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Abstract

We develop a test, based on the Lagrange multiplier [LM] testing principle, for the value of the

long memory parameter of a univariate time series that is composed of a fractionally integrated

shock around a potentially broken deterministic trend. Our proposed test is constructed from data

which are de-trended allowing for a trend break whose (unknown) location is estimated by a stan-

dard residual sum of squares estimator applied either to the levels or first differences of the data,

depending on the value specified for the long memory parameter under the null hypothesis. We

demonstrate that the resulting LM-type statistic has a standard limiting null chi-squared distri-

bution with one degree of freedom, and attains the same asymptotic local power function as an

infeasible LM test based on the true shocks. Our proposed test therefore attains the same asymp-

totic local optimality properties as an oracle LM test in both the trend break and no trend break

environments. Moreover, this asymptotic local power function does not alter between the break

and no break cases and so there is no loss in asymptotic local power from allowing for a trend break

at an unknown point in the sample, even in the case where no break is present. We also report the

results from a Monte Carlo study into the finite-sample behaviour of our proposed test.
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1 Introduction

In this paper we consider the problem of testing for the order of integration, d say, of a fractionally

integrated time series process that may be stationary or non-stationary around a deterministic trend

function. Our point of departure from the extant literature is to allow for the possibility that the

trend function is broken and, moreover, that the change in trend, should it occur, takes place at

an unknown point in time. We follow the approach of Robinson (1994), Tanaka (1999) and Nielsen

(2004) who construct Lagrange Multiplier [LM] test statistics in the frequency domain and time

domain, respectively. These statistics are computationally convenient in that they avoid having to

estimate the order of integration under the alternative.

For the case where the form of the deterministic kernel is known (which in the current context we

interpret to mean that any putative break point in the deterministic trend function is taken as known,

and that it is known whether a trend break is present or not), Robinson (1994), Tanaka (1999) and

Nielsen (2004) show that residual-based variants of these LM tests are asymptotically locally most

powerful against a class of (local) alternatives under Gaussianity and have asymptotic critical values

given by the chi-squared distribution with one degree of freedom [χ2
1], regardless of the value of the

long memory parameter being tested. Although based on different and hence not directly comparable

models, these large sample properties contrast with those of most popular unit root tests, such as that

of Dickey and Fuller (1979), and stationarity tests, such as that of Kwiatkowski, Phillips, Schmidt and

Shin (1992). In particular, the limiting null distributions of unit root and stationarity statistics tend

to be non-standard and depend on the functional form of the fitted deterministic, differing between the

no trend break and trend break cases, and dependent on the location of the trend break. Moreover,

where a trend break is fitted but not actually present in the data, these tests show a considerable

decline in asymptotic local power relative to the case where a break is not fitted.

In practice, both the location of a putative break point and, indeed, whether or not a trend break

has even occurred will typically be unknown to the investigator. As a result, we therefore consider a

residual-based LM-type test which allows for the possibility that a deterministic trend break occurs at

an unknown point in the sample. The timing of the (putative) trend break is estimated by applying

a conventional minimum residual sum of squares [RSS] criterion across all candidate break points to

either the levels or first differences of the data depending on the value specified for d by the null

hypothesis. Specifically, where d < 0.5 the levels data are used, while for d > 0.5 the first differences

of the data are employed because, where a trend break occurs, this delivers an estimator for the trend

break location whose rate of consistency is strictly faster than that of the levels based estimator.

Focussing our attention on the time domain approach of Tanaka (1999) and Nielsen (2004), we

establish that, regardless of whether a trend break actually occurs or not, our proposed LM-type test

inherits all of the desirable properties of the original LM test in the known deterministic case; that

is, asymptotic local optimality together with asymptotic critical values from the χ2
1 distribution. We

demonstrate that this holds because where a trend break occurs, the location of the break is estimated

at a sufficiently fast rate that it may be treated as known in large samples and, hence, reduces in the
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limit to the known deterministics case. Where a break does not occur, yet we fit a redundant trend

break to the data, we show that this does not impact upon the asymptotic distribution of the statistic

either under the null or under local alternatives. Although we consider the possibility of a single level

break here, we conjecture that our asymptotic results will also pertain for the case of multiple possible

trend breaks occurring at unknown points in the data.

The remainder of the paper is organised as follows. Section 2 sets out the fractionally integrated

trend break model within which we work. Our proposed LM-type statistic for the case of an unknown

trend break is described in section 3, where we also establish its large sample properties via comparison

to an infeasible LM statistic based on the true errors rather than regression residuals. In section 4 we

present a Monte Carlo simulation-based evaluation of the finite sample size and power properties of our

LM-type test. An illustrative empirical application of our proposed tests to data on the monthly U.S.

inflation rate is reported in section 5. Conclusions with some directions for future research are given

in section 6. Proofs of our main results in Lemma 1 and Theorem 1 are provided in a mathematical

appendix. Additional Monte Carlo results together with detailed proofs of preparatory lemmas used in

the proofs of Lemma 1 and Theorem 1 are given in an accompanying online supplementary appendix

associated with this article, available at Cambridge Journals Online (journals.cambridge.org/ect)

In what follows we use the following notation: ‘x := y’ to indicate that x is defined by y ; ‘∼’ to

denote that the ratio of the quantity on the left hand side to that on the right hand side of the symbol

tends to 1 as the sample size tends to infinity; the operator ‘b.c’ is used to denote the integer part

of its argument; I (.) denotes the indicator function; L is used to denote the standard lag operator.

Finally, we use
d→ and

p→ to denote convergence in distribution and in probability, respectively, in

each case as the sample size diverges.

2 The Fractionally Integrated Trend Break Model

We consider the following model for the scalar random variable xt,

xt = β1 + β2t+ β3DTt (τ∗) + et, t = 1, ..., T. (2.1)

The shocks, et, are assumed to follow a zero mean, type 2 fractionally integrated process of order d,

denoted et ∈ I (d); precise assumptions will be stated below. We will assume that d ∈ (−0.5, 0.5) ∪
(0.5, 1.5).1 Both (asymptotically) stationary, non-stationary, and fractionally over-differenced time

series are therefore permitted within our set-up. In (2.1), the deterministic trend break term, DTt (τ∗),

is defined for a generic τ as DTt (τ) := (t− bτT c) I (t ≥ bτT c). This corresponds to the deterministic

kernel considered in Model B of Perron (1989), the so-called “changing growth” model, which allows

1For technical reasons, discussed further in Remark 11 below, we will not formally derive the large sample properties

of tests of the null hypothesis that d = 0.5 in this paper and for that reason d = 0.5 is excluded from the range of values

d that we consider in (2.1). We do, however, investigate the finite sample behaviour of our proposed methodology when

applied to the case of testing the null hypothesis of d = 0.5 via Monte Carlo simulation methods in section 4.
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for a change in the slope of the trend function without a change in the level at the time of the break.2

Where a trend break occurs, i.e. where β3 6= 0, we assume that the true trend break fraction is such

that τ∗ ∈ [τL, τU ] =: Λ ⊂ [0, 1], where the quantities τL and τU are trimming parameters below and

above which, respectively, a trend break is deemed not to occur. A negative (positive) trend break

occurs when β3 < 0 (β3 > 0).

Writing d =: d0 + θ, where d is the true (unknown) value of the long memory parameter in (2.1),

our interest in this paper focuses on testing the null hypothesis that d = d0; that is, H0 : θ = 0 in

(2.1). Under H0 we therefore have that et ∈ I (d0). As in Robinson (1994) and Tanaka (1999), we will

focus attention on local alternatives whereby Hc : θ := θT = c/
√
T , with c a constant. Notice that Hc

reduces to H0 when c = 0. More generally, c is the Pitman drift for this testing problem and, as we

will later demonstrate, will determine the asymptotic local power of the test. Unless otherwise stated,

all of the large sample results provided in this paper are based on the assumption that Hc holds on

(2.1) for some value of the constant c.

Our model is completed by formalising the properties of et. For t > 0, et is taken to follow the

fractionally integrated process

et :=
t∑

s=1

∆
(d)
t−sηs (2.2)

where, for any d ∈ (−0.5, 0.5) ∪ (0.5, 1.5), ∆
(d)
t := Γ (t+ d) /(Γ (d) Γ (t+ 1)), with Γ (·) denoting the

Gamma function, with the convention that Γ (0) :=∞ and Γ (0) /Γ (0) := 1. In view of the expansion

(1− L)−d =
∑∞

t=0 ∆
(d)
t Lt, the definition in (2.2) can also be written as et = ∆−d{ηtI(t > 0)}. To

simplify notation, and following Johansen and Nielsen (2010), we also introduce the operator ∆α
+ so

that, for a generic α and a generic series ξt, ∆α
+ξt := ∆α{ξtI(t > 0)}, and therefore et = ∆−d+ ηt. The

model for et is completed by assuming et = 0 when t ≤ 0. In common with the earlier contributions

to this literature in Robinson (1994), Tanaka (1999) and Nielsen (2004), we therefore assume that et

is a so-called “type 2” fractionally integrated process.

Finally, ηt in (2.2) is assumed to be a zero mean, stationary process with spectral density that is ab-

solutely continuous and strictly positive at all frequencies with long run variance σ2
∞ :=

∑∞
h=−∞ E

(
ηtηt+h

)
.

More precisely, we make the following assumption regarding ηt.

Assumption 1 Let {ηt} be generated by the finite-order ARMA(p,q) process, a(L)ηt = b(L)εt, sat-

isfying the following conditions: (a) the polynomials a(z) := 1 − a1z − · · · − apz
p and b(z) :=

1 − b1z − · · · − bqzq contain no common factors and are such that a(z) 6= 0 and b(z) 6= 0 for |z| ≤ 1,

and the innovation process εt is such that εt ∼ i.i.d.
(
0, σ2

ε

)
with 0 < σ2

ε < ∞; and (b) the following

2We exclude the possibility of a simultaneous break in level (cf Model C of Perron, 1989). Where testing the null

value of d larger that 0.5, our test procedure will be based on the first differences of the data, and hence a simultaneous

level break would be reduced to an outlier, which would have no effect on the asymptotic properties of the test when the

null hypothesis holds. However, for testing null values less than 0.5, the presence of a simultaneous level break reduces

the rate of convergence of the estimate of the break location under the null to below that required for the test to have a

pivotal limiting distribution; see Chang and Perron (2016) for details and further discussion.
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higher-order moment conditions hold on εt, E |εt|q <∞ for q > max (2, 2/ (1 + 2d)) if d ∈ (−0.5, 0.5),

q > max (2, 2/ (2d− 1)) if d ∈ (0.5, 1.5).

Remark 1. The requirement in part (a) of Assumption 1 that ηt follows a stationary and invertible

finite-ordered ARMA process with no common factors is fairly standard in this literature; see, for

example, Tanaka (1999) or Nielsen (2004). Under these conditions, ηt has strictly positive and bounded

spectral density at all frequencies and it is therefore I (0). The higher-order moment conditions placed

on εt in part (b) of Assumption 1 would not be required in cases where the true trend break date, τ∗,

was known. However, where τ∗ is unknown and must be estimated from the data then, as we shall

see below, a functional central limit [FCLT] theorem result will be needed on the estimates of the βj ,

j = 1, 2, 3, parameters characterising the deterministic component. As Johansen and Nielsen (2012)

show, this requires moment conditions like those given in part (b) of Assumption 1 to hold on εt.

Remark 2. Assumption 1 imposes an i.i.d. condition on the innovations, εt. This assumption is

in common with many of the published papers in the trend break and long memory literatures, a

number of which we draw upon for auxiliary results in establishing the large sample properties of our

proposed testing procedures. In particular, the result given in part (i) of our main result in Theorem

1 below for the case where a trend break occurs, β3 6= 0, relies on the convergence rates for the trend

break fraction estimator used in our procedure and these have been derived under an i.i.d. assumption

on the innovations in Lavielle and Moulines (2000) and Cheung and Perron (2016). Similarly, the

result in part (ii) of Theorem 1 relating to the no break case, β3 = 0, relies on an application of the

FCLT established in Marinucci and Robinson (2000), again established under an i.i.d. assumption on

the innovations. While it seems plausible that the results given in this paper would continue to hold

under a weaker conditionally homoskedastic martingale difference assumption, formally establishing

whether this is true or not is beyond the scope of the present paper as it would also require establishing

that the results in these auxiliary papers also carry over to the case of martingale difference innovations.

3 Lagrange Multiplier Tests

As background motivation in section 3.1, we first briefly review the construction of the LM test for H0

in cases where et in (2.1) is observable; that is, where the true values of βi, i = 1, 2, 3, are all known

and, where the true value of β3 is non-zero, the trend break location τ∗ is also known. In section 3.2

we then discuss how the LM testing principle can be generalised to the case where the true values of

these parameters are not known and, hence, the test statistic needs to be based on regression residuals.

3.1 An Infeasible LM Test

Where et is observable, the LM statistic for testing H0, under the assumption that ηt is Gaussian,

obtains directly from Nielsen (2004), inter alia. We demonstrate the derivation of the LM statistic in

the particular case in which ηt = εt is a normally, independently distributed sequence. Then, for σ2
ε,
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θ, we consider the likelihood

L
(
σ2
ε, θ
)

= −T
2

ln (2π)− T

2
ln
(
σ2
ε

)
− 1

2σ2
ε

T∑
t=1

(
∆d0+θ

+ et

)2

see also Equation (38), and the subsequent discussion, in Tanaka (1999). Estimating σ̂2 := 1
T

∑T
t=1

(
∆d0+θ

+ et

)2
,

the concentrated likelihood is given by

L (θ) = −T
2

ln (2π)− T

2
ln

(
1

T

T∑
t=1

(
∆d0+θ

+ et

)2
)
− T

2

and

∂L (θ)

∂θ
= −T

2

1

σ̂2

2

T

T∑
t=1

({
ln (∆) ∆d0+θ

}
+
et

)(
∆d0+θ

+ et

)
where the operator − ln (∆) admits the expansion − ln (∆) =

∑∞
j=1 j

−1Lj , as for a Taylor-series

expansion for − ln (1− x) around x = 1, and where for a generic series ξt we introduce the op-

erator {− ln (∆)}+ so that {− ln (∆)}+ ξt := − ln (∆) {ξtI (t > 0)} and therefore {− ln (∆)}+ ξt =∑t−1
j=1 j

−1ξt−j . Consequently, defining rj := σ̂−2T−1
∑T−j

t=1

(
∆d0+θ

+ et

)(
∆d0+θ

+ et+j

)
, we have that

∂L(θ)
∂θ = T

∑T−1
t=1 j−1rj . Moreover, defining vt :=

∑t−1
j=1 j

−1εt−j , we have, under H0, that

∂L (θ)

∂θ

∣∣∣∣
θ=0

=
1

σ̂2

T∑
t=1

vtεt and

√
T

T

∂L (θ)

∂θ

∣∣∣∣
θ=0

d→ N

(
0,
π2

6

)
by a central limit theorem [CLT] for martingale difference sequences. Finally, following Tanaka

(1999,p.561), limT→∞ E
(
− 1
T

∂2L(θ)

∂θ2

∣∣∣
θ=0

)
= π2

6 and so, in view of the asymptotic orthogonality be-

tween the estimates of σ2 and of θ (see also Nielsen, 2004, p.125), the LM statistic can be written as

6T/π2
(∑T−1

t=1 j−1rj

)2
.

The LM statistic above is derived under the assumption that ηt is independently distributed,

such that εt is observable under H0. In the more realistic case in which a generic ARMA structure

is assumed for ηt, its parameters must be estimated and the test statistic corrected to take these

into account. To that end, defining g (z;ψ) := a (z) b−1 (z), we can estimate the parameter vector

ψ∗ := (a1, ..., ap, b1..., bq)
′ under H0 as

ψ̂ := arg min
ψ∈Θ

T∑
t=1

(
g (L;ψ) ∆d0

+ et

)2
. (3.1)

Throughout the paper the regularity condition that Θ is a Rp+q compact space of parameters for an

ARMA(p, q) model, such that the ARMA processes corresponding to parameters in Θ are stationary

and invertible with no common factors, will be taken to hold. Then, based on the estimate ψ̂, we

construct the quantities

ε̂t := g
(
L; ψ̂

)
∆d0

+ et, ŝ
2 := T−1

T∑
t=1

ε̂2
t , r̂j := ŝ−2T−1

T−j∑
t=1

ε̂tε̂t+j , Â :=

T−1∑
j=1

j−1r̂j . (3.2)
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Defining gj as the coefficient on zj in the expansion of ∂ ln g (z;ψ) /∂ψ|ψ=ψ∗ , and setting

κ :=

∞∑
j=1

gjj
−1, Φ :=

∞∑
j=0

gjg
′
j , ω2 := π2/6− κ′Φ−1κ

then, as demonstrated in Theorem 3.3 of Tanaka (1999), under Hc and the conditions given in part

(a) of Assumption 1 we have that T 1/2Â
d→ N

(
c ω2, ω2

)
. As discussed in Nielsen (2004, p.132), an

estimator of ω2 which is consistent under Hc is obtained on substituting the estimates from ψ̂ into

the expressions for κ and Φ above; we denote this estimator by ω̂2. The resulting LM statistic is then

given by

LM := T
Â2

ω̂2 . (3.3)

Under the conditions of part (a) of Assumption 1 and the local alternative Hc,

LM
d→ χ2

1

(
c2ω2

)
(3.4)

where χ2
1

(
c2ω2

)
indicates a χ2

1 distribution with non-centrality parameter c2ω2; see, inter alia, Theo-

rem 4.2 of Nielsen (2004, p.132).

Remark 3. A one-sided test could also be considered, based on the one-sided score statistic S :=(
T
ω̂2

)1/2
Â, as in Robinson (1994, pp. 1424,1426). This would allow testing, for example, the unit root

null hypothesis, d0 = 1, against the alternative d0 < 1. Such tests will be more powerful than the

two-sided LM test based on LM , against one-sided alternatives (in the correct tail). Indeed, under

Gaussianity, the one-sided score test is asymptotically uniformly most powerful (UMP). Under H0,

S
d→ N(0, 1).

Remark 4. As discussed in Nielsen (2004, p.126) the foregoing LM statistic for the null hypothesis

H0, is asymptotically equivalent under Hc to the corresponding Wald and Likelihood Ratio statistics

for testing H0. Moreover, as discussed in Robinson (1994) and Nielsen (2004), the tests based on these

statistics are (locally) optimal in the sense that under Gaussianity they achieve a limiting non-central

χ2
1 distribution with the maximal available non-centrality parameter and are therefore locally most

powerful. However, it should be stressed that Gaussianity is not required as part of the conditions

stated in part (a) of Assumption 1 to establish the large sample convergence result in (3.4).

3.2 Feasible LM-type Tests Based on Regression Residuals

We now consider the case of practical relevance where et is unobserved and so the LM statistic must

be constructed from regression residuals, rather than from et. We will show that a feasible statistic

can still be designed, and that it is asymptotically equivalent to the infeasible LM statistic in (3.3).

Where the true (potential) trend break location, τ∗, in (2.1) is known, then the form of the

deterministic component is known to the practitioner, up to the unknown parameters βj , j = 1, 2, 3,

and, hence, lies within the non-stochastic regressors set-up considered by Robinson (1994) and Nielsen

(2004). These authors show how to construct a feasible LM statistic for H0 in this case which attains
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a χ2
1

(
c2ω2

)
limiting distribution under Hc provided the conditions of part (a) of Assumption 1 hold,

with this result holding regardless of the true values of βj , j = 1, 2, 3, so that, in particular, the same

limiting results hold in both the trend break and no trend break environments. Our focus in this paper

is, however, the more realistic setting where τ∗ is unknown to the practitioner. In place of τ∗ we will

therefore need to build our test statistic around a suitable estimate of τ∗. An immediate implication

of doing so, however, is that the assumption of non-stochastic regressors required by Robinson (1994)

and Nielsen (2004) is no longer met. Indeed, accounting for this difference is the primary purpose of

this paper.

An obvious estimator of τ∗ to use is the minimum RSS estimator, τ̂ say, which minimises the

RSS over the sequence of levels regressions of xt on (1, t,DTt (τ))′, taken across all τ ∈ Λ. Where

a trend break occurs, so that the true value of β3 is non-zero, at time τ∗, then the properties of τ̂

depend on the order of integration of et. In particular, Chang and Perron (2016) show that when

et ∈ I (d), d ∈ (−0.5, 0.5)∪ (0.5, 1.5) then τ̂ −τ∗ = Op
(
T−3/2+d

)
. However, for the equivalent problem

of searching for a level break in the first differences of the data, we obtain from Lavielle and Moulines

(2000) that when d ∈ (0.5, 1.5) and τ̂ is now defined as the estimator which minimises the RSS over the

sequence of regressions in first differences of ∆xt on (1, DUt (τ))′, where DUt (τ) := I (t ≥ bτT c), then

τ̂−τ∗ = Op
(
T−1

)
. A faster rate of consistency can therefore be obtained by using the first differences-

based RSS estimator when d > 1/2. In view of these rates of consistency, we will undertake the

estimation of τ∗, and the consequent estimation of β1, β2 and β3 and, hence, et, using two different

regression models, whose form depends on the value of d0 specified under the null hypothesis, as

follows:

Model A: For d0 ∈ (−0.5, 0.5), we let yt := xt and use the levels form representation of (2.1):

yt = β1 + β2t+ β3DTt (τ∗) + ut, t = 1, ..., T, ut ∈ I (d)

where ut := et and, under H0, d = d0.

Model B: For d0 ∈ (0.5, 1.5), we let yt := ∆xt and use the first-differenced transformation of (2.1):

yt = β2 + β3DUt (τ∗) + ut, t = 2, ..., T, ut ∈ I (d− 1)

where ut := ∆et, and, under H0, d = d0.

Remark 5. Taken together, Models A and B allow us to consider inference on the long memory

parameter in (2.1) in the presence of a possibly broken trend for hypothesised values of the long

memory parameter in the range d0 ∈ (−0.5, 0.5) ∪ (0.5, 1.5). It is worth noting that we will not

explicitly consider tests for null hypotheses which impose d0 > 1.5 in (2.1). Here the resulting test

statistics would be identical to the statistics of the form given in section 3.1 on substituting ∆d0
+ et for

∆d0
+ xt. This is the case because taking d0th differences annihilates the deterministic trend component

in (2.1) when d0 > 1.5. For d0 > 1.5 the deterministic trend component will therefore have no impact

on the large sample behaviour of these statistics which coincide with that given for LM in (3.4).
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Remark 6. It is also worth commenting that although Robinson (1994) and Nielsen (2004) do not

restrict d0 to lie in a particular interval, they instead assume that sufficient rate conditions hold

on the estimates of the parameters characterising the deterministic trend function; see Robinson

(1994,p.1434) and Equation (12) of Nielsen (2004). In these papers, the fractional differences of

the disturbances from (2.1) taken under the null hypothesis, that is ∆d0
+ et, are estimated using the

residuals from the regression of ∆d0
+ xt onto the ∆d0

+ differences of the deterministic kernel. Replacing

∆d0
+ et by these residuals in (3.2), yields an estimate of ε̂t and, proceeding as in (3.2) and (3.3), it

is then possible to compute a feasible version of the LM statistic based on these residuals. Under

the regularity conditions detailed in Robinson (1994) or Nielsen (2004), doing so yields a feasible LM

statistic that has the same limiting distribution as the infeasible LM statistic. Establishing such

regularity conditions is straightforward in many cases, such as where the deterministic component is

a polynomial trend, but is considerably more complicated in the case considered in this paper where

we allow for the possibility that a trend break occurs at an unknown point in the sample. Here we

need to establish the uniform (in τ) rate result for the estimated coefficients of the deterministic trend

function given in (3.11) of Lemma 1 in the case where no trend break occurs, and the corresponding

rate result in (3.14) of Lemma 1 for where a break does occur. Moreover, where a trend break occurs,

we also need to ensure that the estimate of τ∗ is consistent at a sufficiently fast rate, as is done in

(3.12) and (3.13) of Lemma 1 below. Establishing the results stated in Lemma 1 requires a functional

central limit theorem to hold, which in turn requires that d > −0.5. We note that the restriction that

d > −0.5 is also imposed in Chang and Perron (2016) when establishing properties for the estimates

of τ∗ and of β1, β2 and β3 which they consider.

In each of Model A and B we will also need to consider two scenarios, depending on whether the

trend break is in fact present or not; that is, whether β3 = 0 or β3 6= 0. To that end, and in order to

discuss Models A and B simultaneously, we now introduce some common notation, noting that in the

case of Model B, β1 is not estimated. This notation is indexed by a generic value of τ ∈ Λ. In the

context of Model A we define zt (τ) := (1, t,DTt (τ))′ and β := (β1, β2, β3)′, whereas in the context of

Model B we define zt (τ) := (1, DUt (τ))′ and β := (β2, β3)′. Finally, we define the OLS estimate of β

(under Model A or Model B, as appropriate) as

β̂ (τ) :=
(∑T

t=j zt (τ) zt (τ)′
)−1 (∑T

t=j zt (τ) yt

)
(3.5)

where j = 1 in the case of Model A, and j = 2 for Model B. We then define the corresponding

de-trended residuals as

ût (τ) := yt − zt (τ)′ β̂ (τ) (3.6)

for t = 1, ..., T in the case of Model A, and for t = 2, ..., T in the case of Model B. For Model B, we

set û1 (τ) := 0, so that ût (τ) is defined for t = 1, ..., T in both cases.

Under H0, we can estimate ηt by taking the corresponding fractional differences of these OLS

de-trended residuals, as ∆δ0
+ ût (τ), for δ0 := d0 when Model A is used, and for δ0 := d0 − 1 when
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Model B is used, for a specific value of τ . Proceeding as in the infeasible case, for any τ we can then

estimate ψ̂ (τ) via

ψ̂ (τ) := arg min
ψ∈Θ

T∑
t=1

(
g (L;ψ) ∆δ0

+ ût (τ)
)2

(3.7)

and use this to compute the quantities

ε̂t (τ) := g
(
L; ψ̂ (τ)

)
∆δ0

+ ût (τ) (3.8)

and

ŝ (τ)2 := T−1
T∑
t=1

ε̂2
t (τ) , r̂j (τ) := ŝ (τ)−2 1

T

T−j∑
t=1

ε̂t (τ) ε̂t+j (τ) , Â (τ) :=

T−1∑
j=1

j−1r̂j (τ) .

Given ψ̂ (τ), we also compute ω̂2 (τ) yielding the LM-type statistic

LM (τ) := T
Â2 (τ)

ω̂2 (τ)
. (3.9)

If the true break fraction, τ∗, was known then one would simply evaluate LM (τ) of (3.9) at τ = τ∗;

the resulting statistic, LM(τ∗), would for either d0 = 0 or d0 = 1 coincide with the statistic from

Robinson (1994), discussed at the start of this subsection. Our focus, however, is on the case where τ∗

is unknown and, following the earlier discussion, our proposed test will be based on evaluating LM (τ)

at τ̂ , the minimum RSS estimate

τ̂ := arg min
τ∈Λ

∑T
t=1 (ût (τ))2 (3.10)

whose form is determined according to the value of d0 being tested under the null hypothesis, H0.

Specifically, if d0 lies in the region (−0.5, 0.5) then we estimate τ∗ using the levels of the data and

test the null hypothesis that the long memory parameter in the levels data is d0, whereas if d0 lies

in the range (0.5, 1.5) we instead estimate τ∗ using the first differences of the data and test the null

hypothesis that the long memory parameter in the first differenced data is d0 − 1.

In Theorem 1 below we will determine the large sample behaviour of LM (τ̂) by comparing it

to the infeasible LM statistic, LM of (3.3). Inherent in doing so will be to analyse the distance

between ε̂t and ε̂t (τ̂), the latter given by ε̂t (τ) in (3.8) evaluated at τ = τ̂ , and establish how this

affects the distance between LM (τ̂) and LM . The behaviour of LM (τ̂) clearly depends on the large

sample properties of the estimates τ̂ of (3.10) and β̂ (τ̂), the latter given by β̂ (τ) of (3.5) evaluated

at τ = τ̂ . Consequently, in Lemma 1 we first establish these results under Hc both for the case where

a trend break occurs (β3 6= 0) and where a trend break does not occur (β3 = 0). Theorem 1 will

then subsequently establish that these properties are sufficient to allow us to show that the difference,

LM (τ̂)− LM , is asymptotically negligible, regardless of whether or not a trend break occurs.
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Lemma 1 Let xt be generated by (2.1) under Hc : θ := θT = c/
√
T , and let Assumption 1 hold. For

d0 ∈ (−0.5, 0.5), define, for generic α, the diagonal matrix KT (α) := diag
{
T 1/2−α, T 3/2−α, T 3/2−α},

whereas for d0 ∈ (0.5, 1.5), define the diagonal matrix KT (α) := diag
{
T 3/2−α, T 3/2−α}. Then the

following results hold:

(i) Where β3 6= 0, the estimates τ̂ of (3.10) and β̂ (τ̂), the latter given by (3.5) evaluated at τ = τ̂ ,

are such that

KT (d0)
(
β̂ (τ̂)− β

)
= Op (1) (3.11)

and

τ̂ − τ∗ = Op

(
T d0−3/2

)
if d0 ∈ (−0.5, 0.5) (3.12)

τ̂ − τ∗ = Op
(
T−1

)
if d0 ∈ (0.5, 1.5) (3.13)

(ii) Where β3 = 0, the estimate β̂ (τ) of (3.5) is such that, for d0 ∈ (−0.5, 0.5) ∪ (0.5, 1.5),

KT (d0)
(
β̂ (τ)− β

)
= Op (1) , (3.14)

uniformly in τ .

Remark 7. The result in part (ii) of Lemma 1 shows that when no break occurs, the (centred and

appropriately scaled) OLS estimator of β from (3.5) converges to a well-defined limiting distribution

and that this holds uniformly in τ . This uniform convergence then implies that it must also hold on

replacing τ with τ̂ , even though the latter is a random variable (even asymptotically).

Remark 8. The additional higher order moment conditions stipulated in part (b) of Assumption

1 are required for two reasons. Firstly, when β3 6= 0, estimation of τ∗ exploits a FCLT; see Chang

and Perron (2016). Secondly, in the case where β3 = 0, then a FCLT theorem is used to establish

that the rate given in (3.14) holds uniformly in τ . Monte Carlo simulation results are reported in the

accompanying on-line supplement which investigate the consequences of violating these conditions.

The results suggest that violation of the moment condition can inflate the empirical size of the test,

the more so the greater the degree of departure from the stated assumption.

In Theorem 1 we now state our main result, establishing the large sample behaviour of the LM-type

statistic LM (τ̂).

Theorem 1 Let the conditions of Lemma 1 hold. Then, for d0 ∈ (−0.5, 0.5) ∪ (0.5, 1.5):

(i) If β3 6= 0, then LM (τ̂)− LM = op (1).

(ii) If β3 = 0, then LM (τ)− LM = op (1), uniformly in τ .

Some remarks are in order.

Remark 9. An immediate consequence of Theorem 1 is that LM (τ̂) − LM = op(1) irrespective of

whether β3 6= 0 or β3 = 0. Consequently, regardless of the value of β3, LM (τ̂)
d→ χ2

1(c2ω2) under Hc,
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thereby retaining asymptotic optimality. Moreover, since LM (τ̂)
d→ χ2

1 under H0, standard critical

values can still be used.

Remark 10. The result given in part (i) of Theorem 1 demonstrates that when β3 6= 0, such that

a trend break does occur, the difference between the LM-type statistics based on ε̂t and ε̂t (τ̂) is

asymptotically negligible. This arises because τ̂
p→ τ∗ at a sufficiently fast rate; cf. part (i) of Lemma

1. Part (ii) of Theorem 1 shows that when no break occurs, the difference between the LM-type

statistics based on ε̂t and ε̂t (τ) is asymptotically negligible, and that this holds uniformly in τ and,

hence, holds for τ̂ .

Remark 11. It is important to acknowledge that, in common with the results given in Lavielle

and Moulines (2000) and Chang and Perron (2016), Theorem 1 does not cover the case of d0 =

0.5 and so testing the null hypothesis that the long memory parameter is equal to 0.5 is formally

excluded from our analysis; cf. footnote 1. When β3 6= 0, as noted in Remark 10, the proof of

Theorem 1 is based on establishing that the difference between the LM-type statistics based on ε̂t

and ε̂t (τ̂) is asymptotically negligible. A key part of the derivation of the theorem is proving that

Â− Â (τ̂) = op(T
−1/2) and, as the difference ε̂t− ε̂t (τ̂) depends on the term ∆d0

+ (DTt (τ̂)−DTt (τ∗)),

on showing that
∑T

t=1(
∑t−1

j=1 j
−1∆d0

+ (DTt−j (τ̂)−DTt−j (τ∗)))ε̂t = op
(
T 1/2

)
. The remainder term

∆d0
+ (DTt (τ̂)−DTt (τ∗)) is a random variable which is potentially correlated with εt and, hence, with

ε̂t. In order to allow for this correlation, we exploit the fact that DTt (τ̂)−DTt (τ∗) follows a (broken)

trend, and we use a method of proof based on summation by parts. However, the bound that we can

establish on Â − Â (τ̂) in this way is weaker the larger is d0, until for d0 = 0.5 it is not sufficient to

establish the required op(T
1/2) bound; we refer the reader to Lemma C2 and Lemma D2 in the proof

for further details.3 We will nonetheless include d0 = 1/2 in the Monte Carlo exercise in section 4.

Remark 12. In parallel with the discussion in Remark 3 above, a one-sided test could also be

considered based on the score-type statistic S(τ̂) :=
(

T
ω̂2(τ̂)

)1/2
Â(τ̂). The large sample theory for

S(τ̂) follows from the results given in this paper; in particular, under H0, S(τ̂)
d→ N(0, 1).

Remark 13. Theorem 1 demonstrates that the LM (τ̂) test has non-trivial asymptotic local power.

We conjecture that the test is also consistent against fixed alternatives, even in cases where the null

value d0 results in selecting Model A when in fact Model B applies, or vice-versa. Finite sample Monte

Carlo simulation provided in section S.2.1 of the accompanying on-line supplement are supportive of

this conjecture.

Remark 14. The single trend break model (2.1) could be extended to allow for multiple trend breaks.

Specifically, we replace (2.1) with an (up to) m break model specification

xt = β1 + β2t+ β′3DTt(τ
∗) + et

3It is worth noting that this issue does not arise in the context of the frequency domain tests of Robinson (1994), or

the analogous time-domain tests of Nielsen (2004), because they assume that the location of any trend break is known

and, hence, they do not need to estimate τ∗.
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where, DTt(τ
∗) := [DTt (τ∗1) , ..., DTt (τ∗m)]′. Here τ ∗ := [τ∗1, ..., τ

∗
m]′ is the vector of (unknown)

putative trend break fractions, β3 := [β3,1, ..., β3,m]′ the associated break magnitude parameters such

that a trend break occurs at time bτ∗iT c when β3,i 6= 0, i = 1, ...,m. The break fractions are assumed to

be such that τ∗i ∈ Λ for all i = 1, ...,m. A standard assumption in such a model is that |τ∗i−τ∗j | ≥ η > 0,

for all i, j, i 6= j, such that the DGP admits (up to) m level breaks occurring at unknown points across

the interval Λ, with a sample fraction of at least bηT c observations between breaks (note that m and

η must satisfy the relation m ≤ 1 + b(τU − τL)/ηc). Provided that m breaks are estimated using the

obvious m-dimensional analogue of (3.10), yielding the vector of estimates, τ̂ say, then we conjecture

that the corresponding LM statistic, LM(τ̂ ) say, will have precisely the same properties as LM (τ̂) in

Theorem 1. That is, we conjecture that LM(τ̂ )
d→ χ2

1(c2ω2) under H1 and LM(τ̂ )
d→ χ2

1 under H0

irrespective of whether β3,i = 0 or β3,i 6= 0 for any particular i. For Model B Lavielle and Moulines

(2000) demonstrate that τ̂ i
p→ τ∗i whenever β3,i 6= 0 at the same rate as τ̂

p→ τ∗ in the single break

case considered above. For Model A, it would seem likely that the same parallel with the single break

case would hold, but formally Chang and Perron (2016) only consider the case of a single break in

trend. For both Models A and B one would also need to formally establish that analogous uniformity

arguments to those made in the proof of Theorem 1 can also be made in those cases where β3,i = 0.

Remark 15. Although based on different models, it is nonetheless worth noting an important differ-

ence between the large sample results in Theorem 1 and those which hold for autoregressive unit root

tests and stationarity tests which allow for the possibility of trend break(s). The limiting distributions

of these, under both the null and the relevant local alternatives, depend on the number of trend breaks

fitted, the number of breaks present in the data and the locations of these; see, for example, Perron

and Rodŕıguez (2003) in the context of unit root tests, and Busetti and Harvey (2001,2003) in the

context of stationarity tests. Moreover, their asymptotic local power functions depend on the number

of trend breaks fitted, decreasing the more breaks are fitted, other things equal. This is not the case

in our setting where, as the results in Theorem 1 demonstrate, the limiting distribution of our feasible

LM (τ̂) statistic is independent of any nuisance parameters arising from the deterministic kernel under

both the null hypothesis and local alternatives. However, it is important to emphasise that this is an

asymptotic result and so it will be important to investigate how well this asymptotic prediction holds

up in finite samples. This we will investigate by Monte Carlo simulation methods in section 4.

Remark 16. Consider the case where an observed time series xt satisfies the DGP

xt = β2 + β3DUt (τ∗) + et, t = 1, ..., T (3.15)

where et ∈ I (d), d ∈ (−0.5, 0.5). In this case, xt may be subject to a change in the mean but it is

otherwise asymptotically stationary and invertible. It should be clear that inference on d in this model

is equivalent to inference on δ in Model B in the context of DGP (2.1). Consequently, the results in

Theorem 1 are also appropriate to this testing problem. As a leading example consider testing the

null hypothesis that d = 0 in (3.15). It is well known that the model (3.15) with d = 0 and β3 6= 0

can generate spurious evidence of long memory when the break is not accounted for; see, for example,
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Diebold and Inoue (2001), Gourieroux and Jasiak (2001), Granger and Hyung (2004), Mikosch and

Stărică (2004) and Qu (2011), and also the simulation results reported in section 4 below for the LM

test in cases where β3 6= 0. Tests of the form proposed in this paper would allow for valid inference

on d in (3.15), regardless of the value of β3.

Remark 17. Observe that under H0, ψ̂ defined in (3.1) and ψ̂ (τ̂) defined for (3.7) evaluated at τ = τ̂

are infeasible and feasible estimates, respectively, of the parameters characterising the (stationary

and invertible) ARMA process, ηt. It is well known that, in the infeasible case,
√
T
(
ψ̂ − ψ∗

)
→d

N
(
0,Φ−1

)
; see, for example, Hamilton (1994), Chapter 5, and Harvey (1993), Chapter 3. This

large sample result also holds when deterministic trend kernels, containing elements such as 1 (a

constant), t (a linear trend), a broken intercept, DUt (τ∗), or a broken trend, DTt (τ∗), (τ∗ assumed

known in the latter two cases), are accounted for, so that ψ∗ is estimated using de-trended residuals.

This asymptotic equivalence, formally established in Theorem 4.1 of Nielsen (2004), holds because

deterministic regressors such as these meet condition (12) of Nielsen (2004) or the similar condition

given in Robinson (1994) page 1434. Crucially, however, the stochastic trend break regressors DTt (τ̂)

and DUt (τ̂) do not meet these conditions. Nonetheless, as we demonstrate in Lemma A2, if β3 = 0

then ψ̂ (τ) − ψ̂ = op
(
T−1/2

)
, uniformly in τ ; moreover, as shown in Lemma C2, if β3 6= 0 then

ψ̂ (τ̂) − ψ̂ = op
(
T−1/2

)
. Inference on ψ∗ can therefore be made under H0 using the result that

√
T
(
ψ̂ (τ̂)− ψ∗

)
→d N

(
0,Φ−1

)
. Consequently, an immediate corollary of Lemmas A2 and C2 is that

using the appropriately de-trended residuals instead of ηt does not change the limiting distribution of

the resulting estimate of ψ∗ even when one includes the stochastic regressors DTt (τ̂) or DUt (τ̂).

4 Monte Carlo Simulations

We now present the results from a Monte Carlo simulation study investigating the finite sample

performance of our proposed test based on the LM (τ̂) statistic, exploring cases where no trend break

occurs and where a trend break occurs. We investigate both finite sample size under the null hypothesis

and finite sample power under local alternatives. Additional simulation experiments are reported in

the accompanying on-line supplement with the results from these experiments summarised at the end

of this section.

As benchmarks for comparison, we also simulate the (infeasible) tests based on: (i) the LM statistic

in (3.3), (ii) the LM (τ∗) statistic given by (3.9) evaluated at τ = τ∗, and (iii) the statistic LM , which

is calculated as for the LM (τ̂) statistic in section 3.2 but replacing zt(τ) by zt throughout, where for

Model A, zt := (1, t)′ and for Model B, zt := 1. Recall that the first benchmark test is based on the

unobservable et, while the second requires knowledge of the true (putative) break location, τ∗. The

third benchmark test is based on the assumption that β3 = 0 in (2.1). Its behaviour when β3 6= 0

allows us to quantify the finite sample consequences of neglecting a trend break when one is present in

the DGP. When β3 = 0 it quantifies the finite sample power losses that are incurred by unnecessarily

allowing for a trend break.
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All reported experiments are run over 10,000 Monte Carlo replications using the RNDN function

of Gauss 13. Our simulation DGP is given by (2.1) with β1 = β2 = 0 (this is without loss of generality

because all of the tests considered are exact invariant to β1 and β2) and β3 ∈ {0, 0.1, 1}, with the

break fraction set as τ∗ = 0.5. Notice that LM and LM (τ∗) are also exact invariant with respect to

β3. Excepting the tests based on LM and LM , all tests are computed setting Λ = [0.15, 0.85]. All

reported results relate to a nominal asymptotic 0.05 level using the relevant critical value from the χ2
1

distribution.

We first consider the empirical size of these four tests across a range of values of d0 and for sample

sizes T ∈ {256, 512, 1024}. We generate {ηt} according to ηt = aηt−1 + εt, t = 1, ..., T , with η0 = 0,

for a ∈ {−0.5, 0, 0.5} and with {εt} generated as an i.i.d. N(0, 1) sequence of variables. Consequently,

ηt is also i.i.d. N(0, 1) when a = 0 and is a weakly stationary AR(1) process when a = ±0.5.

The shocks, et, t = 1, ...T , are then generated according to (2.2) to be such that et ∈ I (d0), for

d0 ∈ {0, 0.25, 0.5, 0.75, 1, 1.25}. Recall that Theorem 1 does not formally cover the case of d0 = 0.5.

In the simulation results reported here we take Model A to apply for the case where d0 = 0.5. Finally,

we simulate xt, t = 1, ..., T , according to (2.1) for the values of β1, β2, β3 and τ∗ specified as above.

In calculating the four test statistics we assumed knowledge of the autoregressive order (either zero

or one) for ηt, but not of the parameter a in the case where ηt is an AR(1). Notice that when ηt

is i.i.d., then ω2 = π2/6, otherwise ω2 must be estimated. Following Tanaka (1999,p.564), we used

ω̂2 := π2/6−
(
1− â2

)
(ln (1− â))2 /â2.4

Empirical size results are reported in Tables 1, 2 and 3 for a = 0, −0.5, 0.5 respectively. Consider

first the results for the (infeasible) LM test. Due to the exact invariance of the LM test to d0,

results are only reported for d0 = 0. We see that the LM test has size close to the nominal 0.05

level throughout, which we might expect given that it is calculated using the true et. Turning to

the (infeasible) LM (τ∗) test (which is exact invariant to β3), its empirical sizes are also in general

reasonably close to the nominal level for a = 0 and a = −0.5; however, for a = 0.5 it can be

significantly undersized for the smaller values of T considered. For our feasible LM (τ̂) test, a degree

of finite sample oversize is seen for β3 = 0 and β3 = 0.1, for both a = 0 and a = −0.5. For a = 0.5,

similarly to what we observe for the LM (τ∗) test, LM (τ̂) displays a tendency to undersize for the

smaller sample sizes considered, though generally to a lesser extent than is seen for LM (τ∗). We

believe the empirical size results for LM (τ̂) are quite encouraging in that they would appear to show

that relatively little in the way of size control is lost when moving from an LM-type test that requires

knowledge of the (putative) break point to one which makes no such concession. It is also worth noting

that the empirical size results in Tables 1, 2 and 3 for LM (τ̂) differ very little for the case of d0 = 0.5

vis-à-vis those for either d0 = 0.25 or d0 = 0.

4In the case of LM , â := (
∑T
t=2 η̂tη̂t−1)/(

∑T
t=2 η̂t−1)2 with η̂t := ∆d0

+ et. For LM (τ), evaluated at either τ = τ∗ or

τ = τ̂ , â (τ) :=
∑T
t=2 η̂t (τ) η̂t−1 (τ)/

∑T
t=2

(
η̂t−1 (τ)

)2
, with η̂t (τ) := ∆d0

+ ût (τ) under Model A, and η̂t (τ) := ∆d0−1
+ ût (τ)

under Model B. Finally, for LM , â :=
∑T
t=2 ηtηt−1/

∑T
t=2

(
ηt−1

)2
, where: for Model A, ηt := ∆d0

+ ut with ut the OLS

residuals from the regression of xt on (1, t)′ for t = 1, ..., T ; for Model B, ηt (τ) := ∆d0−1
+ ut (τ), with ut the residuals

from the regression of ∆xt on 1 for t = 2, ..., T , setting u1 = 0.
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Next consider the results for the LM test which show the effect on empirical size of not allowing

for a trend break, both where one occurs in the data (β3 6= 0) and where one does not (β3 = 0).

When β3 = 0 the LM test, similarly to LM (τ∗), demonstrates reasonable size control for a = 0 and

a = −0.5 but is rather undersized when a = 0.5 for the smaller T . However, where β3 6= 0, the LM

test is seen to be completely unreliable, with empirical size reaching 1.0 in many cases. Unsurprisingly,

the degree of size distortion becomes more serious as |β3| increases, this being a measure of the degree

to which the model which omits the trend break is misspecified. The magnitude of the size distortions

in LM are also seen to be larger the smaller is d0, other things equal. This reflects the fact that

omitting the broken trend in the deterministic specification renders the residuals contaminated by

both a broken trend proportional to (t− bτ∗T c)1−d0 and a linear trend proportional to t1−d0 . Because

(broken) trends have features similar to the properties of an integrated time series, see for example

Iacone (2010), inference on d0 is more heavily contaminated the larger is the exponent (1 − d0) on

these contaminating trend terms in the residuals. Thus, inference when d0 = 0 and more generally for

lower values of d0 is heavily distorted, whereas the contaminating effect when d0 = 1.25 is seen to be

much less dramatic.

We next turn to an examination of the finite sample local power properties of the tests. In order to

save space, we restrict attention to the single sample size T = 512 for the case where ηt is i.i.d. N(0, 1).

In Figures 1-6, results are reported for d0 ∈ {0, 0.25, 0.5, 0.75, 1, 1.25}. We consider an interval of local

alternative values for c chosen as c ∈ {−5.0,−4.75,−4.50, ...,−0.25, 0, 0.25, ..., 4.50, 4.75, 5} which is

symmetric about the null value, c = 0. Local powers of LM (τ̂) for each of β3 = 0, β3 = 0.1 and

β3 = 1 are plotted graphically against c, once more using the 0.05 χ2
1 critical value. Also shown,

again for benchmarking purposes, are the local powers of the LM , LM (τ∗) and LM tests, the latter

is only reported for the case where β3 = 0 because of its very poor size control for non-zero values of

β3 observed in Tables 1-3. Also shown is the relevant asymptotic local power function of the tests;

that is, rejection frequencies for the χ2
1

(
c2π2/6

)
distribution, denoted Asy. This asymptotic power

function is invariant to d0, as is the finite sample local power function of LM . We see that the local

power function for LM lies very close to the symmetric (around c = 0) local power function of Asy.

Figure 1 graphs the local power functions of the tests for d0 = 0. For both LM (τ∗) and LM (τ̂), for

a given value v > 0 finite sample powers are higher for c = −v than for c = v. This is also true for LM ,

though to a lesser extent. For c < 0, the powers of LM (τ∗) and LM (τ̂) can exceed the corresponding

asymptotic local power, but this is partly attributable to the slight oversizing of these tests seen in

Table 1. For c > 0, however, these powers fall some way below the corresponding asymptotic local

power values. Indeed, for small values of c > 0, power falls below the nominal level, albeit fairly

modestly. It gives the impression that the finite sample power curves for LM (τ∗) and LM (τ̂) are

rightward shifted relative to the centering of their common asymptotic local power function. We have

no ready explanation as to why such finite sample asymmetry (around c = 0) should occur, but that it

arises for both LM (τ∗) and LM(τ̂), and also for LM , but not for LM , clearly suggests it is connected

to the fact that the first three tests are based on estimated deterministic trend terms; indeed, of

these three tests LM (τ∗) and LM (τ̂) are based on a richer deterministic specification than LM , and
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correspondingly appear to show the greater degree of asymmetry. Comparing LM (τ∗) and LM (τ̂),

we see that they generally have fairly similar levels of power, particularly when β3 = 1; this might be

expected since, for a large break magnitude of this kind, τ̂ should be in close proximity to τ∗.

In Figure 2, where d0 = 0.25, most of the same comments made for Figure 1 apply here also.

However, LM (τ∗) does now appear slightly more powerful than LM (τ̂) when β3 = 1. The results for

d0 = 0.5 in Figure 3 appear qualitatively very similar to those for d0 = 0.25.

The corresponding results for d0 = 0.75, d0 = 1 and d0 = 1.25 are shown in Figures 4, 5 and 6

respectively. Interestingly, when d0 = 0.75 the asymmetry of the LM (τ∗) and LM (τ̂) power curves

(and indeed of LM), appears somewhat less evident than for the three cases discussed above, with

LM (τ∗) and LM (τ̂) once more demonstrating similar power when β3 = 1. For d0 = 1.0 and d0 = 1.25

the asymmetries in the power functions of LM (τ∗) and LM (τ̂) reappear to some extent; in the latter

case with LM (τ∗) appearing slightly more powerful than LM (τ̂), which suggests that τ̂ is struggling

to estimate τ∗ particularly well by this point.

The overall power performance of LM (τ̂) test should be gauged in context. Expecting it to always

closely replicate the power behaviour of LM or LM (τ∗) tests (let alone the infeasible LM test) in finite

samples represents something of an unrealistic challenge. Respectively, these tests need to correctly

assume that no trend break occurs, or if one does occur, that the true break date is known in order

for their size to controlled, and their powers to be in any way meaningful. As such, they require prior

information that is simply never made available to a practitioner. Conversely, the LM (τ̂) test does

not place any reliance on the veracity of such information. Judged on this basis, we consider that the

relative finite sample power performance of LM (τ̂) across our range of values for d0 is actually more

than acceptable.5

Additional finite sample simulation results can be found in the accompanying on-line supplement to

this paper. For the tests discussed in this section, these investigate: (i) the empirical power properties

of the tests against fixed alternatives; (ii) the impact of innovation distributions which violate the

moment conditions stated in Assumption 1; and (iii) the use of model selection methods to select the

autoregressive lag order for the short memory component of the model. Concentrating on the results

for LM (τ̂), the findings of these simulation experiments can be summarised as follows. Under (i),

even for “distant” fixed alternatives where the LM (τ̂) statistic is based on the wrong model (e.g.

d = 0.6 and d0 = 0.4 where Model A is used to construct the test statistic but in fact Model B holds

for the true DGP) the LM (τ̂) test appears consistent (its power approaches 1 with increasing T ) and,

other things being equal, its power also increases with the distance between d and d0; for example,

d = 0.6, d0 = 0.4 shows lower power than d = 0.75, d0 = 0.25. For (ii), when moment conditions

are significantly violated e.g. when d = d0 = 0.51 and the innovations are t5 distributed, LM (τ̂)

is badly oversized. Indeed its size appears to diverge with T when β3 = 0. On the basis of these

5Unreported simulations we have conducted for larger T confirm that the local power curves of LM (τ̂) do indeed

converge towards their asymptotic counterparts. However, this convergence appears to be rather slow. For example, in

the case where d0 = 1 and c = 2, the power of the test based on LM (τ̂) for T = n× 512, n = 1, 4, 16 is 0.42, 0.57, 0.64,

while the corresponding asymptotic local power at c = 2 is 0.73.
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simulation results, we do not recommend using LM (τ̂) for testing null hypotheses close to d = 0.5

especially if fat-tailed behaviour is suspected to be present in the data. Under (iii), we found that

using a standard Bayes Information Criterion to select the lag order, assuming a maximal order of

two, made only minor differences to the sizes reported in Tables 1-3, where the lag order is assumed

known.

5 Empirical Example

In this section we use the LM (τ̂) testing procedure developed in this paper to examine the persistence

properties of the logarithm of the CPI price index in the U.S. over the period January 1970 to January

2018. The data were obtained from the OECD database over a total of 577 monthly observations. The

log CPI data are graphed in Figure 7. Figure 8 plots the annual inflation rate (calculated as 100 times

the annual differences of the log CPI data). Figure 7 suggests that the log CPI data would appear

to be well characterised by the “changing growth” model, displaying an apparent negative change in

the slope of the trend function in the early 1980s but without any sudden change in the level at that

point. A negative change in the slope of the trend of log CPI implies a level shift in the inflation rate

(either the annual inflation rate as in Figure 8, or a corresponding monthly inflation rate based on

the first differences of the log CPI data) in the early 1980s from a regime of relatively high inflation

to one of relatively low inflation, and again this can clearly be seen in Figure 8. Clarida, Gali and

Gertler (2000) argue that the appointment of Paul Volcker as chairman of the Board of Governors of

the Federal Reserve System in July 1979 brought about a more aggressive stance on monetary policy,

which may have caused the apparent level change in inflation; see also Boivin and Giannoni (2006).

Investigating the degree of persistence of inflation is important because it has implications for the

appropriate timing and intensity of monetary policy intervention; see, for example, Fuhrer (2011) and

Angeloni et al. (2006). Although effective monetary policy requires that the central bank understands

the structural origins of inflation dynamics, a summary, or reduced form, measure of inflation persis-

tence is nevertheless important as it provides a benchmark that should be kept under consideration

when designing economic models. The order of integration, being informative about the strength of

the autocorrelation at long range, seems particularly well suited to this end. Early applications of

fractionally integrated models to inflation data include, among others, Hassler and Wolters (1995)

and Baillie, Chung and Tieslau (1996). These studies find statistically significant evidence of positive

fractional integration (with estimated values of the long memory parameter, for various estimation

methods, found to lie in the range 0.40 to 0.47) in U.S. inflation rate data. Fixing the slope of the

deterministic trend function to be constant across the sample, using the exact local Whittle [ELW]

method of Shimotsu and Phillips (2005), with the modification to allow for deterministic trends devel-

oped in Shimotsu (2010), and a bandwidth of m = bT 0.65c, we estimate the long memory parameter

for the log CPI data in Figure 7 to be d̂ = 1.30, again implying relatively strong positive fractional

integration in inflation.

Hassler and Wolters (1995) find no significant evidence of conditional heteroskedasticity in the data
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but, like Figure 7 above, Figure 1 of Hassler and Wolters (1995,p.38) clearly suggests the presence of

a negative trend break in the early 1980s in the U.S. log CPI data. Given the apparent change in

the level of inflation in the early 1980s, and following the discussion in Remark 16, we therefore need

to be alert to the possibility that the methods of inference used in the empirical studies of the U.S.

inflation rate discussed above could be suggesting the presence of long memory in inflation because of

an unmodelled level break in the data rather than genuine long memory. The LM (τ̂) test developed

in this paper may therefore be useful in the context of these data.

We will test the key null hypothesis that inflation is a short memory, I(0), process. This corre-

sponds to testing H0 : d = 1 in the log CPI data which therefore entails the use of Model B. A second

hypothesis of interest could be testing H0 : d = 0, in which case the log CPI data is a short memory

process about a broken deterministic trend. In this latter case, Model A is therefore used. In both

cases, the short memory component of the series is selected using the Bayes Information Criterion

(BIC) of Schwarz (1978), choosing between AR(0), AR(1) and AR(2) models. A summary of the

results for the LM (τ̂) test for these two null hypotheses is as follows:

H0 : d = 0 H0 : d = 1

τ̂ 0.32 0.26

BIC AR(2) AR(1)

LM (τ̂) 19.80 1.74

p-value 0.000 0.187

where BIC denotes the model selected using the information criterion, LM (τ̂) is the outcome of

the test statistic for H0 in each case and p-value is the associated (asymptotic) p-value for the test

(obtained from the χ2
1 distribution), and τ̂ is the estimated break fraction obtained using Model A in

the case of testing H0 : d = 0, and Model B in the case of H0 : d = 1. It can therefore be seen that

the null hypothesis that log CPI is a short memory process (allowing for a trend break) is rejected

at any conventional significance level. In contrast, the null hypothesis that log CPI is an I(1) process

about a deterministic trend subject to a break, and hence that inflation is I(0) about a level change,

cannot be rejected using conventional significance levels (although, of course, one cannot conclude

for certain from this test result that inflation is not a long memory process).6 The estimated break

fraction τ̂ = 0.26 corresponds to a break date of June 1982, which seems not inconsistent with the

likely timescale needed for the impact of the changes in monetary policy adopted by the Fed after the

appointment of Volcker to feed through into the recorded inflation rate.7 The dashed line in Figure

7 shows the fitted broken trend function for τ̂ = 0.26, while the dashed line in Figure 8 depicts the

corresponding fitted broken level function for the inflation rate data.

For comparative purposes, we also tested H0 : d = 1 in the log CPI data using the LM test which

does not allow for a trend break in the data. Here the BIC selects an AR(1) model and the outcome of

6The ELW estimate of d in the log CPI data, allowing for a break in trend at τ̂ = 0.26, is d̂ = 1.137.
7That said, the 1981/1982 recession in the US, which is known to have been particularly sharp over this period, could

also have been a relevant factor.
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the statistic is LM = 72.33, thereby leading to an overwhelming rejection of the I(1) null hypothesis.

The outcome of the LM test is therefore consistent with the findings of the previous empirical studies

discussed above that inflation displays long memory persistence, contrasting with the result of the

LM (τ̂) test which suggests that inflation is a short memory (I(0)) process about a changing level.

To shed further light on this matter, we test for a trend break in the log CPI data using the SW

and MW tests of Iacone, Leybourne and Taylor (2013b) and Iacone, Leybourne and Taylor (2013a),

respectively, both of which are robust to the order of integration of the data. The outcome of the SW

and MW statistics were 14.33 and 83.80, respectively, with the respective 5% critical values given by

12.08 and 61.98. Both tests therefore find significant evidence of the presence of a trend break in the

data, lending further weight to the conclusions drawn from the LM (τ̂) test that inflation is a short

memory process, and that the evidence of positive long memory found in some earlier studies might

be attributable to an unmodelled level shift in the data occurring in the early 1980s.

Finally, recall that the ELW estimate of the long memory parameter in the log CPI data when a

trend break is not allowed for is d̂ = 1.30. The outcomes of the LM and LM (τ̂) statistics for testing

the null hypothesis H0 : d = 1.3 are 1.187 and 7.715, respectively, with associated p-values of 0.275

and 0.005, respectively. As such, while we can easily reject the null hypothesis that d = 1.3 at any

conventional significance level when we allow for a trend break in the data, we cannot when we impose

a fixed slope on the trend function.

6 Conclusions

We have been concerned with the problem of conducting inference on the long memory parameter

in the context of a series which is fractionally integrated around a potentially broken deterministic

trend. To that end, we have extended the LM-based testing approach of Robinson (1994), Tanaka

(1999) and Nielsen (2004), which assumes a known functional form for the deterministic kernel, to the

unknown trend break case we consider. This was achieved by basing the LM-type tests on data which

have been de-trended allowing for a trend break with the location of the break estimated by a residual

sum of squares estimator. This estimator was based either on the levels or first differences of the data

dependent on the value imposed on the long memory parameter under the null hypothesis. We have

demonstrated that the resulting LM-type test shares the same large sample asymptotic local optimality

properties as are obtained in the known deterministic kernel case of Robinson (1994), Tanaka (1999)

and Nielsen (2004) and, again like those tests, has asymptotic null critical values given by the χ2
1

distribution. Results were reported from a Monte Carlo study into the finite-sample behaviour of our

proposed test and it was found that the test performs well in terms of size control and local power

levels. An empirical application to U.S. inflation data suggested that some previous findings of positive

long memory in the inflation rate might be attributable to an unmodelled level change in inflation in

the early 1980s.

We conclude with two suggestions for future research. First, we have here considered the case

where the trend break magnitude, β3, in DGP (2.1) is either exactly zero, such that no trend break
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occurs, or is a non-zero constant, such that a trend break of fixed magnitude occurs. It would also be

interesting to investigate the behaviour of our proposed LM (τ̂) test in cases where β3 is local-to-zero

at some polynomial rate in T ; viz., β3 = KT−α for some α > 0 and where K is a constant. We

are currently working on a detailed analytical investigation into this local trend break case which we

hope to report in separate work in due course. Our analysis so far leads us to conjecture that our

main result from Theorem 1 that LM (τ̂)− LM = op(1) will continue to hold in this case, regardless

of the value of α. This would have the implication that this result holds uniformly in β3. Second,

we have focussed here on the use of time-domain methods for developing tests on the long memory

parameter, d. It would also be interesting to develop tests in the frequency-domain, along the lines

of the LM tests of Robinson (1994). Following Iacone (2010) and Perron and McCloskey (2013), it

might be feasible that, for certain values of d, these statistics could be implemented with trimming

of some low frequency periodogram ordinates, enabling inference on d to be carried out without the

need to parametrically account for any breaks present in the deterministic trend function. The degree

of trimming that would be required depends on d, and when d is small it may require eliminating a

relatively large number of the low frequency periodogram ordinates. As such, this approach would

likely be better suited to cases falling under our Model B than under Model A.
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A Appendix

The conditions stated in Lemma 1 are assumed to hold throughout this appendix. We will use the

nomenclature C throughout to denote a generic positive bound. For a generic matrix B, we denote by

ei (B) the largest eigenvalue of B, and define the norm of B as ‖B‖ :=
{
ei (B′B)

}1/2
. Where a function

of τ is considered, the stochastic orders Op (.) and op (.) will be assumed to hold for the function using

a suitable metric, and, unless specified otherwise, we will use the uniform distance. For example,

from the standard FCLT, if T−1/2
∑bτT c

t=1 εt ⇒ σεW (τ), where “⇒” indicates weak convergence in

the uniform metric, and W (τ) is a standard Brownian motion, we will write
∑bτT c

t=1 εt = Op
(
T 1/2

)
.

To abbreviate notation (and mirroring the definition of δ0) we define δ := d if d ∈ (−0.5, 0.5) and

δ := d− 1 if d ∈ (0.5, 1.5).

A.1 Proof of Lemma 1

We first detail results under H0; here it holds that d = d0 and δ = δ0. We consider the cases β3 = 0

and β3 6= 0 separately, and for each case we divide the proof into Lemma A1 and Lemma B1, to make

it easier to follow. We then detail in Lemma C1 how to account for the local alternative, Hc. We prove
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Lemma 1 by putting these three lemmas together. Proofs of Lemmas A1, B1 and C1 are provided in

the accompanying on-line supplementary appendix.

Lemma A1. Let β̂ (τ) be the OLS estimate in (3.5). For β3 = 0, under H0,

KT (d)
(
β̂ (τ)− β

)
= Op (1) . (A.1)

�

Lemma B1. Let β̂ (τ) be the OLS estimate in (3.5) and τ̂ the minimum RSS estimate in (3.10).

For β3 6= 0 and under H0:

(i) if d0 ∈ (−0.5, 0.5), then

τ̂
p→ τ∗ and τ̂ − τ∗ = Op

(
T−3/2+δ

)
(A.2)

(ii) if d0 ∈ (0.5, 1.5), then

τ̂
p→ τ∗ and τ̂ − τ∗ = Op

(
T−1

)
(A.3)

(iii) for d0 ∈ (−0.5, 0.5) ∪ (0.5, 1.5),

KT (d)
(
β̂ (τ̂)− β

)
= Op (1) . (A.4)

�

Lemma C1. For α ∈ (−1/2, 1/2), r ≥ 0, r integer,

T−(1/2+α) (ln (T ))−r
bτT c∑
t=1

(
(ln (∆))r ∆−(α+θT )

)
+
ηt = T−(1/2+α) (ln (T ))−r

bτT c∑
t=1

(
(ln (∆))r ∆−α

)
+
ηt+op (1) .

�

Using Lemmas A1, B1 and C1, the proof of Lemma 1 is completed as follows:

• Under H0, Lemma 1 follows directly from Lemmas A1 and B1.

• Under Hc, from Lemma C1, setting r = 0 and α = δ0, the FCLT T−(1/2+δ0)
∑bτT c

t=1 ut ⇒ σ∞W (τ ; δ0)

still holds. Therefore, when β3 = 0, the result in (3.14) follows using arguments similar to those used

in Lemma A.1. For the proof under β3 6= 0, we observe that Chang and Perron (2016) derived (A.2)

using the FCLT for T−(1/2+δ)
∑bτT c

t=1 ∆−δ+ ηt. However, from Lemma C1, we can replace this with

T−(1/2+δ0)
∑bτT c

t=1 ∆
−(δ0+θT )
+ ηt. Therefore, (A.2) is also valid under Hc for Model A. For Model B,

(A.3) holds for any δ ∈ (−1/2, 1/2) and, since for T sufficiently large (δ0 + θT ) ∈ (−1/2, 1/2) still

holds, then (3.11) is still met.
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A.2 Proof of Theorem 1

We organise the proof of Theorem 1 in a similar way to the proof of Lemma 1 above. That is, we derive

results under H0 first, considering the cases β3 = 0 and β3 6= 0 separately, and then subsequently

discuss the corresponding results under Hc. We first state some preparatory results in Lemmas A2,

B2, C2 and D2, each of whose proof is again provided in the accompanying on-line supplementary

appendix.

Lemma A2. Under β3 = 0 and H0: (i) ψ̂ (τ)− ψ̂ = op (1), and (ii) T 1/2(ψ̂(τ)− ψ̂) = op (1). �

Lemma B2. Recalling that ε̂t(τ) = g(L; ψ̂ (τ))∆δ
+ût (τ) and ε̂t = g(L; ψ̂)∆δ

+ut, and defining v̂t (τ) :=∑t−1
j=1 j

−1ε̂t−j (τ) and v̂t :=
∑t−1

j=1 j
−1ε̂t−j , then under β3 = 0 and H0,

T−1/2
T∑
t=1

ε̂t (τ) v̂t (τ)− T−1/2
T∑
t=1

ε̂tv̂t = op (1) (A.5)

ŝ2 (τ)− ŝ2 = op (1) (A.6)

ω̂2 (τ)− ω̂2 = op (1) . (A.7)

�

Lemma C2. When β3 6= 0, under H0, T 1/2
(
ψ̂ (τ̂)− ψ̂

)
= op (1). �

Lemma D2. When β3 6= 0, under H0, T−1/2
∑T

t=1 ε̂t (τ̂) v̂t (τ̂)−T−1/2
∑T

t=1 ε̂tv̂t = op (1), ŝ2 (τ̂)−ŝ2 =

op (1), and ω̂2 (τ̂)− ω̂2 = op (1). �

Using Lemmas A2, B2, C2 and D2, the proof of Theorem 1 is then completed as follows. We derive

the result under H0 and β3 = 0 first. Re-write Â (τ) = T−1/2
∑T

t=1 ε̂t (τ) v̂t (τ) /ŝ2 (τ) and, in view

of Lemma B2 and continuity, Â (τ)− Â = op
(
T−1/2

)
; in the same way, LM (τ)− LM = op (1). The

proof for β3 6= 0 is similar, but uses Lemma C2 and Lemma D2 instead. Where Hc holds, the results

in Lemma A2, Lemma B2, Lemma C2 and Lemma D2 can be straightforwardly extended, applying

the mean value theorem expansion used in Lemma C1, to show that the rate is not affected under the

alternative.
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Table 1. Empirical size of tests, a = 0

T LM LM LM(τ∗) LM(τ̂)

d0 β3 = 0 β3 = 0.1 β3 = 1 β3 = 0 β3 = 0.1 β3 = 1

256 0.048 0.041 1.000 1.000 0.050 0.069 0.065 0.050

0 512 0.047 0.043 1.000 1.000 0.054 0.069 0.064 0.054

1024 0.047 0.046 1.000 1.000 0.052 0.060 0.059 0.052

256 0.041 1.000 1.000 0.050 0.072 0.065 0.058

0.25 512 0.044 1.000 1.000 0.054 0.069 0.065 0.058

1024 0.045 1.000 1.000 0.053 0.060 0.059 0.055

256 0.039 0.857 1.000 0.048 0.069 0.065 0.057

0.5 512 0.042 1.000 1.000 0.050 0.065 0.060 0.057

1024 0.044 1.000 1.000 0.051 0.059 0.055 0.054

256 0.036 0.122 1.000 0.038 0.039 0.047 0.040

0.75 512 0.040 0.372 1.000 0.042 0.045 0.047 0.045

1024 0.044 0.886 1.000 0.046 0.048 0.049 0.046

256 0.036 0.042 1.000 0.041 0.060 0.059 0.044

1 512 0.039 0.051 1.000 0.043 0.063 0.063 0.044

1024 0.044 0.063 1.000 0.045 0.059 0.057 0.046

256 0.037 0.038 0.316 0.042 0.068 0.069 0.055

1.25 512 0.039 0.039 0.429 0.043 0.071 0.070 0.050

1024 0.044 0.045 0.546 0.045 0.064 0.062 0.052
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Table 2. Empirical size of tests, a = −0.5

T LM LM LM(τ∗) LM(τ̂)

d0 β3 = 0 β3 = 0.1 β3 = 1 β3 = 0 β3 = 0.1 β3 = 1

256 0.051 0.042 0.966 1.000 0.055 0.074 0.072 0.055

0 512 0.052 0.047 1.000 1.000 0.058 0.073 0.068 0.058

1024 0.047 0.044 1.000 1.000 0.052 0.062 0.058 0.052

256 0.042 1.000 1.000 0.057 0.079 0.075 0.060

0.25 512 0.046 1.000 1.000 0.057 0.076 0.069 0.057

1024 0.045 1.000 1.000 0.052 0.063 0.061 0.052

256 0.039 0.998 0.998 0.055 0.078 0.074 0.064

0.5 512 0.044 1.000 1.000 0.054 0.073 0.064 0.061

1024 0.045 1.000 1.000 0.050 0.062 0.056 0.055

256 0.037 0.338 1.000 0.039 0.034 0.034 0.039

0.75 512 0.042 0.869 1.000 0.043 0.040 0.044 0.043

1024 0.041 1.000 1.000 0.042 0.043 0.045 0.046

256 0.037 0.050 1.000 0.041 0.059 0.061 0.041

1 512 0.042 0.078 1.000 0.045 0.064 0.061 0.045

1024 0.042 0.126 1.000 0.045 0.058 0.056 0.044

256 0.035 0.035 0.757 0.040 0.071 0.071 0.044

1.25 512 0.043 0.043 0.905 0.046 0.072 0.071 0.048

1024 0.042 0.045 0.976 0.045 0.065 0.064 0.046
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Table 3. Empirical size of tests, a = 0.5

T LM LM LM(τ∗) LM(τ̂)

d0 β3 = 0 β3 = 0.1 β3 = 1 β3 = 0 β3 = 0.1 β3 = 1

256 0.048 0.010 0.949 0.997 0.018 0.032 0.032 0.025

0 512 0.050 0.023 1.000 1.000 0.036 0.059 0.056 0.040

1024 0.048 0.032 1.000 1.000 0.044 0.066 0.061 0.044

256 0.010 0.351 0.452 0.018 0.034 0.034 0.031

0.25 512 0.023 0.243 1.000 0.037 0.062 0.059 0.054

1024 0.032 0.999 1.000 0.046 0.071 0.064 0.060

256 0.015 0.081 1.000 0.019 0.031 0.036 0.031

0.5 512 0.025 0.725 1.000 0.036 0.062 0.058 0.055

1024 0.032 1.000 1.000 0.045 0.072 0.063 0.061

256 0.010 0.019 0.092 0.010 0.011 0.013 0.011

0.75 512 0.019 0.077 0.112 0.022 0.021 0.024 0.023

1024 0.026 0.302 0.458 0.030 0.031 0.034 0.030

256 0.011 0.013 0.517 0.012 0.021 0.021 0.014

1 512 0.021 0.024 0.961 0.024 0.039 0.039 0.025

1024 0.026 0.035 1.000 0.033 0.052 0.050 0.036

256 0.012 0.012 0.033 0.013 0.028 0.027 0.025

1.25 512 0.021 0.021 0.075 0.023 0.050 0.049 0.041

1024 0.026 0.027 0.123 0.034 0.061 0.060 0.051

27



Figure 1. Local power of tests, T = 512, d0 = 0.

Asy LM LM, β3 = 0 LM (τ∗)

LM (τ̂) , β3 = 0 LM (τ̂) , β3 = 0.1 LM (τ̂) , β3 = 1
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Figure 2. Local power of tests, T = 512, d0 = 0.25.

Asy LM LM, β3 = 0 LM (τ∗)

LM (τ̂) , β3 = 0 LM (τ̂) , β3 = 0.1 LM (τ̂) , β3 = 1
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Figure 3. Local power of tests, T = 512, d0 = 0.5.

Asy LM LM, β3 = 0 LM (τ∗)

LM (τ̂) , β3 = 0 LM (τ̂) , β3 = 0.1 LM (τ̂) , β3 = 1
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Figure 4. Local power of tests, T = 512, d0 = 0.75.

Asy LM LM, β3 = 0 LM (τ∗)
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Figure 5. Local power of tests, T = 512, d0 = 1.

Asy LM LM, β3 = 0 LM (τ∗)
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Figure 6. Local power of tests, T = 512, d0 = 1.25.

Asy LM LM, β3 = 0 LM (τ∗)

LM (τ̂) , β3 = 0 LM (τ̂) , β3 = 0.1 LM (τ̂) , β3 = 1
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Figure 7. U.S. CPI price index, January 1970 - January 2018.

Figure 8. U.S. CPI annual inflation (%), January 1971 - January 2018.
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“Testing the Order of Fractional Integration of a Time Series in the Possible
Presence of a Trend Break at an Unknown Point”

by

F. Iacone, S.J. Leybourne and A.M.R. Taylor
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Contents: Section S.1 of this supplement contains proofs of Lemmas A1, B1 and C1 used in the

proof of Lemma 1 and Lemmas A2, B2, C2 and D2 used in the proof of Theorem 1. Section S.2

provides additional Monte Carlo simulation results relating to empirical power properties against

fixed alternatives, the impact of innovation distributions which violate the moment conditions in

Assumption 1, and the use of model selection methods to select the ARMA component of the model.

Additional references not cited in the main article are included at the end of the supplement.

S.1 Mathematical Proofs

Proof of Lemma A1:

For Model A, (A.1) is established, in the Skorohod measure, for example, by Iacone, Leybourne and

Taylor (2013a), page 417. For Model B, rate (A.1) in the Skorohod measure is established for the

type 1 version of the fractionally integrated process, for example, by Iacone, Leybourne and Taylor

(2014); however, the same result can be derived for the type 2 version using the FCLT in Marinucci

and Robinson (2000). Both results are established using the FCLT T−1/2+δ
∑bτT c

t=1 ut ⇒ σ∞W (τ ; δ)

where W (τ ; δ) is a Type 2 fractional Browinan motion, and the weak convergence is in the Skorohod

measure. To show that this convergence also holds in the uniform metric, we follow Billingsley (1968),

page 153; for the weak convergence Xn ⇒ X it is possible to go from the Skorohod to the uniform

metric if: (i) the limit object X lies in C[0, 1], the space of continuous function in [0, 1] with the

uniform metric, with probability 1, and (ii) the jumps of Xn occur at fixed time points rather than at

time points with random position. This applies not only to the standard Brownian motion, but also to

both type 1 and type 2 fractional Brownian motions; see Shao (2011) page 604 for an application of this

result for type 1 processes. For condition (i), notice that the type 2 fractional Brownian motion also

[S.1]



has almost surely continuous sample paths, see Marinucci and Robinson (1999) page 116. Condition

(ii) is immediately met.

Proof of Lemma B1:

For Model A, (A.2) follows from Chang and Perron (2016), Theorem 1 and Theorem 2, part i (case

for m = 0). Chang and Perron (2016) derive their results for type 1 fractionally integrated processes,

but the same results can be derived for the type 2 version using the FCLT in Marinucci and Robinson

(2000) and bounds from Lavielle and Moulines (2000); in particular, the Hájek-Rényi type inequality

in Lavielle and Moulines (2000) holds for both type 1 and type 2 processes.

For Model B, Theorem 3 and Theorem 7 of Lavielle and Moulines (2000) yield (A.3) for τ∗ ∈ [τU , τL] ⊂
(0, 1). Regarding the case δ < 0 for Model B, notice that, although Lavielle and Moulines (2000) focus

attention on δ > 0, their condition H1 (φ) is still met when δ < 0, with φ = 1; see Lavielle and

Moulines (2000) page 35, where the sufficient condition
∑

s≥0 |E (utut+s)| <∞ is given.

Finally, for Model A, rate (A.4) again follows by adapting results from Theorem 4 of Chang and Perron

(2016). For Model B with δ = 0, (A.4) is given in Bai (1994), Proposition 4; Lavielle and Moulines

(2000), Theorem 8 establish (A.4), focusing on the case of a shrinking break, and δ > 0. Lavielle and

Moulines (2000) do not explicitly consider δ < 0 altogether, but we show below that the result follows

applying the bound in Corollary 2.1 of Lavielle and Moulines (2000) to the expression in Proposition

4 of Bai (1994). Using our notation, the expression in the proof of Proposition 4 of Bai (1994) is given

by

β̂2 (τ̂)− β̂2 (τ∗) =

(
bτ∗T c − bτ̂T c
bτ∗T c bτ̂T c

∑bτ∗T c
t=1 ut −

1

bτ̂T c
∑bτ∗T c

t=1+bτ̂T c ut

)
I (bτ̂T c ≤ bτ∗T c) (S.1)

+

(
bτ∗T c − bτ̂T c
bτ∗T c bτ̂T c

∑bτ∗T c
t=1 ut +

1

bτ̂T c
∑bτ̂T c

t=1+bτ∗T c ut + β3

bτ∗T c − bτ̂T c
bτ̂T c

)
I (bτ̂T c > bτ∗T c) .

(S.2)

Because bτ∗T c − bτ̂T c = Op (1) and
∑bτ∗T c

t=1 ut = Op
(
T 1/2+δ

)
, the first term on the right hand side

of (S.1) is Op
(
1× T−2 × T 1/2+δ

)
= Op

(
T−3/2+δ

)
= op

(
T−1/2+δ

)
. As for the second term of (S.1),

we now show that, for ε > 0,
∑bτ∗T c

t=1+bτ̂T c ut = Op (T ε). It follows from Equation (8) of Lavielle and

Moulines (2000) that for ε > 0,

sup
i∈Z

P

(
max

k+i≥m+i
k−(1/2+ε)

∣∣∣∑i+k
t=i ut

∣∣∣ ≥ c) ≤ C (1, ε)m1−2(1/2+ε)

if δ < 0 and

sup
i∈Z

P

(
max

k+i≥m+i
k−(1/2+δ+ε)

∣∣∣∑i+k
t=i ut

∣∣∣ ≥ c) ≤ C (1, ε)m1−2(1/2+δ+ε)

if δ > 0. Either way, then,

sup
i∈Z

P

(
max

k+i≥m+i
k−1|

∑i+k
t=i ut| ≥ c

)
≤ C (1, 1)m−1.

[S.2]



Taking i = bτT c, k = bτ∗T c − bτT c + T ε for ε > 0 we can then allow for m → ∞ and therefore,

uniformly in τ , (bτ∗T c − bτT c+ T ε)−1
∣∣∣∑bτ∗T c+T εt=1+bτT c ut

∣∣∣ = Op (1). Next, notice that∣∣∣∑bτ∗T ct=1+bτT c ut

∣∣∣ =
∣∣∣∑bτ∗T c+T εt=1+bτT c ut −

∑bτ∗T c+T ε
t=1+bτ∗T c ut

∣∣∣
≤

∣∣∣∑bτ∗T c+T εt=1+bτT c ut

∣∣∣+
∣∣∣∑bτ∗T c+T εt=1+bτ∗T c ut

∣∣∣
= Op ((bτ∗T c − bτT c+ T ε) + T ε)

and that
∣∣∣∑bτ∗T ct=1+bτ̂T c ut

∣∣∣ = Op (T ε), using bτ∗T c − bτ̂T c = Op (1). Finally, therefore we have that the

second term on the right hand side of (S.1) is such that

1

bτ̂T c
∑bτ∗T c

t=1+bτ̂T c ut = Op
(
T ε−1

)
= op

(
T−1/2+δ

)
.

Proceeding in the same way, we can also show that the first two terms in (S.2) are of op
(
T−1/2+δ

)
.

Finally, the remainder term β3
bτ∗T c−bτ̂T c
bτ̂T c = Op

(
T−1

)
= op

(
T−1/2+δ

)
using (A.3). As in Proposition

4 of Bai (1994), the proof for β̂3 (τ̂) − β̂3 (τ∗) = op
(
T−1/2+δ

)
proceeds in the same way, and we can

then conclude that β̂ (τ̂)− β̂ (τ∗) = op
(
T−1/2+δ

)
. Rearranging,

KT (d)
(
β̂ (τ̂)− β

)
= KT (d)

(
β̂ (τ̂)− β̂ (τ∗) + β̂ (τ∗)− β

)
= KT (d)

(
β̂ (τ̂)− β̂ (τ∗)

)
+KT (d)

(
β̂ (τ∗)− β

)
.

Using the rate for β̂ (τ̂)− β̂ (τ∗), then KT (d)
(
β̂ (τ̂)− β̂ (τ∗)

)
= op (1); the rate KT (d)

(
β̂ (τ∗)− β

)
=

Op (1) follows because τ∗ is not random and therefore β̂ (τ∗) is a standard regression estimate with

non-random regressors, also see in Robinson (1994) and Nielsen (2004). These two rates are sufficient

to establish (A.4).

Proof of Lemma C1:

By a third order expansion and the mean value theorem,(
(ln (∆))r ∆−(α+θT )

)
+
ηt =

(
(ln (∆))r ∆−α

)
+
ηt − θT

(
(ln (∆))r+1 ∆−α

)
+
ηt

+ 1/2 (θT )2
(

(ln (∆))r+2 ∆−α
)

+
ηt

− 1/6 (θT )3
(

(ln (∆))r+3 ∆−(α+θm,T )
)

+
ηt

for |θm,T | ≤ |θT |. Then proceeding as in Lemma 4 of Robinson (2005), we write

(
(ln (∆))r+3 ∆−(α+θm,T )

)
{ηtI (t > 0)} =

t−1∑
j=1

cjηt−j

where cj is the coefficient of sj in the Taylor expansion of {ln (1− s)}r+3 × (1− s)−(α+θm,T ). From

Stirling’s approximation, also see (7.3) of Robinson (2005), cj ∼ (ln (j))r+3 × j−(α+θm,T )−1. As

|α| < 1/2, then, for T large enough, − (α+ θm,T ) − 1 < −1/2, and
∞∑
j=1

c2
j < C. Then, by the

[S.3]



Cauchy-Schwarz inequality,
t−1∑
j=1

cjηt−j ≤

 t−1∑
j=1

c2
j

t−1∑
j=1

η2
t−j

1/2

≤ C

 t−1∑
j=1

η2
j

1/2

and we established

the bound (
(ln (∆))r+3 ∆−(α+θm,T )

)
{ηtI (t > 0)} = O

{t−1∑
j=1

η2
j

}1/2
 = Op (t)

as E (ηt)
2 = O (1).

We then rewrite

T−(1/2+α) (ln (T ))−r

∣∣∣∣∣∣
bτT c∑
t=1

((
(ln (∆))r ∆−(α+θT )

)
+
ηt −

(
(ln (∆))r ∆−α

)
+
ηt

)∣∣∣∣∣∣
≤ |θT |T−(1/2+α) (ln (T ))−r

∣∣∣∣∣∣
bτT c∑
t=1

(
(ln (∆))r+1 ∆−α

)
+
ηt

∣∣∣∣∣∣ (S.3)

+
1

2
θ2
TT
−(1/2+α) (ln (T ))−r

∣∣∣∣∣∣
bτT c∑
t=1

(
(ln (∆))r+2 ∆−α

)
+
ηt

∣∣∣∣∣∣ (S.4)

+Op

(
T−(1/2+α)

T∑
t=1

t1/2 |θT |3
)
. (S.5)

From Marinucci and Robinson (2000) and the rate for θT , the term in (S.3) is Op
(
T−1/2 ln (T )

)
=

op (1), and the term in (S.4) can be treated in the same way. The remainder (S.5) is Op
(
T−(1/2+α)

)
=

op (1).

Proof of Lemma A2:

We first need to introduce some additional notation, as in Iacone, Leybourne and Taylor (2013b). To

that end, we define

µ1,t := ∆δ {1I (t > 0)} , µ2,t := ∆δ {tI (t > 0)} ,

µ3,t (τ) :=

{
∆δ {(t− bτT c) I (t > bτT c)} for Model A

∆δ {1I (t > bτT c)} for Model B

where, for δ ∈ (−1/2, 0)∪(0, 1/2), we observe from Lemma 1 of Robinson (2005) and Iacone, Leybourne

and Taylor (2013b), page 40, that

µ1,t =
1

Γ (1− δ)
t−δ +O

(
t−1−δ + t−1I (δ > 0)

)
, ∆µ1,t = ∆

(−δ)
t

µ2,t =
1

Γ (2− δ)
t1−δ +

(
t−δ + 1I (δ > 0)

)
, ∆µ2,t = µ1,t.

Next we define ε̂t(ψ) := g(L;ψ)∆δ
+ut and ε̂t (ψ; τ) := g (L;ψ) ∆δ

+ût (τ). Notice therefore that,

under H0, ε̂t(ψ̂) and ε̂t(ψ̂(τ); τ) coincide with ε̂t defined in (3.2) and ε̂t (τ) defined in (3.8), respectively.

Moreover, under H0, ε̂t (ψ∗) = εt.

We may then write the loss functions in (3.1) and (3.7) as
∑T

t=1 (ε̂t (ψ))2 and
∑T

t=1 (ε̂t (ψ; τ))2, re-

spectively. Consistency of ψ̂ is well known in this context, and can be readily established using a
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routine consistency argument for implicitly defined extremum estimates; see, for example, Newey and

McFadden (1994). This requires uniform (in ψ) convergence of a suitably scaled version of the loss

function so that T−1
∑T

t=1 (ε̂t (ψ))2 p→ E (g (L;ψ) ηt)
2, together with identification of the parameters

ψ0. The former is established as a uniform weak law of large numbers, that is obtained using pointwise

convergence of the scaled loss function T−1
∑T

t=1 (ε̂t (ψ))2 to the limit, and stochastic equicontinuity;

see page 244 of Andrews (1992). Sufficient conditions for stochastic equicontinuity to hold in this case

are that the loss function is differentiable with first derivative bounded in probability; see Assumptions

(b) and (c) on page 246 of Andrews (1992).

Using the same approach as in Theorem A1 of Andrews (1993), to establish part (i) of the lemma

we need to verify that T−1
(∑T

t=1 (ε̂t (ψ; τ))2 −
∑T

t=1 (ε̂t (ψ))2
)

= op (1) uniformly in both ψ and τ .

Uniformity in ψ can be established using the same arguments outlined above for the case of estimating

ψ̂. We therefore focus here on establishing uniform convergence in τ .

Substituting (3.6) into the definition for ε̂t (ψ; τ), we have that when d0 < 0.5,

ε̂t (ψ; τ) = g (L;ψ) ∆δ
+

(
yt − zt (τ)′ β̂ (τ)

)
= g (L;ψ) ∆δ

+ut + g (L;ψ) ∆δ
+zt (τ)′

(
β − β̂ (τ)

)
(S.6)

= ε̂t (ψ) + g (L;ψ) ∆δ
+zt (τ)′

(
β − β̂ (τ)

)
(S.7)

and that

T∑
t=1

(ε̂t (ψ; τ))2 −
T∑
t=1

(ε̂t (ψ))2 =
T∑
t=1

(
g (L;ψ) ∆δ

+zt (τ)′
(
β − β̂ (τ)

))2
(S.8)

+ 2
T∑
t=1

(ε̂t (ψ))
(
g (L;ψ) ∆δ

+zt (τ)′
(
β − β̂ (τ)

))
. (S.9)

When d0 > 0.5, imposing û1 (τ) = 0 adds the remainder term

−g (L;ψ) ∆
(−δ)
t {u1 + r̂1 (τ)} (S.10)

where r̂t (τ) := β1 +
(
β2 − β̂2 (τ)

)
{I (t > 0)}.

Consider Model A first. Using (a+ b)2 ≤ 2a2 + 2b2, the right hand side of (S.8) is bounded by

C
T∑
t=1

(
g (L;ψ)µ1,t

)2 (
β1 − β̂1 (τ)

)2
+ C

T∑
t=1

(
g (L;ψ)µ2,t

)2 (
β2 − β̂2 (τ)

)2

+C
T∑
t=1

(
g (L;ψ)µ3,t (τ)

)2 (
β̂3 (τ)

)2

≤ C
T∑
t=1

µ2
1,t

(
β1 − β̂1 (τ)

)2
+ C

T∑
t=1

µ2
2,t

(
β2 − β̂2 (τ)

)2
+ C

T∑
t=1

µ3,t (τ)2
(
β̂3 (τ)

)2

using Lemma 3 of Robinson (2005) and g (1;ψ)2 < C. Then, using the fact that
∑T

t=1 µ3,t (τ)2 =∑T
t=1+bτT c µ3,t (τ)2 ≤

∑T
t=1 µ

2
2,t, the expression above is seen to be of Op (1) using Lemma 1 of Robin-

son (2005) and Lemma A1. The term in (S.9) is Op
(
T 1/2

)
by the Cauchy-Schwarz inequality.

[S.5]



Next we consider Model B. Here the right hand side of (S.8) is bounded by

C
T∑
t=1

(
g (L;ψ)µ1,t

)2 (
β2 − β̂2 (τ)

)2
+ C

T∑
t=1

(
g (L;ψ)µ3,t (τ)

)2 (
β̂3 (τ)

)2

which is again Op (1). Another application of the Cauchy-Schwarz inequality yields that (S.9) is

Op
(
T 1/2

)
. For Model B we also have to account for the additional remainder term in (S.10): notice

that as et = 0 if t < 0, then u1 = e1 = η1, and we can therefore write g (L;ψ) ∆
(−δ)
t u1 = ∆

(−δ)
t ε̂1 (ψ).

To account for this term we need to add it to the summations in (S.6) and (S.7): we then analyse

T∑
t=1

(
∆

(−δ)
t

)2
(ε̂1 (ψ))2 − 2

T∑
t=1

∆
(−δ)
t ε̂1 (ψ) ε̂t (ψ)− 2

T∑
t=1

∆
(−δ)
t ε̂1 (ψ) g (L;ψ) ∆δ

+zt (τ)′
(
β − β̂ (τ)

)
.

(S.11)

Noting that (ε̂1 (ψ))2 = Op (1), uniformly in ψ, and, in view of the fact that |∆(−δ)
t | ∼ Ct−δ−1 when

δ 6= 0, and that |∆(−δ)
t | < Ct−δ−1, it follows that

∑T
t=1(∆

(−δ)
t )2(ε̂1(ψ))2 = Op(

∑T
t=1 t

2(−δ−1)) =

Op (1). As for the second term,
∑T

t=1 ∆
(−δ)
t ε̂1(ψ)ε̂t(ψ) = Op(

∑T
t=1 t

−δ−1), which is Op (1) if δ > 0 and

Op(T
−δ) = op

(
T 1/2

)
if δ < 0, recalling that δ > −0.5. Finally, by the Cauchy-Schwarz inequality the

third term in (S.11) is Op (1), so that the whole expression in (S.11) is of op
(
T 1/2

)
. In view of Lemma

3 of Robinson (2005), Lemma A.1 and bound for |∆(−δ)
t |, it also holds that the contribution of the

remainder g (L;ψ) ∆
(−δ)
t r̂1 (τ) is also of order op

(
T 1/2

)
.

Combining the foregoing results we therefore have that

sup
τ

∣∣∣∣ 1

T

(
T∑
t=1

(ε̂t (ψ; τ))2 −
T∑
t=1

(ε̂t (ψ))2

)∣∣∣∣ p→ 0.

As noted before, this is sufficient to establish that ψ̂ (τ) − ψ̂ = op (1), which therefore completes the

proof of part (i) of the lemma.

We now turn to the proof of part (ii) of the lemma. Minimisation of the loss functions in (3.1) and

(3.7) yields

∑T
t=1 ε̂t (ψ)

∂ε̂t (ψ)

∂ψ

∣∣∣∣
ψ=ψ̂

= 0 and
∑T

t=1 ε̂t (ψ; τ)
∂ε̂t (ψ; τ)

∂ψ

∣∣∣∣
ψ=ψ̂(τ)

= 0

respectively, where

∂ε̂t (ψ)

∂ψ
:=

∂

∂ψ
g(L;ψ)∆δ

+ut

∂2ε̂t (ψ)

∂ψ∂ψ′
:=

∂2

∂ψ∂ψ′
g(L;ψ)∆δ

+ut.

Recalling (S.7), we have that

∂ε̂t (ψ; τ)

∂ψ
=

∂ε̂t (ψ)

∂ψ
+

∂

∂ψ

(
g (L;ψ) ∆δ

+zt (τ)′
(
β − β̂ (τ)

))
∂2ε̂t (ψ; τ)

∂ψ∂ψ′
=

∂2ε̂t (ψ)

∂ψ∂ψ′
+

∂2

∂ψ∂ψ′

(
g (L;ψ) ∆δ

+zt (τ)′
(
β − β̂ (τ)

))
.
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As with the treatment of (S.6) and (S.7) above, these expressions should properly be augmented by

additional remainder terms under Model B. However, proceeding as in the derivation of (S.11) above,

these can be ignored with no loss of asymptotic generality and we shall therefore do so hereafter in

the interests in brevity. Next, we define

D1 (ψ) :=
1

T

∑T
t=1

∂ε̂t (ψ)

∂ψ

∂ε̂t (ψ)

∂ψ′
, D2 (ψ) :=

1

T

∑T
t=1 ε̂t (ψ)

∂2ε̂t (ψ)

∂ψ∂ψ′

D (ψ) := D1 (ψ) +D2 (ψ)

and we denote by [D (ψ)]i the i-th row of matrix D (ψ). A mean value theorem expansion of the first

order conditions from loss function (3.1) for the infeasible estimate ψ̂ yields, for the i-th element, ψ̂i,

of ψ̂, ∑T
t=1 ε̂t (ψ)

∂ε̂t (ψ)

∂ψi

∣∣∣∣
ψ=ψ∗

+
[
D
(
ψ̃
i
)]

i

(
ψ̂ − ψ∗

)
= 0 (S.12)

where ψ̃
i

is a (p+ q) dimensional vector such that ‖ψ̃
i
−ψ∗‖ ≤ ‖ψ̂−ψ∗‖. Stacking the rows

[
D
(
ψ̃
i
)]

i

for all i, denote

D̃
(
ψ̂
)

:=


[
D
(
ψ̃

1
)]

1

...[
D
(
ψ̃
p+q
)]

p+q


and, stacking rows of (S.12) for each i and multiplying by T 1/2, we get

T−1/2∑T
t=1 ε̂t (ψ)

∂ε̂t (ψ)

∂ψ

∣∣∣∣
ψ=ψ∗

+ D̃
(
ψ̂
)
T 1/2

(
ψ̂ − ψ∗

)
= 0. (S.13)

Notice that D̃(ψ̂)→p Φσ2
ε; see, for example, Nielsen (2004), part (iii) of the proof of Theorem 4.1 (the

limit for D̃(ψ̂) is included in the limit in Nielsen, 2004, as it is a (p+ q) sub-matrix of the matrix in

the limit in (iii)), and that T−1/2
∑T

t=1 ε̂t (ψ) ∂ε̂t(ψ)
∂ψ

∣∣∣
ψ=ψ∗

= Op (1); see, for example, Nielsen (2004),

part (ii) of the proof of Theorem 4.1. This therefore implies that T 1/2(ψ̂ − ψ∗) = Op (1) (indeed it

is clear from part (ii) of the proof of Theorem 4.1 of Nielsen (2004) that T 1/2(ψ̂ − ψ∗) has a limiting

normal distribution with mean zero under H0).

To prove (ii) in Lemma A2, we derive an expression similar to (S.13) for the feasible estimate

ψ̂ (τ), from which we can obtain a formula for ψ̂ (τ). Then, define

D1 (ψ; τ) :=
1

T

∑T
t=1

∂ε̂t (ψ; τ)

∂ψ

∂ε̂t (ψ; τ)

∂ψ′
, D2 (ψ; τ) :=

1

T

∑T
t=1 ε̂t (ψ; τ)

∂2ε̂t (ψ; τ)

∂ψ∂ψ′

D (ψ; τ) := D1 (ψ; τ) +D2 (ψ; τ)

and apply the mean value theorem expansion of the first order conditions from loss function (3.7) as

we did for (3.1) beforehand. We then obtain, for the i-th element, ψ̂i (τ), of ψ̂ (τ),

∑T
t=1 ε̂t (ψ; τ)

∂ε̂t (ψ; τ)

∂ψi

∣∣∣∣
ψ=ψ∗

+
[
D
(
ψ̃
i
(τ) ; τ

)]
i

(
ψ̂ (τ)− ψ∗

)
= 0

[S.7]



where [D(ψ̃
i
(τ) ; τ)]i denotes the i-th row of the matrix D (ψ; τ) and ψ̃

i
(τ) is such that ‖ψ̃

i
(τ)−ψ∗‖ ≤

‖ψ̂ (τ) − ψ∗‖. Denoting by D̃(ψ̂ (τ) ; τ) the matrix obtained by stacking of the rows [D(ψ̃
i
(τ) ; τ)]i,

and multiplying by T 1/2, we obtain that

T−1/2∑T
t=1 ε̂t (ψ; τ)

∂ε̂t (ψ; τ)

∂ψ

∣∣∣∣
ψ=ψ∗

+ D̃
(
ψ̂ (τ) ; τ

)
T 1/2

(
ψ̂ (τ)− ψ∗

)
= 0. (S.14)

To prove part (ii) of the lemma, we will show that the distance
∥∥∥ψ̂ − ψ̂ (τ)

∥∥∥ is op
(
T−1/2

)
so ψ̂ and

ψ̂ (τ) have the same limit distribution. To that end, we first need to establish that the following result

holds:

sup
τ

∥∥∥D̃ (ψ̂)− D̃ (ψ̂ (τ) ; τ
)∥∥∥ p→ 0. (S.15)

To do so, we first expand the summands in D (ψ (τ) ; τ) as follows:

sat (ψ) :=
∂ε̂t (ψ)

∂ψ

∂ε̂t (ψ)

∂ψ′

sbt (ψ; τ) :=
∂ε̂t (ψ)

∂ψ

(
∂

∂ψ′

(
g (L;ψ) ∆δ

+zt (τ)′
(
β − β̂ (τ)

)))
sct (ψ; τ) : =

(
∂

∂ψ

(
g (L;ψ) ∆δ

+zt (τ)′
(
β − β̂ (τ)

))) ∂ε̂t (ψ)

∂ψ′

sdt (ψ; τ) :=

(
∂

∂ψ

(
g (L;ψ) ∆δ

+zt (τ)′
(
β − β̂ (τ)

)))( ∂

∂ψ′

(
g (L;ψ) ∆δ

+zt (τ)′
(
β − β̂ (τ)

)))
set (ψ) := ε̂t (ψ)

∂2ε̂t (ψ)

∂ψ∂ψ′

sft (ψ; τ) := ε̂t (ψ)
∂2

∂ψ∂ψ′

(
g (L;ψ) ∆δ

+zt (τ)′
(
β − β̂ (τ)

))
sgt (ψ; τ) :=

(
g (L;ψ) ∆δ

+zt (τ)′
(
β − β̂ (τ)

)) ∂2ε̂t (ψ)

∂ψ∂ψ′

sht (ψ; τ) :=
(
g (L;ψ) ∆δ

+zt (τ)′
(
β − β̂ (τ)

)) ∂2

∂ψ∂ψ′

(
g (L;ψ) ∆δ

+zt (τ)′
(
β − β̂ (τ)

))
.

Adding and subtracting Φσ2
ε in (S.15) and using the triangle inequality, the expression in (S.15) is

bounded by
∥∥∥D̃ (ψ̂)− Φσ2

ε

∥∥∥ + supτ

∥∥∥D̃ (ψ̂ (τ) ; τ
)
− Φσ2

ε

∥∥∥, where recall that D̃
(
ψ̂
)
→p Φσ2

ε so that∥∥∥D̃ (ψ̂)− Φσ2
ε

∥∥∥ = op (1).

We then have to show that 1
T

∑T
t=1

(
sat

(
ψ̃ (τ)

)
+ set

(
ψ̃ (τ)

))
−Φσ2

ε = op (1) and that the aver-

ages taken over t = 1, ..., T of sbt

(
ψ̃ (τ) ; τ

)
, sct

(
ψ̃ (τ) ; τ

)
, sdt

(
ψ̃ (τ) ; τ

)
, sft

(
ψ̃ (τ) ; τ

)
, sgt

(
ψ̃ (τ) ; τ

)
and sht

(
ψ̃ (τ) ; τ

)
are all of op (1) for

∥∥∥ψ̃ (τ)− ψ∗
∥∥∥ ≤ ∥∥∥ψ̂ (τ)− ψ∗

∥∥∥. To that end, we first show that

the following results hold:

1

T

∑T
t=1 ε̂t

(
ψ̃ (τ)

)2
− 1

T

∑T
t=1 ε̂t (ψ∗)2 = op (1) (S.16)

1

T

∑T
t=1

∂ε̂t (ψ)

∂ψi

∂ε̂t (ψ)

∂ψj

∣∣∣∣
ψ=ψ̃(τ)

− 1

T

∑T
t=1

∂ε̂t (ψ)

∂ψi

∂ε̂t (ψ)

∂ψj

∣∣∣∣
ψ=ψ∗

= op (1) (S.17)

1

T

∑T
t=1

∂2ε̂t (ψ)

∂ψi∂ψj

∣∣∣∣
ψ=ψ̃(τ)

− 1

T

∑T
t=1

∂2ε̂t (ψ)

∂ψi∂ψj

∣∣∣∣
ψ=ψ∗

= op (1) . (S.18)

[S.8]



Because ηt = b(L;ψ∗)
a(L;ψ∗)εt is a stationary and invertible ARMA process, then g (L;ψ) ηt = a(L;ψ)

b(L;ψ)
b(L;ψ∗)
a(L;ψ∗)εt

is also an ARMA process. For ψi, the i-th element of ψ, ∂
∂ψi

g (L;ψ) ηt and ∂2

∂ψi∂ψj
g (L;ψ) ηt are also

ARMA processes, and so
∣∣∣ ∂
∂ψi

g (1;ψ)
∣∣∣ < C and

∣∣∣ ∂2

∂ψi∂ψj
g (1;ψ)

∣∣∣ < C uniformly in ψ. Proceeding as in

Bai (1993), we illustrate (S.16)-(S.18) for the ARMA(1,1) case, (1− ψ∗1L) ηt = (1 + ψ∗2L) εt.

Consider first (S.16). Because ε̂t (ψ∗) = εt, we rewrite

ε̂t

(
ψ̃ (τ)

)2
− ε2

t =
(
ε̂t

(
ψ̃ (τ)

)
− εt

)2
+ 2εt

(
ε̂t

(
ψ̃ (τ)

)
− εt

)
.

From

εt = ηt − ψ∗1ηt−1 − ψ∗2εt−1

ε̂t

(
ψ̃ (τ)

)
= ηt − ψ̃1 (τ) ηt−1 − ψ̃2 (τ) ε̂t−1

(
ψ̃ (τ)

)
then

ε̂t

(
ψ̃ (τ)

)
− εt = −

(
ψ̃1 (τ)− ψ∗1

)
ηt−1 −

(
ψ̃2 (τ)− ψ∗2

)
εt−1 − ψ̃2 (τ)

(
ε̂t

(
ψ̃ (τ)

)
− εt−1

)
= −

(
ψ̃1 (τ)− ψ∗1

)∑∞
j=0 (−1)j

(
ψ̃2 (τ)

)j
ηt−j−1

−
(
ψ̃2 (τ)− ψ∗2

)∑∞
j=0 (−1)j

(
ψ̃2 (τ)

)j
εt−j−1

using repeated substitution, also see Equation (3) of Bai (1993). To abbreviate notation, denote

skt

(
ψ̃ (τ)

)
:=
∑∞

j=0 (−1)j
(
ψ̃2 (τ)

)j
ηt−j−1, slt

(
ψ̃ (τ)

)
:=
∑∞

j=0 (−1)j
(
ψ̃2 (τ)

)j
εt−j−1,

then ∣∣∣ε̂t (ψ̃ (τ)
)
− εt

∣∣∣ ≤ C ∣∣∣ψ̃1 (τ)− ψ∗1
∣∣∣ ∣∣∣skt (ψ̃ (τ)

)∣∣∣+ C
∣∣∣ψ̃2 (τ)− ψ∗2

∣∣∣ ∣∣∣slt (ψ̃ (τ)
)∣∣∣ (S.19)

Notice that skt

(
ψ̃ (τ)

)
is ARMA(2,1) and slt

(
ψ̃ (τ)

)
is AR(1). The compactness of Θ means that

there exists 0 < c < 1− ε, where ε > 0 depends on Θ, such that sup |ψ2| < c < 1, and so∣∣∣skt (ψ̃ (τ)
)∣∣∣ ≤∑∞j=0 c

j
∣∣ηt−j−1

∣∣ , ∣∣∣slt (ψ̃ (τ)
)∣∣∣ ≤∑∞j=0 c

j |εt−j−1| ,

and
∑∞

j=0 c
j
∣∣ηt−j−1

∣∣ = Op (1) because E
(∣∣ηt−j−1

∣∣) < C and
∑∞

j=0 c
j < C, so

∣∣∣skt (ψ̃ (τ)
)∣∣∣ = Op (1).

In the same way we also establish slt

(
ψ̃ (τ)

)
= Op (1). Therefore, the first term in the bound (S.19)

is op (1) because skt = Op (1) and
∣∣∣ψ̃1 (τ)− ψ∗1

∣∣∣ = op (1); the second term can be discussed in the same

way. Therefore,
∣∣∣ε̂t (ψ̃ (τ)

)
− εt

∣∣∣ = op (1) and
(
ε̂t

(
ψ̃ (τ)

)
− εt

)2
= op (1) and

1

T

∑T
t=1

(
ε̂t

(
ψ̃ (τ)

)
− εt

)2
= op (1) .

Finally, 1
T

∑T
t=1 εt

(
ε̂t

(
ψ̃ (τ)

)
− εt

)
= op (1) by the Cauchy-Schwarz inequality, which concludes the

demonstration of (S.16) for the ARMA(1,1) case. The result holds for the more general ARMA(p, q)

case using a similar but more tedious treatment.

[S.9]



We turn next to the result in (S.17). Proceeding in the same way as for (S.16), it is sufficient to

show that the following results hold:

1

T

∑T
t=1

(
∂ε̂t (ψ)

∂ψi

∣∣∣∣
ψ=ψ̃(τ)

− ∂ε̂t (ψ)

∂ψi

∣∣∣∣
ψ=ψ∗

)2

= op (1) (S.20)

and

1

T

∑T
t=1

(
∂ε̂t (ψ)

∂ψi

∣∣∣∣
ψ=ψ∗

)2

= Op (1) . (S.21)

Consider first the result in (S.20). Again we illustrate this in the ARMA(1,1) case, noting that these

results hold for the more general ARMA(p, q) case. In the ARMA(1,1) case, considering ∂ε̂t(ψ)
∂ψ2

first,

∂ε̂t (ψ)

∂ψ2

= −ε̂t−1 (ψ)− ψ2

∂ε̂t−1 (ψ)

∂ψ2

, (S.22)

and notice that, using repeated substitutions,

∂ε̂t (ψ)

∂ψ2

∣∣∣∣
ψ=ψ∗

= −
∞∑
j=0

(−ψ∗2)j εt−j−1

is AR(1) and therefore

∣∣∣∣ ∂ε̂t(ψ)
∂ψ2

∣∣∣
ψ=ψ∗

∣∣∣∣ = Op (1), which is sufficient to establish the result in (S.21).

Moreover, using (S.22) again,

∂ε̂t (ψ)

∂ψ2

∣∣∣∣
ψ=ψ̃(τ)

− ∂ε̂t (ψ)

∂ψ2

∣∣∣∣
ψ=ψ∗

= −
(
ε̂t−1

(
ψ̃ (τ)

)
− εt−1

)
−

(
ψ̃2 (τ)

∂ε̂t−1 (ψ)

∂ψ2

∣∣∣∣
ψ=ψ̃(τ)

− ψ∗2
∂ε̂t−1 (ψ)

∂ψ2

∣∣∣∣
ψ=ψ∗

)

= −
(
ε̂t−1

(
ψ̃ (τ)

)
− εt−1

)
−
(
ψ̃2 (τ)− ψ∗2

) ∂ε̂t−1 (ψ)

∂ψ2

∣∣∣∣
ψ=ψ∗

− ψ̃2 (τ)

(
∂ε̂t−1 (ψ)

∂ψ2

∣∣∣∣
ψ=ψ̃(τ)

− ∂ε̂t−1 (ψ)

∂ψ2

∣∣∣∣
ψ=ψ∗

)

and, using repeated substitutions,

∂ε̂t (ψ)

∂ψ2

∣∣∣∣
ψ=ψ̃(τ)

− ∂ε̂t (ψ)

∂ψ2

∣∣∣∣
ψ=ψ∗

= −
∑∞

j=0

(
−ψ̃2 (τ)

)j (
ε̂t−j−1

(
ψ̃ (τ)

)
− εt−j−1

)
−
(
ψ̃2 (τ)− ψ∗2

)∑∞
j=0

(
−ψ̃2 (τ)

)j ∂ε̂t−j−1 (ψ)

∂ψ2

∣∣∣∣
ψ=ψ∗

.

Thus, bounding∣∣∣∣∣ ∂ε̂t (ψ)

∂ψ2

∣∣∣∣
ψ=ψ̃(τ)

− ∂ε̂t (ψ)

∂ψ2

∣∣∣∣
ψ=ψ∗

∣∣∣∣∣
≤

∑∞
j=0 c

j
∣∣∣ε̂t−j−1

(
ψ̃ (τ)

)
− εt−j−1

∣∣∣+
∣∣∣ψ̃2 (τ)− ψ∗2

∣∣∣∑∞j=0 c
j

∣∣∣∣∣ ∂ε̂t−j−1 (ψ)

∂ψ2

∣∣∣∣
ψ=ψ∗

∣∣∣∣∣
this is op (1), which is sufficient to establish the result in (S.20).

[S.10]



The result in (S.18) can be obtained in a similar fashion and the proof is omitted in the interest

of brevity.

Continuing, we next show that

1

T

∑T
t=1 ε̂t (ψ)

∂2ε̂t (ψ)

∂ψi∂ψj

∣∣∣∣
ψ=ψ̃(τ)

− 1

T

∑T
t=1 ε̂t (ψ)

∂2ε̂t (ψ)

∂ψi∂ψj

∣∣∣∣
ψ=ψ∗

= op (1) . (S.23)

The left hand side of (S.23) can be written as

1

T

∑T
t=1

(
(ε̂t (ψ)− εt)

∂2ε̂t (ψ)

∂ψi∂ψj

∣∣∣∣
ψ=ψ̃(τ)

)
+

1

T

∑T
t=1 εt

(
∂2ε̂t (ψ)

∂ψi∂ψj

∣∣∣∣
ψ=ψ̃(τ)

− ∂2ε̂t (ψ)

∂ψi∂ψj

∣∣∣∣
ψ=ψ∗

)

in which each term can be seen to be of op (1), using the limits for (S.16), (S.18) and the Cauchy-

Schwarz inequality.

We can now move to the contribution of the terms sat, (ψ̃ (τ)), ...., sht(ψ̃(τ); τ) to (S.15). Using

(S.17), then T−1
∑T

t=1

(
sat(ψ

∗)− sat
(
ψ̃ (τ)

))
→p 0, and using (S.23) then

T−1
∑T

t=1

(
set(ψ

∗)− set
(
ψ̃ (τ)

))
→p 0. Thus, recalling that T−1

∑T
t=1(sat(ψ

∗)+set(ψ
∗))→p Φσ2

ε, it

also holds that T−1
∑T

t=1

(
sat

(
ψ̃ (τ)

)
+ set

(
ψ̃ (τ)

))
→p Φσ2

ε. Next, T−1
∑T

t=1 sdt(ψ̃ (τ) ; τ) = op (1)

and T−1
∑T

t=1 sht(ψ̃(τ); τ) = op (1) using arguments similar to those in the discussion of the right

hand side of (S.8). Finally, the contribution of the terms sbt(ψ̃ (τ) ; τ), sct(ψ̃ (τ) ; τ), sft(ψ̃ (τ) ; τ) and

sgt(ψ̃ (τ) ; τ) is of op (1), using the Cauchy Schwarz inequality, again as in the discussion of (S.9). This

completes the proof of (S.15).

For the next step of the proof, equating the left hand sides of the two expansions in (S.14) and

(S.13) and re-arranging, yields

T 1/2
(
ψ̂ (τ)− ψ̂

)
= −D̃

(
ψ̂ (τ) ; τ

)−1
T−1/2∑T

t=1 ε̂t (ψ; τ)
∂ε̂t (ψ; τ)

∂ψ

∣∣∣∣
ψ=ψ∗

+

{
D̃
(
ψ̂
)−1
− D̃

(
ψ̂ (τ) ; τ

)−1
+ D̃

(
ψ̂ (τ) ; τ

)−1
}
T−1/2∑T

t=1 ε̂t (ψ)
∂ε̂t (ψ)

∂ψ

∣∣∣∣
ψ=ψ∗

= −D̃
(
ψ̂ (τ) ; τ

)−1
T−1/2∑T

t=1

(
ε̂t (ψ; τ)

∂ε̂t (ψ; τ)

∂ψ
− ε̂t (ψ)

∂ε̂t (ψ)

∂ψ

)∣∣∣∣
ψ=ψ∗

+

{
D̃
(
ψ̂
)−1
− D̃

(
ψ̂ (τ) ; τ

)−1
}
T−1/2∑T

t=1 ε̂t (ψ)
∂ε̂t (ψ)

∂ψ

∣∣∣∣
ψ=ψ∗

.

Noting that T−1/2
∑T

t=1 ε̂t (ψ) ∂ε̂t(ψ)
∂ψ

∣∣∣
ψ=ψ∗

= Op (1) and that D̃(ψ̂)−1 − D̃(ψ̂ (τ) ; τ)−1 = op (1), the

second term in the expression above is seen to be of op (1). As for the first term, since D̃(ψ̂ (τ) ; τ)−1 p→
(Φσ2

ε)
−1, we need to show that the function of τ given by

T−1/2∑T
t=1

(
ε̂t (ψ; τ)

∂ε̂t (ψ; τ)

∂ψ
− ε̂t (ψ)

∂ε̂t (ψ)

∂ψ

)∣∣∣∣
ψ=ψ∗

(S.24)

is of op (1).

[S.11]



Recalling (S.7) ε̂t (ψ; τ) = ε̂t (ψ) + g (L;ψ) ∆δ
+zt (τ)′

(
β − β̂ (τ)

)
then

∂ε̂t (ψ; τ)

∂ψ
=
∂ε̂t (ψ)

∂ψ
+
∂
[
g (L;ψ) ∆δ

+zt (τ)′
(
β − β̂ (τ)

)]
∂ψ

and

ε̂t (ψ; τ)
∂ε̂t (ψ; τ)

∂ψ
=
(
ε̂t (ψ) + g (L;ψ) ∆δ

+zt (τ)′
(
β − β̂ (τ)

))
×

∂ε̂t (ψ)

∂ψ
+
∂
[
g (L;ψ) ∆δ

+zt (τ)′
(
β − β̂ (τ)

)]
∂ψ


and we therefore rewrite elements in (S.24) as

ε̂t (ψ; τ)
∂ε̂t (ψ; τ)

∂ψ
= ε̂t (ψ)

∂ε̂t (ψ)

∂ψ

+ε̂t (ψ)
∂
[
g (L;ψ) ∆δ

+zt (τ)′
(
β − β̂ (τ)

)]
∂ψ

+g (L;ψ) ∆δ
+zt (τ)′

(
β − β̂ (τ)

) ∂ε̂t (ψ)

∂ψ

+
(
g (L;ψ) ∆δ

+zt (τ)′
(
β − β̂ (τ)

))∂
[
g (L;ψ) ∆δ

+zt (τ)′
(
β − β̂ (τ)

)]
∂ψ

 .

Thus, (S.24) is

T−1/2∑T
t=1

(
g (L;ψ) ∆δ

+zt (τ)′
(
β − β̂ (τ)

)) ∂ε̂t (ψ)

∂ψ

∣∣∣∣
ψ=ψ∗

(S.25)

+T−1/2∑T
t=1 ε̂t (ψ)

∂

∂ψ

(
g (L;ψ) ∆δ

+zt (τ)′
(
β − β̂ (τ)

))∣∣∣∣
ψ=ψ∗

(S.26)

+T−1/2∑T
t=1

(
g (L ψ) ∆δ

+zt (τ)′
(
β − β̂ (τ)

)) ∂

∂ψ

(
g (L;ψ) ∆δ

+zt (τ)′
(
β − β̂ (τ)

))∣∣∣∣
ψ=ψ∗

.(S.27)

In view of Lemma 3 of Robinson (2005), the order of (S.27) is the same as the order of

T−1/2∑T
t=1

(
∆δ

+zt (τ)′
(
β − β̂ (τ)

))2
.

Proceeding as in the discussion of (S.8), when Model A is used, this term is of Op
(
T−1/2

)
= op (1).

Similarly, when Model B is used, it is again of Op
(
T−1/2

)
= op (1). Regarding the term (S.25), using

summation by parts the absolute value of this term is bounded by

≤ T−1/2∑T−1
t=1

∣∣∣(g (L;ψ) ∆δ
+zt+1 (τ)− g (L;ψ) ∆δ

+zt (τ)
)∣∣∣′ ∣∣∣(β − β̂ (τ)

)∣∣∣ ∣∣∣∣∑t
s=1

∂ε̂s (ψ)

∂ψ

∣∣∣∣
+T−1/2

∣∣∣(g (L;ψ) ∆δ
+zT (τ)

)∣∣∣′ ∣∣∣β − β̂ (τ)
∣∣∣ ∣∣∣∣∑T

t=1

∂ε̂t (ψ)

∂ψ

∣∣∣∣
for ψ = ψ∗ and, in view of Lemma 3 of Robinson (2005), this bound has the same order as

≤ T−1/2∑T−1
t=1

∣∣∣(∆δ
+zt+1 (τ)−∆δ

+zt (τ)
)∣∣∣′ ∣∣∣(β − β̂ (τ)

)∣∣∣ ∣∣∣∣∑t
s=1

∂ε̂s (ψ)

∂ψ

∣∣∣∣ (S.28)

+T−1/2
∣∣∣(∆δ

+zT (τ)
)∣∣∣′ ∣∣∣β − β̂ (τ)

∣∣∣ ∣∣∣∣∑T
t=1

∂ε̂t (ψ)

∂ψ

∣∣∣∣ (S.29)
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for ψ = ψ∗.

The term in (S.28) can be bounded as

T−1/2∑T−1
t=1

∣∣∣(∆δzt+1 (τ)−∆δzt (τ)
)∣∣∣′ ∣∣∣(β − β̂ (τ)

)∣∣∣ sup
ρ

∣∣∣∣∑bρT cs=1

∂ε̂s (ψ)

∂ψ

∣∣∣∣
where it holds that supρ

∣∣∣∣∑bρT cs=1
∂ε̂s(ψ)
∂ψ

∣∣∣
ψ=ψ∗

∣∣∣∣ = Op
(
T 1/2

)
, because this is a ARMA process.

When Model A is used,

∑T−1
t=1

∣∣∣∣(∆δzt+1 (τ)−∆δzt (τ)
)′ (

β − β̂ (τ)
)∣∣∣∣

≤
∑T−1

t=1

∣∣∆µ1,t+1

∣∣ ∣∣∣β1 − β̂1 (τ)
∣∣∣+
∑T−1

t=1

∣∣∆µ2,t+1

∣∣ ∣∣∣β2 − β̂2 (τ)
∣∣∣+
∑T−1

t=1

∣∣∆µ3,t+1 (τ)
∣∣ ∣∣∣β̂3 (τ)

∣∣∣ .
(S.30)

If δ > 0, the terms in (S.30) are such that

∑T−1
t=1

∣∣∆µ1,t+1

∣∣ ∣∣∣β1 − β̂1 (τ)
∣∣∣ = Op

(∑T−1
t=1 t−1T−1/2+δ

)
= Op

(
(ln (T ))T−1/2+δ

)
= op (1)∑T−1

t=1

∣∣∆µ2,t+1

∣∣ ∣∣∣β2 − β̂2 (τ)
∣∣∣ = Op

(∑T−1
t=1 t−δT−3/2+δ

)
= Op

(
T−1/2

)
= op (1)∑T−1

t=1

∣∣∆µ3,t+1 (τ)
∣∣ ∣∣∣β̂3 (τ)

∣∣∣ ≤ ∑T−1
t=1

∣∣∆µ2,t+1

∣∣ ∣∣∣β̂3 (τ)
∣∣∣ = Op

(
T−1/2

)
= op (1)

where we have used the rates from (3.14), and in the last bound we have used the result that

supτ
∑T−1

t=1

∣∣∆µ3,t+1 (τ)
∣∣ ≤∑T−1

t=1

∣∣∆µ2,t+1

∣∣. It then follows that (S.28) is of order op
(
T−1/2 × 1× T 1/2

)
= op (1).8 The remainder term in (S.29) can be shown to be of order

T−1/2 × T−δ × T−1/2+δ × T 1/2 + T−1/2 × T 1−δ × T−3/2+δ × T 1/2 = Op

(
T−1/2

)
.

If, on the other hand, δ < 0 then the first term in (S.30) is bounded as

∑T−1
t=1

∣∣∆µ1,t+1

∣∣ ∣∣∣β1 − β̂1 (τ)
∣∣∣ = Op

(∑T−1
t=1 t−1−δT−1/2+δ

)
= Op

(
T−1/2

)
= op (1) .

The bounds of the other two terms in (S.30) are unaffected by the sign of δ, and it is easily verified

that (S.29) remains of Op
(
T−1/2

)
so that both (S.28) and (S.29) are of Op

(
T−1/2

)
.

When model B is used we may proceed in the same way, again using bounds (S.28) and (S.29) but

instead of (S.30) we have

∑T−1
t=1

∣∣∣∣(∆δzt+1 (τ)−∆δzt (τ)
)′ (

β − β̂ (τ)
)∣∣∣∣

≤
∑T−1

t=1

∣∣∆µ1,t+1

∣∣ ∣∣∣β2 − β̂2 (τ)
∣∣∣+
∑T−1

t=1

∣∣∆µ3,t+1 (τ)
∣∣ ∣∣∣β̂3 (τ)

∣∣∣
8Notice that we bound

∣∣∆µ1,t+1

∣∣ = O
(
t−1
)

even though the stronger bound
∣∣∆µ1,t+1

∣∣ = O
(
t−1−δ) holds. We do so

because this bound will be needed in a similar proof in Lemma B2. We therefore prefer to use the weaker bound here so

as to shorten the subsequent proof of Lemma B2.

[S.13]



where notice that supτ
∑T−1

t=1

∣∣∆µ3,t+1 (τ)
∣∣ ≤ ∑T−1

t=1

∣∣∆µ1,t+1

∣∣. Then, when δ > 0, the functions of τ

have stochastic orders

∑T−1
t=1

∣∣∆µ1,t+1

∣∣ ∣∣∣β2 − β̂2 (τ)
∣∣∣ = Op

(∑T−1
t=1 t−1T−1/2+δ

)
= Op

(
(ln (T ))T−1/2+δ

)
= op (1)∑T−1

t=1

∣∣∆µ3,t+1 (τ)
∣∣ ∣∣∣β̂3 (τ)

∣∣∣ ≤ ∑T−1
t=1

∣∣∆µ1,t+1

∣∣ ∣∣∣β̂3 (τ)
∣∣∣ = Op

(
(ln (T ))T−1/2+δ

)
= op (1)

whereas, when δ < 0,

∑T−1
t=1

∣∣∆µ1,t+1

∣∣ ∣∣∣β2 − β̂2 (τ)
∣∣∣ = Op

(∑T−1
t=1 t−1−δT−1/2+δ

)
= Op

(
T−δT−1/2+δ

)
= op (1)∑T−1

t=1

∣∣∆µ3,t+1 (τ)
∣∣ ∣∣∣β̂3 (τ)

∣∣∣ ≤ ∑T−1
t=1

∣∣∆µ1,t+1

∣∣ ∣∣∣β̂3 (τ)
∣∣∣ = Op

(
T−δT−1/2+δ

)
= op (1) .

We have therefore verified that the bound for (S.28) still holds. Proceeding as before, it is also easy

to show that the remainder, (S.29), is of order Op
(
T−1/2

)
.

Combining the orders established for (S.28) and (S.29), it then follows that (S.25) is of op (1). By

similar arguments, the term in (S.26) can also be shown to be of op (1), thereby completing the proof

of Lemma A2.

Proof of Lemma B2:

Recall that ε̂t and ε̂t (τ) are shorthand notations for ε̂t

(
ψ̂
)

and ε̂t

(
ψ̂ (τ) ; τ

)
, respectively, and define

v̂t

(
ψ̂
)

:=
∑t−1

j=1 j
−1ε̂t−j

(
ψ̂
)

and v̂t

(
ψ̂ (τ) ; τ

)
:=
∑t−1

j=1 j
−1ε̂t−j

(
ψ̂ (τ) ; τ

)
, so that v̂t and v̂t (τ) are

correspondingly shorthand notations for v̂t

(
ψ̂
)

and v̂t

(
ψ̂ (τ) ; τ

)
, respectively.

We consider (A.5) first. To that end, re-write

ε̂t

(
ψ̂ (τ) ; τ

)
v̂t

(
ψ̂ (τ) ; τ

)
− ε̂t

(
ψ̂
)
v̂t

(
ψ̂
)

= ε̂t

(
ψ̂ (τ) ; τ

)
v̂t

(
ψ̂ (τ) ; τ

)
− ε̂t

(
ψ̂ (τ) ; τ

)
v̂t

(
ψ̂
)

+ ε̂t

(
ψ̂ (τ) ; τ

)
v̂t

(
ψ̂
)
− ε̂t

(
ψ̂
)
v̂t

(
ψ̂
)

= ε̂t

(
ψ̂ (τ) ; τ

)(
v̂t

(
ψ̂ (τ) ; τ

)
− v̂t

(
ψ̂
))

+
(
ε̂t

(
ψ̂ (τ) ; τ

)
− ε̂t

(
ψ̂
))

v̂t

(
ψ̂
)

Then it can be seen that (A.5) follows if we can show the following:

∑T
t=1 ε̂t

(
ψ̂ (τ) ; τ

)(
v̂t

(
ψ̂ (τ) ; τ

)
− v̂t

(
ψ̂
))

= op

(
T 1/2

)
(S.31)∑T

t=1

(
ε̂t

(
ψ̂ (τ) ; τ

)
− ε̂t

(
ψ̂
))

v̂t

(
ψ̂
)

= op

(
T 1/2

)
. (S.32)

To that end, observe first that

ε̂t

(
ψ̂ (τ) ; τ

)
− ε̂t

(
ψ̂
)

= ε̂t

(
ψ̂ (τ)

)
− ε̂t

(
ψ̂
)

+ g
(
L; ψ̂ (τ)

)
∆δ

+zt (τ)′
(
β − β̂ (τ)

)
where

g
(
L; ψ̂ (τ)

)
∆δ

+zt (τ)′
(
β − β̂ (τ)

)
= op (1)

[S.14]



and

ε̂t

(
ψ̂ (τ)

)
− ε̂t

(
ψ̂
)

=
(
ψ̂ (τ)− ψ̂

)′ ∂ε̂t (ψ)

∂ψ

∣∣∣∣
ψ=ψ∗

+
1

2

(
ψ̂ (τ)− ψ̂

)′ ∂2ε̂t (ψ)

∂ψ∂ψ′

∣∣∣∣
ψ=ψ̃

(
ψ̂ (τ)− ψ̂

)
(S.33)

where
∥∥∥ψ̃ − ψ̂∥∥∥ ≤ ∥∥∥ψ̂ (τ)− ψ̂

∥∥∥ and supψ
∂2ε̂t(ψ)
∂ψ∂ψ′

= Op (1), as ∂2ε̂t(ψ)
∂ψ∂ψ′

is still ARMA (strictly speaking,

the term in (S.33) is only correct if ψ is a scalar; otherwise, a row by row expansion should be

derived, similarly to (S.13), and then stacked as in (S.14), but this approximation does not affect the

results). Consequently, the last term of (S.33) is op
(
T−1

)
, and notice that this holds uniformly in

τ . It then follows that ε̂t

(
ψ̂ (τ)

)
− ε̂t

(
ψ̂
)

= op
(
T−1/2

)
and ε̂t

(
ψ̂ (τ)

)
= Op (1), and finally that

ε̂t

(
ψ̂ (τ) ; τ

)
= Op (1).

In the same way, observe that

v̂t

(
ψ̂ (τ) ; τ

)
− v̂t

(
ψ̂
)

= v̂t

(
ψ̂ (τ)

)
− v̂t

(
ψ̂
)

+ g
(
L; ψ̂ (τ)

){
− ln (∆) ∆δ

}
+
zt (τ)′

(
β − β̂ (τ)

)
where

v̂t

(
ψ̂ (τ)

)
− v̂t

(
ψ̂
)

=
(
ψ̂ (τ)− ψ̂

)′∑t−1
j=1 j

−1 ∂ε̂t−j (ψ)

∂ψ

∣∣∣∣
ψ=ψ∗

+ op
(
(ln (t))T−1

)
.

It then follows that v̂t

(
ψ̂ (τ)

)
− v̂t

(
ψ̂
)

= op
(
T−1/2

)
and v̂t

(
ψ̂ (τ)

)
= Op (1) and v̂t

(
ψ̂
)

= Op (1).

Next, let

λ1,t :=
∑t−1

j=1 j
−1µ1,t−j , λ2,t :=

∑t−1
j=1 j

−1µ2,t−j , λ3,t (τ) :=
∑t−1

j=1 j
−1µ3,t−j (τ) ,

and notice that, by Lemma 2 of Robinson (2005),

λ1,t = O
(

ln (t) t−δ
)

, λ2,t = O
(

ln (t) t1−δ
)

, ∆λ2,t+1 = O
(

ln (t+ 1) (t+ 1)−δ
)

and, when δ ∈ (0, 1/2),

∆λ1,t+1 = O
(

ln (t+ 1) (t+ 1)−1
)

, (S.34)

whereas, when δ ∈ (−1/2, 0),

∆λ1,t+1 = O
(

ln (t+ 1) (t+ 1)−1−δ
)

. (S.35)

We now move to the discussion of (S.31) and (S.32). The left hand side of (S.31) is

∑T
t=1 ε̂t

(
ψ̂ (τ) ; τ

)(
v̂t

(
ψ̂ (τ)

)
− v̂t

(
ψ̂
))

(S.36)

+
∑T

t=1 ε̂t

(
ψ̂ (τ) ; τ

)
g
(
L; ψ̂ (τ)

){
− ln (∆) ∆δ

}
+
zt (τ)′

(
β − β̂ (τ)

)
. (S.37)

The stochastic order of (S.36) is bounded by the stochastic order of

∑T
t=1

∣∣∣ε̂t (ψ̂ (τ) ; τ
)∣∣∣ ∣∣∣v̂t (ψ̂ (τ)

)
− v̂t

(
ψ̂
)∣∣∣ = op

(
T × T−1/2

)
= op

(
T 1/2

)
.

[S.15]



For (S.37), ∣∣∣∑T
t=1 ε̂t

(
ψ̂ (τ) ; τ

)(
v̂t

(
ψ̂ (τ) ; τ

)
− v̂t

(
ψ̂ (τ)

))∣∣∣
≤

∑T−1
t=1

∣∣∣(v̂t+1

(
ψ̂ (τ) ; τ

)
− v̂t+1

(
ψ̂ (τ)

))
−
(
v̂t

(
ψ̂ (τ) ; τ

)
− v̂t

(
ψ̂ (τ)

))∣∣∣
× sup

ρ

∣∣∣∑bρT cs=1 ε̂s

(
ψ̂ (τ) ; τ

)∣∣∣
+
∣∣∣(v̂T (ψ̂ (τ) ; τ

)
− v̂T

(
ψ̂ (τ)

))∣∣∣ ∣∣∣∑T
s=1 ε̂s

(
ψ̂ (τ) ; τ

)∣∣∣ .
Noting that

sup
ρ

∣∣∣∑bρT cs=1 ε̂s

(
ψ̂ (τ) ; τ

)∣∣∣ ≤ sup
ρ

∣∣∣∑bρT cs=1 ε̂t

(
ψ̂ (τ)

)∣∣∣
+ sup

ρ

∣∣∣∑bρT cs=1 g
(
L; ψ̂ (τ)

)
∆δ

+zs (τ)′
(
β − β̂ (τ)

)∣∣∣ (S.38)

the term supρ

∣∣∣∑bρT cs=1 ε̂t

(
ψ̂ (τ)

)∣∣∣ is seen to be of Op
(
T 1/2

)
in view of (S.33) and

ε̂t

(
ψ̂
)

= εt +
(
ψ̂ − ψ

)′ ∂ε̂t (ψ)

∂ψ

∣∣∣∣
ψ=ψ∗

+
1

2

(
ψ̂ − ψ

)′ ∂2ε̂t (ψ)

∂ψ∂ψ′

∣∣∣∣
ψ=ψ̃

(
ψ̂ − ψ

)
for

∥∥∥ψ̃ − ψ∥∥∥ ≤ ∥∥∥(ψ̂ − ψ)∥∥∥; also see Theorem 1 of Bai (1993). Using again Lemma 3 of Robinson

(2005) as was done in the proof of Lemma A2, the term (S.38) is seen to have stochastic order as

sup
ρ

∣∣∣∑bρT cs=1 ∆δ
+zs (τ)′

(
β − β̂ (τ)

)∣∣∣
≤ C

∑T
t=1 µ1,t

∣∣∣β1 − β̂1 (τ)
∣∣∣+
∑T

t=1 µ2,t

∣∣∣β2 − β̂2 (τ)
∣∣∣+
∑T

t=1 µ2,t

∣∣∣β̂3 (τ)
∣∣∣ = Op

(
T 1/2

)
.

We therefore conclude that supρ

∣∣∣∑bρT cs=1 ε̂s

(
ψ̂ (τ) ; τ

)∣∣∣ = Op
(
T 1/2

)
. To complete the discussion of

(S.37) we now consider the term

∑T−1
t=1

∣∣∣(v̂t+1

(
ψ̂ (τ) ; τ

)
− v̂t+1

(
ψ̂ (τ)

))
−
(
v̂t

(
ψ̂ (τ) ; τ

)
− v̂t

(
ψ̂ (τ)

))∣∣∣
and notice that this has the same stochastic order as

∑T−1
t=1

∣∣∣∣({(ln (∆)) ∆δ
}

+
zt+1 (τ)−

{
(ln (∆)) ∆δ

}
+
zt (τ)

)′ (
β − β̂ (τ)

)∣∣∣∣ .
When Model A is used, the latter is bounded by

∑T−1
t=1 |∆λ1,t+1|

∣∣∣β1 − β̂1 (τ)
∣∣∣+
∑T−1

t=1 |∆λ2,t+1|
∣∣∣β2 − β̂2 (τ)

∣∣∣+
∑T−1

t=1 |∆λ3,t+1 (τ)|
∣∣∣β̂3 (τ)

∣∣∣ .
Using (S.34) and (S.35) and proceeding as in the discussion of (S.30), this is seen to be ofOp

(
(ln (T ))2 T−1/2+δ

)
when δ > 0 and of Op

(
(ln (T ))T−1/2

)
when δ < 0. When Model B is used, the same bounds may be

established in the same way. Finally, in all cases,∣∣∣(v̂T (ψ̂ (τ) ; τ
)
− v̂T

(
ψ̂ (τ)

))∣∣∣ ∣∣∣∑T
s=1 ε̂s

(
ψ̂ (τ) ; τ

)∣∣∣ = Op (ln (T )) .

[S.16]



Combining these results, (S.37) has stochastic order op
(
T 1/2

)
. Together with the stochastic order

obtained for (S.36), the stated result in (S.31) is therefore established.

The proof for (S.32) is similar, and we discuss it below. The expression in (S.32) can be written as∑T
t=1 v̂t

(
ψ̂
)(

ε̂t

(
ψ̂ (τ)

)
− ε̂t

(
ψ̂
))

(S.39)

+
∑T

t=1 v̂t

(
ψ̂
)
g
(
L; ψ̂ (τ)

)
∆δ

+zt (τ)′
(
β − β̂ (τ)

)
. (S.40)

As in the discussion of (S.36), the stochastic order of (S.39) is bounded by the stochastic order of∑T
t=1

∣∣∣v̂t (ψ̂)∣∣∣ ∣∣∣ε̂t (ψ̂ (τ)
)
− ε̂t

(
ψ̂
)∣∣∣ = op

(
T × T−1/2

)
= op

(
T 1/2

)
.

Again the discussion of (S.40) is similar to the discussion of (S.37): we apply summation by parts to

(S.40) and discuss the role of the terms g
(
L; ψ̂ (τ)

)
∆δ

+zt (τ)′
(
β − β̂ (τ)

)
as in the discussion of (S.37),

but in this case notice that we must discuss the partial sums
bρT c∑
t=1

v̂t

(
ψ̂
)

. Letting vt :=
∑t−1

j=1 j
−1εt−j ,

for
∥∥∥ψ̃ − ψ∥∥∥ ≤ ∥∥∥(ψ̂ − ψ)∥∥∥
v̂t

(
ψ̂
)

= vt +
(
ψ̂ − ψ

)′∑t−1
j=1 j

−1 ∂ε̂t (ψ)

∂ψ

∣∣∣∣
ψ=ψ∗

+
1

2

(
ψ̂ − ψ

)′∑t−1
j=1 j

−1 ∂
2ε̂t (ψ)

∂ψ∂ψ′

∣∣∣∣
ψ=ψ̃

(
ψ̂ − ψ

)
= vt +

(
ψ̂ − ψ

)′∑t−1
j=1 j

−1 ∂ε̂t (ψ)

∂ψ

∣∣∣∣
ψ=ψ∗

+ op
(
ln (t)T−1

)
so supρ

∣∣∣∣∣bρT c∑t=1
v̂t

(
ψ̂
)∣∣∣∣∣ = Op

(
ln (T )T 1/2

)
again in view of the FCLT in Marinucci and Robinson (2000)

and (S.40) is op
(
T 1/2

)
. The result in (A.5) is thereby established.

For (A.6),

T∑
t=1

(
ε̂t

(
ψ̂ (τ) ; τ

))2
−

T∑
t=1

(
ε̂t

(
ψ̂
))2

=
T∑
t=1

(
ε̂t

(
ψ̂ (τ) ; τ

)
− ε̂t

(
ψ̂
))

ε̂t

(
ψ̂ (τ) ; τ

)
+

T∑
t=1

ε̂t

(
ψ̂
)(

ε̂t

(
ψ̂ (τ) ; τ

)
− ε̂t

(
ψ̂
))

the two terms of which are op
(
T 1/2

)
proceeding in the same way as in the discussion of (S.31) and

(S.32).

Finally, since κ and Φ are continuous function of ψ, (A.7) follows by an application of Slutzky’s

Theorem.

Proof of Lemma C2.

We have that,

ε̂t (ψ; τ̂) = g (L;ψ) ∆δ
+

(
yt − zt (τ̂)′ β̂ (τ̂)

)
= g (L;ψ) ∆δ

+

(
ut + zt (τ∗)′ β − zt (τ̂)′ β̂ (τ̂)

)
= g (L;ψ) ∆δ

+

(
ut + zt (τ∗)′ β − zt (τ∗)′ β̂ (τ̂) + zt (τ∗)′ β̂ (τ̂)− zt (τ̂)′ β̂ (τ̂)

)
= ε̂t (ψ) + g (L;ψ) ∆δ

+zt (τ∗)′
(
β − β̂ (τ̂)

)
+ g (L;ψ) ∆δ

+ (zt (τ∗)− zt (τ̂))′ β̂ (τ̂) .

(S.41)

[S.17]



We first show that
∥∥∥ψ̂ (τ̂)− ψ̂

∥∥∥ = op (1). For this purpose, we need to show that

1

T

∣∣∣∣ T∑
t=1

(ε̂t (ψ; τ̂))2 −
T∑
t=1

(ε̂t (ψ))2

∣∣∣∣→p 0 (S.42)

uniformly in ψ, and notice that, in view of the stochastic equicontinuity discussed in Lemma A.2, it

is sufficient to establish (S.42). We then rewrite

T∑
t=1

(ε̂t (ψ; τ̂))2 −
T∑
t=1

(ε̂t (ψ))2

=
T∑
t=1

(
g (L;ψ) ∆δ

+zt (τ∗)′
(
β − β̂ (τ̂)

))2
+ 2

T∑
t=1

(ε̂t (ψ))
(
g (L;ψ) ∆δ

+zt (τ∗)′
(
β − β̂ (τ̂)

))
(S.43)

+2
T∑
t=1

(ε̂t (ψ)) g (L;ψ) ∆δ
+ (zt (τ∗)− zt (τ̂))′ β̂ (τ̂) (S.44)

+2
T∑
t=1

(
g (L;ψ) ∆δ

+zt (τ∗)′
(
β − β̂ (τ̂)

))(
g (L;ψ) ∆δ

+ (zt (τ∗)− zt (τ̂))′ β̂ (τ̂)
)

(S.45)

+
T∑
t=1

(
g (L;ψ) ∆δ

+ (zt (τ∗)− zt (τ̂))′ β̂ (τ̂)
)2

(S.46)

where the two terms in (S.43) are Op
(
T 1/2

)
uniformly in ψ using (3.11) and proceeding as for (S.8)

and (S.9) in Lemma A2.

As for (S.46), we can again apply Lemma 3 of Robinson (2005) to account for the polynomial

g (L;ψ). Assuming τ∗ < τ̂ (the case τ∗ > τ̂ works in the same way), notice that

T∑
t=1

(
∆δ

+ (zt (τ∗)− zt (τ̂))′ β̂ (τ̂)
)2

=
∑T

t=1

(
µ3,t (τ∗)− µ3,t (τ̂)

)2
β̂3 (τ̂)

and β̂3 (τ̂)
p→ β3 so β̂3 (τ̂) = Op (1). Term (S.46) has therefore the same stochastic order as that of∑T

t=1

(
µ3,t (τ∗)− µ3,t (τ̂)

)2
=
∑bτ̂T c

t=1+bτ∗T c
(
µ3,t (τ∗)

)2
+
∑T

t=1+bτ̂T c
(
µ3,t (τ∗)− µ3,t (τ̂)

)2
.

When Model A is used the first term on the right hand side of the foregoing equation is such that,∑bτ̂T c
t=1+bτ∗T c

(
µ3,t (τ∗)

)2
=
∑bτ̂T c−bτ∗T c

t=1 µ2
2,t ≤ C (bτ̂T c − bτ∗T c)3−2δ = Op

(
T (δ−1/2)×(3−2δ)

)
= op (1)

while in the context of the second term,(
µ3,t (τ∗)− µ3,t (τ̂)

)
=
(
µ3,t (τ∗)− µ3,t−1 (τ∗) + µ3,t−1 (τ∗)− ...− µ3,t (τ̂)

)
and, if δ > 0, ∣∣µ3,t (τ∗)− µ3,t (τ̂)

∣∣ < C (bτ̂T c − bτ∗T c) (t− bτ̂T c)−δ (S.47)

and ∑T
t=1+bτ̂T c

(
µ3,t (τ∗)− µ3,t (τ̂)

)2 ≤ C (bτ̂T c − bτ∗T c)2∑T
t=1+bτ̂T c (t− bτ̂T c)−2δ

≤ C (bτ̂T c − bτ∗T c)2∑T
t=1 t

−2δ

[S.18]



whereas, if δ < 0, ∣∣µ3,t (τ∗)− µ3,t (τ̂)
∣∣ < C (bτ̂T c − bτ∗T c) (t− bτ∗T c)−δ (S.48)

and

∑T
t=1+bτ̂T c

(
µ3,t (τ∗)− µ3,t (τ̂)

)2 ≤ C (bτ̂T c − bτ∗T c)2∑T
t=1+bτ̂T c (t− bτ∗T c)−2δ

≤ C (bτ̂T c − bτ∗T c)2∑T
t=1+bτ∗T c (t− bτ∗T c)−2δ ≤ C (bτ̂T c − bτ∗T c)2∑T

t=1 t
−2δ.

Either way, then,

∑T
t=1+bτ̂T c

(
µ3,t (τ∗)− µ3,t (τ̂)

)2 ≤ C (bτ̂T c − bτ∗T c)2 T 1−2δ = Op

(
T (1−3/2+δ)×2T 1−2δ

)
= Op (1) .

When Model B is used,

∑bτ̂T c
t=1+bτ∗T c

(
µ3,t (τ∗)

)2
=
∑bτ̂T c−bτ∗T c

t=1 µ2
1,t ≤ C (bτ̂T c − bτ∗T c)1−2δ = Op (1) .

If δ < 0, using
∣∣µ1,t+1 − µ1,t

∣∣ < Ct−δ−1,

∑T
t=1+bτ̂T c

(
µ3,t (τ∗)− µ3,t (τ̂)

)2 ≤ C (bτ̂T c − bτ∗T c)2∑T
t=1+bτ̂T c (t− bτ̂T c)−2δ−2

≤ C (bτ̂T c − bτ∗T c)2∑T
t=1 t

−2δ−2 ≤ C (bτ̂T c − bτ∗T c)2 = Op (1)

recalling −2δ − 2 < −1 as δ > −1/2. When δ > 0, using
∣∣µ1,t+1 − µ1,t

∣∣ < Ct−1, the stochastic order

of
∑T

t=1+bτ̂T c
(
µ3,t (τ∗)− µ3,t (τ̂)

)2
is

∑T
t=1+bτ̂T c

(
µ3,t (τ∗)− µ3,t (τ̂)

)2 ≤ C (bτ̂T c − bτ∗T c)2∑T
t=1+bτ̂T c (t− bτ̂T c)−2

≤ C (bτ̂T c − bτ∗T c)2∑T
t=1 t

−2 ≤ C (bτ̂T c − bτ∗T c)2 = Op (1) .

It therefore follows that

T∑
t=1

(
g (L;ψ) ∆δ

+ (zt (τ∗)− zt (τ̂))′ β̂ (τ̂)
)2

= Op (1) (S.49)

and
1

T

T∑
t=1

(
g (L;ψ) ∆δ

+ (zt (τ∗)− zt (τ̂))′ β̂ (τ̂)
)2 p→ 0 (S.50)

uniformly in ψ, thereby accounting for (S.46). The two remaining cross products in the expansion of∑T
t=1 (ε̂t (ψ; τ̂))2−

∑T
t=1 (ε̂t (ψ))2, (S.44) and (S.45), can be dealt with by applications of the Cauchy-

Schwarz inequality. Consequently (S.42) holds, and we conclude that ψ̂ (τ̂)− ψ̂ p→ 0.

To complete the proof of Lemma C2, we need to show that
(
ψ̂ − ψ̂ (τ̂)

)
= op

(
T 1/2

)
. Again we

proceed as in the proof of Lemma A2 and account for the extra term g (L;ψ) ∆δ (zt (τ∗)− zt (τ̂))′ β̂ (τ̂).

The result in (S.50) and additional applications of the Cauchy-Schwarz inequality are sufficient to

extend the arguments used in establishing Lemma A2 to conclude that D̃
(
ψ̂
)−1
−D̃

(
ψ̂ (τ̂) ; τ̂

)−1 p→ 0

[S.19]



still holds. To complete the second part of Lemma C2 we need to check the stochastic order of (S.24)

when τ = τ̂ and β3 6= 0. Here we need to demonstrate that

T−1/2
T∑
t=1

(
∆δ

+ (zt (τ∗)− zt (τ̂))′ β̂ (τ̂)
)2 p→ 0 (S.51)

T−1/2
T∑
t=1

(
∆δ

+ (zt (τ∗)− zt (τ̂))′ β̂ (τ̂)
)

∆δ
+zt (τ∗)′

(
β − β̂ (τ̂)

)
p→ 0 (S.52)

and

T−1/2
T∑
t=1

(
∆δ

+ (zt (τ∗)− zt (τ̂))′ β̂ (τ̂)
) ∂εt (ψ)

∂ψ

∣∣∣∣
ψ=ψ∗

p→ 0 (S.53)

T−1/2
T∑
t=1

(
∆δ

+ (zt (τ∗)− zt (τ̂))′ β̂ (τ̂)
)
εt (ψ∗)

p→ 0. (S.54)

The first two limits are readily established, using (S.49) for (S.51) and, in the case (S.52), the bound

for the right hand side of (S.8) and an application of the Cauchy-Schwarz inequality.

Assuming that τ̂ > τ∗, the expression in (S.53) has the same order as that of

T−1/2
bτ̂T c∑

t=1+bτ∗T c
µ3,t (τ∗)

∂εt (ψ)

∂ψ

∣∣∣∣
ψ=ψ∗

+ T−1/2
T∑

t=1+bτ̂T c

(
µ3,t (τ∗)− µ3,t (τ̂)

) ∂εt (ψ)

∂ψ

∣∣∣∣
ψ=ψ∗

where we note that ∂εt(ψ)
∂ψ

∣∣∣
ψ=ψ∗

is still ARMA.

Using summation by parts,∣∣∣∣∣ bτ̂T c∑
t=1+bτ∗T c

µ3,t (τ∗)
∂εt (ψ)

∂ψ

∣∣∣∣
ψ=ψ∗

∣∣∣∣∣ (S.55)

≤
bτ̂T c−1∑

t=1+bτ∗T c

∣∣∆µ3,t+1 (τ∗)
∣∣ max

1+bτ∗T c≤t≤bτ̂T c−1

∣∣∣∣∣ t−1∑
s=1+bτ∗T c

∂εs (ψ)

∂ψ

∣∣∣∣
ψ=ψ∗

∣∣∣∣∣ (S.56)

+µ3,bτ̂T c (τ∗)

∣∣∣∣∣ bτ̂T c∑
t=1+bτ∗T c

∂εt (ψ)

∂ψ

∣∣∣∣
ψ=ψ∗

∣∣∣∣∣ (S.57)

and ∣∣∣∣∣ T∑
t=1+bτ̂T c

(
µ3,t (τ∗)− µ3,t (τ̂)

) ∂εt (ψ)

∂ψ

∣∣∣∣
ψ=ψ∗

∣∣∣∣∣ (S.58)

≤
T−1∑

t=1+bτ̂T c

∣∣∆ (µ3,t+1 (τ∗)− µ3,t+1 (τ̂)
)∣∣ max

1+bτ̂T c≤t≤T−1

∣∣∣∣∣ t−1∑
s=1+bτ̂T c

∂εs (ψ)

∂ψ

∣∣∣∣
ψ=ψ∗

∣∣∣∣∣ (S.59)

+
∣∣µ3,T (τ∗)− µ3,T (τ̂)

∣∣ ∣∣∣∣∣ T∑
t=1+bτ̂T c

∂εt (ψ)

∂ψ

∣∣∣∣
ψ=ψ∗

∣∣∣∣∣ . (S.60)

We discuss Model A first, beginning with the two components of the bound of (S.55). For (S.56),

notice that

bτ̂T c−1∑
t=1+bτ∗T c

∣∣∆µ3,t+1 (τ∗)
∣∣ =

bτ̂T c−bτ∗T c∑
t=1

∣∣∆µ1,t

∣∣ ≤ C bτ̂T c−bτ∗T c∑
t=1

t−δ ≤ C (bτ̂T c − bτ∗T c)1−δ

[S.20]



while

max
1+bτ∗T c≤t≤bτ̂T c−1

∣∣∣∣∣ t−1∑
s=1+bτ∗T c

∂εs (ψ)

∂ψ

∣∣∣∣∣ (S.61)

≤ max
1+bτ∗T c≤t≤bτ̂T c−1

∣∣∣(t− bτ∗T c)1/2
∣∣∣ max

1+bτ∗T c≤t≤bτ̂T c−1

∣∣∣∣∣(t− bτ∗T c)−1/2
t−1∑

s=1+bτ∗T c

∂εs (ψ)

∂ψ

∣∣∣∣∣
≤ (bτ̂T c − bτ∗T c)1/2 max

1+bτ∗T c≤t≤bτ̂T c−1

∣∣∣∣∣(t− bτ∗T c)−1/2
t−1∑

s=1+bτ∗T c

∂εs (ψ)

∂ψ

∣∣∣∣∣
≤ (bτ̂T c − bτ∗T c)1/2 max

1+bτ∗T c≤t≤T

∣∣∣∣∣(t− bτ∗T c)−1/2
t−1∑

s=1+bτ∗T c

∂εs (ψ)

∂ψ

∣∣∣∣∣
and, using Equation (8) of Bai (1994),

max
1+bτ∗T c≤t≤T

∣∣∣∣∣(t− bτ∗T c)−1/2
t−1∑

s=1+bτ∗T c

∂εt (ψ)

∂ψ

∣∣∣∣
ψ=ψ∗

∣∣∣∣∣ = Op (ln (T ))

so that the stochastic order of (S.61) is the same as (bτ̂T c − bτ∗T c)1/2 ln (T ) and the order of (S.56)

is the same as,

(bτ̂T c − bτ∗T c)1−δ (bτ̂T c − bτ∗T c)1/2 ln (T )

which is of op (1) using (3.12).

For the remainder term (S.57), µ3,bτ̂T c (τ∗) ≤ C (bτ̂T c − bτ∗T c)1−δ. Again using Equation (8) of

Bai (1994), (S.57) has the same stochastic order as

(bτ̂T c − bτ∗T c)1−δ × ln (T )× (bτ̂T c − bτ∗T c)1/2

which is of op (1). Hence, the stochastic order of (S.55) is op (1) if Model A is used.

Moving to the two components of the bound of (S.58), term in (S.59) is bounded by

T−1∑
t=1+bτ̂T c

∣∣∆ (µ3,t+1 (τ∗)− µ3,t+1 (τ̂)
)∣∣ sup
ρ1, ρ2

∣∣∣∣∣ bρ2T c∑
s=bρ1T c

∂εs (ψ)

∂ψ

∣∣∣∣
ψ=ψ∗

∣∣∣∣∣
where supρ1, ρ2

∣∣∣∣∣ bρ2T c∑
s=bρ1T c

∂εs(ψ)
∂ψ

∣∣∣
ψ=ψ∗

∣∣∣∣∣. Noticing that

∆
(
µ3,t (τ∗)− µ3,t (τ̂)

)
= ∆

(
µ3,t (τ∗)− µ3,t−1 (τ∗) + µ3,t−1 (τ∗)− ...− µ3,t (τ̂)

)
and the bound for ∆µ1,t, then, if δ > 0,∣∣∆ (µ3,t (τ∗)− µ3,t (τ̂)

)∣∣ < C (bτ̂T c − bτ∗T c) (t− bτ̂T c)−1

and

T−1∑
t=1+bτ̂T c

∣∣∆ (µ3,t+1 (τ∗)− µ3,t+1 (τ̂)
)∣∣ ≤ C (bτ̂T c − bτ∗T c)

T−1∑
t=1+bτ̂T c

(t− bτ̂T c)−1

≤ C (bτ̂T c − bτ∗T c)
T∑
t=1

t−1 ≤ C (bτ̂T c − bτ∗T c) ln (T ) = Op

(
T−1/2+δ ln (T )

)
[S.21]



so that (S.59) is of order Op
(
T−1/2+δ × ln (T )× T 1/2

)
= Op

(
T δ ln (T )

)
= op

(
T 1/2

)
.

If δ < 0, ∣∣∆ (µ3,t (τ∗)− µ3,t (τ̂)
)∣∣ < C (bτ̂T c − bτ∗T c) (t− bτ̂T c)−1−δ

T−1∑
t=1+bτ̂T c

∣∣∆ (µ3,t+1 (τ∗)− µ3,t+1 (τ̂)
)∣∣ ≤ C (bτ̂T c − bτ∗T c)T−δ

and (S.59) has stochastic order as

(bτ̂T c − bτ∗T c)T−δT 1/2 = Op

(
T−1/2+δT−δT 1/2

)
= Op (1) = op

(
T 1/2

)
.

So, regardless of whether δ < 0 or δ > 0, (S.59) is of op
(
T 1/2

)
.

For the remainder term in (S.60), recalling (S.47) or (S.48),∣∣µ3,T (τ∗)− µ3,T (τ̂)
∣∣ < C (bτ̂T c − bτ∗T c)T−δ = Op

(
T−1/2+δ × T−δ

)
= Op

(
T−1/2

)
and (S.60) is therefore of order Op

(
T−1/2 × T 1/2

)
= Op (1). We can then conclude that, under Model

A, (S.55) and (S.58) are op
(
T 1/2

)
and (S.53) is op (1).

We now discuss the case when Model B is used, again considering (S.55) and (S.58). Beginning

with the two components of the bound of (S.55), if δ < 0,

bτ̂T c−1∑
t=1+bτ∗T c

∣∣∆µ3,t+1 (τ∗)
∣∣ =

bτ̂T c−bτ∗T c∑
t=1

∣∣∆µ1,t

∣∣ ≤ C bτ̂T c−bτ∗T c∑
t=1

t−1−δ ≤ C (bτ̂T c − bτ∗T c)−δ

and, recalling the bound for (S.61), (S.56) has stochastic order

(bτ̂T c − bτ∗T c)−δ × (bτ̂T c − bτ∗T c)1/2 ln (T ) = Op (ln (T ))

where we have used the result that (bτ̂T c − bτ∗T c) = Op (1), as in (3.13).

If δ > 0,
bτ̂T c−1∑

t=1+bτ∗T c

∣∣∆µ3,t+1 (τ∗)
∣∣ ≤ C bτ̂T c−bτ∗T c∑

t=1
t−1 ≤ C ln (T )

and, recalling the bound for (S.61), then (S.56) has stochastic order Op((ln (T ))2). Thus, regardless of

δ, (S.56) has order Op((ln (T ))2). For the remainder term in (S.57), µ3,bτ̂T c (τ∗) ≤ C (bτ̂T c − bτ∗T c)−δ

and so (S.57) has the same stochastic order as that of (bτ̂T c − bτ∗T c)−δ×ln (T )×(bτ̂T c − bτ∗T c)1/2 =

Op (ln (T )). Consequently, (S.55) is of Op

(
(ln (T ))2

)
.

Turning to (S.58), recall first that(
µ3,t (τ∗)− µ3,t (τ̂)

)
=
(
µ3,t (τ∗)− µ3,t−1 (τ∗) + µ3,t−1 (τ∗)− ...− µ3,t (τ̂)

)
then ∣∣µ3,t (τ∗)− µ3,t (τ̂)

∣∣ < C (bτ̂T c − bτ∗T c) (t− bτ̂T c)−1−δ

if δ < 0, and ∣∣µ3,t (τ∗)− µ3,t (τ̂)
∣∣ < C (bτ̂T c − bτ∗T c) (t− bτ̂T c)−1

[S.22]



if δ > 0. Where δ < 0, (S.58) is therefore bounded by

T∑
t=1+bτ̂T c

C (bτ̂T c − bτ∗T c) (t− bτ̂T c)−δ−1

∣∣∣∣∣ ∂εt (ψ)

∂ψ

∣∣∣∣
ψ=ψ∗

∣∣∣∣∣
≤

T∑
t=1+bτ̂T c

C (bτ̂T c − bτ∗T c) (t− bτ̂T c)−δ−1 sup
t

∣∣∣∣∣ ∂εt (ψ)

∂ψ

∣∣∣∣
ψ=ψ∗

∣∣∣∣∣
≤ C (bτ̂T c − bτ∗T c)

T∑
t=1

t−δ−1 sup
t

∣∣∣∣∣ ∂εt (ψ)

∂ψ

∣∣∣∣
ψ=ψ∗

∣∣∣∣∣ .
Using the fact, which will be established below, that

sup
t

∣∣∣∣∣ ∂εt (ψ)

∂ψ

∣∣∣∣
ψ=ψ∗

∣∣∣∣∣ = Op

(
T 1/q

)
(S.62)

the stochastic order of (S.58) when δ < 0 is

Op

(
T∑
t=1

t−δ−1T 1/q

)
= Op

(
T−δ+1/q

)
= op

(
T 1/2

)
in view of the condition that q > 1/ (1/2 + δ) imposed by Assumption 1. Where δ > 0, (S.58) is

bounded by

C (bτ̂T c − bτ∗T c)
T∑
t=1

t−1 sup
t

∣∣∣∣∣ ∂εt (ψ)

∂ψ

∣∣∣∣
ψ=ψ∗

∣∣∣∣∣ = O
(

ln (T )T 1/q
)

= op

(
T 1/2

)
using the fact that q > 2.

We have therefore proved (S.53) for all cases. To complete the proof of Lemma C2, the bound for

(S.54) can be established in the same way.

We end this proof with a derivation of the result stated in (S.62). Let Xt and Yt be two random

variables such that Xt = Op (ft) and Yt = Op (gt), where ft and gt are positive sequences in t. Then,

as is well known, see for example White (2001,p.28), that

XtYt = Op (ftgt) (S.63)

Xt + Yt = Op (max (ft, gt)) . (S.64)

Moreover, for p > 0,

|Xt|p = Op (fpt ) . (S.65)

Finally, let ξt be a process with |ξt| = Op (1) for any t. Then, for any p > 0,

sup
t=1,...,T

|ξt| = Op

(
T 1/p

)
. (S.66)

To establish (S.65), notice first that Xt/ft = Op (1), letting Yt = f−1
t in (S.63). Rewriting |Xt|p =

fpt |Xt/ft|p, in view of (S.63), the result follows if |Xt/ft|p = Op (1). To establish this, let bpc be the

integer part of p, and I (A) the indicator function, that takes value 1 if the event A is true, and 0
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otherwise, and let P := bpc+ 1I (p− bpc > 0), so P = p if p is an integer, and P = bpc+ 1 otherwise;

that is, P is ceiling of p. Notice that, for any sequence xt, it holds that |xt|p ≤ 1 + |xt|P , and so

|Xt/ft|p ≤ 1 + |Xt/ft|P . (S.67)

For p < 1, using (S.67) with P = 1, |Xt/ft|p ≤ 1 + |Xt/ft| = Op (1) by (S.64). For 1 < p ≤ 2, first

notice that |Xt/ft|2 = |Xt/ft|×|Xt/ft| = Op (1) in view of (S.63). The result then follows using (S.67)

with P = 2, |Xt/ft|2 = Op (1) and (S.64). Higher values of p, for any finite P , can be treated in the

same way, thus establishing (S.65).

To establish (S.66), notice first that, in view of the (S.65), for any t it holds that |ξt|
p = Op (1).

Next, notice that maxt |ξt|
p ≤

∑T
t=1 |ξt|

p = Op (T ), i.e., |ξt|
p = Op (T ), uniformly in t. As the

power is a monotone mapping, then maxt |ξt|
p = (maxt |ξt|)

p, and maxt |ξt| = (maxt |ξt|
p)1/p. Thus,

|ξt| = Op
(
T 1/p

)
uniformly in t.

In view of the fact that p in (S.66) is arbitrary, we can take p ≥ q to establish the result in (S.62).

Proof of Lemma D2.

Using the expansion in (S.41) again, the first two terms can be accounted for proceeding as in

the proof of Lemma B2, using (3.11) in place of (3.14). The additional contribution of the term

g (L;ψ) ∆δ
+ (zt (τ∗)− zt (τ̂))′ β̂ (τ̂) is discussed proceeding as in Lemma C2.

S.2 Additional Monte Carlo Simulations

Throughout this supplement, the simulation DGPs used are as detailed in section 4 except for those

changed aspects detailed in each case considered below.

S.2.1 Power against Fixed Magnitude Alternatives

In Theorem 1 we established that the test based on LM(τ̂) has non-trivial asymptotic local power,

achieving the Gaussian local power envelope. Finite sample simulations of power against local alter-

natives were reported in section 4. In the additional simulations reported here we investigate finite

sample power against fixed alternatives; that is, where the distance between the true long memory

parameter, d, and the value imposed under the null hypothesis, d0, is not a function of the sample

size, T . Of particular interest is the case where Model A is implied under H0 (d0 < 1/2), but in fact

Model B should be used (d > 1/2), or vice-versa. We will also consider power in the classical set up

of the unit-root test (as in the Dickey-Fuller test), testing H0 : d0 = 1 when in fact the true DGP is a

stationary AR(1), with autoregressive parameter 0.9 (so that, in fact, d = 0).

For simplicity and for ease of exposition, for the first part of this exercise we consider the DGP

et = ∆−d+ εt for the following four cases for d0 (the incorrect null value) and d (the true value):

(d, d0) ∈ {(0.6, 0.4), (0.75, 0.25), (0.4, 0.6), (0.25, 0.75)}. Table S1 below gives the results for nominal

asymptotic 0.05 level tests.
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Focussing on the results for LM(τ̂), from this exercise, these results can be summarised as: (i)

finite sample power for given (d, d0), increases with T , and (ii) finite sample power for a given T

increases with the distance |d0 − d|. With regard to (ii), it is also worth commenting that over-

differencing (i.e. basing the LM(τ̂) test on Model A when Model B is in fact the correct choice for

the true long memory parameter) leads to tests with lower power than under-differencing (basing the

test on Model B when Model A is the correct choice), for a given value of |d− d0|. When d− d0 > 0

the autocorrelations are not summable, whereas when d − d0 < 0 the autocorrelations sum to zero.

The former is easier to detect using tests such as LM(τ̂), which is based on a sum of weighted sample

autocorrelations.

Our second set of simulations are concerned with conventional unit root testing, when the alter-

native is that of the traditional Dickey-Fuller (DF) type. The null hypothesis is H0 : d0 = 1 such

that et = et−1 + εt when the true DGP is in fact I (0) but with autoregressive root close to 1,

et = 0.9et−1 + εt, with εt ∼ i.i.d. N(0, 1). Table S2 below reports the results of these experiments,

again for tests run at the nominal asymptotic 0.05 level. We can observe from these results that the

test based on LM(τ̂) has power that increases in T , and has similar power to the infeasible LM test,

regardless of whether a trend break occurs or not.
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Table S1. Empirical power of tests for distant alternatives

d = 0.6, d0 = 0.4

LM LM(τ∗) LM(τ̂)

T β3 = 0.0 β3 = 0.1 β3 = 1.0

256 1.000 0.825 0.731 0.727 0.763

512 1.000 0.996 0.992 0.993 0.994

1024 1.000 1.000 1.000 1.000 1.000

d = 0.75, d0 = 0.25

LM LM(τ∗) LM(τ̂)

T β3 = 0.0 β3 = 0.1 β3 = 1.0

256 1.000 1.000 1.000 1.000 1.000

512 1.000 1.000 1.000 1.000 1.000

1024 1.000 1.000 1.000 1.000 1.000

d = 0.4, d0 = 0.6

LM LM(τ∗) LM(τ̂)

T β3 = 0.0 β3 = 0.1 β3 = 1.0

256 0.928 0.895 0.742 0.802 0.826

512 1.000 0.999 0.991 0.996 0.991

1024 1.000 1.000 1.000 1.000 1.000

d = 0.25, d0 = 0.75

LM LM(τ∗) LM(τ̂)

T β3 = 0.0 β3 = 0.1 β3 = 1.0

256 1.000 1.000 1.000 1.000 1.000

512 1.000 1.000 1.000 1.000 1.000

1024 1.000 1.000 1.000 1.000 1.000

Table S2. Empirical power of tests for DF type alternative

d = 0, a = 0.9

LM LM(τ∗) LM(τ̂)

T β3 = 0.0 β3 = 0.1 β3 = 1.0

256 0.309 0.312 0.324 0.334 0.315

512 0.678 0.678 0.680 0.689 0.679

1024 0.964 0.964 0.964 0.965 0.964
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S.2.2 Moment Conditions

Assumption 1 imposes the moment conditions E |εt|q <∞ for q > max (2, 2/ (1 + 2d)) if d ∈ (−0.5, 0.5),

q > max (2, 2/ (2d− 1)) if d ∈ (0.5, 1.5). For d ∈ (−0.5, 0) and d ∈ (0.5, 1) these are stronger than, for

example, the moment conditions in Nielsen (2004), who needed only q ≥ 2 to establish his results, and

may be very strong; for example, when d→ 0.5+, 2/ (2d− 1)→∞. For the case where no trend break

occurs, these conditions are required to establish uniformly in τ results for the LM (τ) statistic: our

proof is based on the application of a functional central limit theorem for partial sums of fractionally

integrated processes, and similar conditions are necessary; see Johansen and Nielsen (2012). Where

a trend break occurs, similar conditions are used to derive a sufficient rate of convergence for the

estimate τ̂ ; see, for example, Condition A of Chang and Perron (2016).

To investigate the consequences of the required moment conditions not being met, we simulate the

tests in the case of a fractional noise process, et = ∆−d+ εt, with d = 0.51, 0.55,0.6, 0.75, 1.0, for εt either

standard normal or t5 innovations. We summarize the minimum moment requirements E |εt|q < ∞
with q > q0 for q0 as given in the table:

d 0.51 0.55 0.60 0.75 1.00

q0 100 20 10 4 2

We observe therefore that these conditions are always met in case of normally distributed innovations,

but are only met when d = 1 in the case of t5 innovations. The moment conditions of Nielsen (2004)

are met by both of these innovation distributions. Alongside the LM (τ̂) test, we also simulated the

LM and LM(τ∗) tests, to verify that the stronger moment conditions are not needed in these cases,

in line with Nielsen (2004). We use T = 256, 512, 1024 and for values of d close to 0.5 we also consider

T = 2048, 4096, 8192. The results are given in Table S3 below, again for nominal asymptotic 0.05

level tests. The main conclusions we can draw from the results in Table S3 are as follows:

(i) That the moment conditions of Assumption 1 are not needed for the LM and LM(τ∗) tests is

clearly seen in the results. As a general pattern, empirical sizes appear to converge towards the

nominal 0.05 level for all values of d for both innovation distributions for these tests.

(ii) The moment conditions for LM(τ̂) are not met for the t5 distributed innovations except for the

d = 1 case, whereas these are always met for normally distributed innovations. We see from the results

in Table S3 that for d up to d = 0.75 the empirical size of LM(τ̂) is generally badly inflated for the

case of t5 innovations vis-à-vis normally distributed innovations.

(iii) Indeed, for t5 distributed observations we find that for d = 0.51 or d = 0.55 (i.e. the most

demanding moment conditions) the empirical size of the LM(τ̂) test appears to be diverging when

β3 = 0 even for extremely large T . For β3 6= 0 empirical sizes appear to diverge at first, but then

appear to be corrected, approaching 0.05 for the very large values of T considered. The case of d = 0.6

displays less acute size distortions but we still find that the LM(τ̂) is unreliable, especially when

β3 = 0. Thus, for t5 distributed innovations, the size properties deteriorate as the “gap” between the

required moment condition and the actual moment is increased.
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Table S3. Empirical size in presence of standard normal and t5 distributed innovations

d = 0.51

std. normal t5

LM LM(τ∗) LM(τ̂) LM LM (τ∗) LM(τ̂)

T β3 = 0 β3 = 0 β3 = 0.1 β3 = 1 β3 = 0 β3 = 0.1 β3 = 1

256 0.045 0.049 0.118 0.086 0.083 0.045 0.051 0.267 0.188 0.105

512 0.050 0.056 0.162 0.106 0.099 0.049 0.056 0.365 0.252 0.123

1024 0.050 0.057 0.201 0.109 0.099 0.052 0.059 0.456 0.231 0.121

2048 0.051 0.055 0.211 0.103 0.938 0.053 0.059 0.537 0.212 0.121

4096 0.054 0.056 0.211 0.102 0.085 0.059 0.060 0.580 0.180 0.106

8192 0.049 0.053 0.200 0.085 0.080 0.053 0.055 0.619 0.162 0.100

d = 0.55

std. normal t5

LM LM (τ∗) LM(τ̂) LM LM (τ∗) LM(τ̂)

T β3 = 0 β3 = 0 β3 = 0.1 β3 = 1 β3 = 0 β3 = 0 β3 = 0.1 β3 = 1

256 0.042 0.042 0.078 0.059 0.062 0.041 0.043 0.170 0.130 0.083

512 0.046 0.049 0.098 0.075 0.076 0.045 0.048 0.234 0.171 0.092

1024 0.047 0.048 0.116 0.076 0.077 0.048 0.053 0.282 0.156 0.092

2048 0.047 0.049 0.121 0.073 0.073 0.050 0.050 0.324 0.142 0.091

4096 0.052 0.052 0.116 0.075 0.068 0.055 0.054 0.344 0.120 0.088

d = 0.6

std. normal t5

LM LM (τ∗) LM(τ̂) LM LM (τ∗) LM(τ̂)

T β3 = 0 β3 = 0 β3 = 0.1 β3 = 1 β3 = 0 β3 = 0 β3 = 0.1 β3 = 1

256 0.041 0.039 0.051 0.044 0.050 0.037 0.039 0.093 0.079 0.062

512 0.043 0.044 0.061 0.059 0.059 0.042 0.040 0.123 0.096 0.069

1024 0.045 0.046 0.070 0.057 0.060 0.046 0.049 0.139 0.100 0.071

2048 0.046 0.046 0.072 0.056 0.059 0.048 0.048 0.154 0.090 0.070

d = 0.75

std. normal t5

LM LM (τ∗) LM(τ̂) LM LM (τ∗) LM(τ̂)

T β3 = 0 β3 = 0 β3 = 0.1 β3 = 1 β3 = 0 β3 = 0 β3 = 0.1 β3 = 1

256 0.036 0.038 0.039 0.047 0.040 0.033 0.037 0.039 0.042 0.041

512 0.040 0.042 0.045 0.047 0.045 0.040 0.042 0.044 0.047 0.044

1024 0.044 0.046 0.048 0.049 0.046 0.043 0.046 0.048 0.050 0.048

d = 1

std. normal t5

LM LM (τ∗) LM(τ̂) LM LM (τ∗) LM(τ̂)

T β3 = 0 β3 = 0 β3 = 0.1 β3 = 1 β3 = 0 β3 = 0 β3 = 0.1 β3 = 1

256 0.036 0.041 0.060 0.059 0.044 0.034 0.039 0.058 0.057 0.043

512 0.039 0.043 0.063 0.063 0.044 0.040 0.042 0.062 0.061 0.046

1024 0.044 0.045 0.059 0.057 0.046 0.043 0.047 0.060 0.058 0.048
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S.2.3 Model Selection

In the Monte Carlo simulations in section 4 of the paper we assumed knowledge of the correct ARMA

specification for the short memory component of the model. This is not usually known in practice

and so here we investigate the consequences of selecting the short memory component of the model

using the familiar Bayes Information Criterion (BIC) of Schwarz (1978). We will consider just the

case of d = 1 in the interest of brevity. We simulated the same AR(1) with a = 0.5 as we did for

the exercise summarised in Table 3 in the paper, but we now selected the lag of the AR model using

the BIC, choosing between the i.i.d. model (underfitting), AR(1) model (correct fitting) and AR(2)

model (overfitting). Thus, after simulating ηt as ηt = 0.5ηt−1 + εt and et = ∆−1
+ ηt and simulating

xt = β1 + β2t+ β3DTt (τ∗) + et, we estimated τ̂ from Model B and then β̂2 (τ̂), β̂3 (τ̂), and computed

the residuals ût (τ̂), see equation (3.6), and finally, noticing that under H0 ut = ∆et is I (0), we

computed η̂t (τ̂) := ût (τ̂). For comparison, we also repeated the exercise assuming that the true

τ∗ is known, again estimating β̂2 (τ∗), β̂3 (τ∗) from Model B, then computing residuals ût (τ∗) and

finally η̂t (τ∗) := ût (τ∗). As a second comparison, for the case β3 = 0 only, we also estimated β2 in

the regression model ∆xt = β2 + ut and computed residuals ut and then ηt := ut, as we would do

with the knowledge that β3 = 0. When the DGP for ηt is known, we can use η̂t (τ̂), η̂t (τ∗) and ηt

to compute the LM (τ̂), LM (τ∗) and LM statistics, respectively: in this exercise, we first selected

models for η̂t (τ̂), η̂t (τ∗) and ηt using BIC. This information criterion yields consistent estimation of

ARMA structure when the series ηt is used, and we are interested in particular in checking if the same

holds when residuals η̂t (τ̂) are used instead, and what consequences estimating the orders has on the

LM (τ̂) test.

In our experiment, the i.i.d. model was never selected by the BIC in the 10,000 replications con-

sidered. The frequency with which the correct AR(1) model was chosen by the BIC is given in the

table below. In the remaining cases BIC selected the AR(2) model.

ηt ηt(τ
∗) ηt(τ̂)

T β3 = 0 β3 = 0 β3 = 0.1 β3 = 1

256 0.9784 0.9777 0.9757 0.9766 0.9775

512 0.9877 0.9875 0.9868 0.9870 0.9873

1024 0.9911 0.9912 0.9907 0.9907 0.9915

We can therefore observe that the BIC correctly selects the AR(1) model in the vast majority of

cases, and that this selection frequency is tending towards one as T increases. Moreover, estimation of

the location of the break would appear to have almost no impact on the efficacy of the BIC to select

the correct model for the shocks.

We then repeated the simulation experiment given in Table 3 of the main paper but where we now

estimated the order of the short memory AR component using the BIC. These results are reported in

the table below.
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LM LM (τ∗) LM(τ̂)

T β3 = 0 β3 = 0 β3 = 0.1 β3 = 1

256 0.010 0.011 0.020 0.020 0.014

512 0.020 0.024 0.039 0.039 0.025

1024 0.026 0.033 0.052 0.050 0.036

These results are observed to be basically identical to those reported in Table 3, with any changes

only occurring at the third decimal place.
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