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1 Introduction

We live in a society that relies more and more on the availability of data to make
knowledge-based decisions (Livraga, 2015). The benefits that can be driven by data
sharing and dissemination have beenwidely recognized for a long time now (Foresti,
2011; Livraga, 2015), and are visible to everybody: for instance, medical research
is a simple example of a field that, leveraging analysis of real clinical trials made
available by hospitals, can improve the life quality of individuals. At the same
time, many laws and regulations have recognized that privacy is a primary right
of citizens, acknowledging the principle that sensitive information (e.g., personal
information that refers to an individual)must be protected from improper disclosure.
To resolve the tension between the (equally strong) needs for data privacy and
availability, the scientific community has been devoting major efforts for decades
to investigating models and approaches that can allow a data owner to release a
data collection guaranteeing that sensitive information be properly protected, while
still allowing useful analysis to be performed (Bezzi et al., 2012; De Capitani di
Vimercati et al., 2011b).

In the past, data were typically released in the form of aggregate statistics
(macrodata): while providing a first layer of protection to the individuals to whom
the statistics pertain, as no specific data of single respondents (i.e., the individuals
to whom data items refer) are (apparently) disclosed (De Capitani di Vimercati
et al., 2011a), releasing precomputed statistics inevitably limits the analysis that
a recipient can do. To provide recipients with greater flexibility in performing
analysis, many situations require the release of detailed data, called microdata.
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Indeed, since analyses are not precomputed, more freedom is left to the final
recipients. The downside, however, comes in terms of major privacy concerns, as
microdata can include sensitive information precisely related to individuals.

As will be illustrated in this chapter, the first attempts towards the development of
microdata protection approaches pursued what today are typically called syntactic
privacy guarantees (Ciriani et al., 2007a; Clifton and Tassa, 2013; De Capitani di
Vimercati et al., 2012). Traditional protection approaches (e.g., k-anonymity (Sama-
rati, 2001) and its variations) operate by removing and/or generalizing (i.e., making
less precise/more general) all information that can identify a respondent, so that
each respondent is hidden in a group of individuals sharing the same identifying
information. In this way, it is not possible to precisely link an individual to her
(sensitive) information. Existing solutions following this approach can be used to
protect respondents’ identities as well as their sensitive information (Livraga, 2015),
also in emerging scenarios (De Capitani di Vimercati et al., 2015b). Alternative
approaches based on the notion of differential privacy (Dwork, 2006) have then
been proposed. Trying to pursue a relaxed and microdata-adapted version of a well-
known definition of privacy by Dalenius (1977), that anything that can be learned
about a respondent from a statistical database should be learnable without access to
the database, differential privacy aims at ensuring that the inclusion in a dataset of
the information of an individual does not significantly alter the outcome of analysis
of the dataset. To achieve its privacy goal, differential privacy typically relies on
controlled noise addition, thus perturbing the data to be released (in contrast to
k-anonymity-like solutions that, operating through generalization, guarantee data
truthfulness). There has been a major debate in the scientific community regarding
which approach (syntactic techniques versus differential privacy) is the “correct”
one (Clifton and Tassa, 2013; Kifer and Machanavajjhala, 2011), and recent studies
have pointed out that, while they pursue different privacy goals through different
protection techniques, both approaches are successfully applicable to different
scenarios, and there is room for both of them (Clifton and Tassa, 2013; Li et al.,
2012a), possibly jointly adopted (Soria-Comas et al., 2014). Both the approaches
have in fact been used in different application scenarios, ranging from the protection
of location data (e.g., Peng et al. 2016; Xiao and Xiong 2015), to privacy-preserving
data mining (e.g., Ciriani et al. 2008; Li et al. 2012c), and to the private analysis of
social network data (e.g., Tai et al. 2014; Wang et al. 2016), just to name a few.

The goal of this chapter is to illustrate some of the best-known protection
techniques and approaches that can be used to ensure microdata privacy. The
remainder of this chapter is organized as follows. Section 2 presents the basic
concepts behind the problem of microdata protection, illustrating possible privacy
risks and available protection techniques. Section 3 discusses some well-known
protection approaches. Section 4 illustrates some extensions of the traditional
approaches, proposed to relax or remove some assumptions for use in advanced
scenarios, with a specific focus on the problem of protecting microdata coming from
multiple sources. Finally, Sect. 5 concludes the chapter.
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2 Microdata Protection: Basic Concepts

This section illustrates the key concepts behind the problem of protecting microdata
privacy. It discusses firstly some privacy issues that can arise in microdata release
(Sect. 2.1), and secondly the protection techniques that have been proposed by the
research community to protect microdata (Sect. 2.2).

2.1 Microdata Privacy

Microdata can be represented as relational tables including a set of tuples, related
to a set of individuals (called respondents), and defined over a set of attributes.
Traditional data protection approaches classify attributes in a microdata table
depending on their identifying ability and sensitivity, as follows (Ciriani et al.,
2007a).1

– Identifiers: attributes that uniquely identify a respondent (e.g., Name and SSN).
– Quasi-identifiers (QI): attributes that, in combination, can be linked to external

information to reidentify (all or some of) the respondents to whom information
refers, or to reduce the uncertainty over their identities (e.g., DoB, Sex, and
ZIP).

– Sensitive attributes: attributes that represent information that should be kept
confidential (e.g., Disease).

The first step in protecting a microdata table to be released is to remove (e.g.,
by deleting or encrypting) all identifiers from the table. This process, usually
referred to as de-identification, is unfortunately not sufficient to effectively ensure
the anonymity of the data, due to the presence of QI attributes (e.g., 63% of the entire
US population in the US 2000 Census was uniquely identifiable by the combination
of their gender, ZIP code, and full date of birth (Golle et al., 2006)). To illustrate,
consider the de-identified version of a microdata table including information on
a set of hospitalized patients in Fig. 1a. Figure 1b illustrates a sample excerpt of
a (fictitious) publicly available voter list for the municipality of New York City.
Attributes DoB, Sex, and ZIP can be used to link the two tables, allowing the
re-identification (with either full confidence or a certain probability) of some of
the de-identified respondents in Fig. 1a. For instance, the de-identified microdata
include only one female respondent, born in 1958/12/11 and living in the 10180
area (tuple 11). If this combination of QI values is unique in the external world as
well, the voter list can be exploited to uniquely reidentify the eleventh tuple with
respondent Kathy Doe, also disclosing the fact that she has been hospitalized for

1In this chapter, SSN, DoB, and ZIP are attributes representing Social Security Numbers (the de
facto US identification number for taxation and other purposes), dates of birth, and ZIP codes (US
postal codes).
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Fig. 1 An example of a de-identified microdata table (a) and of a publicly available non-de-
identified dataset (b)

epilepsy. Given that tremendous amounts of data are generated and shared every
day, the availability of non-de-identified datasets that can be used for linking is a
realistic threat. Unfortunately, unlike direct identifiers, QI cannot be easily removed
to protect privacy, since QI attributes can represent a large portion of the attributes
in the table, and their complete removal would reduce the utility of the anonymized
data too much (e.g., removing also the QI from the de-identifiedmicrodata in Fig. 1a
would leave only a list of diseases, most probably of limited interest to the final
recipients).

Given a de-identified microdata table, two different kinds of improper disclosure
can occur, as follows (Federal Committee on Statistical Methodology, 2005).

– Identity disclosure, occurring whenever the identity of a respondent can be
somehow determined and associated with a (de-identified) tuple in the released
microdata table.
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– Attribute disclosure, occurring when a (sensitive) attribute value can be asso-
ciated with an individual (without necessarily being able to link the value to a
specific tuple).

2.2 Protection Techniques

Various microdata protection techniques have recently been proposed by the
scientific community (Ciriani et al., 2007b; Federal Committee on Statistical
Methodology, 2005). An initial distinction can be made betweenmasking techniques
and synthetic data generation techniques: while these latter aim to release a new,
synthetic dataset that preserves some statistical properties of the original data,
masking techniques operate directly on the original microdata, to sanitize them
before release, and can be classified as follows.

– Non-perturbative techniques do not directly modify the original data, but remove
details from the microdata table: they sacrifice data completeness by releasing
possibly imprecise and/or incomplete data to preserve data truthfulness. Exam-
ples of non-perturbative techniques include suppression, generalization, and
bucketization. Suppression selectively removes information from the microdata
table. Generalization, possibly based on ad hoc generalization hierarchies, selec-
tively replaces the content of some cells in the microdata table (e.g., a complete
date of birth) with more general values (e.g., year of birth). Bucketization
operates on sets of attributes whose joint visibility should be prevented (e.g.,
the name and the disease of a patient), and operates by first partitioning tuples
in buckets and attributes in groups, and then shuffling the semi-tuples within
buckets so as to break their correspondence (De Capitani di Vimercati et al.,
2015a, 2010; Li et al., 2012b; Xiao and Tao, 2006).

– Perturbative techniques distort the microdata table to be released by modifying
its informative content, hence sacrificing data truthfulness. Examples of pertur-
bative techniques include noise addition and microaggregation. Noise addition
intuitively adds controlled noise to the original data collection. Protection is
provided by the fact that some values (or combinations among them) included
in the released table might not correspond to real ones, and vice versa. Microag-
gregation (originally proposed for continuous numerical data and then extended
also to categorical data (Torra, 2004)) selectively replaces original tuples with
new ones. It operates by first clustering the tuples in the original microdata table
in groups of a certain cardinality in such a way that tuples in the same cluster
are similar to each other, and then by replacing the tuples in a cluster with
a representative one computed through an aggregation operator (e.g., mean or
median).

The protection techniques illustrated above can be adopted to effectively protect
the confidentiality of a microdata collection to be released. Given a data collection
to be protected and released, some key questions then need to be answered: what
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technique should be used? Should a combination of techniques be preferred to a
single one? To which portion of the data (e.g., the entire table, a subset of tuples,
and a subset of attributes) should the technique be applied?Whatever the answers to
these questions, an important observation is that all microdata protection techniques
cause an inevitable information loss: non-perturbative techniques produce datasets
that are not as complete or as precise as the originals, and perturbative techniques
produce datasets that are distorted. For these reasons, the scientific community
has recently developed protection approaches that, given a privacy requirement to
be satisfied (e.g., the protection of the identities of the microdata respondents),
rely on a controlled adoption of some of these microdata protection techniques to
protect privacywhile limiting information loss, as illustrated in the remainder of this
chapter.

3 Microdata Protection Approaches

This section illustrates the most important protection approaches that have driven
research in microdata protection in the past couple of decades, together with the
privacy requirements they pursue and the microdata protection techniques (see
Sect. 2) that are typically adopted for their enforcement.

3.1 k-Anonymity

The first and pioneering approach for protecting microdata against identity dis-
closure is represented by k-anonymity (Samarati, 2001), enforcing a protection
requirement typically applied by statistical agencies that demands that any released
information be indistinguishably related to no less than a certain number k of
respondents. Following the assumption that re-identification of de-identified micro-
data takes advantage of QI attributes, such general requirement is translated into the
k-anonymity requirement: each release of data must be such that every combination
of values of the QI can be indistinctly matched to at least k respondents (Samarati,
2001). A microdata table satisfies the k-anonymity requirement iff each tuple cannot
be related to less than k individuals in the population, and vice versa (i.e., each
individual in the population cannot be related to less than k tuples in the table).
These two conditions hold since the original definition of k-anonymity assumes that
each respondent is represented by at most one tuple in the released table and vice
versa (i.e., each tuple includes information related to one respondent only).

Verifying the satisfaction of the k-anonymity requirement would require knowl-
edge of all existing external sources of information that an adversary might
use for the linking attack. This assumption is indeed unrealistic in practice, and
therefore k-anonymity takes the safe approach of requiring that each respondent be
indistinguishable from at least k − 1 other respondents in the released microdata.
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A table is therefore said to be k-anonymous if each combination of values of the
QI appears in it with either zero or at least k occurrences. For instance, the table in
Fig. 1a is 1-anonymous if we assume the QI to be composed of DoB, Sex, and ZIP,
since at least one combination of their values (i.e., 〈1958/12/11, F, 10180〉) appears
only once in the table (i.e., in the eleventh tuple). Since each combination of QI
values is shared by at least k different tuples in the microdata table, each respondent
cannot be associated with fewer than k tuples in the released table and vice versa,
also satisfying the original k-anonymity requirement (being the definition of a k-
anonymous table a sufficient, though not necessary, condition for the satisfaction of
the k-anonymity requirement).

Traditional approaches to enforcing k-anonymity operate on QI attributes by
modifying their values in the microdata to be released, while leaving sensitive and
nonsensitive attributes as they are (recall that direct identifiers are removed from
the microdata as the first step). Among the possible data protection techniques that
might be enforced on the QI, k-anonymity typically relies on the combined adoption
of generalization and suppression, which have the advantage of preserving data
truthfulness when compared to perturbative techniques (e.g., noise addition; see
Sect. 2.2). Suppression is used to couple generalization, as it can help in reducing
the amount of generalization that has to be enforced to achieve k-anonymity; in
this way, it is possible to produce more precise (though incomplete) tables. The
intuitive rationale is that, if a microdata table includes a limited number of outliers
(i.e., QI values with less than k occurrences) that would force a large amount of
generalization to satisfy k-anonymity, these outliers could be more conveniently
removed from the table, improving the quality of the released data.

Generalization and suppression can be applied at various granularity levels
(i.e., generalization at the cell and attribute levels, and suppression at the cell,
attribute, and tuple levels), and the combined use of generalization and suppression
at different granularity levels produces different classes of approaches to enforcing
k-anonymity (Ciriani et al., 2007a). The majority of the approaches available in the
literature adopt attribute-level generalization and tuple-level suppression (Bayardo
and Agrawal, 2005; LeFevre et al., 2005; Samarati, 2001). Figure 2 illustrates a
4-anonymous table obtained from the microdata in Fig. 1a through attribute-level
generalization (DoB, Sex, and ZIP have been generalized by removing the day
of birth, sex, and the last two digits of the ZIP code, respectively) and tuple-
level suppression (the 11th tuple related to Kathy has been suppressed). Cell-level
generalization has also been investigated as an approach to producing k-anonymous
tables (LeFevre et al., 2006). To reduce the inevitable information loss (the original
microdata informative content is either reduced in detail or removed), it is necessary
to compute an optimal k-anonymizationminimizing generalization and suppression,
which has been shown to be an NP-hard problem (Ciriani et al., 2007a), and both
exact and heuristic algorithms have been proposed.

As a last remark on k-anonymity, it should be noted that some recent
approaches have been proposed to obtain k-anonymity through microaggregation
(see Sect. 2.2) (Domingo-Ferrer and Torra, 2005; Soria-Comas et al., 2014).
To this end, the QI undergoes microaggregation, so that each combination of
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Fig. 2 An example of
4-anonymous table

Fig. 3 An example of a
microdata table (a) and of a
3-anonymous version of it (b)
obtained by adopting
microaggregation

QI values in the original microdata table is replaced with a microaggregated
version. Figure 3b illustrates a 3-anonymous version of the microdata in Fig. 3a
obtained through microaggregation, assuming Age to be the QI, and Disease
the sensitive attribute. Note that, being microaggregation a perturbative protection
technique, k-anonymous tables computed adopting this approach do not preserve
data truthfulness.

3.2 �-Diversity and t-Closeness

While k-anonymity represents an effective solution to protect respondent identities,
it does not protect against attribute disclosure (Samarati, 2001). A k-anonymous
table can in fact still be vulnerable to attacks allowing a recipient to determine
with non-negligible probability the sensitive information of a respondent, as fol-
lows (Machanavajjhala et al., 2007; Samarati, 2001).
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– Homogeneity attack. A homogeneity attack occurs when all the tuples in an
equivalence class (i.e., the set of tuples with the same value for the QI) in a
k-anonymous table assume the same value for the sensitive attribute. If a data
recipient knows the QI value of a target individual x, she can identify the
equivalence class representing x, and then discover the value of x’s sensitive
attribute. For instance, consider the 4-anonymous table in Fig. 2 and suppose that
a recipient knows that Gloria is a female living in the 10039 area and born on
1955/09/10. Since all the tuples in the equivalence class with QI value equal
to 〈1955/09, ∗, 100 ∗ ∗〉 assume value helicobacter for attribute Disease, the
recipient can infer that Gloria suffers from a helicobacter infection.

– External knowledge attack. The external knowledge attack occurs when the data
recipient possesses some additional knowledge (not included in the k-anonymous
table) about a target respondent x, and can use it to reduce the uncertainty about
the value of x’s sensitive attribute. For instance, consider the 4-anonymous table
in Fig. 2 and suppose that a recipient knows that a neighbor, Mina, is a female
living in the 10045 area and born on 1955/12/30. Observing the 4-anonymous
table, the recipient can infer only that the neighbor suffers from dermatitis,
retinitis, or gastritis. Suppose now that the recipient sees Mina tanning without
screens at the park every day: due to this external information, the recipient can
exclude the likelihood that Mina suffers from dermatitis or retinitis, and infer
that she suffers from gastritis.

The original definition of k-anonymity has been extended to �-diversity to
counteract these two forms of attack. The idea behind �-diversity is to take into
account the values of the sensitive attributes when clustering the original tuples,
so that at least � well-represented values for the sensitive attribute are included
in each equivalence class (Machanavajjhala et al., 2007). While several definitions
for “well-represented” values have been proposed, the simplest formulation of �-
diversity requires that each equivalence class be associated with at least � different
values for the sensitive attribute. For instance, consider the 4-anonymous and 3-
diverse table in Fig. 4 and suppose that a recipient knows that a neighbor, Mina, a
female living in the 10045 area and born on 1955/12/30, tans every day at the park
(see example above). The recipient can now only exclude value dermatitis, but she
cannot be sure about whetherMina suffers from gastritis or a helicobacter infection.

Computing an �-diverse table minimizing the loss of information caused by
generalization and suppression is computationally hard. However, since �-diversity
basically requires computing a k-anonymous table (with additional constraints on
the sensitive values), any algorithm proposed for computing a k-anonymous table
that minimizes loss of information can be adapted to also guarantee �-diversity,
simply by controlling whether or not the condition on the diversity of the sensitive
attribute values is satisfied by all the equivalence classes (Machanavajjhala et al.,
2007). As a last remark on �-diversity, it might be possible to obtain �-diverse
tables by departing from generalization and adopting instead a bucketization-based
approach (see Sect. 2.2), for instance, by adopting the Anatomy approach (Xiao and
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Fig. 4 An example of
4-anonymous and 3-diverse
table

Tao, 2006), or other (possibly more general) techniques (Ciriani et al., 2012; De
Capitani di Vimercati et al., 2014, 2015a, 2010).

Although �-diversity represents a first step in counteracting attribute disclosure,
an �-diverse table might still be vulnerable to information leakage caused by
skewness attacks (where significant differences can be seen in the frequency
distribution of the sensitive values within an equivalence class with respect to that
of the same values in the overall population), and similarity attacks (where the
� sensitive values of the tuples in an equivalence class are semantically similar,
although syntactically different) (Li et al., 2007). To counteract these two disclosure
risks, it is possible to rely on the definition of t-closeness (Li et al., 2007), requiring
that the frequency distribution of the sensitive values in each equivalence class be
close (i.e., with distance smaller than a fixed threshold t) to that in the released
microdata table.

3.3 Differential Privacy

Differential privacy (DP) is a recent privacy definition that departs from the guaran-
tees and enforcement techniques characterizing k-anonymity and its extensions, and
aims to guarantee that the release of a dataset does not disclose sensitive information
about any individual, who may or may not be represented therein (Dwork, 2006).
DP aims at releasing a dataset permitting the disclosure of properties about the
population as a whole (rather than the microdata themselves), while protecting
the privacy of single individuals. The privacy guarantee provided by DP relies on
ensuring that the probability of a recipient correctly inferring the sensitive value of
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a target respondent x be not affected by the presence or absence of x’s tuple in the
released dataset.

DP can be adopted either to respond to queries (interactive scenario) issued
against a microdata table or to produce a sanitized dataset to be released (noninter-
active scenario). In the interactive scenario, DP is ensured by adding random noise
to the query results evaluated on the original dataset (Dwork et al., 2006), sacrificing
data truthfulness. Unfortunately, the interactive scenario limits the analysis that
the recipient can perform, as it allows only a limited number of queries to be
answered (Soria-Comas et al., 2014). In the noninteractive scenario, a dataset is
produced and released, typically based on the evaluation of histogram queries
(i.e., counting the number of records having a given value). To reduce information
leakage, these counts are computed through a DP mechanism.

Unlike k-anonymity and its variations, which guarantee a certain degree of
privacy to the microdata to be released, DP aims to guarantee that the release
mechanism K (e.g., the algorithm adopted to compute the data to be released,
whether query answers in the interactive scenario or sanitized counts in the
noninteractive scenario) is safe with respect to privacy breaches. A dataset to be
released satisfies DP if the removal/insertion of one tuple from/to the dataset does
not significantly affect the result of the evaluation of K. In this way, the protection
offered by DP lies in the fact that the impact that a respondent has on the outcome of
a certain analysis (or on the generation of the sanitized dataset) remains negligible.
In fact, DP guarantees that the probability of observing a result for the evaluation of
K over T is close to the probability of observing that result for the evaluation of K
over a dataset T ′ differing from T for a tuple only.

DP offers strong privacy guarantees at the price of imposing strict conditions on
what kind of, and how, data can be released (Clifton and Tassa, 2013). In addition,
the amount of noise that needs to be adopted can significantly distort the released
data (Clifton and Tassa, 2013; Fredrikson et al., 2014; Soria-Comas et al., 2014),
thus limiting in practice their utility for final recipients. Some relaxations of DP
have therefore been proposed (e.g., Dwork and Smith 2009; Mironov et al. 2009),
possibly applicable to specific real-world scenarios (e.g., Hong et al. 2015), with the
aim of finding a reasonable tradeoff between privacy protection and data utility.

It is interesting to note that a recent approach has been proposed using k-
anonymity and DP approaches together, with the aim of reducing the amount of
noise needed to ensure DP (Soria-Comas et al., 2014). The proposal builds on the
observation that, given a microdata table T and a query q for which the outputs are
required to be differentially private, if the query is run on a microaggregation-based
(see Sect. 3.1) k-anonymous version Tk of T , the amount of noise to be added to the
output of q for achieving DP is greatly reduced (compared with the noise that would
be needed if q were run on the original T ). To this end, microaggregation should be
performed carefully so that it can be considered insensitive to the input data (i.e., for
any pair of datasets T and T ′ differing by one tuple, given the clusters {c1, . . . , cn}
produced by the microaggregation over T and the clusters {c′

1, . . . , c
′
n} produced

by the microaggregation over T ′, each pair of corresponding clusters differs in at
most one tuple). This is a key property required for the microaggregation to succeed
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in reducing the noise that will then be employed to ensure DP, as it reduces the
sensitivity of the query to be executed (Soria-Comas et al., 2014) and hence the
result distortion. This approach can also be used in the noninteractive scenario.
To this end, a k-anonymous version Tk of T is first built through an insensitive
microaggregation. The differentially private dataset TDP is then built by collating
the n differentially private answers to a set of n queries (with n the number of tuples
in Tk), where the ith query (i = 1, . . . , n) aims at retrieving the ith tuple in Tk .

4 Extensions for Advanced Scenarios

The traditional microdata protection approaches in the literature (see Sect. 3) are
built on specific assumptions that can limit their applicability to certain scenarios.
For instance, they assume the data to be released in a single table, completely
available for anonymization before release, and never republished. However, it may
happen that data are either republished over time or continuously generated, as in
the case with data streams: recent proposals (e.g., Fung et al. 2008; Loukides et al.
2013; Shmueli and Tassa 2015; Shmueli et al. 2012; Tai et al. 2014; Xiao and Tao
2007) have extended traditional approaches to deal with these scenarios.

One of the assumptions on which the original formulations of k-anonymity, DP,
and their extensions were based is that the microdata to be anonymized are stored in
a single table. This assumption represents a limitation in many real-world scenarios,
in which the information that needs to be released can be spread across various
datasets, and where the privacy goal is that all released information be effectively
protected. There are two naive approaches that one might think of adopting: join-
and-anonymize and anonymize-and-join. The first approach, in which all tables
to be released are first joined in a universal relation that is then anonymized by
adopting one of the traditional approaches, might not work whenever there is no
single subject authorized to see and join all original relations, which might be
owned by different authorities. The second approach (i.e., first anonymize each
table singularly taken and then release the join among the sanitized versions of all
tables) does not guarantee appropriate protection: for instance, if a QI is spread
across multiple tables, it could not be effectively anonymized by looking at each
relation individually. The scientific community has recently started looking at this
problem, and some solutions have been proposed (typically extending k-anonymity
and its variations) to address the multiple tables scenario.

A first distinction has to be made depending on whether the multiple tables
to be released belong to the same authority (e.g., different relations of a single
database) that therefore has a complete view over them, or the tables belong to
different authorities, where no subject in the picture has a global view of the entire
informative content that needs to be released. In the first scenario, a careful join-and-
anonymize approach might do. However, the anonymization has to be performed
with extreme care to avoid vulnerability to privacy breaches. For instance, assume
n relations, owned by the same authority, to be released together provided that k-
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anonymity is satisfied by their join. When computing the join among the n relations,
it might be possible that the k-anonymity assumption of one respondent being
represented by a single tuple is not satisfied (as different tuples could be related to
the same respondent). The risk here is that (some of) the different tuples related
to the same individual are “anonymized together”: hence, an equivalence class
of size k might refer to less than k respondents, violating their privacy despite
the relation being apparently k-anonymous. To overcome this issue, MultiR k-
anonymity (Nergiz et al., 2007) has been proposed to extend the definition of
k-anonymity and �-diversity to multiple relations belonging to a snowflake database
schema.

When the relations to be anonymized belong to different authorities, it is clearly
not possible to join them beforehand. One might think to first anonymize each
relation individually and then join the obtained results on the (anonymized) QI.
Unfortunately, this strategy is not trivial: besides possibly exploding in size, the
joined tuples could not be used for meaningful analysis, as many tuples in the join
would be incorrect (joining over the anonymized QI would join more tuples than
using the original values). Some approaches have recently been proposed to address
this issue. For instance, distributed k-anonymity (DkA (Jiang and Clifton, 2006))
proposes a distributed framework for achieving k-anonymity. The applicability of
this approach is limited to two relations (defined as two views over a global data
collection), which can be correctly joined through a 1:1 join on a common key.
The framework builds a k-anonymous join of the two datasets, without disclosing
any information from one site to the other. In a nutshell, the approach works
iteratively in three steps: (1) each data holder produces a k-anonymous version of
her own dataset; (2) each data holder checks whether or not joining the obtained
k-anonymous datasets would maintain global k-anonymity; and (3) if so, join
and release, otherwise go back to step 1 and further generalize the original data.
Checking the global anonymity (step 2) is a critical task, as it requires the two parties
to exchange their anonymized tables. To avoid information leakage, encryption is
adopted and, in this regard, the price to be paid for this approach is in terms of the
required encryption and decryption overhead (Jiang and Clifton, 2006; Mohammed
et al., 2011). Recent efforts that have recently been devoted to enforce DP in a
multi-relational setting (Mohammed et al., 2014) (also focusing on two relations
only) should also be highlighted. The solution in Mohammed et al. (2011) instead
does not pose assumptions on the number of relations to be joined but requires
active cooperation among the parties holding the relations to achieve k-anonymity.
In addition, the approach in Mohammed et al. (2011) can be successfully extended
to provide privacy beyond k-anonymity (e.g., by ensuring �-diversity). Finally, it
should be noted that specific approaches have also been proposed to protect different
tables that need to be sequentially released (Wang and Fung, 2006).



80 G. Livraga

5 Conclusions

This chapter has addressed the problem of protecting privacy in microdata release.
After a discussion of the privacy risks that can arise when microdata need to be
shared or disseminated, some of the best-known microdata protection techniques
and approaches developed by the scientific community have been illustrated. Some
recent extensions of traditional approaches, proposed to fit advanced scenarios, have
also been highlighted.
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