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The long pentraxin 3 plays a key role in the immunomodulation of diet-

induced obesity  

AIM: Obesity is characterized by a state of chronic low-grade inflammation. 

PTX3 is the prototype of long pentraxins, it is an essential component of the 

humoral arm of innate immunity and is involved in many inflammatory 

processes. There are several conflicting data about the role of PTX3 in obesity. 

Aim of this project was to clarify whether PTX3 behaves as a bystander or 

actively participates to obesity-related inflammation. 

METHODS: PTX3 KO and WT littermates were fed a high fat diet (HFD; 45% 

Kcal from fat) or a standard fata diet (SFD;10% Kcal from fat) for 20 weeks. 

Body weight was measured weekly; fat distribution (magnetic resonance for 

imaging, MRI) and glycemia (glucose-GTT and insulin-ITT tolerance tests) was 

checked at 10 and 20 weeks. Immunophenotyping and gene expression, in 

particular of the adipose tissue, was performed at 20 weeks. Ectopic fat 

deposition in h1/h1 and h2/h2 individuals was determined by DEXA. 

RESULTS: PTX3 KO mice on HFD exhibit a decreased weight gain compared 

to WT (AUC weight gain WT=190.8±17.45, KO=134.8±10.09), coupled to a 

decreased accumulation of visceral (VAT) and subcutaneous (SCAT) fat both at 

10 (p<0.05) and 20 weeks (p<0.01) of diet measured by MRI and confirmed 

weighing the tissues after the sacrifice (VAT% WT=7.609±0.6776, 

KO=4.390±0.8235; SCAT% WT=5.953±0.9682, KO=3.144±0.6129, p<0.05). Basal 

glycemia and the results of the glucose and insulin tolerance test were 

superimposable. PTX3 deficiency results in the reduction of monocytes markers 

and pro-inflammatory cytokines gene expression in VAT (MCP-1, IL-6, p<0.05) 

which is associated to a reduced infiltration of monocytes and macrophages in 

the tissue as assessed by cell sorting. Of note vascularization was enhanced 

(increased gene expression of Cd31 and Vegfa in VAT, p<0.05) in VAT from 

PTX3 KO mice. Sorted VAT macrophages showed enhanced expression of 



 

3 
 

molecules associated with M2-polarization (Arg1, Ym-1, p<0.01). In humans, 

carriers of the h2/h2 haplotype for PTX3, characterized by lower PTX3 plasma 

levels compared to h1/h1 carriers, presented with lower BMI and lower 

abdominal obesity compare to h1/h1 carriers (android fat% h2/h2=45.34±10.32, 

h1/h1=47.17±9.23, p<0.05).  

CONCLUSIONS: Our results demonstrate that PTX3 might contribute to the 

development of obesity by limiting adipose tissue vascularization and 

promoting macrophage infiltration.  
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La lunga pentraxina 3 gioca un ruolo chiave nella modulazione della risposta 

immuno-infiammatoria associata all’obesità  

SCOPO: L’obesità è caratterizzata da uno stato di infiammazione cronica. 

PTX3, il prototipo delle pentraxine lunghe, è una componente essenziale del 

braccio umorale dell’immunità innata ed è coinvolta in diversi processi 

infiammatori. Il ruolo di PTX3 nell’obesità è dibattuto. Scopo di questo progetto 

è stato quello di chiarire quale sia il ruolo di PTX3 nell’obesità e se contribuisce 

allo sviluppo della patologia. 

METODI: Topi PTX3 KO e WT sono stati messi a dieta ad alto contenuto di 

grassi (High Fat Diet – HFD, 45% delle Kcal derivante dai grassi), o dieta 

standard (Standard Fat Diet-SFD, 10% delle Kcal derivante dai grassi) come 

dieta controllo, per 20 settimane. Il peso degli animali è stato registrato 

settimanalmente. A 10 e 20 settimane di dieta sono stati valutati la distribuzione 

di grasso corporeo (risonanza magnetica), e la risposta glicemica (Test di 

Tolleranza al Glucosio – GTT, Test di Tolleranza all’Insulina – ITT). Al termine 

delle 20 settimane è stata fatta un’analisi immunofenotipica delle cellule 

immunitarie circolanti e tissutali tramite citofluorimetria e una valutazione 

dell’espressione genica nel tessuto adiposo. Il grasso ectopico nei soggetti h1/h1 

e h2/h2 è stato valutato tramite DEXA.  

RISULTATI: I PTX3 KO dopo 20 settimane di dieta HFD hanno guadagnato 

significativamente meno peso rispetto ai topi WT (area sotto la curva del 

guadagno di peso: WT=190.8±17.45, KO=134.8±10.09), ed hanno accumulato 

meno tessuto adiposo a livello viscerale (VAT) e sottocutaneo (SCAT) misurato 

tramite MRI sia a 10 (p<0.05) che a 20 (p<0.01) settimane dall’inizio della dieta e 

confermato al momento del sacrificio (VAT% WT=7.609±0.6776, 

KO=4.390±0.8235; SCAT% WT=5.953±0.9682, KO=3.144±0.6129, p<0.05). Non 

abbiamo riscontrato differenze tra animali PTX3 KO e WT nelle risposte ai test 

di tolleranza al glucosio e all’insulina. La mancanza di PTX3 si è rivelata essere 
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associata a ridotta espressione genica di citochine pro-infiammatorie (MCP-1, 

IL-6, p<0.05) e infiltrazione di monociti e macrofagi nel VAT valutato tramite 

cell sorter, mentre la vascolarizzazione del tessuto è risultata essere maggiore 

rispetto ai WT (aumentata espressione di Cd31 e Vegfa, p<0.05 e p<0.01). I 

macrofagi isolati dal VAT dei topi PTX3 KO hanno mostrato un’aumentata 

espressione di marker tipici dei macrofagi M2, più pro-risolutivi (Arg1, Ym-1, 

p<0.01) rispetto a quelli degli animali WT. Studi nell’uomo hanno mostrato 

come individui portatori dell’aplotipo h2/h2 per PTX3, caratterizzati da livelli 

più bassi di PTX3 rispetto ai soggetti dell’aplotipo h1/h1, mostrano un ridotto 

BMI e una ridotta obesità addominale rispetto ai soggetti h1/h1 (% grasso 

androide h2/h2=45.34±10.32, h1/h1=47.17±9.23, p<0.05). 

CONCLUSIONI: I nostri risultati mostrano che PTX3 potrebbe contribuire allo 

sviluppo di obesità limitando la vascolarizzazione del tessuto adiposo e 

promuovendo l’infiltrazione di macrofagi. 
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1. OBESITY 
 

Obesity is one of the most prevalent and common disease worldwide and it is 

become a major concern for public health because of the related comorbidities 

such as diabetes, hypertension, atherosclerosis and some type of cancer. 

Obesity is considered the result of disequilibrium between energy intake and 

expenditure. Different determinants contribute to the onset of obesity: 

behavioural, environmental and genetic factors (Figure 1). Behavioural factors 

comprehend increased calorie intake, physical inactivity and sedentary 

lifestyle, insufficient sleep and smoking cessation. In a study evaluating the 

impact of sleep on the physiopathology of obesity, researchers show that sleep 

deprivation associate with a decrease in leptin levels, with a consequent 

decrease sense of satiety, leading in turn to excessive food intake [1]. 

Environmental factors inducing obesity can be the change of the value that is 

now given to food, is no more something needed for survival, but eating is 

become a pleasure and an entertainment. Furthermore, there is an inverse 

correlation between obesity and socioeconomic status [2]. People with limited 

economic power usually choose junk compared to healthy food. Furthermore 

every culture has their values that influence health behaviour [3]. Biological 

factors are numerous [4]. First, obesity may be caused leading to monogenic, 

polygenic or syndromic (chromosomal abnormalities, e.g. Prader-Willis 

syndrome). Among described mutations are listed those encoding for leptin 

and melanocortin 4 gene. More than 300 genes associated to obesity have been 

identified using genome wide association technics. 

A person is considered obese when its BMI (Body Mass Index), corresponding 

to a person’s weight in kilograms divided by the square of height in meters, is 

higher than 30, with class 1 obesity between 30 and 35, class 2 obesity between 

35 and 40, and class 3 obesity or severe obesity for a BMI over 40.  
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Obesity is characterized by the accumulation of fat that can occur at the visceral 

level, in particular in the abdomen, or subcutaneously. Abdominal obesity is 

identified when waist circumference is > 102 cm in men and > 88 cm in women 

according to the criteria provided by the ATP (Adult Treatment Panel). 

Abdominal obesity is the one driving the progression of multiple 

cardiometabolic risk, as type 2 diabetes, and it can correlate to those risks 

independently from body mass index. Accumulation of fat in the visceral area 

is usually associated with hypertrophy and hyperplasia if adipocytes, 

alterations of the supportive extracellular matrix, infiltration of immune cells, 

in particular monocytes and macrophages, that promote an inflammatory 

milieu. Indeed, obesity is not only defined as an excess or abnormal fat 

accumulation, but also as a disease characterized by chronic low-grade 

inflammation and by positive association with inflammatory circulating 

markers as CRP [5, 6], IL6 [7] and TNFa [8]. Indeed, cytokines are produced by 

hypertrophic adipocytes and contribute to the maintenance of the chronic 

inflammatory circuit that characterizes obesity. Obesity has been related to 

immune dysfunction after the observation of higher rates of infections and 

impaired would healing in obese subjects [9]. 

 

1.1 OBESITY COMORBIDITIES and METABOLIC SYNDROME 

 

Obesity is associated with a persistent state of chronic low-grade inflammation 

that seems to play a pivotal role in the onset of obesity-related pathologies as 

dyslipidemia, hypertension, insulin-resistance, diabetes, cardiovascular 

diseases and chronic stress [10].  

Dyslipidemia is characterized by high levels of triglycerides, high levels of LDL 

small and dense particles and low levels of HDL cholesterol [11]. This condition 

is known as the “atherogenic lipoprotein phenotype” [12]. This phenotype is 
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associated with higher risk of coronary diseases, as angina pectoris, unstable 

angina and myocardial infarction.  

Insulin-resistance is the condition where response to insulin is dampened in 

insulin-sensitive tissues, such as liver, fat and skeletal muscles, thus causing 

hyperglycaemia. Insulin role is to lower glucose blood levels binding its 

receptor on responsive tissues after a meal. During obesity inflammation 

contributes to insulin-resistance in different ways.  TNFα, hypoxia and free 

fatty acids produced during obesity, activates intracellular signalling pathways 

involving IKKβ and JNK1, two serine kinases. The activation of these enzymes 

by TNFα leads to the inhibition of IRS-1 (Insulin Receptor Substrate 1), 

inducing insulin-resistance in adipocytes and hepatocytes [13, 14]. In addition, 

TNFα promotes insulin-resistance through the inhibition of PPARγ [15], a 

transcription factor involved in lipids synthesis and fat storage in adipocytes. 

Insulin-resistance is directly correlated to type 2 diabetes. During insulin-

resistance, pancreatic β cells produce higher amount of insulin in order to 

counteract peripheral insulin intolerance, however, after years, this is not 

sufficient to maintain glucose homeostasis and glucose levels remain high in 

the blood. More than 125 ml/dL at fasting are usually considered markers of 

type 2 diabetes and leads to long-term complications such as diabetic 

retinopathy, stroke and heart disease. The compensatory hyperinsulinemia can 

cause hypertension as in some circumstances insulin leads to an enhanced 

sodium tubular reabsorption, thus resulting in elevated blood pressure [16]. 

Another mechanism by which obesity can determines hypertension is through 

the sympathetic activation by leptin, a hormone produced by the adipocytes. 

Leptin induces the sense of satiety and thermogenesis activating the 

sympathetic nervous system while its inhibition limits hypertension.  

Obesity is the principal risk factor for the development of metabolic syndrome. 

Metabolic syndrome (MetS) is a complex and multifactorial pathology 
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characterized by an interconnection of physiologic, biochemical and metabolic 

factors. In accordance with the National Educational Program’s Adult 

Treatment Panel III report (NCEPT-ATP III) the diagnosis of Mets is attributed 

when three of these criteria occur: abdominal obesity (waist circumference > 

102 cm in men and > 88 cm in women); triglycerides >150 mg/dL; fasting blood 

glucose > 110 mg/dL; HDL cholesterol < 40 mg/dL for men and < 50 mg/dL for 

women; blood pressure > 130/80 mmHg [11]. However, fat accumulation in 

adipose tissue is considered the trigger of an inflammatory response that 

exacerbate the MetS. 

 

1.2 ADIPOSE TISSUE 

 

In mammals there are two principal types of adipose tissue: the white adipose 

tissue (WAT) and the brown adipose tissue (BAT). BAT and WAT are 

characterized by different structures, functions, and regulations. In humans, 

WAT is found in the body in intra-abdominal depots around the omentum, 

intestine, and perirenal area, as well as in subcutaneous depots in the buttocks, 

things, and abdomen, but it can be found also within the bone marrow. Brown 

adipose tissue is more abundant in the neonatal period specifically in the 

interscapular and perirenal regions in rodents, in human can be found also in 

the supraclavicular, chest and abdomen regions. BAT in adulthood is less 

represented [17]. Structurally, white and brown adipose tissue are different. 

White adipose tissue is characterized by unilocular/large lipid droplets and are 

supported by connective tissue with a thick network of capillaries. BAT 

adipocytes contain at the contrary many small lipid droplets and higher 

number of mitochondria because they are required for the regulation of non-

shivering thermogenesis. The non-adipocytic component of WAT is called 

stromo-vascular fraction and includes extracellular matrix, that with its 
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components (e.g. collagen, proteoglycans, fibronectin, osteonectin, 

metalloproteinases) anchor adipocytes to ensure functional and structural 

integrity of the tissue [18]. 

In brown adipose depots thermogenesis is controlled by UCP1, a molecule 

expressed in response to adrenergic signal and located in the inner membrane 

of mitochondria. This signalling through UCP1 causes a proton leak across the 

inner membrane of mitochondria, converting chemical energy into the heat 

[19]. On the contrary, WAT primary function is to store excess energy as TGs to 

regulate energy homeostasis. When liver and muscles need energy, in absence 

of glucose, lipids are moved from adipocytes through lipolysis and released as 

TGs from the adipose tissue [20]. 

Both brown and white adipocytes originate from the mesoderm but white 

adipocytes derive from adipogenic lineage precursor cells that are Myf5-

negative, while brown adipocytes derive from myogenic lineage precursor cells 

Myf5-positive, as Myf5 is a key myogenic regulatory factor [21].  BAT as a 

primary role in protection of the new-born from cold in the first moments of 

life, for this reason BAT develops and differentiates before birth. Instead, WAT 

formation starts early after birth under certain types of stimulation. The 

transition from pre-adipocytes to adipocytes is controlled by a series of 

transcription factors that include the nuclear receptor PPARγ, specific marker 

of adipose tissue and factor necessary for the maintenance of a terminal state of 

differentiation of the adipocytes, and members of the CCAAT-enhancer-

binding protein (C/EBP) family, in particular C/EBP which is fundamental for 

adipogenesis in white adipose tissue [22]. 

There are two main type of white adipose tissue: the visceral (VAT) and the 

subcutaneous (SCAT) adipose tissue. Visceral adipose tissue is localized in the 

abdominal cavity, surrounding intraperitoneal organs and it can be further 
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divided in mesenteric, epididymal and perirenal visceral adipose tissue. 

Subcutaneous adipose tissue is below the skin in the hypoderm. 

 

1.2.1 Adipose tissue inflammation 

 

Obesity is characterized by the progressively expansion of VAT, enlargements 

of adipocytes, increase of the stromovascular components, and by a chronic 

state of low grade inflammation with progressive immune cell infiltration in 

the adipose tissue. Increased adipocytes size during obesity is associated with 

augmented pro-inflammatory cytokines secretion. AT is the primary source of 

many inflammatory cytokines, which in the adipose tissue are known as 

adipokines. Adipokines comprehend adiponectin, leptin, MCP-1, plasminogen 

activator inhibitor 1 (PAI-1), IL-6, visfatin, omentin, TNFα, retinol binding 

protein 4, serum amyloid A (SAA), C reactive protein, VEGF, resistin and many 

others [23]. Leptin levels increase in adipose tissue in expansion during obesity 

[24]. Leptin regulate satiety, food intake, reproductive function, energy 

expenditure. In the hypothalamus, leptin increases anorexigenic and decreases 

orexigenic peptide synthesis causing a reduction of the appetite [25]. 

Adiponectin is almost exclusively produced by adipocytes and modulates a 

number of metabolic processes such as fatty acids oxidation and glucose 

regulation [26]; in addition, it has also insulin sensitizing and anti-

inflammatory properties. TNFα is a pro-inflammatory cytokine that correlates 

positively with body mass index, body fat, hyperinsulinemia and insulin 

resistance in humans [27], while the use of neutralizing antibodies against 

TNFα reduces inflammation, improves fatty liver diseases [28] and protects 

against diet-induced obesity in mice [29]. 

Inflammation of VAT is central in the development of systemic insulin 

resistance during obesity and is mediated primarily by adipose tissue 
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macrophages (ATM, their role will be discussed in detailed in the next 

paragraph) [30], but other immune cells play a critical role in AT-mediated 

inflammation. T lymphocytes (CD4+ and CD8+) produce high amounts of IFNγ 

that contribute to the pro-inflammatory microenvironment [31] and it has been 

shown to inhibit insulin signalling in human adipocytes [32]. It has been 

reported that depletion of VAT T cells lead to an improved insulin-sensitivity 

in obese mice [31], furthermore T cells present in adipose tissue seems to have 

an effector-memory phenotype with a restricted TCR repertoire, to suggest that 

fat accumulation leads to the generation of  antigens recognized as not-self  that  

drive T cell expansion [33]. Several studies were performed in B cells too. In a 

study, B cell deficient mouse on HFD results protect from insulin resistance 

despite weight gain [34], while conversely, the transfer of IgG from obese mice 

to a lean one cause glucose intolerance and insulin intolerance. Neutrophils are 

among the first immune cells to [35] and promote the inflammatory milieu by 

secreting neutrophil elastase [36], an enzyme which can promote inflammatory 

responses in several pathologies. While the number of monocytes, 

macrophages and T lymphocytes CD4+ or CD8+ increases during obesity, the 

number of a subclass of lymphocytes called T regulatory cells (Tregs), 

decreases. Tregs decrease in obesity is associated with a worsening of AT 

inflammation and insulin resistance. The reasons why Tregs are protective in 

obesity can be due, as shown in vitro, by the ability to improve glucose uptake 

by adipocytes [37] or because they interact with ATMs and are in an inverse 

correlation with M1 pro-inflammatory macrophages polarization [38].  

 

1.2.2 Role of macrophages in adipose tissue immune-inflammatory response 

 

Studies in animal models and in vitro highlight the critical role of adipose 

tissue macrophages (ATMs) in the establishment of the chronic inflammation 
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associated to obesity and metabolic dysfunctions as type 2 diabetes and insulin 

resistance [39, 40]. Crosstalk exists between adipocytes and macrophages, that 

promote the maintenance of the chronic inflammation in adipose tissue [41] 

through the continuous recruitment of circulating macrophages and 

monocytes. Macrophages can be divided in two class: the classically activated 

macrophages (M1) and alternatively activated macrophages (M2) [42]. M1 and 

M2 differ for the activator stimuli and for their functions (Figure 2). M1 are 

induced by pro-inflammatory mediators such as LPS and IFNγ and they are 

characterized by the production of pro-inflammatory cytokines as TNFα, Il-6, 

IL-12. During infections, M1 macrophages participate in the clearance of 

pathogens and generate reactive oxygen species (ROS). M1 through the 

generation of ROS induce tissue damage and impairment. To protect tissues 

from M1-mediated damage, M2 macrophages with their anti-inflammatory 

functions inhibit chronic inflammatory responses. M2 polarization can be 

induced in vitro with IL-2 and IL-13 [43]. M2 macrophages are believed to 

participate to the resolution of inflammation and tissue repair, in fact they 

produce mainly anti-inflammatory molecules as Arginase 1 (Arg1), YM1, 

Interleukine 1 (IL-1) receptor antagonist, IL-10. In an animal model the specific 

deletion in macrophages of the peroxisome proliferator activated receptor-c 

(PPARc), impair alternative macrophages activation predisposing to diet-

induced obesity, insulin resistance and glucose tolerance, thus suggesting a 

beneficial role for M2 polarization in the regulation of nutrient homeostasis and 

obesity susceptibility [44]. M1 and M2 differ also for the type of chemokines 

produced. M1 produce CXCL9 and CXCL10 regulating Th1 polarized T cell 

responses, while M2 produce CCL22 that integrates the circuit of amplification 

and regulation of polarized Th2 or T regulatory lymphocytes responses.  

In healthy tissues, macrophages derived  from non-classical monocytes, express 

low levels of CCR2 (C-C motif chemokine receptor 2) [45], the receptor for the 
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chemokine MCP-1, while during inflammation the number of classical 

inflammatory monocytes LyC6hi that express high levels of CCR2 increases. It 

has been shown that animals CCR2 deficient have decrease M1 macrophages in 

adipose tissue during obesity, possibly due to the reduced recruitment of 

classical monocytes [46], which have a high ability to migrate into inflamed 

tissue [47]. Hence, classical monocytes are important for the development of 

obesity as they have high ability to infiltrate tissues during inflammation and 

polarize to pro-inflammatory M1 macrophages.  

Obesity is characterized by a shift from M2, anti-inflammatory macrophages, to 

M1 type responses [48]. Lean individuals in a non-inflammatory state maintain 

a 10-15% of resident ATMs [49]. In obese subjects this percentage increases 

(more than 50%). This increase of ATM in adipose tissue is due to the initial 

enlargement of adipocytes that release MCP-1, TNFα and saturated fatty acids 

which induce resident macrophages activation to the M1 phenotype [50]. 

Therefore, activated macrophages release MCP-1 thus promoting the 

recruitment of monocytes from the circulation into the site of inflammation 

[51].  This crosstalk between macrophages and adipocytes set up and support 

the chronic inflammation of obesity through the continuous engagement of 

new monocytes and macrophages from the circulation. 

The 90% of macrophages infiltrating the adipose tissue can be found around 

dead adipocytes in structure called “crown-like structures”, both in animals 

and in humans [52, 53]. These structures are more common in visceral compare 

to the subcutaneous fat depots [54], suggesting that the higher incidence of 

metabolic disorders associated with visceral fat accumulation could be due to a 

greater susceptibility to adipocytes necrosis of this tissue compared to the 

subcutaneous. 
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1.2.3 Importance of adipose tissue vascularization 

 

Fat expansion requires concomitant neovascularization to enable correct 

delivery of oxygen and nutrients [55]. It has been proposed that the expansion 

of adipose tissue mass during the progression of obesity may lead to a relative 

oxygen deficit because angiogenesis is insufficient to maintain normoxia in the 

adipose tissue depots [56]. It was demonstrated in humans that adipose tissue 

blood flow decreases in obese compared to lean subjects, in agreement with a 

reduced vascularization of the tissue during obesity [57]. Homeostasis among 

adipocytes, immune cells and adipose stromal cells is controlled by several pro-

angiogenic factors as FGF, VEGF or HGF. FGF2 (fibroblast growth factor 2) is 

the prototype member of a 13 members family that are heparin-binding growth 

factors [58]. In vitro FGF2 is a potent mitogen able to induce cell differentiation, 

and induces an angiogenic phenotype characterized by increased proliferation, 

migration, proteinase production and expression of specific integrins [59]. 

VEGFα (vascular endothelial growth factor α) is the prototype of the VEGF 

family and, through the binding of its receptors (VEGFR-1 and KDR), induces 

proliferation, migration and survival of endothelial cells, capillary 

morphogenesis and vascular permeability [60]. Mice on HFD with VEGF 

deletion have reduced adipose vascular density and show adipose tissue 

hypoxia, apoptosis, inflammation and metabolic defects (insulin resistance, 

increase total cholesterol and liver triglycerides). In contrast, the overexpression 

of VEGFα, utilizing an inducible adipose tissue-specific VEGFα overexpression 

model, leads to increase adipose vasculature and reduced hypoxia [61]. The 

latter changes are sufficient to counteract the established compromising effect 

of HFD on the metabolism, indicating that metabolic misbalance is reversible 

by adipose function. In some human studies, it was shown that reducing blood 

supply in obese adipose tissue was associated with beneficial effects and low 

incidence of complications [62], while the treatment of obese subjects with a 
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proapoptotic peptide, which targeted specifically white adipose tissue, resulted 

in a regression of metabolic anomalies [63]. Similar results were obtained in a 

mouse model genetically obese where the inhibition of angiogenesis cause 

weight loss and amelioration of the metabolic profile [64]. All together these 

observations suggest that at early stages, increase angiogenesis is beneficial for 

the adipose tissue because protects the tissue from hypoxia and adipocytes 

apoptosis, while at late stages both induction of vascularization and its 

inhibition can have beneficial effects; indeed, decreasing angiogenesis may 

promote apoptosis-mediated elimination of stressed adipocytes and 

consequently the regression of adiposity, on the other hand, increasing 

angiogenesis at later stages would alleviate adipose tissue inflammation [65] 

(Figure 3).  

Angiogenetic factors are highly interconnected, and in particular FGF2 and 

VEGF mutually potentiate their angiogenetic effect. The addition of 

recombinant FGF-2 to endothelial cells in vitro or is induction results in 

increased VEGF expression. Furthermore, the use of neutralizing monoclonal 

antibodies to VEGF cause an inhibition of FGF-2-induced endothelial cell 

proliferation [66], the same effect was observed using blocking antibodies 

against VEGFR-1 [67]. Taken together these results indicate that VEGFR1 

activation and VEGF action are required for FGF2-induced angiogenesis. VEGF 

as shown to have a possible role even in the recruitment of M2 alternatively 

activated macrophages. In fact, in THP1 cells, human monocytes cell line, the 

addiction of VEGF induces enhanced macrophages migration and induced M1 

macrophages to shift to an M2 phenotype [68]. 
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1.3 ANIMAL MODELS OF OBESITY 

 

The use of animal models helps elucidating the molecular mechanism intrinsic 

of obesity and the development of new drugs. The most used animal for the 

study of obesity is the mouse, because has similar genetics and development. 

Mice have advantages compared to other animals used for research purposes. 

In fact, mice are small, easy to handle, and are cheap to maintain. There exist 

two ways to study obesity in animal models: the use of genetically modified 

animals or the use of high fat diet induced obesity.  

 

1.3.1 Genetically obese mouse models 

 

There are two animal models of obesity very well characterized due to 

spontaneous mutations that cause defect in the leptin-signalling pathway in the 

hypothalamus, the ob/ob mouse and db/db mouse. Leptin is mainly 

synthetized in the white adipocytes, is directly connected to body fat and to the 

amount of stored triglycerides; leptin helps to regulate energy balance by 

inhibiting hunger at the central level. Ob/ob mice are characterized by a single-

base mutation in the leptin gene (ob gene) that lead to the synthesis of a 

premature form of leptin which is not bioactive [69]. In ob/ob mice the lack of 

leptin cause early-onset obesity associated with hyperphagia, reduced energy 

expenditure and hypothermia. This is one of the few forms of obesity that can 

be cured, giving exogenous leptin. Instead, db/db mice present a mutation in 

the leptin receptor, they are characterized by a marked hyperglycemia and they 

are resistant to leptin [70, 71]. Another animal model of obesity is the s/s mouse, 

a genetically engineered animal model, carriers of a mutation that specifically 

disrupts the transcription factor STAT3, which mediates leptin’s effect on 

energy metabolism through melanocortin signaling [72, 73].  
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Linked to the downstream signalling of leptin there are different animal models 

of obesity. Leptin has different targets as proopiomelanocortin (POMC). POMC 

is the precursor of several bioactive peptides as α-melanocyte-stimulating 

hormone (α-MSH) which is a potent anorexigenic neuropeptide that reduces 

eating and increases energy expenditure acting on melanocortin receptor, Mc3r 

and Mc4r. POMC KO mice are characterized by severe obesity and 

heterozygous developed an intermediate phenotype. Another gene related to 

the leptin pathway is the agouti gene. Agouti gene is the first obesity gene to 

have been characterized at molecular level in mice [74]. This mutation caused 

an ectopic agouti gene expression instead of a transiently expression in hair 

follicles. The expression of agouti in the hypothalamus inhibits Mc4r functions, 

leading to obesity. Mc4r is normally expressed in hypothalamus where it plays 

a key role in the regulation of feeding and metabolism and is normally 

antagonized by agouti-related protein (AgRP); in agouti mice, agouti protein in 

the hypothalamus mimic AgRP binding and inhibiting Mc4r. Homozygous 

expression of this spontaneous mutation is lethal, while the heterozygous 

usually develop obesity within the first few months of life and also type II 

diabetes, hyperleptinemia, increased linear growth and infertility. Transgenic 

mice that overexpress agouti gene in adipose tissue have a higher body weight 

than non-transgenic mice with a similar food intake. Therefore, the increase fat 

mass may be the result of altered energy expenditure [75]. Agouti mice have 

increased levels of fatty acid synthetase (FAS) and stearoyl-CoA desaturase 

(SCD) [76]. The double knock-out mouse for POMC and AgRP has a similar 

phenotype and degree of obesity compared to POMC KO [77]. Targeted 

deletion of Mc3r gene also results in a late-onset obesity phenotype, but 

regulation of appetite and metabolism appear to be intact [78].  
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1.3.2 Diet-induced obesity model 

 

Increase obesity in humans, apart from rare genetic mutations, is related to an 

excess of dietary fat intake. In human a high-fat diet with ≥30% of energy from 

fat induce obesity [79, 80]. Similarly, in mouse a positive relationship between 

the level of fat in the diet and body weight or fat gain has been reported; for 

this reason, the mouse model of high-fat diet induced obesity is largely used to 

study obesity. It is usually used a high fat diet containing 30-78% of kcal 

deriving from fat [81]. The use of a high-carbohydrate and low-fat diet is not 

efficient to induce obesity as the high-fat low-carbohydrate diet. The use of 

high-fed diet induce obesity can be advantageous for the study of different 

factors related to obesity as food intake, glucose homeostasis, insulin resistance 

and energy expenditure or they can be used to test the efficacy of new 

compounds for the treatment of obesity. Some mouse strains are more suitable 

and responsive to a diet-induced obesity. Strains as the C57BL/6J and 

C57BL/6NTac have a robust response to diet-induced obesity, while for 

example BALB/c is more resistant. Other factors can affect the response to diet-

induced obesity. The number of animal per cage is important, as too many 

animals per cage tent to show more variable weight gain for the presence of a 

dominant mouse eating more food compared to the others, while housing only 

one animal per cage has been shown to gain weight less rapidly. The age at 

which the animals start the diet regimen is important. Usually for these types of 

experiments are used 6 to 10 weeks old mice, because young mice and old mice 

respond to HFD in a different way. The environment is as well important, as 

some reports have showed that in germ-free condition mice are more resistant 

to diet-induced obesity. 
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2. IMMUNITY 
 

During obesity immunity is implicated in the maintenance of the chronic low-

grade inflammation. Physiologically the immune system protects the body 

from neutralizing pathogens like bacteria, virus, parasites and fungi, it can 

recognize harmful substances and eliminate cell that escape their fate during 

illness, as for some cancerous cells, but when the immune response is 

uncontrolled it cause chronic inflammation that is harmful to health.  

Immunity can be divided in two main branches: innate immunity and adaptive 

immunity. The innate immune system is the first line of defence and plays a 

crucial part in the initiation and subsequent direction of the adaptive immune 

responses. Adaptive immune cells help the innate counterparts in the 

elimination of foreign organisms by the recognition of specific “non-self” 

antigens processed by antigen presenting cells of the innate immunity, 

generating a response that it is tailored to an efficient elimination of pathogens 

with the production of specific cytokines and antibodies, and developing an 

immunological memory through memory B cells and memory T cells which 

are, able to rouse a rapid response during a second inflammatory response of 

the same pathogen. 

 

2.1 INNATE IMMUNITY 

 

Innate immunity depends upon both hematopoietic (mast cell, monocytes, 

macrophages, neutrophils, eosinophils, basophils, dendritic cells, natural killer 

cells) and non-hematopoietic cells (epithelial cells of the respiratory and 

gastrointestinal tract). In addition to a cellular component, in the innate 

immune responses have a fundamental role a humoral component and 

molecules known as cellular pattern recognition receptors (PRRs). PRRs are 
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able to recognize microbial components essential for the survival of the 

microorganism, known as pathogen associated molecular patterns (PAMPs), 

they are constitutively expressed by the host and independently from the 

immunological memory. Specific PAMPs are identified by specific PRRs and 

lead to the activation of distinct signalling pathways, these molecular 

mechanisms are highly preserved among species [82]. Examples of PRRs are C-

type lectin receptors (CLRs), expressed by macrophages and dendritic cell 

where they mediate the phagocytoses and antigen presentation; it was shown 

that CLRs are able to modify Toll-like receptors (TLRs) activation of dendritic 

cells and drive immune responses by altering cytokine production. Other 

members of the PRRs family are scavenger receptors (e.g. CD36), surface 

glycoproteins that bind a broad range of ligand as LDL particles or 

lipopolysaccharides (LPS); complement receptors, in particular complement 

receptor 3 (CR3); toll-like receptors (TLRs), a family of ten elements and type-1 

transmembrane proteins with leucine-reach repeat motifs implicated in the 

recognition of different types of PAMPs [83].   

The humoral arm is composed by members of the complement cascade and 

soluble pattern recognition molecules (PMRs). Extracellular soluble PMRs 

represent the functional ancestor of antibodies and play a crucial role in the 

discrimination among self, non-self and modified-self. Furthermore, evidences 

were proven of a participation of soluble PMR in the regulation of 

inflammatory response and of their interaction with the cellular arm of the 

innate immune system [84]. Extracellular soluble PMRs is a big class of 

molecules, which comprises collectins, ficolins and pentraxins. Collectins are a 

family of defense lectins collagenous calcium-dependent, that bind 

preferentially monosaccharide units of the mannose type, they can interact with 

host cell receptors and facilitating microbial clearance through aggregation and 

complement activation [85]. Ficolins contain both a collagen-like and 
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fibrinogen-like domain and recognize carbohydrate molecules on pathogens, 

apoptotic and necrotic cells leading to the activation of the lectin pathway of 

complement or inducing a primitive phagocytosis driven by opsonization thus 

limiting the infection spread [86]. Pentraxins are a superfamily of highly 

conserved molecules, sharing a so-called pentraxin signature at the C-terminal 

domain characterized by an 8 conserved amino acids sequence (His-x-Cys-x-

Ser/Thr-Trp-x-Ser, where “x” represents any amino acid) [87]. Pentraxins are 

divide in two groups based on their structure: long pentraxins and short 

pentraxins. Pentraxin 3 (PTX3) is the prototypic long pentraxin, while C-

reactive protein (CRP) and the serum amyloid P-component (SAP) are the most 

well characterized short pentraxins. 

 

2.2 PENTRAXIN 3  

 

Pentraxin 3 (PTX3) is a homo-octameric secreted glycoprotein which shares the 

C-terminal domain with CRP and serum amyloid protein (SAP) (both short 

pentraxins), and possesses a unique and unrelated N-terminal domain, which 

accounts for PTX3-specific functions [88]. PTX3 was firstly identified in the 

1990s as cytokine-inducible gene, it was identified as an IL-1 inducible gene in 

endothelial cells [88], and  as a TNFα inducible gene in fibroblast [89]. 

 

2.2.1 PTX3 gene and protein structure 

 

Human and murine PTX3 gene present the same organisation [90] and they 

display 92% amino acids conservation [91]. PTX3 gene is located on 

chromosome 3 (q22-25) and it is composed by three exons: the first encode for 

the signal peptide (17 amino acids), the second for the N-terminal domain 
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(from amino acid 18 to 179), while the third exon (amino acids 179-381), which 

correspond to the second exon of short pentraxins, encode for the C-terminal 

domain containing the pentraxin signature (Figure 4). In the human and murine 

promoters were found several enhancer-binding sites, for instance, binding 

elements for activator protein-1 (AP-1), which is responsible for the basal 

transcription of PX3, and nuclear factor kappa B (NF-κB) [92], that is involved 

in the transcriptional activation under inflammatory conditions. Unlike the 

human gene, murine PTX3 gene possesses multiple NF-IL-6 binding sites, 

while the human gene only one, and a greater number of transcriptional 

elements. 

PTX3 is a multimeric glycoprotein of 340 kDa octameric protein, made from 

two tetramers and each identical protomer is held together by intra- and inter-

chain disulphide bonds [93] [94] [95]. The N-terminal region assume a 

secondary structure forming four α-helices, while the C-terminal domain 

adopts a β-jelly roll topology and contains a single N-glycosylation site 

(Asn220), which is occupied by different complex type of oligosaccharides 

depending on the inflammatory cells and stimuli that induce PTX3 production. 

For instance, the status of glycosylation of PTX3 influences the ability of PTX3 

to bind complement component 1q (C1q), in fact, the desialylation or complete 

deglycosylation of the protein increase its binding to C1q[96]. PTX3 complex as 

octamer shows grater activity, in particular PTX3 multimeric organization was 

shown to be essential for cumulus oophorous matrix assembly and stabilization 

[95]. 

 

2.2.2 PTX3 production 

 

PTX3 can be produced in different cell types (dendritic cells, neutrophils, 

adipocytes, endothelial cells, epithelial cells, smooth muscle cells, fibroblasts 
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and macrophages) and induced by various stimuli (Figure 5), as LPS, TNF and 

IL1β. Other factors can modulate the LPS-induced production of PTX3: 

dexamethasone, IL-4 and prostaglandin E inhibit PTX3 production, while IL-10 

amplifies its expression [97]. Among cells of the myeloid lineage PTX3 is 

mainly produced by dendritic cells [91] after the stimulation with IL-10, CD40 

and IL-1β, while it’s inhibited by INFγ. Neutrophils are the only type of cells 

able to produce PTX3 in high amount and store it in specific granules released 

in response to TLR engagement by pathogens [98]. In adipocytes PTX3 is 

induced by TNF, his expression decreases after differentiation of the 

adipocytes, but it was observed an increase PTX3 mRNA expression in adipose 

tissue of obese and diabetic-obese mice as compared to WT [99]. TNF is an 

activator of PTX3 expression also in epithelial cells chondrocytes and brain 

cells. Endothelial cells from vasculature involved in atherosclerotic processes 

produced PTX3 after the interaction with oxidised LDL particles (ox-LDL) 

through the activation of NF-κB exerting an atherogenic function [100]. On the 

other hand, it was also observed a production of PTX3 in endothelial cells 

induced by HDL particles with the activation of one other intracellular 

pathway driven by PI3K/Akt exerting an anti-inflammatory and protective role.  

 

2.2.3 PTX3 ligands 

 

PTX3 plays a critical non-redundant role in the regulation of the humoral arm 

of innate immunity. The best described ligand of PTX3 is the complement 

component C1q [93]. Soluble or immobilized PTX3 binds C1q: when the 

interaction occurs with PTX3 immobilized on the surface of microbes it lead to 

the activation of the classical pathway of complement activation, while the 

interaction with soluble PTX3 mediates a dose-dependent inhibition of C1q 

haemolytic activity [101]. The interaction between PTX3 and C1q is Ca-
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independent, differently from short pentraxins, but it is highly influenced by 

PTX3 glycosylation, indeed the removal of the glycosidic portion potentiates 

the binding and the activation of the pathway [96]. Complement activation is a 

cascade of subsequent activation of molecules after their cleavage by proteases 

which results in C3 and C4 deposition. The dual ability of PTX3 to bind C1q in 

the fluid phase or when it is immobilized suggests that PTX3 supports the 

clearance of microbes when immobilized, while protect against unwanted 

complement overactivation in the fluid phase [102].   PTX3 interacts directly 

further with the lectin pathways of complement, binding ficolin-1 [103] and 

ficolin-2 [104] attached to Aspergillus fumigatus, this interaction is Ca-dependent 

and occurs through their fibrinogen-like domain. PTX3 and ficolin1 or 2 

interactions at the cell membrane of pathogens amplify synergistically 

complement- activated innate immune-responses. PTX3 can regulate 

furthermore the alternative pathway of complement activation thanks to its 

ability to bind to factor H [105], enhancing its deposition on apoptotic cells, and 

to C4b-binding protein (C4BP), binding C4BP, PTX3 inhibit its inhibitory 

activity on complement activation [106]. The activation of the complement 

alternative pathway, after PTX3 binding to factor H, can protect them against 

complement-mediated lysis [107], promoting instead their clearance in an anti-

inflammatory context. PTX3 binds also the Fibroblast Growth Factor 2 (FGF2) 

[108]. FGF2 is a strong angiogenic factor that stimulates smooth muscle cells 

growth, repair [109], neovascularization during atherosclerosis, wound healing, 

and tumor growth [110]. PTX3 contains an FGF-2 binding domain in its N-

terminal portion [111]; the binding of PTX3 to FGF2 lead to EC proliferation 

FGF2-dependent and angiogenesis inhibition [108]. Other identified ligands of 

PTX3 includes P-selectin, an adhesion molecule, and extracellular matrix 

proteins as TNF-stimulated gene 6.  
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2.2.4 Relevance in humans: PTX3 and genetic variants 

 

PTX3 genetic variants have been studied in the context of different pathologies, 

to understand whether PTX3 SNPs present could associate with disease 

outcome. Three single nucleotide polymorphism (SNPs) (rs2305619, rs3816527 

and rs1840680) have been studied in a multicentric association study focused 

on the relation between these SNP and plasma levels of the protein and the risk 

of AMI [112]. The analysis showed that, even if the SNPs and corresponding 

haplotypes were associated with different levels of PTX3 in the blood, they 

didn’t influence directly the risk of AMI, but all-cause mortality after AMI. The 

same SNPs and haplotype were evaluated in association with pulmonary 

tuberculosis risk in West Africans [113]. Here, rs2305619 and rs1840680 and a 

PTX3 haplotype (“G-A-G” haplotype, resulting from the combination of 

rs2305619, rs3816527, rs1840680), were significantly less frequent in subject 

affected by tuberculosis. This haplotype association was also identified 

evaluating the impact of PTX3 genetic variants in the risk of Pseudomonas 

Aeruginosa (PA) airway colonization in cystic fibrosis patients; “G-A-G” 

haplotype was more common in non-PA colonized patients, while the “C-A-C” 

haplotype, for the same SNPs, was more common in PA patients [114]. 

In one other study, in the contest of hematopoietic stem cell transplantation, it 

was shown how the recipient of the hematopoietic stem cells from donor with 

the “C-A-C” haplotype, here indicated as h2/h2 haplotype, were more 

susceptible to develop invasive aspergillosis [115]. This haplotype was 

furthermore associated with a defect in PTX3 expression in broncho-alveolar-

lavage fluid and neutropenia and lower, but not significant levels of plasmatic 

PTX3 levels. The increase susceptibility to aspergillosis in this case could be 

related to the reduced opsonization of the microorganism because of the 
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reduced amount of PTX3 in the site of infection, as exogenous addiction of 

PTX3 to PTX3-deficient neutrophils in vitro restored the functional deficit [115].  

 

2.3 OTHER PENTRAXINS 

 

2.3.1 Long Pentraxins 

 

The long pentraxins family include not only PTX3 but include other proteins 

such as neural pentraxin 1 (NP1) and 2 (NP2), guinea pig apexin and PTX4.  

NP2 is a neural gene that plays a role in excitatory synaptogenesis. It was 

shown that NP2 together with NP1 forms highly organized complexes 

regulating the latent synaptogenic activity of NP1 [116]. NP2 plays furthermore 

a role in the clustering of AMPA-type glutamate receptors at established 

synapses, resulting in non-apoptotic cell death of dopaminergic nerve cells. 

Diseases associated with NP2 include narcolepsy and Kearns-Sayre Syndrome, 

characterized by progressive weakness or paralysis of the eye muscles. NP1 has 

been implicated in hypoxia-ischemia and amyloid β-induced neural death 

[117]. PTX4, as for the other long pentraxins, is characterized by an unrelated 

N-terminal domain and a C-terminal pentraxin domain, and it is well 

conserved from mammals to lower vertebrates, but it shows a unique pattern of 

mRNA expression that differs from other members of the family and it doesn’t 

act as an acute phase gene even if produced also by the liver [118]. 
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2.3.2 Short Pentraxins 

 

CRP and SAP are the two components of the short pentraxins class and are 25 

kDa proteins characterized by a common quaternary structure organized in five 

or ten identical subunits arranged in a pentameric radial symmetry [119]. CRP 

was the first short pentraxin identified in 1930 [119], subsequently human SAP 

was identified, which has a 51% sequence identity to human CRP. The human 

CRP gene localized on chromosome 1 and comprehends two exons, encoding 

for the leader peptide (amino acids 1-18), the two initial amino acids of the 

mature peptide (amino acids 19-20) and C-terminal pentraxin-like domain 

(amino acids 21-224). CRP is the main acute-phase molecule in humans, its 

levels can increase 100 times in several pathological conditions. SAP, on the 

other hand, is the main acute-phase molecule in mouse and it remain invariant, 

around 30-50 mg/dL in humans. Differently from PTX3, that is produced by  

many cell types, CRP and SAP are produced by hepatocytes upon IL-6 and IL-

1β stimulation [120]. Short pentraxins recognize several ligands present on 

microbes and apoptotic cells in a calcium-dependent manner, playing a 

fundamental role in humoral innate immunity. CRP bind apoptotic cells and 

pathogens through phosphatidylcholine moieties that are exposed on their cell 

membrane, activating the classical pathway of complement and promoting the 

opsonization and phagocytosis process [121].  CRP, as PTX3, is able to activate 

and regulate not only the classical [122] pathway of complement activation but 

also the non-classical pathway [123], and regulate factor H activation [124]; at 

the contrary SAP is able to activate only the classical pathway.   

 

 

 



Introduction 

32 
 

3. ROLE OF PTX3 IN PATHOLOGIES 

 

3.1 PTX3 AND INFECTIONS 

 

First studies on PTX3 activity and function recognized the ability of PTX3 to 

bind several pathogens, as Aspergillus fumigatus, Pseudomonas Aeruginosa, 

Staphylococcus Aureus, and its involvement in the resistance at some viral 

infections. Using transgenic mice lacking PTX3 it was shown that PTX3 plays a 

non-redundant role in innate resistance to infections caused by certain 

microorganisms thanks to complement engagement. In PTX3 KO mice was find 

a higher susceptibility to conidia, because of defects in the ability of 

neutrophils, macrophages and dendritic cell to recognize and kill it, and this 

was associated also to a low protective T helper 1 antifungal response; this 

susceptibility to conidia was restored adding recombinant PTX3 [94, 125]. The 

mechanism underline this recognition and phagocytosis of conidia by 

neutrophils, starts with the opsonization of conidia by PTX3, then neutrophils 

through Fcγ receptor II bind to PTX3 and complement dependent mechanism 

begins [126]. Treatment with recombinant PTX3 is also able to exert a 

therapeutic activity in chronic lung infections by Pseudomonas aeruginosa, a 

major cause of mortality and morbidity in cystic fibrosis patients, possibly due 

to, as established in animal models infected by P. aeruginosa, an enhanced 

clearance of bacteria from the lung and reduced production of pro-

inflammatory cytokines and chemokines in the airways [127]. As anticipated, 

PTX3 as a role in viral infections too: PTX3 bind both human and murine 

cytomegalovirus reducing the viral entry and infectivity [128]; PTX3 reduces 

the susceptibility to murine hepatitis virus 1 pulmonary infection accelerating 

viral clearance, reducing neutrophil influx an ameliorating lung injury [129]. 

PTX3 is further an inhibitor of influenza A virus (IAV), as its sialylated glycan 
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is recognized by the hemagglutinin of susceptible strain of IAV leading to 

inhibition of virus-induced hemagglutination and neutralization of virus 

infectivity [130].  

 

3.2 PTX3 IN CARDIOVASCULAR DISEASES 

 

In man and mouse PTX3 behaves as an acute phase molecule, its plasma levels 

rapidly increase during sepsis, endotoxin shock and other inflammatory and 

infectious conditions. For instance, PTX3 plasma levels are higher in patients 

with chronic heart failure compare to healthy controls, and they increase with 

the severity of the pathology [131]. The possibility to use PTX3 as a prognostic 

biomarker for CVD death is due to its rapid increase after MI [132], as it peak 

after 7.5 hours from the events while CRP only after 50 hours, it is a more 

specific marker also for acute coronary syndrome compared to NAP-2 and 

cardiac troponin I in patients with unstable angina pectoris, NSTEMI and 

STEMI [133]. Patients with unstable angina, eligible for coronary intervention, 

exhibit PTX3 levels three times higher than the normal range [134]. Among 

cardiovascular diseases, PTX3 was largely studied in atherosclerosis. 

Atherosclerosis is characterized by an accumulation of cholesterol and oxidized 

LDL particles in the intima of arteries and the formation of plaques rich in 

cholesterol that cause at later stages the occlusion of the arteries with harmful 

effects. In atherosclerotic lesions major producers of PTX3 are endothelial cells 

and macrophages. Atherogenic lipoproteins in the plaque can induce the 

expression of inflammatory cytokines as IL-1 and IL-6 [135, 136], contributing 

to the recruitment of immune cells that perpetrate the state of chronic low-

grade inflammation typical of the pathology. Mice lacking PTX3 on an ApoE 

background and on high fat diet, shown increased atherosclerosis. In particular, 

it was observed an increase in macrophage infiltration and lesions dimensions, 
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and an increase of cytokines, chemokines and adhesion molecules expression in 

the vascular wall [137], suggesting a protective role of PTX3 in atherosclerosis. 

Immunohistochemical staining reveal PTX3 deposition in advanced 

atherosclerotic lesions. During this scenario, PTX3 may limit atherosclerosis 

due to its ability to inhibit FGF2, which triggers smooth muscle cells migration 

and proliferation [138], or it may contribute to the clearance of lipid-loaded 

macrophages and foam cells by dendritic cells [139]. PTX3 non-redundant 

protective role has been demonstrated for myocardial infarction experimental 

models where mice lacking PTX3 shown a greater no-reflow area [140, 141] . In 

this contest PTX3 deficiency cause an increase of C3 deposition in the infarct 

area, and the interaction between PTX3 and factor H and is deposition on 

PTX3-coated surfaces, could represent a mechanism of protection from damage 

caused by an uncontrolled activation of the complement classical pathway 

[142]. In ischemic stroke PTX3 seams to exert a protective role, as PTX3 KO 

mice have a compromise blood-brain barrier and resolution of brain edema 

after ischemic event [143], but clinical results are in contrast, in fact PTX3 was 

observed to have a positive correlation with stroke severity and predict 

mortality after ischemic stroke [144, 145].  

 

3.3 PTX3 DURING OBESITY 

 

PTX3 is produced both in pre-adipocytes and mature adipocytes, both in 

visceral and subcutaneous adipose tissue [146], and its expression in adipose 

tissue is induced by TNF [99]. The current role of PTX3 in obesity is unclear. 

Most of the studies have been performed in animal models of obesity and 

studies in humans of correlation among PTX3 plasma levels and 

anthropometric parameters related to obesity have no clear conclusions, with 

some of them highlighted a positive correlation [99, 146-149], others a negative 
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correlation [150-154], or no correlations [155]. In a study including metabolic 

syndrome subjects with subclinical atherosclerosis there was evidence of a 

positive correlation between PTX3 and MetS, the correlation was positive also 

with triglycerides and negative with HDL [156]. A positive correlation was 

observed in other studies evaluating obese subjects. PTX3 plasma levels were 

found higher in obese subjects compared to the non-obese control group [148] 

and PTX3 expression from visceral adipose tissue was positively correlated 

with BMI, triglycerides, CRP, fibrinogen and adiponectin, LDL/HDL ratio and 

TNFα expression [146].  On the contrary, certain population studies identify a 

negative correlation: in a study conducted in a Japanese population of 2619 

patient, plasma PTX3 levels were significantly lower in subjects with metabolic 

syndrome and correlate inversely with triglycerides and BMI; Ogawa T. et al 

observed an inverse correlation between PTX3 plasma levels and BMI, waist 

circumference, triglycerides, MetS and IL6 in 226 enrolled apparently healthy 

man [151]; similar results were observed in a study on a Sweden male 

population [153]. In animal models of obesity Abderrahim-Ferkoune et al [99], 

evaluating directly mRNA levels of PTX3 in adipose tissue, observed an 

increase of PTX3 transcript in ob/ob and db/db mice compared to control lean 

mice, while Miyaki et al [152] observed the opposite in TSOD mice, a model of 

diabetic-obese mice. To summarize current findings on the role of PTX3 in 

obesity and MetS, it is unclear whether PTX3 behaves as a bystander or actively 

participates to obesity-related inflammation, so additional studies need to be 

performed to clarify the role of PTX3 in obesity.  

For what concern CRP, it correlates positively with obesity [157], while it 

doesn’t differ between non-obese and metabolic syndrome affected but non-

obese subjects [158], indicating a state of chronic low-grade inflammation in 

obese subjects. 
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3.4 PTX3 IN TUMORS 

 

Inflammation plays a central role in tumor development and growth [159], 

therefore, given the role of PTX3 in immunity and its numerous functions, it is 

conceivable a possible role for this molecule in cancer. As for the role of PTX3 

in obesity, the role of PTX3 in cancer has not been fully elucidated and it seems 

to have a dual role. In some cases PTX3 overexpression has been described as a 

bad prognostic marker (e.g. in pancreatic cancer [160] and in gastric cancer 

[161]), while other type of tumor it is considered an oncosuppressor.  In 

melanoma it has an anti-tumor effects thanks to its ability to inhibit FGF2-

induced proliferation, angiogenesis,  epithelial-mesenchymal transition and 

metastatic potential of tumor cells [162]. PTX3 exert an anti-tumor effect also in 

multiple myeloma where it acts inhibiting FGF-mediated angiogenesis and 

inducing tumor cell death through the inhibition of plasma cell/bone marrow 

stroma cell cross-talk [163]. In mesenchymal and epithelial carcinoma, the 

oncosuppressive activity carried out by PTX3 is linked to the inhibition of 

complement-dependent tumor-promoting inflammation, in fact PTX3 deficient 

animal in an induced-model of mesenchymal and epithelial carcinoma are 

characterized by enhanced tumor burden, macrophage infiltration, 

angiogenesis and pro-inflammatory cytokine production [164]. Take advantage 

of PTX3 ability to inhibit FGF2 and the specificity of the binding, in the last few 

years, it was taken into account the possibility to create small molecules 

mimicking PTX3, in order to block angiogenesis and proliferation in tumor 

ligand-dependent FGFR activation. Ronca R. et al [163] identified the ARPCA 

sequence in PTX3, that correspond to the minimal FGF2-binding peptide able to 

bind FGF2 and prevent the binding whit its receptor. This finding gave the 

basis for the design of a pharmacophore model of the site of interaction 

between PTX3 an FGF2 leading to the identification of NSC12, a chemical 

ARPCA mimic. This molecule compared to common FGFR inhibitors, as 
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monoclonal antibodies and FGFR-derived decoy molecules acting as FGF traps, 

has less limitation because of its non-proteinaceous origin. NSC12 represents 

the leading compound for the development of orally active small molecules for 

therapeutic purposes in cancer. Data from phase I and II clinical trials indicate 

that the inhibition of the FGF/FGFR system may show anti-tumor activity as 

expected. 

 One interesting discovery related to PTX3 in cancer is that, in different type of 

cancers, from mesenchymal and epithelial human cancers [164] to esophageal 

squamous cell carcinoma [165], PTX3 gene present a different methylation-

dependent silencing. In colorectal cancer it was detected a different pattern of 

methylation in different stages of the pathology. In early stages, enhancer-1 in 

PTX3 gene is silenced by methylation, while enhancer-2 methylation increases 

during carcinoma progression, suggesting that hypermethylation is involved in 

the onset and progression of colorectal cancer [166].  
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Obesity is an epidemic that affects millions of people all over the world and is 

in continuous increase. This condition is characterized by fat accumulation at 

the level of the adipose tissue, mainly the visceral one, unleashing a state of 

chronic inflammation associated frequently with diabetes, hypertension and 

atherosclerosis.  

Although PTX3 is produced by human adipocytes in visceral and subcutaneous 

adipose tissue [146] [167], the correlation between its levels and the onset and 

progression of obesity and MetS is less clear. Some authors highlighted a direct 

correlation between PTX3 plasma levels and obesity [148] or MetS [147], while 

others reported a neutral or an inverse correlation [150] [151]. Similarly, 

variable findings were reported in animal models of metabolic dysfunction: 

genetically obese (ob/ob) and obese-diabetic (db/db) mice showed higher levels 

of PTX3 mRNA in VAT compared to lean mice, an effect consistent with 

increased levels of TNFα [99]; whereas in Tsumura Suzuki obese-diabetic 

(TSOD) mice, a model of spontaneous type 2 diabetes [168], adipose tissue 

levels of PTX3 mRNA were found lower as compared to lean controls [152].  

As PTX3 sits at the crossroad between innate immunity, inflammation and 

obesity [169] [87] [170], this project aims to characterize the role of PTX3 in 

obesity, thus identifying a therapeutic target for the cure of obesity and 

associated pathologies. 

For this aim, we profiled the immuno-inflammatory and metabolic response to 

an obesogenic diet of PTX3 KO mice compared to WT littermates and 

investigated in humans the impact of a PTX3 haplotype [115], on ectopic fat 

deposition and metabolic status to clarify whether PTX3 behaves as a bystander 

or actively participates to obesity-related inflammation.
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1. Animal models 
 

Male mice WT and PTX3 KO littermates on the C57BL/6 genetic background 

were bred in house and generated as in detail described previously [94]. 

Homozygous mutant mice display female subfertility due to abnormalities of 

the cumulus oophorus and are susceptible to invasive pulmonary aspergillosis 

associated with defective recognition of conidia by alveolar macrophages and 

dendritic cells and impaired induction of adaptive type 2 responses 

(http://www.informatics.jax.org/marker/MGI:104641). C57BL/6 WT mice were 

provided by Charles River Italy. Mice were kept in a temperature-controlled 

environment (20 ± 2°C, 50 ± 5% relative humidity) with a 12-hour light/dark 

cycle in an air-conditioned room and free access to food and water.  

 

2. Genotyping 
 

Animals were genotyped after the isolation of DNA from ear biopsy. Briefly, 

biopsy are incubated in 500 µl of lysis buffer (0.5% Sodium dodecyl sulphate, 

0.2 M NaCl, 50 mM TrisHCl pH 8, 4 mM EDTA) with proteinase k (0.25 mg 37.7 

mAnson U/mg, AppliChem) overnight at 56°C, than after centrifugation, 13000 

rpm for 3 minutes, at the supernatant, is  added 500 µl of 

phenol:chloroform:isoamyl alcohol 25:24:1. After another brief centrifugation, 

13000 rpm for 5 minutes, the aqueous upper phase containing the DNA is 

collected and mix with 800 µl of 95% ethanol. Finally, after spinning samples 

13000 rpm for 5 minutes, DNA precipitate at the bottom of the eppendorf, and 

after evaporation of the leftover ethanol DNA is resuspended in H2O. Animals 

genotype was assessed by Polymerase Chain Reaction (PCR) as indicated in the 

protocol in Table 1.   



Materials and Methods 

42 
 

3. Diet-induced obesity model 
 

Starting from eight weeks of age, male WT and PTX3 KO mice littermates were 

randomized in two groups, one fed a standard fat diet (SFD, 10% Kcal from fat, 

Research diet INC, Cat#D12450H) (Table 2), and one a high fat diet (HFD, 45% 

Kcal from fat, Research diet INC, Cat#D12451) (Table 3). Food intake and 

weight gain were measure weakly. At 10 and 20 weeks were performed glucose 

and insulin tolerance test, and fat deposition quantification through magnetic 

resonance for imaging. Mice were sacrificed at 20 weeks, liver, blood, visceral, 

subcutaneous and brown adipose tissue were collected and weighted, and an 

immunophenotypic analysis of the tissues was performed by flow cytometry, 

gene expression analysis and protein quantification (Figure 6). All animal 

procedures performed conform to the guidelines from directive 2010/63/EU of 

the European Parliament on the protection of animals used for scientific 

purposes and were approved by the Ethical Committee (Progetto di Ricerca 

2012/02, Autorizzazione Ministeriale 811/2017).   

 

4. Magnetic resonance for imaging (MRI) 
 

MRI was used to evaluate VAT, SCAT and BAT depots in WT and PTX3 KO 

mice after 10 weeks and 20 weeks of HFD regimen. For this procedure, mice 

were anaesthetized with 2% isoflurane. Consecutive photos at the level of 

shoulder blades, chest and abdomen of each mouse were acquired and 

subsequently analysed with Photoshop® software for the quantification of 

adipose tissue deposition. 
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5. Glucose and Insulin tolerance test 
 

Intraperitoneal glucose tolerance test (IP-GTT) and insulin tolerance test (ITT) 

were used to measure plasmatic clearance of glucose after intra-peritoneal 

injection of glucose or insulin respectively after 10 and 20 weeks of HFD or 

SFD. Briefly, for IP-GTT test, animals were fasted overnight (approximately 14 

hours), then blood glucose levels at fasting and after 15, 30, 60, 90, 120 minutes 

from injection of glucose solution (20% w/v in PBS, 2 mg per grams of body 

weight) were measured with a glucometer (ONE-TOUCH Ultra glucometer). 

For ITT, the animals were fasted for 4 hours. Glucose plasma levels were 

measured at fasting and after 15, 30, 60, 90, 120 minutes from injection of 

human recombinant insulin (1 mU per gram of body weight, Humulin R100 

Ul/mL). 

 

6. Samples preparation for immunophenotyping by flow cytometry 
 

Fresh collected blood was stained after the lysis of red blood cells with ACK 

solution (KHCO3 10mM, NH4Cl 150 mM, EDTA 0.1 mM) for 10 minutes at 

room temperature. Bone marrow was taken from femoral bones, flushing bone 

marrow out of the bone with a syringe with PBS, then it was obtained a cell 

suspension and red blood cells were lysed using ACK solution. Fresh visceral 

and subcutaneous adipose tissues were placed on ice in a 6 well plate and cut in 

small pieces in 2 mL of PBS 5% BSA solution, then collagenase (200 mg/mL 

final concentration; NB4 standard grade, Serva) and CaCl2 (5 mM final 

concentration) were added and samples were incubated at 37°C for 40 minutes 

under agitation. Samples were then top up with MACS (PBS, 2% FCS, 2 mM 

EDTA) and filtered on a sterile bandage and subsequently on a 100 μm and 70 

μm cells strainer. After the lysis of red blood cells with ACK for 5 minutes on 
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ice, samples were washed, spin and resuspended in 50 µL of antibodies mix 

(Supplementary Table 1). All flow cytometry antibodies were used at 1:100 

dilutions unless otherwise specified, optimal antibody concentrations for 

staining were calculated based on manufacturer instructions. For 

immunophenotyping a cell suspension containing 1x106 cells or 50 µL of blood 

were acquired with FACS Calibur (BD Bioscience) or Novocyte 3000 (ACEA 

Biosciences). Cell sorting was performed with FACSAria II flow cytometer (BD 

Bioscience). Antibodies used are listed in the Supplementary Information 

(Table 4). 

 

7. Blood biochemistry measurements  
 

Blood samples were collected in EDTA tubes by tail vein at 10 weeks and 

intracardiac puncture at 20 weeks and plasma was separated by centrifugation 

(8000 rcf for 10 minutes) at 4°C. Total plasma cholesterol and triglycerides were 

measured from frozen plasma by standard enzymatic techniques using the 

Cholesterol CP KIT (ABX Pentra, HORIBA Medical) or the triglyceride CP KIT 

(ABX Pentra, HORIBA Medical). Briefly, for cholesterol quantification it is 

prepared in 96 wells plate a calibrator curve with serial dilution of cholesterol 

standard (200 mg/dL, ABX Pentra). 10 µl of samples plasma to be analysed are 

load in the same plate and then is added to the plate 200 µl of reagent (ABX 

Pentra Cholesterol CB) per well. The plate is incubated for 15 minutes at 37°C 

protected from light. The same procedure is used for tryglicerides 

quantification, using the appropriate standard (200 mg/dL TG standard ABX 

Pentra) and reagent (ABX Pentra triglycerides CB). After incubation with the 

reagent, cholesterol and triglyceride concentration were read by 

spectrophotometer at 490 nm (Bio-Rad iMark microplate reader). Plasma 
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insulin concentrations were quantified using mouse Ultrasensitive ELISA kit 

(Mercodia) as indicated by the manufacturer. 

PTX3 plasma levels in human blood samples at enrolment were determined as 

previously described [171] with sandwich ELISA (detection limit 0.1 ng/mL, 

inter-assay variability from 8% to 10%) developed in-house, by personnel blind 

to patients’ characteristics. Data are reported as ng/mL. 

 

8. Histology 
 

Part of the visceral and subcutaneous adipose tissue were fixed overnight in 4% 

buffer formalin (Sigma-Aldrich), embedded in paraffin and tissue section (5μm) 

stained with haematoxylin and eosin (Sigma-Aldrich). 10X images were 

obtained using a Zeiss Axiovert microscope. Quantification of adipocytes areas 

was performed using Adobe Photoshop software: manually is selected an area 

with intact adipocytes covering the 60-80% of the section and then the 

calculated area (1 pixel = 0.6289 µm) is divided for the number of adipocytes 

counted in that selected area (at least three independent measurement per 

mouse). Crown-like structures were counted from 8 visceral sections per mouse 

(n = 6) by an operator blinded of the genotypes. 

 

9. Real time PCR  
 

Total RNA from cells and visceral adipose tissue was isolated using Nucleo 

Spin RNA kit (Machery NAGEL) and RNAsi Lipid Tissue Mini kit (QIAGEN), 

respectively, as indicated in the manufacturer instruction. Adipose tissue 

homogenization was performed using Tissue Ruptor instrument(Qiagen) and 

Qiazol contained in the kit. RNA quality and quantity were assessed using 
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absorption measurements (NanoDrop™ 1000 Spectrophotometer, Thermo 

Fisher Scientific) and transcribed in cDNA (400 ng RNA) with iScriptTM cDNA 

synthesis kit (BioRad). Gene expression analysis was done using SYBR Green 

Supermix (ThermoFisher Scientific) in CFX connect light cycler (BioRad, 

Cat#1708841). Expression was calculated using the ΔΔCt method (Livak and 

Schmittgen, 2001) and normalized to a housekeeping gene (Rpl, L Ribosomal 

Protein). Primers for qPCR were designed with the help of online tools 

(https://www.eurofinsgenomics.eu/). The thermal cycling profile was a two-

step amplification (95°C for 5 min, followed by 45 cycles of 95°C for 10 s and 55 

°C for 30 s). The sequences of the qPCR Primers are reported in the Table 5. 

 

10.  Immunoblotting 
 

Adipose tissue was homogenized in RIPA buffer (0.1% sodium dodecyl 

sulphate, 0.5% sodium deoxycholate, 1% Nonidet P-40, 150 mM NaCl, and 

50mM Tris HCl, pH 8.0, supplemented with protease inhibitors). Tissues were 

lysed at 4°C for 15 minutes and clarified by centrifugation at 12.000 rpm. 

Quantification of protein extracted from the tissue was performed using Lowry 

assay protocol. Briefly, it is prepared a standard curve with different dilution of 

albumin 1 µg/mL in 5 mL tubes. 5µl of samples are load in other tubes and 

brought to 200 µL with ddH2O. Then is added to the tubes 1 mL of solution A:B 

50:1 (Solution A: NaOH 0.1 N, NaHCO3 2%; solution B: CuSO4 0.5%, sodium 

potassium tartrate 1%, NaON 0.1 N) for 10 minutes at 37°C. After another 

incubation with 100 µL of 1:1 Folin:H2O solution for 30 minutes at 37°C, 

samples are read by spectrophotometer at 490 nm (Bio-Rad iMark microplate 

reader). Lysates were separated by SDS-PAGE on a 12% polyacrylamide gel, 

transferred to nitrocellulose. Nonspecific binding to the membrane were 

blocked with 1h incubation in milk 5% PBS 0.1% Triton X100. Primary antibody 
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used are anti-VEGF “Vascular Endothelial Growth Factor” (Biorbyt orb256347), 

anti-CD31 “Cluster of Differentiation 31” (Cell Signaling 77699) and anti-α 

Tubulin. Incubation with primary antibodies was performed overnight at 4°C. 

Secondary antibodies were HRP-conjugated; incubation of the secondary 

antibodies was performed for 1h at room temperature. HRP activity was 

identify by enhanced chemiluminescence (Clarity Western ECL, BioRad) and 

Odyssey Imaging System. 

 

11.  Human study – the PLIC cohort 
 

Human data were obtained from samples of the PLIC study (Progressione delle 

Lesioni Intimali Carotidee). PLIC is a prospective observational study, 

including a total of 2,606 subjects, representative of the general population 

residents in northern area of Milan (Italy). The population was followed for up 

to fifteen years at the Centre for the Study of Atherosclerosis, Bassini Hospital 

(Cinisello Balsamo, Milan) in order to study predictive value of cardio-

metabolic parameters for the evolution and clinical manifestation of 

atherosclerosis. The study was approved by the Scientific Committee of the 

Università degli Studi di Milano (Cholesterol and Health: Education, Control 

and Knowledge – Studio CHECK ((SEFAP/Pr.0003) – reference number Fa-04-

Feb-01). Each subject signed the informed consent for the collection of blood 

samples and clinical data for research purposes. The study was conducted in 

accordance with the principles of the Declaration of Helsinki. The PLIC 

population has been extensively described [172-178]. 

Clinical, familial and pharmacological histories of each individual have been 

collected. Information on obesity, BMI and waist-to-hip ratio were available as 
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well. Genetic information on PTX3 polymorphisms was conducted on 1,122 

subjects, representative of the entire cohort.  

DNA was extracted from blood peripheral blood mononuclear cells (PBMCs), 

as previously described [174] using QIAGEN DNA Blood Mini Kit (Qiagen), 

and it was genotyped for three polymorphisms, previously annotated [115] via 

Taqman allelic discrimination (ThermoFisher): a) rs2305619 (+281A/G) on 

intron 1 (HapMap MAF=0.500), b) rs1840680 (+1449A/G) on intron 2 (HapMap 

MAF=0.491) and c) rs3816527 (+734A/C, missense Ala48Asp) on exon 2 

(1000Genomes MAF=0.285). Allelic frequencies of all three variants followed 

Hardy-Weinberg equilibrium. Genetic allele frequencies were identical from 

+281GG genotype and those from the +1449GG genotype, because of their 

complete linkage disequilibrium (which was not the case for other genetic 

forms and those from +734A/C). Thus, the combination of genotypes AA and 

AG was the reference category accounting for h1/h1 in +281A/G and the 

combination of genotypes CC and CA was the reference category accounting 

for h1/h1 in +734C/A. By contrast h2/h2 haplotype included genotypes GG in 

+281A/G and AA in +734C/A [115]. A table showing the main characteristics of 

the cohort studied is presented in Table 6. 

 

12.  Human study – Anthropometric measurements 
 

Measurements of body composition and regional adipose tissue distribution 

was performed via Dual Energy X-ray Absorptiometry (DEXA), as previously 

described [178] using a Lunar iDXA (Ge Healthcare, Madison, WI). Scans were 

then analysed through enCORE software (version 14.0), in order to set regions 

of interest for detection and quantification, discriminating among bone mass 

(calculating density as well), lean and adipose tissue. Android fat was 
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computed automatically over the android region, a region-of-interest 

automatically defined by the enCORE software, whose caudal limit is 

automatically placed at the top of the iliac crest and whose height is set to 20% 

of the distance from the top of the iliac crest to the base of the skull to define its 

cephalad limit.  

 

13. Statistical analysis 
 

Statistical analysis was performed using Prism (GraphPad) and SPSS v.23 (IBM 

Corp., Chicago, IL) for human data. Both mice and human data are expressed 

as mean ± SEM and a P value of less than 0.05 was considered significant 

(*P<0.05, **P<0.01, ***P<0.001). For comparison between two groups an 

unpaired two-sides test with a 95% confidence interval was used. In detail, for 

groups with more than 7 observations, after checking for the normal 

distribution of data, a parametric Student’s t test was applied, whereas for 

groups with less than 6 observations or not normally distributed a Mann-

Whitney non-parametric test was used, as also indicated in the figure legends. 

For human data, Mann-Whitney and Kolmogorov-Smirnov non-parametric test 

were used.  
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1. Diet-induced obesity model 
 

In order to study the role of PTX3 during obesity, we take advantage of a well-

known model of diet-induced obesity. The effects of diet-induced obesity on 

WT mice compared to a standard-fat diet are shown in Figure 7 to Figure 10. 

Wild type mice were fed a high fat diet (HFD) or a standard fat diet (SFD) for 

20 weeks. As expected, HFD-fed mice showed increased body weight and 

increased visceral and subcutaneous adipose tissue deposition (Figure 7). 

Moreover HFD-fed mice displayed an impaired glucose tolerance and insulin 

sensitivity as assessed by GTT and ITT (Figure 8). They also presented an 

increased infiltration of monocytes and macrophages into the visceral adipose 

tissue (Figure 9A) which associated to increased monocyte-chemoattractant 

protein 1 (Mcp1) and Cd68 mRNA expression (Figure 9B). Adipose tissue 

expansion associates with a worsening of the inflammatory status both locally 

and systemically [179]. Therefore, we investigated whether plasma levels of 

PTX3 change during the onset of obesity. In agreement with the increased 

immune-inflammatory profile, PTX3 plasma levels were significantly increased 

after 10 and 20 weeks of HFD compared to SFD regimen (Figure 10).  

 

2. Effect of diet-induce obesity in PTX3 KO mice 

 

This observation prompted us to investigate whether PTX3 plays a causal role 

or simply reflects the underlying inflammatory response associated to obesity 

and for this reason we decided to use PTX3 KO mice. WT and PTX3 KO mice 

were fed up to 20 weeks with HFD or a control diet (SFD). While PTX3 

deficiency doesn’t affect weight gain in SFD fed mice (Figure 11A, 11B), in 

animals on HFD it was associated with significant reduced weight gain 

compared to WT (Figure 11C, 11D). The difference in the weight gain is not 
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explicable to a different daily food intake between the two groups on HFD as it 

was comparable (Figure 11E). Differences in weight gain were associated with 

analysis showing a reduced visceral and subcutaneous adipose tissue 

deposition at both 10 and 20 weeks of HFD in PTX3 KO mice compared to WT 

mice (Figure 12A-C) assessed by magnetic resonance imaging (MRI); whereas 

the amount of brown adipose tissue  in the intrascapular area was similar 

between the two experimental groups (Figure 12D, 12E). This phenotype was 

confirmed at sacrifice, where the amount of VAT and SCAT but not of BAT was 

significantly reduced in PTX3 KO mice compared to WT mice. Similar weights 

for liver, pancreas and spleen were also observed (Figure 13).  

 

3. Glucose and lipid homeostasis evaluation 
 

The reduced weight gain and fat deposition in PTX3 KO mice, suggest that 

PTX3 plays a non-redundant role during HFD-induced obesity and brought us 

to explore whether the phenotype observed might have been the consequence 

of impaired glucose metabolism. To this end, we measured basal glycemia 

following overnight fasting and performed an intraperitoneal glucose (IP-GTT) 

and insulin tolerance test (ITT) after 4 hours fasting in WT and PTX3 KO mice 

after 10 and 20 weeks of diet. Basal glycemia was similar between WT and 

PTX3 KO mice following 10-weeks or 20-weeks of HFD (WT 121±10 mg/dL, 

PTX3 KO 111±9 mg/dL at 10 weeks; WT 145±13 mg/dL, PTX3 KO 130±3 mg/dL 

at 20 weeks respectively), as were glucose curves over time after IP-GTT (Figure 

14A, 14B) or ITT (Figure 14C, 14D). Likewise, there were no differences in the 

response to IP-GTT and ITT in the two groups on SFD (Figure 15A-D). Lipid 

profile (cholesterol and triglycerides) was not different between PTX3 KO and 

WT mice after 20 week-HFD, maintaining only a significant difference in the 

levels of cholesterol comparing animal on SFD with the group on HFD (Figure 
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16A, 16B). We analysed further insulin and resistin plasmatic concentration in 

the animals on HFD which result similar between the two groups (Figure 16C, 

16D). 

These results of a similar glucose and insulin response after HFD and similar 

lipid profile, ruled out that the differences between WT and KO observed in the 

weight gain and fat depots are due to a direct impact of PTX3 on glucose and 

lipid homeostasis.  

 

4. Circulating and bone marrow immune cell profiling  
 

Next, we investigated whether the decreased weight gain and fat accumulation 

might have been related to a different inflammatory profile in PTX3 KO mice. 

First, we profiled bone marrow immune cells. The absolute number of cells in 

bone marrow of WT and PTX3 KO mice on HFD was similar, as was the 

percentage of CD11b positive cells, and the distribution of monocytes and 

neutrophils (Figure 17). Then we profile circulating immune cell signature in 

PTX3 KO and WT mice on HFD and SFD (Figure 18-19). There was a general 

increase of CD11b+ cells, monocyte and neutrophils number comparing 

animals on SFD with animals on HFD (Figure 18). Looking at animals on HFD, 

a significant decrease in the number of circulating neutrophils was observed 

(Figure 18C), while the absolute count of blood monocytes was similar between 

WT and PTX3 KO (Figure 18D) as was the case for monocytes subsets 

distribution (Figure 18D, 18E). The number of circulating CD3+ and CD19+ 

lymphocytes (Figure 19) and the distribution of different CD4+ and CD8+ T cells 

subsets (T naive, T effector cells, T central and effector memory) (Figure 20) was 

similar between WT and PTX3 KO mice both when animals where on HFD or 

on SFD.  
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5. PTX3 deficiency promotes pro-resolution macrophage skewing 
 

Despite of a similar circulating immune profile, the analysis of the 

inflammatory profile in the visceral and subcutaneous adipose tissue of HFD-

fed PTX3 KO mice showed a significant decreased expression of markers 

associated with inflammation in VAT (Figure 21A), such as Mcp1 and Il-6, 

compared to WT mice, while in SCAT we observed only a slight decrease of 

these cytokines (Figure 21B). This profile was associated with a significant 

reduction in the number of monocytes, macrophages, and neutrophils 

infiltrating the visceral adipose tissue of PTX3 KO mice compared to WT 

(Figure 22A, 22B). Differently, only macrophages number was reduced in 

subcutaneous adipose tissue of PTX3 KO mice compared to WT (Figure 22C). In 

addition, the phenotypic characterization of monocytes and macrophages 

isolated from the visceral adipose tissue revealed that monocytes from PTX3 

KO VAT presented a reduced expression of Ccr2 (MCP1 receptor) but not of 

Cx3cr1 (CX3CL1 or Fractalkine receptor, marker highly expressed on 

alternative activated monocytes) compared to WT (Figure 23A), pointing 

toward a pro-resolving profile of monocytes. In SCAT we didn’t observed the 

same monocytes profile, the expression of Ccr2 and Cx3cr1 was similar 

between WT and PTX3 KO monocytes (Figure 23B). In parallel PTX3 KO VAT 

macrophages presented a significant increased expression of Arg1 (Arginase1) 

and Ym1, M2-like molecules, compared to WT macrophages (Figure 23C). This 

difference was specific for VAT macrophages but not for macrophages 

infiltrating the SCAT (Figure 23D). In agreement with the reduced 

inflammatory profile, the distribution of crown like structures surrounding 

dying or dead adipocytes, where macrophages resorb the remnants of these 

dying cells [54], was significantly decreased in PTX3 KO VAT (Figure 23E). 
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These results suggest that PTX3 deficiency associates with lower monocytes 

recruitment and macrophages M1-polarization in visceral adipose tissue.  

 

6. Enhanced vascularization limits visceral adipocytes 

hypertrophy in PTX3 KO mice 
 

Obesity associates with hypertrophic visceral adipocytes that, undergoing cell 

death, promote an inflammatory response [179]. Physiological adipose tissue 

expansion is controlled by the rate of vascularization and angiogenesis that 

plays a crucial role favouring a correct oxygen supply to adipocytes. 

Accordingly, adipocytes became hypertrophic after HFD regimen both in VAT 

and SCAT (Figure 24A, 24C), and we found that adipocytes from PTX3 KO VAT 

(Figure 24A, 24B) and SCAT (Figure 24C, 24D) displayed less pronounced 

hypertrophy compared to WT mice when on HFD. Given the anti-angiogenetic 

role of PTX3, accomplished by binding and thus inhibiting Fibroblast Growth 

Factor 2 (FGF2) [111, 180], we investigated adipose tissue vascularization in the 

absence of PTX3, evaluating the expression of key markers of angiogenesis, as 

Cd31 (Cluster of Differentiation 31) and Vegfa (Vascular Endothelial Growth 

Factor a). As shown in Figure 25A, Cd31 and Vegfa mRNA expression was 

significantly increased in VAT from PTX3 KO compared to that from WT mice, 

while there were no differences in their expression in SCAT (Figure 25B). We 

confirmed the higher angiogenesis in VAT analysing the protein expression of 

VEGF that resulted enhanced in PTX3 KO mice (Figure 25C, 25E). These results 

suggest that PTX3 deficiency results in less pronounced inflammatory profile 

and enhanced angiogenesis in the visceral adipose tissue. 
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7. Genetic determined lower PTX3 levels in humans relates with a 

reduced visceral adipose tissue accumulation 
 

To translate our findings in humans, we investigated whether the presence of 

two different haplotypes (h1/h1 vs h2/h2) on the PTX3 locus [115], which result 

in lower PTX3 levels, associated with differences in the metabolic profile. The 

carriers of the h2/h2 haplotype showed a significant reduction in PTX3 plasma 

levels compared to subjects with the h1/h1 haplotype [h1/h1 median 3.65 

ng/mL (3.13, 4.15); h2/h2 median 3.47 (3.07, 3.96) (Figure 26A) which was 

associated with a significant reduction in BMI [h1/h1 median 27.45 kg/m² (25, 

30.09); h2/h2 median 26.6 kg/m² (24.25, 29.41)] (Figure 26B). We next measured 

adipose tissue accumulation by Dual-energy X-ray absorptiometry (DEXA) 

(Figure 26C) and observed that subjects with the h2/h2 haplotype also 

presented a significant reduction in adipose tissue accumulation in the android 

area (an index of visceral adiposity) [h1/h1 median 48.35% (42.25, 52.88); h2/h2 

median 46.70% (39.65, 52.95)](Figure 26D) but a similar distribution in the 

gynoid area (an index of subcutaneous adiposity) [h1/h1 median 42.30% (32.65, 

52.03); h2/h2 median 44.20% (33.60, 51.90)] (Figure 26E), resulting in a 

significant difference in android-gynoid ratio [h1/h1 median 1.12 (0.98, 1.35); 

h2/h2 median 1.06 (0.93, 1.27)] (Figure 26F). These data extended the 

observations in animal models supporting the relevance of PTX3 on indexes of 

obesity also in humans.  
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Obesity is a complex pathology characterized by an excess of fat accumulation 

and chronic inflammation that increases the risk of cardiovascular diseases and 

is correlated with a series of comorbidities as diabetes, hypertriglyceridemia, 

high blood pressure, insulin resistance. The chronic low-grade inflammation 

that characterizes these pathologies is the result of high amount of pro-

inflammatory molecules, as adipokines (e.g. TNFα, IL6) released by adipocytes 

and immune cells, in particular monocytes and macrophages infiltrating the 

tissue. PTX3, the prototype of long pentraxins, is involved in many 

inflammatory processes. It is produced by different cells types as neutrophils, 

endothelial cells, macrophages and also adipocytes. The role of PTX3 in obesity 

is still unclear, there are a series of work with contradictory results and 

observations linking PTX3 and obesity. The aim of this project was to clarify the 

role of PTX3 in obesity and understand if ptx3 behaves as a bystander or 

actively participates to obesity-related inflammation using well established 

model of diet-induced obesity on PTX3 KO mice. 

The work demonstrates that PTX3 deficiency reduces the development of 

obesity: PTX3 KO mice gain less weight compare to WT. This reduced weight 

gain is due to a reduced accumulation of fat both at the visceral and 

subcutaneous level. Diet-induced obesity in PTX3 KO mice is associated with a 

reduced immuno-inflammatory response, in terms of cytokines production, 

numbers of monocytes and macrophages infiltrating the visceral adipose tissue 

and the pro-resolutive profile of these cells. Furthermore, we find an enhanced 

grade of vascularization in visceral adipose tissue of PTX3 KO mice compared 

to WT (Figure 27). Moreover, carriers of a PTX3 h2/h2 haplotype which results 

in reduced PTX3 plasma levels present decreased adipose tissue accumulation. 

Healthy AT behaves as a pool of “anti-inflammatory”, “pro-resolving” and 

long-lived memory immune cells [181]. Excessive accumulation of fat, as a 

result of over nutrition and increased circulating levels of free fatty acids, 
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however, prompts an inflammatory response which is paralleled by the 

infiltration of activated effector immune cells in AT [182], and by a systemic 

increased of circulating activated immune cells [183], which further support 

adipose-tissue inflammation and insulin resistance. Whether this inflammatory 

response follows or contributes to adipocyte hypertrophy is still a matter of 

discussion, but it is recognized that the improvement of the immuno-

inflammatory responses counteracts the metabolic complications associated to 

obesity. Indeed, MCP-1 deficiency, a key chemoattractant protein, reduces 

macrophage accumulation in adipose tissue, insulin resistance, and hepatic 

steatosis associated with obesity [184], while the blockade of the costimulatory 

molecule CD40 and its signalling intermediates, TNF receptor-associated 

factors 6 (TRAF6), ameliorates insulin resistance and hepatosteatosis by 

reducing CD8+ T cell infiltration into adipose tissue [185]. Similarly, our data 

show that PTX3 deficiency preserves the M2-like phenotype of adipose tissue 

macrophages thus preventing fat accumulation and inflammation during HFD-

induced obesity. PTX3 is a member of the pentraxin family, soluble mediators 

of innate immune arm, whose levels rapidly increase following an 

inflammatory insult [169]. Whereas CRP accurately reflects the inflammatory 

state associated to obesity [158], PTX3 appears to play a role in modulating the 

immune response in different contexts [169]: by limiting PMN recruitment 

[142], protecting from atherosclerosis [137] and thrombosis [186], decreasing 

cardiac necrosis [141] and platelet-leukocyte aggregation after myocardial 

infarction [187], reducing restenosis [111] and fibrotic scar formation [156] and 

behaving as onco-suppressor [164]. On the other hand, PTX3 has been also 

involved in promoting inflammation after intestinal ischemia and reperfusion 

[188]. All these evidences delineate the complex role of PTX3 that might 

depend on cell/tissue origin and can be affected by the glycosylation variability 

of the N-terminal domain [189]. We show that deficiency of PTX3 protects from 

adipose tissue expansion during diet induced-obesity through the maintenance 
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of an anti-inflammatory milieu, mainly as the consequence of the prevalence of 

M2-macrophages. Similar to this, PTX3 deficiency was shown to result in 

increased M2 macrophage polarization in the context of experimental models of 

mesenchymal and epithelial carcinogenesis thus limiting the protective pro-

inflammatory response, but rather maintaining a tolerogenic environment to 

tumour growth [164]. The maintenance of M2-like macrophage polarization is 

indeed observed in lean adipose tissue where they support adipose 

homeostasis [44], whereas during obesity, the balance is tilted toward the 

recruitment of M1-like macrophages, primarily found in crown-like structures 

(CLSs) around large dying adipocytes [54]. These macrophages, by secreting 

inflammatory cytokines as TNFα, IL-1β, IL-6, nitric oxide (NO) [190], induce 

the recruitment of monocytes and/or their differentiation into M1-like 

phenotype and promote adipocyte resistance to insulin that sustains metabolic 

syndrome progression. In our model, this maintenance of the M2 phenotype 

could be the consequence of the pro-angiogenic environment resulting from 

PTX3 deficiency [164]. Indeed PTX3, by binding to FGF2 and reducing 

angiogenesis [111], controls vascularization. Angiogenesis is a complex process 

which exerts different functions based on the physio-pathological mechanism 

in which it is involved. Angiogenesis is detrimental in atherosclerosis where 

contributes to plaque growth and instability [191], while its promotion in 

adipose tissue by angiogenetic factors, such as VEGF and FGF2 (secreted by 

both adipocytes and activated macrophages) favours the delivery of oxygen 

and nutrients to adipocytes [61], thus preventing hypoxia caused by adipocyte 

hypertrophy, as a consequence of excessive fat accumulation [55]. In line with 

these observations, we demonstrated that PTX3 deficiency is accompanied by 

increased CD31 and VEGF expression in adipose tissue thus perhaps 

contributing to the improved vascularization, to reduced fat accumulation and 

macrophage skewing to the M2 phenotype in PTX3 KO mice. Of note, VEGF 

was already shown to be a targetable strategy for the prevention of obesity 
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promoting vessel blood formation [192]. It was shown that FGF2 induced 

angiogenesis is mediated by VEGF, while the inhibition of VEGF blocked FGF2 

induced angiogenesis. Furthermore, recently it has been demonstrated the 

ability of VEGF to induce the phenotype switch from M1 to M2 in THP-1 cells 

[68]. These observations sustain our hypothesis that PTX3 might contribute to 

obesity through a mechanism involving angiogenesis acting on FGF2, and then, 

as a consequence of a more inflamed and less vascularized tissue, it’s promoted 

macrophages infiltration and their polarization towards a pro-inflammatory 

phenotype.  

 Considering that PTX3 shares a 82% sequence similarity between mouse and 

man [88], we next investigated whether the findings in animal models might be 

translated to humans. We confirmed previous findings showing that PTX3 

plasma levels mark the immunoinflammatory response associated to obesity 

[147], by demonstrating that specific genetic settings which were found to alter 

PTX3 plasma levels in Ghanaian women [193] and in lung-transplant recipients 

with primary graft dysfunction [194] results in a significant decrease in BMI 

and visceral fat accumulation, further suggesting in humans a direct connection 

between lower genetically determined PTX3 plasma levels and improved 

metabolic profile.  

As a consequence, although the inhibition of PTX3 might be beneficial for the 

treatment of obesity, the other protective effects associated to PTX3 [164, 169] 

suggest the need for the development of tissue selective PTX3 targeting 

strategies to fully exploit its pharmacological potential. 
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Figure 1. Obesity, a multifactorial disease.  

Obesity is a complex disease that results from the interaction of multiple 

factors. This figure depicts the biological, environmental, and behavioral factors 

that contribute to positive energy balance, excess weight gain, and therefore 

obesity. (Kadouh C. H. et al, Techniques in Gastrointestinal Endoscopy 19, 

2017) 
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Figure 2. M1 and M2 macrophages phenotype and functions. 

Schematic representation of phenotypic as well functional plasticity of 

macrophages. M1 macrophages, classically activated, are usually induced by 

INFγ or LPS and produce proinflammatory cytokines stimulating the immune 

response and tissue injury. M2 alternatively activated macrophages, are 

activated usually after IL4 and IL13 stimulation, and are implicated in tissue 

repair and modelling but also in tumor promotion. (Nadella V. et al, Integr 

Cancer Sci Therap, 2016) 
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Figure 3. Stage-Dependent Effects of Adipose Tissue Vascularization.  

Adipose tissue undergoes hypertrophic and hyperplastic alterations during the 

course of obesity. Induction of vascularization has beneficial effects at early and 

late stages of the disease, as it results in decreased hypoxia and inflammation. 

In late stages reduced vasculature can reduce obesity but with an increase in 

hypoxia and apoptosis of the adipocytes. (Yilmaz M. et al, Cell Metab, 2013) 
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Figure 4. Molecular structure of PTX3 in human and mouse. 

PTX3 gene is organized into promoter region and three exons: the first exon 

encodes for leader peptide (17 amino acids) while the second and the third 

exons encode for N- and C-terminal domains of the protein (381 amino acids). 

Promoter region contains multiple transcription binding sites. (Balhara J. et al, 

Front. Immunol, 2013) 
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Figure 5. Schematic view of the functional role of PTX3. 

After infections, tissue damage or vascular inflammation, PTX3 production and 

release by neutrophils and other cells types increase rapidly so that it can be a 

potential diagnostic and prognostic marker of inflammation and tissue damage. 

Among its functions there are regulation of inflammation, tissue repair and 

modulation of complement activation. (Adapted from Magrini E. et al, Trends 

Mol Med, 2016) 
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Table 1. PCR protocol for the genotyping. 

 

 

  

PCR master mix:

GoTaq 5X Flexi buffer (Promega) 10 µl

MgCL₂ 25 mM (Promega) 6 µl

dNTP (Promega) 1 µl

Primer FW mut 10 µM
5’-CTGCTCTTTACTGAAGGCTC-3’

1 µl

Primer Rev 10 µM
5’-TCCTCGGTGGGATGAAGTCCA-3’

1 µl

Primer FW 10 µM
5’-AGCAATGCACCTCCTTGCGAT-3’

1 µl

GoTaq G2 DNA polimerase
(Promega)

0.5 µl

H₂O RNA-free 28.5 µl

DNA 2 µl

PCR thermal protocol:

95°C, 5min

10 
cicles

95°C, 30 sec

65°C, 30 sec

12°C, 1 min

25 
cicles

95°C, 30 sec

54.5°C, 30 sec

72°C, 30 sec

72°C, 15 min

4°C 
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Table 2. Standard Fat Diet (D12450H) composition. 

  

Class 
Description

Ingredient Grams

Protein Casein, Lactic, 30 Mesh 200.0 g

Protein Cystine, L 3.0 g

Carbohydrate Starch, Corn 452.2 g

Carbohydrate Sucrose, Fne granulated 176.8 g

Carbohydrate Lodex 10 75 g

Fiber Solka Floc, FCC200 50.0 g

Fat Soybean Oil, USP 25.0 g

Fat Lard 20.0 g

Mineral S10026B 50.0 g

Vitamin Choline Bitartrate 2.0 g

Vitamin V10001C 1.0 g

Dye Dye, Yellow FD&C #5, Alum. Lake 35-42% 0.0 g

Dye Dye, Red FD&C #40, Alum. Lake 35-42% 0.0 g

Protein: 20% kcal

Fat: 10% kcal

Carbohydrate: 70% kcal

Energy Density: 3.82 kcal/g
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Table 3. High fat diet (D12451) composition. 

 

 

  

Class 
Description

Ingredient Grams

Protein Casein, Lactic, 30 Mesh 200.0 g

Protein Cystine, L 3.0 g

Carbohydrate Sucrose, Fne granulated 176.8 g

Carbohydrate Lodex 10 100 g

Carbohydrate Starch, Corn 72.8 g

Fiber Solka Floc, FCC200 50.0 g

Fat Soybean Oil, USP 25 g

Fat Lard 177.5 g

Mineral S10026B 50.0 g

Vitamin Choline Bitartrate 2.0 g

Vitamin V10001C 1.0 g

Dye Dye, Red FD&C #40, Alum. Lake 35-42% 0.0 g

Protein: 20% kcal

Fat: 45% kcal

Carbohydrate: 35% kcal

Energy Density: 4.7 kcal/g
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Table 4. List of fluorescent-conjugated antibodies. 

List of antibodies used for flow cytofluorimetric analysis of blood, bone 

marrow and adipose tissues from WT and PTX3 KO mice.  
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Table 5. List of primers for mRNA quantification. 

List of primers used for gene expression analysis of VAT, SCAT and cells 

isolated from adipose tissues of WT and PTX3 KO mice. 
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Table 6. Descriptive table of h1/h1 and h2/h2 subjects.  

Clinical characteristics, biological parameters and therapies of carriers of PTX3 

haplotypes from the PLIC Study cohort. 

  

h1/h1 (n= 201) h2/h2 (n= 921) P

Age (years) 63 (56-69) 63 (56-68) 0.620

Gender (n, men) 94 357 0.045

Waist/hip ratio 0.90 (0.84-0.95) 0.87 (0.82-0.93) 0.003

Fasting glucose levels (mg/dL) 98.0 (90.0-107.0) 97.0 (90.0-105.0) 0.124

Type 2 Diabetes (n, yes) 17 59 0.295

Systolic blood pressure (mmHg) 130 (120-140) 130 (120-140) 0.795

Diastolic blood pressure (mmHg) 80 (75-85) 80 (70-80) 0.079

Hypertension (n, yes) 93 384 0.236

Total cholesterol (mg/dL) 232.0 (205.0-260.5) 230.0 (203.0-258.0) 0.237

HDL-C (mg/dL) 55.0 (46.0-68.0) 56.0 (49.0-68.0) 0.105

Triglycerides (mg/dL) 103.0 (76.0-137.5) 92.0 (68.0-127.7) 0.003

LDL-C (mg/dL) 150.6 (128.8-180.3) 149.6 (125.0-175.0) 0.297

ApoB (mg/dL) 117.5 (104.0-137.0) 116.0 (101.0-131.0) 0.027

ApoA-I (mg/dL) 154.0 (127.0-170.0) 157.0 (136.0-170.0) 0.081

Hypolipemictreatments (n, yes) 52 263 0.440

Alanine Transaminase, ALT (U/L) 22.0 (18.0-28.0) 21.0 (16.0-28.0) 0.155

Aspartate Transaminase, AST (U/L) 22.0 (19.0-25.0) 22.0 (18.0-26.0) 0.851

Gamma-Glutamyl Transpeptidase (U/L) 26.0 (22.0-37.0) 25.0 (20.0-37.0) 0.143

Creatinine (mg/dL) 0.92 (0.79-1.04) 0.88 (0.78-1.01) 0.055

Glomerular Filtration Rate (mL/min/1.73
m2)

78.97 (63.69-96.00) 76.97 (64.22-94.10) 0.510

Anti-aggregants (n, yes) 26 125 0.809

C-reactive Protein (mg/L) 2.46 (0.93-4.82) 1.76 (0.69-3.76) 0.014
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Figure 6. Experimental plan. 

PTX3 KO and WT mice were fad a high fat diet (HFD) or a standard fat diet 

(SFD), as control, for 20 weeks. At 10 weeks of diet magnetic resonance imaging 

(MRI) acquisition, glucose tolerance test (GTT) and insulin tolerance test (ITT) 

test were performed. The same procedures were repeated at 20 weeks of diet, 

followed after the sacrifice by an immunophenotypic analysis of the animal 

models. 
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Figure 7. Effect of diet induce obesity on body weight and organs weight. 

(A-B) Weight gain of C57BL/6 WT mice on SFD and HFD for 20 weeks and 

relative area under the curve (AUC), n=7 per group. (C) Visceral (VAT) and 

subcutaneous (SCAT) adipose tissue percentage of organ weight compared to 

final body weight of WT and PTX3 KO mice on SFD and HFD for 20 weeks, n=7 

per group. Data are presented as mean±SEM. Statistical analysis was performed 

with Student’s t test, *p<0.05, **p<0.01, ***p<0.001. 
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Figure 8. Effect of diet induce obesity on glucose homeostasis. 

(A-B) GTT on WT animals at 20 weeks of SFD and HFD regimen and related 

AUC, n=5 per group. (C-D) ITT on WT animals at 20 weeks of SFD and HFD 

regimen and related AUC, n=5 per group. Data are presented as mean±SEM. 

Statistical analysis was performed with Mann-Whitney test, *p<0.05, ***p<0.001. 
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Figure 9. Effect of diet induce obesity on visceral adipose tissue 

inflammation. 

Number of monocytes (mono), macrophages (Mac) and neutrophils (Neutro) 

per gram of VAT of WT on SFD or HFD for 20 weeks, n=3-11 per group.  (B) 

mRNA expression relative to Rpl (L Ribosomal Protein) in VAT of mice on SFD 

or HFD for 20 weeks, n=4-9 per group. Data are presented as mean±SEM. 

Statistical analysis was performed with Mann-Whitney test; *p<0.05, **p<0.01. 

 

Figure 10. Effect of diet induce obesity on PTX3 plasma levels. 

Plasma PTX3 levels measured at 10 weeks and 20 weeks after the starting of the 

HFD in C57BL/6 mice. Data are presented as mean±SEM. Statistical analysis 

was performed with Student’s t test (B), *p<0.05, ***p<0.001. 
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Figure 11. PTX3 is implicated in diet-induced obesity. 

(A-B) Weight gain and AUC of weight gain of groups on standard fat diet, 

n=11-12 per group. (C-D) Weight gain of WT and PTX3 KO mice on HFD 

measured weekly and AUC of weight gain, n=7 per group. (E) Daily intake 

measured in WT and PTX3 KO mice on HFD expressed as grams eaten per day, 

n=3 per group. Data are presented as mean±SEM. Statistical analysis was 

performed with Student’s t test (B), *p<0.05. 
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Figure 12. Reduced accumulation of fat in PTX3 KO mice on HFD. 

(A-B) MRI of visceral (A) and subcutaneous (B) adipose tissue in WT and PTX3 

KO mice on HFD performed at 10 weeks and 20 weeks, n=5 per group. (C) 

Representative magnetic resonance images of WT and PTX3 KO mice on HFD 

performed at 10 and 20 weeks. (D) Area of brown adipose tissue at 10 and 20 

weeks of HFD measured from magnetic resonance images, n=5 per group. (E) 

Representative MRI picture used for the quantification of brown adipose tissue 

in (D) graph. Data are presented as mean±SEM. Statistical analysis was 

performed with Mann Whitney test, *p<0.05, **p<0.01. 

  



Figures and Tables 

80 
 

 

 

 

 

Figure 13. Reduced VAT and SCAT in PTX3 KO mice on HFD 

Percentage of organ weight (liver, pancreas, spleen, visceral, subcutaneous and 

brown adipose tissue) compared to final body weight at 20 week-HFD, n=6-7 

per group. Data are presented as mean±SEM. Statistical analysis was performed 

with Student’s t test, *p<0.05, **p<0.01. 
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Figure 14. PTX3 deficiency doesn’t affect glucose homeostasis during diet-

induced obesity. 

(A-B) Glucose tolerance test (GTT) performed at 10 (A) and 20 (B) weeks from 

the beginning of the HFD in WT and PTX3 KO mice, n=5 per group. Glycemia 

was measured before i.p. glucose injection and after 15, 30, 60, 90 and 120 

minutes. (C-D) Insulin tolerance test (ITT) performed at 10 (C) and 20 (D) 

weeks from the beginning of the HFD in WT and PTX3 KO mice, n=5 per 

group. Glycemia was measured before i.p. insulin injection and after 20, 40, 60 

and 120 minutes. Data are presented as mean±SEM. Statistical analysis was 

performed with Mann Whitney test. 
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Figure 15. Similar glucose homeostasis in PTX3 KO and WT mice on SFD. 

(A-B) GTT performed on WT and PTX3 KO mice on SFD at 10 weeks (A) and 20 

weeks (B) from the beginning of the diet, n=5 per group. (C-D) ITT test 

performed on SFD fed WT and PTX3 KO mice at 10 (C)and 20 (D) weeks from 

the beginning of the diet regimen, n=5 per group. Data are presented as 

mean±SEM. Statistical analysis was performed with Mann Withney test. 
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Figure 16. PTX3 does not affect lipid metabolism. 

(A) Cholesterol, (B) triglycerides, (C) insulin and resistin concentrations in WT 

and PTX3 plasma after 20 weeks of SFD or HFD, as indicated; n=6-10 per 

group. Data are presented as mean±SEM. Statistical analysis was performed 

with Mann Withney test (A, B) or Student’s t test (C, D), *p<0.05, **p<0.01. 
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Figure 17. Bone marrow monocytes and neutrophils distribution.  

(A) Absolut number of cells in bone marrow of WT and PTX3 KO mice after 20 

weeks of HFD. (B) Percentage of CD11b+ in WT and PTX3 KO mice after 20 

weeks of HFD. (C-D) Percentage of monocytes (C) and neutrophils (D) in bone 

marrow of WT and PTX3 KO mice on HFD (n=4-5 per group). Data are 

presented as mean±SEM. Statistical analysis was performed with Mann-

Whitney test. 
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Figure 18. Blood monocytes and neutrophils characterization by flow 

cytometry.  

(A) Gating strategy: selected CD11b+ cells and among them through the use of 

specific antibody anti-Ly6C and Ly6G are identified monocytes (Ly6C+Ly6G-) 

and neutrophils (Ly6C+Ly6G+). (B-D) Cells per µl of blood in WT and PTX3 KO 

mice after 20 weeks of SFD or HFD, in particular CD11b+ cells (B), neutrophils 

(C) and monocytes (D), n=4 per group. (E, F) Monocytes subsets distribution in 

blood of WT and PTX3 KO mice on SFD (E) and HFD (F), n=4-12 per group. 

Data are presented as mean±SEM. Statistical analysis was performed with 

Mann-Whytney test. 
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Figure 19. Strategy for the characterization of blood T lymphocytes by flow 

cytometry.  

(A) Gating strategy for the identification of B cells (CD3-CD19+), T 

lympphocytes (CD3+CD19-), T helper lymphocytes (CD3+CD4+) and T 

cytotoxic lymphocytes (CD3+CD8+) T lymphocytes and their subsets (T effector 

memory CD44+CD62L+, T effector CD44-CD62L-, T naive CD44-CD62L+, T. 

central memory CD44+CD62L+). (B) CD19+ T cells per µl of blood in WT and 

PTX3 KO mice after 20 weeks of SFD or HFD, n=4 per group. (C) CD3+ T cells 

per µl of blood in WT and PTX3 KO mice after 20 weeks of SFD or HFD, n=4 

per group. Data are presented as mean±SEM. Statistical analysis was performed 

with Mann-Whitney. 
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Figure 20. Blood CD4+ and CD8+ T lymphocytes characterization by flow 

cytometry.  

(A) CD4+ T cells per µl of blood in WT and PTX3 KO mice after 20 weeks of 

SFD or HFD, n=4 per group. (B, C) CD4+ T cells subsets distribution in blood of 

WT and PTX3 KO mice on SFD (B) and HFD (C), n=7-11 per group. (D) CD8+ T 

cells per µl of blood in WT and PTX3 KO mice after 20 weeks of SFD or HFD, 

n=4 per group. (E, F) CD8+ T cells subsets distribution in blood of WT and 

PTX3 KO mice on SFD (E) and HFD (F), n=7-11. Data are presented as 

mean±SEM. Statistical analysis was performed with Mann-Whitney test. 
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Figure 21. PTX3 deficiency associates with reduced VAT inflammation.  

mRNA expression relative to RPL (L Ribosomal Protein) of inflammatory genes 

in VAT (A) and SCAT (B) of WT and PTX3 KO mice on 20-week HFD, n=5-10 

per group. Data are presented as mean±SEM. Statistical analysis was performed 

with Student’s t test or Mann-Whitney, *p<0.05 
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Figure 22. PTX3 deficiency associates with reduced VAT recruitment of 

innate immune cells.  

(A) Sorting strategy for monocytes, neutrophils and macrophages from visceral 

and subcutaneous adipose tissue. (B-C) Numbers corrected for tissue weight of 

sorted monocytes (mono), macrophages (mac) and neutrophils (neutro) in VAT 

(B), n=9-10 per group, and SCAT (C), n=4-6 per group, of WT and PTX3 KO on 

20-week HFD. Data are presented as mean±SEM. Statistical analysis was 

performed with Mann-Whitney test, *p<0.05. 
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Figure 23. PTX3 deficiency associates with a more pro-resolving monocytes 

and macrophages profile. 

(A-B) mRNA expression relative to RPL in monocytes sorted from VAT (A) and 

SCAT (B) of WT and PTX3 KO mice on 20-week HFD, n=3-5 per group. (C-D) 

mRNA expression relative to RPL in macrophages sorted from VAT (C) and 

SCAT (D) of WT and PTX3 KO mice on 20-week HFD, n=3-5 per group. (E) 

Quantification of the numbers of crown like structure, and representative 

images, in VAT sections from WT and Ptx3-/- mice on 20-week HFD (legends: 

from score 1 -no crown detected- to score 5 -equal or more than 4 crowns-), n=6 

per group. Data are presented as mean±SEM. Statistical analysis was performed 

with Mann-Whitney test, *p<0.05, **p<0.01. 
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Figure 24. PTX3 KO mice on HFD present smaller adipocytes compared to 

WT on HFD. 

(A) Quantification of adipocyte area in VAT of WT and PTX3 KO on 20-week of 

SFD or HFD, n=5-8 per group. (B) Representative pictures of VAT sections 

stained with haematoxylin and eosin are shown. (C) Quantification of 

adipocyte area in SCAT of WT and PTX3 KO on 20-week of SFD or HFD, n=5-8 

per group. (D) Representative pictures of SCAT sections stained with 

haematoxylin and eosin are shown. Data are presented as mean±SEM. 

Statistical analysis was performed with Mann-Whitney test, *p<0.05. 
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Figure 25. PTX3 KO mice present enhanced vascularization of VAT. 

(A-B) mRNA expression relative to RPL of genes related to vascularization in 

VAT(A) and SCAT (B) of WT and PTX3 KO mice on 20-week HFD, n=5-8 per 

group. (C-D) Quantification of Vegfa (C) and Cd31 (D) in VAT of WT and PTX3 

KO mice on 20-week HFD, n=5-6 per group. (E) Representative panel for VEGF 

and CD31 Western blot are shown. Data are presented as mean±SEM. Statistical 

analysis was performed with Mann-Whitney test, *p<0.05. 
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Figure 26. Characterization of h1/h1 and h2/h2 PTX3 haplotype carriers from 

PLIC study. 

(A) PTX3 plasma levels in h1/h1 and h2/h2 subjects from the PLIC study; h1/h1 

n=163, h2/h2 n=817. (B) Body Mass Index (BMI), h1/h1 n=201, h2/h2 n=921. (C) 

Representative images obtained by DEXA scan of two individuals of the h1/h1 

and h2/h2 haplotypes for PTX3. (D) Android fat mass and (E) gynoid fat mass 

were evaluated by DEXA scan in the two groups, h1/h1 n=210, h2/h2 n=941. (F) 

Android-gynoid ration. Data are presented as mean±SEM. Statistical analysis 

was performed with Kolmogorov-Smirnov non-parametric test (A), Mann-

Whitney non-parametric test (B, D, E, F), *p<0.05. 
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Figure 27. PTX3 deficiency protects from HFD-induced obesity. 

PTX3 KO mice show less pronounced visceral adipose tissue hypertrophy 

compared to WT mice. This effect is associated with increased vascularization, 

decreased infiltration of pro-inflammatory monocytes and macrophages. 
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