denote by Id : L3(T%) — L2Z(T9) the identity on the
space LZ(T9). Note that, by Lemma one gets V,, >2 € OPS™2("*1) We now compute the push-forward

(Vn)on L$ (). By ([2-127) one has

Va)or L8 () = V() 7 (L8 (0)Val0) = 0, V() ) (3.40)

Since w - 0,V (@) =w - 0, (Vn(go) - Id), by Lemmata [2.14} [2.15] one has

V() w - V() = —Val(e) w0, (Vn(go) - Id) copPS— L. (3.41)
Moreover

LY (0)Vulp) =7 Vo (9)mT|D| + [imT|D|, iV, ()] + Qu(p) + Ru(e)
+ [T (D], Va.52(0)] + (Bu(9) + Qu(9)) (Va (i) — 1d). (3.42)
Note that [imT|D|, V. >2(p)] € OPS™2"=1 € OPS™ ', (R,(¢) + Qu(p))(Valp) — Id) € OPS™2 C

OPS—"1, therefore the only off-diagonal term of order —n (which we want to eliminate) is given by
[imT|D|,iV,(¢)] + Qn(p). We want to choose V,,(p) so that

[imT| D], iVe ()] + Qn(#) = 0. (3.43)
By a direct calculation, one has
o 0 Op (2mljlvn(e, 1) + iaa 2, 11))
[imT'| D], iVa (@)l + Qn () = ) — )
Op (2mjlvn (: i) +iga (i) 0
(3.44)

Then [imT|D|,iV,] + Q. = 0 if we choose the symbol v, so that

gn(p, a)
2ma

v (p, @) 1= ) Yo e T, Vo € op(V—A). (3.45)

Note that since g, (¢, ) € S™™, the symbol v,(¢p,-) € S~ for any p € T,

Lemma 3.3. For any so < s < q —n — o, the operators V,(¢),Va(p) —Id € S7" 71 and V, >2(p) €
OPS=2n+1) " see (3.38), (3.39) (which depend on the parameter w € DC(v,T)) satisfy the estimates

Li
WVl PO L IVEL —Td|on s s Vaszl-atmr),s Sng € (3.46)

Proof. The estimate for the operator V,, follows by the definitions (3.38]), (3.45) and by the estimates (3.27)),
(3.36). The estimates for V,,(¢) — Id and V,, >2() follow by applying Lemma [2.15] using the estimate on
V(). O
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By (3.40)-(3.43), one gets

LY (@) = imT|D| + Ra(9) + Pa(e) (3.47)

where
Poi= (V' = 1) Ry + V! ([mT|D, Vo z2] + (R 4+ Q) (Vo = 1d) = - 0,(V 1)) (3.48)

Note that P, is the only operator which contains off-diagonal terms. In the next lemma we provide some
estimates on the remainder P,.

Lemma 3.4. For any so < s < q— o —n — 1, the operator P,(p) = P,(p;w) € OPS™ 1, w e DC(v,1)
satisfies the estimates
PSR S e (3.49)

—n—1,s ~oN

Proof. The Lemma follows by Lemma E the estimates (3.36]), by applying the property (2.107) and Lemma
- to estimate all the terms in ((3.48). O

By (3-47) and (3.49) the vector field L(nH)( ) has the same form (3.34)-(3.35) with Rp,11(¢), @nt1(p)

that satlsfy the estimates at the step n + 1. Since Lén) is a Hamiltonian vector field and V), is

symplectic, the vector field Lgnﬂ) is still Hamiltonian. We can repeat iteratively the procedure of Lemmata
and Applying it M-times, we derive the following proposition.

Proposition 3.1. Let v € (0,1), 7 >0, M € N, ¢ > s9 + 0 + M. Then there exists a constant 64 € (0,1)
(possibly smaller than the one appearing in Lemma-) such that for 8’7_1 < g, forany so <s<qg—o—M,

for any w € DC(v,7), the following holds: the symplectic invertible map Vas(¢) := Vo(p) o ...0 Var_1(p) €
OPS° satisfies the estimate

V6P, VLGP Sarg 1, (3.50)

and the push forward LéM)(go) = (VM)W*LéO)(<p) of the Hamiltonian vector field Lgo)(go) in (3.33) is the
Hamiltonian vector field

L5 () = imT|D| + Ras () + Qua (%) (3.51)
where Rar(¢) = Ru(p3w), Qum(p) = Qu(psw), w € DC(v,7) have the form
. Op(rm) 0 -1
Ry =1 ( 0 —op(rar)) rv(p,) €S7, (3.52)
. 0 Op(QM)> M
= — , ,)es 3.53
Q=i gy ane(p.) (359)
and satisfy the estimates
\Ru[MP0) 1@l Sars e, Vso<s<q—o—M. (3.54)

Proof. We need only to prove the estimates (3.50). For any n=1,..., M — 1 one has

(ERG)
1 + |Vn - Idl—n—l,s Sn,s 17

nlo,s <14 [V —1dlo,s

for any sg < s < ¢g—n—o. Since n < M, one has that the above estimate holds for any so <s < qg—o0—M.
Applying Lemma and using the above estimate one gets the estimate for Var. The estimates for
1% Ml follow by similar arguments and the estimates for VI, follow since |17M lo,s and then the lemma
is proved. O

The operator LgM)(ap) in (3.51) is a space-diagonal operator up to the smoothing remainder Qus(p) €
OPS~M_ The prize which has been paid is that there is a loss of reqularity of M derivatives with respect to
the variable ¢. In any case, the number of regularizing steps M will be fixed in (3.68).
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3.4.2 Reduction to constant coefficients of the diagonal reminder R,

Our next aim is to eliminate the ¢ dependence from the diagonal remainder Rys(p) of the Hamiltonian

vector field LgM)(ap) defined in (3.51)). In order to achieve this purpose, we look for a transformation of the
form

E(p) = exp(iE(p)),  B(p) = (Op(e((‘f’ i) _Op(e(zm), e(p,) €571 (3.55)

Note that for any ¢ € TV,

41 (Op(exp(£ie(yp, |1]))) 0
00 = 0 S ) (8.56)
and
Op(iw - Oge(ep, ) 0
E(0) W 0,E(p) = P( O 12 ) . ( o )) (3.57)
pliw - dye(p, -

Therefore by (2.117)), (3.56)), (3.57) and recalling the properties stated in (2.100f), the vector field LELM)(QO) =
EW*LgM)(cp) is given by

LM = e LMe — £(p)w - 9,€

Op (exp(—ie)) (im|D| ¥ iOp(rM)> Op (exp(ie)) 0
- 0 Op (exp(—ie)) (im| D] +i0p(rar) ) Op (exp(ic))
+E71QuE - ov(i-de) 0
0 Op(iw . 8¢e)
im|D| + Op(irp — iw - O,€) 0 »
- ( 0 imlD|+ Op(irM . (‘%e)) +E&QuE. (3.58)

Note that to shorten notations, in the above chain of equalities, we avoided to write the dependence on .
In order to eliminate the p-dependence from the symbol rp/ (¢, |j]), we need to solve the equation

—w - 0pe(p, |il) + ru(p, i) = c(li]) €R, Vi€ ZI\{0}, VpeT”
or equivalently
—w-0gpe(p,a) +ry(p,a) =cla), Y(p,a) € TV x go(V—A), cla) ER. (3.59)

Integrating with respect to ¢ the above equation, we determine the value of the constant c(«), namely

cla) := (2717)” /y ra(p, o) dp, Va € ao(vV—A) (3.60)
and then we choose
e(p,a) = (w- 830)71 (TM(ga, a) — c(a)) , Y(p,a) € TV x og(vV—A), (3.61)

(note that w € DC(v, ) and recall the definition (2.15)). By (3.58)), (3.59), (3.53), (3.56) one gets

LM (@) = €. LY (0) = iDMT + Qaraly), (3.62)
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where the diagonal operator D), is defined as

Dy == m|D| + Op(c(lj])) = diag;eza\ oy (mli] + c(|1])) (3.63)
and
Qurap) = E(@) ' Qum(p)E(p) =1 (—OP?C]MAQ Op(gMA)) . QM4 = quexp(—2ie) . (3.64)

Lemma 3.5. Let v € (0,1), 7 > 0, M € N, ¢ > so+0 + 27+ M + 1. Then there exists a constant
dq € (0,1) (possibly smaller than the one appearing in Propositi such that for ey=™' < 4,4, for any
so <s<q—M—o0—27—1, the following holds: for any o € oo(v/—A), the constant c(a) = c¢(o;w), given
mn , is real and defined for all the parameters w € DC(vy,T). Furthermore it satisfies the Lipschitz
estimate
sup  Je(a)|“PMa <pry e, (3.65)
agao(V—A)
The symplectic invertible operator E(p) = E(p;w) € OPS?, w € DC(v,71), defined in satisfies the
estimates
”gil Llp(’Y |gT|L1p(’Y Sarg 1 (3.66)

The Hamiltonian vector field Qura(¢) = Qualp;w) € OPS™  w € DC(v,7) defined in (3.64) satisfies the

estimates Lin(r)
Qa3 Sarg € (3.67)

Proof. Since the remainder Rj; in is a Hamiltonian vector field, then Op(ras) is self-adjoint, hence
by the symbol rys (g, a) is real, implying that, by (3.60), c(«) is real for any a € o(v/—A). The
estimate (3.65) follows by (3.60), (3.54). The estimates llow by ([3.56), (3.61)), (3.54), (3.65) (using
also Lemma [2.2] to estimate |lexp(ie)|s.)

The estimate (3.67)) follows by Lemma and by the estimates (3.54), (3.66). O

3.4.3 Conjugation of the operator L3 in (3.31))

Now we compute the conjugation of the vector field L3 = Lgo) + Rs in (3.31) (see (3.32)), (3.33)). First,
we link the number of regularization steps with the regularity g of the functions a(y), bx(p,x), ek (e, x),

k=1,...,N (recall (1.2)), (1.3)). We define

M= M(q) :=1q/2], 7 =n(r,d) = % +o+21+1 (3.68)

and we define the map B
T :=Vyok. (3.69)

By (3.51)), (3.62) one gets that
Ly(p) := (T)wxLs(p) = iDuT + Ra(p) (3.70)

where the diagonal operator D, is defined in (3.63)), T" is defined in (3.30) and the operator R4 is defined
by
Ra(p) = Qura(p) +eT(p) 'Ra(p)T(¢), ¢ eT”. (3.71)

Lemma 3.6. Lety € (0,1), 7 >0, ¢ > 2(sg + ), where I is defined in . Then there exists 64 € (0,1)
(possibly smaller than the one appearing in Lemma such that if ey~! < dq, for all so < s <[q/2] —
the following holds: the symplectic invertible operator T (p) = T (p;w) € OPS?, w € DC(v,7) defined in
(13.55)) satisfies the estimates

|/]-:|:1|L1P(7) ITT"LIP q 1. (3.72)

As a consequence one has T*! € C*(T", B(Hg(T?))).
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The remainder R4(p) = Ra(p;w), w € DC(vy,7) defined in (3.71) satisfies the estimates
RalyP) <S4 e (3.73)
where the block-decay norm | - |5 PO g defined in ([2.76)-([2.79).

Proof. By the choices of the constants in , one has that if sg < s < [¢/2] — T, then

d—1
s—l—TSM and so<s<q—-M—-—0c—-27—1.

The estimates (3.72)) follow by Lemma and by the estimates 7 . The fact that 7*! €
CH(T”, B(H§(T))) follows by applying Lemma

Now we prove the estimate (3.73)). We estimate separately the two terms in .

ESTIMATE OF Qar,4. By Lemma [2.76] one gets

Qa4 EP) < 1Qaral™ ),
2

sS

hence we can apply the estimate (3.67)), obtaining that |Qar,4 |\Llp(7 S1Qwm, ||L1]I\)4 Y SwMq € Sq €, since the

constant M = M(q) = [¢/2].
ESTIMATE OF 7~ 'R37. Recalling the definition of R given in (3.32) and using that the operator R(®) has
the form ([3.28)), defining

By =0, —ib™), Byp:= (P, 07), Crpi= (¥, =™y, Copi= (P ), k=1,...,N

we have that for u = (u,u) € L3(T?),

N
:ZBlk Cok, Wiz + Crr(Bak, W)Lz

k=
where we recall that the bilinear form (-, -)p2 is defined in (2.125)). Thus
(T7'RsT) ZBlk Cok, Wiz + Crp(Bag, w)pz

El,k = T_lBl,k, ég,k = TTBQ7]€7 5l,k = ’T‘lCl,k, 627k = TTCZk, k=1,...,N.
The operator €7 ~'R37 satisfies the claimed inequality, by applying the estimates (3.29)), (3.72) and Lem-
O

mata T3, 210

4 Block-diagonal reducibility

In this section we carry out the second part of the reduction of L£(¢) to a block-diagonal operator with
constant coefficients. Our goal is to block-diagonalize the linear Hamiltonian vector field £4(¢) obtained
in (3.70). We are going to perform an iterative Nash-Moser reducibility scheme for the linear Hamiltonian
vector field

Lo(p) := La(p) = Do + Ro() , (4.1)
where 0
(-D§Y 0 : . ,
Dy =i ( . Dm) . D = Dy = diag; g 0y (mli| + (1)) (4.2)
0
(see (3.63)) and Ro(p) := Ra(p), ¢ € T¥, is a Hamiltonian vector field of the form
R (9)  RE(0) (1) Wy p® @) (T
Rolp) =i| S (1) v R (@) =R (9)", Ry () =Ry (¢) (4.3)
Ry () —Rp'(p)
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satisfying, by (3.73]), the estimate
RolSP) Spe, Vso<s<l[g/2 -7 (4.4)

where the constant @ is defined in (3.68). Note that, according to the block representation (2.45)), the

operator ’Dél) can be written as

D(()l) = diagaeoo(M)y’gHa s :U’g =ma+ C(a) , Vae O'()(\/I) (45)

where I, : E, — E, is the identity (recall (2.3), (2.51)) and the real constants m and c¢(«) satisfy the
estimates (3.27)), (3.65). We define

Noy=1, Np:=N} k>0, x:=3/2 (4.6)
(then Ni11 = NJ¥, Vk > 0) and for 7,d > 0, we define the constants
s0:=2s9, a:=47+8d+3, b:=a+1l, S,:=[¢/2]-m—Db, with ¢>2(sp+7E+b). (4.7)

In order to state the theorem below, we recall the definition of the space S(E,,), @ € oo(v/—A) given in (2.67)),

the definition of the norm | - [[op(a,), @, B € 0o(v—A) given in (2.62)), the identity I, 5,a, 8 € oo(vV—A4) in
(2.63), the definition of My (A) in (2.64]) and the definition of Mg(B) in ([2.65).

Theorem 4.1. (KAM reducibility) Let v € (0,1), 7,d > 0 and let q satisfy (4.7). There exist, Ny =
No(g,7,d,v,d) € N large enough, §; = 6(q,7,d,v,d) € (0,1) (possibly smaller than the one appearing in
Lemma such that, if

eyt <4, (4.8)
then, for all k > 0:
(S1), There exists a Hamiltonian vector field
Ly(p) =Dr+Ri(p), T, (4.9)
_(-D o . (Dya (D1
Dy =i 0 W , D, = dlagaego(m)[Dk la, [Dy'la € S(Ea), Yae€oo(vV-4),
k
(4.10)
defined for all w € Q, where Q) := DC(v,7) (see (2.16)) and for k > 1,
. , ' B . adﬁd<£>7 y \/7 \/7
Qk = {w S Qkfl : ||Ak71(€,a,ﬁ) ||Op(a,ﬁ) < f’ V(K,Oz,ﬁ) e 7V x 0'()( —A) X 0'()( —A),
o7
ea ) 0> 9 ) ga 9 < Nj_ d A+ ga ) -t e} <<77
(4, a,B) # (0,0, ) (lya,3) < Np—1 and  [|A]_ (6, B) ||Op(,[3)_,y<a+ﬁ>
V(l,a,8) € 2 x ao(vV=D) x 0o(vV=D), (£,a,5) < Nk_l} . (4.11)
The operators Akifl(é,a,ﬁ) :B(Eg,E,) — B(Eg,E,) are defined by
Ay (b B) = w- flas + Mo (DR2]2) - Me(D2)5) (4.12)
k1, P) =W tla g LUk 1la R\FE118)» :
Af (6o, B) = w - M5+ ML(IDV,12) + Me(DM19) (4.13)
k—1\6, &, : o, L k—1la R k—11g/ - :

For k >0, for all a € oo(v/—A), the self-adjoint operator [ij)]g € S(E,) satisfies

1D — DIV <4 a5t Va € og(V=A). (4.14)
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The remainder Ry, is Hamiltonian and Vs € [sq, Sq],

Li Li —a Li Li
RelSP < ROl N2 IR < RSB Nia (4.15)

Moreover, fork > 1,
Li(p) = (Pr)wsLr—1(p),  Pr—1:=exp(Vy_1) (4.16)

where the map Vi_1 is a Hamiltonian vector field and satisfies

\‘I’k—1|§ip(7) < |Ro |T;jrpb(7) *1N27+4d+1N_a (4.17)
(S2), For all o € oo(v/—A), there exists a Lipschitz extension to the set DC(v,T), that we denote by
[5,&1)]3() : DC(v, 1) — S(E,) of [D,ﬁ”]g() : Q) — S(E,) satisfying, for k > 1,

~(1 1 Li _ Li — _ Li
1D — D81 S a5 Ru—a [5P) S Nitpa 50| Ro 5P (4.18)

Remark 4.1. The constants 7,d > 0 in (4.11) will be fized in the formula (5.1), in Section@ in order to
prove the measure estimate of the set Q%) defined in [4.77) (see Theorem

4.1 Proof of Theorem [4.1]

PROOF OF (Si),, i = 1,2. Properties (£9)-(@.15) in (S1), hold by ({1)-(E4) with [D{"]2 given in ([@&5) (for
(4.15) recall that N_; := 1, see (4.6])). Moreover, since the constants m and ¢(«) = ¢(o;w) are real, [D(()l)]g
is self-adjoint, then there is nothing else to verify.

(S2), holds, since the constant m is independent of w and c(a) = c(a;w), a € oo(vV—A), is already
defined for all w € DC(v, 7).

4.2 The reducibility step

We now describe the inductive step, showing how to define a symplectic transformation ®; := exp(¥y) so
that the transformed vector field Li41(¢) = (Pr)w«Lr () has the desired properties. To simplify notations,
in this section we drop the index k and we write + instead of k + 1. At each step of the iteration we have a

Hamiltonian vector field
L(p) =D+ R(p), (4.19)

where

(-DW 0 .
D:=i ( 0 5O | - D .= dlagaego(m)[D(l)]g, [DW]2 € S(E,) Va € op(vV=A)  (4.20)

and R(p) is a Hamiltonian vector field, namely it has the form

[ RY O RE (1) (1) [ y* @) (@) (T v
R=il =& o), RIQ=RV(e)",  RIP)=R7(p)", Vel (4.21)

Let us consider a transformation

() T3 (p)
P(p) :=exp(¥(p)),  Y(p):=i| —e — , peT” (4.22)
T -7V (p)
with U (@) = T ()*, T (p) = TP ()T for all p € TY. Writing
\I/k
O=Td+ T+ Usy, \Ilzgzzzﬁ. (4.23)
k>2
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By (2.127) we have ®,.L(p) = @((p)_l(ﬁ(go)@((p) —w- 3¢<I>(gp)> . By the expansion (4.23)), recalling the
definition of the projector operator IIyR given in (2.74)), one gets that

L(p)P(p) —w-0,2(p) = @(p)D+ ( —w- 9,V +[D,¥(p)] + HNR(sO)) + Iy R(p)
—w - 0, Us2(p) + [D, Ux2(0)] + R(p)(2(p) — 1d), (4.24)

We want to determine the operator ¥(p) so that

—w-0,%(p) +[D, ¥(p)] + Iy R(#) = N Raiag (4.25)
where recalling the definitions (2.73)), (2.74))
NRG 0
HNRdzag =1 N diag (1) : (426)
0 _HNRd'Lag

Lemma 4.1. (Homologlcal equation) For all w € Q) | (see ({@.1]] [@11)), there exists a solution ¥ of the
homological equation , which is Hamiltonian and satisfies

‘\IJ|L1p < N27+4d+1 71|R|L1p (427)
Proof. Recalling (4.21)), (4.22), The equation (4.25)) is split in the two equations

—iw- 9, () + [PV, TW ()] + iy RD (o) = iy R (4.28)

diag

—iw - 9,T® () + (DDTD () + T@ (o)D) +TIEyR () = 0. (4.29)

Using the decomposition (2.45) and recalling (2.72)), the equations (4.28]), (4.29) become for any a, €
0'0(\/ —A), lLe7Z”

w - FO () + POEO @) — [FO@OPDV) = S[INR (0) +ivRang ()] (4.30)
w - B )2 + POFED ()] + [FO ) DV) = xR (D). (4.31)

By the Definitions (4.12), (4.13)), namely setting

AZ(6, B) == w - o g + M (DV]3) = Ma(DV]5), A+ (4,0, 8) = w - fla g+ Mp(DD]S) + Me((D']5)
(4.32)
the equations (4.30)), (4.31)) can be written in the form

——=(2)

A= (40, ED () = —TINR (O +i[IvRy, (O, AT (40, HFD @) = ~i[IVR (0)2

o

Then, since w € QZ_H, recalling the Definition (2.74), we can define for any (¢, a, 3) € Z¥ X oo(vV/—A) %
oo(vV—A)

(o B)TRW@)E i (G f) # (0,00a), (La,f) SN

TO (8 .—
WOk = {0 otherwise (4.33)
GO = { AT ORI (e f) <N (434)
. 0 otherwise. ’
We have
d Qd g T K -
147 (60,8) lopasn < 0 1A% (60,8 lopan < i
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and since [T (£)]2, [T (¢))8 are non zero only if (¢, o, B) < N, we get immediately that
IEO@O s < N2y RO s, 1ED @O lus < Ny RO lws.  (435)
Hence, recalling the definition (2.76]) of the block-decay norm, one gets that
(W], S NTPETHRMY U] S Ny TR, (4.36)

Now, let wy,wy € Qk 1 As a notation for any function f = f(w) depending on the parameter w, we write

A,f = flwr) — . By (4:33)), one has

Aw[@ﬂ)(@]g =iALA (0, a, B)THRM (01))8 +iA (4, a, B;ws) T AL[RM (0)]7 . (4.37)
As in , one gets
IA7 (€ 0, B;w2) T ALRD (O] s S N2 AL[RD ()]s (4.38)

hence it remains to estimate only the first term in (4.37). We have

AuA~ (0,0, )L = —A™ (£, a, B;w1) ! (AWA‘(& o, ﬁ))A‘ (€, a, Brws) L, (4.39)
Therefore
B . NQT QdﬂZd
||AwA (f,a,,@) ”Op(a,ﬁ) < THA wA” (Z « ﬂ)HOp(aB (4‘40)
Moreover
A7 (Lo, ) = (w1 —wa) £ Lo+ ML (A [DW]S) — Mp(A,[DV]7) (4.41)

and using that, by (4L.5),

PO @] = s @)+ [PV =DV, with DY - DRSS 075, Vo€ oo(V-A), (4.42)
we get

M (Au[DV1G) = Ma(Au[DM]5) = Ay (4 — p) a5 + Mr(Au[DY — DIV12) —~ Ma(A,[DM — DIV).
Using that the constant m is independent of w, i.e. A,m = 0 and by recalling , , one gets

A (1 = 1§)l S [Aue(@)] +[Aue(B)] S sup_ e(@)Plor —wa| ST sup Je(@)|"POjwr — wol
acoo(v/—A) acog(vV—A)

Sq v Hwr — wal. (4.43)

By (4.42), (4.43) and using the property (2.66) one gets

I = ML(A[PDV]2) + Mr(Au[ D)) lopa,s SIAw (1 — 1) 1asllop(a,s)
+ [ Mr(AL DD — DV15) — M (ALDY — DY) op(a,s)
<q 57_1|w1 — wal. (4.44)

Recalling (4.41]), we get the estimate
|80A™ (60, B)llopas < (CO +C(a)er™ ) Jwr - wal,

for some constants C, C’(g) > 0, hence, by ([4.40), by taking §, in (4.8) small enough (so that C’(¢)ey~* < 1),
one gets that for ({,a,3) < N

[AGA™ (4, 0, B) op(as) S NTH 1y 2wy — wyl.
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The above estimate implies that

{ALA™ (60 ) RO (Gwn) Gl s S N*THE 2[R (6 w2l mrslon — wal (4.45)

By (4.37), (4.38), (4.45) we get the estimate

AT @O2lms S NTHy AR O)2 s + N>7H 2[R (6 w1)]0 s - (4.46)

Thus (4.36)), (4.46)) and the Definitions (2.76)), (2.77) imply

|\I/(1)|Is_4ip('y) 5 N27+4d+1,}/71|R(1)|£ip(7).

The estimate of ¥(?) in terms of R follows by similar arguments and then (£.27) is proved. O
By (4.24), (4.25), we get
Li(p) :=PuiLl(p) =Dy +Ri(p), €T, (4.47)

D, = D+1INRaiag, Ry = (<I>‘1—Id)HNRdmg+¢"1(H]L\,R—w~6¢\1122+[l),\Ilzg]—i—R(fI)—Id)). (4.48)

Lemma 4.2 (The new block-diagonal part). The new block-diagonal part is given by

pY 0 ] . !
Dy := D+ yRaiag = i < 0o B0 DY = DW 4+ TINRE), = diag,e,,(=x) [PV]S,  (4.49)
where N
D] = Dlg+[RD©O)s  if a<N (4.50)
+ e [D]> otherwise.
AS a consequence )
ID1s — PIalRE" S a5 RIGPT), va € oo(V=2) (4.51)

Proof. Notice that, since R () is selfadjoint, the operators [R()(0)]2 : E, — E, are self-adjoint, i.e.
[RW(0)]2 € S(Eq), for any a € oo(v—A) and using that [D(l)]”‘ is self-adjoint, we get that [’D(l)] is

(03

self-adjoint for all @ € og(v/—A). The formula (4.50) follows by (4.49) and recalling the definitions ,
(2.74). The estimate (4.51)) follows by

4 50 Lemma

1 Li = Li Li
sup  aS)|[D{V]e — [D)2)[HE” sup  aS||[RM(0)]2 ) He0 RIPD (4.52)
a€og(v/—A) acog(vV/—A)
which implies the estimate (4.51)). O

4.3 The iteration

Let k > 0 and let us suppose that (Si); are true. We prove (Si)g,1. To simplify notations, in this proof we

write | - |5 for | - 5P,

PROOF OF (S1)f41. Since the self-adjoint operators [D( )] € S(Eq) are defined on Q), the set Q) is
well-defined and by Lemma the following estimates hold on €} 41

‘\Ijkls ~S N2T+4d+1 _1|Rk|s ~S N27+4d+1N 1'7 |RO|s+ba Vs € [507 [Q/2] - ﬁ] (453)
In particular, by (4.8), (4.7), (4.6), taking J, small enough,

[Wilsy < 1. (4.54)
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By (4.54), we can apply Lemma to the map ®;' := exp(£¥},), obtaining that
[@r' —1d]s S [Prls, |95 —Tdls So [Wls, Vs € [s0,[a/2] = 7] - (4.55)
By we get Lr11(p) = (Pr)wsLr(9) = Diy1 + Riy1(p), where Dyiq 1= Dy + Iy, (R )diag and
Rip1 == (@77 — 1)Ly, (Ri)diag + P (Hﬁkm w0, Ug 5y + [Dy, Up ] + Rio(Bf — Id)) . (4.56)

Note that, since Ry, is defined on ) and ¥y, is defined on Q) ,, the remainder Ry is defined on QZH too
Since the remainder Ry, is Hamiltonian, the map ¥y is Hamiltonian, then @, is symplectic and the operator
L.+1 is Hamiltonian.

Now let us prove the estimates (4.15)) for Ry11. Applying Lemmata and the estimates (4.54]),

([@53), (£55), for any s € [so, [¢/2] — ] we get
|((I>];1 - Id)HNk- (Rk)diag|s ) |(I)1:1Rk(q)k - Id)‘s Ss N;?T+4d+1’771|Rk|s|Rk|50 (4.57)

and
|(I)1;1H1J\7kRk|s Ss |HJJ\_fkRk|s + N£T+4d+1771|Rk|S|Rk|SO : (4.58)

Then, it remains to estimate the term @;1 ( —w- 0,V >2+ [Dy, \I/k’ZQD in (4.56]). A direct calculation shows
that for all n > 2

—w - 0p(UR) + [Pk, U] = > W(—w- 0,V + [Dy, U] W7,
i+j=n—1

@25) ; -
Z v (HNk (Ri)diag — U, Rk) vy, (4.59)

i+j=n—1

therefore ublng , , Lemmata [2.6] u - 2.7| and the estimate we get that for any n > 2, for any
s € [s0, [q/2] —

\ — w0 () + [P W[ < 02C()" (10l (Rl + (Wil 20l Rale, )

E53). @59
< 2n2C (s)" N4y 7 R 5| R s - (4.60)

The estimate (4.60]) implies that

~

1
’w +0p W, >2 + [Dy, ‘I’k,zz]’ <> ;‘w -0, (YY) + [D, V]

S

n>2
(4.60) _ B C(s)"n2
< e R i, 3 SO
n>2 ’
58 N£T+4d+1771|Rk‘S|Rk|so : (4~61)
Using again (4.53))-([4.55) and Lemma 2.7 we get
’(I)];l( —w- 890\1/’%22 + [Dk, \I/k"zg]) L SS NET+4d+1’V_1|Rk‘S|Rk|50 , Vse [50, [q/Q} — ﬁ] . (462)

Collecting the estimates (4.57)-(4.62) we obtain
|Rk+1‘s Ss |HNkRk|S + NET+4d+1771|Rk|S|Rk|50 ) Vs € [507 [C]/2] - ﬂ] . (463)

Recalling that S, = [¢/2] — & — b, see (4.7), using the smoothing property (2.87) and by (.8)), , one
gets for any s € [sq, S|

IRisils Ss N P Riclsqn + Ny TR Relso , [Rittlstn S [Rilsn - (4.64)
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By the second inequality in (4.64))

[Rit1ls+o < C(8)[Rilstv < C(8)[Rols+6Nk—1 < [Rols+u Nk,

provided NV, ,?:11 > C(s) for any k > 0, which is verified by taking Ny > 0 large enough. Therefore, the second
inequality in (4.15)) for Riy1 has been proved. Let us prove the first inequality in (4.15) at the step k + 1.
We have

[Ric+1ls ’ NP Niea[Rolsio + NETHFIN 20y 7 Ro s 40| Rols4n < [Rolsn N,
provided
NkZilNk—a—ZT—4d—l
2C(s) ’
which are verified by (|4.4] - and ( . by taking Ny > 0 large enough and J, small enough.
The estimate (4.14) for D,(Cl_zl]o‘ [D(l)] follows, since

NP2NL > 2C(s), v HRolsgtn < Vk >0

- - -4.4
1) qa L1 1 1 Li _ Li _a _
H[IDI(H-)I}Q [D p(’y) < E ” D§+)1 D( )] ” o Sq|R' |5p(z E N 1 Nq o Sq€.

j=0

PROOF OF (82);41 We now construct a Lipschitz extension of the function w € Q/ ; — [D/c+)1( )% e
S(E,), for any a € og(v/—A). We apply Lemma M.5 in [41I] to functions with values in S(E,). Recall
that the space S(E,) is a Hilbert subspace of B(E,) equipped by the scalar product defined in , thus
Lemma M.5 in [41] can be applied, since it holds for functions with values in a Hilbert space. By the inductive
hyphothesis, there exists a Lipschitz function [51(:)]3 : DC(vy,7) — S(E,), satistying [D [N(l)( e [D(l)( )]
for all w € Q). For any a € oo(v/—A), let us define F o (w) := [Dl(i21( )]G [D(l)( e, we Q).
estimate one has that

a?

By the

Lip(y -

L — _ _
P allfn™ < a= 51 Ryl a=%1|Rols, 1o N2

and then by Lemma M.5 in [41] there exists a Lipschitz extension fkﬂ : DC(~,7) — S(E,) still satisfying
the above estimate. Then we define

Dl = B8 + Fray Vo € oo(V=A)
and the claimed estimate (4.18)) holds at the step k + 1.

Corollary 4.1. (KAM transformation) Let q/2 > so + @ + b + 2s9 + 2 (recall (3.68)), (4.7)). Then
Yw € meOQZ the sequence

(AI;k =PgoPio---0D (4.65)
is in C*(TY, B(H})) for any 0 < s < S, —2—2sq (recall the definition of S, given in ([4.7))) and it converges
n || - ”Icqi%rﬂ'/')B(HS)) to an operator @, which satisfies

+1 Lip(y -1
H‘b IdHCl(’H‘V B(H3)) SqeYr - (4.66)

Moreover ®L! is symplectic.

Proof. To simplify notations, we write | - | instead of | - Lip() . First, note that for any k£ > 0

O =exp(¥p) =Id+ My, M=) —£ (4.67)
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with

’ ’ &3
Mils Se [l <o [Ro|MRMy INZTHaTI N 0 o mINZTHATI N2 ey <5< 5, (4.68)

Therefore, by applying Lemma m(zz) one gets that for any 0 < s < S, —2 —2s¢, My € W2>(T", B(H}))
with [|Mpllwz.e (v £z Sq €7 NpTH4ati N2 - By the property (2.11)), applied with p = 1 and E =
B(H}), one gets that My, € C'(T, B(H})) and

IMiller v Bag) < IMellw2e v saag) Se ey "N HHIN2, VO< s <5, —2—2s. (4.69)

Therefore one gets that @), € C*(T”, B(H3)) and hence &), € C*(T”, B(H})) for any k > 0, using the algebra
property of the space C*(T", B(H})). By (4.65)-(4.67), for any k > 0, one gets

Bpy1 = Bp®pi1 = Op + PpMyy1, (4.70)
therefore (4.69) imply that
|1®kitller (v sy < 1Pkller (e sy (1 + (@), enla) = Clg)ey ' NETTIN 2. (4.71)

Iterating the above inequality, one then prove that for any k£ > 0

|1®kllcr (v Brs)) H (1+¢5(q (4.72)
Using that
k—1 k—1
D). @D, @)
n([I0+e@) => mi+e@) <Y a@ = Gilo),
=0 j=0 720
One gets that _
||(I>k||cl(rﬂw B(HS)) < exp(C’l( )) =: Cg(q), Vv Z 0. (473)
Now we show that ((I)k)k>0 is a Cauchy sequence with respect to the norm || - |1 (1 s(rg))- One has
~ ~ k+j—1 _ _ - k+j—1
1®krj — ller e sy < D I1®is1 — Piller (v peag)) > 1251 (v g Mt ler (rv s
i=k i=k
ED), @59
Se ey Y NIHINT S ey T NETHTIN 2 - 0 (4.74)
i>k

by using . Thus & converges with respect to the norm [ - [[c1(1v s(mz)) to an operator ®o, which
satisfies the estlmate
[®oo —Idler (v Baag)) Sq 7"
Similarly, one can show that _
O t=0 o 0d;!

is a Cauchy sequence and since &J;l&)k = Id for any k£ > 0, &);1 converges to 1 and the estimate (4.66)
for @ holds. Since ®; is symplectic for any k > 0, ®, is a symplectic map too.
O

Let us define for all « € o¢(v/—A), for all w € DC(y,7), the self-adjoint blocks [D(()é) (w)]% as
D W)a = lim DV (w)]3 (4.75)

e}
v——+00

It could happen that QW =0 (see (4 ) for some kg. In such a case the iterative process of Theorem u
stops after finitely many steps. However, we can always set [D(l)] [D(l)] Vk > ko, for all @ € o¢(v/—A)
and the functions [Dé})()] & :DC(y,7) — S(E,) are always well defined.
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Corollary 4.2. (Final blocks) For any k > 0, € o¢(v/—A),

IPQ)a — DV 121HE™ Sq e SenN2y, IDD1S — DEVISNHEY Sq a5 (4.76)
Proof. The bound follows by , , by summing the telescoping series. O
Now we define the set
0% i~ {w € DO sz (0, B5) oy < T2, v(t.0,0) €2° x o(v/B) x oulvB),

1 or v
(6:08) # 0.0.0). 1AL, 550) onga < gl ¥(6,0,6) € 2 x ooV =E) x 00((\/7?)}
4.77

where the operators A% (¢, o, 3) = AL (¢, a, B;w) : B(Eg, Eo) — B(Eg, E,) are defined for any w € DC(v, 1),
(Lo, B) € Z¥ x o9(vV—A) X go(v/— A) as

AL (0,0, B) :=w - la 5+ ML([DY]2) — Mr(DY]5) (4.78)
AL (o, B) i= w - a5+ ML (DD]2) + Mp(DL1). (4.79)

Lemma 4.3. One has
QX C N0 - (4.80)

Proof. 1t suffices to show that for any k& > 0, Q27 C Q]. We argue by induction. For k = 0, since
Qg = DC(v,T), it follows from the definition (4.77) that Q27 C QF. Assume that Q% C Q] for some k > 0
and let us prove that Q% C Q] 41 Letw € Q27. By the inductive hyphothesis w € Q], hence by Theorem

the operators [D ,(cl)( )]¢ € S(E,) are well defined for all a € og(v/—A) and [D,(Cl)(w)]g = [:/5,2”(@]3.
Let o, 8) € Z¥ x oo(vV—A) x o9(+/—A) with ({,a,0) # (0,a,«), ({,a,8) < Ni. By the definitions
(4.12)), (4.13), also the operators A,f(ﬁ, a, B;w) are well defined. Since w € Q2 the operator AL (¢, a, 3;w)

is invertible and we may write
A7 (40, Biw) = Ax (b Biw) + AL (6o, Biw) = A (6o, B50) (Lo + A (6 0, Biw) AL (G Biw))
where .
A% (6o, Biw) = My (P @) - DY @)]5) — Ma (1D @)} - P @)5)
By the property (2.66|) and by the estimate (4.76])
1AL @, B;w) lop(as) Sq Niye(a e+ 575). (4.81)
Since (¢, v, 3) < Ni, one has

e ﬁ N2 e(a™5 + g=5)

 ED-ED 1
_ p 1
- 2
for No > 0 in (4.8)) large enough and J, in (4.8) small enough. Thus the operator A; (¢, o, B;w) is invertible,
with inverse given by the Neumann series. Hence

”Ago(& a, B3 w)—lA;}(& jvj/§ W)HOp(a,ﬂ) S_,q

Sq NIPHN2 e (4.82)

AL (4, a, B;w ) 'op(a.8)
(4, o, B;w) A (L, o, B50) |l op(a,p)

_ B ETD (£)™ad3e
SNAL (0 B50) opas) 2 ”7

|‘Al;(€’avﬂ; ) ”Op(a,ﬁ) =71_ HA
S

By similar arguments, one can also obtain that [|A] (¢, a,B;w) | op(a,s < 7(a+ﬁ for any (¢,«,3) €
7" x oo(vV—A) x ao(vV—A) with (¢, a, 3) < Ny, then w € Q) and the proof is concluded. O
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To state the main result of this section we introduce the operator

W,
Dov = Doo(w) ::i( D°;< ) p“?<w)> L DO (W) = ding, ey v DL @IS, (483)

for any w € DC(v, ), where the self-adjoint operators [Dg) (W)]¢ € S(Eq), o € gg(vV—A), are defined in
(4.75). For any w € DC(~,7), the vector field Do (w) is a p-independent block-diagonal bounded linear
operator Dy, (w) : Hy — H5™!, for any s > 1.

Theorem 4.2. Let q/2 > so+ i+b+2sg+ 2. Then there exists a constant 6, = §(q, 7,d,v,d) > 0 (possibly
smaller than the one in (4.8))) such that if
7*1 <4y, (4.84)

on the set Q% , the Hamiltonian vector field Ly(y) in . is conjugated to the Hamiltonian vector field Do
by P, namely for all w € Q%
Doo(w) = (Poc)wnLo(p3w) - (4.85)

Proof. Since 227 T Ng>0§2,, the estimate (4.66)) holds on the set Q27, and
Li
|oL! — Id||cszU B(Hs))Nquy -t V0 <s<S,—2s90—2.
By (L16), (I53), for any k > 1, we get

L1(0) = (P_1)wnLo = Pp(p) " (co(@%k(@ fwﬁw(f)k(ga)) = D+ Ri(p), P), = Bgo...0P, . (4.86)

Note that, for all £ > 0, for any s € [0, Sg]

i Li Li
D) — D}(Cl)&p(v) <P — Dl(cl)|sqp(7) —  sup asqll[plgl)]g — DY) p p(7)
a€oo(vV—A)
@) e - - ot
<, eN2 FER 0 and [Ry|MPO) eN2, 0. (4.87)

Hence, |£r — Do |L1p(7) P20 0 for all 59 < s < Sy. By applying Lemma [2.11 and the property (2.11)),
Ry € Whee (T, B(HS)) C C°(T¥, B(H})) for any 0 < s < S, — 259 — 1 with

Rellcors srg)) < Rkllweerr ss) S Rels+2s0+1 — 0

and
||Dk - DOO”B(HS) S |Dk - Doo|s+250 —0.

Thus, £ — Do with respect to the norm || - [lco(rv s(mg)), for any 0 <'s < S; —2so — 1. Since, by Lemma

41) o koo ®E! with respect to the norm || - HI;%TWV)B(Hg)), formula (4.85) follows by taking the limit for
k — 400 in (4.86). O

5 Measure estimates

In this Section we estimate the measure of the set Q2 defined in (4.77). We fix the constants 7 and d in

d:=2d, Ti=v+4d. (5.1)
We prove the following Theorem:

Theorem 5.1. Under the same assumptions of Theorem[{.3, one has

2\ Q%] =0(v).
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The rest of this section is devoted to the proof of Theorem [5.1]
By the definition (4.77) one can write that

Q\ Qgg = (Q \ DC(~, 7')) U (DC(’)/,T) \sz) . (5.2)

By a standard volume estimate one has

Q\DC(v, 1) - (5.3)
Using again the definition (4.77)), we write
DC(v,7)\ Q% = U R, ., B) U QU,a,3), (5.4)
(l,a,B)EZY X0 (v/—A)X00(vV/—A) (l,a,B)EZY X o0 (v/—A) X 00 (V/—A)

(€,0,8)#(0,0,)
where for any (¢, a, 5) € Z¥ x o9(vV—A) x ao(vV/—=A4), (¢, a, 5) # (0, a, &),

R, a,pB) = {w € DC(vy,7) : A (¢, a, B;w) is not invertible or it is invertible and

B B adﬁd<€>r
A% (4 o, B;w) M lop(a,8) > 2 } (5.5)
and for any (¢, «, 8) € Z¥ x oo(vV—A) X go(v/—A)
QU a,p) = {w € DC(v,7) : AL (¢,a, 3;w)is not invertible or it is invertible and
182.(6.0.8:0) otas > it }. (5.6
T 2y(a+ B)
By (4.5), for any « € og(v/—A), we can write
DY = 4ol + Rocas Rooo:= [PV — D)2 € S(Ea)
which is self-adjoint and Lipschitz continuous with respect to the parameter w € DC(v, 7). We set
spec(Reoo = {r(a) k=1,...,d,} with r{w) <l w) < ... < i) (W), (5.7)
where n,, is the dimension of the finite dimensional space E,
N :card{j € 24\ {0} : |4 :a} ~ a7t (5.8)
By the property (7.2)), one has that
o Lemma(i) (4.76) 3
@) < |RwollsE.) < Sy ca (5.9)
uniformly for any w € DC(~y, 7).
Furthermore, by Lemma [7 . the functions w — rl(c )(w) are Lipschitz with respect to w, since
(@) (@) Lemmal|2.4} (i)
e (wi) =7 (w2)] < [[Roc,a(wn) — ROO,Oc(w2)||B(]Ea) < [ Roc.a(w1) = Roo.a(w2)llms
.
< ||Reo, a|| lwi —w2| <, ey a1 w — wyl. (5.10)

We also set

spec([DY (W)]2) == A (W), k=1,...,na} with A (@) <A (W) < ... <A ().

o
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By Lemma [7.2}(ii) we have that

A (W) = 1 (w) + 7 (w ) & maJrrff)( ), = (@) + ™, VE=1,... na4. (5.11)
By the estimates (3.65)), (5.9)), (5.10)), one gets
|r<">|Lip<v> <sea”l, Vaeog(V=A), Vk=1,...,n,. (5.12)

By the definitions , and by Lemmata [2.5| . . ii) the operators A% (¢, a, 8) : B(Eg,E,) —
B(Eg, E,) are self- adjomt Wlth respect to the scalar product (2.59] - and the following holds:
for any (4, o, B) € Z" x oo(vV—A) x 0o(vV—A), (¢, o, 8) # (0, o, )
spec(A;(ﬁ,a,B;w)) = {w-ﬁ—i—/\,(ca)(w) — A§B)(w), k=1,....,nq, j= 1,...,nﬁ}
and for any (¢, «, 3) € Z¥ x co(vV/—A) X go(v/—A)
spec(A;ro(é,a,ﬁ;w)) = {w~€+)\,(€a)(w) —|—)\§ﬂ)(w), k=1,...,nq, Jj= 1,...,ng}.

Therefore, recalling the definitions (5.5, (5.6) and also by applying Lemma [7.2}(iii), one has

Nneg NB
R(t,a,8) € R(t,0, ) := | J |J Brj (6,0, B), V(L. B) € Zx00(vV=D)xo0(V=A), (£,a,0) # (0,0, ),
k=1 1
= (5.13)
Nng NB
Qla,8) C Q. B) = | | Quj(l.a. B), VL, B) € 2 x 0o (V=A) x 00(V=A) (5.14)
k=17=1
where for any (¢, a, 8) € Z¥ x 0o(vV—A) x oo(V—A), ({,a,8) # (0,0,a), k=1,...,n4,=1,...,ng
~ N 2
Ry;(l, o, B) := {w € DC(v,7): |lw- £+ /\,(C )(w) - /\§-’8)(W)| < W} (5.15)
and for any (¢, «,3) € Z" x 0o(vV—A) X 0o(vV—=A), k=1,...,nq, j=1,...,n8
Quj(t,0,8) i= {w € DOy, 7) ¢ o £+ A (@) + A7 ()] < W} (5.16)
Thus, by one has
DC(y,m)\ Q% < U R(t, 0, 3) U Qt,a,B).  (5.17)
(Z,a,ﬁ)ez(;xaﬂg)(ﬁ)x)ao(\/j) (£, B)EZY X 00 (V—A) x 00 (v/—A)

Lemma 5.1. (i) If R(l, o, B) # 0, then |o — 8] < (£). Moreover for any o, 8 € oo(v/—A), o # 3, then
R(0,a,8) = 0.
(1) If QV(E, a,B) # 0, then o, B < (€). Moreover for any o, 3 € ao(v/—A) then @(0, a,B) =0.

Proof. We prove item (i). The proof of item (ii) is similar. Assume that R(¢,c, ) # . Then there exist
kEe{l,....,na}, j €{1,...,ng} such that Ry;(¢,, ) # 0. For any w € Ry;(¢, «, 3), one has

a 2
W £+ A (@) = AP ()] < )

()7 adpe
and using (5.11]) and the estimates (3.27)), (5.12)), for £ small enough, one gets that
o 1 _ _
N = A = Sla = Bl = Cla)e(a™ + 571 (5.18)

44



implying that
2y -1 -1
loo — B < |wlle] + Oraip +C(ge(a™ +877) < (0).
Now we show that if o, € og(v/—A) with « # (3, then Ekj(o,a,ﬂ) = ( for any k € {1,...,n.}, j €
{1,...,ng}. By using (5.18)) and Lemma (zz), for € small enough one gets

(@) _ ()| > (l l) gzt Gy 1
I\ AT =Gy a+ﬁ Z 38 (5.19)
for some constant C; > 0 implying that Ekj(O, a,3) = 0 by the definition (5.15), since d > 1 and taking
0 <y < Cy. Item (7) then follows by recalling the definition of R(¢, o, 8) in (5.13)). O

Lemma 5.2. For ey~! small enough, the following holds:

(Z) For any (€,a,ﬂ) S/ UO(V _A) X UO(V _A)7 (é,()[,ﬁ) 7& (0,0{704), Zfé(gy()‘?ﬂ) 7& @ then |E(€)a7ﬂ)| /S
,.Yadflfdﬂdflfd<f>frfl'

(ﬂi;ggfiori?ny (Lo, B) € Z¥ x oo(vV—A) x ao(vV—=A), if @(Z,a,ﬂ) # () then |©(€,o¢,,6’)| < yad=134"Ha +

Proof. Let us prove item (¢). The proof of item (i¢) can be done by using similar arguments. Let (¢, «, ) €

Z¥ x oo(vV—A) x oo(vV/—A) with (¢,, 8) # (0,, ). By (5.13), it is enough to estimate the measure of the
set Ry;(¢,,0) for any k=1,...,nq4, j =1,...,ng. Since, by Lemma(i)7 ¢ # 0, we can write

w—|§|s+v, with v-£=0.

and we define

6(s) == |tls + A (s) = A (s) (5.20)

)\,(f)(s) = )"(ca)(és + v) , Yacoy(W-A), Vk=1,...,n,
and according to ,
M (s) =ma+r(s), |00 g eat (5.21)
Using that | - |"P < y~1| . [MP(Y) | recalling that m does not depend on w (see Section , one gets

I6(s1) — d(s2)] > (|€| _ (|r§_a)|lip + |r](€/3)|lip))|81 — 59| > (lgl _ 7—1(‘r§_a)|Lip(’Y) + |r](f)|Lip('Y)))|81 — 59|

(5.21) /¢
> (WI - C(q)m’l) |1 — 52\2%@1 — 59 (5.22)

1

for ey~* small enough. The above estimate implies that

¢ 5 gl
{5. |£|S+U€Rkj(£’a7ﬁ)}‘”vadﬁd<£>7’+1

and by Fubini Theorem we get |]:?kj(€,a,ﬁ)| < W. Finally recalling (5.8) and (5.13), we get the

claimed estimate for the measure of ﬁ(ﬁ, a, 3) and the proof is concluded. O

PROOF OF THEOREM [5.1| CONCLUDED. By (|5.17)), by applying Lemmata and recalling the definitions
of the constants 7 and d made in (5.1]), one gets the estimate

2 7Y Y
[DC(y, 1)\ QL] S Z () I=d(jryaFI=d (g)r+1 + Z (¢y+1-2d S (5.23)
ez’ ,j.5'ez? ez’ ,j5'ez?
1711571540

Hence, the Theorem follows by (5.2)), (5.3, (5.23).

45



6 Proof of Theorem and Corollary [1.1]

In this section we prove Theorem [I.I] and Corollary [[.1] We define
Wi(p) :==8(p)oC,  Walp) =T(p)oPxo(p), ¢€eT” (6.1)
where the maps S, C, 7 are defined in (3.1), (2.39), (3.69) and the map &, is given in Corollary We

define the constants
§=q(v,d) :=2(s0 + i + b+ 250 + 2)

and for any g > ¢, we define
S, =6(q,v,d):=85,—2—-2s0=[¢/2]| -G —b—2s9 — 2
where we recall the definitions (3.68), (7)), (5.1). By Lemmata[3.1] and Corollary [£.1]one gets that

for ey~ < §, (for some constant J, small enough depending on ¢, v,d), for any ¢ € T, for any w € Q% the
maps W;(p) = W;i(¢;w), i = 1,2 are bounded and invertible with

Wa()  H(TY) — B3 (T4 R) x B (T4 R), Wi(e)™!: HSTH (T4 R) x B3 (T4 R) — H(TY),
for any 1/2 < s < &, and
Wa(p)E! H(TY) — HY(TY), V0<s<6,.

Let 1/2 < 5 < &, and (v, ) € H+t3(T4 R) x H*~2(T% R). For any w € 92, defining Wy, () :=
Wi (@) o Ao Ws(p), by the change of variable

(v(t, ), ¥(t, ) = Weo(wh)[u(t, )], u= (u,) (6.2)
(recall that A is the reparametrization of time defined in (3.18])), the Cauchy problem

(00, 0r0) = L(wb)[(u, )]
{<v<o, 2 5(0,)) = (KO, ). 03
is transformed into
{i’f(‘g ST = ) = W) o W) 0, u) (64)

-ipd) 0
o
block [Df,?]g is self-adjoint, one has that the operator Dg) is self-adjoint, i.e.

where the operator D, = < ) is defined in (4.83)). Note that, since for any o € o¢(v/—A), the

Py = (DY) (6.5)

Then, we consider the Cauchy problem

Oy = —iD((,é)u (6.:6)
u(0,-) = u® .
We prove that
(s Mlas = 1w a vt e R. (6.7)
Since DY is a block-diagonal operator, one can easily verify that the commutator [|D|S,D<(X1>)] = 0 and

therefore

. * s s (6.5)
ot =~ (100 — (00 ) prnpn) Do

x
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which implies .
Now, by (6.2) one has that for any 1/2 < s < &,

Gt ), oD ey pomi Sall Ao Walwt)ult iy Sq (V2w +walwr))u(r + alwr), )ag

16.7)
Sella(r + alwr), )l ’HUOHH ’ VO Ny x

2 ~q

n 1
H) 2xH, 2

Set v = &%, with 0 < a < 1 and Q. := Q%. Then ey~ ! = ¢!7% and hence the smallness condition
ey~! < 4, is fullfilled by taking e small enough. Furthermore, by Theorem since v = €%, we get that
(1.12) holds and therefore Theorem and Corollary have been proved.

7 Appendix

We prove some elementary properties of the set og(v/—A) defined in (2.2).

Lemma 7.1. (i) Let p >d. Then ) e, (y=nya P <+oo. Ifp>d+v, 3> iezr (L, )P < +oo.
a€og(v/—A)
(1) Let o, B € ao(v/—A) with o # 3. Then there exists a constant C > 0 such that |a — 3| > C(a™! +371).

Proof. PROOF OF (i). By the definition (2.2]) one has that

DR V) B S () S N (A )

a€og(vV/—A) Jjezd Lez” Lez”
aoo(vV=2RA) jezs

the first series on the right hand side converges if p > d and the second one for p > v + d.
PROOF OF (i%). First, we note that if 2,y € N, & # y one has that

|\/5—f|>max{\/> \}}>C(\}5+\}y),

for some constant C' > 0. Since by the definition of oo(v/—A), if o, 8 € oo(vV—A), a # 3, they are square
roots of integer numbers, i.e. o2, 3% € N, the claimed inequality follows. O

Now we recall some well known facts concerning linear self-adjoint operators on finite dimensional Hilbert
spaces. Let H a finite dimensional Hilbert space of dimension n equipped by the inner product (-, -)3;. Let
us denote by B(H) the space of the linear operators from H onto itself, equipped by the operator norm
| - I3(r)- For any self-adjoint operator A : H — H, we order its eigenvalues as

spec(A) := {A1(4) < X (A) < ... <\ (4)}. (7.1)

We recall the well known property
| AllB(r) = maxyespec(a)|Al - (7.2)
Moreover the following lemma holds

Lemma 7.2. Let H be a Hilbert space of dimension n. Then the following holds:
(i) Let A1, Az : H — H be self-adjoint operators. Then their eigenvalues, ranked as in , satisfy the
Lipschitz property

Ak (A1) = Ak(A2)] < [|Ar — Azl Vk=1,...,n

(i) Let A =nldy + B, where n € R, Idy : H — H is the identity and B : H — H is selfadjoint. Then
Ae(A) =n+ M\ (B), Vk=1,...,n

(791) Let A : H — H be self-adjoint and assume that spec(A) C R\ {0}. Then A is invertible and its inverse
satisfies
1
A1 = — .

ming= .
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