
A framework for cloud assurance
and transparency based on

continuous evidence collection

Filippo Gaudenzi

Supervisor: Prof. C.A. Ardagna

Advisor: Prof. E. Damiani,
Dr. M. Anisetti

Department of Computer Science
"Giovanni Degli Antoni"

Univestitá degli Studi di Milano

This dissertation is submitted for the degree of
Doctor of Philosophy in Computer Science

XXXI Cycle

February 2019

I would like to dedicate this thesis to my beloved parents.

Acknowledgements

I would like to acknowledge all the persons that have helped me during my PhD.
Firstly, I would like to express my sincere gratitude to my advisor Prof. Claudio Agostino

Ardagna for the continuous support during my Ph.D study: for his patience, motivation, and
immense knowledge. His guidance helped me in all the time of research and writing of this
thesis. I could not have imagined having a better advisor and mentor for my PhD study.

Besides my advisor, I would like to thank the whole SESAR LAB team, that have been
my family for the last 4 years. My sincere thanks goes to Marco, Jonatan, Francesco, Valerio
and Fulvio for their insightful comments and encouragement, but also for the hard question
which incentivized me to widen my research from various perspectives.

My sincere thanks also goes to Prof. Ernesto Damiani who provided me an opportunity to
join his team, without his precious support it would not be possible to conduct this research.

I am also grateful to all the students that helped in carrying out my research with a
special thanks to Patrizio and Antongiacomo.

I would like to thank my girlfriend Anthea for putting up with me during this 3 years
while I have been facing with the tough PhD way of life.

I end my PhD and my experience at Unimi with the awareness that I don’t just leave
great colleagues but a wonderful family and awesome friends.

Thank you all.

Abstract

The cloud computing paradigm is changing the design, development, deployment, and
provisioning of services and corresponding IT infrastructures. Nowadays, users and companies
incrementally rely on on-demand cloud resources to access and deliver services, while IT
infrastructures are continuously evolving to address cloud needs and support cloud service
delivery. This scenario points to a multi-tenant environment where services are built with
strong security and scalability requirements, and cost, performance, security and privacy are
key factors enabling cloud adoption.

New business opportunities for providers and customers come at the price of growing
concerns about how data and processes are managed and operated once deployed in the
cloud. This context, where companies externalise the IT services to third parties, makes the
trustworthiness of IT partners and services a prerequisite for its success. Trustworthiness
can be expressed and guaranteed through contracts that enforce Service Level Agreements
(SLAs), and in a more general way by assurance techniques. By the term security assurance,
we mean all the techniques able to assess and evaluate a given target to demonstrate that
a security property is satisfied and the target behaves as expected. However, traditional
assurance solutions rely on static verification techniques and assume continuous availability of
a trusted evaluator. Such conditions are not valid anymore in the cloud that instead requires
new approaches that match its dynamic, distributed and heterogeneous nature.

In this thesis, we describe an assurance technique based on certification, towards the
definition of a transparent and trusted cloud, from the bare metal to the application layer.
The presented assurance approach follows the traditional certification process and extends it
by providing continuous, incremental, adaptive and multi-layer verification. We propose a
test-based certification scheme assessing non-functional properties of cloud-based services.
The scheme is driven by non-functional requirements defined by the certification authority
and by a model of the service under certification. We then define an automatic approach
to verification of consistency between requirements and models, which is at the basis of the
chain of trust supported by the certification scheme. We also present a continuous certificate
life cycle management process including both certificate issuing and its adaptation to address
contextual changes, versioning and migration.

The proposed certification scheme is however partial if certification of cloud composite
services is not supported. Cloud computing paradigm in fact, supports service composition

viii

and re-use at high rates. This clearly affects cloud service evaluation that cannot be simply
seen as an assessment on a single target, but it should follow an holistic view that permits
to compose certificates. Moreover, while traditional approaches to service composition are
driven by the desired functionality and requirements on deployment costs, more recent
approaches also focus on SLAs and non-functional requirements. In fact service composition
in the cloud introduces new requirements on composition approaches including the need to i)
select component services on the basis of their non-functional properties, ii) continuously
adapt to both functional and non-functional changes of the component services, iii) depart
from the assumption that the cost of the composition is only the sum of the deployment
costs of the component services, and also consider the costs of SLA and non-functional
requirement verification. In this thesis, we first extended out certification process to evaluate
non-functional properties of composite services. We then focus on the definition of an
approach to the composition of cloud services driven by certified non-functional properties.
We define a cost-evaluation methodology aimed to build a service composition with a set of
certified properties that minimizes the total costs experienced by the cloud providers, taking
into account both deployment and certification/verification costs.

From the analysis and the definition of certification models and processes, we propose and
develop a test-based security certification framework for the cloud, which supports providers
and users in the design and development of ready-to-be-certified services/applications. The
framework implements a distributed approach to reach all targets at all cloud layers and a
paradigm to develop test cases to assess the requested non-functional properties.

The outcome of this thesis is finally validated through an experimental evaluation carried
out on real scenarios that i)evaluate the assurance of a Web Hosting System provided by
the Universitá degli Studi di Milano against the ICT security guidelines for Italian public
administration provided by the "Agenzia per l’Italia Digitale" (AgID) and ii propose and test
a security benchmark for the cloud infrastructure manager OpenStack.

In summary, the contribution of the thesis is manifold: i) we design and implement a
certification scheme for the cloud, ii we extend and adapt the certification of single cloud
services to meet cloud composite certification; iii) we integrate our certification scheme with
the cloud service composition process, developing an algorithm to deploy cloud composite
services based on non-functional requirements while minimizing the cost from the cloud
service provider point of view; iv we design and develop an assurance framework for cloud
services certification and validate it in real scenarios.

Table of contents

List of figures xiii

List of tables xvii

1 Introduction 1
1.1 Motivation . 1
1.2 Contribution of the thesis . 2

1.2.1 Certification Scheme and Process for the Cloud 3
1.2.2 Certification of Cloud Composite Services 3
1.2.3 Cost-Effective Deployment of Cloud Service Composition 4
1.2.4 Assurance Framework for Cloud Services 4

1.3 Organization of the thesis . 5

2 Related works 7
2.1 Cloud Assurance and Certification . 7

2.1.1 Cloud Certification . 10
2.1.2 Cloud Security Standards . 14

2.2 Cloud Security . 17
2.3 Contribution to the State of the Art . 19
2.4 Chapter Summary . 21

3 Cloud Service Certification: Process and Models 23
3.1 Basic Concepts . 24

3.1.1 Actors . 24
3.1.2 Requirements . 25
3.1.3 Terminology . 26

3.2 Certification Building Blocks . 26
3.3 Certification Models and Process . 29

3.3.1 Certification Model Template . 29
3.3.2 Certification Model Instance . 30
3.3.3 Certificate . 32

x Table of contents

3.3.4 Certification Process . 32
3.4 Model Consistency Check . 33

3.4.1 Property and ToC verification . 33
3.4.2 Evidence collection model verification 34
3.4.3 Evidence verification . 35
3.4.4 Life Cycle verification . 37
3.4.5 Full Model Consistency Check . 37

3.5 Certificate Life Cycle Management . 38
3.5.1 Certificate Issuing . 38
3.5.2 Certificate Adaptation . 38
3.5.3 CM Template Adaptation . 41
3.5.4 Certificate Comparison . 41

3.6 Chain of Trust . 42
3.6.1 Chain of Trust and Life Cycle Management 44

3.7 Experimental Evaluation . 45
3.7.1 Consistency Check Algorithms . 45
3.7.2 Performance Evaluation . 46
3.7.3 Quality evaluation . 47

3.8 Chapter Summary . 49

4 Cloud Service Deployment based on non-functional properties 51
4.1 Reference Model and Requirement . 52
4.2 Certification of Cloud Composite Services . 54

4.2.1 Certification Model Template and Instance 54
4.2.2 Certification Portability . 56
4.2.3 Deployment Composition Matrix . 58

4.3 Cloud Service Provider Costs . 61
4.3.1 Deployment Costs . 61
4.3.2 Certification Costs . 62
4.3.3 Mismatch Costs . 62
4.3.4 Cost Profile . 62

4.4 Deployment Approaches . 63
4.4.1 Fuzzyfication . 63
4.4.2 Heuristics . 65

4.5 Experimental Evaluation . 69
4.5.1 Experimental Setup . 69
4.5.2 Performance evaluation . 70
4.5.3 Cost and Utility Evaluation . 71
4.5.4 Discussion . 75

Table of contents xi

4.6 Chapter Summary . 77

5 Cloud Service Assurance Framework 79
5.1 Requirements . 81
5.2 Architecture . 82

5.2.1 Certification Manager . 83
5.2.2 Execution Manager . 85
5.2.3 Big Data Platform . 85
5.2.4 Probe . 86

5.3 Execution Flow . 88
5.4 Moon Cloud . 99

5.4.1 Mapping to Requirements . 99
5.4.2 Moon Cloud Architecture . 100
5.4.3 Implementation Notes . 101

5.5 Chapter Summary . 102

6 Application Scenarios 103
6.1 How to evaluate an IaaS Manager: OpenStack 104

6.1.1 OpenStack . 104
6.1.2 Security Benchmark . 105
6.1.3 Security Controls . 110

6.2 How to evaluate a Web Hosting Service: AgID compliance 113
6.2.1 The scenario . 114
6.2.2 AgID . 115
6.2.3 Security Controls . 116
6.2.4 Security Controls . 122

6.3 Chapter Summary . 125

7 Conclusion 127
7.1 Summary of the contributions . 127
7.2 Future works . 128

References 131

Appendix A Publication 141

Appendix B Model Consistency Check 145
B.1 Examples . 145

B.1.1 Example 3.3.1 . 145
B.1.2 Example 3.3.2 . 148

B.2 Code . 151

xii Table of contents

B.3 Heuristics . 151
B.3.1 Heuristic 1 . 151
B.3.2 Heuristic 2 . 152

Appendix C Composition Cloud Experimental Results 153
C.1 Fitting Profile . 153
C.2 Sharing Profile . 158

Appendix D Probes - OpenStack Scenario 165
D.1 Maintain Time Synchronization Services . 165
D.2 Do Not Use or Set Guest Customization Passwords for the User Profile . . . 171
D.3 Evaluate Cloud Architecture Dependencies 177
D.4 nova-cinder-encryption-fixed-key . 181
D.5 Central Directory for Authentication and Authorization for the cloud profile . 185

List of figures

2.1 Evaluation of certification and comparison with thesis contribution. 21

3.1 Life cycle with states Not Issued (NI), Issued (I), Suspended (S), Expired (E),
Revoked (R) and examples of conditions on transitions. 29

3.2 Conceptual framework . 31
3.3 Certification process: squared boxes represent steps that can be completely

automatized, rounded boxes steps for which we provide tools or guidelines for
cloud providers, accredited labs, or CA. 32

3.4 Chain of Trust for cloud certification . 44
3.5 Execution time (log scale) varying the number of flows 47
3.6 Quality evaluation considering three instantiations of our k-matching algorithm

with k=1, k=2, and k=3. 48

4.1 An example of Versioning and Replacement of a storage service 58
4.2 An example of CP Status Matrix D with eight services and three compositions 60
4.3 Cost functions . 61
4.4 Fuzzy cost inference for a given I . 64
4.5 An example of heuristic 2 execution . 68
4.6 Performance evaluation: heuristic 1 and heuristic 2 varying window size w. . 72
4.7 Heuristic 1 cost evaluation for sharing profile varying window size w. 73
4.8 Heuristic 2 cost evaluation for sharing profile varying window size w. 74
4.9 Comparison between heuristics 1 and 2 with sharing profile, using w=1 and

w=5. Migration events are marked with “+”. 75
4.10 Comparing α, β total cost for the 10 data sets for sharing (a) and fitting

(b) profiles using heuristic 1 window w = 1 (h1) and heuristic 2 w = 5 (h2)
respectively. 76

5.1 A simplified view of the framework architecture 83
5.2 A detailed view of the framework architecture 84

xiv List of figures

5.3 Probe script in python. The probe is composed of two atom operations (atom0,
atom1) with the corresponding rollback operations (atom0r, atom1r). Method
appendAtomics specifies the order and matching of atom operations. atom0
is executed first; atom1 can access the results from atom0 according to its
definition. 86

5.4 Example of Probe script in python that checks if a host is reachable 89
5.5 Sequence diagram execution flow with active-probes, step upload 91
5.6 Sequence diagram execution flow with active-probes, step start 91
5.7 Sequence diagram execution flow with active-probes, step run 91
5.8 Sequence diagram execution flow with active-probes, step collect 92
5.9 Sequence diagram execution flow with active-probes, step evaluate 92
5.10 Sequence diagram execution flow with active-probes, step release 93
5.11 Sequence Diagram of Example 5.3.1 . 94
5.12 Sequence diagram execution flow with bigdata-probe, step start 96
5.13 Sequence diagram execution flow with bigdata-probe, step run 96
5.14 Sequence diagram execution flow with bigdata-probe, step setup analytics . . 96
5.15 Sequence diagram execution flow with bigdata-probe, step process 97
5.16 Sequence diagram execution flow with bigdata-probe, step evaluation 97
5.17 Sequence diagram execution flow with bigdata-probe, step releasee 97
5.18 Sequence Diagram of Example 5.3.2 . 98
5.19 Security governance with Moon Cloud . 101

6.1 Cloud Scope Iceberg . 104
6.2 Moon Cloud architecture . 110
6.3 Frequency distribution (%) of found CVEs over WordPress and Joomla web

sites classified by CVSS families . 123
6.4 Frequency distribution (%) of found CVEs over Wordpress (a) and Joomla (b)

web sites. We note that, for the sake of readability, Figure 6.4(a) only reports
CVEs that affected at least three WordPress web sites. CVE details have been
anonymized for security reasons . 124

B.1 STS representation . 146
B.2 STS representation . 149

C.1 Fitting heuristic-1 dataset 1 . 153
C.2 Fitting heuristic-1 dataset 2 . 154
C.3 Fitting heuristic-1 dataset 3 . 154
C.4 Fitting heuristic-1 dataset 4 . 155
C.5 Fitting heuristic-1 dataset 5 . 155
C.6 Fitting heuristic-1 dataset 6 . 156

List of figures xv

C.7 Fitting heuristic-1 dataset 7 . 156
C.8 Fitting heuristic-1 dataset 8 . 157
C.9 Fitting heuristic-1 dataset 9 . 157
C.10 Fitting heuristic-1 dataset 10 . 158
C.11 Sharing heuristic-1 dataset 1 . 159
C.12 Sharing heuristic-1 dataset 2 . 160
C.13 Sharing heuristic-1 dataset 3 . 160
C.14 Sharing heuristic-1 dataset 4 . 161
C.15 Sharing heuristic-1 dataset 5 . 161
C.16 Sharing heuristic-1 dataset 6 . 162
C.17 Sharing heuristic-1 dataset 7 . 162
C.18 Sharing heuristic-1 dataset 8 . 163
C.19 Sharing heuristic-1 dataset 9 . 163
C.20 Sharing heuristic-1 dataset 10 . 164

List of tables

2.1 ISO table . 15

3.1 Acronymous Table . 26
3.2 Adaptation summary . 39

6.1 OpenStack Security Benchmark (OSB) addressing Hosts, OpenStack core
services (Keystone, Nova, Glance, Neutron and Cinder, Horizon) and user
configurations . 106

6.2 AgID Basic Security Controls (Excerpt) . 116
6.3 AgID Basic Security Controls (Excerpt) . 117

Chapter 1

Introduction

The cloud computing paradigm is changing the design, development, deployment, and
provisioning of services and corresponding IT infrastructures. Nowadays, users and companies
incrementally rely on on-demand cloud resources to access and deliver services, while IT
infrastructures are continuously evolving to address cloud needs and support cloud service
delivery. This scenario points to a multi-tenant environment where services are built with
strong security and scalability requirements, and cost, performance, security and privacy are
key factors enabling cloud adoption. New business opportunities for providers and customers
come at the price of growing concerns about how data and processes are managed and
operated once deployed in the cloud. Traditional assurance solutions rely on static verification
techniques and assumed continuous availability of trusted third-parties. Such conditions are
not valid anymore in the cloud that instead requires new approaches that match its dynamic,
distributed and heterogeneous nature.

1.1 Motivation

Cloud computing paradigm supports a new vision of IT where software and computational
resources are released as services over a virtualized ICT infrastructure accessible through
the Internet. The convenience introduced by cloud computing in terms of flexibility, and
reduced costs of owning, operating, and maintaining the computational infrastructures is
radically changing traditional IT provisioning and procurement [1], but it comes at a price of
increased risks and concerns. Users deploying a service in the cloud in fact lose full control
over their data and applications, which are fully or partially in the hands of cloud providers.

Assurance and verification techniques (e.g., audit, certification, and compliance) need to
be adapted to fit the dynamics of the cloud ecosystem [2, 3]. The advent of cloud in fact
makes traditional techniques inappropriate, because assurance claims and information are
assumed to be all available a priori at the time of evaluation and before service deployment.
Cloud assurance aims to increase cloud trust and transparency, and therefore needs to manage

2 Introduction

claim verification and evidence collection in a post-deployment environment. Moreover, due
to the fact that cloud assurance should manage the complete cloud service/application life
cycle, it should i) depart from the assumption of a single trusted third party that is available
during the whole process and takes responsibility over different claims done on a target
object [4], ii) implement (semi-)automatic approaches that adapt to changes in the service
and/or its environment, iii) target multiple cloud layers at the same time.

Effectively tackling such issues is fundamental to increase trust in the cloud [2, 3, 5], and
in turn fosters the movement of critical businesses to the cloud. In this thesis, we focus on
certification techniques, which aim to implement a secure, trusted, and transparent cloud by
specifying a dynamic delegation mechanism supporting multiple signatures of artifacts in a
cloud environment.

Recently, the research community has focused on increasing the trust and transparency of
cloud and service-based systems by defining cloud-specific security assurance techniques [6–9].
However, while several assurance techniques have been defined for such systems, the market
lacks a complete security assurance framework. Among assurance techniques, certification-
based assurance has received a lot of attention in the last few years, resulting in the definition of
a number of certification schemes [6, 7, 10–12]. Certification schemes provide an independent
evaluation process of systems, which results in a signed certificate including a set of claims
and the evidence supporting them. Evidence comes from testing, monitoring, and formal
proofs. However, certification is a tedious, costly, and time-consuming process, which requires
a lot of post-implementation activities, including document writing and code adaptation.
Also, existing certification schemes barely address the peculiarities of the cloud, mainly
focusing on service layer and providing manual processes. Finally, the lack of supporting
certification frameworks makes the deployment of evidence collection tools and techniques at
different layers of the cloud stack, as well as the definition of a certification solution that
accomplishes cloud events and activities, difficult in practice.

1.2 Contribution of the thesis

The contribution of the thesis is manifold: i) the definition of a certification scheme and
process for the cloud, ii) the definition of a certification method for cloud composite services,
iii) the definition of a cost-effective deployment algorithm for composite services based on
non-functional properties in certificates, iv) the development of a cloud service assurance
framework implementing the certification schemes at point i) and ii). In the remaining of
this section we discuss the contribution in more details.

1.2 Contribution of the thesis 3

1.2.1 Certification Scheme and Process for the Cloud

Certification has been used to verify software and services for decades, but the nature of the
cloud requires a substantial improvement and adaptation: a certification process in the cloud
must follow a multi-step process that certifies the support of a given set of non-functional
properties by a cloud-based system [12]. The process starts with the certification of the system
in a controlled, lab environment. Upon successful verification, the service is deployed in the
in-production environment and the certification process is re-executed to prove the support of
the same properties verified in the lab environment. Finally, a continuous certification process
is set up to monitor the status of the certification process during the system operation. It is
based on continuous collection of evidence on the behaviour of the system, which is used to
verify whether it maintains the support of the certified properties, according to guidelines
designed by the certification authority.

Our scheme supports the above certification process, where the Certification Authority
(CA) takes responsibility and signs all evaluation activities to be done to prove a given property,
and delegates the management of the certification activities to be done on specific targets to
other parties. The correct execution of evaluation activities on real target services can be
verified at any time in a semi-automatic way, by checking consistency between requirements
provided by the certification authority and activities carried out by the third parties. This
check permits to build a chain of trust grounded on certificates between CA, third parties,
and final users that increases the trustworthiness of the cloud and its services. The proposed
process supports both i) basic and traditional certification processes for one-time, static
certificate issuing and ii) advanced certification processes for continuous, incremental, and
multilayer verification.

1.2.2 Certification of Cloud Composite Services

Certification is often seen as a monolithic process where all evaluation activities and evidence
belong to the same artefact. Cloud allows users to re-use and compose single cloud service to
obtain a new cloud composite service. Security evaluation of the cloud supply chain must
consider every service involved in the composition; this however requires anew certification
process for each change of the service composition, which is clearly unfeasible in practice.
In order to avoid re-certification from scratch and the execution of all evidence collection
activities for every new cloud composite service or for any change of component service, it is
fundamental to adopt a composite cloud certification that can meet the requirements of this
complex scenario.

A certification process for cloud composite services aggregates certificates of component
service and their evidence to issue a new certificate for composite service. Moreover, the
composite certification should support migration or versioning of the certificates of component
services to support in real-time changes of service composition.

4 Introduction

1.2.3 Cost-Effective Deployment of Cloud Service Composition

Even if appropriate assurance techniques can foster the adoption of cloud increasing the
feeling of trust, there is the need to keep under control the costs observed by cloud providers
for certified composition management [13]. These costs can rapidly increase because, in
addition to deployment costs considered by existing composition approaches, the costs of
continuous certification and verification become not negligible. Current research on cloud
computing has privileged solutions minimizing costs on the final users [14–16], neglecting the
costs on the cloud providers that often represent the first source of fee increase.

Differently from existing works [14, 15], our service composition approach is driven by
certificates awarded to single services and offer a cost-effective solution for the deployment of
certified service composition. We provide a fuzzy-based cost evaluation methodology that
aims to decrease the costs of cloud providers, also analyzing those costs introduced by the
need of keeping the composition continuously monitored and certified.

1.2.4 Assurance Framework for Cloud Services

The lack of appropriate certification frameworks makes the deployment of evidence collection
tools and techniques at different layers of the cloud stack, as well as the definition of a
certification solution that accomplishes cloud events and activities, difficult in practice. In
this thesis we design and develop a test-based security certification framework for cloud-based
services that has a twofold value: i) it defines a methodology for certification-aware cloud
engineering, including a set of guidelines to design and develop certification-ready services/ap-
plications; ii) it provides a set of modules and components managing the certification process
of a generic cloud-based system. The framework can be directly deployed in any cloud stack,
supports cloud certification at all layers and manages cloud events affecting the certification
itself.

Addressing a more general problem, our framework is complementary to existing solutions
for evidence collection (e.g., based on testing [17, 18] and monitoring [19, 20]) and can build
on them to implement different certification processes, still maintaining the same deployment
strategy. Moreover, our framework integrates a Big Data Platform to properly process all
data coming from the cloud. The contribution of our framework is threefold: i) it supports
online and semi-automatic test-based certification of services/applications; ii) it defines an
environment and methodology supporting providers in the development of certification-aware
services/applications; iii) it provides a set of tools supporting the certification-based chain of
trust for cloud environments introduced in [21].

To validate the outcomes of this work we carried out a security evaluation by using our
framework on two cloud scenarios: i) the evaluation of a Web Hosting System provided by
the Universitá degli Studi di Milano against the ICT security guidelines for Italian public

1.3 Organization of the thesis 5

administration provided by the "Agenzia per l’Italia Digitale" (AgID) and ii)the evaluation
of the development of the infrastructure manager OpenStack against a security benchmark.

1.3 Organization of the thesis

This chapter described the motivation and the main objectives of our work outlining the
main contributions of this thesis. The remaining of this thesis is organized as follow.

Chapter 2 discusses the state of the art of cloud assurance and security. It provides an
overview of the available certification techniques and a comparison between them.

Chapter 3 describes the certification process and models designed and used in this thesis.
It also discusses the problem of certificate life-cycle management for cloud services.

Chapter 4 first describes a certification scheme for cloud composite services and then
presents an approach to optimize cloud service composition deployment taking into account
non-functional properties and cloud service costs.

Chapter 5 presents the framework that implements the proposed certification process. it
also introduces Moon Cloud, a business platform for security governance produced as an
outcome of the work in this thesis.

Chapter 6 shows two application scenarios where our framework was successfully deployed
and executed.

Chapter 7 summarizes the contributions of this thesis and outlines future work.

Appendix A lists all the my personal publications that have been used in this thesis.

Appendix B reports the extensive representation, including XML documents, of two
examples in Chapter 3. Moreover, it contains the pseudo-code of the consistency check
heuristics we design.

Appendix C contains all the plots of the experimentation presented in Chapter 4.

Appendix D contains a detailed description, including the code, of probes presented in
Chapter 6.

Chapter 2

Related works

In the last decade the research community has put a lot of effort on cloud security, since it
was identified as one of the main obstacle to cloud adoption [22, 23]. Although cloud security
has been substantially improved with new solutions, such as authentication [24, 25] and
encryption [26, 27], the trustworthiness of cloud solution still remains a critical problem [28].
Security assurance, which has a wider notion than security, encompasses all the techniques
able to assess and evaluate a given target to demonstrate that a security property is satisfied
and the target behaves as expected, one of the assurance approach that have been used
constantly and successfully in the last 30 years is certification [10].

This chapter provides an overview of the current state of cloud computing assurance and
security. The main aim is to give readers the necessary background on cloud security and
assurance with a specific focus on cloud certification.

2.1 Cloud Assurance and Certification

Increasing the confidence of cloud is a key factor for cloud adoption. Without the suitable
assurance techniques users will be still reticent in fully embrace all the benefits of cloud
paradigm. As stated assurance is a wider notion than security, which many sources1 agreed to
define as "the protection of information and information systems from un-authorized access,
use, disclosure, disruption, modification, or destruction". Install the best security solutions
does not guarantee a secure system; it is necessary to implement a continuous diagnostic
process that verifies whether controls are configured in a proper way and behave as expected
(security assurance). The term assurance is mostly related to two concepts: quality and
reliability. We report in the following some definition of assurance:

• "Information assurance in the field of communication and information systems is
defined as the confidence that such systems will protect the information they handle

1See for instance SP 800-37; SP 800-53; SP 800-53A; SP 800-18; SP 800- 60; CNSSI-4009; FIPS 200; FIPS
199; 44 U.S.C., Sec. 3542.

8 Related works

and will function as they need to, when they need to, under the control of legitimate
users. Effective information assurance must ensure appropriate levels of confidentiality,
integrity, availability, non-repudiation and authenticity." [29]

• Assurance does not add any additional controls to counter risks related to security, but
it does provide confidence that the controls that have been implemented will reduce the
anticipated risk. Assurance can also be viewed as the confidence that the safeguards will
function as intended." [30]

• "A planned and systematic pattern of all actions necessary to provide adequate confidence
that an item or product conforms to established technical requirements" [31]

• "Software security assurance: The basis for gaining justifiable confidence that software
will consistently exhibit all properties required to ensure that the software, in operation,
will continue to operate dependably despite the presence of sponsored (intentional) faults.
In practical terms, such software must be able to resist most attacks, tolerate as many
as possible of those attacks it cannot resist, and contain the damage and recover to a
normal level of operation as soon as possible after any attacks it is unable to resist or
tolerate." [32]

• "The level of confidence that software is free from vulnerabilities, regardless of whether
they are intentionally designed into the software or accidentally inserted later in its life
cycle, and that the software functions in the intended manner." [33]

• "The level of confidence that software is free from vulnerabilities, either intentionally
designed into the software or accidentally inserted at any time during its life cycle and
that the software functions in the intended manner." [34]

• "The planned and systematic set of activities that ensure that software life cycle processes
and products conform to requirements, standards, and procedures." [35]

• "Software assurance is a rigorous, lifecycle phase-independent set of activities which
ensure completeness, safety, and reliability of software processes and products. This is
accomplished by guaranteeing conformance to all requirements, standards, procedures,
and regulations" [36]

Cockling in [37] and IATAC in [32] provide an interesting review on the definition of
assurance. For what listed there is a common view on the assurance definition that sometimes
even corresponds, as for [33, 34]. These concepts can be mapped on cloud services as follow:

Definition 2.1.1 Cloud Service Assurance: All the evaluation activities that should be
carried out to establish with a justifiable confidence that a cloud service is acting as expected
addressing non-functional requirements.

2.1 Cloud Assurance and Certification 9

Assurance techniques may involve testing, monitoring or formal analysis, auditing or certi-
fication activities. Ardagna et al. [38] analyses the state of security and assurance in the
cloud. Before focusing on certification and assurance standards, we first provide an overview
of assurance techniques for cloud services.

Test. One of the most common approach to evaluate software and services is based on
testing [38, 10]. Testing can be carried out both in development and production states and
was defined by ISTQB (International Software Testing Qualifications Board) in [39] as "the
process consisting of all lifecycle activities, both static and dynamic, concerned with planning,
preparation and evaluation of software products and related work products to determine that
they satisfy specified requirements, to demonstrate that they are fit for purpose and to detect
defects.".

Wu et al. [40] develop a framework for assessing cloud trustworthines through the execution
of specific tests which assess performance, data storage integrity and privacy in an automatic
way. The works in [17, 18, 41] provide different approaches aiming to verify the behavior
of a system at different layers of the cloud, supporting the dynamics and low transparency
of the cloud, and increasing the quality of the testing activities. Bai et al. [17] investigate
the new architecture and techniques to design testing tools for the cloud and in the cloud
providing a literature reviews on some of the available test approaches presented in research
papers. Zech et al. [41] focused on the definition of negative requirements derived from risk
analysis in security testing. This work proposed a model-driven risk-aware methodology for
the security testing of cloud environments. Cloud is not only the target of security testing
but it can also used as an enabler to improve and enhance test assurance [38]. An example is
Oliveira et al. [42] that present a test framework deployed on the cloud called CloudTesting
that aims to to parallelize the execution of a test suite over a distributed cloud infrastructure.
Gao et al. [18] describe how to design a testing as a service solution that meet cloud issues
and challenges.

Monitor. Monitoring assurance can provide a real-time and continuous view of non-
functional parameters over a set of targets. While often testing and monitoring may be two
sides of the same coin, their meaning and usage are different. Monitor has been widely used
in IT systems, from software monitoring (i.e. [43]) to service monitoring (i.e. [44]).

The two main open source monitoring software are Ganglia [45] and Nagios2 supporting
performance monitoring of clusters and grids. Research in the field of cloud monitoring
has investigated how to bring the traditional monitoring approaches in the cloud presenting
several frameworks [46–48] that tackle the cloud challenge. De Chaves et al. [46] present
their experience and issues in building a monitoring system for a private cloud. Alcaraz
Alero et al. [47] describe MonPaaS, a monitoring architecture that fits cloud provider and the

2https://www.nagios.org/

https://www.nagios.org/

10 Related works

cloud consumer requirements and that can be integrated with Nagios to monitor OpenStack.
Hauser et al. [48] present a monitoring system that collects data only at physical level, this to
avoid data duplication and maximize performances. Both Aceto et al. [19] and Alhamazani
et al. [49] provide a comparison of monitoring cloud solutions in their surveys.

Audit. Compliance is a fundamental aspect of software and service assurance. Being
able to evaluate a cloud service to understand if it is compliant with customer policies or
law regulations is a key aspect for cloud assurance. One aspect that research has tried to
accomplish is to apply audit techniques to cloud services to make them auditable.

Accountability is a key factor for cloud [50, 51] to take trace of all operations and
responsibilities. Agarkhed et al. [52] and Hiremath et al. [53] describe a dedicated framework
for data storage auditing in the cloud. Agarkhed et al. [52] provide auditing to check the
correctness of outsourced data avoiding that information could be accessed by unauthorized
users or hackers in the unsecured cloud network. Hiremath et al. [53] provide a scheme for
efficient public auditing technique using Third Party Auditor (TPA) to verify the integrity of
data stored in the cloud. Konoor [54] describes how to develop an audit system enable to
collect data of the infrastructure manager Openstack and report them using Cloud Auditing
Data standard (CADF).3 Indhumathil et al. [55] present a solution that tries to solve audit
in multi-cloud environment by enabling third-party auditors to continuously audit cloud
services across different providers. Rasheed et al.[56] present a survey on cloud audit based
on user requirements, cloud provider capabilities and techniques for security auditing.

2.1.1 Cloud Certification

Certification implements an assurance process and is often associated to generic quality
assurance than security said Spanoudakis et al [10]. Certification has been widely used in
the last 30 years, to increase the trust of users in software and services. The International
Standard Organization (ISO) defines certification as

"Certification is a procedure by which a third party gives written assurance that a product,
process or service is in conformity with certain standards" [57].

Even certification usually comes from an agreement between customers, service supplier
and regulatory authorities that often coincide with governments or public association, any
private or public body can issue a certificate. In details, ISO defines in [58] the following
terms:

• Authorization: procedure by which an authoritative body gives formal recognition that a
body or person is competent to carry out specific tasks, such as certification or evaluation.

3https://www.dmtf.org/standards/cadf

https://www.dmtf.org/standards/cadf

2.1 Cloud Assurance and Certification 11

• Certification Authority: an entity trusted by one or more users to create and assign
certificates.

• Certificate: declaration by a certification authority confirming that a statement about a
software product is valid. Usually issued on the basis of the outcome of an evaluation.

• Evaluation: systematic assessment (e.g., by means of tests) of the extent to which a
software product is capable of fulfilling a standard.

• Evaluation Body: Accredited lab4 carrying out evaluations. The evaluation outcome is
a pre-requisite for issuing a certificate on the part of the certification authority.

Trusted Security Criteria (TCSEC) was the first standard for software security certification
in 1985; it was released by the U.S. Department of Defence and was commonly referred as the
Orange Book [59]. The TCSEC certification involved a set of tests based on analysis of the
software architecture, deployment and user’s security requirements; it was a costly and complex
certification due the wide area of understanding and analysis. Outside of USA, the first
software certification the ITSEC in 1991 in Europe and then the Canadian Trusted Computer
Product Evaluation Criteria (CTCPEC) in Canada in the 1993. Nowadays, there are many
national and international standards, which are discussed in detail in Section 2.1.2 with
reference to cloud system. Before deepen what research has produced on cloud certification,
we report the definition of model-based certification and test-based certification that may by
use in largely different practical situation. Damiani et al. [10] define them as follow:

• "Model-based certificates are formal proofs that an abstract model (e.g., a set of
logic formulas, or a formal computational model such as a finite state automaton)
representing a software system holds a given property. The model to be certified can be
provided as a by-product of the software design process, or be reverse-engineered from
the software code."

• "Test-based certificates are evidence-based proofs that a test carried out on the
software has given a certain result, which in turn shows (perhaps with a certain level
of uncertainty) that a given property holds for that software. In particular, test-based
certification of security-related proper- ties is a complex process, identifying a set of
high-level security properties and linking them to a suitable set of white- and black-box
software tests."

After software certification, as the technology evolved and changed, reserchers focused
on service certification. In the last decade, different approaches to security certification of
services have been proposed (e.g., [4, 21, 60–64]). Many of them [4, 61] considered static
service certification, with no support for continuous certification of evolving applications.

4An accredit lab is lab delegated by a certification authority for evaluation activities.

12 Related works

Common Criteria scheme [65] was the first approach to incremental certification distinguishing
between partial re-evaluation and partial re-certification [63]. However, it provides a manual
process and puts a high overhead on developers and certification authorities. Anisetti et
al. [62] then provided an approach to continuous and incremental certification of SOA and
web services, by extending their test-based security certification scheme in [4]. Anisetti et
al. [4] propose a model-based testing approach that is capable to automatically generate
test-cases for service certification by analysing the service model. Kourtesis et al. [66] provide
a method for creating formal method verification of web service through automated tests to
test web services. Zhang [64] presents a mobile agent-based tool and an automatic test case
generation algorithm to ensure web service trustworthiness. All works were driven by the
need of reliability of service-oriented computing infrastructure and lacks of appropriate testing
tools and methods, same reasons that are driving research in cloud computing nowadays.

Compared to traditional service certification, cloud certification is: i) highly dynamic, it is
affected by contextual changes at any layer of the cloud stack, ii) multi-layer, it can refer to
services at different cloud layers; iii) intrinsically incremental, it requires continuous validity
verification and incremental adaptation with the scope to minimize costly re-certification
activities, and iv) trustworthy by delegation, it requires advanced trust models based on
delegation to support cloud peculiarities. In this context, Sunyaev and Scheneider [67]
discussed the advantages introduced by a certification approach when integrated in a cloud
system, while Chen et al. [68] proposed a cloud security assessment indicator system based on
classifying and grading. Lins et al. [2] then presented a conceptual architecture for continuous
verification of cloud services discussing its benefits and challenges.

Stephanow et al. [69] described a test-based certification framework, based on randomized
and non-invasive testing, for evaluating opportunistic providers. This paper, while providing
an interesting model, does not focus on continuous certification. Stephanow et al. [70] also
presented an approach to continuous certification based on a set of metrics at infrastructure
layer. These metrics, which collect evidence of service changes, represent the basis for
continuous certification and can be integrated within our certification process (see Chapter 3)
to further reduce the need of human intervention. Krotsiani et al. [71] proposed an approach
based on monitoring for incremental security certification of cloud services. Their model-
based methodology is similar to the one in this thesis, since both works are evolution of the
FP7 CUMULUS project. Their paper does not apply to test-based certification, requires
full involvement of the certification authority, and provides a high-overhead incremental
certification requiring full execution of monitoring activities.

Europe considers cloud certification a key aspect and in these years has put a lot of effort
to investigate the subject. Based on the work of the European Union Agency for Network
and Information Security (ENISA) [72], European Commision provides a list of supported

2.1 Cloud Assurance and Certification 13

certification schemes and standards suitable for the cloud5. Europe also contributed to the
research on cloud certification by funding several projects:

• ASSERT4SOA: ASSERT4SOA aims to produce novel techniques and tools fully in-
tegrated within the SOA lifecycle for expressing, assessing and certifying security
properties for complex service-oriented applications, composed of distributed software
services that may dynamically be selected, assembled and replaced, and running within
complex and continuously evolving software ecosystems.6

• CUMULUS : CUMULUS provides an integrated framework of models, processes and
tools supporting the certification of security properties of infrastructure (IaaS), platform
(PaaS) and software application layer (SaaS) services in cloud. 7

• CIRRUS : CIRRUS project aims to provide high-level, high impact support and coordi-
nation for European ICT security research projects on subject as joint standardization,
certification schemes, link research projects with EU policy and strategy, international-
ization, as well as industry best practices.8

• SPECS : Despite it is not focused on certification, SPECS project aims at developing
and implementing an open source framework to offer Security-as-a-Service, by relying
on the notion of security parameters specified in Service Level Agreements (SLA), and
also providing the techniques to systematically manage their life-cycle. 9

The research community has also focused on different solutions supporting trust in the
cloud and implementing different trust models for the cloud [73, 74, 21, 75, 76]. Ryan et
al. [73] presented TrustCloud, a framework for accountability and auditability in the cloud,
which provides continuous and multi-layer audit of cloud services based on policies and
regulations. Although the described trust model and accountability life cycle show some
similarities with our approach, they do not provide a formal and rigorous description of how
to collect audit-related evidence. Khan et al. [74] discussed the problem of trust in the cloud,
underlying the challenges of reduced control and lack of transparency, and acknowledged
certification as one of the emerging technologies to bring trust in the cloud. Naskos et
al. [75] proposed an approach to deploy and scale cloud services based on security- and
performance-related evidence. Wahab et al. [76] proposed a trust-model for cloud services
that is completely decentralized. A cloud service trust is built by collecting feedback from
its neighbours, which is calculated as the relation between successful interactions over total
interactions and spread following a hedonomic coalition game. Differently from the above

5https://resilience.enisa.europa.eu/cloud-computing-certification
6http://sesar.di.unimi.it/project/assert4soa/
7http://sesar.di.unimi.it/project/cumulus/
8https://cordis.europa.eu/project/rcn/105735_en.html
9http://www.specs-project.eu/project/description/

https://resilience.enisa.europa.eu/cloud-computing-certification
http://sesar.di.unimi.it/project/assert4soa/
http://sesar.di.unimi.it/project/cumulus/
https://cordis.europa.eu/project/rcn/105735_en.html
http://www.specs-project.eu/project/description/

14 Related works

papers, this thesis describes a trust model based on certification and a running scheme for
trusted evidence collection.

Lins et al. [13, 28] investigate the effectiveness of continuous service certification. In [13],
Lins et al. analyse if certification can properly increase the user trustworthiness in using
cloud services. Through signal theory, they identify which are the keys that most influence
its effectiveness. A similar approach has been carried out on analyzing the factor that may
drive CSP in continuous service certification adoption. A fundamental aspect identified in
this works is certification cost.

Cost has been widely treated in research and the main contributions cover cost optimization
for users’ services deployment [77, 78, 15, 79]. Fittkau et al. [77] propose an approach to
minimize cost during VM migration, while Brumec et al. [78] compare the cost between
the usage of public cloud and on-premises private infrastructure. Hovewer, for the subject
treated in this thesis, studies on CSP costs are more relevant. Greenbergh et al. [80] analyze
the cost of cloud from a datacenter perspective listing all the costs needed to run and
maintain a cloud datacenter. Li et al. [81] define two cost parameters identified as i) total
cost of ownership that corresponds to the cost expressed also in [80] and ii) utilization cost
that is the cost directly associated with the real resources locked up or committed to a
particular user or application. An interesting line of research evaluated the costs of service
composition [14–16, 82, 79]. He et al. [15] propose three novel QoS-aware service selection
approaches for composing multi-tenant service-based systems. Li et al. [79] compare costs
and service behaviors from different CSPs, while Medeiros et al. [14] provide different cost
patterns which may fit different types of services and service composition. Even though all
those papers treat cloud costs and mainly cloud service composition costs, the work proposed
in this thesis differs from those since it faces the problem of composition cost by the CSP
point of view as a driver to improve cloud certification and cloud trustworthiness.

2.1.2 Cloud Security Standards

Providing the appropriate level of IT governance in a cloud computing environment is a
challenging task, indeed understanding the available standards and frameworks that apply
to IT governance is a prerequisite to any discussion of governance of or within the cloud.
This section reports some of the most used standards: readers that are interested in a more
detailed comparison can refer to [83, 84].

ISO 27000-series All the ISO/IEC 27000 family of standards helps organizations keep
information assets secure. Among them ISO 27001 is the most known standard for information
security management system (ISMS) with more than 30000 certificated companies.10 BS
7799 is a standard designed and published by the British Standards Institution (BSI) Group

10https://www.iso.org/the-iso-survey.htmlaccessedinSeptember2018

https://www.iso.org/the-iso-survey.html accessed in September 2018

2.1 Cloud Assurance and Certification 15

ISO Purpose
ISO/IEC 27000 Information security management systems - Overview and vocabulary
ISO/IEC 27001 Information technology - Security Techniques - Information security

management systems - Requirements.
ISO/IEC 27002 Code of practice for information security controls - essentially a detailed

catalog of information security controls that might be managed through
the ISMS

ISO/IEC 27003 Information security management system implementation guidance
SO/IEC 27004 Information security management - Monitoring, measurement, analysis

and evaluation
ISO/IEC 27005 Information security risk management
ISO/IEC 27017 Code of practice for information security controls based on ISO/IEC

27002 for cloud services
ISO/IEC 27018 Code of practice for protection of personally identifiable information

(PII) in public clouds acting as PII processors
Table 2.1 ISO table

and composed of several parts that were release between 1995 and 2005. The first part, after
a long revision became the ISO 27002, while the second of the BS779, following the same
revision process, partially inspired the release of ISO 27001 in 2005. Table 2.1.2 reports some
of the ISO 27000 standards.

Even though, Becker et al. [85] state that the actual ISO 27001 may be successfully
applied to cloud computing environments, the International Standard Organization released
two specific standards for the cloud: ISO 27017, ISO 27018. Both standards target cloud
computing but with different purposes:

• ISO 27017 addresses general security of cloud computing providing a set of cloud-specific
information security controls supplementing the guidance in ISO/IEC 27002.

• ISO 27018 provides a guidance aimed to ensure that cloud service providers offer
suitable information security controls to protect the privacy of their customers’ clients
by securing PII (Personally Identifiable Information) entrusted to them.

Federal Risk and Authorization Management Program (FedRAMP) FedRAMP
provides a standardized approach to security assessment, authorization, and continuous
monitoring for cloud products and services used by the US government. Because its goal is to
protect US citizens data in the cloud, it is the most rigorous security compliance framework
for governments.11.

The main aim of FedRAMP is to take over all the single requirements and agreements a
CSP should face with for each government organization, providing a general and standard

11https://www.fedramp.gov/cloud-service-providers/

https://www.fedramp.gov/cloud-service-providers/

16 Related works

approach to CSP security approval. The involved actor in the definition and design of
FedRamp are: the General Services Administration (GSA), National Institute of Standards
and Technology (NIST), il the Department of Homeland Security (DHS), Department of
Defense (DOD), National Security Agency (NSA) and the Office of Management and Budget
(OMB).

As described in [86], the complex evaluation process of FedRAMP is possible by providing
to Executive departments and agencies:

• Standardized security requirements for the authorization and ongoing cybersecurity of
cloud services for selected information system impact levels;

• A conformity assessment program capable of producing consistent independent, third-
party assessments of security controls implemented by Cloud Service Providers (CSPs)

• Authorization packages of cloud services reviewed by a Joint Authorization Board
(JAB) consisting of security experts from the Department of Homeland Security (DHS),
Department of Defense (DOD), and General Services Administration (GSA);

• Standardized contract language to help Executive departments and agencies integrate
FedRAMP requirements and best practices into acquisition; and

• A repository of authorization packages for cloud services that can be leveraged government-
wide.

FedRAMP release two types of approvals the i) readiness and the ii) authorization: since
today there are 17 ready cloud service providers, 119 authorized and 65 under process of
approval.12 The main distinction between FedRAMP Readiness and FedRAMP Authorized is
that the readiness must still undergo an authorization process, while FedRAMP Authorized
systems have completed the process at least once.

FedRAMP Ready, carried out by Third Party Assessment Organization (3PAO), asserts
that a cloud service is ready for the authorization process and that a Readiness Assessment
Report (RAR) has been reviewed and approved by the FedRAMP Program Management Office
(PMO). The RAR documents the CSP’s capability to meet FedRAMP security requirements.
The FedRAMP Ready designation is also required for any cloud service to enter the Joint
Authorization Board (JAB) Provisional Authority to Operate (P-ATO) process. FedRAMP
Authorized, by comparison, is a designation that is given to systems that have completed the
FedRAMP authorization process.

BSI-Compliance Controls Catalogue (C5) In the field of standardisation, any country
is free to release its own regulations. Germany, precisely the Federal Office for Information

12 https://marketplace.fedramp.gov/#/products accessed in September 2018.

https://marketplace.fedramp.gov/#/products

2.2 Cloud Security 17

Security (Bundesamt für Sicherheit in der Informationstechni - BSI) released the BSI -
Compliance Control Catalog (C5) to help cloud customers in having a better overview for
a higher level of security and avoiding redundant audits. C5 is organized in 17 sections
corresponding to 17 objectives describing the organisational and operational measures and
requirements a CSP must accomplish to be compliant. The standard provides basic, additional
and optional requirements; of course, in order to be authorized cloud providers must satisfy
at least all basic requirements.

The Cloud Security Alliance (CSA) CSA is a not-for-profit organization with the
mission to "promote the use of best practices for providing security assurance within Cloud
Computing, and to provide education on the uses of Cloud Computing to help secure all other
forms of computing". CSA put a significant effort in cloud security and certification. The
Cloud Control Matrix (CCM) provides a clear categorisation of security properties and a list
of controls and objectives that cover the key areas that are critical to cloud computing. The
CCM is a set of roughly 100 controls and assessment guidelines that cover a broad range of
security best practices, as well as compliance and regulatory mandates. In fact, the CCM is
not only a framework for CSPs, but is also designed to map many compliance standards such
as ISO 27001 [122], COBIT [62] or PCI-DSS [186] to avoid duplication of audit activities.

Using the CCM is possible to obtain the CSA Star certification. CSA Star is a rigorous
third-party independent assessment of the security of a cloud service provider. The technology-
neutral certification is based on the achievement of ISO/IEC 27001 and the specified set of
criteria outlined in the Cloud Control Matrix. The assessment is run by an independent
third-party authority, and accredited CSA certification body, and for each CCM security
domain the CSP is evaluated against five management principles: i) communication and
stakeholder engagement, ii) policies, plans and procedures, iii) skills and expertise, iv)
ownership, leadership, and management, v) monitoring and measuring. CSA Star is organized
in three levels:

• CSA Star Level 1: self- assessment. Answering the CSA Consensus Assessments
Initiative Questionnaire (CAIQ), any CSP can assess its own infrastructure.

• CSA Star Level 2: CSA Star attestation and certification. The CSA Star level 2 requires
CSP to obtain the SOC 2 certification or the ISO 27001 [87].

• CSA Star Level 3: Continuous Monitoring. At the moment there is no available
certification to determine alignment.

2.2 Cloud Security

Cloud Security is an important problem and a challenging issue as the number of papers and
surveys on the topic confirm [38, 88–94]. Cloud Security Alliance’s 2018 report [95] reported

18 Related works

as the 12 biggest threats to cloud computing, ranked in order of severity per survey results,
the following:

• Data Breaches

• Insufficient Identity, Credential and Access Management

• Insecure Interfaces and APIs

• System Vulnerabilities

• Account Hijacking

• Malicious Insiders

• Advanced Persistent Threats (APTs)

• Data Loss

• Insufficient Due Diligence

• Abuse and Nefarious Use of Cloud Services

• Denial of Service

• Shared Technology Vulnerabilities

In the Section we analyse some of those threats and report related works.
Data breaches are often the goal of targeted attacks, but it might occur that they are the

result of human errors, application vulnerabilities or just poor security policies. Data in the
cloud must be protected, and so the privacy, and the level of security must be appropriate with
value of data we are managing (e.g. health information, personally identifiable information
(PII). Research has investigated confidentiality, privacy and storage security widely. Barona
et al. [96] present a survey discussing reasons and consequences of data breaches. Kolevski
et al. [97] review literature in cloud computing data breaches by using a socio-technical
approach which encapsulates the three major dimensions: social, technical, and environmental.
Kirkman [98] proposes a solution to track and move data securely on the cloud by using
smart contract and blockchain technology. Jajodia et al. [99] consider the problem of how
to securely backup encryption keys for increasing data safety and availability, reducing the
risk of data loss due to unavailability of keys, and limiting the risk of key disclosure and
confidentiality breach. The authors present a scheme called recoverable encryption through
a noised secret that permits to store key backups on a single machine, and is robust to
decryption by brute force attacks.

Lack of scalable and secure identity access management systems are one of the main reasons
of cyberattacks and data breaches in the cloud. The adoption of multi-factor authentication,

2.3 Contribution to the State of the Art 19

which uses multiple authentication factors to grant access, may increase the security of
cloud services [95]. Fathi et al. [100] propose a progressive multi-factor authentication that
uses a combination of explicit and implicit factors that aims to minimize the perceived
authentication hardship in using it. Choudhury et al. [101] propose a framework for identity
management, mutual authentication, session key establishment designed for the cloud.

The report in [95] states that programming interfaces (APIs), as the most exposed part of
a system, should be designed to be resilient against both accidental and malicious attempts
to circumvent policy. Bahaweres et al. [102] show how private cloud without an appropriate
security system can be easily vulnerable to Distributed Denial of Service (DDoS). Gracia-
Tinedo et al. [103] show how freemium account could be abused by malicious attacker; in
fact, by automating freemium account creation and usage, it is possible to run attacks such
as DDoS.

Cloud Computing provides a sharing environment where applications from various orga-
nizations may reside in proximity one to each other sharing computational resources such as
memory and CPU. Razavi et al. [104] present a co-resident VM to get access to the victim
VM; Hasan et al. [105] propose a mitigation defense by applying game theory to the problem,
while Liang et al. [106] propose a different solution to the same problem, by optimizing the
placement of the VMs at deployment time following a VM placement strategy.

A malicious insider is a "current or former employee, contractor, or other business partner
that, leveraging her authorized access to network, system, or data, intentionally misuses
that access in a manner that negatively affect the confidentiality, integrity, or availability of
the organization’s information system" [107]. Nkosi et al. [108] present a detecting system
for cloud environment aiming to detect malicious insiders by monitoring useres behaviour
patterns. Rocha et al. [109] present a work which demonstrates how is possible for a malicious
insider to access data by using a crafted attack in a Xen-powered cloud infrastructures. The
authors also present a mitigation solution by implementing a lightweight mandatory memory
access control mechanism for Xen.

In summary, accountability, confidentiality, integrity and authorization are key properties
to avoid any of the threats mentioned by CSA in [95]. Ardagna et al. [38] survey hundreds of
articles, organizing them over those properties. Rukavitsyn et al. [110] present an approach
where cloud users may use separate services for authentication, data management and meta
data storage to limit the possibility of data loss and corruption. Sevis et al. [111] analyse the
state of the art of data integrity in the cloud comparing different techniques such as provable
data possession and proof of retrievability.

2.3 Contribution to the State of the Art

The last 30 years were characterized by an important evolution of assurance techniques [10].
This chapter presented an excursus on assurance and security approaches starting from the

20 Related works

Orange Book [59] and Common Criteria [65] and ending with the last proposal from the
research communities such as [55, 53, 71].

Mainly focus on certification activities, the approaches were still mostly based on one
time certification, due to the complexity of certification process that involves actively several
actors and poses the problem of the substantial costs to be borne [13]. In the context of
cloud, which is highly dynamic and intrinsically incremental and involves contextual changes
at any layer of the cloud stack, one time certification is obsolete and outdated. Common
Criteria proposed the first approach to incremental certification distinguishing between partial
re-evaluation and partial re-certification [63], but requiring a complex manual process. The
work in this thesis embraces the concepts of continuous certification presented in [62, 2] but
extending them providing a certification process which supports incremental, and multilayer
verification.

Multilayer verification approaches are presented in literature [73, 74] but they provide
specific solutions for specific purposes. The framework presented in this thesis aims to be a
general purpose framework for cloud service assurance evaluation, this means that may be
used to apply several certification schemes such as CSA or C-5. Moreover these standards
mostly described general requirements that must be turned then into specific audit activities.
Chapter 3 shows how the adoption of the certification model template and instance allows
CA to specify generic requirements on the template and Accredit Lab to build a specific
instances based on the given template. Moreover, to minimize manual operation we provide
an automatic matching algorithm that can validate an instance over a template.

Many of the certification frameworks available on the market and proposed by the research
community lack a formal representation of the certification process suitable for the cloud.
Moreover, the work presented in this thesis combines both description of the activities and
the effectiveness of collecting evidence to prove a given security property. Assessments, such
as CSA-Star [61], mainly rely on survey and self-assessment, while the framework presented
in this thesis collects evidence of the behavior of the service under certification.

All the aspects considered in this thesis have always been correlated to certification costs.
Lins et al. [13] and before Common Criteria [63] highlighted how certification is a costly
operation and how important this factor is for its adoption. Certification process automation,
which tries to avoid the involvement of CA, aims to take the costs under control, as well as
the composition and re-use of available evidence and models to build new certifications (see
Chapter 4). This thesis faces the problem of cost optimization from the point of view of the
Cloud Service Provider with the aim to enhance the fruition of security cloud services.

Figure 2.1 shows the main contributions that this thesis brings to the state of the art and
that can be summarized as follow: continuous, incremental and multi-layer certification with
high degree of automation, all represented and defined in a formal and declarative form. In
more details Figure 2.1 describe the evaluation and characteristics

2.4 Chapter Summary 21

Fig. 2.1 Evaluation of certification and comparison with thesis contribution.

As a breakpoint, the work in this thesis was the corner stone to build a business product
"Moon Cloud", which aims to evaluate security of cloud services.

2.4 Chapter Summary

Cloud has already changed the provisioning of IT resources, but security is still the main
concern and obstacle to its adoption. Research has been working hard to improve security
features, and meet user and technology requirements. The effectiveness of cloud security can
be measured by the number of attacks and threats, but the main issue in cloud adoption is the
feeling of security perceived by final user. Assurance techniques (test, monitoring, certification
and audit) may have the chance to increase the cloud trustworthiness and transparency. This
chapter reviewed research on cloud security providing the state of the art of the main cloud
security threats and cloud assurance techniques.

Chapter 3

Cloud Service Certification:
Process and Models

Cloud computing paradigm supports a new vision of IT where software and computational
resources are released as services over a virtualized ICT infrastructure accessible through the
Internet. The convenience introduced by cloud computing in terms of flexibility, and reduced
costs of owning, operating, and maintaining the computational infrastructures, comes at a
price of increased risks and concerns. Users deploying a service in the cloud in fact lose full
control over their data and applications, which are fully or partially in the hands of cloud
providers.

Assurance and verification techniques (e.g., audit, certification, and compliance) need to
be adapted to fit the dynamics of the cloud ecosystem [2, 3]. The advent of cloud in fact
makes traditional techniques inappropriate, because assurance claims and information are
assumed to be all available a priori at the time of evaluation and before service deployment.
Cloud assurance aims to increase cloud trust and transparency, and therefore needs to manage
claim verification and evidence collection in a post-deployment environment. Moreover, due
to the fact that cloud assurance should manage the complete cloud service/application life
cycle, it should i) depart from the assumption of a single trusted third party that is available
during the whole process and takes responsibility over different claims done on a target
object [4], ii) implement (semi-)automatic approaches that adapt to changes in the service
and/or its environment, iii) target multiple cloud layers at the same time.

Effectively tackling such issues is fundamental to increase trust in the cloud [2, 3, 5],
and in turn fosters the movement of critical businesses to the cloud. This thesis focuses on
certification techniques, which aim to implement a secure, trusted, and transparent cloud by
specifying a dynamic delegation mechanism supporting multiple signatures of artifacts in a
cloud environment.

A certification process in the cloud must follow a multi-step process that certifies the
support of a given set of non-functional properties by a cloud-based system. The process

24 Cloud Service Certification: Process and Models

starts with the certification of the system in a controlled, lab environment. Upon successful
verification, the service is deployed in the in-production environment and the certification pro-
cess is re-executed to prove the support of the same properties verified in the lab environment.
Finally, a continuous certification process is set up to monitor the status of the certification
process during the system operation. It is based on continuous collection of evidence on
the behavior of the system, which is used to verify whether it maintains the support of the
certified properties, according to guidelines designed by the certification authority.

This Chapter 1 presents a certification scheme that supports the above certification process,
where the certification authority takes responsibility and signs all evaluation activities to be
done to prove a given property (requirements specified in a certification model template),
and delegates the management of the certification activities to be done on specific targets to
other parties (activities specified in a certification model instance). The correct execution of
eva luation activities on real target services can be verified at any time in a semi-automatic
way, by checking consistency between certification model template and instance. This check
permits to build a chain of trust grounded on the requirements specified by a certification
authority in a certification model template, increasing the trustworthiness of the cloud and its
services. The proposed process supports both i) basic and traditional certification processes
for one-time, static certificate issuing and ii) advanced certification processes for continuous,
incremental, and multilayer verification.

3.1 Basic Concepts

In this section we present the involved actors and requirements characterizing our certification
process, which will be used in the remaining of this thesis.

3.1.1 Actors

A certification scheme for the cloud implements a continuous process whose goal is to verify
whether a cloud service holds a given (set of) property. The cloud service under evaluation is
referred to as Target of Certification (ToC), while property p is composed of a controlled
name p̂ (e.g., confidentiality of data in transit) and a level l modeling the strength of the
supported property, as defined by the Cloud Security Alliance [112].

A certification process for the cloud is a collaborative effort involving i) a service provider
developing cloud-based applications that need to be certified (TOC); ii) a cloud provider

1This chapter is based on the following publications:
• A semi-automatic and trustworthy scheme for continuous cloud service certification, Co-author: M.

Anisetti, C.A. Ardagna, E. Damiani, published in IEEE Transactions on Services Computing, 2016
• Modeling time, probability, and configuration constraints for continuous cloud service certification,

Co-author: M. Anisetti, C.A. Ardagna, E. Damiani, N. El Ioini , published in Computers & Security
(COSE) 72, 2018

3.1 Basic Concepts 25

(CSP) that either supports application certification or wants to certify its own cloud services;2

iii) a certification authority (CA) responsible for the design and definition of certification
requirements and methodology; iv) an accredited lab (AL) delegated by the certification
authority and responsible for certification activities.3 This structure reflects the traditional
certification process (Section 2.1.1) .

Our certification process is driven by a Certification Authority that manages all certifica-
tion activities leading to certificate issuing. It is composed of two sub-processes: i) evidence
collection sub-process and ii) life cycle sub-process. The evidence collection sub-process collects
the evidence at the basis of a trustworthy certification and is carried out by the certification
infrastructure. The life cycle sub-process implements a continuous certification process that
accomplishes the evolution of the ToC , managing ToC migrations and versioning. The whole
process is described in more details in Section 3.3.

3.1.2 Requirements

A cloud certification process should satisfy new requirements to fit the dynamic, distributed,
heterogeneous and high rate changing peculiarities of cloud environments.

• Generic and multilayer. The certification process must be generic to cover not only
cloud services, but any service. This permits to use the same certification process
among all the cloud stacks and to keep the compatibility with older approaches.

• Continuous and Holistic. The evaluation process should be continuous to support the
dynamics of the environment and should indeed become holistic. Since non-functionals
requirements and deployment configurations change over time, the certification process
should depart from a one-shot activity executed in a controlled environment.

• Based on Evidence. The certification issuing process must be based on evidence produced
by evaluation activities that can proof a given property. The evidence validates the
property and moreover increases the certification trustworthiness.

• Modular. Certification process should be designed to support certification of composite
services based on activities, evidence and outcomes of the certification of the single
component services.

• Verifiable and Repeatable. Once defined and described, a certification process must be
verifiable in terms of required activities to issue a property and repeatable in time in
any conditions.

2Often service provider may coincide with cloud service provider.
3An accredited lab is an official emanation of a certification authority carrying out a system evaluation.

26 Cloud Service Certification: Process and Models

• Support for migration and versioning. Being the cloud dynamic and heterogeneous, the
certification process should support single property overwrite (migration) and versioning
of a property within a single service (more details in Section 3.5.2 and Section 4.2).

• Support trust by delegation. The certification process must provide a chain of trust where
the delegation mechanism can be executed, when possible, in an automatic manner
without the countinous involvement of the certification authority. In this context provide
an autonomous approach where the certification process can be expressed through
machine-readable documents can lead to an automatic validation of the certification
process itself.

3.1.3 Terminology

Chapter 3 discusses all the components of the certification process and models at the basis of
this thesis. Table 3.1 summarizes all the acronyms used in this chapter with the aim to help
readers in keeping trace of the many terms.

C Certificate
I Certification Model Instance
T Certification Model Template
p Non-Functional Properties
p̂ Non-Functional Properties name

Ap Set of property attributes
θ Non-Functional Mechanisms
θ̂ Non-Functional Mechanisms name

Am Set of of attributes specifying mechanism configuration
ToC Target of Certification

Θ set of mechanisms
b layer (service, platform, infrastructure,..)
ev Evidence
tc Test Case
Pr Preconditions
In Test Inputs
EO Expected Output
Po Postconditions
l Life Cycle

f▷ CM Instance validity check
Table 3.1 Acronymous Table

3.2 Certification Building Blocks

We describe the building blocks of our certification scheme for the cloud.

3.2 Certification Building Blocks 27

Non-Functional Properties (p). A non-functional property p is a pair (p̂,Ap), where
p̂ is an abstract property and Ap is a set of attributes refining it. An abstract property is
taken from a shared vocabulary (e.g., confidentiality, integrity, availability) [4] or domain-
specific vocabularies derived from regulations (e.g., [113]), standards (e.g., [87]), cloud security
specifications (e.g., [61]). Attributes can include information on the class of mechanisms
guaranteeing p̂ (e.g., access control, encryption, signature), a level modeling property strength
(e.g., CVSS standard severity score level low, medium, high), and contextual attributes (e.g.,
confidentiality of data in transit, availability with 95% uptime). Differently from existing
work (e.g., [4, 61]), we decouple definition of properties from the mechanisms that must be
implemented to support them. Non-functional properties are organized in a hierarchy . Given
two properties pi,pj∈P, pi is weaker than pj (denoted pi⪯P pj) if pi.p̂=pj .p̂, and ∀ak∈Ap ,
either the value ni(ak) of attribute ak is not specified or ni(ak)⪯ak

nj(ak). We note that total
order relations ⪯ak

between contextual attributes ak∈Ap can be defined by expert users. An
example of property hierarchy can be found in [4].

Non-Functional Mechanisms (θ). A non-functional mechanism θ is a pair (θ̂,Am),
where θ̂ is a mechanism type (e.g., access control, encryption), and Am is a set of attributes
specifying mechanism configurations (e.g., cloud layer, encryption algorithm, key length)
and specific cloud stack configurations affecting the mechanism behavior. Non-functional
mechanisms support the verification of properties and are organized according to their type
θ̂. Abstractions can be defined over mechanisms, possibly introducing a hierarchy HMi for
each type θ̂i. A hierarchy HMi is then defined as a pair (Mi, ⪯Mi), where Mi is the set
of all mechanisms of a given type, and ⪯Mi is a partial order relationship over Mi. The
partial order is defined by domain experts (e.g., a certification authority – CA) so that
given two mechanisms θj ,θk∈Mi, θj is weaker than θk (denoted θj⪯Miθk) if θj .θ̂=θk.θ̂, and
∀at∈Am, either nj(at) is not specified or nj(at)⪯atnk(at). We note that total order relations
⪯at between mechanism attributes at∈Am can be defined by expert users. We also note that
there is a special hierarchy HMf

=(Mf ,=), where Mf ={(Functional,{})}, referring to all
mechanisms concerning functional aspects of a given service. All families can be logically seen
as part of a common hierarchy HM of mechanisms M having a common ancestor denoted
as any. Each mechanism is annotated with a set {events} of events affecting its execution
and, in turn, the validity of an existing certification process. Events can also refer to specific
cloud configurations, which are requested for the correct functioning of the mechanism.

Target of Certification (ToC). The meaning of properties is strictly associated with
the application context and the cloud perimeter, called Target of Certification (ToC), they
insist on. ToC describes the mechanisms, possibly at different cloud layers, behind a non-
functional property. ToC is defined as (Θ,b), where Θ={θi} is a set of mechanisms θi∈M
and b specifies the layer (i.e., service, platform, infrastructure) of certificate binding. Each

28 Cloud Service Certification: Process and Models

mechanism belongs to a cloud layer and can support a property alone or in cooperation with
other mechanisms in ToC . The certificate, instead, is bound to a single layer b representing
the provisioning layer for the certified service. For instance, let us consider a ToC for secu-
rity property p=(Confidentiality,{ctx=in-transit/at-rest}). ToC includes two mechanisms
θ1 and θ2 deployed at service layer and infrastructure layer, respectively, and its binding
is defined at service layer (i.e., b=<service>). Mechanism θ1=(encryption,{algo=XML-
encryption,protocol=WS-Security,level=message-in-transit}) refers to a mechanism imple-
menting an encrypted communication channel, mechanism θ2=(encryption,{algo=encrypted
FS}) identifies a mechanism implementing an encrypted file system.

Evidence ev A certification process (see Section 3.3) relies on the collection of evidence
at the basis of a certificate, proving a non-functional property p for a given ToC . We focus
on test-based evidence ev that includes i) the specification of the collection process, ii) the
set of testing activities (i.e., test cases) to be executed, iii) the results retrieved by test
case execution and corresponding rules for their aggregation, and iv) a reference to the
mechanisms specified in the ToC over which test cases are executed and corresponding results
collected. For simplicity, but without loss of generality, test-based evidence is defined as
ev={{(θ,Pr ,In,EO,Po)}}, where {(θ,Pr ,In,EO,Po)} represents a single test case tc as a
sequence of 5-tuples (θ,Pr ,In,EO,Po), with θ a mechanism, In the set {i1,. . .,in} of inputs,
EO the set {eo1,. . .,eom} of (expected) outputs, Pr the set of pre-conditions, Po the set of
post-conditions. Pre-conditions and post-conditions express dependencies between inputs
and (expected) outputs. Evidence collection follows a model-based testing approach and is
driven by an automaton describing all activities, in the form of a sequence of invocations, to
be done on the ToC . The automaton, called evidence collection model m , is described as a
Symbolic Transition System (STS) [4] and combines the automaton mθ of the mechanisms
θ∈Θ in ToC . Model m is then defined as ⟨S,s0,V,I,A,→⟩, where S is a set of states s, each
one referring to either a mechanism θ defined in ToC or a functional mechanism, s0∈S is
the initial state that refers to a functional mechanism modeling no operation, V is the set of
internal variables, I is the set of interaction variables, A is the set of actions (i.e., service
operations and internal function calls), and → is the transition relation. → consists of a set
of edges connecting two states and labeled with an action, a guard in disjunctive normal form
(conditions on transition), and an update mapping (new assignments to variables). According
to m and its linear independent paths modeling the testing flows ϕi∈Φ(m), evidence ev can
be generated following our approach in [4]. Each test case tc refers and exercises a given flow
ϕi.

Life Cycle, (l). The certificate life cycle l models the certificate evolution from its issuing
to possible expiration or revocation. In traditional certification, it is in the bailiwick of the
CA issuing the certificate. Decisions like certification issuing, suspension, revocation, or

3.3 Certification Models and Process 29

NI I S

E

R

Validity period expired

Contradictory evidence

Validity period expired

Contradictory evidence

Sufficient evidence

Not sufficient evidence

Sufficient evidence

Conditions on transitions
condeNI,I =0.9tc condeS,R =¬condeNI,I ∧ suspension_time>t

condeI,E =expiration date is reached condeS,I =condeNI,I condeI,R =∅
condeI,S =¬condeNI,I ∧ suspension_time<t condeS,E =expiration date is reached

Fig. 3.1 Life cycle with states Not Issued (NI), Issued (I), Suspended (S), Expired (E),
Revoked (R) and examples of conditions on transitions.

expiration are normally taken asynchronously, statically, and offline by the CA, for instance,
as a reaction to new discovered vulnerabilities or audit activities. In a cloud scenario, where
the certificate life cycle is managed at run-time on the basis of evolving evidence, the static
intervention of a CA is not always feasible. The life cycle is modeled as a deterministic
finite state automaton Gl(V l ,El) with each vertex v∈V l representing a possible state of
the certificate with label label(v) (e.g., issued, suspended) and each edge e=(vi,vj)∈El

representing a transition between two states. Each edge e is labeled with a condition conde

over certificate evidence that regulates the transition. Figure 3.1 shows an example of
the life cycle automaton with transition conditions. For instance, edge eNI,I is labeled
with a condition condeNI,I requiring that at least 90% of the test cases are successful (i.e.,
condeNI,I =0.9tc) for the certificate to move from state NI to state I.

3.3 Certification Models and Process

Our certification process is responsible for all evaluation activities aimed to produce a certifi-
cate for the ToC (issuing phase), as well as to continuously verify the validity of the certificate
against context changes to reduce unnecessary certificate revocation and re-certification [114]
(post-issuing phase). It is based on specific machine-readable documents, namely Certification
Model (CM) Template, Certification Model (CM) Instance, and Certificate.

3.3.1 Certification Model Template

CM Template T drives the definition of the certification methodology, and represents the
cornerstone for building a chain of trust that is grounded on the correctness of the certification
methodology itself. It is an abstract representation of the process inputs, which specifies
high-level requirements, configurations, and activities for the certification of a property for
a given (class of) ToC . It is defined as 5-tuple of the form ⟨p,ToC ,m ,ev ,l⟩ and signed by

30 Cloud Service Certification: Process and Models

the certification authority. CM Template T specifies requirements on ToC in terms of the
mechanisms to be implemented to support a property p, the model m for evidence collection,
and the evidence ev to be collected. It also includes a life cycle l for continuous verification of
certificate validity. Mechanisms θ∈Θ in ToC can be defined at different levels of abstraction,
from mechanisms only including the type (i.e., (θ̂,∅)) to fully specified ones (i.e., (θ̂,Am)). The
evidence collection model m describes execution flows Φ(m) involving mechanism in Θ, which
must be evaluated to certify p. Evidence ev must be produced according to Φ(m). We note
that evidence ev in T specifies test cases {(θ,Pr ,In,EO,Po)}, where inputs In and expected
outputs EO are expressed in the form of partitions of the corresponding input and output
domains, DIn and DEO, respectively. A partition of a domain D is a set ϕ(D)={D1, . . . , Dn}
of equivalence classes such that: ⋃n

j=1 Dj=D and ∀j ̸=t Dj∩Dt=∅ with j, t=1, . . . , n. For
instance, equivalence classes ϕ(Dpwd) for input parameter password can include: i) the set of
valid passwords, ii) the set of invalid passwords, iii) the set of valid but not existing password.

Example 3.3.1 (T) Let us consider the cloud storage service for a payment system deployed
on top of Openstack, to be certified for property Confidentiality. A CM Template T can
include security property p=(Confidentiality, {ctx=in-transit/at-rest}) and target of certifi-
cation ToC=({θ1, θ2, θ3}, <service>), where θ1=(encryption, {level=message-in-transit})
is an encryption mechanism securing public communication channels, θ2=(encryption,
{level=internal-communications}) is an encryption mechanism securing internal cloud
service communications, θ3=(encryption, {level=data-at-rest}) is an encryption mecha-
nism securing stored data. Evidence collection model m in T specifies the flows of execution,
which are used for test case generation, by combining mechanisms in ToC. It generates
a set of test cases ev expressed in terms of test partitions DIn and DEO insisting on the
above mechanisms. The life cycle automaton is fully defined in terms of states that can be
assumed by a certificate with all mandatory transition conditions specified in terms of specific
aggregations on evidence.

The full XML representation of Example 3.3.1 can be found in Appendix B.

3.3.2 Certification Model Instance

A Certification Model Instance (I) is a procedural, executable model generated by refining and
instantiating T on a real ToC . CM Instance I includes specific information on configurations
and activities to be executed on the service under evaluation for evidence collection. It is
jointly specified by the accredited lab and the service provider, and can be defined as a
5-tuple of the form ⟨p,ToC ,m ,ev ,l ⟩. We note that CM Instance I can be not unique for CM
Template T .

CM Instance I is under the responsibility of the accredited lab and contributes to
the establishment of a complete chain of trust, which is grounded on the corresponding

3.3 Certification Models and Process 31

Non-Functional Property

ToC

CM Template

CM Instance

Evidence

self adapted

is certified for

according to

instantiated in

verified against

generates
is verified by

supports

is included in

Fig. 3.2 Conceptual framework

CM Template signed by the certification authority (see Section 3.6). Before distributing a
CM Instance, the accredited lab verifies i) the signature of the CM Template from which
it is generated/to which is claiming conformance, ii) that the CM Instance is a correct
instantiation of the CM Template and correctly represents the ToC (see Section 3.2). The
instantiated target of certification ToC contains all configurations for the mechanisms in the
real service implementation. Evidence ev defines test cases specifying the reference to the real
mechanisms θ, input values i, and expected output values eo. We note that an input value i

(expected output value eo, resp.) can be considered as a representative of the corresponding
equivalence class Dj iff i∈Dj (eo∈Dj , resp.). In the following, we denote an equivalence class
Dj as [i], where i∈Dj . Additional information (e.g., access credentials, cloud configurations,
network configurations, endpoints) regarding the mechanism implementation is fundamental
for evidence generation.

Example 3.3.2 (I) Let us consider CM Template T in Example 3.3.1. A CM Instance I
for T can include the following elements. Security property p=(Confidentiality, {ctx=in-
transit/at-rest}). Target of certification ToC=({θ1, θ2, θ3}, <service>), where θ1=(encryption,
{algo=XML-encryption, protocol=WS-Security, level=message-in-transit}) implements a
XML-encryption mechanism based on WS-Security securing public communication channels,
θ2=(encryption, {level=internal-communications, algo=HTTPS}) implements an HTTPS
communication channel securing internal cloud service communications, θ3=(encryption,
{level=at rest, algo=encrypted FS}) implements an encrypted file system securing stored
data. The remaining components should be such that: i) m is consistent with m in T , ii) ev
includes test cases reflecting the partitions in T , iii) l=l.

We introduce an instantiation function I→ that produces I as specialization of a given T
as follows.

Definition 3.3.1 (I→) Let T =⟨p,ToC,m,ev,l⟩ be a CM Template. An instantiation I→ is
a transformation that takes T as input and produces I=⟨p,ToC ,m ,ev ,l ⟩ as output where:
p I→p, ToC I→ToC m I→m , ev I→ev , l I→l .

32 Cloud Service Certification: Process and Models

CM Template
Definition

Service
Implementation

CM Instance
Definition I▷T CM Instance

Execution
Consistent

I

T ws

C

Certification
Authority

Cloud/service
provider

Accredited
Lab

T ws I

Fig. 3.3 Certification process: squared boxes represent steps that can be completely au-
tomatized, rounded boxes steps for which we provide tools or guidelines for cloud providers,
accredited labs, or CA.

3.3.3 Certificate

CM Instance I describes an executable evidence collection process (see Figure 3.2) whose
results are evaluated for: i) certificate issuing, if the produced evidence is sufficient according
to the certification authority, ii) certificate adaptation, to continuously validate and possibly
adapt the status of a certificate C , following certificate life cycle l (see Section 3.2). A
certificate C is a 4-tuple ⟨I,T ,ws,evr⟩, where I is a CM Instance, T the original methodology
over which I is defined, ws the certified service, and evr the results of the execution of test
cases in ev∈I. Certificate C plays a fundamental role for improving the trustworthiness of
cloud services/systems and is at the basis of advanced processes such as certification-aware
service discovery and service composition, to name but a few.

3.3.4 Certification Process

Figure 3.2 shows the conceptual framework at the basis of our certification process, as an
extension of the one in [21]. The certification process aims to prove a property for a ToC and
is driven by a CM Instance. CM Instance is generated as a refinement of a given CM Template
and verified against it through the validity check in Section 3.4. The evidence supporting the
considered property is continuously generated, according to the CM Instance. We remark
that, in some cases, the evidence is not sufficient to prove a given non-functional property
(dashed arrow in Figure 3.2) and therefore award the corresponding certificate. Based on the
conceptual framework, Figure 3.3 presents our certification process that is composed of five
main steps. In the first step (CM Template Definition), the certification authority produces
a CM Template T specifying the certification methodology for proving p on a class of ToC .
We note that CM Template Definition might happen well before the execution of the other
steps of the certification process, making certification authority involvement feasible also in a
cloud environment. In the second step (Service Implementation), the cloud/service providers
implement the service ws to be certified. In the third step (CM Instance Definition), the

3.4 Model Consistency Check 33

accredited lab, with the help of the cloud/service providers, produces CM Instance I for
the implemented service as a refinement of the methodology in the CM Template. We note
that CM Instance can also be defined independently, and then lately show conformance to a
specific CM Template. In the fourth step (I▷T), the accredited lab verifies the consistency
between I and T . This consistency check is crucial to build a chain of trust suitable for
the cloud. Finally, in the fifth step (CM Instance Execution), the certification authority
and the accredited lab execute all certification activities aimed to first certificate issuing
(issuing phase) and then certificate adaptation (post-issuing phase). In the post-issuing phase,
the CM Instance adapts itself to changes at both cloud (e.g., due to service migration),
service (e.g., due to service versioning), and certification methodology (e.g., due to CM
Template versioning) levels, ensuring (if possible) I▷T and verifying certificate validity. We
note that the proposed certification process accomplishes cloud peculiarities. It supports i)
the evaluation of a multilayer ToC, ii) a dynamic and incremental approach to certificate
adaptation based on CM consistency check (I▷T), and iii) trust by delegation providing a
dynamic and runtime certificate life cycle management in the cloud.

3.4 Model Consistency Check

The consistency check I▷T is the main pillar of a certification process, since it verifies whether
a CM Instance I is a correct and valid refinement of a CM Template T , and represents the
basis for building a chain of trust based on our certification process in Section 3.3. It is
mandatory both when I is generated independently by cloud/service provider owning the
ToC, and in case it is generated with the support of the certification authority or one of
its accredited labs. The check that a CM instance I=⟨p,ToC ,mi,ev ,l ⟩ is a valid instance of
T =⟨p,ToC ,m ,ev ,l⟩ is a matching process composed of 5 verification steps as follows.

3.4.1 Property and ToC verification

Non-functional property and ToC are strictly related elements, which are often used to index
and collect certification requirements. Their verification proceeds as follows.

• Non-functional property verification (step 1): p is a valid instance of p, denoted p I→p,
iff p⪯P p on the basis of the hierarchy of properties HP (see Section 3.2). Property
verification checks that the property to be certified p is equal to/stronger than p.

• ToC verification (step 2): ToC=(Θ,b) is a valid instance of ToC=(Θ,b), denoted
ToC I→ToC , iff i) ∀θj∈Θ, ∃θk∈Θ : θj⪯Miθk and {events}θj

⊆{events}θk
, for j=1,. . .,|Θ|,

k=1,. . .,|Θ| (see Section 3.2), ii) b=b. ToC verification checks that i) for each mechanism
specified in the ToC of CM Template, there exists the same or stronger mechanism in
the CM Instance having a superset of annotated events and ii) the certificate binding
layer is the same.

34 Cloud Service Certification: Process and Models

Example 3.4.1 Let us consider a CM Template for payment systems with p=(Confidentiality,
{ctx=in-transit}) and ToC=({{ encryption, level=message-in-transit}}, <service>), and a
CM Instance for a specific payment system deployed on top of OpenStack with p=(Confidentiality,
{ctx=in-transit}) and ToC=({ encryption, algo=XML-encryption, protocol=WS-Security,
level=message-in-transit}, <service>). p I→p because p=p; ToC I→ToC because the encryp-
tion mechanism based on XML-encryption in ToC is a refinement of the generic encryption
mechanism for message in transit in ToC, and they both have a service binding.

3.4.2 Evidence collection model verification

We aim to verify the consistency between the STS-based models m∈T and mi∈I (step
3). Our verification is successful, meaning that mi is a valid instance of m , if the linear
independent paths modeling the testing flows Φ(mi) in the CM Instance I are equal to
the flows Φ(m) in the CM Template T . Our verification starts by defining the quotient
graphs Gm (V m ,Em) and Gmi(V mi ,Emi) of models m and mi, respectively. Let us consider
model m=⟨S,s0,V,I,A,→⟩. The quotient graph is calculated on the basis of the equivalence
relationship ≈, which models the belonging to the same functional mechanism θ∈Θ in ToC ,
on the set of states S of m . The quotient graph Gm (V m ,Em) with respect to ≈ is a graph
whose vertex set is the quotient set V m =S/≈ and two equivalence classes [u],[v]∈V m form
an edge ([u],[v]), iff (u,v)∈→. We note that ≈ summarizes a set of consecutive or parallel
functional mechanisms in mi as a single mechanism. This is due to the fact that mi specifies
a variety of functional-related mechanisms that cannot be known a priori by m .

Given the quotient graphs Gm and Gmi , mi is a valid instance of m , denoted m I→mi, iff
Gmi is isomorphic to Gm , as formalized by the following definition.

Definition 3.4.1 (m I→mi) Let Gm (V m ,Em) be the quotient graph of m, Gmi(V mi ,Emi) be
the quotient graph of mi. Also, let θi be the mechanism associated with each vi∈V m ∪V mi.
mi is a valid instance of m, denoted m I→mi, iff there exists an isomorphism f :V m →V m,
such that the following conditions hold:

1. ∀ni∈V m , ∃f(ni)∈V m ∧ θni ⪯Mj θf(ni) on the basis of mechanism hierarchy HMj ;

2. ∀(ni ,nj)∈Em , (f(ni),f(nj))∈Em.

Condition 1 states that each vertex ni in the evidence collection model of the CM Template
should have a corresponding vertex f(ni) in the evidence collection model of the CM Instance,
such that the mechanism associated with ni is an abstraction of the one associated with
f(ni) based on the relevant hierarchy. Condition 2 states that each edge in Gm should have
a corresponding edge in Gmi .

We note that different possible isomorphisms can be found between I and T . This is
due to the fact that the abstract definition of T (in terms of abstract mechanisms) links to

3.4 Model Consistency Check 35

several possible instantiations on the basis of mechanism hierarchy HM . As an example, m
can specify a set of states referring to a generic encryption mechanism. The latter indirectly
refers to both 3DES- and AES-based encryption mechanisms, opening the door to different
isomorphisms.

Example 3.4.2 Let us consider a CM Template for payment systems having a model m for
secure data exchange as a sequence of two functional mechanisms interleaved by a security
mechanism for channel encryption, and a CM Instance for a specific payment system having a
model mi for secure data exchange as a sequence of a functional mechanism for the selection
and configuration of the service operation to perform, a security mechanism based on XML-
encryption for secure communications, and two functional mechanisms for operation execution
and history management. The quotient graph of mi keeps the first two mechanisms as they are
and merges the two functional mechanisms at the end of mi in a single mechanism. m I→mi
because Gm and Gmi have both i) a functional mechanism at the beginning and the end of
the graph, and ii) a security mechanism in the middle such that the mechanism in Gm is an
abstraction of the one in Gmi according to Example 3.4.1.

3.4.3 Evidence verification

Evidence verification (step 4) uses the result of the evidence collection model verification to
index the evidence ev to be matched against ev . This step is needed because m refers to a set of
abstract mechanisms and maps on a set {ev1,. . .evn} of possible evidence. Evidence ev and ev
are composed of a set of test cases tc={(θ,Pr ,In,EO,Po)} (see Section 3.2). Also, evidence ev
can contain test cases that refer to more mechanisms than the ones referred by test cases in ev ,
and the cardinality of ev is equal to/greater than the cardinality of ev . As already discussed,
this is due to the fact that mi specifies a variety of functional-related mechanisms that cannot
be known a priori by m . For this reason, i) m can summarize a set of consecutive or parallel
functional mechanisms in mi in a single mechanism, and ii) each quintuple (θ,Pr ,In,EO,Po)
in tc∈ev , with θ=(Functional,{}), has the form ((Functional,{}),Pr ,any,any,Po).

After ev is selected, evidence verification continues executing a test case matching function
(denoted ×) that verifies the correspondence between two test cases as follows.

Definition 3.4.2 (Function ×) Let tcr={(θz, Prz, Inz, EOz,Poz)} and tct={(θj Pr j,Inj,
EOj, Poj)} be two test cases. tcr corresponds to tct (denoted tcr×tct) iff ∀(θz,Prz, Inz, EOz,
Poz) ∈ tcr one of the following conditions holds:

1. if θz ̸=(Functional,{}), ∃! (θj,Pr j,Inj,EOj,Poj)∈tct s.t.

• (θk,Prk,Ink,EOk,Pok)∈tct, with k<j, already satisfied either Condition 1 or Con-
dition 2;

• θz⪯Mθj;

36 Cloud Service Certification: Process and Models

• ∀i∈Inz, ∃i∈Inj s.t. [Inz.i]=[Inj .i];

• ∀eo∈EOz, ∃eo∈EOj s.t. [EOz.eo]=[EOj .eo].

• Prz=Poj;

• Poz=Poj;

2. else, ∃ zero or more consecutive (θs,Prs,Ins,EOs,Pos)∈tct s.t.

• (θk,Prk,Ink,EOk,Pok)∈tct, with k<s, already satisfied either Condition 1 or Con-
dition 2;

• θs=(Functional,{}).

Definition 3.4.2 verifies the correspondence between tcr and tct. The correspondence is eval-
uated by analyzing each quintuple (θz,Prz,Inz,EOz,Poz)∈tcr and (θj ,Pr j ,Inj ,EOj ,Poj)∈tct

according to Conditions 1 and 2. Condition 1 is applied to each quintuple (θi,Pr i,Ini,EOi,Poi)
in tcr referring to a non-functional mechanism (i.e., θz ̸=(Functional,{})). It is satisfied if a
corresponding quintuple (θj ,Pr j ,Inj ,EOj ,Poj) in tct is found, which defines a specialization of
θz (second bullet), a set of inputs (outputs) in the same equivalence classes of inputs (outputs)
of evr (third and fourth bullets), and the same set of pre-conditions Pr and post-conditions
Po (fifth and sixth bullets). Condition 2 applies to each quintuple in tcr referring to a
functional mechanism (i.e., θz=(Functional,{})). Each quintuple in tcr corresponds to one or
more consecutive and functional quintuples in tct. We note that both conditions define a
constraint (first bullet) guaranteeing that all quintuples are verified keeping their ordering in
tcr and tct.

Example 3.4.3 Starting from Example 3.4.2, let us consider a test case tci in T that
selects an operation, receives an encrypted request and decrypts it, and executes the operation
according to the received request, and a test case tcj in I that selects operation payment of a
payment service, receives an encrypted request with the credit card details and decrypts it,
executes the operation according to the received request, and adds the results of its execution
to the history log. tci×tcj according to Definition 3.4.2.

Following Definition 3.4.2, evidence ev∈I is a valid instance of evidence ev∈T as follows.

Definition 3.4.3 (ev I→ev) Let ev={tc1,. . .,tck} be an evidence of T and ev={tc1,. . .,tcn}
be the evidence of I, with n≥k. ev is a valid instance of ev, denoted ev I→ev , iff ∀ path ϕi of
mi and corresponding path ϕj of m according to Definition 3.4.1, ∀tcr∈ev associated with ϕj,
∃tct∈ev associated with ϕi s.t. tcr×tct.

Definition 3.4.3 verifies the correspondence between each test case tcr in CM Template
and at least one test case tct in CM Instance. The correspondence is evaluated by analyzing
all (θi,Pr ,Ini,EOi,Po)∈tcr and (θj ,Pr ,Inj ,EOj ,Po)∈tct according to Definition 3.4.2.

3.4 Model Consistency Check 37

3.4.4 Life Cycle verification

The certificate life cycle describes the expected evolution of a certificate over time, according
to different events (e.g., unexpected testing failures, new version of a ToC). The lifecycle
l in I must then adhere to the abstract lifecycle l in T . l is a valid instance of l, denoted
l I→l , iff Gl (V l ,El) is isomorphic to Gl(V l ,El) and each condition labeling edges in l is more
restrictive of the corresponding in l , as formalized by the following definition (step 5).

Definition 3.4.4 (l I→l) Let Gl(V l ,El) be the lifecycle in T and Gl (V l ,El) be the lifecycle
in I. Gl (V l ,El) is a valid instance of Gl(V l ,El), denoted Gl(V l ,El) I→Gl (V l ,El), iff there
exists an isomorphism f :V l→V l , such that:

1. ∀ni∈V l , ∃f(ni)∈V l ∧ label(ni)=label(f(ni));

2. ∀(ni ,nj)∈El , (f(ni),f(nj))∈El and is such that cond(f(ni),f (nj)) is more restrictive than
cond(ni ,nj).

Condition 1 states that each vertex ni in Gl , representing a state of a certificate, should
have a corresponding vertex f(ni) in Gl with the same label. Condition 2 states that each
edge in Gl should have a corresponding edge in Gl with a more restrictive transition condition.
In the following, for simplicity, we require each edge in Gl and corresponding edge in Gl to
have the same condition, meaning that T and I must have the same lifecycle (e.g., the one
in Figure 3.1). Existing approaches for the comparison of boolean expressions (e.g., [115])
can be integrated within lifecycle verification.

3.4.5 Full Model Consistency Check

Consistency check I▷T can then be modelled as a process composed of the 5 verification
steps in this section. It is defined as a function f▷:I×T →R, where R models differences
between I and T if I̸ ▷T , R=∅ otherwise, as follows.

Definition 3.4.5 (f▷) Let T be a CM Template and I be a CM Instance, function f▷:I×T →R
implements the CM Instance validity check ▷ and is such that:

1. f▷=∅ (I▷T) iff p I→p (Non-functional property verification), ToC I→ToC (ToC verifica-
tion), m I→mi (Evidence Collection Model verification), ev I→ev (Evidence verification),
l I→l (Lifecycle verification);

2. f▷ returns the differences R between I and T
(I̸ ▷T), otherwise.

We note that f▷ can also be used to check validity of a CM Instance I (CM Template
T , resp.) w.r.t. an adapted CM instance I ′ (CM Template T ′, resp.). We also note that

38 Cloud Service Certification: Process and Models

R could additionally specify the differences between certification models in terms of test
cases that i) become invalid in I ′ or ii) are specified in I ′ only. For conciseness, an example
of consistency check based on Examples 3.3.1 and 3.3.2 can be found in Appendix B. We
finally note that the computational complexity of f▷ can easily raise to a level that becomes
unmanageable in a real-time scenario like the one in Chapter 4. In Section 3.7, we therefore
define and experimentally evaluate two main heuristics that make the consistency function
manageable at the price of a reasonable decrease in the quality of the consistency check.

3.5 Certificate Life Cycle Management

Certificate life cycle management relies on evidence collection and CM Instance validity check
i) to verify the validity of a CM Instance w.r.t. the corresponding CM Template for certificate
issuing (Section 3.5.1) and ii) to monitor changes to either CM Templates or CM Instances
for certificate adaptation as discussed in the following.

3.5.1 Certificate Issuing

Certificate issuing first verifies the validity of a CM Instance w.r.t. the corresponding CM
Template and is then managed according to transition eNI,I=NI →I (dashed node/arrow in
Figure 3.1). The transition is triggered, if corresponding condition condeNI,I of eNI,I in l is
satisfied. The issuing phase is usually executed in a laboratory environment (pre-deployment)
under the supervision of a certification authority, though in some specific situations it can
be executed also in production by the delegated accredited lab (e.g., for properties that
must evaluate systems in production such as availability via replica). When the certificate
reaches the issuing state, life cycle management enters the second phase where the continuous
execution of I triggers certificate adaptation.

3.5.2 Certificate Adaptation

Certificate adaptation is built around states I, S, R, and E of l in Figure 3.1. A certificate
goes to state S when the collected evidence becomes insufficient to prove the property in
the certificate; to state R when collected evidence is contradictory and does not prove the
property (e.g., a successful attack is observed); to state E when the validity date expires. It
returns from state S to state I when the collected evidence becomes sufficient for certificate
re-new. We note that states R and E are final states and trigger re-certification from scratch.
We also note that condeS,I =condeNI,I with eS,I=S→I and eNI,I=NI →I.

Certificate adaptation aims to maximize certificate validity, while minimizing the risk
of unnecessary certificate revocation and reducing as much as possible the amount of re-
certification activities. A certificate revocation in fact requires re-certification from scratch,
which introduces high cost and time overheads invalidating the benefit introduced by cloud

3.5 Certificate Life Cycle Management 39

Table 3.2 Adaptation summary

Scenario Adapted ▷ f▷ Adaptation
element actions

p I ′▷T p I→p′ −
I ′ ̸ ▷T p I→p′ Full re-certification

ToC
I ′▷T ToC I→ToC ′, m I→m′, ev I→ev′ Partial re-evaluation

I ′ ̸ ▷T ToC I→ToC ′, m I→m′, ev I→ev′ Partial re-certification/
Upgrade/Downgrade

CM Instance
m

I ′▷T − −
Adaptation I ′ ̸ ▷T m I→m′, ev I→ev′ Partial re-certification/

(I→I ′) Upgrade/Downgrade

ev
I ′▷T ev I→ev′ Partial re-evaluation

I ′ ̸ ▷T ev I→ev′ Partial re-certification/
Upgrade/Downgrade

l I ′▷T l I→l ′ −
I ′ ̸ ▷T l I→l ′ −

CM Template
Any

I▷T ′ All CM Instance Adaptation

Adaptation (partial re-evaluation)

(T →T ′) I̸ ▷T ′ All CM Instance Adaptation
(partial re-certification)

certification schemes. We consider two adaptation scenarios: i) CM Instance adaptation
reacting to a new version of service, platform, or infrastructure, or to any change in the
configurations (e.g., due to elastic scaling, migration) at all cloud layers specified in the
ToC ; ii) CM Template adaptation reacting to new requirements for the validity of a property
(e.g., a new bug in a mechanism or a new attack discovered). We note that any change in
CM Template also triggers an adaptation process on CM Instance. Certificate adaptation is
carried out through an incremental certification process. The incremental process provides the
ability to re-execute (part of) the process in Figure 3.3, following changes in the CM Template,
the CM Instance, and the service implementation. It re-validates the ToC according to the
minimum set of test cases identified by validity check function f▷ in Section 3.4.

Table 3.2 shows a summary of the two adaptation scenarios. It describes the amount of
verification activities (i.e., column ▷ and f▷) to be done on the basis of the adapted element
(column adapted element), and the adaptation actions to be executed (column adaptation
actions).

CM Instance Adaptation Let us consider an adapted CM Instance I ′=⟨p′,ToC ′,m′,ev′,l ′⟩
of I=⟨p,ToC ,m ,ev ,l ⟩. CM Instance adaptation is triggered when f ▷(I ′, I)̸=∅ and follows
four different approaches.

Partial re-evaluation. It applies when I ′▷T , and considers transitions eI,S=I →S, eS,I=S→I,
and eS,R=S→R. Partial re-evaluation first triggers transition eI,S . It then executes an incre-

40 Cloud Service Certification: Process and Models

mental evidence collection process, which follows the differences between I and I ′ returned
by f▷(I,I ′). It finally re-news the certificate (eS,I), if possible, according to the following
scenarios.

• Cloud event. A mechanism θi∈ToC ′ of I is affected by the occurrence of an event. Test
cases involving θi are re-executed according to the result of f▷.

• Additional test cases. They are added in I ′, due to a change in ToC ′, m′, or ev′, and
executed.

• New mechanism. A new mechanism θj∈ToC ′ of I ′ replaces a mechanism θi∈ToC of I
and is such that θj .θ̂=θi.θ̂ (i.e., they have the same type). All the test cases involving
θi in the original CM Instance I are re-executed according to the new ToC ′ and m′.

If enough correct evidence is collected the certificate returns to state I (eS,I), otherwise
partial re-certification can be triggered or the certificate can be revoked (eS,R). We note
that, in case a new life cycle l ′ is defined in I ′, no operations are needed iff l ′ I→l . We also
note that partial re-evaluation does not require certificate authority intervention and can be
executed at runtime following I ′.

Partial re-certification. It applies when I ′ ̸▷T , and considers transitions eI,S=I →S,
eS,I=S→I, and eS,R=S→R. Partial re-certification first triggers transition eI,S . It then
executes an incremental evidence collection process that i) searches for a new T ′ such that
I ′▷T ′ and ii) follows the differences between I and I ′ returned by f▷(I,I ′). Partial re-
certification exercises flows of I ′ that do not exist or are different from the ones in I, rather
than implementing a complete re-certification. It then executes new test cases to collect the
evidence needed to award a certificate for a new property p′ in I ′. If the evidence is sufficient
and correct according to T ′, the certificate is re-newed (eS,I). Otherwise the certificate is
revoked (eS,R). We note that, in case a new life cycle l ′ is defined in I ′, no operations are
needed iff l ′ I→l .

Downgrade/Upgrade. It is a lightweight degeneration of the general case of partial re-
certification that does not require new testing activities, at a price of a little involvement of
the certification authority. Partial re-certification is executed only if downgrade/upgrade fail.
Certificate downgrade is triggered when a set of test cases i) fail or ii) are removed from I ′

due to changes in ToC and/or m . It aims to find a suitable CM template T ′ for the adapted
CM Instance I ′, such that a weaker property is still preserved for the service referring to it.
Templates for certificate downgrade are defined by the certification authority, making the
accredited lab just responsible to check if I ′ is consistent with one of the alternative templates
T ′. In case such T ′ is found, the original certificate C is downgraded to C . Certificate upgrade
process is the inverse of the downgrade process and is only applicable to a downgraded
certificate C , up to the original certificate C . Downgrade and upgrade processes deal with

3.5 Certificate Life Cycle Management 41

some classes of cloud configurations that change very rapidly (e.g., number of replicas
supporting property availability).

Full re-certification. It is applied in case changes to I cannot be managed according to
one of the above approaches.

3.5.3 CM Template Adaptation

CM Template adaptation focuses on incremental updates of the certification methodol-
ogy. It is driven by the certification authority that releases a refined CM Template
T ′=⟨p′,ToC ′,m′,ev′,l ′⟩ of T =⟨p,ToC ,m ,ev ,l⟩, and can trigger a CM Instance adaptation for
all instances I referring to T . The initial CM Template T is defined by the certification
authority for a given property and class of ToC . However, upon new requirements for the
validity of the property are discovered, the certification authority defines an adapted T ′

that is matched against I originally showing consistency with T . The incremental process
proceeds as follows: i) if I▷T ′, f ▷(T ′, T) is performed and a partial re-evaluation executed
according to its results; ii) if I▷̸T ′, the service under certification must be adapted and a new
instance I ′ produced such that I ′▷T ′. f ▷(I ′, I) is then performed and a partial re-certification
executed according to its results.

CM Template adaptation can be considered as a certification-aware fast-patching approach.
As an example, suppose that United States Computer Emergency Readiness 4 identifies a new
vulnerability for a given ToC , which calls for template T modification. Such modification
triggers a top-down adaptation process, and all certificates referring to affected templates
become suspended. A service owner must then adapt its own service and corresponding
instance I to maintain the certificate.

3.5.4 Certificate Comparison

Traditional schemes, such as Common Criteria, have as one of the objectives allowing
consumers to compare certified products on the market. The models presented in this thesis
can be compared to understand which cloud service may best satisfy the customer security
requirements. To provide such feature, certificates and certification model template and
instance should be comparable. Certificate adaption scenarios showed that is possible to
compare two different certification templates or instances starting from the assumption that
f▷ is different than 0.

The easiest way to respectively compare templates, instances or certificates is by using
the information provided by the certification property p. In fact p, as described in Section
3.2, is a pair (p,Ap) where p is an abstract property and Ap a set of attribute. In fact, given
two properties pi,pj∈P, pi is weaker than pj (denoted pi⪯P pj) if pi.p̂=pj .p̂, and ∀ak∈Ap ,

4(US-Cert – https://www.us-cert.gov/)

https://www.us-cert.gov/

42 Cloud Service Certification: Process and Models

either the value ni(ak) of attribute ak is not specified or ni(ak)⪯ak
nj(ak). We note that total

order relations ⪯ak
between contextual attributes ak∈Ap can be defined by expert users. An

example of property hierarchy can be found in [4].
Certificates comparison is not a trivial task since they contain only part of the outcome

of the whole certification process. However, the presented certification process allows user
to evaluate in detail how the certificate was issued analyzing both its certification model
instance and template supporting a deep investigation that traditional schemes, such Common
Criteria, could not.

Certification model instances I’ and I can be easily compared if they are instances of
the same template T : I▷T and I’▷T . In this case based on the f▷ function defined in 3.4.5
is possible to analyze the difference between the two CMI. The outcome of f▷ is R that
describes the difference between I and I’. The different is, if both CMI are instantiation of
T , based only on the soundness of the evidence and collection process requirements.

In case certification model instances I’ and I are not instantiation of a single T , they
could be compared iff T ’▷T where I’▷T ’ and I▷T . In this case we are sure that there is a
consistency over the two models that guarantees a minimum set of overlapping characteristics.
Even in this case the soundness of the models can be identified by analyzing the evidence
collection model.

We note that due to the common structure of template and instance the function f▷ can
be also defined as f▷: T ×T →R and I×I→R and indeed the expression T ’▷T is valid.

Example 3.5.1 Let us consider two certification model instance I and I’ such that I▷T and
I’▷T . We refer to the template T in example 3.3.1 where p=(Confidentiality, {ctx=in-
transit/at-rest}) and target of certification ToC=({θ1, θ2, θ3}, <service>). Both θ1, θ2,
θ3 are encryption mechanisms. The two CMI I and I’ are consistent with T by providing
process to ensure encryption with a different requirement on the encryption algorithm used or
on the accepted key strength. Based on this characteristic is possible to compare and evaluate
the two CMI.

3.6 Chain of Trust

The practical usability of a cloud certification process passes from the definition of a proper
trust model enabling certification authorities to delegate part of the process management to
accredited labs, and increasing the confidence of final users in the results of the certification
process itself.

Cloud certification introduces the need to define a chain of trust where responsibilities
are spread across the certification process life cycle and the entities involved in it. In fact,
certification authorities cannot be assumed as a single trusted CA taking responsibility on
(i.e., signing) the whole certification process. We therefore envision a chain of trust based on

3.6 Chain of Trust 43

multiple XML signatures. In the following, we denote with Aen,ws assertions made by an
entity en over a system/service ws, and with Een,ws the evidence produced by an entity en

over ws and supporting Aen,ws. The customer c’s trust in an assertion Aen,ws made by an
entity en is denoted Tr(c, Aen,ws), where Tr takes discrete values on an ordinal scale (e.g.,
for a Common Criteria [65] certified product, an assurance level value in 1-7).

The signing process at the basis of our chain of trust can be decomposed in three different
signing moments, one for each of the components (CM Template, CM Instance, Certificate)
of the certification process in Section 3.3, as follows.

• CM Template signature: CM Template T is signed by a trusted certification authority
CA. It describes the methodology for the certification of a class of ToC , while it does not
contain details about the evidence collection endpoints and the real ToC mechanisms.
Tr(AL,T CA) denotes the trust an accredited lab AL has in CM Template T that builds
on the trust AL has on CA and its signature.

• CM Instance signature: CM Instance I is signed by an accredited lab AL, which has
been delegated by CA as the party responsible for instantiating the CM Template. AL
receives a signed CM template T and fills in all missing elements (possibly with the
help of the cloud/service providers) to form a CM Instance. The CM Instance signature
builds on Tr(AL,T CA) and is at the basis of the trust Tr(c, AAL,ws) and Tr(c, EAL,ws)
a client c has in assertions AAL,ws and evidence EAL,ws, respectively, provided by AL.

• Certificate signature: this signature binds the certificate (including assertions AAL,ws

and evidence EAL,ws) and the corresponding CM Instance, which has been used to i)
execute real testing activities on the target of certification and ii) produce the certificate
itself.

Figure 3.4 shows our chain of trust, identifying roles (rectangles), artifacts (rounded
rectangles), certification activities (solid arrows), and trust relations (dashed arrows). All
signatures are implemented using public key cryptography. The chain of trust includes
c’s trust in i) CM Instance IAL,ws, denoted as Tr(c,IAL,ws), used to collect the evidence
supporting a set of assertions, ii) the evidence generated by AL according to CM Instance I,
denoted as Tr(c,EAL,ws), iii) assertions made by AL on a service, denoted as Tr(c,AAL,ws),
where AAL,ws is the set of assertions produced by the accredited lab AL on ws, and iv)
the certificate C including AAL,ws and EAL,ws. Tr(c,C) depends on i) the reputation of CA
signing CM Template T (i.e, Tr(AL,T CA)) and the certificate C itself, ii) the reputation of
AL and the trust in the methodology used by AL to generate and sign CM Instance IAL,ws

(i.e., Tr(c,IAL,ws)), and specify assertions AAL,ws(i.e., Tr(c,AAL,ws)), and iii) the trust in the
methodology used by AL to generate evidence EAL,ws (i.e., Tr(c,EAL,ws)).

44 Cloud Service Certification: Process and Models

T CA

IAL,ws

EAL,ws

AAL,ws

AL

CA

Client c
T r(c,EAL,ws)

T r(c,IAL,ws)

T r(c,C)

T r(AL,T CA)

T r(c,AAL,ws)

C

defines and executes
signed IAL,ws

defines signed T CA

produces

supports

produces

instantiates

Fig. 3.4 Chain of Trust for cloud certification

3.6.1 Chain of Trust and Life Cycle Management

Our chain of trust supports the certificate life cycle in Figure 3.1, and both issuing and
post-issuing phases.

Whenever issuing phase is concerned, there is a subtlety to consider. Since this phase
is usually based on static evidence collected in a laboratory environment, the CM Instance
signature must undergo a two-step process. The first process involves the signature of a CM
Instance where the endpoints of the service under certification refer to mechanisms deployed
in the laboratory environment. Upon a certificate Cws is issued and certified service ws moved
in production (i.e., there is a transition from state NI to state I in the life cycle), a second
process substitutes the CM Instance, which is linked in the certificate, with a new one signed
by AL with all bindings and endpoints referring to the real deployment infrastructure.

The chain of trust also considers post-issuing phase, where a certified system evolves to a
new version or cloud events affecting it are observed. In this phase, as discussed in Section 3.5.2,
the collected evidence may become insufficient or contradictory, and corresponding certificate
invalid, requiring re-certification. The simplest approach is to always perform re-certification
from scratch (i.e., certificate is revoked and the process starts from state NI); however,
this approach introduces substantial time and cost overheads, which are not manageable in
a highly dynamic cloud-based ecosystem. An incremental certification process producing
evolving certificates, though more complex, is more adequate to the considered environment.
Its main goal is to renew a certificate by reusing, as much as possible, the certification
evidence available from older certificates [62], limiting collection of new evidence. Trust in
an incremental process is given by the trust Tr(c,EAL,ws) the client c has in the dynamic
evidence produced by executing CM Instance IAL,ws and the trust Tr(c,IAL,ws) c has in the
instance itself. The evolving certificate generated as a result of the incremental process is

3.7 Experimental Evaluation 45

managed through our life cycle. For instance, as soon as the evidence is no more sufficient
or part of it becomes invalid, the certificate is moved to state S, where AL evaluates if the
certificate can evolve or not. In the first case, if the collected evidence is sufficient, the
certificate comes back to state I. The involvement of the certification authority is marginal,
since it only needs to sign the adapted certificate when required by accredited lab AL. The
accredited lab in fact has been delegated by the certification authority, which trusts and
verifies lab activities by means of digital signature verification. In the second case, the
CM Instance is no more usable for service certification or compliance with the original CM
Template cannot be guaranteed. Re-certification from scratch is then triggered.

3.7 Experimental Evaluation

We present a complete experimental evaluation of our approach for model consistency check,
see Section 3.4, in terms of efficiency and quality, and discuss the utility and practical usability
of our approach for life cycle management. The consistency check module is a pluggable
module that can extend framework described in Chapter 5, by providing functionalities
for template instance consistency check. Section 3.7.1 describes the heuristic we developed
according to definition 3.4.5. All experiments have been repeated 3 times and the results
shown in this section are the average over the 3 executions. All building blocks of our
experiments, including the consistency check module, are available at Appendix B.

3.7.1 Consistency Check Algorithms

We implemented the exhaustive algorithm of our consistency check function f▷ as 5 consecutive
verification steps according to Definition 3.4.5. We called it exhaustive because the evidence
collection model verification is carried out by exhaustively searching if, among all possible
permutations of flows Φ(mi) in I, there exist one or more isomorphisms (Definition 3.4.1)
with flows Φ(m) in T . Considering β as the cardinality of Φ(m) in T , the evidence collection
model verification, and in turn the exhaustive algorithm, has a factorial asymptotic behavior
O(β!) in the worst case. The other 4 steps of f▷ show instead a polynomial behavior. We
then propose two heuristics5 balancing efficiency and quality in terms of precision and recall,
which differs from the exhaustive algorithm only for the evidence collection model verification
as follows. Heuristics pseudocode is available at Appendix B.

Heuristic 1: k-matching.

Evidence collection model verification is carried out flow by flow and aims to find multiple
matching, isomorphisms in Definition 3.4.1, between m of T and mi of I. It logically traverses

5Heuristics pseudocode is available in Appendix B

46 Cloud Service Certification: Process and Models

the permutation tree of the flows ϕj∈Φ(mi) of I with a breadth-first search, and selects a
proper sub-tree according to k and flows ϕi∈Φ(m) of T . k represents the maximum number
of matching flows that are selected at each step of the heuristic. First, a node j at depth
d=1, . . .,β in the permutation tree, with β the cardinality of Φ(m), is traversed iff its parent
has less than k selected children in the sub-tree; then, it is selected iff ϕj∈Φ(mi) matches
the corresponding ϕd∈Φ(m) according to Definition 3.4.1. The resulting sub-tree includes
zero or more isomorphisms between m and mi, represented as paths of length β. In the
worst case scenario, the algorithm has an exponential asymptotic behavior O(kβ−k+1·(k−1)!),
which for k=β degenerates to the exhaustive algorithm O(β!). We note that, for small k, the
complexity is far lower than the one of exhaustive algorithm.

Heuristic 2: Ordered k-matching.

Evidence collection model verification is carried out by first ordering the flows in Φ(m) and
Φ(mi), and then applying k-matching heuristic. We use an ordering function that recursively
compares nodes at the same depth d, with d=1,. . .,β, from the ancestors to the leafs. For each
d, only flows that have not been ordered yet according to the previous runs of the ordering
function are considered. The ordering function is based on the hierarchy of mechanisms
HM and given two flows ϕi and ϕj , with i>j, ϕi is placed first iff mechanism θi at depth
d of ϕi and mechanism θj at depth d of ϕj are such that θj≺θi. In the worst case scenario,
the algorithm has the same asymptotic behavior as Heuristic 1, since the complexity of the
ordering process is negligible compared to the one of k-matching.

3.7.2 Performance Evaluation

We evaluated the performance of our approach considering the matching between CM
Templates and CM Instances at the basis of certificate lifecycle management. We automatically
generated, using the tool available in Appendix B, 19 CM Templates ⟨p,ToC ,m ,ev ,l⟩, varying
the number β of flows between 1 and 19 (step 1), each with depth (i.e., flow length) equal to
5. Our tool selects a property p from the set of available properties, defines ToC ToC and life
cycle l, and builds the evidence collection model m . Model m is composed of a set of β paths,
implemented as flows of single mechanisms with depth 5. We note that a small depth equal
to 5 has been chosen to demonstrate the high complexity of our matching approach also in
simplified scenarios. For each template, we randomly generated 10 CM Instances (a total of
190 instances) that satisfy f▷, using the same tool available in Appendix B. Performance
results measured consistency check verification between CM Templates and corresponding
CM Instances in the worst case scenario, where all computations must be done to find a
solution. Performance and quality experiments have been run on a VM with 22 cores, 16GB
RAM, and 120GB HDD deployed on a physical machine Dell PowerEdge T620 equipped
with 8 Xeon Octa Core 1.99 GHz.

3.7 Experimental Evaluation 47

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ti
m

e
 (

s
)

Number of flows (β)

Exhaustive

Heuristic 1 k=1

Heuristic 1 k=2

Heuristic 1 k=3

Heuristic 1 k=4

Heuristic 1 k=5

Heuristic 1 k=6

600s

Fig. 3.5 Execution time (log scale) varying the number of flows

Figure 3.5 compares the execution time of the exhaustive algorithm and heuristic 1, using
a log scale, varying k from 1 to 6, considering a fixed number of 50 test cases in evidence ev .
Heuristic 2 has not been considered because it only adds a fixed delta for flow ordering. We
note that the execution time of all algorithms is reported only for configurations requiring less
than 10 minutes, and estimated for configurations over that threshold using the complexity
analysis in Section 3.7.1. Our results show that, as expected, all heuristics approximates
factorial execution time in the number of flows Φ(m), which can however be taken under
control by selecting proper k. For instance, for k=3 execution time exceeds the 10-minute
limit with Φ(m)=13, for k=5 with Φ(m)=10. The exhaustive algorithm shows the worst
execution time, being k=β.

3.7.3 Quality evaluation

We evaluated the precision and recall of our heuristics with respect to the full precision and
recall of our exhaustive algorithm, using three test sets. Each test set contains 160 consistent
CM Instances derived from a single CM Template, with β = 9 and depth equal to 5. Each test
set has an increasing number of average matching per flow, representing the mean number of
flows in the 160 CM Instances matching a single flow in the CM Template. The first test set
(a) is characterized by CM Instances having an average match per flow of 1.12 with variance
0.03; the second test set (b) has average match per flow of 2.26 with variance 0.25; the third
test set (c) has average match per flow of 3.63 with variance 0.33. We note that the three

48 Cloud Service Certification: Process and Models

 0

 20

 40

 60

 80

 100

k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3

R
e

c
a

ll
 (

%
)

k-matching ordered k-matching

Test set (c)Test set (b)Test set (a)

Fig. 3.6 Quality evaluation considering three instantiations of our k-matching algorithm with
k=1, k=2, and k=3.

test sets model the three working of our consistency check function: i) the matching between
two I (CM Instance adaptation - low average matching), ii) the matching between T and I
(certificate issuing and CM Instance adaptation – medium average matching), and iii) the
matching between two T (CM Template adaptation – high average matching).

First, we evaluated the recall of our heuristics on the three test sets, configuring our k-
matching algorithm with three distinct values k=1, k=2, and k=3. Our results are presented
in Figure 3.6. Heuristic 1 has 70% recall for test set (a), 13.125% recall for test set (b), and
5.625% recall for test set (c) with k=1; 100% recall for test set (a), 61.875% recall for test
set (b), and 27.5% recall for test set (c) with k=2; 100% recall for test set (a), 86.875%
recall for test set (b), and 48.75% recall for test set (c), with k=3. Heuristic 2 provides a
substantial improvement for k=2 and k=3, which have 86.25% and 98.125% recall for test set
(b), 73.75% and 98.75% recall for test set (c) respectively. Our results show that the ordering
introduced in Heuristic 2 has a positive effect on the recall. This is due to the fact that the
ordering, especially with k>1, increases the probability of correctly matching the evidence
model in the template with the one in the instance. In addition, our results show that the
higher k, the higher the recall. This is due to the fact that, with higher k, multiple evidence
model matching between a template and an instance are found, increasing the probability of
finding the one that also makes the whole consistency check successful.

3.8 Chapter Summary 49

Second, we evaluated the precision of our heuristics by introducing ad hoc random
variations on all 480 CM Instances (e.g., modifications of flows, mechanisms, properties) in
the three test sets, to produce CM Instances which are inconsistent with the corresponding
CM Templates. We then executed our heuristics obtaining no matching, meaning that our
heuristic algorithms do not produce any false positives or, in other words, an inconsistent
CM Instance never shows consistency with a CM Template.

To conclude, although all heuristics approximate factorial execution time, high-quality
results can be achieved with small k and good performance. For instance, ordered k-matching,
with k=2, achieves quality of 86.25% on test set (b) with a worst case performance of 0.52s;
with k=3, it achieves quality of 98.75% on test set (c) with a worst case performance of 0.7s.

3.8 Chapter Summary

The definition of a certification scheme for the cloud is an important research direction and
a practical need. We have provided a rigorous and adaptive assurance technique based on
certification which fully addresses cloud requirements. Above all, our certification scheme
provides a solution to certificate life cycle management including an automatic and incremental
approach to certificate adaptation addressing the multi-layer and dynamics nature of the
cloud. Our scheme departs from the assumption of having an online certification authority
always available during the certification process, and is at the basis of a concrete trust model
for the cloud.

Chapter 4

Cloud Service Deployment based
on non-functional properties

The maturity reached by cloud computing has fostered the implementation of a number
of infrastructure, platform, and application services available worldwide. At the same
time, the trend toward coarse-granularity business services, which cannot be managed by a
single entity, resulted in several approaches to service composition that maximize software
re-use [116]. Service compositions need to guarantee optimal and verifiable QoS, usually
achieved by means of assurance techniques for the verification of non-functional properties
(e.g., security, performance) [117, 118]. Recently, certification-based assurance techniques
have been introduced to guarantee stable QoS in the cloud [119–123]. They are based on
continuous collection of evidence on the behavior of a cloud-based system, which is used
to verify whether the considered system holds a specific (set of) property. Certification
techniques mostly focus on the certification of single-service, such as described in Chapter 3,
and often do not consider the cost of maintaining stable QoS. Even worse, a trend in service
composition is to provide an ad hoc composite service for each request, with high costs on
the cloud providers (CPs).

Starting from the concepts expressed in Chapter 3, this Chapter1 first analyzes and
defines a certification approach for cloud composite service. Certification of composite service
is a challenging task since certification is mostly seen as a monolithic process and indeed
traditional approaches require to re-execute all certification activities for all services involved.
In our view certification of composite services should minimize all these activities and re-use

1This chapter is based on the following publications:
• A Cost-Effective Certification-Based Service Composition for the Cloud, Co-author: M. Anisetti, C.A.

Ardagna, E. Damiani, published in Proc. of IEEE CLOUD 2016 , June-July 2016, San Francisco, CA,
USA

• Cost-Effective Deployment of Certified Cloud Composite Services, Co-author: M. Anisetti, C.A.
Ardagna, E. Damiani, under review: Journal of Parallel and Distributed Computing

52 Cloud Service Deployment based on non-functional properties

all available artefact such as certificates and corresponding evidence. A composite certificate,
built on top of single-service-certifcates, is subject to changes of the involved services and
indeed its life-cycle management must support versioning and migration. Moreover, due to
the dynamic nature of the cloud, versioning and migration must be accomplished in a near
real time to guarantee the certification continuity.

This chapter also faces the need to control the costs observed by cloud providers for
certified composition management. In this scenario, it is important to provide a cost-effective
certification for cloud composite services. While current research on cloud computing has
privileged solutions minimizing costs on the final users neglecting the costs on the cloud
providers that often represent the first source of fee increase. In this chapter we provide
a deployment algorithm for cloud service composition based on non-functional properties
that aims to minimize cloud provider’s costs. Moreover, as highlighted by Lins et al. [13],
the certification effectiveness is strongly dependant by cost. The approach presented in this
chapter minimizes the certification costs, but without the main goal of favouring the cloud
provider but with the aim to enhance the fruition of security cloud services. In fact the
possibility to re-use certificates and automate the certification trust chain can minimize the
involvement of actors such as CA and at the same time the number of effectively necessary
audit operations.

4.1 Reference Model and Requirement

Our reference model is a cloud infrastructure where single services are composed to form
complex services and certification-based assurance techniques are deployed for continuous
QoS evaluation. The participating entities are: i) cloud provider, providing functionalities for
service delivery and composition; ii) composite service owner, managing a service composition;
iii) certification authority, providing functionalities for continuous QoS certification. Current
approaches to service composition in the cloud are affected by few limitations, which show
a clear disalignment with the maturity reached by the cloud. These limitations, which are
described in the following, must be addressed to provide a cost-effective service composition
for the cloud with continuous QoS assessment.

• Functional composition. Service composition in the cloud puts great emphasis on
functionalities. Component services are selected on the basis of the implemented
functionalities, while overall non-functional aspects are, in most of the cases, pushed
aside. This practice however increases the likelihood of composite services that, on
one side, satisfy the expectations of the users, while on the other side increase risks of
failures and mishbehaviors. A proper approach to service composition must not only
focus on functional requirements, but also consider non-functional requirements from
the outset.

4.1 Reference Model and Requirement 53

• Ad hoc composite services. Service composition in the cloud often consists of ad hoc
workflows, where component services are designed and developed for a specific composite
service. This approach substantially decreases the utility of service composition, both
from a flexibility and a cost point of view. Having no possibility of sharing a single
service among multiple service compositions bound current approaches to old fashion
monolithic service deployments. This approach is often adopted at infrastructure layer,
where the huge amount of available resources often point to single tenant scenarios,
where a user asking for resources is usually provided with isolated resources not shared
with other tenants. If, on one side, ad hoc composite services lower complexity of QoS
evaluation and management, on the other side, it substantially increases costs and
reduces the benefits of service composition.

• QoS evaluation. It mostly focuses on deployment-time cost evaluation and on composi-
tion adaptation in case of component service malfunctioning/failure. QoS evaluation is
however a more powerful concept that should represents a first-class requirement driv-
ing composition operations. First, it should be based on assurance (e.g., certification)
techniques guaranteeing stable and verifiable QoS; then, it should consider how the QoS
of a single service contributes to the QoS of the whole composition; finally, it should
implement a continuous process that evaluates QoS over time and drives adaptation of
service compositions to provide stable QoS.

• Costs. The evaluation of service composition costs, which mainly focuses on direct costs
due to component service integration, does not fit a multi-tenant cloud environment
where i) services can be shared, relocated and migrated among different compositions,
and ii) non-functional properties are modeled as QoS requirements and integrated with
the composite service life cycle. A proper cost evaluation and cost-effective service
composition must also consider costs introduced by the infrastructure responsible for
continuous QoS evaluation, and the costs introduced by the mismatch between QoS
requested by the users and the ones provided by the cloud infrastructure.

In the following of this chapter, we provide a cost-effective, certification-based service
composition approach for the cloud that fills in the above limitations. It is based on i) the
concept of portable certification, supporting certification of composite cloud services continuous
providing QoS evaluation also in case of service migration and relocation (Section 4.2), and
ii) a new cost evaluation methodology, considering direct, indirect, and mismatch costs on
the cloud providers (Section 4.3, 4.4).

We note that this chapter uses light versions of the concepts described in Chapter 3,
since the requirements of time and cost effectiveness of the process can’t be match using the
whole definition of I and T and mainly of consistency check f▷ described in Section3.4. f▷

is NP-Hard and in this Chapter we mainly focus not on the consistency of two models but

54 Cloud Service Deployment based on non-functional properties

on how effectively deployed cloud services minimizing their cost, indeed we cutted some of
the characteristics of the models to make the chapter as much readable as possible, without
loss of generality. Section 4.2 describes in details the differences.

4.2 Certification of Cloud Composite Services

We present a certification approach specifically tailored for cloud composite services, which is
grounded on and extends the one in Section 3.3 to i) support service versioning, migration, and
deployment changes (portability) and ii) accomplish the dynamics of service orchestrations
where component services can be replaced and migrated at run time according to contextual
events.

In this chapter, without loss of generality, we consider a lighter version of the concepts
described in Chapter 3. We still comply with the whole certification process, but due to the
requirements of the deployment problem, which should support versioning, migration and
portability in near real time manner to guarantee the certification continuity, we cut some of
the characteristics that make the consistency check (see Section 3.4) a NP-hard problem. In
fact, our certification process is still driven by a Certification Authority that manages all
certification activities leading to certification. It is composed of two sub-processes: i) evidence
collection sub-process and ii) life cycle sub-process. The evidence collection sub-process collects
the evidence at the basis of a trustworthy certification and is carried out by the certification
infrastructure. The life cycle sub-process implements a continuous certification process that
accomplishes the evolution of the ToC , managing ToC migrations and versioning. The
cloud service under evaluation is referred to as Target of Certification (ToC). Properties
p=(p̂,l), as defined by the Cloud Security Alliance [112], are composed of a controlled name
p̂ (e.g., confidentiality of data in transit) and a level l modeling the strength of the supported
property. Properties can be organized in a hierarchy based on their strength such that pi≤pj

(meaning pi is weaker than pj) iff pi.p̂=pj .p̂ and pi.l<pj .l. Based on levels l, a distance
Dist(pi, pj) between two properties with the same p̂ is defined as:

Dist(pi, pj) = |pi.l − pj .l| (4.1)

4.2.1 Certification Model Template and Instance

Before discussing the two subprocesses, we define our certification model template and
instance.

Certification Model Template (T). It is a declarative model that describes the activities
to be done to verify a set of properties according to the expected behavior of a class of ToC .
Formally, a CM Template T i is a triple (fi , Ri ,d-evali), where i) fi is a functionality in the set
F of functionalities offered by a cloud provider, ii) rk is a user requirement in the set Ri of

4.2 Certification of Cloud Composite Services 55

requirements used to annotate fi , with rk∈Ri a property (p̂,l), and iii) d-evali is a declarative
description of the evaluation activities to be carried out on the ToC to verify requirements
Ri . T is built around d-eval, which is defined as a set of annotated workflows.

Definition 4.2.1 (d-eval) d-eval is a pair ⟨ϕ, ω⟩, where:

• ϕ is a set of sequential workflows {n1 ,. . .,nn} for evidence collection, where each node
ni defines an abstract action (e.g., test authentication interface) and each edge (ni ,nj)
the flow between two actions.

• ω is an annotation function on nodes n. ω({ni}) defines constraints (e.g., two factor
authentication required) for a subset {ni} of abstract actions.

We recall that d-eval refers to a generic class of ToC (e.g., an authentication system), while
it precisely pinpoints security and deployment requirements (e.g., a given password strength
policy). This means that, although there are a number of different ToC for the selected class,
their evaluation w.r.t. security/deployment requirements should follow the same declarative
description.

Certification Model Instance (I). It is a procedural, executable model generated by
instantiating T on a real ToC . It drives the certification process, including the evidence
collection process. Formally, a CM Instance Ii is a triple (csi , Pi ,p-evali), where i) csi is
the ToC , ii) Pi is the set of properties supported by Ii, and iii) p-evali defines certification
activities as a concrete instantiation of d-eval for a specific ToC . I is built around p-eval,
which covers the peculiarities of the specific ToC w.r.t. the given properties. p-eval is an
annotated workflow defined as follows.

Definition 4.2.2 (p-eval) p-eval is a triple ⟨ϕ′, λ⟩, where:

• ϕ
′ is a set of sequential workflows {n1 ,. . .,nn} for evidence collection, where each node

ni defines an action implemented on the ToC instance and each edge (ni ,nj) the flow
between two implemented actions.

• λ is an annotation function. λ({ni}) defines the configuration settings of each action,
describes how to deploy p-eval, and describes possible dependencies on its execution.

We note that CM Instance I can be not unique for CM Template T .

Example 4.2.1 Let us consider a Certification Model Template T =(Storage, Confiden-
tiality via encryption at rest, d-eval), with d-eval=⟨ϕ, ω⟩. For simplicity, we assume ϕ

composed of a single sequential workflow {n1 , n2 , n3 }, where n1 =“ToC login”, n2 =“Test en-
cryption”, n3 =“ToC logout”, and annotations ω({n1 })=[Administration credentials required],
ω({n2 })=[Resource URI].

56 Cloud Service Deployment based on non-functional properties

The same Certification Model Template T is instantiated in two different Certification
Model Instances I for a linux file system and Amazon S3. Both instances drive a certification
process and evidence collection activity targeting the same property “Confidentiality at rest
via encryption”.

Let us first consider a linux file system using LUKS. p-evall=⟨ϕ′
l, λl⟩ implementing the

above d-eval is defined as follows: ϕ
′
l={SSH login, Script testing encrypted volumes, SSH

logout}, λl({n1 })=[root,cert], λ({n2 })=Volume path. Let us then consider Amazon S3 Stor-
age. p-evals3=⟨ϕ′

s3, λs3⟩ implementing the above d-eval is defined as follows: ϕ
′
s3={Amazon

login, API call for S3 configuration, Amazon logout}, λl({n1 })=[credentials, APIkey],
λ({n2 })=[Config item].

4.2.2 Certification Portability

In the following we first describe the portability of our certification process and then describe
how we use it in the framework of certification of composite services.

A portable certification process is a certification process that is not bound to a specific
ToC and can be easily applied to different service instances. In other words, it permits to
apply the same certification process to different ToC with sufficient commonalities. Using
our formalism, a certification process that derives from requirements in a specific template
T can be re-used (with or without minor modifications) to certify all the services having
an instance I consistent with T . To verify this consistency we define a consistency check
function, inspired by f▷ described in Section 3.4 , as follows.

Definition 4.2.3 (I→) CM Instance Ii=(csi , Pi ,p-evali) is consistent with CM Template
T i=(fi , Ri ,d-evali), denoted as T i

I→Ii, iff i) csi implements fi , ii) Pi is such that Ri≤Pi,
that is, ∀rj∈Ri ,pj∈Pi, rj≤pj, meaning that the properties are stronger than the requirements
according to property levels, and iii) d-evali i→p-evali (see Definition 4.2.4), meaning that
p-evali is an instantiation of d-evali.

Consistency check I→ is the cornerstone of the process portability. A certification process
can be implemented and executed using different instances I, thanks to the decoupling
between abstract definition (T) and concrete actuation (I) of the certification process. This
decoupling also permits multiple consistent instantiations (I) of the same process (T). We
note that, having T and I the same logical structure, I→ can be used to verify the consistency
between two templates (T i

I→T j) and two instances (Ii
I→Ij).

As a complement to Definition 4.2.3, we detail how p-eval in I is checked for consistency
against d-eval in T .

Definition 4.2.4 (i→) p-evali=⟨ϕ′, λ⟩ is an instantiation of d-evali=⟨ϕ, ω⟩, denoted as
d-evali i→p-evali, iff i) ϕ

′ implements ϕ, ii) configurations λ({ni}) in p-eval instantiate

4.2 Certification of Cloud Composite Services 57

constraints ω({ni}) in d-eval, iii) λ permits the binding between each action in ϕ
′ and the

corresponding end-point in the ToC.

Definition 4.2.3 (I→) and Definition 4.2.4 (i→) are at the basis of a portable certification
process that addresses two main scenarios: service versioning and service replacement.

Service versioning. It considers a single service that is either migrated as is to another
location or evolves to a new version. Process portability for service versioning is defined as
described in the following definition.

Definition 4.2.5 (Process Portability (Versioning)) Let us consider a certification pro-
cess driven by Ii=(csi , Pi ,p-evali) for service csi , and a service csk such that either i) csi=csk

but they are deployed in different locations or ii) csk is the new version of csi . The certification
process driven by Ii can be ported to csk iff λi is modified to connect p-evali to csk .

Process portability (versioning) properly configures the certification model instance in a way
that permits the certification activities in p-evali to connect to a different ToC (i.e., service
csk). To this aim, λi of p-evali must provide the new configurations required to connect each
action to csk .
Service replacement. It considers a migration of a service to another service of the same
class. For instance, a service implementing a MySQL database is migrated to a service
implementing an SQLServer database. Process portability for service replacement is defined
as described in the following definition.

Definition 4.2.6 (Process Portability (Replacement)) Let us consider Ii=(csi , Pi ,p-
evali) and Ik=(csk , Pk ,p-evalk) such that csi ̸=csk . The certification process driven by Ii can
be ported to Ik according to the following conditions:

• Ii
I→Ik

• csi and csk provide the same functionality fi .

Process portability (replacement) instantiates certification activities on different services
csi and csk . To this aim, Condition 1 states that Ii is consistent with Ik, and in turn their T
are consistent as well. We note that the consistency at CM Instance level implies that p-evalk
implements p-evali (see Definition 4.2.4). In other words the workflows for evidence collection
in p-evali must be available also in p-evalk possibly with different annotation functions [6].

Condition 2 states that csi and csk provide the same functionality fi , which is specified
in the corresponding templates T i and T k. In other words, a certification process can be
ported to a service or in an environment where the certification is driven by a different T
without the need to re-build the certification process from scratch.

58 Cloud Service Deployment based on non-functional properties

ToC p.name p.level p-eval.ϕ p-eval.λ
Iv=

I =

Ir=

S3.bucket.us-east-1 e2econfidentiality 1 ϕ
′
s3 λ2

S3.bucket.eu-west-1 2econfidentiality 1 ϕ
′
s3 λ1

AzureStorage.eu-1 e2econfidentiality 2 ϕ
′
a λ3

Replacement

Versioning

Fig. 4.1 An example of Versioning and Replacement of a storage service

Example 4.2.2 Let us consider a CM template for a storage service defined as follows
T 1={Storage, {(e2econfidentiality,1) }, d-evalstorage} where end-to-end confidentiality
(e2econfidentiality) is requested (i.e., both confidentiality in transit and confidentiality at rest).
Let us consider a storage service based on Amazon Simple Storage Service (S3) and specifically
a bucket hosted on S3 eu-west-1 AWS region. Let us consider that this service has been certified
according to the CM Instance Is3=(S3.bucket.ue-west,{(e2econfidentiality,1)},p-evals3) with
T 1

I→Is3.
Figure 4.1(a) shows the case where this service is moved to a different region (versioning).

In this scenario CM Instance Is3 is ported to (S3.bucket.us-east-1,{(e2econfidentiality,1)},p-
evals3), where p-evalS3 is re-configured to access the new bucket in the different region. We
note that only parameters λ2 are modified since the service is exactly the same but in different
location.

Figure 4.1(b) shows the case where this service is migrated to a different service (re-
placement). More specifically the service is replaced with an Azure Storage service which
offers the same functionality and is certified for a given T 2 for the same property but with
an higher level ({(e2econfidentiality,2)}) with (T 1

I→T 2). The corresponding CM Instance
IAs=(AzureStorage.ue-1,{(e2econfidentiality,2)},p-evala) is compatible with Is3 and can
replace it. We note that, in a real environment, storage service replacement also implies
functional compatibility at orchestration level and application data migrations.

4.2.3 Deployment Composition Matrix

A certification process for composite services builds on our portable certification process and
is driven by a compositional CM Template T̂ , where functional and certification requirements
are specified for each component service. T̂ is expressed as a set {T 1, . . . , T n} of ordered
templates, each to be linked to a component service. A certified service csi , having certIi ,
can be selected as a component service iff its Ii is consistent with the corresponding T i in
T̂ . We note that templates, including compositional templates, are specified by a CA and

4.2 Certification of Cloud Composite Services 59

are the cornerstone of the certification chain of trust described in Section 3.6. We extend
Definition 4.2.3 to compositional instances (Î) and compositional templates (T̂) as follows.

Definition 4.2.7 (Î→) A Compositional Instance Îi is consistent with a Compositional
Template T̂ i, denoted as T̂ i

Î→Îi, iff ∀T k∈T̂ i, ∃Ij∈Îi such that T k
I→Ij.

The consistency check in Definition 4.2.7 supporting multiple consistent instantiations (Î)
of the same certification process (T̂) is at the basis of composition portability. Composition
portability supports automatic component substitution and reuse, where each component
service certified according to an instance Ii, such that T i

I→Ii, can be orchestrated in the
composition identified by T̂ . The consistency check supports higher flexibility and lower costs.
Shared/reused components do not need to be evaluated multiple times, saving certification
effort, and their management does not involve the certification authority.

The status of a given CP at time t can be represented as a matrix D of size C × F of
deployed compositions Îi, where C is the cardinality of deployed compositions at time t and
F the cardinality of all possible functionalities provided by service providers. Matrix D has
the following structure

D =

f1 f2 f3 f4 · · · fF
Î1 I1,1 I1,2 I1,3 I1,4 · · · I1,F

Î2 I2,1 I2,2 I2,3 I2,4 · · · I2,F

Î3 I3,1 I3,2 I3,3 I3,4 · · · I3,F
...

...
...

...
...

ÎC IC,1 IC,2 IC,3 IC,4 · · · IC,F

(4.2)

where each row represents a composite service Îi, each column a functionality fj , and each
cell a component service of Îi referred in the matrix with the corresponding CM Instance
Ii,j=(csi,j , Pi,j ,p-evali,j). Each service Ii,j is annotated with a sharing level k≥1, specifying
the number of compositions Îi insisting on it. In the following, we denote the component
service Ii,j selected as part of the composition Îi as Îi.Ij .

Example 4.2.3 Figure 4.2(a) shows an example of deployment composition matrix D with
4 functionalities and 8 cloud services (I), as follows:

• Functionality database (DB): mysql (I1) and posgresql (I6) are both certified for property
confidentiality at different levels l.

• Functionality web application (WebApp): nginx (I2, I4, and I7) are certified for
property vulnerability-free at different levels l. A level can refer to the severity of the
CVSS score related to the CVE discovered on the target; the highest the level the lower
the severity discovered.

60 Cloud Service Deployment based on non-functional properties

DB WebApp Storage Payment

Î1 I1 I2 − I3
Î2 I1 I4 − I5
Î3 I6 I7 I8 I3

I1 = {mysql.h-1, confidentiality, 1, ...}

I2 = {nginx.h-2, vulnerability-free, 4, ...}

I3 = {pay.remote, PCI-DSS compliance, 1, ...}

I4 = {nginx.h-4, vulnerability-free, 7, ...}

I5 = {ENGPay.remote, PCI-DSS compliance, 3, ...}

I6 = {psql.h-6, confidentiality, 0, ...}

I7 = {nginx.h-2, vulnerability-free, 10, ...}

I8 = {S3.h-2, e2e-confidentiality, 4, ...}

(a)

Î1

Î2

Î3

DB

I1

I6

Web App

I2

I4

I7

Storage

I8

Payment

I3

I5

(b)

Fig. 4.2 An example of CP Status Matrix D with eight services and three compositions

• Functionality storage (Storage): Amazon S3 (I8) are certified for property end-to-end
confidentiality.

• Functionality payment (Payment): a remote payment service (I3) is certified for
property PCI-DSS compliance level 1 and the ENGPay remote payment service (I5)is
certified to provide PCI-DSS compliance level 3. Details about PCI-DSS compliance
certification is available in [6].

These services are composed in 3 composite services Îi (Figure 4.2(a)): i) an e-commerce
service Î1 based on Database I1, WebApp I2, payment service I3; ii) a shared-economy app
Î2 based on Database I1, WebApp I4, and payment service I5; iii) an e-health service Î3
based on Database I6, WebApp I7, storage I8, and payment service I3. Figure 4.2(b) shows
a graphical overview of the composite services highlighting shared component services, that is,
Î1 and Î3.

4.3 Cloud Service Provider Costs 61

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 1 2 3 4 5 6 7 8 9 10

c
o

s
t

k

Direct Cost α

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10

c
o

s
t

k

Sample Test

Recurrent Test

Monintoring

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2

c
o

s
t

k

Indirect Cost γ

(a) (b) (c)

Fig. 4.3 Cost functions

4.3 Cloud Service Provider Costs

The enrichment of traditional composition solutions with certification techniques evaluat-
ing non-functional properties of composite services introduces the need of rethinking the
algorithms driving selection of component services. If, on one side, service selection has
been already renewed to accomplish selection of services that prove a set of non-functional
properties, on the other side, solutions to cost-based service selection need to depart from the
assumption that costs are only due to service deployment and resource consumption [14]. The
latter must consider costs introduced by certification processes, and by the need of keeping
the composition continuously monitored and certified.

The management of a certified service introduces a cost on the cloud provider that can be
evaluated using the Deployment Compositional Matrix and depends on three main factors:
direct (deployment) costs, indirect (certification) costs, and mismatch costs. Each of these
cost factors can be characterized using one of the four different cost behaviors identified by
Horngren [124], and later used for cloud services by de Medeiros et al. [125]: i) fixed costs, a
resource cost function that is completely independent from volume and time, indeed constant;
ii) variable costs, a resource cost function that varies depending on volume or time, and is
equal to zero for volume equal to zero; iii) mixed costs, a resource cost function that is the
sum of a variable and a fixed cost function; and iv) step costs, a resource cost function that
varies following different patterns.

4.3.1 Deployment Costs

α(I.cs, I.P, I.k). They are defined by the cloud provider as the amount of resources to
be allocated to a cloud service cs w.r.t. the certified properties I.P. They are usually
estimated as a mixture of fixed deployment and variable usage costs [14]. Direct costs
comprise servers, infrastructure, power, networks, and personnel costs []. They also consider
the cost of orchestrating the composition, and managing service versioning and migration.
An appropriate cost behavior can be a step function that depends on properties I.P and the
sharing level k, that is, the number of compositions insisting on a given service. Figure 4.3(a)

62 Cloud Service Deployment based on non-functional properties

shows an example of direct costs; we observe a small cost increase between k=2 and k=4 due
to power consumption, and a more substantial increase from k=5 when a vertical scaling of
resources is required to satisfy all requests.

4.3.2 Certification Costs

β(I.p-eval, I.k). They are defined by the cloud provider with the support of the certification
authority as the amount of resources to be allocated to the certification infrastructure
(Section 3.6) for continuous evaluation of service compositions. We note that, to execute
evidence collection in p-eval, our certification infrastructure considers three types of collection
activities (Figure 4.3(b)) having different costs.

• Sample test: one time evaluation of a specific part of the whole ToC . No need to
keep evaluation resources allocated after the evaluation.

• Recurrent test: a scheduled, repeatable evaluation of a specific target; it is often
part of a complex evaluation. The evaluation resources are permanently allocated to
re-execute the evaluation multiple times.

• Monitoring: continuous and permanent evaluation on the target.

4.3.3 Mismatch Costs

γ(T .R, I.P). They are defined by the certification authority, as inefficiency due to the distance
between provided properties I.P and required properties T .R, with T I→I. Providing higher
security properties means in general allocating more resources than needed (e.g., more
computational effort for encryption with 128-bit key when 32-bit key was required). This loss
of resources depends on the distance Dist(I.p, T .r) for each p∈P and corresponding r∈R,
according to property levels in Section 4.2. Figure 4.3(c) shows an example of mismatch cost
function for a property/requirement distributed over three levels. We note that the function
is not necessarily homogeneous over the number of property levels. For instance, it may
observe an important boost for higher levels, because high security levels may require more
hardware facilities.

4.3.4 Cost Profile

The CP behavior balances the contribution of direct, indirect, and mismatch costs to the
computation of the total cost, while the total cost is the combination of each cost factor. We
express the CP behavior as three cost profiles mapping to different CP strategies inspired by
the deployment patterns in [126, 127].

• Sharing profile is typical of cloud providers that prefer to share resources, increasing
the distance between requested and provided security properties (mismatch costs).

4.4 Deployment Approaches 63

• Fitting profile is typical of cloud providers that prefer to achieve higher precision
between requested and provided security properties, at the price of increasing the need
of horizontal scaling. As a result, more component services are deployed precisely
addressing on users’ needs, decreasing the average sharing level (direct and indirect
costs).

• Average profile where direct, indirect, and mismatch costs equally contribute to the
total cost.

We note that a degeneration of the fitting profile where an ad hoc composition is deployed
for each request is a good approximation of the actual strategy adopted by cloud providers.

4.4 Deployment Approaches

We propose a fuzzy-based cost evaluation approach, which evaluates the cost of composite
services in Matrix D on the basis of cost factors and profiles in Section 4.3. Our solution
aim to provide an accurate infrastructure and easy to tune approach for cost evaluation and
profile setting.

4.4.1 Fuzzyfication

Fuzzy logic has been applied successfully in many fields including software cost estimation [128].
Let Y be the universe of discourse containing cost values y (i.e., cost factors in this Chapter).
As customary, the membership degree of element y to a fuzzy set S is characterized by a
membership function µS(y). A fuzzy set S in Y is denoted as follow.

S = {(y, µS(y))|y ∈ Y)} (4.3)

where µS(y) is the membership function of the fuzzy set S. Let us then consider each cost
function α, β, γ as a separate universe of discourse Yα, Yβ, Yγ . We define a standardized
partition of each of them into different fuzzy sets. In the following, we only consider Yα,
because the same discussion applies to Yβ and Yγ .

We define a standard fuzzy partition {Sαl
, Sαm , Sαh

} of Yα such that ∀yα∈Yα, ∑
j∈{l,m,h} µSαj

(yα)=1.
Each fuzzy set corresponds to a linguistic concept, that is, LOW for Sαl

, MEDIUM for
Sαm and HIGH for Sαh

costs. There are a number of different shapes for the membership
functions related to each linguistic concept. In this work, we use R-function and L-function for
LOW and HIGH membership functions and trapezoidal function for MEDIUM membership
function. Given these linguistic variables mapping the concepts of LOW, MEDIUM, and
HIGH costs for each cost factor, we define different sets of fuzzy rules. The rules, one for
each profile, are used by the fuzzy inference system to infer the cost (Fc) introduced by each
single component service Ît.Ij at time t.

64 Cloud Service Deployment based on non-functional properties

Fig. 4.4 Fuzzy cost inference for a given I

Example 4.4.1 Let us consider a component service Îi.Ij (I for brevity) to be deployed at
time t, following a sharing profile. Examples of fuzzy rules can be defined as follows:
If α(I .cs, I.p, I .k) is HIGH and β(I .p-eval, I .k) is not LOW and γ(T .R, I.P) is LOW then
Fct(I) is HIGH.
If α(I .cs, I.p, I .k) not HIGH and β(I .p-eval, I .k) is not LOW and γ(T .R, I.P) is LOW
then Fct(I) is MEDIUM.
If α(I .cs, I.p, I .k) is LOW and β(I .p-eval, I .k) is LOW and γ(T .R, I.P) is LOW then
Fct(I) is LOW.

Figure 4.4 shows the overview of our approach for fuzzy-based cost computation where,
given a specific Ît.Ij at time t, cost factors α, β, and γ are mapped to fuzzy domains (Θ).
This mapping is based on standard partitioning into different membership functions, which
are specific for each cost function.2 Then, for each cost profile, a set of rules are defined and
executed (Ξ) to infer the cost of each single Ît.Ij (I in Equation 4.4 for brevity), using a
defuzzification function (Ψ) as follows.

Fct(I) =Ψ(Ξ(Θ(α(I.cs, I.p, I.k), β(I.p-eval, I.k), γ(T .R, I.P)))) (4.4)

Considering the CP status Matrix in Equation 4.2, total fuzzy cost TFct is the sum of the
cost of each deployed composite service Îi∈{Î1, . . . , Ît}, with t≤|C|. TFct can be formally

2Each CP tunes the membership functions of α and contributes to the tuning of the ones of β, while the
membership functions of γ are defined by the CA.

4.4 Deployment Approaches 65

expressed as

TFct =
∑
Îi

1≤i≤|C|

∑
Îi.Ij

1≤j≤|Îi|

Fct(Îi.Ij)
(4.5)

where ∑
Îi.Ij

1≤j≤|Îi|

Fct(Îi.Ij) is the cost of a composite service Ît and calculated as the sum

of the costs of the corresponding component services Ît.Ij .
We note that total fuzzy cost is not the real cost incurred for a given deployment. It

represents the cost perceived by a cloud provider according to the selected profile (i.e., sharing,
fitting average) and the mixture of the different cost sources (i.e., direct, indirect, mismatch).

4.4.2 Heuristics

The aim of our solution is to find the best deployment {Î1, . . . , În} of composite services
that i) satisfies a set {T̂ 1, . . . , T̂ n} of composition requests, that is, guarantees T̂ i

Î→Îi, with
i=1,. . .,n, ii) minimize the cost TFcn (Equation 4.5) for the CP. We assume that a new
composition request T̂ i is received every instant t, introducing a uniform time of arrival
for composition requests. Finding the optimum deployment has however an exponential
asymptotic behavior O

(
(|l| ∗ F ∗ t + t)t

)
, in the worst case, with |l| the number of property

levels, F the number of functionalities, and t the number of composition request. Being t the
dominating factor that varies over time, the exponential asymptotic behavior becomes O(tt),
which clearly does not fit the pseudo real-time requirement in our scenario. It is therefore
necessary to design heuristic approaches for solving the problem in polynomial time, even for
relatively large composite services.

Many heuristic approaches balancing efficiency and quality in terms of precision and
recall can be used for minimizing TFct at time t, though not all of them are applicable in a
cloud environment, where i) composition requests are consecutive, ii) the requests may need
to be served quickly.

We propose two heuristic algorithms: i) heuristic sliding window that selects a cloud
service deployment within a time-forwarding window w of composition requests T̂ i and ii)
heuristic sliding window with migration that extends the heuristic sliding window with the
possibility of migrating component services Îi.Ij .

Heuristic 1: Sliding Window

It is based on the idea of finding the best solution at time t using a time-forwarding window w.
The heuristic selects the best deployment Ît at time t by evaluating a set of |w| consecutive

66 Cloud Service Deployment based on non-functional properties

requests T̂ i, with t≤i≤t+|w|, received within window w. In other words, the selected Ît
represents the composite service contributing to the global optimum within window w.

At time t, the heuristic receives as input the CP status matrix D, which contains all
deployed Îi with 1≤i≤t − 1, all costs with related de-fuzzyfication functions, window size
|w|, and the total fuzzy cost TFct−1.

Upon collecting the last |w| requests T̂ t,. . .,T̂ t + |w|, the heuristic calculates all possible
candidate sets Ît,. . .,Ît + |w|. For each candidate Ît,. . .,Ît + |w|, our heuristic calculates
the total fuzzy cost TFct+|w| and chooses the one that entails the minimum increase of
cost. The minimum increase of cost is calculated as the difference between the total fuzzy
cost TFct+|w| within window w and the current total fuzzy cost TFct−1. Both TFct+|w|

and TFct−1 are calculated using Equation 4.4. Once the deployment Ît,. . .,Ît + |w| with
minimum cost increase is selected, Ît is instantiated to satisfy request T̂ t; the window is
then shifted of one time interval and the process restarts to satisfy request T̂ t + 1 when a
new request is received at time T̂ t + 1 + |w|.

We note that |w| must be chosen carefully to balance the quality of the retrieved solution
and the performance/complexity of the overall heuristic. This decision is left to the CP based
on its requirements or preferences. We also note that a degeneration of this approach with a
sliding window of dimension |w|=1 yields to the greedy approach.

Heuristic 2: Sliding Window with Migration

It extends heuristic 1 with a better management of component deployment. Heuristic 2
supports service versioning and replacement (see Definition 4.2.5 and Definition 4.2.6), and
in turn resource consolidation, for cost optimization. Migration in fact allows CP to modify
its status matrix, moving to a new deployment scenario with lower costs. The global effect
on the total cost, called Migration Impact (mi), is the difference between the total fuzzy cost
TFcmi

t after migration and the total fuzzy cost TFct before migration:

mi = TFcmi
t − TFct (4.6)

Migration impact mi<0 introduces a cost saving; migration impact mi≥0 introduces a
cost increase.

A migration is triggered when a new composition request T̂ t is processed and results in the
deployment of a new cloud service Ii first instantiated in Ît (Ît.Ii). For clarity, we describe
our heuristic using compositions with a single functionality f, since every functionality is
independent and therefore can be processed in parallel with the others. We then consider
compositions Îi that consist of a single component service Ii satisfying service request T i.
The migration process is composed of two sequential phases and 4 steps as follows.

1. Service migration: this phase aims to optimize the cost of composite services Îi in
D at time t−1. In particular, it migrates component service Îi.Ii, such that Îi.Ii

I→

4.4 Deployment Approaches 67

Ît.It, to the new cloud service Ît.It deployed at time t (step 0) according to mi. Phase
service migration starts with an ordering process, which introduces a migration priority
among deployed services. Services Îi.Ii are sorted in descending order according to
function property distance Dist(T̂ i.T i.r, Îi.Ii.p) (see Equation 4.1), where T̂ i.T i.r is
the property originally requested for composition request T̂ i and Îi.Ii.p is the property
of the corresponding deployed composition Îi (step 1). Once all services are sorted, for
each Îi.Ii, the migration impact mi is calculated and, if mi<0, Îi.Ii is migrated to
Ît.It (step 2).

2. Resource consolidation: this phase considers all component services Îi.Ii in the CP
status matrix D migrated during the previous phase. Since each service instance Ii is
shared among different composite services, a migration changes the level of sharing of Ii

and introduces the need of a consolidation process to optimize the total fuzzy cost TFc

(step 3). Resource consolidation is a binary join operation between two services Ii and
Ij , with Ii.p<Ij .p, which migrates all service composition Îi that are deployed on Ii

to Ij , that is, Îi.Ii is migrated to Îi.Ij . Among all possible pairs (Ii,Ij), heuristic 2
chooses the one that offers the best mi. Resource consolidation is recursively executed
until no (Ii,Ij) offers a negative mi.

Example 4.4.2 Let us consider a CSP offering compositions with a single functionality f
and a property p with 3 levels. In the following, we describe the working of heuristic 2 as an
extended version of heuristic 1.

Step 0 – New request T̂ t (Figure 4.5(a)). A new request T̂ t at time t triggers the execution
of heuristic 2. The status of the CSP is depicted in the status Matrix D in Figures 4.5(a),
where each row represents the deployed composition Îi, each column the deployed instance
Ij offering functionality f and property p with level l, and each cell the request T̂ i.T j.r to
be satisfied by the corresponding p of Ij. For instance, in Figure 4.5(a), cloud service I1

offers a property p at level 1 (p = (p̂, 1)) and is shared by composite services Î1 and Î3,
whose templates T̂ 1 and T̂ 3 require property T̂ 1.T 1.r=(p̂, 1) and property T̂ 3.T 1.r=(p̂, 1),
respectively. In the following, for simplicity, we consider the same p̂ for both r and p, and
then refer to levels r.l and p.l only. At time t, composition request T̂ 8 with r.2 is received. A
composition instance Î8 of T̂ 8 is deployed on a new cloud service I4 (denoted with a gray
background in Figure 4.5(a)) offering p.2. We note that the result of step 0 is both the final
result of heuristic 1 and the initialization step of heuristic 2.

Step 1 – Service ordering (Figure 4.5(b)). All component services Îi.Ij, with 1≤j≤3 and
with 1≤i≤7 in our example, are then sorted in descending order by measuring distance
Dist(T̂ i.T j .r, I4.p).

Step 2 – Service migration (Figure 4.5(c)). The corresponding migration impact mi in Equa-
tion 4.6 is then calculated for each of the Îi (denoted with a gray background in Figure 4.5(b))

68 Cloud Service Deployment based on non-functional properties

I1 (p.1) I2 (p.3) I3 (p.3) I4 (p.2)
Î1 r.1
Î2 r.3
Î3 r.1
Î4 r.1
Î5 r.3
Î6 r.2
Î7 r.2
Î8 r.2

(a) Step 0

composition.cloud service Î2.I2 Î5.I3 Î7.I2 Î6.I3 Î1.I1 Î3.I1 Î4.I2
property distance (+1) (+1) (0) (0) (-1) (-1) (-1)

(b) Step 1

order migration migration impact action I4(p.2)

1 Î7.I2
Î→ Î7.I4 mi=-2 migrate Ît,Î7

2 Î6.I3
Î→ Î6.I4 mi=-1 migrate Ît,Î7,Î6

3 Î1.I1
Î→ Î1.I4 mi=+2 - Ît,Î7,Î6

4 Î3.I1
Î→ Î3.I4 mi=+3 - Ît,Î7,Î6

5 Î4.I2
Î→ Î4.I4 mi=-2 migrate Ît,Î7,Î6,Î4

(c) Step 2

I1 (p.1) I2 (p.3) I3 (p.3) I4 (p.2)
Î1 r.1
Î2 r.3
Î3 r.1
Î4 r.1
Î5 r.3
Î6 r.2
Î7 r.2
Î8 r.2

I1 (p.1) I2
⋃

I3 (p.3) I4 (p.2)
Î1 r.1
Î2 r.3
Î3 r.1
Î4 r.1
Î5 r.3
Î6 r.2
Î7 r.2
Î8 r.2

(d) Step 3 (e) Step 3

Fig. 4.5 An example of heuristic 2 execution

showing a distance that is less or equal to zero (step 2). Figure 4.5(c) shows the results of our
migration, that is, Î6 is migrated from I3 to I4, and Î4 and Î7 are migrated from I2 to I4.
We note that all these migrations are of type replacement as presented in Definition 4.2.6.

Step 3 – Resource consolidation (Figures 4.5(d) and 4.5(e)). Upon phase service migration
ends, phase resource consolidation is executed and considers all Ij such that at least one
composite service Îi insisting on it has been migrated to I4. In our example, service instances
I2 and I3 are candidates for the binary join (denoted with a light grey background in
Figure 4.5(d)). Since the join between I2 and I3 has a negative mi=-2, resource consolidation
is convenient and applied. Figure 4.5(e) finally shows the new CP status after the execution of
heuristic 2, where the result of the join operation is denoted with a gray background. We note
that all migrations due to consolidation are of type versioning as presented in Definition 4.2.5.

4.5 Experimental Evaluation 69

4.5 Experimental Evaluation

We experimentally evaluated the performance and quality of our approach for cost-effective
deployment of service compositions and the utility of our portable certification process. For
conciseness, in this section, we report the most relevant results and findings of our experiments.
Interest readers can access all results in Appendix C.

4.5.1 Experimental Setup

We considered a scenario where a cloud provider hosts three compositions as depicted
in Figure 4.2. For simplicity but with no lack of generality, we focused on the payment
functionality only, which is used in all compositions. Considering the entire composition
does not give any additional insights on the soundness of the proposed approach and its
performance/cost, since each functionality is treated independently and their cost summed
up. CP offers two payment services, a standard payment service certified for property
confidentiality, and ENGpay, a payment service offered by Engineering S.p.A. one of the
biggest system integrator in Italy. ENGPay is offered with two levels of certification, a generic
CIA (Confidentiality, Integrity, Authentication) certification and a more complex PCI-DSS
compliance certification. We note that PCI-DSS compliance certification can be seen as an
extension of the CIA certification. We then considered three different certification levels for
property PCI-DSS compliance Pc from basic confidentiality (Pc.level=1) to full PCI-DSS
compliance (Pc.level=3), via CIA (Pc.level=2) .

We developed a request simulator that randomly generated requests for a payment service
having a specific property level to the cloud provider, building 10 data sets of 300 consecutive
random requests T̂ , used to evaluate our deployment approach. For all data sets, we evaluated
the deployment obtained using the sliding window and migration heuristics in Section 4.4.2
with sharing and fitting profiles in Section 4.3. To evaluate retrieved results we defined i) a
set of evaluation metrics, ii) the fuzzy membership functions, and iii) the cost functions.

Evaluation metrics. We used four metrics to evaluate our approach.
Metric 1 measures the execution time needed to deploy composite services addressing

composition requests.
Metric 2, called Γt(TFc, TFc

′), is the relative cost increment computed based on the
area between two Total Fuzzy cost functions TFc and TFc

′ in the interval [1, t]. It is defined
as follows:

Γt(TFc, TFc
′) =

∑t
i=1(TFci − TFc

′
i)∑t

i=1 TFci
(4.7)

70 Cloud Service Deployment based on non-functional properties

where TFci and TFc
′
i are the two Total Fuzzy cost functions evaluated at time i. We

used Total Fuzzy cost to calculate Γ, since our goal here is to evaluate the overall cost increase
and not the contribution of each cost factor (α, β, and γ).

Metric 3, called ∆t, evaluates the cumulative number of portability events (versioning or
replacement) occurred until a given time t. It provides a measure of how often a portability
event and a consistency check are needed to support our dynamic composition certification,
and in turns a measure of its utility.

Fuzzy membership functions. Our fuzzy system is based on membership functions and
fuzzy rules that depend on the cost factors to be evaluated. We adopted the generalized
bell-based memberships f for all cost factors as follows.

f(x; a, b, c) = 1
1 + |x−c

a |2b
(4.8)

where c is the center of the curve, a controls the width of the curve, and b controls the slope
of the curve. To optimize the membership function definition we evaluated the distribution of
costs to adjust the a, b, c parameters of each membership to the meaning of the corresponding
linguistic variable. More precisely, we used a fuzzy c-mean approach to have an initial idea
on the membership shapes using 100 requests from each of the 10 data sets. Given this shape
we tuned the membership parameters to fit the fuzzy clusters with a gbell shape. We note
that this process, as well as the cost function definition, is a tuning process that may depend
on the cloud provider peculiarities. In general, the selected cost and membership functions
are suitable for a generic cloud provider working with cloud service compositions, while the
rule sets address the peculiarities of the profiles.

Cost functions. We used cost functions α, β, and γ in Figure 4.3 for the three property
levels used in our experiments. We recall that cost function γ is defined using property levels
and ranges from 0 to 2. α, β, and γ have been used to compare the cost retrieved by our
heuristics (metric 2 and metric 3). Their definition is CP specific and should reflect the CP
infrastructure costs. To fully evaluate our approach, we defined cost functions such that
service migrations are triggered also with low numbers of composition requests.

We run our experiments on an Ubuntu server virtual machine with 22cores (physical
machine Dell PowerEdge T620 equipped with 8 Xeon Octa Core 1.99 GHz), 16GB RAM,
and 120GB HDD.

4.5.2 Performance evaluation

We evaluated the performance of our heuristics using metric 1, and cost factors α, β, and
γ in Figure 4.3. Similar to the exhaustive algorithm, our heuristics have an exponential
asymptotic behavior O

(
(|l| ∗ F ∗ |w| + t)|w|

)
, with |l| the number of property levels, F the

4.5 Experimental Evaluation 71

number of functionalities, |w| the dimension of window w, and t the number of received
requests. We note that, since |w| is fixed a priori by our heuristics, the asymptotic behavior
becomes polynomial as O(t|w|). Window w however makes our heuristics rapidly unusable
given our assumption to serve request in pseudo real time (in the order of minutes), though
their complexity is far lower than the one of the exhaustive algorithm, which is O(tt).

Figure 4.6 compares the average execution time of the heuristics and exhaustive algorithm
on the 10 data sets, varying window w from 1 to 7. Both sharing and fitting profiles show
a similar performance trend just partially affected by optimizations based on branch cut.
Heuristic 2 shows an additive cost increment with respect to heuristic 1 due to the migration
and consolidation algorithms, which require sorting of compatible requests (O((t − 1)2) at
time t, in the worst case). This additive factor is not anyways substantial, since it depends on
the presence and amount of possible migrations (e.g., between t = 70 and t = 80). We note
that the execution time of all algorithms is reported only for configurations requiring less
than 3-minutes. Our results show that, as expected, the heuristics approximates polynomial
execution time in the dimension of window w, which can be taken under control by selecting
proper w. For instance, when w=7, execution time exceeds the 3 minute limit with a
number |T̂ | of composition requests equal to 22 for heuristic 1 and 20 for heuristic 2; when
w= 6, execution time exceeds the 3-minute limit with |T̂ |= 155 for heuristic 1 and |T̂ |= 143
for heuristic 2. The exhaustive algorithm shows the worst execution time, exceeding the
3-minute limit with |T̂ |= 12. We note that the two heuristics have comparable performance
dominated by w. We also note that the exhaustive behaves better in terms of performances
in comparison to a given heuristics with window w for number of requests |T̂ | ≤ w because
the heuristics approach is forced to use a window size of w while exhaustive use the entire
set of request. Therefore when the number of request is less that w it provide better or
comparable performances.

4.5.3 Cost and Utility Evaluation

Performance evaluation in Section 4.5.2 showed the unmanageable complexity of the exhaustive
approach, which required 21 minutes for 12 requests. We therefore compared the costs of our
two heuristics on the 10 data sets and the utility of the portability underpinning them using
metric 2 and metric 3 and cost factors α, β and γ.

We first evaluated the impact of window w on the relative cost increment (metric 2)
with sharing and fitting profiles and on the entire set of requests t = |T̂ | and observed that
the average relative cost increment (Γt) across all the 10 data sets is negligible for fitting
profile (i.e., less than 1%). Fitting profile in fact does not take significant advantages by
looking forward in the incoming requests. In particular, there is an average cost degradation
of 0.99% between window w=1 and window w=2, and in general, a cost degradation of 0.5%
is observed between window w=1 and window w=5. For instance, a cost degradation has

72 Cloud Service Deployment based on non-functional properties

 0

 15

 30

 45

 60

 75

 90

 105

 120

 135

 150

 165

 180

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

T
im

e
 (

s
)

Number of Request (t)

exhaustive
heuristic 1 w=1
heuristic 1 w=5

heuristic 1 w=6
heuristic 1 w=7
heuristic 2 w=5

heuristic 2 w=6
heuristic 2 w=7
180s

Fig. 4.6 Performance evaluation: heuristic 1 and heuristic 2 varying window size w.

been observed for data set 8 around t=290, where window w=5 suggests a deployment that
increases the local cost with respect to the one suggested with a smaller window size; this
degradation is the price we need to pay to have a lower cost after w=5 requests. 3

Therefore if a CSP selects a fitting profile with the above cost functions and fuzzy
memberships and rules, the window size is not impacting the cost optimization.

Our experiments with sharing profile instead show that the bigger w, the better (lower)
the TFc. Figure 4.7(a) shows the average relative cost increment between deployments over
our 10 data sets (Γt) expressed in percentage comparing different windows size. The average
cost increment is monotonic with the increment of the window size and is around 5.4%
comparing window w = 1 with window w=5.

Figure 4.7(b1–b4) shows an excerpt of the Total Fuzzy cost TFc of heuristic 1 for 4
representative data sets (best, worst, average data sets) for sharing profiles, varying the
window size from w=1 to w=5. We note that an increase in the cardinality of window w does
not always result in a decrease of costs. Figure 4.7(b4) show a data set where heuristic 1 with
w=4 has lower cost than the one with w=5. This mainly depends on the bias introduced by

3The choice of max window w=5 has been motivated by the need of taking performance under control (see
Section 4.5.2).

4.5 Experimental Evaluation 73

w1-w2 w2-w3 w3-w4 w4-w5 w1-w5
Γt −0.004% −2.11% −0.92% −2.21% −5, 37%

(a) metric 2 (average % increase) t = 295

 200

 250

 300

 350

 400

 450

 500

 150 200 250 300

T
o

ta
l

F
u

z
z
y

 C
o

s
t

t

w=1
w=2
w=3
w=4
w=5

 200

 250

 300

 350

 400

 450

 500

 150 200 250 300

T
o

ta
l

F
u

z
z
y

 C
o

s
t

t

w=1
w=2
w=3
w=4
w=5

(1) data set 3 (average) (2) data set 5 (best)

 200

 250

 300

 350

 400

 450

 500

 150 200 250 300

T
o

ta
l

F
u

z
z
y

 C
o

s
t

t

w=1
w=2
w=3
w=4
w=5

 200

 250

 300

 350

 400

 450

 500

 150 200 250 300

T
o

ta
l

F
u

z
z
y

 C
o

s
t

t

w=1
w=2
w=3
w=4
w=5

(3) data set 8 (average) (4) data set 10 (worst)
(b) metric 2 (TFc). We plot the most representative time frames (150–300) to improve figure readability

Fig. 4.7 Heuristic 1 cost evaluation for sharing profile varying window size w.

the random generation of the data sets and by the random selection of the best deployment
when different candidate deployments have the same total fuzzy cost. This latter scenario,
which may lead to a sub-optimal deployment drifting from the optimal total cost, is more
probable at the beginning where there are more deployments with the same cost.

We note that heuristic 2 introduces migration between deployments to fix this issue and
counteract drifting effects. Figure 4.8(a) shows the average relative cost increment between
deployments (Γt)of heuristic 2 with sharing profile and varying the window size w. We note
that the behavior of heuristic 1 and heuristic 2 is similar, which is reasonable considering the
refinement nature of heuristic 2. We also note that i) the drifting effects is reduced especially
for bigger windows (greater that w = 3) and i) a reduced average cost improvement between
w = 4 and w = 5 compared to the one of heuristic 1, meaning that heuristic 2 reduces the
gap between this two window sizes. This effect is also clearly visible in Figure 4.8(b1–b4)
that shows an excerpt of the Total Fuzzy cost TFc of heuristic 2 for the 4 representative data

74 Cloud Service Deployment based on non-functional properties

w1-w2 w2-w3 w3-w4 w4-w5 w1-w5
Γt -0.87% -2.21% -1.99% -0.43% -5.50%

(a) metric 2 (average % increase) t = 295

 200

 250

 300

 350

 400

 450

 500

 150 200 250 300

T
o

ta
l

F
u

z
z
y

 C
o

s
t

t

w=1
w=2
w=3
w=4
w=5

 200

 250

 300

 350

 400

 450

 500

 150 200 250 300

T
o

ta
l

F
u

z
z
y

 C
o

s
t

t

w=1
w=2
w=3
w=4
w=5

(1) data set 3 (average) (2) data set 5 (best)

 200

 250

 300

 350

 400

 450

 500

 150 200 250 300

T
o

ta
l

F
u

z
z
y

 C
o

s
t

t

w=1
w=2
w=3
w=4
w=5

 200

 250

 300

 350

 400

 450

 500

 150 200 250 300

T
o

ta
l

F
u

z
z
y

 C
o

s
t

t

w=1
w=2
w=3
w=4
w=5

(3) data set 8 (average) (4) data set 10 (worst)
(b) metric 2 (TFc). We plot the most representative time frames (150–300) to improve figure readability

Fig. 4.8 Heuristic 2 cost evaluation for sharing profile varying window size w.

sets (best, worst, average data sets), where w = 3 and especially w = 4 has been improved
making the behavior similar to w = 5 both in the best (b2) and the worst (b4) scenarios.

Heuristic 2 also generates a significant number of service migrations (metric 3). More
in details, on average on the 10 data sets (∆t) for sharing profile and window w = 5 we
counted 28 migrations. This non negligible number of migration events underlines the utility
of certification portability supporting migrations (replacement) as well as new instantiations
of the same services (versioning).

We therefore compared heuristic 1 and heuristic 2 with sharing profile only, using total
fuzzy cost TFc, metric 2 and metric 3 and w=1 and w=5. The average relative cost difference
(Γt) between heuristic 1 and heuristic 2 with w = 5 is 1.09% showing that heuristic 2 improves
heuristic 1.

Figure 4.9(b1–b4) shows the comparison of the total fuzzy costs TFc using sharing profile,
for our 4 representative data sets (best, worst, average data sets). It also graphically shows
the impact of migrations, which are marked in the Figure with “+”. Figure 4.9(b3), at time

4.5 Experimental Evaluation 75

 200

 250

 300

 350

 400

 450

 500

 150 200 250 300

T
o

ta
l

F
u

z
z
y

 C
o

s
t

t

h1 w=1
h2 w=1
h1 w=5
h2 w=5

migration points

 200

 250

 300

 350

 400

 450

 500

 150 200 250 300

T
o

ta
l

F
u

z
z
y

 C
o

s
t

t

h1 w=1
h2 w=1
h1 w=5
h2 w=5

migration points

(1) data set 3 (2) data set 5

 200

 250

 300

 350

 400

 450

 500

 150 200 250 300

T
o

ta
l

C
o

s
t

t

h1 w=1
h2 w=1
h1 w=5
h2 w=5

migration points

 200

 250

 300

 350

 400

 450

 500

 150 200 250 300

T
o

ta
l

C
o

s
t

t

h1 w=1
h2 w=1
h1 w=5
h2 w=5

migration points

(3) data set 8 (4) data set 10
(b) metric 2 (TFc). We plot the most representative time frames (150–300) to improve figure readability

Fig. 4.9 Comparison between heuristics 1 and 2 with sharing profile, using w=1 and w=5.
Migration events are marked with “+”.

t=220, shows how migrations in heuristic 2 can lead to a better total cost, which lasts for a
long period of time until the next migration at time t=280 occurs. Figure 4.9(b2), instead,
shows how different consecutive migrations are triggered to re-calibrate the deployments and
in turn the total cost (three migrations from t=250 to t=290).

4.5.4 Discussion

Our approach enables CP to offer certified composition of services keeping internal cost under
control. The fact that the certification process is portable is the ground for heuristic 2 and
sharing profile that we proved (see Section 4.5.3) provide substantial benefits in terms costs.

As a general comment the cost evaluation presented in Section 4.5.3 being based on Total
Fuzzy cost is affected by the “normalization” introduced by the defuzzification, and reflects
a “perceived cost” more thatn a concrete cost. To provide an additional, more tangible
quantitative analysis of the cost improvement, we present in the following a comparison based
on the cost factors α and β.

76 Cloud Service Deployment based on non-functional properties

(a)

(b)

Fig. 4.10 Comparing α, β total cost for the 10 data sets for sharing (a) and fitting (b) profiles
using heuristic 1 window w = 1 (h1) and heuristic 2 w = 5 (h2) respectively.

Figure 4.10 shows a comparison in terms α and β for our heuristics for sharing and fitting
profiles. In particular it compares i) heuristic 1 fitting profile w = 1 with heuristic 2 fitting
profile w = 1 (a), and ii) heuristic 1 sharing profile w = 1 with heuristic 2 sharing profile
w = 5. The improvement of using heuristic 2 instead of heuristic 1 on the real cost α + β are
on average 18.5% for sharing profile and 8.2% for fitting profile respectively.

4.6 Chapter Summary 77

4.6 Chapter Summary

We proposed an approach to certification-based composition of cloud services. The proposed
solution focuses on certification of non-functional properties of composite services and
comparatively evaluates configurations of service compositions addressing clients’ requirements.
It also provides a cost evaluation methodology aimed to minimize the CP total costs of
composition, identifying the best composition among possible alternative deployments. Three
main cost factors have been considered in cost evaluation: i) traditional deployment costs,
ii) certification infrastructure costs, and iii) mismatch costs. Our cost minimization approach
has been experimentally evaluated according to three different cost profiles mapping different
CP behaviors, comparing the average composition costs achieved by our incremental approach
with the composition costs of the optimum approach.

Chapter 5

Cloud Service Assurance
Framework

Lack of trust and transparency are among the main reasons hindering adoption of cloud
computing. Users in fact can inspect neither their applications nor the treatment of their
data, and have little or no guarantees about their security. Cloud security certification is
a major assurance technique that has been proposed to increase cloud security, trust, and
transparency. However, certification is a tedious, costly, and time-consuming process for the
provider that wants to certify one of its services/applications. In this chapter, we propose
a test-based security certification framework for the cloud implementing our certification
process and a a cloud engineering methodology based on it, which supports providers in the
design and development of ready-to-be-certified services/applications.

This chapter1 proposes a test-based security certification framework for the cloud imple-
menting our certification process described in Chapter 3. Addressing a more general problem,
our framework is complementary to existing solutions for evidence collection (e.g., based
on testing [17, 18] and monitoring [19, 20]) and can build on them to implement different
certification processes, still maintaining the same deployment strategy. We claim that a
framework implementing a security certification process for the cloud (Section 3.3) should
support the following basic concepts. For the sake of clarity, requirements are prioritized
according to modalities MUST, SHOULD, MAY.

1 This chapter is based on the following publications:
• A Certification Framework for Cloud-based Services, Co-author: M. Anisetti, C.A. Ardagna, E. Damiani,

published in Proc. of SAC 2016, April 2016, Pisa, Italy
• Modeling time, probability, and configuration constraints for continuous cloud service certification,

Co-author: M. Anisetti, C.A. Ardagna, E. Damiani, N. El Ioini , published in Computers & Security
(COSE) 72, 2018

• Moon Cloud: A Cloud Platform for ICT Security Governance, Co-author: M. Anisetti, C.A. Ardagna,
E. Damiani, published in Proc. of IEEE GlobeCom 2018 , December 2018, Abu Dhaby, EAU

80 Cloud Service Assurance Framework

• Distributed deployment: the framework MUST be developed in a way that allows its
deployment (all or in part) over the cloud.

• Multi-layer and multi-target certification: the framework SHOULD certify security
properties of services and applications that can span different layers of the cloud stack.

• Property-driven certification: the framework SHOULD implement a certification process
driven by the property to be certified for the system under certification.

• Evidence-based certification: the framework MUST support a certification process
that provides a set of evidence proving a security property. The evidence SHOULD
be collected in a standardized way (e.g., by agents and probes deployed within the
system under certification), according to different collection mechanisms (e.g., testing,
monitoring).

• Incremental certification: the framework SHOULD provide an incremental approach,
meaning that evidence and corresponding certificates can be re-validated at runtime
using an automatic and independent process. The security certificate awarded to a given
system as the result of a certification process execution should undergo a continuous
validation according to a specific life cycle.

• Fully automatic configuration: the framework MAY provide auto-configuration of
agents and probes collecting evidence, thus supporting semi-automatic execution of
(incremental) certification activities.

• Extendible deployment: the framework MUST be fully customizable and extendible to
adapt to changing conditions.

• Trusted implementation: the framework and its activities MUST be trusted, increasing
the confidence of the users in the correctness of the process and corresponding results.

Additional requirements should be addressed by the framework to support certified service
engineering as follows.

• Certification-aware cloud engineering: the framework SHOULD provide a certification-
aware cloud engineering approach that can be integrated with traditional development
methodologies with limited effort.

• Guided security mechanism development: the framework MUST guide the development
of those security mechanisms needed to certify a given property for a given system.

• Step-by-step deployment: the framework MUST drive the deployment of all components
needed to support the execution of the certification process.

5.1 Requirements 81

• Certification process independence: the framework SHOULD implement a methodology
for certification-aware cloud engineering that is independent by the corresponding
certification process.

In the remaining of the chapter, we first provide a detailed list of requirements that a
framework for cloud service certification should meet. We provide then an overview of the
developed framework describing its architecture, functionalities, the execution flows of an
evaluation, and details on probe implementation and design. We finally introduce Moon
Cloud, a spin-off of Universitá degli Studi di Milano, which provides an assurance platform
based on the outcome of this thesis.

5.1 Requirements

In a scenario where the dynamics and rapid evolution of cloud services make assurance
process over cloud services and security policies more complex and error prone, we elicits the
following high-level security assurance requirements.

[R1] Security protection mechanisms. It requires suitable security protection mecha-
nisms in place to protect the company assets. This is a mandatory requirement to achieve
system security. Security mechanisms need to be selected from the market depending on the
specific needs.

[R2] Holistic security. It requires a global, holistic, concise and clear view of the status
of the security of the system. It is crucial to distribute the effort of the security specialists
in improving the process and the policy; it departs from an evaluation that manually or, at
most, semi-automatically inspects heterogeneous protection mechanisms.

[R3] Continuous monitoring of security protection effectiveness. It requires to
continuously evaluate protection effectiveness for lowering the impact of human errors as well
as process and organizational issues. Protection mechanisms in fact can be misconfigured
over time due to the changing environment, coexistence of conflicting components, or errors;
this scenario points to the need of continuously updating and verifying security mechanisms
against vulnerabilities.

[R4] Efficient monitoring. Security monitoring is usually a runtime process that can
interfere with the normal operation of the system under evaluation. A solution to continuous
assurance monitoring should support an efficient process with low impact on the target
system.

[R] Single point of management. It requires a single point of security management.
It permits to keep the security policies under control with a holistic view ([R1]), avoiding
proliferation of specific mechanism-related policies that can open the room to inconsistencies.

82 Cloud Service Assurance Framework

[R5] Asset inventory. It requires a clear view of the company assets to be protected, saving
the sensitive data about them in a secure inventory. Asset inventory is the first requirement for
every system. We note that the inventory must include all the assets, including service-level
assets, as well as any external cloud/IoT asset.

[R6] Reliable evaluation. The reliability of the evaluation is crucial. It is important to
evaluate the target during its normal usage (monitoring) and exercise it in specific critical
situations (verification) when monitoring is not effective.

[R7] Intuitive protection status. High-level interpretation of each protection mechanism
status is fundamental for i) avoiding the need of costly (technical) expertise, ii) supporting
experts in recovering from security issues.

[R8] Policy-driven security. It requires to define a policy in a standard way to govern a
process. Policy-driven security evaluation process means that the security evaluation activities
reflect high-level policies supporting a more straightforward control and definition.

[R9] Custom policies. Security policies in [R8] should follow enterprise special needs. High
level of customization is needed to tailor the security policies to the company needs.

[R10] Continuous compliance to standard. It requires to show compliance to one
or more existing security standards to lower the risks of security incidents. Continuous
compliance is achievable satisfying [R6] and orchestrating the activities following a policy as
in [R8].

[R11] Internal security evaluation. All security mechanisms, including the one not
exposed to the public, should be the targets of the security evaluation. Internal threats are
in fact frequent and risky, and require fine-grained monitoring.

[R12] Fast reaction to security incident. The reaction to a security incident is often
delayed by two factors: i) time to discovery of the security breach, ii) time to analyze the
reasons of the breach.

[R13] Rapid and efficient a posteriori audit. In case of security incidents, an a posteriori
audit process is needed to recover from the security breaches. Having a rapid and efficient
audit process permits to re-establish the level of security.

[R14] Remediation. Being able to remediate, automatically or semi automatically, to
security issues is fundamental for keeping the business continuity. If the security issues are
not directly addressable, hints on how to remediate are needed.

5.2 Architecture

Our framework implements a master-slave architecture composed of two main modules: Certi-
fication Manager (CMF) and Execution Manager (EM) as showed in Figure 5.1. Certification

5.2 Architecture 83

Certification
Manager

Execution
Manager

ToC

CM Instance

Certificate Probe

Hook

Fig. 5.1 A simplified view of the framework architecture

Manager – the master – is the owner of the certification process. It i) provides external API
to manage (e.g., start, stop) a certification process, and to manage, retrieve, and modify
corresponding CM Instances and certificates, ii) processes the CM Instance to extract the
configurations and test cases needed for setting up the certification process and for initializing
the slaves, and iii) manages the life cycle of existing certificates collecting aggregated results
on testing activities. Execution Manager – the slave – is responsible for testing the ToC. It i)
deploys the testing probes (see Section 5.2.4) and connects them to the hooks (i.e., the end
points needed to access the target and execute test cases), ii) runs the test cases specified in
the collectors, and iii) returns the results of the testing activities to TM.

Figure 5.1 shows the simple flows between CMF, EM, probes injecting test cases via
hooks, and ToC. After a certification model instance is sent to TM, our certification process
starts. The certification model Instance is parsed and split into pieces driving the activities
of the running EM(s). EM sends back all evidence to CMF when available. The hooks are
provided by the cloud/service provider and are generally protected by means of access control
systems. CM aggregates the results returned by EM and either releases a new certificate, if
possible, or manages the life cycle of an existing certificate.

Figure 5.2 shows a more detailed representation of the framework architecture and
components, which is describe in the following.

5.2.1 Certification Manager

The certification manager (CMF) is the main component of the framework and orchestrates
the whole certification and model verification processes, and a set of execution clusters aiming
to collect evidence at the basis of certification and verification activities.

The certification manager stores all configurations and information needed to verify
the correctness of the model (model structure, time constraints, probability constraints,
configuration constraints, attack paths) and evaluates it once a sufficient amount of evidence
is available. Certification manager is composed of the following modules:

84 Cloud Service Assurance Framework

Certification Manager

Model Database DashboardAPIProbe Dispatcher Evidence AnalyzerResult Database

A
ge

nt
Q

ue
ue

Ev
id

en
ce

Q
ue

ue

ToC

Service SaaS

PaaSBigData
Probe WS

IaaS
BigData
Probe

Execution Cluster1

Execution Cluster2

Execution Manger

Scheduler

Worker1

Worker2

Execution Manger

Execution Manger

Execution Manger

Active
Probe

Active
Probe

Meta-Probe

Big Data Platform

Big Data Cluster

Evidence
Getter

Evidence
Store

BDP
API

Analytics
Manager

Batch
Processor

Real Time
Processor

.config
.config

Fig. 5.2 A detailed view of the framework architecture

• Dashboard: a web application providing an interface to manage certification and model
verification processes.

• API : RESTful api to communicate with the framework.

• Model Database: a database storing all configurations and rules for certification opera-
tions and model verification.

• Probe Dispatcher : a module implementing a communication channel between certifica-
tion manager and execution clusters to require agent execution.

• Result Database: a time-series database automatically storing all evidence coming from
execution clusters at the basis of certification and verification activities.

• Evidence Analyzer : a module analyzing the evidence in the result database and verifying
the model correctness based on specified constraints.

Using a master-slave architecture, the certification manager may look as a bottleneck,
but every single module was designed and developed to easily scale horizontally. Moreover
every single module is deployed as a mircroservice and indeed scaled independently.

5.2 Architecture 85

5.2.2 Execution Manager

Execution managers manage, deploy, and run agents on demand following requests from the
certification manager on a full-duplex channel, where collected evidence are also exchanged.
Communications are implemented using queues and the producer-consumer pattern. An
execution cluster deploys multiple execution managers, each composed of the following
modules:

• Scheduler : a module attached to the agent queue and constantly waiting for messages
from the certification manager. Upon a request arrival, it dispatches the task to a
worker.

• Worker : a module directly connecting to agents in order to send them all configurations
needed for their execution. Upon agent execution is completed, the resulting evidence
is sent to the certification manager through the evidence queue.

We note that our design based on multiple EMs allows to scale the computational capacity
of the system and, since the certification manager can choose the most appropriate execution
cluster to exercise the ToC, to deploy and reach all cloud stack layers. In fact, it is possible
to specify metadata for each cluster and then address the execution of test to specific EM.
Moreover we design EM to be easily configurable, in fact, it doesn’t require any special
network configuration: this is possibile using as producer-consumer as communication patter
that implies that only the queue must be reachable from both EM and CMF.

5.2.3 Big Data Platform

Due to the variety, velocity and volume produced by the certification process, the framework
was extended to involve a component able to store and process Big Data. The Big Data
Platform (BDP) collects data mainly from bigdata-probes that upload all retrieved data to
the big data store, but it can also integrate evidence from Result Database. We note that
bigdata-probes are described in details in Section 5.2.4. The Big Data Platform is composed
by the following modules:

• Big Data Cluster: it is a cluster of bid data node able to execute real time and batch
analytics.

• Evidence Getter: a module that get raw evidence from the Result Database periodically
to extend data in the Evidence Store.

• Evidence Store: a database to keep big data evidence to process.

• BDP API: a RESTful interface that allows bigdata-probe to post data, Probe Dispatcher
to instruct the Big Data Platform and in case of Real Time analytics to stream data to
the Real Time Processor.

86 Cloud Service Assurance Framework

atom0f

atom1f

atom0r

atom1r

1 class SimpleEmptyProbe(Probe):
2

3 def atom0f(self, inputs):
4 #reading input
5 port=self.testinstances["config"]["port"]
6 ...
7 return True
8 def atom0r (self, inputs):
9 ...

10 return False
11

12 def atom1f(self, inputs):
13 #return evidence
14 self.result.put("evidence-key","evidence-value")
15 ...
16 return True
17 def atom1r (self, inputs):
18 ...
19 return False
20

21 #Definition of execution order
22 def appendAtomics(self):
23 self.appendAtomic(self.atom0f, self.atom0r)
24 self.appendAtomic(self.atom1f, self.atom1r)

(a) (b)

Fig. 5.3 Probe script in python. The probe is composed of two atom operations (atom0,
atom1) with the corresponding rollback operations (atom0r, atom1r). Method appendAtomics
specifies the order and matching of atom operations. atom0 is executed first; atom1 can
access the results from atom0 according to its definition.

• Analytics Manager: Based on the work of Ardagna et al. [129] the Analytics Manager
is able to set up a big data analytics based on a given model.

• Batch Processor: a module connected to big data cluster able to deploy and run batch
analytics.

• Real Time Processor: a module connected to big data cluster able to deploy and run
real time analytics.

5.2.4 Probe

In Figure 5.2 is possible to identify three types of collecting modules, active-probe,meta-probe
and bigdata-probes , working at different levels of granularity. The first module type, called
active-probe, includes testing and monitoring functionalities. They directly exercise the ToC
by executing test cases and/or by monitoring events, to the aim of evaluating the behavior
(including attack scenarios) of the system under certification. Their main goal is to identify
possible inconsistencies between the evidence retrieved in a laboratory environment and the

5.2 Architecture 87

one retrieved in the production environment. The second module type, called meta-probe,
is used for the verification of contextual (i.e., time, probability, configuration) constraints
and system model correctness. They indirectly exercise the ToC by observing real and
synthetic execution flows (traces) of the system under certification. Their main goal is to
identify violations of time, probability, and configuration constraints, and inconsistencies of
the execution flows. The bigdata-probe is usually installed as an agent inside the target and
pushes continuously data to the BDP API. It doesn’t provide any evaluation feature but it
only accesses data, filters and structures them as expected by the BDP and then uploads
them to the BDP where then they will be processed.

While bigdata-probes have a specific purpose, in some cases, active-probes and meta-
probes can be used interchangeably. The choice depends on the specific scenario, and balance
the quality of the retrieved evidence and the required level of access to the cloud infrastructure.
Meta-probes connect to interfaces (hooks) provided by the cloud provider with limited access
to the cloud backend; probes directly access the cloud backend and can manage part of
it. As an example, both active-probes and meta-probes can be used to verify property
confidentiality by encryption of a cloud storage. Active-probes require direct read/write
access to the storage, while meta-probes only check whether the storage is configured to
encrypt data without any access to the stored data. The use of meta-probes comes with
some non-negligible advantages. First, they do not require the cloud providers to open their
system to the outside and release sensitive data. Second, they verify support of a property
without interfering with the normal execution of the system. Third, they introduce lower
overhead. These advantages come at the price of a reduced quality of the evidence. In
the following, we denote as structure, time, probability, and configuration (meta-)probes,
(meta-)probes dealing with system model structure, time constraints, probability constraints,
and configuration constraints, respectively.

Active-probes and meta-probes have the same structure (see Figure 5.3). They are
composed of different atom operations that accept as input configuration parameters and
results produced by previous operations, and returns as output evidence on the behavior of
the system. An example of active-probe structure is showed in Figure 5.3. A probe is modeled
as a State Transition System (STS) with two main flows of the same size (Figure 5.3(a)):
i) the forward chain and ii) the rollback chain. The forward chain contains all the states
that should be executed if there are no exceptions during the probe execution, otherwise
the flow is redirected on the corresponding rollback state and continues on the rollback
chain. This approach is designed to guarantee that the ToC can be always restored to the
initial state. The example in Figure 5.3 shows a probe with 4 states : 2 forward states (i.e.
atom0f and atom1f) and 2 rollback states (i.e. atom0r and atom1r). The order of execution
and association between forward and rollback states are specified by the configurations in
method appendAtomics (Figure 5.3(b)). We note that every state has as parameter inputs.
This parameter is filled with the returned value by the previous state, indeed the first state

88 Cloud Service Assurance Framework

executed of the forward or rollback chain has None as inputs. The complete code of some
example probes are available for interested readers in Appendix D.

For interested readers, we report and describe only simple example of probe that check
the availability of a host by using ICMP-based method[130]. The code is shown in Figure 5.4.
The probes is represented by the class PingDriver that provides three states:

• init: this state reads the string received as input (lines 3,4) that contains a series of
hosts and trasform then in a list to pass to the next state.

• ping: ping receives in input the list of host to assess (lines 8,10). For each host it
resolves the hostname if needed (line 14). If the host can’t be resolve then it returns
False (lines 15-18) otherwise it starts to ping the obtained IP (lines 20-25). if one of
the host is not reachable the result of the state is False (29-32), otherwise it returns
True and added as evidence IP and response time (lines34-37).

• rollback1 This state, which is clearly a state of the rollback chain, returns False and
an error as evidence.

The chain order is specified from lines 45 to line 48 in method appendAtomics. The
forward chain involve first the init and then the ping methods. the rollback chain is composed
by twice the rollback1 that store evidence only the first time is called through the trick at
line 41.

5.3 Execution Flow

We report in this section two examples of the whole execution flow covering all operations
from certification model instance I upload to certificate release. One example is based on the
usage of active-probes while the other is based on the usage of bigdata-probes and the BDP.

Certification based on active-probes

The whole process depicted in Figure 5.11 shows the flow of an evaluation based on active
probes, the flow can be split into 6 main steps:

1. upload: : User logs into the framework and then uploads, storse and requires the start
of the CM instance I (operations a-b-c-d, Figure 5.5).

2. start: The Probe Dispatcher first parses the CM Instance Iand identifies the assurance
tasks required by the certification process and then it uploads the assurance tasks on
the specific Communication Queue (opeartions e,f,g, Figure 5.6).

3. run: EM gets the tasks from the queue and executes the probes against the tar-
get(operation h,i,j,k,l,m, Figure 5.7).

5.3 Execution Flow 89

1 class PingDriver(Probe):
2 def init(self, inputs=None):
3 target = self.testinstances.get("config")
4 host=target.get("host",None)
5 assert host is not None
6 hosts=host.split(",")
7 return hosts
8 def ping(self,inputs):
9 return_value=True

10 hosts=inputs
11 name_ip={}
12 result={}
13 for h in hosts:
14 ip=getAddr(h.strip())
15 if ip is None:
16 result[h] = {"status": "down"}
17 result[h] = {"error" : "not reachable"}
18 return_value=False
19 else:
20 name_ip[ip]=h
21 result[h] = {"status":None, "IP":ip}
22 hosts_toping=name_ip.keys()
23 responses, no_response = multi_ping(hosts_toping, timeout=1, retry=2,
24 ignore_lookup_errors=True)
25 reachable=list(responses.keys())
26 for r in result:
27 if result[r].get("status",None) is None:
28 value=responses.get(result[r].get("IP"))
29 if value is None:
30 result[r]["status"]="down"
31 result[r]["errror"]="not reachable"
32 return_value=False
33 else:
34 result[r]["status"]="up"
35 result[r]["time"]=\
36 float(("%0.3f"%responses.get(result[r].get("IP"))))
37 self.result.put_value(r,result[r])
38 return return_value
39

40 def rollback1(self, inputs=None):
41 if input is None:
42 self.result.put_value("Error","Exception, contact admin")
43 return False
44

45 def appendAtomics(self):
46 self.appendAtomic(self.init, self.rollback1)
47 self.appendAtomic(self.ping, self.rollback1)

Fig. 5.4 Example of Probe script in python that checks if a host is reachable

90 Cloud Service Assurance Framework

4. collect: EM publishes all collected results on the Evidence queue and these are store
in the Result DB (operations n,o,p,u, Figure 5.8).

5. evaluate: the Evidence Analyzer receive the evidence and based on the CM evaluation
policy tags the single test as pass or fail and indeed tried to issue the certificate if the
evidence all assurance task have been accomplished (operations q,r,s,v,x,w, Figure 5.9).

6. release The user once the certificate is finally issued can obtain it with the relative
supporting evidence (operations t,y,z, Figure 5.10).

For a more detail description of the full sequence diagram in Figure5.11 we suggest to to
follow Example 5.3.1.

Example 5.3.1 Let’s consider an Amazon S3 bucket2 that must be certified for properties
p=(Confidentiality,{ctx=in-transit / at-rest}). The certification model instance I will
contains two security mechanisms, mapped to two test probes that will ensure that the given
bucket is compliant with the general certification model template T . This two mechanisms
check that the bucket is encrypted and only accessible through https. The user, once logged
(a), uploads the CMI through the API (b). I is validated and stored into the Model Database
and a relative certificate in issuing state is then created for further operations (c). The API
requests the start of the certification process to the Model Dispatcher (d) that once identified
all test probes and relative test cases (e) (see Section 3.2) sends all the information to the
designed execution cluster (f, g). The first Execution Manager with a free worker takes in
charge of one of the two requested tests (h), deploying and running the probe (j) . Once the
evidence is produced (k) then is sent back through the Evidence Queue(n). The arrival of new
evidence on the Result DB (p) triggers the Evidence Analyzer (q) that perform the evaluation
based on the available evidence (s). Since the Irequired (r) two tests, the certificate can not be
issued yet (s). Once another Worker finished the execution of test-2 (i, l, m, n) and evidence
is stored into the Result Database (p) then the Evidence Analyzer can finally evaluate the
I(v,x) and release a Certificate (w). Since both tests were successful the user get from the
api a positive certificate (y,z). We note that until the certificate is not issued then if a user
require the certificate x (t) she will get back a certificate in issuing state.

2https://aws.amazon.com/s3/

https://aws.amazon.com/s3/

5.3 Execution Flow 91

Fig. 5.5 Sequence diagram execution flow with active-probes, step upload

Fig. 5.6 Sequence diagram execution flow with active-probes, step start

Fig. 5.7 Sequence diagram execution flow with active-probes, step run

92 Cloud Service Assurance Framework

Fig. 5.8 Sequence diagram execution flow with active-probes, step collect

Fig. 5.9 Sequence diagram execution flow with active-probes, step evaluate

5.3 Execution Flow 93

Fig. 5.10 Sequence diagram execution flow with active-probes, step release

94 Cloud Service Assurance Framework

Fi
g.

5.
11

Se
qu

en
ce

D
ia

gr
am

of
Ex

am
pl

e
5.

3.
1

5.3 Execution Flow 95

Certification based on bigdata-probes

The execution flow of a certification operation using the BDP is depicted in Figure 5.18 and
it can be summarized in the following operations3:

1. upload: User logs into the framework and then uploads, stores and requires the start
of the CM instance I(operations a-b-c-d, Figure 5.5)

2. start: the Probe Dispatcher parses the CMI and identified the bigdata-probes and the
requested analytic. For every analytics the Probe Dispatcher instructs the BDP which
configures the Evidence Store, the Analytics Manager and the BDP API to receive
data from the specified bigdata-probes (opeartions e,f,g, Figure 5.12).

3. run: Bigdata-probes start uploading data into the BDP (operation h,i,l,m,n,o, Fig-
ure 5.13).

4. setup analytics: the Analytics Manager sets up and requires to run the Batch
Processor that accesses the data in the evidence store and then deploy the required
analytic in the Big Data Cluster (operations n,o,p,u, Figure 5.14).

5. process: the analytic is executed in the Big Data Cluster and the results sent to the
Evidence Analyzer (operations, Figure 5.15).

6. evaluation the Evidence Analyzer receives the results of the big data process and,
based on the CM evaluation policy, tries to issue the certificate (operations q,r,s,u,v,x,w,
Figure 5.16)

7. release The user once the certificate is finally issued can obtain it with the relative
supporting evidence (operations t,y,z, Figure 5.17)

For a more detail description of the full sequence diagram in Figure5.18 we suggest to to
follow Example 5.3.2.

Example 5.3.2 Let’s consider a set of IoT devices that collect the city pollution that must
be certified for properties p=(Integrity,{}). The certification model instance I will contains
one security mechanisms, mapped to one batch analytic. The user, once logged (a), uploads
the CMI through the API (b). I is validated and stored into the Model Database and a relative
certificate in issuing state is then created for further operations (c). The API requests the start
of the certification process to the Model Dispatcher (d) that once identified the bigdata-probes
information and the requested analytics (e) sends both to the BDP API(f, g). The BDP API
creates a dedicated store for the analytic in the Evidence Store, enables the reception of data
from the specified bigdata-probe and pass the big data process model and the time to wake up

3We note that some operation may coincide with the previous example.

96 Cloud Service Assurance Framework

to the Analytic Manager. In the meanwhile the bigdata-probe starts uploading the data into
the BDI API that then stores them into the Evidence Store. Analytic Manager automatically
triggered by the wake up time sets the Bath Processor. The Batch Processor parse the model,
get the data source from the Evidence Store and deploy the requested analytic on the Big
Data Cluster. Once the analytic is done, the evidence is sent to the Evidence Analyzer and
the Batch Processor is notified of the end. The Evidence Analizer can finally evaluate the
I(v,x) and release a Certificate (w). Based on the evidence the certificate is issued and user
can get from the api the certificate (y,z). We note that until the certificate is not issued then
if a user require the certificate x (t) she will get back a certificate in issuing state.

Fig. 5.12 Sequence diagram execution flow with bigdata-probe, step start

Fig. 5.13 Sequence diagram execution flow with bigdata-probe, step run

Fig. 5.14 Sequence diagram execution flow with bigdata-probe, step setup analytics

5.3 Execution Flow 97

Fig. 5.15 Sequence diagram execution flow with bigdata-probe, step process

Fig. 5.16 Sequence diagram execution flow with bigdata-probe, step evaluation

Fig. 5.17 Sequence diagram execution flow with bigdata-probe, step releasee

98 Cloud Service Assurance Framework

Fi
g.

5.
18

Se
qu

en
ce

D
ia

gr
am

of
Ex

am
pl

e
5.

3.
2

5.4 Moon Cloud 99

5.4 Moon Cloud

Moon Cloud is a spin-off of Univestitá degli Studi di Milano. Moon Cloud is a platform for IT
security governance and enables application owners to have a complete assurance evaluation
and compliance assessment of their services during operations by means of continuous
monitoring and testing. Moon Cloud mainly follows the architecture shown in Section 5.2 and
implements the compliance process defined in Section 3.3 using monitoring/testing controls
and a customizable security compliance evaluation fully compatible with probes described in
Section 5.2.4. Moon Cloud is online and used by several customers in different scenarios (for
more details see Chapter 6).

5.4.1 Mapping to Requirements

Moon Cloud covers requirements in Section 5.1 as follows.

• Moon Cloud offers a centralized cloud platform ([R4]), presenting a holistic view of the
security status of a given system ([R1]). Moon Cloud platform aggregates the results of
an assurance evaluation based on compliance into easy-to-understand metrics. These
metrics are presented in an intuitive way ([R7]) and can be inspected by expert users
together with each single evidence.

• Moon Cloud implements an evidence-based continuous assurance, implemented as a
compliance process ([R2]) based on custom or standard policies ([R8][R9]), through a
distributed and scalable set of probes. Probes are meant to capture specific evidence
on both internal and external assets, which are aggregated for compliance evaluation.

• Moon Cloud is offered as a service – PaaS ([R3]), where the evaluation activities can be
easily and efficiently configured to target the assets without the need of any additional
human intervention. At the same time, it supports the design, implementation and
deployment of custom policies ([R9]) and controls in a controlled environment, where
the process of creating and building a control is semi-automatically carried out by the
platform itself.

• Moon Cloud offers out of the box compliance to standards ([R10]), such as PCI-DSS,
HIPAA.

• Moon Cloud permits to schedule automatic inspection, thanks to an asset inventory
([R5]) stored in a vault where all secrets are managed in a secure and confidential way.

• Moon Cloud evidence collection adopts both verification and monitoring techniques
([R6]).

100 Cloud Service Assurance Framework

• Moon Cloud evaluation engine can inspect the target from the inside ([R11]), managing
internal threats.

• Moon Cloud permits fast reaction to security incidents ([R12]), thanks to a contin-
uous evidence collection that supports efficient a posteriori audit ([R13]) and quick
remediations.

5.4.2 Moon Cloud Architecture

Moon Cloud architecture is composed of an assurance manager4 that orchestrates the whole
evaluation via a set of execution clusters; each execution cluster manages and executes a
set of probes collecting the evidence needed for the evaluation. The execution cluster can
be deployed both externally, outside the target of evaluation, or internally (on premise),
within the target of evaluation. All collection activities are executed by probes. Each probe
is a python script provided as a single docker image, which is started when an evaluation
is triggered and destroyed once the evaluation is done following the Function-as-a-Service
(FaaS) pattern5.

Upon accessing the Moon Cloud platform, the user can define its own security policies
and evaluation activities as Boolean expressions of security controls and other predefined
policies using the Moon Cloud dashboard. Once a policy is defined, the user can decide the
scheduling time for policy verification, either one shot, discrete, continuous, and launch her
evaluation. When a compliance evaluation against a policy starts, all controls are executed
and the Boolean results collected. The Boolean results are then aggregated according to the
policy and a true/false result returned to the user. The user can then access the results of
the compliance evaluation through the dashboard at different levels of granularity: i) the
overall system security status as a summary of all policy evaluation, ii) the result of each
specific policy evaluation, and iii) the evidence supporting a specific policy evaluation.

When a compliance evaluation against the defined policy starts, all controls are executed
and the Boolean results collected. The Boolean results are then aggregated according to the
policy and a true/false result returned to the user. The user can then access the results of
the compliance evaluation through the dashboard at different levels of granularity: i) the
overall system security status (Figure 5.19(b)) as a summary of all policy evaluation, ii) the
result of each specific policy evaluation (Figure 5.19(c)), and iii) the evidence supporting a
specific policy evaluation (Figure 5.19(d)).

4We chosen assurance manager because it has been designed to be generic and support any assurance
processes, including compliance, audit, certification.

5More details on FaaS at http://alexander.holbreich.org/serverless-manifesto/

5.4 Moon Cloud 101

(a) (b)

(c) (d)

Fig. 5.19 Security governance with Moon Cloud

5.4.3 Implementation Notes

We describe some details about Moon Cloud and Probe implementation. API is a provided
through NGINX server and is a web app all developed in AngularJS. All modules are
microservices that provide a RESTful API implemented in Django RestFramework6. All
documents and building blocks (i.e., CM Instances, agents, certificates) are stored in the
Model Database, a Postgresql7 database. Evidence instead, being time-series data, are stored
in Result Database which is implemented by using InfluxDB8. Communications between CMF
and EM are managed through a RabbitMQ queue with security features activated. The
communication over RabbitMQ is secured by enabling the mutual authentication and the
encryption of the channel. Using the publish/subscriber paradigm allows to scale horizontally
over several Execution Managers as needed. All the platform is dockerized and indeed
takes all advantages of containerization [131]. Execution Managers are python services that
interacts with Docker hosts to deploy probes. A probe, in fact, is completely encapsulated in
a docker container and run as a Function as a Service over a Swarm9 Infrastructure. The
Big Data Platform works with an Hadoop10 YARN big data cluster using as process engine
Spark11. The deployment of big dafa analytics is driven by Spring Cloud Data Flow 12 and
the Evidence Store is provided through an H Base database.13

6http://www.django-rest-framework.org/
7https://www.postgresql.org
8https://www.influxdata.com/
9https://docs.docker.com/engine/swarm/

10https://hadoop.apache.org/
11http://spark.apache.org/
12https://cloud.spring.io/spring-cloud-dataflow/
13https://hbase.apache.org/

https://hadoop.apache.org/
http://spark.apache.org/
https://cloud.spring.io/spring-cloud-dataflow/
https://hbase.apache.org/

102 Cloud Service Assurance Framework

5.5 Chapter Summary

This chapter presented a certification framework that implements the security certification
process for the cloud in Chapter 3 and 4. Our framework supports pre-deployment and
production evaluation of cloud systems at different layers of the cloud stack. It also provides
a certification-aware cloud engineering methodology that drives providers in the design
and development of ready-to-be-certified systems. Our approach departs from traditional
certification schemes, which are independent from the development process, to provide a
certification scheme with reduced overheads. Moreover, this chapter presented Moon Cloud
platform, a running solution for security governance and compliance assessment. Moon
Cloud platform supports continuous verification, diagnostic, and monitoring of ICT system
compliance against security policies. It provides an enhanced methodology that permits to
correlate different and heterogeneous evidence to evaluate the status of the security of a given
system.

Chapter 6

Application Scenarios

One of the main advantages of the cloud is the possibility to use and integrate managed
services that completely run under the responsibility of third parties [132]. Relying on third
party services can, on one side, boosts the development of new products and facilitate their
maintenance by only focusing on the core business; on the other side, it comes at the cost of
losing control over the whole product stack. Deploying an application on the cloud migth
be straightforward thanks to the enabling technologies provided by CSP. When we come to
security, it does not only depends on the application itself, but on the whole set of cloud
services and infrastructure the application is built on. We define the cloud scope iceberg,
shown in Figure 6.1, to highlight that from a point of view of the final users, the visible part
only corresponds to the top of the iceberg, while it relies on the whole end-to-end chain.
Indeed, to provide a secure system in the cloud, we need to consider all technologies, assets
and actors involved.

In this Chapter1, as a validation of what have been described in the previous chapters, we
present two scenarios where security assurance can be applied to cloud services. The first is a
practical scenario that focuses on the assurance evaluation of OpenStack, a major open source
cloud infrastructure. To this aim, we define a security benchmark for OpenStack that is an
instantiation and refinement of the CIS benchmark in [133] on the basis of the OpenStack
security guidelines in [134]. This evaluation can be used in a composite certification to
ensure that any applications built on OpenStack at least can rely on a secure infrastructure.
The second scenario evaluates a web hosting service provided by Universitá degli Studi

1This chapter is based on the following publications:
• Toward Security and Performance Certification of OpenStack, Co-author: M. Anisetti, C.A. Ardagna,

E. Damiani, R. Veca published in Proc. of IEEE CLOUD 2015 , June July 2015, New York City, NY,
USA

• A Security Benchmark for OpenStack, Co-author: M. Anisetti, C.A. Ardagna, E. Damiani, published
in Proc. of IEEE CLOUD 2017, June 2017, Honolulu, HI, USA

• Moon Cloud: A Cloud Platform for ICT Security Governance, Co-author: M. Anisetti, C.A. Ardagna,
E. Damiani, published in Proc. of IEEE GlobeCom 2018 , December 2018, Abu Dhaby, EAU

104 Application Scenarios

Fig. 6.1 Cloud Scope Iceberg

di Milano. In this case the evaluation covers the whole iceberg, from the websites down
to the infrastructure and verifies it against the ICT security guidelines for Italian public
administration provided by the "Agenzia per l’Italia Digitale" (AgID).

In both scenarios we use Moon Cloud, an implementation of the framework in Chapter 5,
that provides a innovative B2B platform for large scale and continuous verification, diagnostic,
and monitoring of ICT system compliance. For a more detailed description of Moon Cloud
please refers to Section 5.4.

6.1 How to evaluate an IaaS Manager: OpenStack

In this Section, we focus on the evaluation of the security assurance of OpenStack, a major
open source cloud infrastructure. We first define a security benchmark for OpenStack, inspired
by Center for Internet Security (CIS) benchmark for cloud infrastructures. We then present a
platform, called Moon Cloud, for cloud security assurance evaluation, showing an application
of our benchmark and platform to the in-production OpenStack deployment of the University
of Milan.

6.1.1 OpenStack

OpenStack is an open source IaaS solution providing functionalities for the management and
monitoring of infrastructure resources. It is becoming a standard de facto due to its wide
adoption by big IT Companies and is composed of the following set of core services.

• Identity service (Keystone): it provides authentication and authorization to all services
and supports different types of authentication.

6.1 How to evaluate an IaaS Manager: OpenStack 105

• Compute service (Nova): it provides Virtual Machine (VM) management through
abstraction layers that support different hypervisors.

• Object storage (Swift): it provides support for managing data in the cloud.

• Block storage (Cinder): it provides persistent storage. It supports a full life cycle
management for block storage, and access control and encryption functionalities.

• Networking service (Neutron): it provides IP management, DNS, DHCP, load balancing,
firewall policies, and VPN management.

• Image service (Glance): it provides functionalities for disk image management.

• Web dashboard (Horizon): it provides a dashboard used by users to interact with other
OpenStack services.

6.1.2 Security Benchmark

A security benchmark is a set of (standard) recommendations against which the security
strength of different systems can be compared. The recommendations are coupled with
auditing activities specifying how to collect data for evaluating the recommendations. The
result of a security benchmark evaluation is a score that represents the security strength of a
specific product/service/deployment; the higher the score, the more secure the product/ser-
vice/deployment.

The Center for Internet Security (CIS) provided a series of security benchmark for different
solutions [133], ranging from applications such as Microsoft Word or MySQL, to Operating
Systems such as Window Server or Ubuntu, and recently addressing cloud products such as
AWS or Docker. Our analysis starts from the observation that OpenStack, though universally
recognized as the most important open source cloud infrastructure (IaaS), does not come
with a specific benchmark, but is just coupled with some high-level best practices proposed by
OSSG (OpenStack Security Group). We therefore define a security benchmark for OpenStack
as an instantiation and refinement of the generic CIS benchmark for IaaS systems in [135]
on the basis of the OpenStack security guidelines in [134]. To this aim, we consider the
OpenStack core services: i) Keystone is the identity service providing authentication and
authorization for all users and services, ii) Nova is the compute service managing the life
cycle of compute instances, iii) Glance is the image service providing a virtual machine disk
image repository, iv) Neutron is the networking service providing network connectivity as a
service, v) Cinder is the block storage offering persistent block storage, and vi) Swift is the
object storage to store and retrieve arbitrary unstructured data objects.

Our security benchmark for OpenStack first maps the three profiles (Virtual, Cloud,
End User) identified by the CIS benchmark [135] on OpenStack core services to address its
peculiarities, including the concepts of shared responsibility and cloud layers, as follows.

106 Application Scenarios

Table 6.1 OpenStack Security Benchmark (OSB) addressing Hosts, OpenStack core services
(Keystone, Nova, Glance, Neutron and Cinder, Horizon) and user configurations

Recommendation Benchmark Profile
Virtual Cloud User

R1 Maintain Current Patch Levels CIS, OSB ✓ ✓ ✓
R2 Create and Enforce Account and Password Manage-

ment Policies
CIS, OSB ✓ ✓ ×

R3 Use a Central Directory for Authentication and Au-
thorization

CIS, OSB ✓ ✓ ✓

R4 Configure Firewalls to Restrict Access CIS, OSB × ✓ ✓
R5 Use TLS/SSL where Possible CIS, OSB ✓ ✓ ✓
R6 Do Not Use Default Self-Signed Certificates CIS, OSB ✓ ✓ ✓
R7 Configure Centralized Remote Logging CIS, OSB ✓ ✓ ✓
R8 Maintain Time Synchronization Services CIS, OSB ✓ × ✓
R9 Review and Minimize Hypervisor Attack Surface CIS, OSB ✓ × ×
R10 Review and Minimize Virtual Machine Manager At-

tack Surface
CIS, OSB ✓ ✓ ×

R11 Use Templates to Deploy Virtual Machines CIS, OSB × ✓ ×
R12 Disconnect unauthorized devices from Virtual Ma-

chines
CIS, OSB ✓ × ×

R13 Disable MAC Address Changes and Promiscuous
Node on Guests

CIS, OSB ✓ × ×

R14 Ensure Network Isolation through VLANs CIS, OSB ✓ ✓ ×
R15 Port Groups Should not be Configured to Reserved

VLANs
CIS, OSB × ✓ ×

R16 Secure Access to Cloud Application Programming In-
terfaces

CIS, OSB ✓ ✓ ×

R17 Encrypt Data at Rest CIS, OSB ✓ ✓ ×
R18 Establish Appropriate Resource Isolation CIS, OSB ✓ ✓ ✓
R19 Evaluate Denial of Service Scenarios and Mitigations CIS, OSB ✓ ✓ ×
R20 Do Not Use or Set Guest Customization Passwords CIS, OSB ✓ ✓ ×
R21 Evaluate and Minimize Cloud Architecture Depen-

dencies
CIS, OSB ✓ ✓ ✓

− Align Infrastructure Security Controls with Tenant
Requirements

CIS − − −

− Segment and Restrict User and Server Workload
Communication

CIS − − −

− Restrict User-to-User Workload Communication CIS − − −
− Deploy Anti-Malware Solution to End User Work-

loads
CIS − − −

− Audit Privileged Access to End User Workloads CIS − − −
R22 Audit sensible and configuration files OSB ✓ ✓ ×
R23 Storage Reliability OSB ✓ ✓ ×
R24 Data Remanence Avoidance OSB × ✓ ×

• Virtual: this profile pertains to all physical nodes where OpenStack services are installed,
specifically addressing hardware configurations, Linux OSs, virtualization systems, and
system service configurations.

• Cloud: this profile pertains to OpenStack services and add-ons. It involves OpenStack
core services, the admin operations and configurations set.

• User : this profile pertains to OpenStack user usage. It addresses how users can secure
their OpenStack projects, including VMs, virtual storage and network configurations.

We then instantiated the generic CIS benchmark recommendations and added some new
recommendations on the OpenStack core services on the basis of the three defined profiles.

6.1 How to evaluate an IaaS Manager: OpenStack 107

Table 6.1 presents an overview of our OpenStack Security Benchmark (OSB) presenting the
security recommendations (field Recommendation), a comparison between recommendations
supported by CIS and OSB (field Benchmark), and the corresponding profiles over which the
properties insist (field Profile). Finally, starting from the best practices proposed by OSSG
and following a strict architectural analysis of OpenStack, we defined for each recommendation
the corresponding security control(s).

[R1] Patch Levels. Continuously check the version of installed software including OpenStack
services (Virtual, Cloud, User)

[R2] Create and Enforce Account and Password Management Policies.

• Enable PAM, LDAP, or similar authentication systems for every host and allow
certificate-based authentication only. Use certificate rotation and minimize root accesses.
Disactivate users after long inactivity (Virtual)

• Use password policies for OpenStack users, disactivate users after long inactivity (Cloud)

[R3] Use a Central Directory for Authentication and Authorization.

• Use an OS authentication system that is bound to LDAP/kerberos/active directo-
ry/freeipa ((Virtual)

• Enable LDAP for all domains in Keystone (Cloud)

• Deploy VMs authenticated through a centralized authentication system (User)

[R4] Configure Firewalls to Restrict Access.

• Enable iptables, minimize allowed IPs and ports to necessary services only, do not
manually tamper iptables once configured (Virtual)

• Do not deploy any VM associated with security groups that allow public access on
specific ports (User)

[R5] Use TLS/SSL where Possible.

• All services and communications (MySQL, rabbitmq, LDAP, OpenStack services) should
be accessible over encrypted channels only (Virtual, Cloud)

• Every application offered by VMs should offer services over TLS/SSL channels (User)

[R6] Do Not Use Default Self-Signed Certificates. All certificates should be signed
by a certification authority (Virtual, Cloud, User)

[R7] Configure Centralized Remote Logging.

108 Application Scenarios

• Store all logs from system and OpenStack in two different remote logging systems
(Virtual, Cloud)

• Set up their own remote logging system for their applications (User)

[R8] Maintain Time Synchronization Services. All nodes/VMs should have the time
syncronization system enabled and should use the same network-time server list (Virtual,
Users)

[R9] Review and Minimize Hypervisor Attack Surface. Identify and run a security
benchmark against the used hypervisors, disable memory de-duplication (Virtual)

[R10] Review and Minimize Virtual Machine Manager Attack Surface.

• Execute vulnerability scans of the virtual machine monitor (i.e., QEMU/KVM) (Virtual)

• Execute vulnerability scans of OpenStack services and APIs (Cloud)

[R11] Use Templates to Deploy Virtual Machines. Execute vulnerability scans of
public images on Glance and check if signature verification is enabled (Cloud)

[R12] Disconnect unauthorized devices from Virtual Machines. Disable all unau-
thorized/unused device ports such as NIC, USB or serial ports, disable compute unified
device architecture (CUDA) and direct memory access (DMA) (Virtual)

[R13] Disable MAC Address Changes and Promiscuous Mode on Guests. Hyper-
visor or Network virtualizators should deny MAC address changes on the Vnic (Virtual)

[R14] Ensure Network Isolation through VLANs.

• Only VLAN or VLANX should be available and enabled in the whole deployment
(Virtual)

• Only VLAN or VLANX should be enabled in Neutron (Cloud)

[R15] Port Groups Should not be Configured to Reserved VLANs. Neutron m2l
plugin should be set to allow only VLAN ids that do not overlap the reserved ones used by
physical devices in the network infrastructure (Cloud)

[R16] Secure Access to Cloud Application Programming Interfaces. Enable and
configure SELinux for secure access to configuration file, run vulnerability scans for OpenStack
APIs, isolate API endpoints, especially those with public access, deploy API endpoints on
separate hosts for increased isolation (if possible), enable multi-factor authentication (if
available) and only provide APIs over SSL/TLS with mutual authentication (Virtual, Cloud)

[R17] Encrypt Data at Rest.

• Nodes should have encrypted file systems (Virtual)

6.1 How to evaluate an IaaS Manager: OpenStack 109

• Enable LUKS block storage creation in Cinder and use an appropriate fixed_key
as passphrase. Enable encryption feature in Swift configuration file, use an encryp-
tion_root_secret that is a base-64 encoding of a 32 byte value generated by a crypto-
graphically secure random number generator (Cloud)

[R18] Establish Appropriate Resource Isolation.

• Disable memory de-duplication, avoid co-resident attack, do not allow overlapping of
VLAN ids and of virtual disks assignment to hosts, disable live migration or limit
migration to dedicated network with encryption enabled, disable delay delete feature
for Glance, disable the compute soft delete for Nova, allow to publish public images by
admin users only (Virtual, Cloud)

• Ensure that only allowed users are members of your project, use encrypted storage for
all sensitive data (User)

[R19] Evaluate Denial of Service Scenarios and Mitigations.

• Mitigation systems should be place in front of critical assets. Rate-limiting from
application server should be configured, IDS should be installed and configured to
detect DDoS attacks, blacklisting systems for SSH connection should be enabled (e.g.,
fail2ban) (Virtual)

• Run performance test and do not go under resource quotas (Cloud)

[R20] Do Not Use or Set Guest Customization Passwords.

• Every node should allow access through a centralized system only; extra users should
not exist, unless the necessary ones (Virtual)

• Admin should not be member of any project and a policy should not allow the admin
to access project resources she is not member of. Admin should not be allowed to
set/change user password (Cloud)

[R21] Evaluate and Minimize Cloud Architecture Dependencies.

• Hypervisors should be always up and available, hardware resources such RAM and
CPUs should be always available and all services such as rabbitmq, MySQL should be
running. In addition, high availability should be set for services. (Virtual)

• Guarantee high availability of all OpenStack services. In Glance, do not allow creation
of unsupported image type. Provide multi-region deployment (Cloud)

• Use scheduler filtering to deploy VMs that provide high availability on at least two
different availability zones. (User)

110 Application Scenarios

Evaluation Module

public
network

internalnetwork
qu

eu
e

co
m

m
un

ic
at

io
n

Execution Deployment1 public

Execution Deployment2 public

Execution Deployment3 internal

Host1 Host2 Host3 ... Host32

OpenStack API

VM VM VM

Fig. 6.2 Moon Cloud architecture

[R22] Audit Sensible and Configuration Files. All regular Linux file system and system
calls, and OpenStack service configurations should be audited (e.g., auditctl) (Virtual, Cloud)

[R23] Storage Reliability.

• All OSs should run at least on Raid type 1 to guarantee data replication (Virtual)

• Cinder and Swift should use a dedicated storage distributed at least over three replicas
(Cloud)

[R24] Data Remanence Avoidance. All resources, such as virtual network, block de-
vices, images, should be always bound to entity in corresponding databases to avoid data
remanence [136] (Virtual)

6.1.3 Security Controls

This section shows how our benchmark can be evaluated against a large, in-production
installation of OpenStack using Moon Cloud platform. The target of evaluation is the
OpenStack Mitaka deployment at University of Milan, called Lagrange, currently used for
research projects and teaching activities. Section 5.4 described in details Moon Cloud,
Figure 6.2 shows a summary representation of Moon Cloud architecture and how it was
deployed to run the benchmark. One Evaluation module and one Execution module are
installed to access OpenStack APIs and VMs (public deployment); one Execution module
is installed within the internal network where all Lagrange nodes are reachable (internal
deployment).

The goal of the evaluation in this section is to show the applicability and utility of our
benchmark on a real OpenStack deployment using a representative subset of recommendations
extracted from the benchmark in Section 6.1.2. In the following, for each recommendation,

6.1 How to evaluate an IaaS Manager: OpenStack 111

we provide i) ToE t including the target profile, ii) control flow ϕ and the corresponding
parameters λ associated with the flow’s operations, iii) environmental settings π, iv) a
discussion on the evaluation results and a remediation when needed. We note that, all
the scripts implementing controls, parameters and environmental settings are available in
Appendix D.

[R8] Maintain Time Synchronization Services.
Profile: Virtual.
ToE: All nodes that compose the OpenStack deployment.
Control: The control needs to access every node, and check if the time synchronisation is
enabled and every node is connected to the same server list as required. The control supports
both crony and ntp.

The execution flow ϕ consists of three sequential operations with the corresponding
parameters λ as follows.

1. connect_to_server [username, password, private_key, private_key_passphrase,hostname,
port]: it accesses to the node through SSH;

2. check_timesync_enabled [ntp,chrony]: it checks, using the init system, if crony or ntp
is enabled;

3. check_timesync_config [ntp_config_file (optional),chrony_config_file (optional),servers_list]:
it checks whether servers list in the crony or ntp config file are the same as the ones in
the parameters.

. The environmental settings π are as follows:

• Control must be executed with access to the internal network.

• Paramiko python library for SSH connection.

Results: During our evaluation we found that Lagrange is not compliant with this recom-
mendation; in particular, the control returns a negative result for Host 5 because it is using a
different pool of time servers from what expected. As remediation, the Host 5 time server
configuration file can be replaced with a file that adheres to the recommendations.

[R20] Do Not Use or Set Guest Customization Passwords.
Profile: Cloud.
ToE: Openstack Keystone. Keystone is the identity service and manages projects, users, and
groups.
Control: The control requires that admin cannot be member of any projects, excepts her
owns projects, and cannot change users’ passwords. Hence, the control is twofold: i) admin
user is only member of a restricted list of projects as specified in a list, ii) the OpenStack

112 Application Scenarios

policy does not allow admin to change users’ password, which must be changed only through
the centralized identity system.

The execution flow ϕ of control i) consists of two sequential operations with the corre-
sponding parameters λ as follows.

1. openstack_connection [os_username, os_password, os_project_id, os_auth_url, os_user_domain_name]:
it connects to OpenStack APIs using the admin credentials

2. checkProject [project_list]: it parses all projects and checks that admin is member only
of the projects given as input.

The environmental settings π are as follows:

• Control must be executed with access to the public OpenStack APIs.

• The OpenStack client SDK must be able to communicate with its APIs.

The execution flow ϕ of control ii) consists of two sequential operations with the corre-
sponding parameters λ as follows.

1. connect_to_server [username, password, private_key, private_key_passphrase, host-
name, port]: it accesses the Keystone nodes through SSH.

2. retrieve_policy_file [path]: it reads and parses the policy file.

3. inspect_policy_file [key, expected_value]: it checks that identity:change_password
action is disabled.

The environmental settings π are as follows:

• Control must be executed with access to the internal network.

• Paramiko python library for SSH connection.

Results: Lagrange is fully compliant with this recommendation; the change_password is
disabled and the admin user is only member of projects admin and admin − test.

[R21] Evaluate Cloud Architecture Dependencies.
Profile: User.
ToE: Nova computing and user VMs
Control: User can mitigate the risks introduced by a single point of failure by deploying
VMs in different availability zones; hence, the control checks that a set of VMs are at least
deployed in two different availability zones. The execution flow ϕ of the first control C1

consists of three sequential operations with the corresponding parameters λ as follows.

1. openstack-connection [user credentials]: it accesses OpenStack APIs using user creden-
tials.

6.2 How to evaluate a Web Hosting Service: AgID compliance 113

2. retrieve-zone []: it retrieves all availability zones in OpenStack.

3. check-deployment [vm-list]: it checks that at least one VM from vm-list is deployed in
a different availability zone.

The environmental settings π are as follows:

• Control must be executed with access to the public OpenStack APIs.

• The OpenStack client SDK to be able to communicate with its APIs.

Results: Lagrange is not compliant with this recommendation since it offers only one
availability zone. As remediation, the admin can identify, if possible, fault-independent zones
and aggregate hosts under these zones. If not possible the admin can re-design or extend the
node cluster to provide different availability zones.

6.2 How to evaluate a Web Hosting Service: AgID compli-
ance

The diffusion of ICT devices and systems in most of the working environments brings many
advantages in terms of offered services, high standards of living, automation and performance.
The price we pay for ICT benefits is the increasing number of security incidents and breaches,
which nowadays worries all the companies, and in turn their customers, with an increasing
risk of failures of critical services, data breaches and privacy violations.

In 2016, the cost of data breaches was 3.62 billion dollars, with an increase in their
dimension. This value refers only to what has been disclosed by the companies, which are
normally reluctant to reveal such security breaches for reputation reasons. The real monetary
values is much higher if we also consider the reputation damage suffered by the attacked
companies. Some well-known recent incidents resulted in dangerous denial of service, such
as the block of hospital services across England and Scotland [137]; other incidents affected
the privacy of terabytes of customer transactions (e.g., [138]). In this scenario, according
to marketsandmarkets.com [139], enterprise governance, risk management and compliance
(GRC) market is becoming one of the most prominent market worldwide and is expected to
reach 44 billion dollars in revenue by 2020. It includes all solutions aimed to make companies
aligned with the increasing number of mandatory regulations and standards (e.g., European
GDPR) in all business sectors. The need of GRC is getting more and more pressing especially
in the IT domain. In particular, according to Gartner [140], IT-GRC market is expected to
reach 7.3 billion dollars revenue by 2020.

IT security is one of the key aspects driving GRC and one of the major sources of risk
perceived by enterprises. According to SANS Institute, the percentage of IT budget that
enterprises devote to security is increasing in every domain and is between 4% and 12%; 56%

114 Application Scenarios

of this budget is then used to guarantee compliance to regulations, which is among the major
factors of IT security expenses. In this context, a report from Kaspersky Lab [141] shows that
the average financial loss due to IT incidents is about 31k euro/year for each small/medium
enterprise (SME) and about 450k euro/year for each average enterprise. According to CIS
Sapienza [142], the budget used by a small enterprise in Italy to protect against IT threats is
41k euro every 5 years (8.3k euro/year), including both setup expenses and recurrent yearly
expenses. This budget is 76% lower with respect to the average loss over 5 years. For bigger
enterprises, the budget used to protect against IT threats raises to 103k euro every 5 years
(20.7k euro per year), 41% lower with respect to the average loss over 5 years. Then, in
Europe, with the new privacy regulation (GDPR) becoming effective in 2018, an additional
increase of 16% is forecast for the IT security and compliance market.

The market is slowly noticing that it is not the technological inadequacy of security systems
that increases the risk of data theft or breach; rather, misconfigurations and faulty integration
of such systems within the business processes are at the basis of such thefts/breaches (72%
of the total of observed problems).

Install the best security controls does not guar-
antee a secure system; it is necessary to imple-
ment a continuous diagnostic process that verifies
whether controls are configured in a proper way
and behave as expected (security compliance).

Security assessment [143] becomes then critical especially in cloud and IoT environments.
This assessment must be continuous and holistic, to correlate the evidence collected by
an increasing number of security protection mechanisms. Koschorreck [144] described the
importance of automated audit and security controls with particular attention to models
and standard protocols to represent and exchange audit results and operations. Alzahrani et
al. [145] presented an interesting analysis of the available web application security tools from
SQL injection to black box vulnerability scanners. Patel et al. [146] presented an analysis of
vulnerabilities and security of the most common CMS such as WordPress and Joomla.

In this Section, we show how Moon Cloud can be used to continuously evaluate the
status of a web hosting service. The evaluation is carried out according to the ICT security
guidelines for Italian public administration provided by the Agenzia per l’Italia Digitale
(AgID) and approved by the Italian prime minister.

6.2.1 The scenario

The evaluation covers a web hosting service provide by University of Milan and it is carried
out according to the ICT security guidelines for Italian public administration provided by
the Agenzia per l’Italia Digitale (AgID) and approved by the Italian prime minister.

6.2 How to evaluate a Web Hosting Service: AgID compliance 115

The web hosting service, which is provided to all the employees of an enterprise and span
different (from application to infrastructure) layers of the ICT system. We define a complete
compliance evaluation process, which verifies a wide variety of services, from official company
web sites and single project/professional workspaces, to hosting web servers and virtualized
infrastructure. In particular, the multi-layer system target of our evaluation provides access
to the web sites hosted on two web servers. The web servers are installed in virtual machines
with a Linux operating system (e.g., CentOS) deployed on a virtualized infrastructure based
on VMware. Administration privileges are granted to employees by means of an access
control system based on cPanel, while the updated list of employees is maintained in an
active directory.

Manage such a complex scenario is not a trivial operation, since the responsibility of
content, technology and updates belongs to different owners at different levels, that is, web
site owners, service (e.g., web server) administrators, and infrastructure administrators. This
sharing of responsibility, and in turn of liability, cause loss of control by the enterprise, which
is not aware of the status of its infrastructure and the impact that buggy web sites could
have on the whole infrastructure. In addition, the separation between the management
of employees and administration privileges substantially increases the risk of unauthorized
requests, harnessing the system security. A critical goal for the enterprise is therefore to
establish a level of control on the status of the web sites through an activity of classification
and vulnerability assessment, which also involves lower levels of the systems, in order to
provide a complete view on the status of the security to all involved parties. Such goal can
be accomplished manually, though it requires huge amount of time and impairs repeatability
due to unbearable management costs. Moon Cloud platform permits to achieve a complete,
automatic and repeatable assessment at four layers: [A1] web site vulnerability, [A2] operating
system security, [A3] authorization process correctness, [A4] virtualization security. Each
layer corresponds to a security compliance policy.

6.2.2 AgID

Agenzia per l’Italia Digitale (AgID) is the agency of the Italian government responsible
for defining and continuously updating the IT security requirements for the Italian public
administration. It defines the AgID Basic Security Controls (ABSC), starting from the
controls defined in SANS 20 that are now published by the Center for Internet Security “CIS
Critical Security Controls for Effective Cyber Defence”. AgID Basic Security Controls are
organized in 13 categories for a total of 121 controls, and are categorized in three levels of
strength, minimum, standard, high.

We selected an excerpt of these controls that are relevant for the web hosting service
described in Section 6.2.1 and belong to four main categories: ABSC2 - authorized and
non-authorized software inventory; ABSC3 - protect hardware and software configurations

116 Application Scenarios

Table 6.2 AgID Basic Security Controls (Excerpt)

Category ABSC_ID Description Mapping to Assessment Layers
ABSC2 2.1.1 Write a list of authorized software and corre-

sponding versions for each system, including
servers, workstations and laptops. Forbid in-
stallation of software not in the list

A1, A2

ABSC2 2.3.1 Execute regular scan on the system to identify
non-authorized software

A1, A2, A4

ABSC3 3.1.1 Use standard and secure operating system con-
figurations

A2

ABSC3 3.1.2 Standard and secure configurations must corre-
spond to the hardened version of the operating
system and installed applications

A2

ABSC3 3.2.1 Identify and use standard and secure configu-
rations for workstations, servers and other sys-
tems

A2

ABSC4 4.1.1 Execute a vulnerability assessment at each con-
figuration change

A1, A2, A4

ABSC4 4.1.2 Execute a vulnerability assessment recurrently
depending on the criticality of the asset

A1, A2, A4

ABSC4 4.1.3 Use a Security Content Automation Protocol
(SCAP) to find both code-based vulnerabilities
and configuration-based vulnerabilities

A1, A2, A4

ABSC4 4.5.1 Automatically install software patches and up-
dates both for operating systems and applica-
tions,

A2, A4

ABSC5 5.2.1 Maintain the inventory of all administrators,
guaranteeing that each administrator is autho-
rized

A3

of mobile devices, laptops, workstations, and servers; ABCS4 - continuous vulnerability
assessment; ABCS5 - correct use of administrator privileges. Table 6.2 summarizes the ABSC
target of our evaluation presenting their category, the identifier of the specific AgID Basic
Security Control, and its description. Each control is also mapped to the corresponding
assessment layers in Section 6.2.1: [A1] web site vulnerability, [A2] operating system security,
[A3] authorization process correctness, [A4] virtualization security.

6.2.3 Security Controls

We present the Moon Cloud security controls (C) for the identified four assessment layers. For
each control, we provide information about its goal representing the purpose of the control,
its target representing the component under evaluation, its implementation referring to the
sequential operations and input needed to execute the control, and its mapping to the ABSC
in Table 6.2. For each assessment layer, in Table 6.3, we also present how the corresponding
security controls are integrated in a security compliance policy for compliance evaluation.
Probes’ code described in this section are not reported in Appendix D since belong to Moon
Cloud intellectual property.

6.2 How to evaluate a Web Hosting Service: AgID compliance 117

Table 6.3 AgID Basic Security Controls (Excerpt)

Assessment Security Compliance Description
layer Policy

A1 P1=C1∧C2∧(C3∨C4) The policy verifies the risk associated with Joomla and WordPress
web site using a vulnerability scanner.

A2 P2=C5∧C6∧C7 The policy verifies the robustness of the operating systems installed
on the two virtual machines offering the web servers.

A3 P3=C8∧C9∧C10 The policy verifies the consistency between access privileges and ex-
isting authorized users.

A4 P4=C11 The policy verifies the security of the virtualization layer based on
VMware.

Web site vulnerability assessment [A1]

It is composed of three steps: i) check web site availability, ii) retrieve web site information,
and iii) execute a vulnerability scan. These three steps are automated and sequentially
executed to i) identify web sites which are up and running, ii) among web sites at point i),
identify which ones use a CMS (Content Management System), Wordrpress, or Joomla,2 and
iii) run a dedicated scan against web sites classified at point ii).

Web Site Availability Checker [C1]. When a node hosts hundreds of web sites, which are
managed by different owners, a web site availability checker is needed to verify whether a web
site is up and running. The evidence that some of them are not running can be an indicator
of a possible security threat that needs to be investigated, moreover this tool helps in the
asset inventory maintenance. The unavailability of a web site can be verified by evaluating
the HTTP response code.

• Goal. The goal of the control is to check whether the web site is available or not.

• Target. Web sites.

• Implementation. The evaluation is carried out using the HTTP protocol. The control
executes a HTTP GET operation on a target URL (usually the index page). Based
on the server response, the web site is marked as available or not. HTTP error codes
can inform that a website does not exist, code 404, or that there is an internal server
error, code 5xx, or that there is a misconfiguration in the DNS and the url cannot be
resolved, code 105. All these codes entail a failed test result.

• AgID Controls. ABSC2 2.1.1 , ABSC2 2.3.1.

Web Site Info Collector [C2]. A web site info collector is fundamental to identify the
technologies at the basis of every web site. This control identifies frameworks, languages
and CSM, to determine whether forbidden software/applications are used and keep track of
all installed versions. It will then help in the choice of the most appropriate vulnerability

2The choice of integrating and describing Joomla and Worpress vulnerability scanners is based on the
analysis of the web sites available in the experimental environment used in the next section.

118 Application Scenarios

scan. This control is based on the open source tool wappalyzer https://wappalyzer.com/ and
can provide information organized in 53 categories that cover cache tool, Database, CSM,
Javascript Framework, and many others.

• Goal. The goal of the control is to provide extensive information on the web technologies
used by each web site and check that no forbidden installed software/applications are
used.

• Target. Web sites.

• Implementation. The control first sanitizes the website URL passed as input and then
runs wappalyzer against the web site. All results are organized based on the wappalyzer
categories and listed for discovery and inventory purposes. The probe returns true if
all installed software/applications are in the list of authorized software/applications,
while it returns false if at least one software/application does not belong to the list of
authorized software/applications or is not classified yet.

• Agid Controls. ABSC2 2.1.1 , ABSC2 2.3.1.

WordPress Vulnerability Scanner [C3]. WordPress (https://wordpress.org/) is one of the
most popular CMS in the world and is used by nearly 75 million websites, powering the 25%
of the world’s website. Given its large usage, Moon Cloud integrates the wp-scan project
https://wpscan.org/ that is a black box WordPress vulnerability scanner.

• Goal. The goal of the control is to check whether the WordPress web sites have
vulnerabilities.

• Target. Web sites.

• Implementation. The evaluation is carried out using wp-scan. The control first checks
if the web site uses WordPress as CSM and then runs the wp-scan vulnerability scanner
against it. Once the scan is over, if vulnerabilities are found, they are collected and
classified by CVSS (Common Vulnerability Scoring System) and the evaluation returns
false; otherwise, if no vulnerabilities are found, the evaluation returns true. Since web
sites often suffer from dated vulnerabilities from 2010 or even from 2007, we used CVSS
version 2.0.

• AgID Controls. ABSC4 4.1.1, ABSC4 4.1.2, ABSC4 4.5.1.

Joomla Vulnerability Scanner [C4]. Joomla https://www.joomla.org/ is another largely used
CMS. Moon Cloud integrates the joomla-scanner https://github.com/rezasp/joomscan, also
supported by the OWASP community. Joomla-scanner is a dedicated black box Joomla
vulnerability scanner, which provides a specific assessment for Joomla templates, components,
versions, and modules.

https://wappalyzer.com/
https://wordpress.org/
https://wpscan.org/
https://www.joomla.org/
https://github.com/rezasp/joomscan

6.2 How to evaluate a Web Hosting Service: AgID compliance 119

• Goal. The goal of the control is to check whether the Joomla web sites have vulnerabil-
ities.

• Target. Web sites.

• Implementation. The evaluation is carried out using joomla-scanner. The control, first
of all, checks if the web site uses Joomla as CSM and then runs the joomla-scanner
vulnerability scanner against it. Once the scan is over if vulnerabilities are found, they
are collected and classified by CVSS (Common Vulnerability Scoring System) and the
evaluation returns false; otherwise if no vulnerabilities are found, the evaluation returns
true. Again, we used CVSS version 2.0.

• Agid Controls. ABSC4 4.1.1, ABSC4 4.1.2, ABSC4 4.5.1.

Policy P1 in Table 6.3 presents how the controls for assessment layer A1 are integrated in
a security compliance policy.

Operating System Security Assessment [A2]

It is composed of three steps that are executed on every VM: i) running a certified SCAP
using a standard checklist , ii) list vulnerable packages that need to be updated, and iii)
search for unauthorized packages. These three steps permit to checks the robustness of the
operating system installed on the two virtual machines offering the web servers. In other
words, they permit to monitor the operating systems and keep them updated and hardened
to avoid possible attacks due to service misconfigurations.

OSCAP FedRAMP [C5]. Configuring a host and keep updated is a trivial task, more-over when
a team manage different host for different purpose. Even automated installing approaches
(e.g. puppet, ansible) may lead to some misconfigurations. this probe runs OpenScap
(https://www.open-scap.org/), awarded the SCAP 1.2 certification by NIST, to validate
Centos 7 Operating System based on the NIST security guidelines (NIST SP 800-53).

• Goal. The goal of the control is to check whether the operating system is compliant to
standard NIST SP 800-53.

• Target. Operating System CentOS 7.

• Implementation. The evaluation is carried out using OpenScap. After installing
OpenScap on the target host, the probe connects to it using SSH and injects the SCAP
Security Guide (SGG) including the security policies to be verified. SGG includes a
large set of test cases (357) that may result in i) pass, ii) fail, iii) not checked or iv)
not applicable. The result is parsed and the probe returns a success evaluation if there
are no failed test cases.

120 Application Scenarios

• AgID Controls. ABSC3 3.1.1, ABSC3 3.1.2, ABSC3 3.2.1, ABSC4 4.1.3.

Vulnerable Packages [C6]. Every Linux distro usually has its own package manager, which
helps in managing (install, update and uninstall) software packages. This probe analyzes
using the distro package manager all the installed software and checks for security updates.

• Goal. The goal of the control is to check whether the operating system does not have
any security updates to be installed.

• Target. Operating System CentOS 7.

• Implementation. The evaluation is carried out using the yum package manager, which
has a convenient option returning the list of security updates available and not yet
applied to the target host. The list is parsed to extract all the CVEs. If there is at
least one security update not installed the probe returns false, otherwise true.

• AgID Controls. ABSC4 4.1.1, ABSC4 4.1.2.

Authorized Packages [C7]. With a set of hosts to manage, having the possibility to continuously
check for installed software allows to keep the asset inventory updated and to check whether
unauthorized software is installed.

• Goal. The goal of the control is to check whether every host has installed authorized
software only.

• Target. Operating System CentOS 7.

• Implementation. The evaluation is carried out using the yum package manager, which
provides a list of all installed software. This list is mapped to the asset inventory to
check for compliance. If there is a package that is not listed or is unauthorized the
probe returns false, otherwise true.

• AgID Controls. ABSC2 2.1.1, ABSC2 2.3.1, ABSC4 4.5.1

Policy P2 in Table 6.3 presents how the controls for assessment layer A2 are integrated in
a security compliance policy.

Authorization Process Security Assessment

It is composed of three steps: i) check virtualization layer access list, ii) check host layer
access list, and iii) check web site management access list. These three steps are automated
and executed to keep, where possible, consistent user management at different system layers.

VMware ESXI user list [C8]. VMware ESXI is a multi-tenant OS at the basis of the web
hosting system. It can be bound to the LDAP to allow only authorized users to have access
to the admin console.

6.2 How to evaluate a Web Hosting Service: AgID compliance 121

• Goal. The goal of the control is to check whether admin users are listed as employee in
the LDAP.

• Target. VMware ESXI.

• Implementation. The evaluation is carried out using the VMware API; the probe
retrieves the list of all users and checks their role. This list is then compared to the
employee database to check for inconsistencies.

• AgID Controls. ABSC5 5.2.1.

Host user list [C9]. Accesses to a given host should be granted to authorized users only.
Direct access to the host should be granted for management purpose only and authorized
by a support ticket. This control checks whether all accesses in a given time frame were
authorized or not.

• Goal. The goal of the control is to check that every access was granted by a support
ticket.

• Target. VM host.

• Implementation. The evaluation is carried out accessing the access logs. Using the
command utmpdump on the logs /var/logs/wtemp is possible to analyze all accesses
collecting information about access time, user and IP source. The list of accesses is
then matched with all tickets related to the target VM. If there is at least a mismatch
the probe returns false; otherwise, true.

• AgID Controls. ABSC5 5.2.1.

Web Site Privileges [C10]. Every employee can have one or more web sites, and be responsible
for their management and maintenance. The web admin manages a database mapping
employees to available web sites. The databases is not directly connected to the human
resource IT system, therefore it may lead to data inconsistency. To avoid scenarios where
former employees retain privileges on web sites installed on the host, a continuous consistency
check between the HR and web admin databases is executed.

• Goal. The goal of the control is to check that only active employees have access to the
web site service.

• Target. Web Site service.

• Implementation. The evaluation is carried out accessing the web admin databases.
For each user in the web admin database there must be a corresponding user in the
HR database. If all user listed in the web admin database are also found in the HR
database, the probe returns true; otherwise, it returns false.

122 Application Scenarios

• AgID Controls. ABSC5 5.2.1.

Policy P3 in Table 6.3 presents how the controls for assessment layer A3 are integrated in
a security compliance policy.

Virtualization Security Assessment

It checks the robustness of the underlying virtualization infrastructure, to guarantee the
security of the whole system. The virtualization layer is based on VMware ESXI. The control
follows the CIS benchmark for VMware as a guideline for running all evaluations.

VMware CIS benchmark [C11]. The CIS benchmark for VMware covers different categories
that goes from logging to network and disk management. It also prescribes to analyze the
VMs configurations.

• Goal. The goal of the control is to evaluate VMWare ESXi based on the CIS Ben-
chamark.

• Target. VMware ESXi.

• Implementation. The evaluation is carried out using the VMware API. The probe exe-
cutes the audit operations needed to verify each recommendation in the CIS document.3

If all recommendations are satisfied the probe returns true; otherwise, false.

• AgID Controls. ABSC3 3.1.1, ABSC3 3.1.2, ABSC4 4.1.3

Policy P4 in Table 6.3 consists of control C11 only.

6.2.4 Security Controls

We run the controls against the web hosting service of the Università degli Studi di Milano
(UNIMI), one of the biggest universities in Europe. We note that, for confidentiality reasons,
only the control for web site vulnerability assessment has been executed on the in-production
web hosting service of UNIMI. All other controls have been executed on a simulated envi-
ronment different from the in-production UNIMI web hosting service. Also, the retrieved
experimental results have been filtered out due to their criticality and sensitivity.

Moon Cloud platform was installed on a Virtual Machine with 2 cores, 4GB of RAM,
10GB of ephemeral disk and 60GB of persistent disk. To reduce the additional load observed
by UNIMI servers, Moon Cloud platform was configured to schedule and execute controls
over a period of 24 hours. This configuration has been specified through the Moon Cloud
dashboard and made the process completely automatic. The results of the evaluation process
are reported below.

3We note that the probe runs only the subset of CIS recommendations that can be automated.

6.2 How to evaluate a Web Hosting Service: AgID compliance 123

 0

 20

 40

 60

 80

 100

Wordpress Joomla

%
 o

f
to

ta
l

Moon Cloud Control

Distribution of vulnerability severity

Unknown
High
Medium
Low

Fig. 6.3 Frequency distribution (%) of found CVEs over WordPress and Joomla web sites
classified by CVSS families

Web site vulnerability assessment

The assessment process was composed of the following phases: i) run control Web Site
Availability Checker to list the web sites that are available and those that are unreachable;
ii) run control Web Site Info Collector to make an inventory of the web technologies used by
each web site and identify those web sites that use either Worpress or Joomla; iii) run control
Wordpress Vulnerability Scan on all WordPress web sites; iv) run control Joomla Vulnerability
Scan on all Joomla web sites.

Moon Cloud analyzed web siteshosted by UNIMI; 82.5% of them was up and running,
while 17.5% was unreachable. Among them, 25.3% of the web sites use Wordress, while 5.4%
web sites use Joomla. The remaining 69.6% of web sites consists of custom PHP or static
HTML web pages.

We remark that, in our analysis, we used CVSS 2.0 scoring system. In particular, CVSS
2.0 assigns scores from 0 to 10 to each Common Vulnerability Exposure (CVE) and can be
organized in 4 main families: Low, Medium, High, and Critical. CVSS score is retrieved from
the NIST National Vulnerability Database (https://nvd.nist.gov/). Figure 6.3 shows the
distribution of the found vulnerabilities (CVE) based on their CVSS score for WordPress
and Joomla web sites.

For web sites using WordPress, found vulnerabilities were distributed as follows: 3.9% of
vulnerability has been classified as high, 89.1% as medium, 6.8% as low, over 92 different
CVEs. 0.2% of vulnerabilities have been classified as not scored because they refer to two
reserved CVEs. Figure 6.4(a) shows the frequency distribution (percentage) of found CVEs
over Wordpress web sites. It is important to note that all analyzed web sites were vulnerable
to CVE-20**-****, because no countermeasure was provided at evaluation time (October
2017).

The same analysis was carried out on Joomla web sites. Figure 6.3 shows the distribution
of found vulnerabilities based on their CVSS. Among found vulnerabilities, 25.5% has been

https://nvd.nist.gov/

124 Application Scenarios

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 150

C
V
E
-
2
0
1
2
-
5
8
6
8

C
V
E
-
2
0
1
2
-
6
0
7
8

C
V
E
-
2
0
1
2
-
6
0
7
9

C
V
E
-
2
0
1
2
-
6
6
3
3

C
V
E
-
2
0
1
2
-
6
6
3
4

C
V
E
-
2
0
1
2
-
6
6
3
5

C
V
E
-
2
0
1
2
-
6
6
9
2

C
V
E
-
2
0
1
3
-
0
2
3
5

C
V
E
-
2
0
1
3
-
2
1
7
3

C
V
E
-
2
0
1
3
-
2
2
0
2

C
V
E
-
2
0
1
3
-
4
3
3
9

C
V
E
-
2
0
1
3
-
7
3
1
9

C
V
E
-
2
0
1
4
-
0
1
6
5

C
V
E
-
2
0
1
4
-
0
1
6
6

C
V
E
-
2
0
1
4
-
2
0
5
3

C
V
E
-
2
0
1
4
-
5
2
0
4

C
V
E
-
2
0
1
4
-
5
2
0
5

C
V
E
-
2
0
1
4
-
5
2
4
0

C
V
E
-
2
0
1
4
-
6
3
1
5

C
V
E
-
2
0
1
4
-
9
0
3
1

C
V
E
-
2
0
1
4
-
9
0
3
4

C
V
E
-
2
0
1
4
-
9
0
3
8

C
V
E
-
2
0
1
4
-
9
2
6
0

C
V
E
-
2
0
1
4
-
9
3
1
2

C
V
E
-
2
0
1
5
-
1
0
5
5

C
V
E
-
2
0
1
5
-
1
3
9
3

C
V
E
-
2
0
1
5
-
1
5
7
9

C
V
E
-
2
0
1
5
-
2
2
1
3

C
V
E
-
2
0
1
5
-
2
2
9
2

C
V
E
-
2
0
1
5
-
2
2
9
3

C
V
E
-
2
0
1
5
-
2
3
1
4

C
V
E
-
2
0
1
5
-
2
3
2
4

C
V
E
-
2
0
1
5
-
2
7
9
1

C
V
E
-
2
0
1
5
-
2
7
9
2

C
V
E
-
2
0
1
5
-
3
4
3
8

C
V
E
-
2
0
1
5
-
5
6
2
2

C
V
E
-
2
0
1
5
-
5
6
2
3

C
V
E
-
2
0
1
5
-
5
7
1
4

C
V
E
-
2
0
1
5
-
5
7
1
5

C
V
E
-
2
0
1
5
-
5
7
3
0

C
V
E
-
2
0
1
5
-
5
7
3
2

C
V
E
-
2
0
1
5
-
5
7
3
3

C
V
E
-
2
0
1
5
-
5
7
3
4

C
V
E
-
2
0
1
5
-
7
9
8
9

C
V
E
-
2
0
1
6
-
1
5
6
4

C
V
E
-
2
0
1
6
-
2
2
2
1

C
V
E
-
2
0
1
6
-
2
2
2
2

C
V
E
-
2
0
1
6
-
4
0
2
9

C
V
E
-
2
0
1
6
-
4
5
6
6

C
V
E
-
2
0
1
6
-
4
5
6
7

C
V
E
-
2
0
1
6
-
5
8
3
3

C
V
E
-
2
0
1
6
-
5
8
3
4

C
V
E
-
2
0
1
6
-
5
8
3
5

C
V
E
-
2
0
1
6
-
5
8
3
7

C
V
E
-
2
0
1
6
-
6
6
3
4

C
V
E
-
2
0
1
6
-
6
6
3
5

C
V
E
-
2
0
1
6
-
7
1
6
8

C
V
E
-
2
0
1
6
-
7
1
6
9

C
V
E
-
2
0
1
7
-
1
2
9
7
7

C
V
E
-
2
0
1
7
-
2
2
1
6

C
V
E
-
2
0
1
7
-
2
2
1
7

C
V
E
-
2
0
1
7
-
2
2
2
4

C
V
E
-
2
0
1
7
-
2
2
4
3

C
V
E
-
2
0
1
7
-
2
2
4
5

C
V
E
-
2
0
1
7
-
2
2
8
4

C
V
E
-
2
0
1
7
-
5
4
8
8

C
V
E
-
2
0
1
7
-
5
4
9
0

C
V
E
-
2
0
1
7
-
5
4
9
1

C
V
E
-
2
0
1
7
-
5
4
9
2

C
V
E
-
2
0
1
7
-
5
4
9
3

C
V
E
-
2
0
1
7
-
5
6
1
0

C
V
E
-
2
0
1
7
-
5
6
1
1

C
V
E
-
2
0
1
7
-
5
6
1
2

C
V
E
-
2
0
1
7
-
6
8
1
4

C
V
E
-
2
0
1
7
-
6
8
1
5

C
V
E
-
2
0
1
7
-
6
8
1
6

C
V
E
-
2
0
1
7
-
6
8
1
7

C
V
E
-
2
0
1
7
-
6
8
1
8

C
V
E
-
2
0
1
7
-
6
8
1
9

C
V
E
-
2
0
1
7
-
8
2
9
5

C
V
E
-
2
0
1
7
-
9
0
6
1

C
V
E
-
2
0
1
7
-
9
0
6
2

C
V
E
-
2
0
1
7
-
9
0
6
3

C
V
E
-
2
0
1
7
-
9
0
6
4

C
V
E
-
2
0
1
7
-
9
0
6
5

C
V
E
-
2
0
1
7
-
9
0
6
6

C
V
E
-
2
0
1
7
-
1
3
1
3
8

C
V
E
-
2
0
1
7
-
1
4
7
1
9

C
V
E
-
2
0
1
7
-
1
4
7
2
2

C
V
E
-
2
0
1
7
-
1
4
7
2
4

C
V
E
-
2
0
1
7
-
1
4
7
2
5

C
V
E
-
2
0
1
7
-
1
4
7
2
6

N
u
m

b
e
r

o
f
h
it
s

CVEs

CVE Distribution - Wordpress Vulnerability Scanner

(a)

 0

 5

 10

 15

 20

 25

 30

 35

C
V
E
-
2
0
0
7
-
2
1
4
3

C
V
E
-
2
0
0
7
-
2
1
9
9

C
V
E
-
2
0
0
9
-
0
1
1
3

C
V
E
-
2
0
1
0
-
2
2
5
4

C
V
E
-
2
0
1
2
-
5
8
2
7

C
V
E
-
2
0
1
3
-
1
4
5
3

C
V
E
-
2
0
1
3
-
3
0
5
6

C
V
E
-
2
0
1
3
-
3
0
5
7

C
V
E
-
2
0
1
3
-
3
0
5
8

C
V
E
-
2
0
1
3
-
3
0
5
9

C
V
E
-
2
0
1
3
-
3
2
4
2

C
V
E
-
2
0
1
3
-
3
2
6
7

C
V
E
-
2
0
1
3
-
5
5
7
6

C
V
E
-
2
0
1
4
-
6
6
3
2

C
V
E
-
2
0
1
4
-
7
2
2
8

C
V
E
-
2
0
1
4
-
7
2
2
9

C
V
E
-
2
0
1
5
-
5
3
9
7

C
V
E
-
2
0
1
5
-
5
6
0
8

C
V
E
-
2
0
1
5
-
6
9
3
9

C
V
E
-
2
0
1
5
-
7
2
9
7

C
V
E
-
2
0
1
5
-
7
8
5
7

C
V
E
-
2
0
1
5
-
7
8
5
8

C
V
E
-
2
0
1
5
-
7
8
5
9

C
V
E
-
2
0
1
5
-
8
5
6
2

C
V
E
-
2
0
1
5
-
8
5
6
3

C
V
E
-
2
0
1
5
-
8
5
6
4

C
V
E
-
2
0
1
5
-
8
5
6
5

C
V
E
-
2
0
1
6
-
8
8
6
9

C
V
E
-
2
0
1
6
-
8
8
7
0

C
V
E
-
2
0
1
6
-
9
0
8
1

C
V
E
-
2
0
1
6
-
9
8
3
6

C
V
E
-
2
0
1
6
-
9
8
3
7

C
V
E
-
2
0
1
6
-
9
8
3
8

C
V
E
-
2
0
1
6
-
1
0
0
3
3

C
V
E
-
2
0
1
6
-
1
0
0
4
5

N
u
m

b
e
r

o
f
h
it
s

CVEs

CVE Distribution - Joomla Vulnerability Scanner

(b)

Fig. 6.4 Frequency distribution (%) of found CVEs over Wordpress (a) and Joomla (b) web
sites. We note that, for the sake of readability, Figure 6.4(a) only reports CVEs that affected
at least three WordPress web sites. CVE details have been anonymized for security reasons

classified as medium and 74.5% as high, over 35 different CVEs. Two common vulnerabilities,
as presented in Figure 6.4(b), affected the 93.7% of analyzed web sites.

Policy P1 in Table 6.3 is evaluated for each web site. We note that all WordPress web sites
retrieved a negative evaluation of P1 due to zero-day vulnerability CVE-20**-****; 94.7%
of Joomla web sites retrieved a negative evaluation of P1 due to two main vulnerabilities.
It is important to note that all found vulnerabilities are not at the same level of criticality.
The result of the evaluation of policy P1 could also be weighted on the basis of the found
vulnerability; for instance, low risk vulnerabilities might not cause P1 evaluation to fail.

To conclude, we note that, in order to run our experiments, we deactivated a perimeter
firewall having the role of blocking malicious traffic and reducing the impact of zero-day
vulnerabilities. We also note that the web site owners sign a term of service with UNIMI
becoming responsible for web site management, updates, patches, and the like. This makes
even more evident how this sharing of responsibilities makes security management even more
critical and difficult.

Other assessment layers

We briefly summarize the results retrieved by executing the controls in the remaining three
assessment layers on a simulated environment as follows.

6.3 Chapter Summary 125

• Operating System Security Assessment. We run controls C5, C6, C7 over two virtual
machine installing CentOS operating system. C6 and C7 returned a positive result since
all packages in the simulated environment were updated and authorized; C8, which
executed 190 single checks corresponding to NIST 800-171 requirements, returned a
negative result since 67 out of 190 checks failed. The severity of the fails were 10 low,
47 medium, and 10 high. For the sake of simplicity, we only present three high severity
checks found by Moon Cloud:

– Ensure gpgcheck Enabled for Local Packages: yum was not configured to verify
the signature(s) of local packages prior to installation.

– Prevent Log In to Accounts With Empty Password: an account had an empty
password; anyone could then log in and run commands with the privileges of that
account.

– Disable SSH Access via Empty Passwords: this setting was not configured for the
SSH daemon, making remote login via SSH with empty password possible.

Policy P2 then returned a negative evaluation.

• Authorization Process Security Assessment. We run controls C8, C9, C10 showing that
there was full consistency between the list of employees in the user database and the
admin accounts at virtualization, host, and web site layers. Policy P3 then returned a
positive evaluation.

• VMware Security Assessment. The CIS benchmark for VMware (C11) was executed
on the simulated virtualization layer retrieving a positive evaluation. All checks were
correct and policy P4 then returned a positive evaluation.

6.3 Chapter Summary

We presented a certification framework that implements a security certification process for
the cloud as described in Chapter 3 and 4. Our framework supports pre-deployment and
production evaluation of cloud systems at different layers of the cloud stack, it provides
a certification-aware cloud engineering methodology that drives providers in the design
and development of ready-to-be-certified systems. Our approach departs from traditional
certification schemes which are independent from the development process, to provide a
certification scheme with reduced overheads. We designed different probes to meet the
different evaluation and collection activities and integrate in the framework a Big Data
Platform to collect and process huge amount of data.

Moreover, we presented Moon Cloud a spin-off of Universitá degli Studi di Milano fully
compatible with the framework and built on the outcomes of this work.

Chapter 7

Conclusion

In this thesis we have investigated assurance and certification techniques for cloud services.
After a brief introduction, and related work (Chapters 1-2), Chapter 3 described our idea of
cloud certification process and the cloud certification scheme designed to satisfy the process.
Based on Chapter 3, Chapter 4 extended the certification scheme to fit certification of cloud
composite services; moreover, it proposed a solution to minimize costs of cloud composite
certification deployment. Chapter 5 described the framework designed and developed to
meet the requirements identified during the analysis of cloud service certification. Chapter 6
presented two different scenarios where the framework was successfully applied. In this last
chapter, we shortly summarize the contribution of this thesis and outline some topics left to
future work.

7.1 Summary of the contributions

The contributions of this thesis is manifold.

Cloud Service Certification. We analyzed how cloud service certification should be
addressed, identifying issues, requirements and solutions. We proposed a cloud certification
process that includes an automatic and incremental approach to certificate adaptation,
addressing the multi-layer and dynamics nature of the cloud. We designed a Certification
Model Template (CMT) and a Certification Model Instance (CMI) that fully describe property,
target and activities of a certification. We defined a consistency check algorithm that permits
to automatically verify if a CMI is a right instantiation of a CMT. The consistency check
algorithm is fundamental to build a safe chain of trust grounded on service certification. We
developed two heuristics that accomplish the consistency check providing good performance
with a reasonable accuracy.

128 Conclusion

Certification of Cloud Composite Service Cloud permits to compose single services to
form a more complex cloud composite service that achieves the user’s functional requirements.
Certification of single cloud services does not fit the scenario where the final service is a
composite service that may change at any time. We proposed a method for cloud composite
service certification that aims to minimize any re-certification operation permitting to obtain
a new certificate from the artifacts (certificates and corresponding evidence) of the component
services. Our certification scheme supports migration and versioning.

Cost-effective Deployment of Cloud Composite Service We have extended and
adapted the work on cloud service certification to meet the requirements of cloud composite
services. We analyse the deployment of cloud composite servicea from the point of view
of the cloud provider taking into account direct, mismatch and certification costs. In this
context we defined three cost-profiles (i.e. sharing, average and fitting) and a cost-effective
algorithm that aims to minimize the deployment cost of cloud composite service based on
non-functional requirements. We developed a first heuristic based on a sliding window of
size k that analyzes the best deployment for the composite services within the window. We
defined a second heuristic, as an extension of the first, which supports service migration. We
analyzed both heuristics in terms of performance and quality varying k and cost-profile.

Cloud Certification Framework We proposed a certification framework that implements
a security certification process for the cloud. Our framework supports pre-deployment and
in-production evaluation of cloud systems at different layers of the cloud stack. It also
provides a certification-aware cloud engineering methodology that drives providers in the
design and development of ready-to-be-certified systems. We presented Moon Cloud platform,
a running solution for security governance and compliance assessment. Moon Cloud platform
supports continuous verification, diagnostic, and monitoring of ICT system compliance against
security policies. It provides an enhanced methodology that permits to correlate different and
heterogeneous evidence to evaluate the status of security in a given system. We showed how
assurance techniques, provided by Moon Cloud, can evaluate two different cloud scenarios:
i) a full security evaluation of the IaaS manager OpenStack based on a specific security
benchmark, ii) a security evaluation of a web hosting service, which analyzes the full cloud
stack from the vmware esxi hypervisor hosting the web server nodes to the application level
corresponding to the available web sites.

7.2 Future works

The research described in this thesis can be extended along different directions, to accomplish
the requirements and peculiarities of new evolving distributed paradigms and environments.

7.2 Future works 129

We identify three main scenatios that have been increasing considered in the last few years:
IoT and Fog, Big Data, and Machine Learning.

IoT and Fog Fog Computing and IoT (internet of things) share with cloud computing
their dynamic and distributed nature. An IoT formal definition is proposed by the ISO/IEC:
"infrastructure of interconnected objects, people, systems and information resources together
with intelligent services to allow them to process information of the physical and the virtual
world and react" [147] . However cloud common characteristics, IoT presents a more
challenging scenario [148, 149]:

• low computational capacity may restrict the type of applicable assurance techniques;

• constraints on battery consumption may limit type and frequency of evaluation activities;

• placement and network configuration may make devices unreachable or required some
ad-ho probe deployment;

• fuzzy perimeters and high variability requires a certification life-cycle management even
lighter and more responsive;

• heterogenous devices both in technology and purpose lead current solution to certifica-
tion and their generality.

• distributed liability makes the identification of the responsible parties for unattended
behaviour difficult to identify.

Moreover, fog adds an extra layer between cloud and IoT, this highlight how the three
technologies are strictly related and certification should take into account the whole IoT
supply chain.

Big Data A Big data platform is already part of the framework and new analytics addressing
new and challenging scenario are valuable contributions. However big data analytics is used as
an enabler for security evaluation, big data security and privacy are increasingly becoming the
target of different research and development efforts in terms of big data assurance [150, 151].
A number of different solutions have been provided to protect the Big Data infrastructures
and their data/processes by internal and external threats and attacks. These efforts resulted
in the proliferation of ad hoc security and privacy solutions, which prove a specific security
property or compliance to regulations. In this scenario, our certification models could be used
to assess that big data infrastructure and analytics are acting under specific non-functional
requirements extending the 5V definition of Big Data towards 6V where the 6th is verification:

• Volume refers to the vast amounts of data generated every second that increasingly makes
data sets too large to be stored and analyzed using traditional database approaches.

130 Conclusion

• Velocity refers to the speed at which new data are generated and moved.

• Variety refers to the different types of data (structured, unstructured) that can be used
and correlated together.

• Value the data collected should be turned into tangible value.

• Veracity refers to the messiness or trustworthiness of the data. Today, the data
processing part cannot be discarded and introduces the need of verifying Big Data
trustworthiness as well, introducing the following 6th V.

• Verification refers to the possibility of verifying the assurance of a Big Data process,
increasing its transparency and trustworthiness. For instance, it verifies that a given
Big Data engine satisfies the performance requirements or treats data with an adequate
privacy level (e.g., GDPR compliance).

A 6V Big Data process carries a higher level of trust that makes it suitable for critical
Big Data scenarios, as for instance the ones implementing a generic assurance process.

Machine Learning In this thesis we assumed that both the Certification Authority and
Accredit Labs can identify the right evaluation activities for every target and every property.
This task requires an enormous effort due to the heterogeneity of cloud services and the high
number of properties available. Assurance activities might be reused in different certification
models, but it still strictly depends on the skills of the evaluator. Machine learning might
enhance this process by suggesting the proper assurance techniques for a given property
and a given target. In this direction it is important to be able to describe precisely all the
three concepts: i) a generic evaluation activity, ii) the property and iii) the target. Even if
evidence collection is fully described as an STS including input, expected output and input
required, both property and target do not currently support such detailed description.

References

[1] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patter-
son, A. Rabkin, I. Stoica, and M. Zaharia, “Above the clouds: A berkeley view of cloud
computing,” in Tech. Rep. UCB/EECS-2009-28, EECS Department, U.C. Berkeley,
February 2009.

[2] S. Lins, S. Schneider, and A. Sunyaev, “Trust is good, control is better: Creating secure
clouds by continuous auditing,” IEEE TCC, vol. PP, no. 99, pp. 1–1, 2016.

[3] I. Windhorst and A. Sunyaev, “Dynamic certification of cloud services,” in Proc. of
ARES 2013, Regensburg, Germany, September 2013.

[4] M. Anisetti, C. Ardagna, E. Damiani, and F. Saonara, “A test-based security certifica-
tion scheme for web services,” ACM TWEB, vol. 7, no. 2, pp. 1–41, May 2013.

[5] Microsoft, Trusted Cloud, https://www.microsoft.com/en-us/server-cloud/
trusted-cloud/overview.aspx, Accessed June 2016.

[6] M. Anisetti, C. Ardagna, E. Damiani, and F. Saonara, “A test-based security certifica-
tion scheme for web services,” ACM Transactions on the Web, vol. 7, no. 2, pp. 1–41,
May 2013.

[7] B. Bertholon, S. Varrette, and P. Bouvry, “Certicloud: A novel tpm-based approach to
ensure cloud IaaS security,” in Proc. of IEEE CLOUD 2011, Washington, DC, USA,
July 2011.

[8] S. Pearson, “Toward accountability in the cloud,” IEEE Internet Computing, vol. 15,
no. 4, pp. 64–69, 2011.

[9] H. Rasheed, “Data and infrastructure security auditing in cloud computing environ-
ments,” International Journal of Information Management, December 2013.

[10] E. Damiani, C. Ardagna, and N. E. Ioini, Open source systems security certification.
New York, NY, USA: Springer, 2009.

[11] A. Munoz and A. Mãna, “Bridging the gap between software certification and trusted
computing for securing cloud computing,” in Proc. of IEEE SERVICES 2013, June
2013, pp. Santa Clara, CA, USA.

[12] G. Spanoudakis, E. Damiani, and A. Maña, “Certifying services in cloud: The case
for a hybrid, incremental and multi-layer approach,” in Proc. of IEEE HASE 2012,
Omaha, NE, USA, October 2012.

[13] S. Lins and A. Sunyaev, “Unblackboxing IT Certifications: A Theoretical Model
Explaining IT Certification Effectiveness,” in Proc. of ICIS 2017, Seoul, South Korea,
Dec. 2017, pp. 1–13, keyword: Certification.

https://www.microsoft.com/en-us/server-cloud/trusted-cloud/overview.aspx
https://www.microsoft.com/en-us/server-cloud/trusted-cloud/overview.aspx

132 References

[14] R. Medeiros, N. S. Rosa, and L. F. Pires, “Predicting service composition costs with
complex cost behavior,” in Proc. of IEEE SCC, New York, NY, USA, June 2015.

[15] Q. He, J. Han, F. Chen, Y. Wang, R. Vasa, Y. Yang, and H. Jin, “Qos-aware service
selection for customisable multi-tenant service-based systems: Maturity and approaches,”
in Proc. of IEEE CLOUD, New York, NY, USA, June-July 2015.

[16] P. Leitner, W. Hummer, and S. Dustdar, “Cost-based optimization of service composi-
tions,” IEEE TSC, vol. 6, no. 2, pp. 239–251, April 2013.

[17] X. Bai, M. Li, B. Chen, W.-T. Tsai, and J. Gao, “Cloud testing tools,” in Proc. of
IEEE SOSE 2011, Irvine, CA, USA, December 2011.

[18] J. Gao, X. Bai, W.-T. Tsai, and T. Uehara, “Saas testing on clouds - issues, challenges
and needs,” in Proc. of IEEE SOSE 2013, San Francisco, CA, USA, March 2013.

[19] G. Aceto, A. Botta, W. De Donato, and A. Pescapè, “Cloud monitoring: A
survey,” Comput. Netw., vol. 57, no. 9, pp. 2093–2115, Jun. 2013. [Online]. Available:
http://dx.doi.org/10.1016/j.comnet.2013.04.001

[20] S. Meng and L. Liu, “Enhanced monitoring-as-a-service for effective cloud management,”
IEEE TC, vol. 62, no. 9, pp. 1705–1720, September 2013.

[21] M. Anisetti, C. Ardagna, and E. Damiani, “A certification-based trust model for
autonomic cloud computing systems,” in Proc. of ICCAC 2014, London, UK, September
2014.

[22] Z. Xiao and Y. Xiao, “Security and privacy in cloud computing,” IEEE Communications
Surveys Tutorials, vol. 15, no. 2, pp. 843–859, Second 2013.

[23] C. B. O. M. E. Moctar and K. Konate, “A survey of security challenges in cloud
computing,” in Proc. of WiSPNET 2017, March 2017, pp. 843–849.

[24] B. Qin, H. Wang, Q. Wu, J. Liu, and J. Domingo-Ferrer, “Simultaneous authentication
and secrecy in identity-based data upload to cloud,” Cluster Computing, vol. 16, no. 4,
pp. 845–859, Dec 2013. [Online]. Available: https://doi.org/10.1007/s10586-013-0258-7

[25] S. Ruj, M. Stojmenovic, and A. Nayak, “Decentralized access control with anonymous
authentication of data stored in clouds,” IEEE Transactions on Parallel and Distributed
Systems, vol. 25, no. 2, pp. 384–394, Feb 2014.

[26] L. Wei and M. K. Reiter, “Ensuring file authenticity in private dfa evaluation on
encrypted files in the cloud,” in in Proc. of ESORICS 2013, J. Crampton, S. Jajodia,
and K. Mayes, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 147–163.

[27] P. Sha and Z. Zhu, “The modification of rsa algorithm to adapt fully homomorphic
encryption algorithm in cloud computing,” in 2016 4th International Conference on
Cloud Computing and Intelligence Systems (CCIS), Aug 2016, pp. 388–392.

[28] H. Teigeler, S. Lins, and A. Sunyaev, “Chicken and egg problem: What drives cloud
service providers and certification authorities to adopt continuous service certifica-
tion?” in Proceedings of the Pre-ICIS Workshop on Information Security and Privacy,
Association for Information Systems (AIS). AIS, Dezember 2017, Inproceedings.

[29] E. Council, Information Assurance, 201u, http://www.consilium.europa.eu/en/
general-secretariat/corporate-policies/classified-information/information-assurance/.

http://dx.doi.org/10.1016/j.comnet.2013.04.001
https://doi.org/10.1007/s10586-013-0258-7
http://www.consilium.europa.eu/en/general-secretariat/corporate-policies/classified-information/information-assurance/
http://www.consilium.europa.eu/en/general-secretariat/corporate-policies/classified-information/information-assurance/

References 133

[30] ISO/IEC 21827:2008 Information technology – Security techniques – Systems Security
Engineering – Capability Maturity Model SSE-CRM, 2008.

[31] ISO/IEC24765 Systems and software engineering – Vocabulary, 2017, https://www.ecs.
csus.edu/csc/iac/cnssi_4009.pdf.

[32] IATAC and DACS, Software Security Assurance: State of the Art Report (SOAR), 2007,
http://www.dtic.mil/dtic/tr/fulltext/u2/a472363.pdf.

[33] C. on National Security Systems (CNSS), National Information Assurance (IA) Glossary
instruction No. 4009, 2006, https://www.ecs.csus.edu/csc/iac/cnssi_4009.pdf.

[34] S. Quirolgico, J. Voas, T. Karygiannis, C. Michael, and K. Scarfone, NIST Special
Publication 800-163 Vetting the Security of Mobile Applications, 2015.

[35] SOFTWARE ASSURANCE STANDARD - NASA TECHNICAL STANDARD, 2004,
https://standards.nasa.gov/standard/nasa/nasa-std-87398.

[36] J. G. Cooper and K. A. Pauley, “Healthcare software assurance,” in Proc. of AMIA
2006, 2006. [Online]. Available: http://knowledge.amia.org/amia-55142-a2006a-1.
620145/t-001-1.623243/f-001-1.623244/a-033-1.623649/a-034-1.623646

[37] W. A. Conklin, “Software assurance: The need for definitions,” in Proc of HiCSS 2011,
pp. 1–7, 2011.

[38] C. Ardagna, R. Asal, E. Damiani, and Q. Vu, “From security to assurance in the cloud:
A survey,” ACM CSUR, vol. 48, no. 1, pp. 2:1–2:50, August 2015.

[39] E. V. Veenendaal, Standard Glossary of Terms used in Software Test-
ing, International Software Testing Qualifications Board (ISTQB), 2012,
http://www.consilium.europa.eu/en/general-secretariat/corporate-policies/
classified-information/information-assurance/.

[40] C. Wu and S. Marotta, “Framework for assessing cloud trustworthiness,” in Proc. of
Cloud 2013, June 2013, pp. 956–957.

[41] P. Zech, “Risk-based security testing in cloud computing environments,” in Proc. of
ICST 2011, Berlin, Germany, March 2011.

[42] G. S. D. Oliveira and A. Duarte, “A framework for automated software testing on the
cloud,” in Proc. of PDCAT 2013, Dec 2013, pp. 344–349.

[43] L. Gao, M. Lu, L. Li, and C. Pan, “A survey of software runtime monitoring,” in in
Proc of ICSESS 2017, Nov 2017, pp. 308–313.

[44] K. Mahbub and G. Spanoudakis, Monitoring WS-Agreements: An Event Calculus–Based
Approach. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 265–306. [Online].
Available: https://doi.org/10.1007/978-3-540-72912-9_10

[45] M. L. Massie, B. N. Chun, and D. E. Culler, “The ganglia distributed monitoring
system: design, implementation, and experience.” Parallel Computing, vol. 30, no. 5-6,
pp. 817–840, 2004. [Online]. Available: http://dblp.uni-trier.de/db/journals/pc/pc30.
html#MassieCC04

[46] S. A. D. Chaves, R. B. Uriarte, and C. B. Westphall, “Toward an architecture for
monitoring private clouds,” IEEE Communications Magazine, vol. 49, no. 12, pp.
130–137, December 2011.

https://www.ecs.csus.edu/csc/iac/cnssi_4009.pdf
https://www.ecs.csus.edu/csc/iac/cnssi_4009.pdf
http://www.dtic.mil/dtic/tr/fulltext/u2/a472363.pdf
https://www.ecs.csus.edu/csc/iac/cnssi_4009.pdf
https://standards.nasa.gov/standard/nasa/nasa-std-87398
http://knowledge.amia.org/amia-55142-a2006a-1.620145/t-001-1.623243/f-001-1.623244/a-033-1.623649/a-034-1.623646
http://knowledge.amia.org/amia-55142-a2006a-1.620145/t-001-1.623243/f-001-1.623244/a-033-1.623649/a-034-1.623646
http://www.consilium.europa.eu/en/general-secretariat/corporate-policies/classified-information/information-assurance/
http://www.consilium.europa.eu/en/general-secretariat/corporate-policies/classified-information/information-assurance/
https://doi.org/10.1007/978-3-540-72912-9_10
http://dblp.uni-trier.de/db/journals/pc/pc30.html#MassieCC04
http://dblp.uni-trier.de/db/journals/pc/pc30.html#MassieCC04

134 References

[47] J. M. A. Calero and J. G. Aguado, “Monpaas: An adaptive monitoring platformas
a service for cloud computing infrastructures and services,” IEEE Transactions on
Services Computing, vol. 8, no. 1, pp. 65–78, Jan 2015.

[48] C. B. Hauser and S. Wesner, “Reviewing cloud monitoring: Towards cloud resource
profiling,” in Proc. of CLOUD 2018, July 2018, pp. 678–685.

[49] K. Alhamazani, R. Ranjan, K. Mitra, F. Rabhi, P. P. Jayaraman, S. U. Khan,
A. Guabtni, and V. Bhatnagar, “An overview of the commercial cloud monitoring tools:
research dimensions, design issues, and state-of-the-art,” Computing, vol. 97, no. 4, pp.
357–377, Apr 2015. [Online]. Available: https://doi.org/10.1007/s00607-014-0398-5

[50] S. Pearson, “Toward accountability in the cloud,” IEEE Internet Computing, vol. 15,
no. 4, pp. 64–69, Jul. 2011. [Online]. Available: http://dx.doi.org/10.1109/MIC.2011.98

[51] A. Haeberlen, “A case for the accountable cloud,” SIGOPS Oper. Syst.
Rev., vol. 44, no. 2, pp. 52–57, Apr. 2010. [Online]. Available: http:
//doi.acm.org/10.1145/1773912.1773926

[52] J. Agarkhed and R. Ashalatha, “An efficient auditing scheme for data storage security in
cloud,” in 2017 International Conference on Circuit ,Power and Computing Technologies
(ICCPCT), April 2017, pp. 1–5.

[53] S. Hiremath and S. Kunte, “A novel data auditing approach to achieve data privacy
and data integrity in cloud computing,” in Proc. of ICEECCOT 2017, Dec 2017, pp.
306–310.

[54] D. K. Konoor, “Auditing in cloud computing solutions with openstack,” in 2016 IEEE
International Conference on Cloud Computing in Emerging Markets (CCEM), Oct
2016, pp. 176–176.

[55] T. Indhumathil, N. Aarthy, V. D. Devi, and V. N. Samyuktha, “Third-party auditing
for cloud service providers in multicloud environment,” in Proc. of ICONSTEM 2017,
March 2017, pp. 347–352.

[56] H. Rasheed, “Data and infrastructure security auditing in cloud computing environ-
ments,” Int J. Information Management, vol. 34, no. 3, pp. 364–368, 2014.

[57] ISO/IEC Guide 2:2004 Standardization and related activities – General vocabulary,
1996.

[58] IISO/IEC JTC 1/SC 27 IT Security techniques, 1989.

[59] DoD, Department Of Defense Trusted Computer System Evaluation Criteria. USA
Department of Defence, December 1985, http://csrc.nist.gov/publications/secpubs/
rainbow/std001.txt.

[60] M. Krotsiani, G. Spanoudakis, and K. Mahbub, “Incremental certification of cloud
services,” in Proc. of SECURWARE 2013, Barcelona, Spain, August 2013.

[61] CSA Security, Trust & Assurance Registry (STAR), Cloud Security Alliance (CSA),
https://cloudsecurityalliance.org/star/, Accessed June 2016.

[62] M. Anisetti, C. Ardagna, and E. Damiani, “A low-cost security certification scheme for
evolving services,” in Proc. of ICWS 2012, Honolulu, HI, USA, June 2012.

https://doi.org/10.1007/s00607-014-0398-5
http://dx.doi.org/10.1109/MIC.2011.98
http://doi.acm.org/10.1145/1773912.1773926
http://doi.acm.org/10.1145/1773912.1773926
http://csrc.nist.gov/publications/secpubs/rainbow/std001.txt
http://csrc.nist.gov/publications/secpubs/rainbow/std001.txt
https://cloudsecurityalliance.org/star/

References 135

[63] C. Criteria, CCRA Supporting Document 2004-02-009 Assurance Continuity, February
2004, http://www.commoncriteriaportal.org/files/supplements/2004-02-009.pdf.

[64] J. Zhang, “A mobile agent-based tool supporting web services testing,” Wireless
Personal Communications, vol. 56, no. 1, pp. 147–172, Jan 2011. [Online]. Available:
https://doi.org/10.1007/s11277-009-9879-9

[65] D. Herrmann, Using the Common Criteria for IT security evaluation. Auerbach
Publications, 2002.

[66] D. Kourtesis, E. Ramollari, D. Dranidis, and I. Paraskakis, “Increased reliability in SOA
environments through registry-based conformance testing of web services,” Production
Planning & Control, vol. 21, no. 2, pp. 130–144, 2010.

[67] A. Sunyaev and S. Schneider, “Cloud services certification,” Communications of the
ACM, vol. 56, no. 2, pp. 33–36, February 2013.

[68] X. Chen, C. Chen, Y. Tao, and J. Hu, “A cloud security assessment system based on
classifying and grading,” IEEE Cloud Computing, vol. 2, no. 2, pp. 58–67, 2015.

[69] P. Stephanow, G. Srivastava, and J. Schütte, “Test-based cloud service certification of
opportunistic providers,” in Proc. of CLOUD 2016, San Francisco, CA, USA, July–June
2016.

[70] P. Stephanow and N. Fallenbeck, “Towards continuous certification of Infrastructure-
as-a-Service using low-level metrics,” in Proc. of ATC 2015, Beijing, China, August
2015.

[71] M. Krotsiani, G. Spanoudakis, and C. Kloukinas, “Monitoring-based certification of
cloud service security,” in Proc. of C&TC 2015, Rhodes, Greece, October 2015.

[72] M.Dekker, C. Karsberg, and D. L. M. Lakka, Auditing Security Measures,An Overview
of schemes for auditing security measures, ENISA, Septemberr 2013, http://csrc.nist.
gov/publications/secpubs/rainbow/std001.txt.

[73] R. K. L. Ko, P. Jagadpramana, M. Mowbray, S. Pearson, M. Kirchberg, Q. Liang, and
B. S. Lee, “Trustcloud: A framework for accountability and trust in cloud computing,”
in Proc. of IEEE SERVICES 2011, Washington, DC, USA, 2011, pp. 584–588.

[74] Q. Malluhi and K. M. Khan, “Establishing trust in cloud computing,” IT Professional,
vol. 12, pp. 20–27, 2010.

[75] A. Naskos, A. Gounaris, H. Mouratidis, and P. Katsaros, “Online analysis of security
risks in elastic cloud applications using probabilistic model checking,” (To appear in)
IEEE Cloud Computing Magazine, 2016.

[76] O. A. Wahab, J. Bentahar, H. Otrok, and A. Mourad, “Towards trustworthy multi-cloud
services communities: A trust-based hedonic coalitional game,” IEEE TSC, vol. PP,
no. 99, pp. 1–1, 2016.

[77] F. Fittkau, S. Frey, and W. Hasselbring, “Cdosim: Simulating cloud deployment options
for software migration support,” in Proc. of MESOCA 2012, Sept 2012, pp. 37–46.

[78] S. Brumec and N. VrčEk, “Cost effecti veness of commercial computing
clouds,” Inf. Syst., vol. 38, no. 4, pp. 495–508, Jun. 2013. [Online]. Available:
http://dx.doi.org/10.1016/j.is.2012.11.002

http://www.commoncriteriaportal.org/files/supplements/2004-02-009.pdf
https://doi.org/10.1007/s11277-009-9879-9
http://csrc.nist.gov/publications/secpubs/rainbow/std001.txt
http://csrc.nist.gov/publications/secpubs/rainbow/std001.txt
http://dx.doi.org/10.1016/j.is.2012.11.002

136 References

[79] A. Li, X. Yang, S. Kandula, and M. Zhang, “Cloudcmp: Comparing public cloud
providers,” in Proc. of IMC 2010, Melbourne, Australia, November 2010.

[80] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost of a cloud: Research
problems in data center networks,” SIGCOMM Comput. Commun. Rev., vol. 39, no. 1,
pp. 68–73, Dec. 2008.

[81] X. Li, Y. Li, T. Liu, J. Qiu, and F. Wang, “The method and tool of cost analysis for
cloud computing,” in in Proc of CLOUD 2009, Sept 2009, pp. 93–100.

[82] D. Worm, M. Zivkovic, H. van den Berg, and R. van der Mei, “Revenue maximization
with quality assurance for composite web services,” in Proc. of IEEE SOCA 2012,
Taipei, Taiwan, December 2012.

[83] C. Di Giulio, C. Kamhoua, R. H. Campbell, R. Sprabery, K. Kwiat, and M. N.
Bashir, “It security and privacy standards in comparison: Improving fedramp
authorization for cloud service providers,” in Proc. of the CCGrid 2017, ser. CCGrid
’17. Piscataway, NJ, USA: IEEE Press, 2017, pp. 1090–1099. [Online]. Available:
https://doi.org/10.1109/CCGRID.2017.137

[84] C. D. Giulio, R. Sprabery, C. Kamhoua, K. Kwiat, R. H. Campbell, and M. N. Bashir,
“Cloud standards in comparison: Are new security frameworks improving cloud security?”
in Proc. of Cloud 2017, June 2017, pp. 50–57.

[85] J. Becker and E. Bailey, “A comparison of it governance and control frameworks in
cloud computing,” in Proc. of AMCIS 2014, 2014.

[86] FedRAMP. Guide to Understanding FedRAMP, v2. 2014., 2014.

[87] ISO/IEC 27001 - Information security management, ISO/IEC, November 2015, http:
//www.iso.org/iso/home/standards/management-standards/iso27001.htm.

[88] T. Saxena and V. Chourey, “A survey paper on cloud security issues and challenges,”
in Proc. of CSIBIG 2014, March 2014, pp. 1–5.

[89] X. Jing and Z. Jian-jun, “A brief survey on the security model of cloud computing,” in
Proc. of DCABES 2010, Aug 2010, pp. 475–478.

[90] S. Rajeswari and R. Kalaiselvi, “Survey of data and storage security in cloud computing,”
in Proc. of ICCS 2017, Dec 2017, pp. 76–81.

[91] A. Aich, A. Sen, and S. R. Dash, “A survey on cloud environment security risk and
remedy,” in Proc. of CINE 2015, Jan 2015, pp. 192–193.

[92] W. C. N. Kaura and A. Lal, “Survey paper on cloud computing security,” in Proc. of
ICIIECS 2017, March 2017, pp. 1–6.

[93] A. Waqas, Z. M. Yusof, and A. Shah, “A security-based survey and classification of
cloud architectures, state of art and future directions,” in Proc. ACSAT 2013, Dec
2013, pp. 284–289.

[94] J. Zhang, L. Zheng, L. Gong, and Z. Gu, “A survey on security of cloud environment:
Threats, solutions, and innovation,” in Proc. of DSC 2018, June 2018, pp. 910–916.

[95] Top Threats to Cloud Computing Plus: Industry Insights, Cloud Se-
curity Alliance (CSA), 2018, https://cloudsecurityalliance.org/download/
top-threats-cloud-computing-plus-industry-insights/.

https://doi.org/10.1109/CCGRID.2017.137
http://www.iso.org/iso/home/standards/management-standards/iso27001.htm
http://www.iso.org/iso/home/standards/management-standards/iso27001.htm
https://cloudsecurityalliance.org/download/top-threats-cloud-computing-plus-industry-insights/
https://cloudsecurityalliance.org/download/top-threats-cloud-computing-plus-industry-insights/

References 137

[96] R. Barona and E. A. M. Anita, “A survey on data breach challenges in cloud computing
security: Issues and threats,” in Proc. ICCPCT 2017, April 2017, pp. 1–8.

[97] D. Kolevski and K. Michael, “Cloud computing data breaches a socio-technical review
of literature,” in Proc. of ICGCIoT 2015), Oct 2015, pp. 1486–1495.

[98] S. Kirkman, “A data movement policy framework for improving trust in the cloud using
smart contracts and blockchains,” in Proc. of IC2E 2018, April 2018, pp. 270–273.

[99] S. Jajodia, W. Litwin, and T. Schwarz SJ, Recoverable Encryption through a Noised
Secret over a Large Cloud. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp.
42–64. [Online]. Available: https://doi.org/10.1007/978-3-642-40069-8_3

[100] R. Fathi, M. A. Salehi, and E. L. Leiss, “User-friendly and secure architecture (ufsa)
for authentication of cloud services,” in Proc. of CLOUD 2015, June 2015, pp. 516–523.

[101] A. J. Choudhury, P. Kumar, M. Sain, H. Lim, and H. Jae-Lee, “A strong user au-
thentication framework for cloud computing,” in Proc. of APSCC 2011, Dec 2011, pp.
110–115.

[102] R. B. Bahaweres and J. S. M. Alaydrus, “Building a private cloud computing and the
analysis against dos (denial of service) attacks: Case study at smkn 6 jakarta,” in Proc.
of CITSM 2016, April 2016, pp. 1–6.

[103] R. Gracia-Tinedo, M. S. Artigas, and P. G. Lopez, “Cloud-as-a-gift: Effectively ex-
ploiting personal cloud free accounts via rest apis,” in 2013 IEEE Sixth International
Conference on Cloud Computing, June 2013, pp. 621–628.

[104] K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giuffrida, and H. Bos, “Flip feng shui:
Hammering a needle in the software stack,” in Proc. of USENIX 2016. Austin, TX:
USENIX Association, 2016, pp. 1–18. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity16/technical-sessions/presentation/razavi

[105] M. M. Hasan and M. A. Rahman, “Protection by detection: A signaling game approach
to mitigate co-resident attacks in cloud,” in 2017 IEEE 10th International Conference
on Cloud Computing (CLOUD), June 2017, pp. 552–559.

[106] X. Liang, X. Gui, A. N. Jian, and D. Ren, “Mitigating cloud co-resident attacks via
grouping-based virtual machine placement strategy,” in 2017 IEEE 36th International
Performance Computing and Communications Conference (IPCCC), Dec 2017, pp. 1–8.

[107] D. Capelli, A. Moore, R. Trzeciak, and T. J. Shimeall, Common Sense Guide to
Prevention and Detection of Insider Threats, 3rd ed, CERT), 2009, http://www.cert.
org/archive/pdf/CSG-V3.pdf.

[108] L. Nkosi, P. Tarwireyi, and M. O. Adigun, “Detecting a malicious insider in the cloud
environment using sequential rule mining,” in Proc. of ICASTech 2013, Nov 2013, pp.
1–10.

[109] F. Rocha, T. Gross, and A. v. Moorsel, “Defense-in-depth against malicious insiders
in the cloud,” in 2013 IEEE International Conference on Cloud Engineering (IC2E),
March 2013, pp. 88–97.

[110] A. N. Rukavitsyn, K. A. Borisenko, I. I. Holod, and A. V. Shorov, “The method of
ensuring confidentiality and integrity data in cloud computing,” in Proc. of SCM 2017,
May 2017, pp. 272–274.

https://doi.org/10.1007/978-3-642-40069-8_3
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/razavi
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/razavi
http://www.cert.org/archive/pdf/CSG-V3.pdf
http://www.cert.org/archive/pdf/CSG-V3.pdf

138 References

[111] K. N. Sevis and E. Seker, “Survey on data integrity in cloud,” in Proc. of CSCloud
2016, June 2016, pp. 167–171.

[112] C. Consortium, D2.1: Security-aware SLA specification language and cloud security
dependency model, http://cumulus-project.eu/index.php/public-deliverables, Accessed
in Date March 2016.

[113] Health Insurance Portability and Accountability Act (HIPAA), U.S. Department of
Health & Human Services, November 2015, http://www.hhs.gov/ocr/privacy/hipaa/
understanding/.

[114] M. Anisetti, C. Ardagna, and E. Damiani, “A test-based incremental security certifi-
cation scheme for cloud-based systems,” in Proc. of SCC 2015, New York, NY, USA,
June–July 2015.

[115] R. E. Bryant, “Graph-based algorithms for boolean function manipulation,” IEEE TC,
vol. 100, no. 8, pp. 677–691, 1986.

[116] S.-Y. Hwang, E.-P. Lim, C.-H. Lee, and C.-H. Chen, “Dynamic web service selection
for reliable web service composition,” IEEE TSC, vol. 1, no. 2, pp. 104–116, April 2008.

[117] M. Anisetti, C. Ardagna, and E. Damiani, “Security certification of composite services:
A test-based approach,” in Proc. of the 20th IEEE International Conference on Web
Services (ICWS 2013), San Francisco, CA, USA, June-July 2013.

[118] F. Tao, D. Zhao, Y. Hu, and Z. Zhou, “Resource service composition and its optimal-
selection based on particle swarm optimization in manufacturing grid system,” IEEE
TII, vol. 4, no. 4, pp. 315–327, November 2008.

[119] L. Qi, W. Dou, X. Zhang, and J. Chen, “A qos-aware composition method supporting
cross-platform service invocation in cloud environment,” J. Comput. Syst. Sci., vol. 78,
no. 5, pp. 1316–1329, September 2012.

[120] H. Kurdi, A. Al-Anazi, C. Campbell, and A. Al Faries, “A combinatorial optimization
algorithm for multiple cloud service composition,” Comput. Electr. Eng., vol. 42, no. C,
pp. 107–113, February 2015.

[121] X. Wang, J. Zhu, and Y. Shen, “Network-aware qos prediction for service composition
using geolocation,” IEEE TSC, vol. 8, no. 4, pp. 630–643, July 2015.

[122] K. Kofler, I. u. Haq, and E. Schikuta, “User-centric, heuristic optimization of service
composition in clouds,” in Proc. of Euro-Par 2010, Ischia, Italy, August-September
2010.

[123] Jula, Amin, Sundararajan, Elankovan, Othman, and Zalinda, “Cloud computing service
composition: A systematic literature review,” Expert Systems with Applications, vol. 41,
no. 8, pp. 3809–3824, 2014.

[124] C. T. Horngren, G. Foster, S. M. Datar, M. Rajan, C. Ittner, and A. A. Baldwin, “Cost
accounting: A managerial emphasis,” Issues in Accounting Education, vol. 25, no. 4,
pp. 789–790, 2010.

[125] R. W. de Medeiros, N. S. Rosa, and L. F. Pires, “Predicting service composition costs
with complex cost behavior,” in Services Computing (SCC), 2015 IEEE International
Conference on. IEEE, 2015, pp. 419–426.

http://cumulus-project.eu/index.php/public-deliverables
http://www.hhs.gov/ocr/privacy/hipaa/understanding/
http://www.hhs.gov/ocr/privacy/hipaa/understanding/

References 139

[126] S. Newman, Building Microservices. O’Reilly Media, Inc., 2015.

[127] C. Sadtler, Z. X. Chen, S. Imazeki, M. Kelm, S. Kofkin-Hansen, Z. Q. Kou, B. Mc-
Chesney et al., IBM Workload Deployer: Pattern-based Application and Middleware
Deployments in a Private Cloud. IBM Redbooks, 2012.

[128] I. Maleki, L. Ebrahimi, S. Jodati, and I. Ramesh, “Analysis of software cost estima-
tion using fuzzy logic,” International Journal in Foundations of Computer Science &
Technology (IJFCST), vol. 4, no. 3, pp. 27–41, 2014.

[129] C. A. Ardagna, V. Bellandi, P. Ceravolo, E. Damiani, M. Bezzi, and C. Hebert, “A
model-driven methodology for big data analytics-as-a-service,” in Proc. of 2017 BigData
Congress, June 2017, pp. 105–112.

[130] Z. Hu, L. Zhu, C. Ardi, E. Katz-Bassett, H. V. Madhyastha, J. Heidemann, and
M. Yu, “The need for end-to-end evaluation of cloud availability,” in Passive and Active
Measurement, M. Faloutsos and A. Kuzmanovic, Eds. Cham: Springer International
Publishing, 2014, pp. 119–130.

[131] D. Jaramillo, D. V. Nguyen, and R. Smart, “Leveraging microservices architecture by
using docker technology,” in Proc. of SoutheastCon 2016, March 2016, pp. 1–5.

[132] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patter-
son, A. Rabkin, I. Stoica, and M. Zaharia, “Above the clouds: A berkeley view of cloud
computing,” in Tech. Rep. UCB/EECS-2009-28, EECS Department, U.C. Berkeley,
February 2009.

[133] “Cis security benchmark repository,” https://benchmarks.cisecurity.org/downloads/.

[134] OpenStack Foundation, OpenStack Security Guide, April 2015, http://docs.openstack.
org/security-guide/security-guide.pdf.

[135] G. Gerchow, M. A. Haines, and P. Goyal, “Cis quick start cloud infrastructure bench-
mark v1.0.0,” October 2012, https://benchmarks.cisecurity.org/downloads/show-single/
?file=cloud.100/.

[136] B. Albelooshi, K. Salah, T. Martin, and E. Damiani, “Experimental proof: Data
remanence in cloud vms,” in Proc. IEEE CLOUD2015, June 2015.

[137] BBC, NHS cyber-attack: GPs and hospitals hit by ransomware, May 2017, http:
//www.bbc.com/news/health-39899646.

[138] N. Perlroth, All 3 Billion Yahoo Accounts Were Affected by 2013 Attack, October 2017,
https://www.nytimes.com/2017/10/03/technology/yahoo-hack-3-billion-users.html.

[139] marketsandmarkets.com, eGRC Market by Component (Services, Software), Deployment
Mode (Cloud, On-Premises), Business Function (Finance, It, Legal, Operations), Orga-
nization Size, Vertical, Usage, and Region - Global Forecast to 2022, July 2017, https:
//media.kaspersky.com/pdf/it-risks-survey-report-cost-of-security-breaches.pdf.

[140] John A. Wheeler, IRM Solutions Market Will Grow to $7.3 Bil-
lion by 2020, March 2017, https://blogs.gartner.com/john-wheeler/
irm-solutions-market-will-grow-to-7-3-billion-by-2020/.

[141] Karpersky Lab, Damage Control: The Cost of Security Breaches, 2015, https://media.
kaspersky.com/pdf/it-risks-survey-report-cost-of-security-breaches.pdf.

https://benchmarks.cisecurity.org/downloads/
http://docs.openstack.org/security-guide/security-guide.pdf
http://docs.openstack.org/security-guide/security-guide.pdf
https://benchmarks.cisecurity.org/downloads/show-single/?file=cloud.100/
https://benchmarks.cisecurity.org/downloads/show-single/?file=cloud.100/
http://www.bbc.com/news/health-39899646
http://www.bbc.com/news/health-39899646
https://www.nytimes.com/2017/10/03/technology/yahoo-hack-3-billion-users.html
https://media.kaspersky.com/pdf/it-risks-survey-report-cost-of-security-breaches.pdf
https://media.kaspersky.com/pdf/it-risks-survey-report-cost-of-security-breaches.pdf
https://blogs.gartner.com/john-wheeler/irm-solutions-market-will-grow-to-7-3-billion-by-2020/
https://blogs.gartner.com/john-wheeler/irm-solutions-market-will-grow-to-7-3-billion-by-2020/
https://media.kaspersky.com/pdf/it-risks-survey-report-cost-of-security-breaches.pdf
https://media.kaspersky.com/pdf/it-risks-survey-report-cost-of-security-breaches.pdf

140 References

[142] CIS Sapienza, 2016 Italian Cybersecurity Report, March 2017, http://www.
cybersecurityframework.it/sites/default/files/csr2016web.pdf.

[143] J. Modic, R. Trapero, A. Taha, J. Luna, M. Stopar, and N. Suri, “Novel efficient
techniques for real-time cloud security assessment,” COSE, vol. 62, pp. 1–18, 2016.

[144] G. Koschorreck, “Automated audit of compliance and security controls,” in 2011 Sixth
International Conference on IT Security Incident Management and IT Forensics, May
2011, pp. 137–148.

[145] A. Alzahrani, A. Alqazzaz, Y. Zhu, H. Fu, and N. Almashfi, “Web application security
tools analysis,” in Proc. of IEEE bigdatasecurity 2017, May 2017.

[146] S. K. Patel, V. R. Rathod, and J. B. Prajapati, “Comparative analysis of web security
in open source content management system,” in Proc. of ISSP 2013, March 2013, pp.
344–349.

[147] Information Technology. Internet of things (iot). preliminary report., ISO/IEC, 2014.

[148] C. A. Ardagna, E. Damiani, J. Schütte, and P. Stephanow, A Case for IoT Security
Assurance. Singapore: Springer Singapore, 2018, pp. 175–192. [Online]. Available:
https://doi.org/10.1007/978-981-10-5861-5_8

[149] P. Beaudou, P. lBradley, E. Clement, R. Cricco, C. Dietze, E. Laffont, D. Lopez, R. M.
Gonzalez, D. Vujcic, and T. Wozniak, An analysis of the security needs of the 5G
market, SimAlliance, 2018.

[150] R. Cao and J. Gao, “Research on reliability evaluation of big data system,” in 2018 IEEE
3rd International Conference on Cloud Computing and Big Data Analysis (ICCCBDA),
April 2018, pp. 261–265.

[151] P. Zhang, X. Zhou, W. Li, and J. Gao, “A survey on quality assurance techniques for
big data applications,” in Proc. of BigDataService 2017, April 2017, pp. 313–319.

http://www.cybersecurityframework.it/sites/default/files/csr2016web.pdf
http://www.cybersecurityframework.it/sites/default/files/csr2016web.pdf
https://doi.org/10.1007/978-981-10-5861-5_8

Appendix A

Publication

This work has appeared in varying forms, in the form of journals and conference papers. In
the following we report papers and articles published or submitted used in this thesis.

1. A Certification Framework for Cloud-based Services
Co-author: M. Anisetti, C.A. Ardagna, E. Damiani
in Proc. of SAC 2016, April 2016, Pisa, Italy

Abstract: Lack of trust and transparency are among the main reasons hindering adoption of
cloud computing. Users in fact can inspect neither their applications nor the treatment of their
data, and have little or no guarantees about their security. In this context, there is a pressing
need for assurance techniques supporting some key properties of cloud services and applications.
Cloud security certification is a major assurance technique that has been proposed to increase
cloud security, trust, and transparency. However, certification is a tedious, costly, and time-
consuming process for the provider that wants to certify one of its services/applications. In this
paper, we propose a test-based security certification framework for the cloud implementing a
certification process and a cloud engineering methodology based on it, which supports providers
in the design and development of ready-to-be-certified services/applications.

2. A Security Benchmark for OpenStack
Co-author: M. Anisetti, C.A. Ardagna, E. Damiani
in Proc. of IEEE CLOUD 2017, June 2017, Honolulu, HI, USA

Abstract: The cloud computing paradigm entails a radical change in IT provisioning, which
must be understood and correctly applied especially when security requirements are considered.
Security requirements do not cover anymore just the application itself, but involve the whole cloud
supply chain from the hosting infrastructure to the final applications. This scenario requires, on
one side, new security mechanisms protecting the cloud against misbehaviors/malicious attacks
and, on the other side, a continuous and adaptive assurance process evaluating the observed
cloud security behavior against the expected one. In this paper, we focus on the evaluation
of the security assurance of OpenStack, a major open source cloud infrastructure. We first
define a security benchmark for OpenStack, inspired by Center for Internet Security (CIS)
benchmark for cloud infrastructures. We then present a platform, called Moon Cloud, for cloud

142 Publication

security assurance evaluation, showing an application of our benchmark and platform to the
in-production OpenStack deployment of the University of Milan.

3. A semi-automatic and trustworthy scheme for continuous cloud service certifica-
tion
Co-author: M. Anisetti, C.A. Ardagna, E. Damiani
in IEEE Transactions on Services Computing, 2016

Abstract: Traditional assurance solutions for software-based systems rely on static verification
techniques and assume continuous availability of trusted third parties. With the advent of cloud
computing, these solutions become ineffective since services/applications are flexible, dynamic,
and change at run time, at high rates. Although several assurance approaches have been defined,
cloud requires a step-change moving current assurance techniques to fully embrace the cloud
peculiarities. In this paper, we provide a rigorous and adaptive assurance technique based on
certification, towards the definition of a transparent and trusted cloud ecosystem. It aims to
increase the confidence of cloud customers that every piece of the cloud (from its infrastructure
to hosted applications) behaves as expected and according to their requirements. We first
present a test-based certification scheme proving non-functional properties of cloud-based ser-
vices. The scheme is driven by non-functional requirements defined by the certification authority
and by a model of the service under certification. We then define an automatic approach to
verification of consistency between requirements and models, which is at the basis of the chain
of trust supported by the certification scheme. We also present a continuous certificate life cycle
management process including both certificate issuing and its adaptation to address contextual
changes. Finally, we describe our certification framework and an experimental evaluation of its
performance, quality, applicability, and practical usability in a real industrial scenario, which
considers Engineering Ingegneria Informatica S.p.A. ENGpay online payment system.

4. A Cost-Effective Certification-Based Service Composition for the Cloud
Co-author: M. Anisetti, C.A. Ardagna, E. Damiani
in Proc. of IEEE CLOUD 2016 , June-July 2016, San Francisco, CA, USA

Abstract: The cloud computing paradigm provides an environment where services can be
composed and reused at high rates. Existing composition techniques focus on providing the
desired functionality and at a given deployment cost. In this paper, we focus on the definition
of cloud service compositions driven by certified non-functional properties. We define a cost
evaluation methodology aimed to provide the composition that minimizes the total costs of the
cloud provider taking into account deployment, certification, and mismatch costs, and evaluate
it using three different cost profiles.

5. Modeling time, probability, and configuration constraints for continuous cloud
service certification
Co-author: M. Anisetti, C.A. Ardagna, E. Damiani, N. El Ioini
Computers & Security (COSE) 72, 2018

Abstract: Cloud computing proposes a paradigm shift where resources and services are
allocated, provisioned, and accessed at runtime and on demand. New business opportunities
emerge for service providers and their customers, at a price of an increased uncertainty on
how their data are managed and their applications operate once stored/deployed in the cloud.

143

This scenario calls for assurance solutions that formally assess the working of the cloud and its
services/processes. Current assurance techniques increasingly rely on model-based verification,
but fall short to provide sound checks on the validity and correctness of their assessment over
time. The approach in this paper aims to close this gap catching unexpected behaviors emerging
when a verified service is deployed in the target cloud. We focus on certification-based assurance
techniques, which provide customers with verifiable and formal evidence on the behavior of
cloud services/processes. We present a trustworthy cloud certification scheme based on the
continuous verification of model correctness against real and synthetic service execution traces,
according to time, probability, and configuration constraints, and attack flows. We test the
effectiveness of our approach in a real scenario involving ATOS SA eHealth application deployed
on top of open source IaaS OpenStack.

6. Toward Security and Performance Certification of OpenStack
Co-author: M. Anisetti, C.A. Ardagna, E. Damiani, R. Veca
in Proc. of IEEE CLOUD 2015 , June July 2015, New York City, NY, USA

textbfAbstract: Cloud users and service providers are increasingly concerned about the man-
agement of their data and the behavior of the applications they use/own once stored/deployed
in the cloud. They therefore ask for enhanced assurance solutions, which partially mitigate the
new risks and threats they are facing. Among existing solutions, certification has been widely
adopted as a preferable approach to increase trust in the cloud. In this paper, after briefly
discussing our test-based certification scheme for the cloud, we show a real certification process
aimed to certify OpenStack, an open source IaaS solution for managing infrastructure resources.
In particular, we first describe the testing activities executed to certify OpenStack for security
and performance properties. We then illustrate the obtained results and the outcomes of the
certification process.

7. Moon Cloud: A Cloud Platform for ICT Security Governance
Co-author: M. Anisetti, C.A. Ardagna, E. Damiani
in Proc. of IEEE GlobeCom 2018 , December 2018, Abu Dhaby, EAU

textbfAbstract: Cybersecurity is the second emergency in Europe just after the climate changes.
Everyday most of the small, medium and big enterprises are under attack. This scenario requires,
on one side, new security solutions protecting ICT systems against misbehaviors/malicious
attacks and, on the other side, a continuous assurance process evaluating the system robustness
against new threats. In this paper we present Moon Cloud, a Cloud PaaS solution providing
customizable assurance based on compliance for ICT systems, including public and private
cloud systems and IoT environments. We also present a concrete security assessment carried
out in a real scenario.

8. Cost-Effective Deployment of Certified Cloud Composite Services
Co-author: M. Anisetti, C.A. Ardagna, E. Damiani
under review: Journal of Parallel and Distributed Computing

textbfAbstract: The cloud computing paradigm provides an environment where services can
be composed and reused at high rates. While traditional approaches to service composition
are driven by the desired functionality and requirements on deployment costs, more recent
approaches also focus on SLAs and non-functional requirements. Service composition in the

144 Publication

cloud introduces new requirements on composition approaches, which need to select component
services on the basis of their non-functional properties and continuously adapt to both functional
and non functional changes of the component services. These approaches must then depart
from the assumption that the cost of the composition is only the sum of the deployment costs
of the component services, and also consider the costs of continuously verifying SLAs and
non-functional requirements to guarantee a stable Quality of Service (QoS). In this paper, we
first present a portable certification process for evaluating non-functional properties of composite
services addressing cloud peculiarities. We then focus on the definition of an approach to the
composition of cloud services driven by certified non-functional properties. We finally define a
cost-evaluation methodology aimed to build the composition that minimizes the total cost paid
by the cloud providers, taking into account both deployment and certification/verification costs.

Appendix B

Model Consistency Check

This appendix presents additional information for Chapter 3. It reports an extensive
representation, including XML, of examples 3.3.1, 3.3.2. Moreover, SectionB.3 contains the
pseudo code of the two consistency model check heuristics. The Dataset of the experimentation
due to its length is not reported here, but it as available at https://github.com/SESARLab/
tsc-matching.

B.1 Examples

This paragraph contains all artifacts related to Examples 3.3.1, 3.3.2. These two examples
represent an example of CM Template and Instance respectively. Other examples that we
have used in the context of the CUMULUS project are available at https://github.com/
SESARLab/tsc-matching.

B.1.1 Example 3.3.1

Property: Confidentiality
1 <SecurityProperty class="Confidentiality">
2 <propertyAttributesList>
3 <item>
4 in-transit
5 </item>
6 <item>
7 at-rest
8 </item>
9 </propertyAttributesList>

10 </SecurityProperty>

ToCS: Tocs contains the three mechanisms:

https://github.com/SESARLab/tsc-matching
https://github.com/SESARLab/tsc-matching
https://github.com/SESARLab/tsc-matching
https://github.com/SESARLab/tsc-matching

146 Model Consistency Check

• encryption-message-in-transit

• encryption-internal-communications

• encryption-data-at-rest

1 <ToCs>
2 <ToC id="1">
3 <mechanism>encryption-message-in-transit</mechanism>
4 <service>service</service>
5 </ToC>
6 <ToC id="2">
7 <mechanism>encryption-internal-communications</mechanism>
8 <service>service</service>
9 </ToC>

10 <ToC id="3">
11 <mechanism>encryption-data-at-rest</mechanism>
12 <service>infrastructure</service>
13 </ToC>
14 </ToCs>

STS model
Figure:

Fig. B.1 STS representation

1 <graphml xmlns="http://graphml.graphdrawing.org/xmlns" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance" xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns http://
graphml.graphdrawing.org/xmlns/1.1/graphml.xsd">

2 <key id="mechanism" for="node" attr.name="mechanism" attr.type="string" />
3 <graph id="G" edgedefault="directed">

B.1 Examples 147

4 <node id="n0">
5 <data key="mechanism">encryption-message-in-transit</data>
6 </node>
7 <node id="n1">
8 <data key="mechanism">encryption-internal-communications</data>
9 </node>

10 <node id="n2">
11 <data key="mechanism">encryption-data-at-rest</data>
12 </node>
13

14 <edge id="0" source="n0" target="n1" label="23497da5-6eba-4528-815d-c70e291f35c7" />
15 <edge id="1" source="n1" target="n2" label="dfff5733-3e20-4af1-951d-5a1a585b6c7f" />
16 </graph>
17 </graphml>

Evidence

1 <allEvidences>
2 <evidences path="0">
3 <evidence>
4 <mechanism>encryption-message-in-transit</mechanism>
5 <state>n0</state>
6 <inputs>
7 <input>
8 <key>host</key>
9 <value></value>

10 <domain>d1</domain>
11 </input>
12 </inputs>
13 <expectedOutput>
14 <output>
15 <key>Result</key>
16 <value>true</value>
17 <domain>d1</domain>
18 </output>
19 </expectedOutput>
20 </evidence>
21 <evidence>
22 <mechanism>encryption-internal-communications</mechanism>
23 <state>n1</state>
24 <inputs>
25 <input>
26 <key>serviceUri</key>
27 <value></value>
28 <domain>d1</domain>
29 </input>
30 </inputs>

148 Model Consistency Check

31 <expectedOutput>
32 <output>
33 <key>Result</key>
34 <value>true</value>
35 <domain>d1</domain>
36 </output>
37 </expectedOutput>
38 </evidence>
39 <evidence>
40 <mechanism>encryption-data-at-rest</mechanism>
41 <state>n2</state>
42 <inputs>
43 <input>
44 <key>local</key>
45 <value></value>
46 <domain>d1</domain>
47 </input>
48 </inputs>
49 <expectedOutput>
50 <output>
51 <key>Result</key>
52 <value>true</value>
53 <domain>d1</domain>
54 </output>
55 </expectedOutput>
56 </evidence>
57 </evidences>
58 </allEvidences>

B.1.2 Example 3.3.2

Property: Confidentiality
1 <SecurityProperty class="Confidentiality">
2 <propertyAttributesList>
3 <item>
4 in-transit
5 </item>
6 <item>
7 at-rest
8 </item>
9 </propertyAttributesList>

10 </SecurityProperty>

ToCS: Tocs contains the three mechanisms:

B.1 Examples 149

• encryption-XML-encryption-WS-Security-message-in-transit

• encryption-internal-communications-HTTPS

• encryption-at-rest-encrypted-FS

1 <ToCs>
2 <ToC id="1">
3 <mechanism>encryption-XML-encryption-WS-Security-message-in-transit</mechanism>
4 <service>service</service>
5 </ToC>
6 <ToC id="2">
7 <mechanism>encryption-internal-communications-HTTPS</mechanism>
8 <service>service</service>
9 </ToC>

10 <ToC id="2">
11 <mechanism>encryption-at-rest-encrypted-FS</mechanism>
12 <service>infrastructure</service>
13 </ToC>
14 </ToCs>

STS model
Figure:

Fig. B.2 STS representation

1 <graphml xmlns="http://graphml.graphdrawing.org/xmlns" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance" xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns http://
graphml.graphdrawing.org/xmlns/1.1/graphml.xsd">

2 <key id="mechanism" for="node" attr.name="mechanism" attr.type="string" />
3 <graph id="G" edgedefault="directed">

150 Model Consistency Check

4 <node id="n0">
5 <data key="mechanism">encryption-message-in-transit</data>
6 </node>
7 <node id="n1">
8 <data key="mechanism">encryption-internal-communications</data>
9 </node>

10 <node id="n2">
11 <data key="mechanism">encryption-data-at-rest</data>
12 </node>
13

14 <edge id="0" source="n0" target="n1" label="23497da5-6eba-4528-815d-c70e291f35c7" />
15 <edge id="1" source="n1" target="n2" label="dfff5733-3e20-4af1-951d-5a1a585b6c7f" />
16 </graph>
17 </graphml>

Evidence

1 <?xml version="1.0" encoding="UTF-8"?>
2 <allEvidences>
3 <evidences path="0">
4 <evidence>
5 <mechanism>encryption-XML-encryption-WS-Security-message-in-transit</mechanism>
6 <state>n0</state>
7 <inputs>
8 <input>
9 <key>host</key>

10 <value>172.25.27.11</value>
11 <domain>d1</domain>
12 </input>
13 </inputs>
14 <expectedOutput>
15 <output>
16 <key>Result</key>
17 <value>true</value>
18 <domain>d1</domain>
19 </output>
20 </expectedOutput>
21 </evidence>
22 <evidence>
23 <mechanism>encryption-internal-communications-HTTPS</mechanism>
24 <state>n1</state>
25 <inputs>
26 <input>
27 <key>serviceUri</key>
28 <value>internalService.uri</value>
29 <domain>d1</domain>
30 </input>

B.2 Code 151

31 </inputs>
32 <expectedOutput>
33 <output>
34 <key>Result</key>
35 <value>true</value>
36 <domain>d1</domain>
37 </output>
38 </expectedOutput>
39 </evidence>
40 <evidence>
41 <mechanism>encryption-at-rest-encrypted-FS</mechanism>
42 <state>n2</state>
43 <inputs>
44 <input>
45 <key>local</key>
46 <value>/dev/sda1</value>
47 <domain>d1</domain>
48 </input>
49 </inputs>
50 <expectedOutput>
51 <output>
52 <key>Result</key>
53 <value>true</value>
54 <domain>d1</domain>
55 </output>
56 </expectedOutput>
57 </evidence>
58 </evidences>
59 </allEvidences>

B.2 Code

B.3 Heuristics

We propose two heuristics balancing efficiency and quality in terms of precision and recall.

B.3.1 Heuristic 1

Psuedo-Code k-match:
1 /∗∗/
2 /∗ ALGO_SPACE is a costant corresponding to k, which is the number of possible
3 /∗ solutions to manage.
4 /∗
5 /∗ instancep is an array containing the CM instance flows
6 /∗ templatep is an array containing the CM Template flows

152 Model Consistency Check

7 /∗
8 /∗ tocheckT is the index of the CM Tempalte flow under comparison.
9 /∗ k−match heuristic uses as pivot array tamplatep, indeed it checks once every

10 /∗ CM Tempate flows against all CM Instance flows.
11 /∗ checked is the array of CM instance flows already mapped in CM Template flows.
12 /∗
13 /∗ heuristic starts with k−match(instancep,tempaltep,0,[])
14 /∗∗/
15 procedure k−match(path[] instancep,path[] templatep,int tocheckT, path[] checked):
16 path[][] solutions:=[][]
17 int k:=ALGO_SPACE
18 len_templatep=length of templatep
19 len_instancep=length of instancep
20 if (tocheckT <= len_templatep) then
21 for (i=1;i<=len_instancep;i++):
22 if (instancep[i] is_not_in checked) then
23 c:=compatibility(tempaltep[tocheckT],instancep[i])
24 if c == True then
25 if k <> 0 then
26 checked_app=checked
27 checked_app.append(instancep[i])
28 k−match(instancep,templatep,tocheckT+1,checked_app)
29 k=k−1
30 else
31 break;
32 endif
33 endif
34 endif
35 endfor
36
37 else
38 solutions.append(checked)
39 endif
40 return solutions
41 end_procedure

B.3.2 Heuristic 2

1 /∗∗/
2 /∗ it uses the same function k−match, but instancep and templatep are ordered
3 /∗ based on the hierarchy of mechanisms HM
4 /∗ ordered(path[] paths) is the ordering function, returns an ordered array
5
6 solutions=k−match(ordered(instancep),ordered(templatep),0,[])

Appendix C

Composition Cloud Experimental
Results

This appendix presents additional information for Chapter 4.

C.1 Fitting Profile

Plots of heuristic-1 on all dataset (1-10) using the fitting profile.

 6

 8

 10

 12

 14

 16

 18

 20

 150 200 250 300

T
o

ta
l
C

o
s
t

t

w=1

w=2

w=3

w=4

w=5

Fig. C.1 Fitting heuristic-1 dataset 1

154 Composition Cloud Experimental Results

 6

 8

 10

 12

 14

 16

 18

 20

 150 200 250 300

T
o

ta
l
C

o
s
t

t

w=1

w=2

w=3

w=4

w=5

Fig. C.2 Fitting heuristic-1 dataset 2

 6

 8

 10

 12

 14

 16

 18

 20

 150 200 250 300

T
o

ta
l
C

o
s
t

t

w=1

w=2

w=3

w=4

w=5

Fig. C.3 Fitting heuristic-1 dataset 3

C.1 Fitting Profile 155

 6

 8

 10

 12

 14

 16

 18

 20

 150 200 250 300

T
o

ta
l
C

o
s
t

t

w=1

w=2

w=3

w=4

w=5

Fig. C.4 Fitting heuristic-1 dataset 4

 6

 8

 10

 12

 14

 16

 18

 20

 150 200 250 300

T
o

ta
l
C

o
s
t

t

w=1

w=2

w=3

w=4

w=5

Fig. C.5 Fitting heuristic-1 dataset 5

156 Composition Cloud Experimental Results

 6

 8

 10

 12

 14

 16

 18

 20

 150 200 250 300

T
o

ta
l
C

o
s
t

t

w=1

w=2

w=3

w=4

w=5

Fig. C.6 Fitting heuristic-1 dataset 6

 6

 8

 10

 12

 14

 16

 18

 20

 150 200 250 300

T
o

ta
l
C

o
s
t

t

w=1

w=2

w=3

w=4

w=5

Fig. C.7 Fitting heuristic-1 dataset 7

C.1 Fitting Profile 157

 6

 8

 10

 12

 14

 16

 18

 20

 150 200 250 300

T
o

ta
l
C

o
s
t

t

w=1

w=2

w=3

w=4

w=5

Fig. C.8 Fitting heuristic-1 dataset 8

 6

 8

 10

 12

 14

 16

 18

 20

 150 200 250 300

T
o

ta
l
C

o
s
t

t

w=1

w=2

w=3

w=4

w=5

Fig. C.9 Fitting heuristic-1 dataset 9

158 Composition Cloud Experimental Results

 6

 8

 10

 12

 14

 16

 18

 20

 150 200 250 300

T
o

ta
l
C

o
s
t

t

w=1

w=2

w=3

w=4

w=5

Fig. C.10 Fitting heuristic-1 dataset 10

C.2 Sharing Profile

Plots of heuristic-1 on all dataset (1-10) using the sharing profile.

C.2 Sharing Profile 159

 150

 200

 250

 300

 350

 400

 450

 500

 150 200 250 300

T
o

ta
l
C

o
s

t

t

w=1

w=2

w=3

w=4

w=5

Fig. C.11 Sharing heuristic-1 dataset 1

160 Composition Cloud Experimental Results

 150

 200

 250

 300

 350

 400

 450

 500

 150 200 250 300

T
o

ta
l
C

o
s

t

t

w=1

w=2

w=3

w=4

w=5

Fig. C.12 Sharing heuristic-1 dataset 2

 200

 250

 300

 350

 400

 450

 500

 150 200 250 300

T
o

ta
l
C

o
s
t

t

w=1

w=2

w=3

w=4

w=5

Fig. C.13 Sharing heuristic-1 dataset 3

C.2 Sharing Profile 161

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 50 100 150 200 250 300

T
o

ta
l

C
o

s
t

t

w=1

w=2

w=3

w=4

w=5

Fig. C.14 Sharing heuristic-1 dataset 4

 200

 250

 300

 350

 400

 450

 500

 150 200 250 300

T
o

ta
l
C

o
s
t

t

w=1

w=2

w=3

w=4

w=5

Fig. C.15 Sharing heuristic-1 dataset 5

162 Composition Cloud Experimental Results

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 50 100 150 200 250 300

T
o

ta
l

C
o

s
t

t

w=1

w=2

w=3

w=4

w=5

Fig. C.16 Sharing heuristic-1 dataset 6

 150

 200

 250

 300

 350

 400

 450

 500

 150 200 250 300

T
o

ta
l
C

o
s
t

t

w=1

w=2

w=3

w=4

w=5

Fig. C.17 Sharing heuristic-1 dataset 7

C.2 Sharing Profile 163

 200

 250

 300

 350

 400

 450

 500

 150 200 250 300

T
o

ta
l
C

o
s
t

t

w=1

w=2

w=3

w=4

w=5

Fig. C.18 Sharing heuristic-1 dataset 8

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 50 100 150 200 250 300

T
o

ta
l

C
o

s
t

t

w=1

w=2

w=3

w=4

w=5

Fig. C.19 Sharing heuristic-1 dataset 9

164 Composition Cloud Experimental Results

 200

 250

 300

 350

 400

 450

 500

 150 200 250 300

T
o

ta
l
C

o
s
t

t

w=1

w=2

w=3

w=4

w=5

Fig. C.20 Sharing heuristic-1 dataset 10

Appendix D

Probes - OpenStack Scenario

D.1 Maintain Time Synchronization Services

ToE: All nodes that compose the OpenStack deployment. Control: The control needs to
access every node and checks if the time synchronisation is enabled and if it is connected to
the same server list as required. The control supports both crony and ntp.

1. connect_to_server [username, password, private_key, private_key_passphrase,hostname,
port]: control accesses trough ssh the node;

2. check_timesync_enabled [ntp,chrony]: control checks, using the init system, if crony
or ntp is enabled;

3. check_timesync_config [ntp_config_file (optional),chrony_config_file (optional),servers_list]:
control checks that servers list in the crony or ntp config file are the same as passed in
the parameters.

The Environmental settings

• Control must be executed with access to the internal network

• The paramiko python library to let the control access through ssh.

Schema:
{

"connect_to_server":{
"type":"object",
"title": "Server connection",
"properties":{

"hostname":{
"type":"string",
"title":"Target hostname"

},

166 Probes - OpenStack Scenario

"port":{
"type":"number",
"title":"Target port"

},
"username":{

"type":"string",
"title":"Username for SSH connection"

},
"password":{

"type":"string",
"title":"Password for SSH connection"

},
"private_key":{

"type":"string",
"title":"Private RSA key for SSH connection"

},
"private_key_passphrase":{

"type":"string",
"title":"Private RSA key passphrase"

}
}

},
"check_timesync_enabled":{

"type":"object",
"title": "Time synchronization daemon",
"properties":{

"check_ntp": {
"type": "boolean",
"title": "Check NTPd"

},
"check_chrony": {

"type": "boolean",
"title": "Check Chrony"

}
}

},
"check_timesync_config":{

"type":"object",
"title": "Daemon configuration",
"properties":{

"servers_list": {
"type":"array",
"items": {

"type": "string",
"title": "Server address"

},
"title": "Time synchronization servers"

},
"ntp_config_file": {

"type": "string",
"title": "NTPd config file path"

},
"chrony_config_file": {

"type": "string",
"title": "Chrony config file path"

D.1 Maintain Time Synchronization Services 167

}
}

}
}

Parameter:
{

"connect_to_server": {
"username": "root",
"password": "password",
"hostname": "127.0.0.1",
"port": 22

},
"check_timesync_enabled": {

"ntp": true,
"chrony": true

},
"check_timesync_config": {

"ntp_config_file": null,
"chrony_config_file": null,
"servers_list": [

"0.ubuntu.pool.ntp.org",
"1.ubuntu.pool.ntp.org",
"2.ubuntu.pool.ntp.org",
"3.ubuntu.pool.ntp.org",
"ntp.ubuntu.com"

]
}

}

Code:
1 import paramiko
2 import StringIO
3 from driver import Driver
4
5
6 class SSHClient(object):
7 def ssh_connect(self, hostname, port, username, password=None, private_key=None,

private_key_passphrase=None):
8 ssh_client = paramiko.SSHClient()
9 ssh_client.set_missing_host_key_policy(paramiko.AutoAddPolicy())

10 if private_key:
11 private_key = paramiko.RSAKey.from_private_key(private_key, password=private_key_passphrase)
12 ssh_client.connect(hostname, port, username=username, password=password, pkey=private_key)
13 return ssh_client
14
15
16 class NtpControl(Driver,
17 SSHClient):
18 def check_init_system(self, init_system):
19 """

168 Probes - OpenStack Scenario

20 Returns the command to check whether init process is systemd, upstart or system 5 init
21 """
22 if init_system == "systemd":
23 return """ bash −c "[[‘systemctl‘ =~ −\.mount]] && echo 1 || echo 0 " """
24 elif init_system == "upstart":
25 return """ bash −c "[[‘/sbin/init −−version‘ =~ upstart]] && echo 1 || echo 0 " """
26 elif init_system == "sysvinit":
27 return """ bash −c "[[−f /sbin/init && ! −L /sbin/init]] && echo 1 || echo 0 " """
28 return None
29
30 def check_daemon_enabled(self, init_system, daemon):
31 """
32 If the init system is systemd, then returns systemctl is−enabled
33 Else if the init system is upstart or sysvinit, then grabs the service status from service −−status−all
34 """
35 if init_system == "systemd":
36 return """ bash −c "systemctl is−enabled {}" """.format(daemon)
37 elif init_system == "upstart" or init_system == "sysvinit":
38 return """ bash −c "[[$(/usr/sbin/service −−status−all 2>1 | awk ’/%s$/ {print $2}’) == "+"]] &&

echo 1 || echo 0" """ % daemon
39 return None
40
41 def check_service(self, connection, init_system, daemon):
42 command = self.check_daemon_enabled(init_system, daemon)
43 _stdin, _stdout, _stderr = connection.exec_command(command)
44 out = _stdout.readlines()
45 return len(out) > 0 and out[0].strip() == "1"
46
47 def retrieve_time_servers_cmd(self, daemon="ntp", config_file=None):
48 if not config_file:
49 if daemon == "ntp":
50 config_file = "/etc/ntp.conf"
51 elif daemon == "chrony":
52 config_file = "/etc/chrony.conf"
53
54 return """ awk ’/^server/ {print $2}’ %s """ % config_file
55
56 def retrieve_time_servers(self, connection, daemon="ntp", config_file=None):
57 command = self.retrieve_time_servers_cmd(daemon, config_file)
58 _stdin, _stdout, _stderr = connection.exec_command(command)
59 out = _stdout.readlines()
60
61 for line, s in enumerate(out):
62 out[line] = str(s).strip()
63 return out
64
65 # Step 1 − Verify Preconditions
66 def preconditions(self, inputs):
67 # Verifies that the user has provided the list of the expected time servers
68
69 expected_servers_list = []
70 expected_ti = self.testinstances.get("check_timesync_config", None)
71 if expected_ti is not None:
72 expected_servers_list = expected_ti.get("servers_list")
73 assert len(expected_servers_list) > 0

D.1 Maintain Time Synchronization Services 169

74 self.expected_servers_list = expected_servers_list
75
76 # Decides whether to check ntp or chrony. If no preference is provided in the config file, checks both of

them
77 check_ntp = False
78 check_chrony = False
79
80 # Grabs the testinstance for ntp settings
81 ntp_settings_ti = self.testinstances.get("check_timesync_enabled", None)
82 # Grabs the value of "check" for ntp
83 if ntp_settings_ti is not None:
84 check_ntp = ntp_settings_ti.get("check_ntp", False)
85
86 # Grabs the testinstance for chrony settings
87 chrony_settings_ti = self.testinstances.get("check_timesync_enabled", None)
88 # Grabs the value of "check" for chrony
89 if chrony_settings_ti is not None:
90 check_chrony = chrony_settings_ti.get("check_chrony", False)
91
92 # If both are false, it checks both.
93 if check_ntp == False and check_chrony == False:
94 check_ntp = True
95 check_chrony = True
96
97 self.check_ntp = check_ntp or False
98 self.check_chrony = check_chrony or False
99 return True

100
101 # Step 2 − Connects to the remote server
102 def connect_to_server(self, inputs):
103 assert inputs is True
104 ssh_connection_ti = self.testinstances.get("connect_to_server", None)
105 assert not ssh_connection_ti is None
106
107 hostname = ssh_connection_ti.get("hostname")
108 port = ssh_connection_ti.get("port")
109 username = ssh_connection_ti.get("username")
110 password = ssh_connection_ti.get("password", None)
111 private_key = ssh_connection_ti.get("private_key", None)
112 if private_key is not None:
113 private_key = StringIO.StringIO(private_key)
114 private_key_passphrase = ssh_connection_ti.get("private_key_passphrase", None)
115
116 assert not password is None or not private_key is None
117
118
119 self.ssh_connection = self.ssh_connect(
120 hostname=hostname,
121 username=username,
122 port=port,
123 password=password,
124 private_key=private_key,
125 private_key_passphrase=private_key_passphrase
126)
127 return True

170 Probes - OpenStack Scenario

128
129 # Step 3 − Identifies the init system used by the remote server
130 def identify_init_system(self, inputs):
131 assert inputs is True
132
133 _stdin, _stdout, _stderr = self.ssh_connection.exec_command(self.check_init_system("systemd"))
134 out = _stdout.readlines()
135 if len(out) > 0 and out[0].strip() == "1":
136 return "systemd"
137
138 """
139 Checks if init system is upstart
140 """
141 _stdin, _stdout, _stderr = self.ssh_connection.exec_command(self.check_init_system("upstart"))
142 out = _stdout.readlines()
143
144 if len(out) > 0 and out[0].strip() == "1":
145 return "upstart"
146
147 """
148 Checks if init system is sysvinit
149 """
150 _stdin, _stdout, _stderr = self.ssh_connection.exec_command(self.check_init_system("sysvinit"))
151 out = _stdout.readlines()
152 if len(out) > 0 and out[0].strip() == "1":
153 return "sysvinit"
154
155 # Step 4 − Verifies that the init system is one of the supported ones (step2 returns a valid value)
156 def verify_init_system(self, init_system):
157 assert init_system in ("sysvinit", "systemd", "upstart",)
158 return init_system
159
160 def check_ntp_enabled(self, init_system):
161 self.has_ntp = False
162 if self.check_ntp:
163 self.has_ntp = self.check_service(self.ssh_connection, init_system, "ntp")
164 return init_system
165
166 def check_chrony_enabled(self, init_system):
167 self.has_chrony = False
168 if self.check_chrony:
169 self.has_chrony = self.check_service(self.ssh_connection, init_system, "chrony")
170
171 def assert_ntp_or_chrony(self, inputs):
172 assert self.has_chrony ^ self.has_ntp
173 return True
174
175 # Step 5 − Checks that at least one timesync service is enabled
176
177 def check_timesync_enabled(self, init_system):
178 self.check_ntp_enabled(init_system)
179 self.check_chrony_enabled(init_system)
180 return self.assert_ntp_or_chrony(None)
181
182

D.2 Do Not Use or Set Guest Customization Passwords for the User Profile 171

183 def check_ntp_config(self, inputs):
184 if self.has_ntp:
185 ntp_settings_ti = self.testinstances.get("check_timesync_config", None)
186 if ntp_settings_ti is not None:
187 config_file = ntp_settings_ti.get("ntp_config_file", None)
188 servers = self.retrieve_time_servers(self.ssh_connection, daemon="ntp", config_file=config_file)
189 print(servers)
190 return inputs and len(set(servers) & set(self.expected_servers_list)) == len(set(servers))
191
192 return inputs
193
194 def check_chrony_config(self, inputs):
195 if self.has_chrony:
196 chrony_settings_ti = self.testinstances.get("check_timesync_config", None)
197 if chrony_settings_ti is not None:
198 config_file = chrony_settings_ti.get("chrony_config_file", None)
199 servers = self.retrieve_time_servers(self.ssh_connection , daemon="chrony", config_file=config_file

)
200 return inputs and len(set(servers) & set(self.expected_servers_list)) == len(set(servers))
201 return inputs
202
203 # Step 6 − Checks configurations for timesync services and compares the list with the provided one
204 def check_timesync_config(self, inputs):
205 ntp_config = self.check_ntp_config(inputs)
206 return self.check_chrony_config(ntp_config)
207
208 # Step 7 − Closes connection
209 def close_ssh_connection(self, inputs):
210 try:
211 self.ssh_connection.close()
212 except:
213 pass
214 return inputs
215
216
217 def appendAtomics(self):
218 self.appendAtomic(self.preconditions, lambda:None)
219 self.appendAtomic(self.connect_to_server, self.close_ssh_connection)
220 self.appendAtomic(self.identify_init_system, lambda: None)
221 self.appendAtomic(self.verify_init_system, lambda: None)
222 self.appendAtomic(self.check_timesync_enabled, lambda: None)
223 self.appendAtomic(self.check_timesync_config, lambda: None)
224 self.appendAtomic(self.close_ssh_connection, lambda: None)

D.2 Do Not Use or Set Guest Customization Passwords for
the User Profile

Profile: Cloud.
ToE: Openstack Keystone. Keystone is the identity service and manages projects, users

and groups. Control Admin can’t be member of any projects, excepts her owns projects and

172 Probes - OpenStack Scenario

can’t change users passords. Hence, the control is double: i) admin user is only member of a
restricted list of project as specified in a list. The openstack policy doens’t allows to change
user password and that should be changed only through the centralized identity system.

1. openstack_connection [os_username, os_password, os_project_id, os_auth_url, os_user_domain_name]:
using the admin credentials, control connects to OpenStack API

2. checkProject [project_list]: control parses all projects and control admin is member
only of the passed projects.

The Environmental settings

• Control must be executed with access to the internal network

• The paramiko python library to let the control access through ssh.

Schema:

Parameters:

Code:
1
2 from novaclient.client import Client as NovaClient
3 from keystoneauth1.identity import v3 as KeystoneClient
4 from keystoneauth1 import session as KeystoneSession
5 from keystoneclient.v3 import client
6 from driver import Driver
7
8
9

10
11
12
13 class members(Driver):
14 def openstackConfig(self, inputs):
15 self.keystonecl = KeystoneClient.Password(auth_url=self.testinstances["openstackConfig"]["

OS_AUTH_URL"],
16 username=self.testinstances["openstackConfig"]["OS_USERNAME"],
17 password=self.testinstances["openstackConfig"]["OS_PASSWORD"],
18 project_id=self.testinstances["openstackConfig"]["OS_PROJECT_ID"],
19 user_domain_name=self.testinstances["openstackConfig"]["OS_USER_DOMAIN_NAME

"])
20 sess = KeystoneSession.Session(auth=self.keystonecl)
21 keystone = client.Client(session=sess)
22 return keystone
23
24 def checkProject(self,keystone):

D.2 Do Not Use or Set Guest Customization Passwords for the User Profile 173

25 elem=self.testinstances["checkProject"]
26 members=elem.get("members")
27 project=elem.get("project")
28 users=keystone.users.list(default_project=project)
29 m=0
30 for u in users:
31 projects = keystone.projects.list(user=u.id)
32 for p in projects:
33 if p.name == project:
34 if not u.id in members:
35 return False
36 else:
37 m=m+1
38 if m == len(members):
39 return True
40 else:
41 return False
42
43
44 def appendAtomics(self):
45 self.appendAtomic(self.openstackConfig, lambda:None)
46 self.appendAtomic(self.checkProject,lambda:None)

The execution flow of control ii) consists of two sequen- tial operations with the relative
Parameters as follows.

1. connect_to_server [username, password, private_key, private_key_passphrase, host-
name, port]: control accesses through ssh the Keystone nodes.

2. retrieve_policy_file[path]:controls reads and parses the policy file.

3. inspect_policy_file [key, expected_value]: control checks that identity:change_password
action is disabled.

The Environmental settings are the following:

• Control must be executed with access to the internal network.

• The paramiko python library to let the control access through ssh.

Schema:
{

"connect_to_server":{
"type":"object",
"title": "Server connection",
"properties":{

"hostname":{
"type":"string",
"title":"Target hostname"

174 Probes - OpenStack Scenario

},
"port":{

"type":"number",
"title":"Target port"

},
"username":{

"type":"string",
"title":"Username for SSH connection"

},
"password":{

"type":"string",
"title":"Password for SSH connection"

},
"private_key":{

"type":"string",
"title":"Private RSA key for SSH connection"

},
"private_key_passphrase":{

"type":"string",
"title":"Private RSA key passphrase"

}
}

},
"retrieve_policy_file":{

"type":"object",
"title": "Policy file",
"properties":{

"path": {
"type": "string",
"title": "File path"

}
}

},
"inspect_policy_file":{

"type":"object",
"title": "Inspection",
"properties":{

"key": {
"type": "string",
"title": "Policy name"

},
"expected_value": {

"type":"",
"title": "Expected value"

}
}

}
}

Parameter:
{

"connect_to_server": {
"username": "root",

D.2 Do Not Use or Set Guest Customization Passwords for the User Profile 175

"password": "password",
"hostname": "127.0.0.1",
"port": 22

},
"retrieve_policy_file": {

"path": "/etc/keystone/policy.json"
},
"inspect_policy_file": {

"key": "identity:change_password",
"expected_value": "!"

}
}

Code:
1 import paramiko
2 import StringIO
3 from driver import Driver
4 import json
5
6 class SSHClient(object):
7 def ssh_connect(self, hostname, port, username, password=None, private_key=None,

private_key_passphrase=None):
8 ssh_client = paramiko.SSHClient()
9 ssh_client.set_missing_host_key_policy(paramiko.AutoAddPolicy())

10 if private_key:
11 private_key = paramiko.RSAKey.from_private_key(private_key, password=private_key_passphrase)
12 ssh_client.connect(hostname, port, username=username, password=password, pkey=private_key)
13 return ssh_client
14
15
16 class OpenstackPolicyControl(Driver,
17 SSHClient):
18
19 policy_file = None
20 policy_key = None
21 policy_expected_value = None
22
23 # Step 1 − Check prerequisites
24 def prerequisites(self, inputs):
25 retrieve_policy_configuration_ti = self.testinstances.get("retrieve_policy_file", None)
26 if retrieve_policy_configuration_ti is not None:
27 self.policy_file = retrieve_policy_configuration_ti.get("path", None)
28
29 expected_ti = self.testinstances.get("inspect_policy_file", None)
30 if expected_ti is not None:
31 self.policy_key = expected_ti.get("key", None)
32 self.policy_expected_value = expected_ti.get("expected_value", None)
33
34 assert self.policy_file is not None and self.policy_key is not None
35 return True
36
37 # Step 2 − Connects to the remote server
38 def connect_to_server(self, inputs):

176 Probes - OpenStack Scenario

39 assert inputs is True
40 ssh_connection_ti = self.testinstances.get("connect_to_server", None)
41
42 assert not ssh_connection_ti is None
43
44 hostname = ssh_connection_ti.get("hostname")
45 port = ssh_connection_ti.get("port")
46 username = ssh_connection_ti.get("username")
47 password = ssh_connection_ti.get("password", None)
48 private_key = ssh_connection_ti.get("private_key", None)
49 if private_key is not None:
50 private_key = StringIO.StringIO(private_key)
51 private_key_passphrase = ssh_connection_ti.get("private_key_passphrase", None)
52
53 assert not password is None or not private_key is None
54
55
56 self.ssh_connection = self.ssh_connect(
57 hostname=hostname,
58 username=username,
59 port=port,
60 password=password,
61 private_key=private_key,
62 private_key_passphrase=private_key_passphrase
63)
64 return True
65
66 # Retrieves keystone configuration from remote server (OpenStack controller)
67 def retrieve_policy_file(self, inputs):
68 assert self.policy_file is not None
69 _stdin, _stdout, _stderr = self.ssh_connection.exec_command("cat %s" % self.policy_file)
70 lines = _stdout.readlines()
71 return lines
72
73 def inspect_policy_file(self, lines):
74 policies = ’\n’.join(lines)
75 parsed_policies = json.loads(policies)
76 return parsed_policies.get(self.policy_key) == self.policy_expected_value
77
78 def close_ssh_connection(self, inputs):
79 try:
80 self.ssh_connection.close()
81 except:
82 pass
83 return inputs
84
85
86 def appendAtomics(self):
87 self.appendAtomic(self.prerequisites, lambda: None)
88 self.appendAtomic(self.connect_to_server, self.close_ssh_connection)
89 self.appendAtomic(self.retrieve_policy_file, lambda: None)
90 self.appendAtomic(self.inspect_policy_file, lambda: None)
91 self.appendAtomic(self.close_ssh_connection, lambda: None)

D.3 Evaluate Cloud Architecture Dependencies 177

D.3 Evaluate Cloud Architecture Dependencies

Profile: User.
ToE: Nova computing and user VMs Control User can mitigate the dependencies from

single point of failure of a cloud by deploying her VMs in different availability zone; hence,
the control checks that a set of VM are at least deployed in two different availability zone.

The execution flow of the first Controls C1 consists of three sequential operations with
the relative Parameters as follows.

1. openstack-connection [user credentials]: using user credentials to access OpenStack API

2. retrieve-zone []: control retrieves all availability zones in OpenStack.

3. check-deployment[vm-list]:controlchecksthatatleast one VM from vm-list is deployed in
a different availability zone.

The Environmental settings

• Control must be executed with access to the public OpenStack API.

• The OpenStack client SDK to be able to communicate with its API.

Schema:
{

"connect_to_server":{
"type":"object",
"title": "Server connection",
"properties":{

"hostname":{
"type":"string",
"title":"Target hostname"

},
"port":{

"type":"number",
"title":"Target port"

},
"username":{

"type":"string",
"title":"Username for SSH connection"

},
"password":{

"type":"string",
"title":"Password for SSH connection"

},
"private_key":{

"type":"string",
"title":"Private RSA key for SSH connection"

},
"private_key_passphrase":{

"type":"string",

178 Probes - OpenStack Scenario

"title":"Private RSA key passphrase"
}

}
},
"retrieve_services_configurations":{

"type":"object",
"title": "Services configuration",
"properties":{

"nova_config_file": {
"type": "string",
"title": "Nova configuration file path"

},
"cinder_config_file": {

"type":"string",
"title":"Cinder configuration file path"

}
}

}
}

Parameters:
{

"connect_to_server": {
"username": "root",
"password": "password",
"hostname": "127.0.0.1",
"port": 22

},
"retrieve_services_configurations": {

"nova_config_file": null,
"cinder_config_file": null

}
}

Code:
1 import paramiko
2 import re
3 import StringIO
4 from driver import Driver
5 from oslo_config import cfg
6
7 class SSHClient(object):
8 def ssh_connect(self, hostname, port, username, password=None, private_key=None,

private_key_passphrase=None):
9 ssh_client = paramiko.SSHClient()

10 ssh_client.set_missing_host_key_policy(paramiko.AutoAddPolicy())
11 if private_key:
12 private_key = paramiko.RSAKey.from_private_key(private_key, password=private_key_passphrase)
13 ssh_client.connect(hostname, port, username=username, password=password, pkey=private_key)
14 return ssh_client
15

D.3 Evaluate Cloud Architecture Dependencies 179

16 class MyConfigParser(cfg.ConfigParser):
17 def __init__(self, filename, ldap_config):
18 super(cfg.ConfigParser, self).__init__()
19 self.sections = {}
20 self._normalized = None
21 self.section = None
22 self.ldap_config = ldap_config
23 self.filename = filename
24
25 def parse(self):
26 return super(cfg.ConfigParser, self).parse(self.ldap_config)
27
28 class CinderNovaEncryptedFixedKey(Driver,
29 SSHClient):
30
31 keystone_config_file = None
32 # Step 1 − Check prerequisites
33 def prerequisites(self, inputs):
34 self.nova_config_file = "/etc/nova/nova.conf"
35 self.cinder_config_file = "/etc/cinder/cinder.conf"
36
37 retrieve_services_configurations_ti = self.testinstances.get("retrieve_services_configurations", None)
38
39 if retrieve_services_configurations_ti is not None:
40 self.nova_config_file = retrieve_nova_configuration_ti.get("nova_config_path", self.nova_config_file)
41 self.cinder_config_file = retrieve_cinder_configuration_ti.get("cinder_config_path", self.

cinder_config_file)
42
43 return True
44
45 # Step 2 − Connects to the remote server
46 def connect_to_server(self, inputs):
47 assert inputs is True
48 ssh_connection_ti = self.testinstances.get("connect_to_server", None)
49
50 assert not ssh_connection_ti is None
51
52 hostname = ssh_connection_ti.get("hostname")
53 port = ssh_connection_ti.get("port")
54 username = ssh_connection_ti.get("username")
55 password = ssh_connection_ti.get("password", None)
56 private_key = ssh_connection_ti.get("private_key", None)
57 if private_key is not None:
58 private_key = StringIO.StringIO(private_key)
59 private_key_passphrase = ssh_connection_ti.get("private_key_passphrase", None)
60
61 assert not password is None or not private_key is None
62
63
64 self.ssh_connection = self.ssh_connect(
65 hostname=hostname,
66 username=username,
67 port=port,
68 password=password,
69 private_key=private_key,

180 Probes - OpenStack Scenario

70 private_key_passphrase=private_key_passphrase
71)
72 return True
73
74 # Retrieves nova configuration from remote server (OpenStack controller)
75 def retrieve_nova_configuration(self):
76 assert self.nova_config_file is not None
77 _stdin, _stdout, _stderr = self.ssh_connection.exec_command("cat %s" % self.nova_config_file)
78 lines = _stdout.readlines()
79 return lines
80
81 # Retrieves cinder configuration from remote server (OpenStack controller)
82 def retrieve_cinder_configuration(self):
83 assert self.cinder_config_file is not None
84 _stdin, _stdout, _stderr = self.ssh_connection.exec_command("cat %s" % self.cinder_config_file)
85 lines = _stdout.readlines()
86 return lines
87
88 def retrieve_services_configurations(self, inputs):
89 return self.retrieve_nova_configuration(), self.retrieve_cinder_configuration()
90
91 def check_strength(self, passphrase):
92 classes = {}
93 classes["alphabetic_class"] = "[A−z]"
94 classes["numeric_class"] = "[0−9]"
95 classes["symbol_class "]= "[!@#$%^&∗()_\+\|\~\−=‘\\\\{\}\[\]:\";’<>?,./]"
96 count = 0
97 for single_class in classes:
98 if re.search(classes[single_class], passphrase) is not None:
99 count += 1

100 return len(passphrase) >= 9 and count >= 2
101
102 def check_fixed_key_nova(self, nova_config):
103 mcp = MyConfigParser(self.nova_config_file, nova_config)
104 mcp.parse()
105 section = mcp.sections.get("key_manager", mcp.sections.get("keymgr", None))
106 assert section is not None
107 fixed_key = section.get("fixed_key")[0]
108 assert fixed_key is not None
109 return self.check_strength(fixed_key)
110
111 def check_fixed_key_cinder(self, cinder_config):
112 mcp = MyConfigParser(self.cinder_config_file, cinder_config)
113 mcp.parse()
114 section = mcp.sections.get("key_manager", mcp.sections.get("keymgr", None))
115 assert section is not None
116 fixed_key = section.get("fixed_key")[0]
117 assert fixed_key is not None
118 return self.check_strength(fixed_key)
119
120 def check_fixed_keys(self, inputs):
121 nova_config, cinder_config = inputs
122 return self.check_fixed_key_cinder(cinder_config) and self.check_fixed_key_nova(nova_config)
123
124 def close_ssh_connection(self, inputs):

D.4 nova-cinder-encryption-fixed-key 181

125 try:
126 self.ssh_connection.close()
127 except:
128 pass
129 return inputs
130
131
132 def appendAtomics(self):
133 self.appendAtomic(self.prerequisites, lambda: None)
134 self.appendAtomic(self.connect_to_server, self.close_ssh_connection)
135 self.appendAtomic(self.retrieve_services_configurations, lambda:None)
136 self.appendAtomic(self.check_fixed_keys, lambda: None)
137 self.appendAtomic(self.close_ssh_connection, lambda: None)

D.4 nova-cinder-encryption-fixed-key

Profile: Cloud.
ToE:

1. uno

The Environmental settings

• uno

Schema:
{

"connect_to_server":{
"type":"object",
"title": "Server connection",
"properties":{

"hostname":{
"type":"string",
"title":"Target hostname"

},
"port":{

"type":"number",
"title":"Target port"

},
"username":{

"type":"string",
"title":"Username for SSH connection"

},
"password":{

"type":"string",
"title":"Password for SSH connection"

},
"private_key":{

"type":"string",

182 Probes - OpenStack Scenario

"title":"Private RSA key for SSH connection"
},
"private_key_passphrase":{

"type":"string",
"title":"Private RSA key passphrase"

}
}

},
"retrieve_services_configurations":{

"type":"object",
"title": "Services configuration",
"properties":{

"nova_config_file": {
"type": "string",
"title": "Nova configuration file path"

},
"cinder_config_file": {

"type":"string",
"title":"Cinder configuration file path"

}
}

}
}

Parameters:
{

"connect_to_server": {
"username": "root",
"password": "password",
"hostname": "127.0.0.1",
"port": 22
},
"retrieve_services_configurations": {

"nova_config_file": null,
"cinder_config_file": null

}
}

Code:
1 import paramiko
2 import re
3 import StringIO
4 from driver import Driver
5 from oslo_config import cfg
6
7 class SSHClient(object):
8 def ssh_connect(self, hostname, port, username, password=None, private_key=None,

private_key_passphrase=None):
9 ssh_client = paramiko.SSHClient()

10 ssh_client.set_missing_host_key_policy(paramiko.AutoAddPolicy())
11 if private_key:

D.4 nova-cinder-encryption-fixed-key 183

12 private_key = paramiko.RSAKey.from_private_key(private_key, password=private_key_passphrase)
13 ssh_client.connect(hostname, port, username=username, password=password, pkey=private_key)
14 return ssh_client
15
16 class MyConfigParser(cfg.ConfigParser):
17 def __init__(self, filename, ldap_config):
18 super(cfg.ConfigParser, self).__init__()
19 self.sections = {}
20 self._normalized = None
21 self.section = None
22 self.ldap_config = ldap_config
23 self.filename = filename
24
25 def parse(self):
26 return super(cfg.ConfigParser, self).parse(self.ldap_config)
27
28 class CinderNovaEncryptedFixedKey(Driver,
29 SSHClient):
30
31 keystone_config_file = None
32 # Step 1 − Check prerequisites
33 def prerequisites(self, inputs):
34 self.nova_config_file = "/etc/nova/nova.conf"
35 self.cinder_config_file = "/etc/cinder/cinder.conf"
36
37 retrieve_services_configurations_ti = self.testinstances.get("retrieve_services_configurations", None)
38
39 if retrieve_services_configurations_ti is not None:
40 self.nova_config_file = retrieve_nova_configuration_ti.get("nova_config_path", self.nova_config_file)
41 self.cinder_config_file = retrieve_cinder_configuration_ti.get("cinder_config_path", self.

cinder_config_file)
42
43 return True
44
45 # Step 2 − Connects to the remote server
46 def connect_to_server(self, inputs):
47 assert inputs is True
48 ssh_connection_ti = self.testinstances.get("connect_to_server", None)
49
50 assert not ssh_connection_ti is None
51
52 hostname = ssh_connection_ti.get("hostname")
53 port = ssh_connection_ti.get("port")
54 username = ssh_connection_ti.get("username")
55 password = ssh_connection_ti.get("password", None)
56 private_key = ssh_connection_ti.get("private_key", None)
57 if private_key is not None:
58 private_key = StringIO.StringIO(private_key)
59 private_key_passphrase = ssh_connection_ti.get("private_key_passphrase", None)
60
61 assert not password is None or not private_key is None
62
63
64 self.ssh_connection = self.ssh_connect(
65 hostname=hostname,

184 Probes - OpenStack Scenario

66 username=username,
67 port=port,
68 password=password,
69 private_key=private_key,
70 private_key_passphrase=private_key_passphrase
71)
72 return True
73
74 # Retrieves nova configuration from remote server (OpenStack controller)
75 def retrieve_nova_configuration(self):
76 assert self.nova_config_file is not None
77 _stdin, _stdout, _stderr = self.ssh_connection.exec_command("cat %s" % self.nova_config_file)
78 lines = _stdout.readlines()
79 return lines
80
81 # Retrieves cinder configuration from remote server (OpenStack controller)
82 def retrieve_cinder_configuration(self):
83 assert self.cinder_config_file is not None
84 _stdin, _stdout, _stderr = self.ssh_connection.exec_command("cat %s" % self.cinder_config_file)
85 lines = _stdout.readlines()
86 return lines
87
88 def retrieve_services_configurations(self, inputs):
89 return self.retrieve_nova_configuration(), self.retrieve_cinder_configuration()
90
91 def check_strength(self, passphrase):
92 classes = {}
93 classes["alphabetic_class"] = "[A−z]"
94 classes["numeric_class"] = "[0−9]"
95 classes["symbol_class "]= "[!@#$%^&∗()_\+\|\~\−=‘\\\\{\}\[\]:\";’<>?,./]"
96 count = 0
97 for single_class in classes:
98 if re.search(classes[single_class], passphrase) is not None:
99 count += 1

100 return len(passphrase) >= 9 and count >= 2
101
102 def check_fixed_key_nova(self, nova_config):
103 mcp = MyConfigParser(self.nova_config_file, nova_config)
104 mcp.parse()
105 section = mcp.sections.get("key_manager", mcp.sections.get("keymgr", None))
106 assert section is not None
107 fixed_key = section.get("fixed_key")[0]
108 assert fixed_key is not None
109 return self.check_strength(fixed_key)
110
111 def check_fixed_key_cinder(self, cinder_config):
112 mcp = MyConfigParser(self.cinder_config_file, cinder_config)
113 mcp.parse()
114 section = mcp.sections.get("key_manager", mcp.sections.get("keymgr", None))
115 assert section is not None
116 fixed_key = section.get("fixed_key")[0]
117 assert fixed_key is not None
118 return self.check_strength(fixed_key)
119
120 def check_fixed_keys(self, inputs):

D.5 Central Directory for Authentication and Authorization for the cloud profile 185

121 nova_config, cinder_config = inputs
122 return self.check_fixed_key_cinder(cinder_config) and self.check_fixed_key_nova(nova_config)
123
124 def close_ssh_connection(self, inputs):
125 try:
126 self.ssh_connection.close()
127 except:
128 pass
129 return inputs
130
131
132 def appendAtomics(self):
133 self.appendAtomic(self.prerequisites, lambda: None)
134 self.appendAtomic(self.connect_to_server, self.close_ssh_connection)
135 self.appendAtomic(self.retrieve_services_configurations, lambda:None)
136 self.appendAtomic(self.check_fixed_keys, lambda: None)
137 self.appendAtomic(self.close_ssh_connection, lambda: None)

D.5 Central Directory for Authentication and Authorization
for the cloud profile

Profile: Cloud
ToE: OpenStack Keystone. We note that Keystone offers the possibility to be integrated
with an external identity access management. Control: The control verify that Keystone
is configured to use the company internal LDAP. The Keystone configuration is defined in
every node where keystone is running. Keystone nodes can be retrieved by OpenStack API
or specifying manually their IP addresses. The control needs to access to all nodes running
Keystone and control that the key- stone.configuration contains all necessary key-value to be
connected to the internal authentication system.

1. connect_to_server [username, password, private_key, private_key_passphrase, host-
name, port]: connect ssh to the Keystone nodes.

2. retrieve_keystone_configuration [keystone_config_file(optional)]: read from the Key-
stone conifig placed in /etc/keystone/keystone.conf if keystone_config_file is not
passed.

3. textitcheck_ldap [ldap_url]: the control check the the ldap driver is enabled and check
the the required ldap is configured correctly

The Environmental settings

• The control must be executed with access to the internal network.

186 Probes - OpenStack Scenario

• The OpenStack python configuration library to be able to parse OpenStack configura-
tions.

• The paramiko python library to let the control access through ssh.

Schema:
{

"connect_to_server":{
"type":"object",
"title": "Server connection",
"properties":{

"hostname":{
"type":"string",
"title":"Target hostname"

},
"port":{

"type":"number",
"title":"Target port"

},
"username":{

"type":"string",
"title":"Username for SSH connection"

},
"password":{

"type":"string",
"title":"Password for SSH connection"

},
"private_key":{

"type":"string",
"title":"Private RSA key for SSH connection"

},
"private_key_passphrase":{

"type":"string",
"title":"Private RSA key passphrase"

}
}

},
"retrieve_keystone_configuration":{

"type":"object",
"title": "Keystone configuration",
"properties":{

"keystone_config_file": {
"type": "string",
"title": "Configuration file path"

}
}

},
"check_ldap":{

"type":"object",
"title": "LDAP settings",
"properties":{

"ldap_url": {
"type": "string",
"title": "LDAP URL"

D.5 Central Directory for Authentication and Authorization for the cloud profile 187

}
}

}
}

Parameters:
1 {
2 "connect_to_server": {
3 "username": "root",
4 "password": "password",
5 "hostname": "127.0.0.1",
6 "port": 22
7 },
8 "retrieve_keystone_configuration": {
9 "keystone_config_file": null

10 },
11 "check_ldap": {
12 "ldap_url": "ldap://"
13 }
14 }

Code:
1 import paramiko
2 import StringIO
3 from driver import Driver
4 from oslo_config import cfg
5
6 class SSHClient(object):
7 def ssh_connect(self, hostname, port, username, password=None, private_key=None,

private_key_passphrase=None):
8 ssh_client = paramiko.SSHClient()
9 ssh_client.set_missing_host_key_policy(paramiko.AutoAddPolicy())

10 if private_key:
11 private_key = paramiko.RSAKey.from_private_key(private_key, password=private_key_passphrase)
12 ssh_client.connect(hostname, port, username=username, password=password, pkey=private_key)
13 return ssh_client
14
15
16 class KeystoneLdapControl(Driver,
17 SSHClient):
18
19 keystone_config_file = None
20 # Step 1 − Check prerequisites
21 def prerequisites(self, inputs):
22 self.keystone_config_file = "/etc/keystone/keystone.conf"
23 retrieve_keystone_configuration_ti = self.testinstances.get("retrieve_keystone_configuration", None)
24 if retrieve_keystone_configuration_ti is not None:
25 self.keystone_config_file = retrieve_keystone_configuration_ti.get("keystone_config_path", self.

keystone_config_file)

188 Probes - OpenStack Scenario

26 check_ldap_ti = self.testinstances.get("check_ldap")
27 assert check_ldap_ti is not None
28 self.ldap_url = check_ldap_ti.get("ldap_url")
29 assert self.ldap_url is not None
30 return True
31
32 # Step 2 − Connects to the remote server
33 def connect_to_server(self, inputs):
34 assert inputs is True
35 ssh_connection_ti = self.testinstances.get("connect_to_server", None)
36
37 assert not ssh_connection_ti is None
38
39 hostname = ssh_connection_ti.get("hostname")
40 port = ssh_connection_ti.get("port")
41 username = ssh_connection_ti.get("username")
42 password = ssh_connection_ti.get("password", None)
43 private_key = ssh_connection_ti.get("private_key", None)
44 if private_key is not None:
45 private_key = StringIO.StringIO(private_key)
46 private_key_passphrase = ssh_connection_ti.get("private_key_passphrase", None)
47
48 assert not password is None or not private_key is None
49
50
51 self.ssh_connection = self.ssh_connect(
52 hostname=hostname,
53 username=username,
54 port=port,
55 password=password,
56 private_key=private_key,
57 private_key_passphrase=private_key_passphrase
58)
59 return True
60
61 # Retrieves keystone configuration from remote server (OpenStack controller)
62 def retrieve_keystone_configuration(self, inputs):
63 assert self.keystone_config_file is not None
64 _stdin, _stdout, _stderr = self.ssh_connection.exec_command("cat %s" % self.keystone_config_file)
65 lines = _stdout.readlines()
66 return lines
67
68 # Checks the identity driver specified to be ldap, and that the url of ldap
69 # in the [ldap] section is the one specified in the control input
70 # More checks can be added such as ldap query string
71 def check_ldap(self, ldap_config):
72 class MyConfigParser(cfg.ConfigParser):
73 def __init__(self, filename, ldap_config):
74 super(cfg.ConfigParser, self).__init__()
75 self.sections = {}
76 self._normalized = None
77 self.section = None
78 self.ldap_config = ldap_config
79 self.filename = filename
80

D.5 Central Directory for Authentication and Authorization for the cloud profile 189

81 def parse(self):
82 return super(cfg.ConfigParser, self).parse(self.ldap_config)
83
84 mcp = MyConfigParser(self.keystone_config_file, ldap_config)
85 mcp.parse()
86 assert mcp.sections.get("identity", None) is not None
87 assert mcp.sections.get("ldap", None) is not None
88 return mcp.sections.get("identity").get("driver") == "ldap" and mcp.sections.get("ldap").get("url") == self.

ldap_url
89
90 def close_ssh_connection(self, inputs):
91 try:
92 self.ssh_connection.close()
93 except:
94 pass
95 return inputs
96
97
98 def appendAtomics(self):
99 self.appendAtomic(self.prerequisites, lambda: None)

100 self.appendAtomic(self.connect_to_server, self.close_ssh_connection)
101 self.appendAtomic(self.retrieve_keystone_configuration, lambda: None)
102 self.appendAtomic(self.check_ldap, lambda: None)
103 self.appendAtomic(self.close_ssh_connection, lambda: None)

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Motivation
	1.2 Contribution of the thesis
	1.2.1 Certification Scheme and Process for the Cloud
	1.2.2 Certification of Cloud Composite Services
	1.2.3 Cost-Effective Deployment of Cloud Service Composition
	1.2.4 Assurance Framework for Cloud Services

	1.3 Organization of the thesis

	2 Related works
	2.1 Cloud Assurance and Certification
	2.1.1 Cloud Certification
	2.1.2 Cloud Security Standards

	2.2 Cloud Security
	2.3 Contribution to the State of the Art
	2.4 Chapter Summary

	3 Cloud Service Certification: Process and Models
	3.1 Basic Concepts
	3.1.1 Actors
	3.1.2 Requirements
	3.1.3 Terminology

	3.2 Certification Building Blocks
	3.3 Certification Models and Process
	3.3.1 Certification Model Template
	3.3.2 Certification Model Instance
	3.3.3 Certificate
	3.3.4 Certification Process

	3.4 Model Consistency Check
	3.4.1 Property and ToC verification
	3.4.2 Evidence collection model verification
	3.4.3 Evidence verification
	3.4.4 Life Cycle verification
	3.4.5 Full Model Consistency Check

	3.5 Certificate Life Cycle Management
	3.5.1 Certificate Issuing
	3.5.2 Certificate Adaptation
	3.5.3 CM Template Adaptation
	3.5.4 Certificate Comparison

	3.6 Chain of Trust
	3.6.1 Chain of Trust and Life Cycle Management

	3.7 Experimental Evaluation
	3.7.1 Consistency Check Algorithms
	3.7.2 Performance Evaluation
	3.7.3 Quality evaluation

	3.8 Chapter Summary

	4 Cloud Service Deployment based on non-functional properties
	4.1 Reference Model and Requirement
	4.2 Certification of Cloud Composite Services
	4.2.1 Certification Model Template and Instance
	4.2.2 Certification Portability
	4.2.3 Deployment Composition Matrix

	4.3 Cloud Service Provider Costs
	4.3.1 Deployment Costs
	4.3.2 Certification Costs
	4.3.3 Mismatch Costs
	4.3.4 Cost Profile

	4.4 Deployment Approaches
	4.4.1 Fuzzyfication
	4.4.2 Heuristics

	4.5 Experimental Evaluation
	4.5.1 Experimental Setup
	4.5.2 Performance evaluation
	4.5.3 Cost and Utility Evaluation
	4.5.4 Discussion

	4.6 Chapter Summary

	5 Cloud Service Assurance Framework
	5.1 Requirements
	5.2 Architecture
	5.2.1 Certification Manager
	5.2.2 Execution Manager
	5.2.3 Big Data Platform
	5.2.4 Probe

	5.3 Execution Flow
	5.4 Moon Cloud
	5.4.1 Mapping to Requirements
	5.4.2 Moon Cloud Architecture
	5.4.3 Implementation Notes

	5.5 Chapter Summary

	6 Application Scenarios
	6.1 How to evaluate an IaaS Manager: OpenStack
	6.1.1 OpenStack
	6.1.2 Security Benchmark
	6.1.3 Security Controls

	6.2 How to evaluate a Web Hosting Service: AgID compliance
	6.2.1 The scenario
	6.2.2 AgID
	6.2.3 Security Controls
	6.2.4 Security Controls

	6.3 Chapter Summary

	7 Conclusion
	7.1 Summary of the contributions
	7.2 Future works

	References
	Appendix A Publication
	Appendix B Model Consistency Check
	B.1 Examples
	B.1.1 Example 3.3.1
	B.1.2 Example 3.3.2

	B.2 Code
	B.3 Heuristics
	B.3.1 Heuristic 1
	B.3.2 Heuristic 2

	Appendix C Composition Cloud Experimental Results
	C.1 Fitting Profile
	C.2 Sharing Profile

	Appendix D Probes - OpenStack Scenario
	D.1 Maintain Time Synchronization Services
	D.2 Do Not Use or Set Guest Customization Passwords for the User Profile
	D.3 Evaluate Cloud Architecture Dependencies
	D.4 nova-cinder-encryption-fixed-key
	D.5 Central Directory for Authentication and Authorization for the cloud profile

