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1.0 Abstract 

Dosage compensation (DC) is a highly plastic process responsible for altering 

transcriptional regulation, so as to preserve homeostasis in species with different 

karyotypes in the sexes. Over the past several decades this process has emerged 

as a robust model for understanding the relationship between transcriptional 

regulation and higher-order chromatin structure. In Drosophila melanogaster DC, 

the single male chromosome X undergoes an average two-fold transcriptional up-

regulation for balancing the transcriptional output between sexes. Previous literature 

evidences proposed that a global change in chromosome structure may accompany 

this process. 

Recent studies in other model systems suggested that chromosome X in response 

to dosage compensation shows a highly altered structure. Namely, in mammals it 

loses all genome compartmentalisation post silencing by Xist, and in C. elegans it 

shows altered insulation post reduction of gene expression. All of these studies were 

based on Hi-C. Yet, in case of drosophila, no such structural changes were found 

using Hi-C. This raises questions regarding the sensitivity of Hi-C in cases where 

transcription un-regulation is localized, and questions the mounting evidence in 

literature showing a causal link between transcriptional processes and higher-order 

chromatin structure. 

Here I show that global conformational differences are indeed present in the male 

X chromosome and are detectable using Hi-C data on sex-sorted embryos 

alongside male and female cell lines. This task, was only made possible with the 

implementation of novel data analyses solutions. I show that the male X 

chromosome presents a more accessible structure. I identified differences in local 

genome compartmentalization, with several TAD boundaries disappearing or 
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weakening in male X chromosome. These boundaries co-localize with features 

related to the binding of the dosage compensation complex. The strongest 

correlation we observed was in relation to a dosage compensation complex co-

factor CLAMP, which shows differential binding pattern between the sexes. This 

protein was reported to enhance chromatin accessibility. I present conclusive 

evidence supporting a changing global chromosome structure in response to 

dosage compensation. 

I did not observe any differences in insulator binding. This is addition to change in 

insulation challenges the idea that insulation is a function of insulator binding. In the 

future, I would like to explore this avenue to understand how different players 

affecting genome functionality affect insulation as read-out from Hi-C data.  

In the course of this work, Hi-C data binned at higher resolutions tended to become 

extremely memory intensive. With this, I identified a need to develop a data handling 

solution which would allow me to work more efficiently with such high-resolution Hi-

C datasets. Although, such solutions have been described for python, no such 

solution exists for R. I aimed to create an on-disk database which circumvents the 

problem of loading data into memory, solves its own dependencies and plays well 

with existing Hi-C formats. To address these aims, I developed HiCLegos, a 

package built for the R statistical environment. HiCLegos, implements an on-disk 

HDF data structure for storing and manipulating Hi-C data. HiCLegos is deployed 

as a Bioconductor package. This ensures better dependency solving and higher 

visibility from a growing community of biology focused developers. Finally, 

HiCLegos provides methods for loading 2D matrices and consortium generated 

sparse matrix files. From a user perspective, HiCLegos offers analysis centred 

methods for data retrieval, such as retrieving data for genomic loci separated by a 

certain distance. 
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2.0 Introduction 

Higher-order chromatin structure has been investigated for more than a 

century. This investigation and our understanding of it has been accelerated since 

the advent of next-generation sequencing technology and other high-throughput 

methods. Here, the advent of chromosome conformation capture (3C) is considered 

as a milestone for the study of higher-order chromatin structure.  

The first part of this introduction covers, in brief the century preceding the 

invention of chromosome conformation capture and our understanding of the 

relationship between higher-order chromatin structure and genome function. The 

second part of this introduction covers the technique chromosome conformation 

capture and the advancement of our understanding of the relationship between 

higher-order chromatin structure and genome functionality. Lastly, I discuss 

transcriptional regulation, how dosage compensation is a valid model for studying 

transcriptional regulation and how chromatin structure effects or is affected by such 

regulatory processes.  

2.1.0 Before chromosome conformation capture 

Carl RabI hypothesized in 1885 that chromosome structure remains 

conserved and the interphase chromosomes, have a certain degree of nuclear 

localization with an orientation that matches the polarization observed during 

metaphase (Cremer and Cremer 2006; 2010). These regions of localisation in the 

nucleus were later termed Chromosome Territories (CTs) (Cremer and Cremer 

2010). Technological advancements in microscopy during the 1970s, allowed the 

visualisation of interphase chromosomes by Stack et al., 1977. Showcasing for the 

first time, the nuclear space partitioning property of interphase chromosomes(Stack 

et al. 1977). During this time, the popular view was that chromatin pervaded the 
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entirety of the nuclear space, with only heterochromatin being condensed and the 

euchromatic chromatin fibres being aggregated in this space (Comings 1968; Vogel 

and Schroeder 1974; Wischnitzer 1973). Stack et al. reconciled their findings with 

this model by suggesting that de-condensed chromosomes by virtue of availability 

of space within the nucleus will experience a certain level of cross-talk with other 

chromosomes at their boundaries and would result in the blurring of these 

boundaries. This would have been beyond or at the detectable limit of then current 

microscopy technologies. A scenario such as this posed the question as to the 

mechanistic source of chromosomal territory formation. Stack et al. postulated that 

a relationship between the nuclear matrix (Berezney and Coffey 1977) and de-

condensed chromatin may be responsible. These results were further confirmed 

using different experimental procedures (Cremer et al. 1982; Zorn et al. 1979) in 

chinese hamster ovary cells.  

Several models were laid out during the next two decades. Taking current 

literature into context, it was postulated that a higher-order eukaryotic genome is 

partitioned into three-dimensional (3D) structures characterised by a distinct 

differentiation state and these structures hierarchically aggregate to form a large 

three dimensional structure of the zygotic genome (Blobel 1985). Towards this 

hypothesis, certain key assumptions were made. The first being, that a 11nm “beads 

on a string” chromatin fiber, wound up to form a 30nm chromatin fibre, which was 

further packaged into higher-order hierarchically stacking structures of more or less 

condensed chromatin (Blobel 1985). In this model, each higher order structure was 

characterised by a specific differentiation state. Although very similar to what is 

currently known, this model had a few caveats. Since differentiation states change 

while transitioning through the cell cycle, these states had to converge on one 

common state to form the highly condensed metaphase chromosomes. To 
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circumvent this problem, it was proposed that these structures still existed were sub-

microscopic and beyond the achievable resolution of then current technology. To 

ensure functional relevance of this model, it was also proposed that genotypic 

differences between individuals lent variation in these 3D structures, and each 

individual in species with dimorphic sexes had a different set of 3D structures in their 

germ line genomes. These 3D structure converged to form a unique zygotic 

ensemble from which new variant 3D structures would arise. The author theorized, 

that DNA by itself did not contain the complexity required to generate these three-

dimensional structures. Therefore, the nuclear pore complex (NPC) and nuclear 

lamina were proposed as factors required for the maintenance and establishment 

of these three-dimensional chromatin aggregates. NPC, an organelle which acts as 

a bridge for macromolecular traffic between the nucleus and the cytoplasm 

(Feldherr et al. 1984), would act as an anchor points which hooks on onto 

transcribed genes in the less condensed 3D structures via DNA binding regions in 

its constituent subunits. Whereas, Lamins A, B, C, which make up the nuclear 

lamina (Gerace et al. 1978) would be responsible for structuring the high compaction 

regions of the chromatin. Partly in agreement with aforementioned model, it was 

observed that DNAase I-sensitive regions of active chromatin localized at the 

periphery of the interphase nucleus in cultured cells and at the the inter-chromatin 

space in mature red blood cell nuclei (Hutchison and Weintraub 1985). 

With advances in technology, such as the development of high-resolution in-

situ hybridization, it became possible to observe genes (Lawrence et al. 1988; 

Lichter et al. 1988b), chromosomal domains (Manuelidis and Borden 1988; Pinkel 

et al. 1986; Cremer et al. 1986), and single chromosomes (Manuelidis 1985; Pinkel 

et al. 1988; Lichter et al. 1988a; Manuelidis 1990). Domains could be classified into 

different structures based on their size and genetic constituents. In one version 
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(Manuelidis 1990), each genetic unit became a loop domain of approximately 30kb 

in size, these loop domains aggregated to form larger transcriptional and replication 

units that correspond to chromosomal banding patterns. In this model, even larger 

domains were comprised by constitutive heterochromatin regions which spanned 

approximately 9mb. This particular model partially aligned with the previous stated 

model (Blobel 1985) in the context that it took into account the hierarchical folding 

of chromatin and that chromatin folded into 30nm fibers. Although, the previous 

model did not take into account the formation of loop domains or the existence of 

what was proposed as the solenoid fibres. Furthermore, these small band domains 

on chromosomal arms could be classified based on their trypsin resistance. Trypsin 

resistant regions were called G-dark bands, whereas trypsin susceptible regions 

were called G-light bands (Holmquist 1989). G-light regions corresponded to 

accessible early replicating regions in lymphocytes and may host housekeeping 

genes (Manuelidis 1990), whilst G-dark regions corresponded to inaccessible late-

replicating regions. It was noted that since non-coding DNA constitutes 90% of the 

genome, it may confer recognition features by creating structural partitions between 

functional genetic units (Manuelidis 1990). This partitioning would allow trans-acting 

DNA modifying and binding factors to easily reach their effector destinations 

(Manuelidis 1990). Already, there were also some observable functional relevance 

to this model. The G-dark β-globin locus is selectively turned into an accessible 

region in selected cell types (Dhar et al. 1989). But this locus being inappropriately 

transcribed in chicken brain nuclei, still showed proper β-globin expression under 

the control of trans-acting regulators (Lois et al. 1990). The G-light regions were 

also implicated as regions containing oncogenes (Manuelidis 1990). 

Similar band domain definitions were also reached based on GC-content 

(Bernardi 1995). GC-rich bands were named R-bands, whereas GC-poor bands 
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came to be known as G-bands (Saccone et al. 1993). G and R bands have high and 

low gene concentrations respectively (Cuny et al. 1981; Saccone et al. 1996). 

Constitutively expressed housekeeping genes reside on early replicating R-bands, 

while late replicating G-bands contain tissue specific genes (Sadoni et al. 1999). 

Furthermore, it was reported that these band domains are present as distinct 

domains within chromosome territories (Zink et al. 1999). Additional data indicated 

a possible relationship between these domains and replication foci, regions where 

actively replicated DNA, nascent DNA and associated factors are found. By the 

dawn of the 21st century, the community had started to adopt an integrative view of 

the higher-order chromatin structure and nuclear processes such as replication and 

transcription (Sadoni et al. 1999). 
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2.2.0 Chromosome conformation capture 

 
Figure 1 (Adapted from de Wit and de Laat, Genes & Dev., 2012) - Flow chart showing the steps 
involved in the four major chromosome conformation experiment. First, chromatin is cross-linked 
using a chemical cross-linker such as formaldehyde. Second, the cross-linked chromatin are then 
digested with a restriction enzyme. Third, the digested, cross-linked chromatin is ligated under 
conditions promoting intra-molecular ligation, creating cross-linked ligation circles. Finally, the cross-
linking is reversed. Here the four techniques diverge. In 3C, specifically designed probes are used 
to quantify the proximity probability of two restriction fragments. Therefore, it is referred to as a one 
vs one technique. 4C probes the proximity probability of one restriction fragment against all other 
fragments. In 4C, the ligation circles are further digested by another frequent cutting restriction 
enzyme and then re-ligated. Using outward facing primers designed on the fragment of interest, the 
ligation circles containing the fragment of interest are linearised using inverse PCR. The linearised 
products are then sequenced to get proximity probability values between the fragment of interest and 
all other fragments in the genome. Therefore, 4C is referred to as one vs all. 5C, probes the 
interaction between many different restriction fragments. To the 3C circles, specific primers are 
annealed. These primers hybridise to specific restriction fragments. Primers annealed in a head-to-
head fashion are ligated by the addition of Taq ligase. This generates the 5C library which is then 
amplified and sequenced to yield the proximity probability values between all the restriction 
fragments of interest. Therefore 5C is known as the many vs many procedure. In Hi-C the ligation 
circles contain a biotinylated base at the ligation junction. These ligation junctions are purified using 
streptavidin beads after shearing with sonication. These purified regions are then amplified and 
sequenced to generate proximity probability values between all regions of the genome. Therefore, 
Hi-C is known as the all-vs-all procedure. 
 

The description of 3C or chromatin conformation capture by Dekker et al., 

2002 (Dekker et al. 2002) signalled the beginning of an accelerated growth phase 
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in the field of higher-order chromatin structure with an active involvement of 

sequencing technologies. Chromosome conformation capture or 3C (Figure 1 top, 

3C) as originally described, involves; 

• Isolation of intact nuclei. 

• Cross-linking of proteins and DNA inside the nucleus by using 

formaldehyde. 

• The cross-linked DNA is then digested with sequences specific/frequent 

cutting restriction enzymes. 

•  The cross-linked DNA with restriction enzyme digested ends are then 

ligated in highly dilute conditions. This promotes intra-molecular ligation. 

Here, one molecule refers to cross-linked DNA with restriction enzyme 

digested ends. 

•  The cross-linking is then reversed, and the ligation products are quantified 

using qPCR and probes designed for specific ligation products. 

• To normalise these values, control ligation products are generated in 

equal abundance. These regions are quantified and used as a 

normalisation factor for the cross-linked DNA. 

Using 3C, Dekker et al., 2002 (Dekker et al. 2002) were able to recapitulate 

known general features of the yeast chromatin organization. In brief, they were able 

to show that the telomeres of chromosomes contacted each other more than 

expected considering the genomic distance separating them. This was expected, 

because in yeast the telomeres are known to cluster in 3-D space (Dekker et al. 

2002). In premeiotic cells, centromeres in yeast form a cluster near the spindle body. 

This cluster breaks down during meiosis and is later reconstituted after the first 

division. They were also able to recapitulate these events. Using the chromosome 

IV centromere as an anchor (CEN4), they detected strong interactions with the 
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centromere of chromosome III (CEN3) premeiosis. When probing the same regions 

interactions after the onset of meiosis, they observed a marked decrease in 

interaction frequency. 

The invention of 3C makes direct probing of regulatory networks possible. 

More importantly, the actual mechanism of regulation could be quantified. The 

original 3C protocol utilised HindIII which cuts at sequence specific sites that are 6-

bp long, but the protocol can be adapted for a range of different restriction enzymes, 

such as BglII, SacI, BamHI, EcoRI, AciI, DpnII (de Wit and de Laat 2012). The 

adaption of 3C with the usage of BglII lead to the first direct evidence showcasing 

long-range looping interactions during transcription between the murine β-globin 

LCR and the active globin gene (Tolhuis et al. 2002). Prior to this, evidence 

supporting looping came from prokaryotic operon systems. The evidence suggested 

that regulatory sequences separated by large distances and required for the 

repression of the gal and araBAD operon were bound by their corresponding 

repressors (Ptashne 1986). The predominant idea was that proteins at the 

regulatory sequences interacted with other proteins near the transcription start site 

and the interjecting DNA looped out from that region. Afterwards, it was shown that 

the long-range looping interactions in the β-globin locus dynamically change with 

changes in transcription during development (Palstra et al. 2003) and that these 

changes are driven by transcription factors (de Wit and de Laat 2012).  

3C is limited by the distances and targets that can be probed. Because, 

regions which are proximal in linear space are also proximal in 3D space an inherent 

bias is present wherein ligation products from DNA fragments within a few kilobases 

of the probe-site dominate the sample. Also, 3C only allows the probing of very 

specific one-on-one interactions. The invention of 4C or Chromosome conformation 

capture-on-chip (Figure 1 top, 4C) was aimed at probing one-vs-all. 4C attempts to 
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quantify the interaction frequency that any given loci has to interact with the probe 

site (“viewpoint”). There are two variants of 4C, one uses microarrays containing a 

preconfigured set of sequences, the other named 4C-seq uses next generation 

sequencing technologies (Splinter et al. 2011) to capture interactions between the 

viewpoint and all other restriction sites. There are two main methods of creating 4C 

libraries.  

The first relies on the usage of a single frequent 4-bp cutting restriction 

enzymes to create cut sites after cross-linking. After de-cross-linking, the ligation 

circles containing both junctions between the viewpoint and captured fragments are 

amplified with inverse PCR by using outward facing primers on the viewpoint 

fragment. The second uses, two restriction enzymes. A 6-bp cutting enzyme is used 

after cross-linking, this is followed by ligation and de-cross-linking which generates 

very large ligation circles. Next, a frequent 4-bp cutting restriction enzyme is used 

to further trim these circles, followed by another step of ligation. Finally, the ligation 

circles containing two junctions involving the viewpoint fragment are amplified with 

inverse PCR by using outward facing primers on the viewpoint fragment (Simonis 

et al. 2007). Notably, 4C was used to highlight the separation between active and 

inactive regions of the genome using the β-globin gene which is a tissue specific 

gene against Rad23 a housekeeping gene as a control. It was shown that, Rad23 

made contacts with many active regions on its own chromosome and on other 

chromosomes. But the erythroid specific β-globin gene made contacts with other 

active regions in erythroid cells. Whereas, in fetal brains the β-globin since it is 

inactive only contacted other inactive regions (Simonis et al. 2006). The stability of 

chromosome conformation has also been probed with the help of 4C. Previous FISH 

studies had suggested that an ectopic human β-globin LCR placed within a cluster 

of housekeeping genes in mice would move the cluster outside its chromosome 
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territory (Noordermeer et al. 2008). Later investigating the same scenario with 4C 

revealed that in reality no new contacts were established (Noordermeer et al. 

2011a). 4C based microarrays have also been used to showcase the different 

chromosome conformations of active vs inactive chromosome X in the context of 

mammalian dosage compensation (Splinter et al. 2011).  

A less sensitive but more specific version of 4C is 5C or chromosome 

conformation capture carbon copy (Figure 1 top, 5C) (Dostie et al. 2006). Rather 

than probing for a single viewpoint versus all other genomic sites, 5C probes all 

possible pairwise interactions between a set of predefined viewpoints. First, a 3C 

library is generated by cross linking, digestion with restriction enzyme, ligation and 

de-cross-linking. To this library a set of predefined 5C primers originating from the 

fragments of interest are annealed. Both forward and reverse primers are used. 

Furthermore, these primers also contain universal PCR primers (T7 for the 5’-ends 

of forward primers, T3c for 3’ ends of reverse primers) at their tails. Next, application 

of Taq ligase ensures that the annealed 5C primers at the ligation junction are 

ligated. This creates the 5C library, which captures a part of the 3C library. The final 

ligation products of interest in this library are the head-to-head 5C primer ligation 

products between a forward and reverse primer with the universal PCR tails facing 

outwards. These ligation products are then amplified using the universal PCR 

primers. Since both forward and reverse primers are present in equimolar quantities, 

the amplified signal of each head-to-head ligation product reflects the relative 

enrichment of any given interaction between two genomic loci. 5C can be thought 

of as being a high-throughput but more specific version of 3C with sensitivity that is 

lesser than 4C. 

5C has been used to address many diverse problems. A detailed structural 

analysis of the tissue specific α-globin gene in K562 (expressing α-globin) versus 
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GM12878 (α-globin not expressed) has been done (Baù et al. 2011). Using in-silco 

modelling of a 500 Kb gene dense region of chromosome 16 which harbours the α-

globin gene Baù et al. showed, that, in GM12878 cells where α-globin is not 

expressed this entire region forms a single domain or what the authors call globules, 

but in K562 cells where α-globin is heavily expressed two such domains are formed. 

In both globules active genes tend to cluster near the centre, while the inactive 

genes are positioned towards the periphery of the globule. Most notably, the 

ENCODE consortium showed that proximity probability values in 5C maps strongly 

correlated with known regulatory regions the consortium had identified with the help 

of genome-wide DNase I hypersensitivity screens (Thurman et al. 2012). 

Furthermore, 5C has also been used to investigate the changes in 3D organisation 

during cellular differentiation (Phillips-Cremins et al. 2013). Using neural progenitor 

cells derived from mouse ES cells a diverse set of interactions (90,000 cis and 

500,000 trans) were probed near developmentally regulated genes (Oct4, Nano, 

Sox2, Klf4, Nestin, Olig1-Olig2) at seven different genomic loci. This lead to the 

characterisation of locus specific higher-order chromosome conformations, cell type 

specific (ES, NPC specific) and constitutive interactions between different genomic 

loci (Phillips-Cremins et al. 2013). The activation of proto-oncogenes due to 

disruption of chromosomal domains (Hnisz et al. 2016) and the structure of the 

mitotic chromosome (Naumova et al. 2013) has also been investigated using 5C.  

Hi-C or high-throughput chromosome conformation capture (Figure 1 top, 

Hi-C) was a technological leap for chromosome conformation capture (Lieberman-

Aiden et al. 2009; Belton et al. 2012). Although the technique has evolved 

considerably over the years, the basic principles underlying Hi-C is still the same as 

3C. Coupled with carefully designed statistics, Hi-C allows for the quantification of 

proximity ligation events between any two genomic loci separated by any given 
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distance through a single experiment without requiring the usage of pre-designed 

primers or viewpoints, such as 5C or 4C. Therefore, Hi-C is popularly called the “all-

vs-all” C method. Hi-C aims to capture a snapshot representing a subset of the total 

interaction space. Because Hi-C is extremely scalable, the library complexity is a 

key factor that affects the quality of a Hi-C experiment. In any given chromosome 

conformation experiment, restriction fragments which are proximal in linear space 

are also more probable to be proximal in 3D space, therefore to capture more distant 

interactions highly heterogeneous (undergoing asynchronous cell division) cell 

populations are required. In a Hi-C/3C experiments, one cell can contribute one 

interaction for a given restriction fragment. Therefore, a large population of cells 

allows for larger library complexity (Belton et al. 2012). After cross-linking and 

digestion with restriction enzymes, the overhangs are filled in with biotinylated 

residues for purification of ligation circles. Biotinylated residues do not have very 

high ligation efficiency therefore un-ligated ends are digested using endonucleases. 

After the removal of un-ligated biotinylated residues these ligation circles are 

sonicated. The sonicated fragments containing the ligation junctions with the 

biotinylated bases are pulled down using streptavidin beads. Finally, these regions 

are subjected to paired end sequencing (Belton et al. 2012). In the resulting mate-

pairs, one mate originates from one restriction fragment whereas the other mate 

originates from another restriction fragment. Therefore, each such mate pair 

corresponds to a proximity event between any two restriction fragments. The 

quantification of these events are not count values, rather these are probabilistic 

values reflecting the relative probability of any two genomic loci being proximal in 

3D space compared to such events occurring in the genome.  

Hi-C allowed the first genome-wide view of the chromatin folding landscape. 

This showed that Hi-C matrices, containing contact probability values could be 
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partitioned into two separate compartments (Lieberman-Aiden et al. 2009), A and 

B. Both compartments showcase similar features in the contact space. Genomic loci 

within these compartments tend to interact more with other genomic loci from the 

same compartment (A to A or B to B). This happens even when the linear separation 

between genomic loci from separate compartments (A to B) may be less than their 

partners in the same compartment (A to A). In general, the contact probabilities 

between genomic loci in separate compartments tend to be depleted. Compartment 

A corresponds to active regions based on correlation with, gene-rich regions, higher 

than average mRNA expression, accessible chromatin and presence of activating 

or repressing chromatin marks. Compartment B on the other hand corresponds to 

inactive regions (Lieberman-Aiden et al. 2009). These compartments align with 

band domain definitions from previous studies (Manuelidis 1990; Bernardi 1995). 

These compartments can be further sub-divided into smaller domains, 

popularly termed as Topologically associated domains (TADs) (Sexton et al. 2012; 

Dixon et al. 2012). TADs are regions in Hi-C matrices wherein very far apart 

genomic loci tend to contact each other more than their immediate neighbours. 

2.2.1 The different variants of Hi-C 

The original protocol of Hi-C as stated above is known as dilution Hi-C (Rao 

et al. 2014). This protocol has been improved over the years by many different 

contributors and each is known by the variation it perpetrates. It is important to note, 

that there are technical and functional modifications in Hi-C. In case of technical 

modifications, these modifications aim to solely improve the throughput of Hi-C as 

a technique. Whereas functional modifications aim to improve the the biological 

context of the read-outs coming from Hi-C. One of the first variants of Hi-C was 

tethered chromatin conformation (TCC) (Kalhor et al. 2011). Dilution Hi-C relies on 

cross-linking, digesting and ligating DNA under diluted conditions. Therefore, it 
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relies on intra-molecular ligation events (between digested DNA ends which are 

cross-linked to proteins) occurring due to the lower concentration of substrate 

(cross-linked, digested DNA). Yet, a very high proportion of ligation events occur 

between random DNA fragments. After cross-linking and restriction enzyme 

digestion, cysteine residues in cross-linked proteins are tagged with biotin and 

tethered to streptavidin coated beads (tethering). After tethering the digested 5’ 

overhangs are filled in with biotin tagged bases and ligated. Afterwards, the normal 

steps in Hi-C are followed. TCC is able to increase the signal-to-noise ratio 

considerably (Kalhor et al. 2011).  

Another technique which attempted to address the issue of signal-to-noise 

ratio was genome-wide 3C (Duan et al. 2012). This technique is a more high-

throughput version of 4C. Herein, using the normal steps of 3C, i.e. cross-linking, 

digestion with a 6-bp restriction enzyme, inducing intra-molecular ligation, and 

reversing the cross-links, a normal 3C library is obtained. This 3C library is then 

further digested with a second 4-bp restriction enzyme, and re-ligated to create even 

smaller ligation. Now each circle contains one ligation junction each for the 6-bp 

enzyme and 4-bp enzyme. The ligation junction created by the first enzyme is once 

again digested and adaptors for EcoP15I are ligated to the cut ends and a 

biotinylated adaptor is ligated to both these adaptors closing the circle once again. 

EcoP15I is a type III restriction enzyme, and it makes cut sites 25-30 bases 

downstream from the recognition sequences. EcoP15I is now used to make these 

cuts generating the final product containing 25-27 bases from the two restriction 

fragments on both ends, with the EcoP15I adaptor sequences and the biotin labelled 

adaptor in the middle. Using streptavidin labelled beads, the products containing the 

incorporated adaptors are enriched and finally sequenced (Duan et al. 2012). This 

method was first used to elucidate the principles of 3D genome organisation in yeast 



23 
confirming with genome-wide data the Rabl configuration of the interphase 

chromosomes (Duan et al. 2010). 

To address the issue of ligation efficiency in biotinylated bases, Simplified Hi-

C was developed. Simplified Hi-C is similar to dilution Hi-C, but eliminates the usage 

of biotinylated bases and the enrichment step where ligation circles containing biotin 

are enriched using Streptavidin beads. The underlying principle being, even if these 

circles are not enriched we should be able to capture the library complexity using 

higher depth of sequencing. Simplified Hi-C was originally used to elucidate the 

principles underlying chromatin folding in flies (Sexton et al. 2012).  

The restriction enzymes used in Hi-C are generally 4-bp or 6-bp cutters, 4-

bp cutters generally produce restriction fragments which have an average size of 

256bp. Whereas, 6bp cutters produce restriction fragments which have an average 

size of 4kb (Simonis et al. 2007). Therefore, Hi-C is unable to go beyond the single 

fragment resolution using periodically cutting restriction enzymes. This poses a 

problem for organisms such as Saccharomyces cerevisiae which have smaller 

genes and showcase functionally relevant structures such as gene-loops which 

range in length between 2 and 10 nucleosomes (Hsieh et al. 2015). To overcome 

the problem of resolution in smaller genomes and to increase the highest resolution 

possible, Micro-C was developed. Micro-C makes use of micrococcal nuclease to 

achieve single nucleosome resolution in Hi-C maps. The technique was originally 

used to investigate the global 3D organisation of the yeast genome (Hsieh et al. 

2015). Due to the increased signal-to-noise ratio, the authors were able to identify 

chromosomally interacting domains (CIDs) in yeast (regions in Hi-C maps similar to 

TADs, but inter-chromosomal).  

The implications of using formaldehyde based cross-linking was also 

explored in the development of Micro-C XL (Hsieh et al. 2016). Formaldehyde is a 
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short cross-linker ( less than 2 Å distance between groups), comparatively 

disuccinimidyl glutarate (DSG) and ethylene glycol bis(succinimidyl succinate, EGS) 

are long cross-linkers (DSG, 7.7 Å and EGS, 16.1 Å respectively) (Hsieh et al. 

2016). Micro-C XL uses a combination of these two cross-linkers to cross-link 

proteins that are farther apart in 3D space. The usage of these cross-linkers together 

or in concert with formaldehyde achieves a higher signal-to-noise ratio than using 

only formaldehyde (Hsieh et al. 2016).  

Although, Hi-C allows the probing of all interactions in the genome, it does 

not allow probing of specific interactions within this set. Capture Hi-C (CHiC) is a 

method that combines the specificity of 5C with the high sensitivity of Hi-C and 

allows a user to probe all possible interactions for a given genomic loci of interest 

(Dryden et al. 2014). This procedure follows the same protocol as Hi-C but 

incorporates an additional sequence capture step using pre-defined biotinylated 

long bait RNA. After creating a normal Hi-C library, the library is hybridized with the 

bait RNA, the biotinylated bait RNAs are then pulled down using streptavidin beads. 

This step also pulls down any DNA products that were hybridised to it. This particular 

method has been used to investigate the long-range interactions involving three 

cancer risk loci implicated in breast cancer using 519 bait regions. The study found 

long-range interactions occurring between these cancer risk loci and regions 

surrounding genes implicated in breast cancer (POU5F1, MYC, SOX2, KLF4) 

(Dryden et al. 2014). Later on, the method was also used to probe long-range 

interactions involving nearly 22,000 promoters in GM12878 cell lines and CD34+ 

hematopoietic progenitor cells (Mifsud et al. 2015). 

In situ Hi-C (Rao et al. 2014) is the last and most well-known evolution of 

dilution Hi-C (Lieberman-Aiden et al. 2009). Many groups have tried to address the 

issue of random ligation events associated with dilution Hi-C using different 
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approaches (Kalhor et al. 2011; Hsieh et al. 2016; 2015). In situ Hi-C attempts to 

address the same issue by cross-linking while keeping the nucleus intact (Rao et al. 

2014).  

Previous Hi-C methodologies used SDS to lyse nuclei, deactivate the 

restriction-enzyme and solubilise the cross-linked protein-DNA network which was 

then ligated under dilute conditions. But, it was shown using mouse fetal liver cells 

that less than 15% of DNA is solubilised when using HindIII and about 40% of DNA 

is solubilised when using MboI for digestion. Furthermore, using the much tested β-

globin locus it was shown that the 3C signals are actually generated from the non-

solubilised DNA region (Gavrilov et al. 2013). Therefore, the authors concluded that 

ligation mostly takes place between regions which are already in close proximity 

within the cross-linked nucleus. Later it was shown using single cells that the 

removal of this step better preserved the nucleus (Nagano et al. 2015; 2013). This 

step was incorporated in in situ Hi-C resulting in much better signal-to-noise ratio. 

In situ Hi-C has also been modified to achieve even higher resolution using 2-bp 

cutting restriction enzyme (CviJI) (Darrow et al. 2016). This procedure has been 

used to interrogate looping interactions involving more than two genomic loci in the 

mammalian inactivated X chromosome (Darrow et al. 2016). 

This list is by no means comprehensive as we make no mention of single-

cell methodologies based on Hi-C (Nagano et al. 2013; 2015) or other C 

technologies lying at the intersection of immuno-precipitation and Hi-C, such as 

ChIA-PET (de Wit and de Laat 2012) or those that are complementary to Hi-C 

(Beagrie et al. 2017). Although related, these techniques are out of bounds for the 

scope of this study and shall not be described. 

2.3.0 Analysis of Hi-C data 

Hi-C experiments yield as output paired-end reads, which are aligned to the 
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genome, spurious read pairs are filtered out, and the remaining read pairs are 

normalised to generate interaction matrices. Interaction matrices are 2 dimensional 

matrices, with a set of genomic loci on both the x and y axes. The value at any give 

cell in the matrix corresponds to an interaction frequency between any two genomic 

loci. For un-normalised matrices, these are the total number of read pairs remaining 

between the two genomic loci after filtering. For normalised matrices, these are 

floating point values corresponding to the same read pairs after controlling for 

experimental and technical biases. For interaction matrices corresponding to the 

same chromosome, the matrices are symmetric and the contacts themselves are 

referred to as cis contacts. When the interaction matrices are between different 

chromosomes, the matrices are not symmetric and the contacts themselves are 

referred to as trans contacts. We will briefly cover the topics of Alignment, 

normalisation and feature detection in Hi-C data as these are the sections most 

liable to affect downstream analysis of Hi-C data.  

2.3.1 Alignment 

Sequencing of Hi-C libraries generates paired-end reads, wherein one read 

maps to one restriction fragment and its mate pair maps to another restriction 

fragment. In Hi-C data analysis, each mate pair is therefore treated as a single-end 

read and aligned separately. The type of alignment used contributes towards the 

overall quality of the analysis being done. Irrespective of the alignment algorithms 

used, there are two possible ways to align reads in Hi-C analysis.  

• A full-read approach, wherein the entire read is aligned to the genome.  

• A chimeric approach, wherein each read is aligned in chunks until a unique 

match is found or until the read cannot be matched any further. This 

ensures the mapping of reads which span a ligation junction. In a full-read 

approach, these reads would remain unmapped as the ligation junction is 
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not present in the genome. 

As read-length increases, chimeric read alignment provides higher gains. In our 

study, wherein we made a detailed analysis of the currently available pipelines and 

methods in Hi-C data analysis, we noted that as read length increased so did the 

difference in mapping percentage, chimeric aligners aligned 30.9% more reads 

when using short reads (36bp) and 55.4% more reads when using long reads 

(101bp) (Forcato et al. 2017). A positive difference in alignment rates was also 

observed across aligners (Forcato et al. 2017) compared to full-read mapping with 

bowtie2 (Langmead and Salzberg 2012). Chimeric STAR (Dobin et al. 2013) in 

HIPPIE (Hwang et al. 2015) aligned 18.4%, chimeric BWA (Li and Durbin 2009) in 

HiCCUPS (Rao et al. 2014; Durand et al. 2016) aligned 27.4%, chimeric Bowtie2 

(Langmead and Salzberg 2012) in diffHiC (Lun and Smyth 2015) aligned 40.1%. 

Furthermore, when aligning long-reads (>100bp) originating from Hi-C 

experiments using frequent cutting restriction enzyments (CviJI, DpnII, MboI), many 

reads are multi-mapping reads which map to more than two restriction fragments. 

Chimeric mapping (Durand et al. 2016; Darrow et al. 2016) coupled with targeted 

analysis allows the probing of highly complex looping interaction, such as those 

occurring in different hubs (Darrow et al. 2016). 

2.3.2 Normalization 

After alignment, each read pair is assigned to their corresponding restriction 

fragments and various filters (see Materials and Methods) are applied. After filtering, 

each read pair corresponds to a count representing an interaction event between 

two restriction fragments. These restriction fragments are summarised into bins of 

fixed genomic length to increase the statistical power of the analysis. Since Hi-C 

produces a population-average map showcasing a subset of all possible 

interactions, the farther apart two restriction fragments are in linear space, the more 
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rare is the interaction between them. Resolution gains from Hi-C are predicted to 

increase as the square root of sequencing depth (Lieberman-Aiden et al. 2009; 

Mifsud et al. 2015). Thus, restriction fragments are aggregated into equally sized 

bins and their corresponding counts contributes towards the total count observed 

between their bins. 

Hi-C experiments also have associated biases. These biases are both 

experimental and technical. Broadly, procedures for modelling and controlling these 

biases fall under two distinct categories; the explicit procedures and the implicit 

procedures (Ay et al. 2014; Forcato et al. 2017). Explicit procedures attempt to 

compute a normalization factor by modelling for known biases such as GC content 

and mappability, which are two of the major biases affecting Hi-C data (Yaffe and 

Tanay 2011). Yet, explicit procedures are not able to control for biases such as 

restriction enzyme efficiencies and cross-linking efficiencies (Ay et al. 2014). Implicit 

procedures on the other hand control for unknown biases and are based on the 

assumption that every single loci is equally probable to interact with every other 

genomic loci. The most famous of these methods is ICE (Iterative Correction and 

Eigenvector decomposition) (Imakaev et al. 2012). 

The original study which introduced Hi-C purported a simplistic coverage 

based normalization factor for Hi-C data (Lieberman-Aiden et al. 2009), called 

“Vanilla coverage”. Vanilla coverage computes a multiplicative normalization factor 

from the reciprocal row sums and col sums. Then each cell corresponding to an 

interaction value between two genomic loci (row and column) is normalised by 

multiplying with the reciprocal of the row sums and the reciprocal of the col sums.  

Two explicit normalization factors have originally been proposed. This 

procedure computed an expected multiplicative factor based on the mappability, 

restriction fragment length and GC content of a genome digested by any given 
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restriction enzyme (Yaffe and Tanay 2011). This procedure was further extended 

later on for high-depth sequencing with modifications that included modelling factors 

related to fragment length and distance together whilst factors related to GC bias 

was modelled separately. Furthermore, the original explicit bias modelling 

procedure binarised the interaction matrix between restriction fragments such that 

every single interaction was quantitatively equivalent to any other interaction. In the 

newer procedure, this particular step was removed (Jin et al. 2013). The original 

explicit biases modelling procedure was also extended to HiCNorm (Hu et al. 2012). 

Herein, the fragment length and GC content features are estimated, whereas the 

mappability feature is treated as a Poisson offset. 

Another study proposed GC content and fragment length as biases that affect 

Hi-C data, but they additionally proposed circularisation of ligation products as a 

bias that affects Hi-C data. To account for these biases an implicit procedure, 

Sequential Component Normalization (SCN) was proposed (Cournac et al. 2012), 

wherein using euclidean normalization, separately the rows and columns of a matrix 

are normalised to 1 until convergence is achieved. 

Implicit normalisation factors as stated earlier attempt to control for unknown 

biases. The first such method was the Iterative Correction and eigenvector 

decomposition procedure (ICE) (Imakaev et al. 2012). ICE, like other matrix 

balancing algorithms that have been proposed after it, attempts to compute the 

normalisation factor for the rows and columns of an interaction matrix separately, 

such that the variance between each cell in the row or the column is minimised 

beyond a certain threshold. ICE starts off from an initial bias vector corresponding 

to the mean observed interaction frequency for every given row or column and uses 

it to seed the first iteration of the procedure. It then estimates the bias by using the 

single-sided reads (where only one mate pair maps to the genome) and attempts to 
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minimise the variance between all cells in either the row or the column of an 

interaction matrix. Another popular normalisation using matrix-balancing algorithms 

is the Knight Ruitz procedure. Similar to ICE, it is noted to be much faster (Rao et 

al. 2014). 

As resolution of Hi-C datasets have increased over the years, a new class of 

analysis procedures have been proposed. These are the bin-less or bin-free 

approaches to Hi-C data analysis (Spill et al. 2017; Cohen et al. 2017). SHAMAN, 

the first of its kind uses a Markov Chain Monte Carlo randomisation approach to 

randomise contact distribution such that the genomic distance between contacts is 

preserved and the marginal contact distribution is also preserved (Cohen et al. 

2017). Finally, to check for the enrichment of Hi-C contacts around any given region, 

rather than taking binned regions, a bin free comparison is achieved by finding all 

contacts that are within a certain distance of the given region of interest in both the 

observed and the randomised matrices. The normalised score of these contacts is 

the Kolmogorov-Smirnov D statistic obtained by comparing the observed and 

randomised matrices. This procedure has been applied towards the analysis of the 

highest resolution Hi-C analysis during mouse neural development (Bonev et al. 

2017). Binless (Spill et al. 2017), another bin-free normalization procedure, 

proposes a normalization procedure at the fragment level, this is sharp contrast to 

current methodologies which propose normalizations on binned matrices. Binless 

estimates biases from the discarded fraction of read pairs using Generalized 

Additive model fitting (Spill et al. 2017), which uses a negative binomial fit to 

estimate the normalization factors (Spill et al. 2017). This procedure is similar to 

iterative correction (Imakaev et al. 2012) but does not make the assumption of equal 

probability of interaction between all loci. Unlike ICE, this allows rows and columns 

in a matrix to deviate from the mean value (Spill et al. 2017). Read pairs are 
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normalised only once, post-normalisation these read pairs are the summarised at 

the bin level (Spill et al. 2017). 

Previously, it has been shown that the choice of normalisation does not affect 

the inferences made in binned Hi-C data (Rao et al. 2014). Although, this cannot be 

considered true when considering high-resolution Hi-C matrices (near fragment 

level resolution) where the assumptions made on low-resolution Hi-C matrices start 

to break down. Also, this same statement does not apply to the bin-free class of 

normalizations, since these methods represent a paradigm shift in how Hi-C data is 

analysed. 

2.3.3 Feature detection in Hi-C data 

Hi-C data imparts two types of structural information, the first relates to the 

structural compartmentalisation of the genome. Whereas, the second relates to the 

detection of long-range looping interactions such as those involving enhancers and 

promoters, as evidenced by numerous experiments on the α and β-globin locus 

(Dhar et al. 1989; Lois et al. 1990; Baù et al. 2011; Tolhuis et al. 2002; de Wit and 

de Laat 2012). 

 
Figure 2 - TADs or Topologically Associated domains are regions of aggregated chromatin. Shown 
is a cartoon of what two TADs may look like (bottom). Read pairs originating from within these 
aggregates tend to be over represented in the Hi-C maps and appear as dark triangles (top). The 
overlapping region between the two chromatin aggregates (bottom) corresponds to the inter-TAD or 
proximity probability values between two TADs. 

 

Depending on the length scale of the analysis, genome compartmentalisation 

is referred to as compartments or TADs. Compartments are the first level of genome 
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compartmentalisation. Compartment A correspond to active and open chromatin, 

whereas compartment B corresponds to inactive and closed chromatin (Lieberman-

Aiden et al. 2009). Both compartment classes show a high-degree of within class 

clustering, yet do not showcase a great degree of cross-talk. Since compartments 

correspond to active and inactive regions, these regions change when moving 

between cell-types and tissue-types (Dekker and Heard 2015). A further level of 

organisation within compartments are topologically associated domains or TADs. 

TADs are regions in Hi-C maps, representing highly dense regions of interaction 

between distant genomic loci (Figure 2). TADs have been described in a range of 

sizes, starting from a few kilobases upwards to several mega bases in mammals 

(Nora et al. 2012; Dixon et al. 2012). Smaller scale TADs have been described in 

flies (Sexton et al. 2012; Hou et al. 2012). Co-regulated genes tend to occur in the 

same TAD (Le Dily et al. 2014). TAD boundaries also play host to a number of 

architectural proteins such as CTCF in mammals (Dixon et al. 2015; 2012; Phillips-

Cremins et al. 2013) or BEAF-32 and CP190 in flies (Sexton et al. 2012; Hou et al. 

2012) and are enriched in their binding sequences (Ramírez et al. 2018). TADs are 

also known to have a hierarchical organization, with each TAD being partitioned into 

smaller TADs (Phillips-Cremins et al. 2013; Berlivet et al. 2013). 

The existence of TADs, their invariant nature and the functional implications 

of these structures on genome regulation has been a point of major investigation. 

TADs correlate with early or late replicating regions and harbour entire regions 

showcasing differential replication timing from those regions that showcase uniform 

replication timing (Pope et al. 2014). Transcriptional states are also predictors of 

TAD structuring (Rowley et al. 2017). Furthermore, in Drosophila the onset of 

transcription during development coincides with the appearance of TADs (Hug et al. 

2017). TADs are also known to be conserved structures across prokarya (Dekker 
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and Heard 2015) and eukarya (Rudan et al. 2015). Directionally oriented CTCF 

binding motifs across the genome are thought to act as barrier that regulate the 

direction of long-range looping interactions (Rao et al. 2014; Rudan et al. 2015). 

TADs are also invariant during differentiation (Nora et al. 2012; Dixon et al. 2012), 

while the TADs themselves don’t change they showcase an increase or decrease 

of contact frequency within TADs (Dixon et al. 2015). Multiple studies have 

attempted to investigated the effect of TAD boundary disruption. Most notably, 

studies in the HoxD locus have showcased that TAD boundaries are highly resilient 

to change and only very large deletions lead to the merging of TADs separated by 

the deleted boundary (Rodríguez-Carballo et al. 2017). This resilience was also 

showcased previously when a small deletions (35Kb) in the HoxD locus lead to an 

increase in the expression HoxD11, but a smaller deletion had no effect 

(Noordermeer et al. 2011b). The re-composition of TADs after such large-scale re-

arrangements if induced are mediated by the re-hashing of existing CTCF sites 

(Fabre et al. 2017). CRISPR mediated inversions in the CTCF binding site in the 

protocadherin (Pcdh) cluster (Guo et al. 2015) have also showcased how CTCF 

directionality mediates long-range looping interactions. Simulations have also 

postulated that supercoiling induced plectoneme formation may also play a role in 

affecting Cohesin mediated loop-extrusion (Fudenberg et al. 2016) and the 

formation of TADs (Racko et al. 2017). CRISPR induced genomic rearrangements 

mimicking deletion, inversion or duplication of CTCF binding sites in the TAD 

harbouring WNT6/IHH/EPHA4/PAX3 loci have also linked such changes to limb 

malformation (Lupiáñez et al. 2015). The causative link between gliomas and IDH 

mutation has been studied from the perspective of higher-order chromatin structure. 

It has been observed that IDH mutant cells gained methylation in nearby CTCF sites 

leading to lower insulation and the increase in contacts between PDGFRA, a cancer 



34 
driver, and enhancers outside the PDGFRA TAD (Flavahan et al. 2016). 

The identification of TADs and long-range looping interactions is primarily 

done using bioinformatic algorithms. Many such algorithms have been proposed for 

TADs(Filippova et al. 2014; Serra et al. 2016; Dixon et al. 2012; Haddad et al. 2017; 

Zhan et al. 2017; Crane et al. 2015) and loops(Rao et al. 2014; Lun and Smyth 

2015; Hwang et al. 2015; Ay et al. 2014; Mifsud et al. 2017). In our recent study, 

where we conducted a comparative assessment between several TAD callers and 

loop-callers, we found that on a general basis TAD calling algorithms had very high 

concordance between replicates, but the same is not true for loop calling algorithms. 

Furthermore, loop calling algorithms showcased a strong dependency between the 

number of loops called and the total coverage of the dataset (Forcato et al. 2017). 

2.4.0 Dosage compensation in Drosophila melanogaster  

The process of dosage compensation is a highly plastic phenomenon that 

affects a change in transcriptional regulation, balancing the transcriptional output 

originating from sex chromosomes between males and females in species where a 

copy number difference exists between males and females (Ferrari et al. 2014; 

Samata and Akhtar 2018). Many different models of dosage compensation are 

known. The three most well-known models are that of placental mammals, 

C.elegans, and Drosophila. In placental mammals, dosage compensation silences 

an entire X chromosome in females achieving equivalency between males and 

females. In C.elegans the expression of the X chromosomes in the hermaphrodite 

is halved. In Drosophila, the male X chromosome is up-regulated by two-fold. 

Although, all of these models operate in a dissimilar fashion, they follow a very 

similar pattern. The dosage compensation complex is first recruited at nucleation 

sites, wherefrom it spreads across the chromosome and affects a change in 

transcriptional response (Ferrari et al. 2014). While there exists a plethora of 
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questions related to the molecular aspects of dosage compensation, my interest is 

skews towards the chromatin structural aspects of dosage compensation in 

Drosophila, where only active genes are up-regulated by a non-constant factor and 

in-active genes remain silent. This up-regulation is such that a genome-wide 

average of 2x up-regulation is achieved (Ferrari et al. 2013). The inactivation of the 

mammalian X chromosome starts at the X-inactivation centre, from the X-

inactivation centre it spreads across the X chromosome and affects silencing. 

Although a few genes are still missed, most of the inactive X chromosome adopts a 

distinct structure, devoid of TADs and partitioned in the centre (Giorgetti et al. 2016). 

In C.elegans, the hermaphrodite X chromosomes are down-regulated such that 

gene expression is halved. In this case, the X chromosome shows a change in 

insulation that is very different from the autosomes (Crane et al. 2015). 

In fly, non-coding RNAs, roX1 and roX2 in addition to other proteins (MSL1, 

MSL2, MSL3, MOF and MLE) comprise the dosage compensation complex. MSL1 

is the scaffold protein which holds the entire complex in place. MSL1 interacts with 

MSL2 via a coiled-coil domain in its N-terminus and with MSL3 and MOF via a PEHE 

motif in the C-terminus region (Samata and Akhtar 2018). As previously stated, the 

MSL2 protein is repressed by Sxl in females. MSL2 is expressed in males and MSL2 

together with roX2 ncRNA allows the sequence specific targeting of the dosage 

compensation complex (Samata and Akhtar 2018). MSL3 facilitates the spreading 

of the dosage compensation complex across gene bodies and strengthens the 

acetylation activity of MOF. MOF carries the histone acetyl (H4K16Ac) transferase 

activity. This particular activity has been linked to increased chromatin 

decompaction and enhanced transcriptional output. Although, the exact mechanism 

by which this is achieved is highly debated. MLE is a helicase linked to the 

unwinding of chromatin and is responsible for effective loading of roX2 non-coding 
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RNAs (Samata and Akhtar 2018). 

The dosage compensation complex is initially recruited to sequence-specific 

sites on the X chromosome known as high-affinity sites (HAS) (Straub et al. 2008) 

or chromatin entry sites (CES) (Alekseyenko et al. 2008). Different lists have been 

identified using different techniques. Hereon, we will refer to these sites 

interchangeably as dosage compensation binding sites or MSL binding sites. 

Dosage compensation binding sites are known to be present near transcriptionally 

active genes. There is also a correlation between the distance to the nearest binding 

site and the transcriptional output of the gene (Samata and Akhtar 2018). The 

dosage compensation binding sites contain a 21bp GAGA rich motif, called the MSL 

recognition element (MRE) (Alekseyenko et al. 2008). These motifs are present in 

autosomes but are not recruited there. Therefore, it was postulated that the higher-

order chromatin structure had a role to play in the recruitment of the dosage 

compensation machinery to its effector sites. Recently, it was shown that PionX sites 

(Villa et al. 2016), a subset of MSL binding sites provides sequence specificity for 

early establishment of MSL binding (Schauer et al. 2017). A second protein, 

chromatin-linked adapter for MSL proteins (CLAMP) has been previously shown to 

bind the MRE in drosophila and is also involved in the recruitment of the dosage 

compensation complex to the X chromosome (Soruco et al. 2013). Furthermore, 

CLAMP binding also creates very large regions of open chromatin near its binding 

sites (Urban et al. 2017). The CLAMP protein binds the genome non-specifically but 

has the highest binding signal at regions that are bound by MSL (Soruco et al. 2013). 

Based on this, a subset of CLAMP binding sites were categorised as MSL 

dependent, partially MSL dependent and MSL independent binding sites (Soruco et 

al. 2013). Finally, it has also been shown that dosage compensation binding sites 

tend to colocalize in three-dimensional space aiding the spreading of the dosage 
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compensation complex to progressively more inaccessible regions of the genome 

(Ramírez et al. 2015).  

The structural changes that accompany dosage compensation have been 

extensively studied in c.elegans and mammals. The mammalian dosage 

compensated X chromosome in females adopts a distinct structure. An increase in 

insulation in the C. elegans hermaphrodite X chromosomes has been reported post-

DC. In the drosophila dosage compensated X chromosome, a changed structure of 

the X chromosome was previously postulated (Grimaud and Becker 2009) based 

on FISH experiments, yet recent studies using Hi-C were unable to detect these 

changes (Ramírez et al. 2015; Schauer et al. 2017). This is partially due to the 

inherent problems that accompany dosage compensation in Drosophila. Previous 

studies were done using cell lines. In Drosophila cell lines, the male S2 cell line and 

the female Kc167 cell lines are biased by copy number differences. Specifically, the 

female Kc cells are on average tetraploid (Lee et al. 2014). The S2 cells also carry 

several copy number changes (Lee et al. 2014). These copy number differences 

may hinder downstream analysis of Hi-C data as the assumption of equal visibility 

of all genomic loci does not hold true for the more popularly used implicit 

normalization methods (Imakaev et al. 2012). In the wild-type, drosophila males 

carry a single X chromosome. This, compared to the female two X chromosomes 

ensures that at equal sequencing depth, the male X chromosome has half as many 

reads as the female X chromosomes. To ensure that over-correction does not occur 

for the single X chromosome and to not be biased by the inherent copy number bias 

present in drosophila cell lines, we used high-resolution Hi-C data generated using 

sex-sorted embryos and adopted chromosome specific normalisation procedures 

(Ramírez et al. 2015).  

We have previously demonstrated that peak callers are positively correlated 
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to the sequencing depth of the experiment (Forcato et al. 2017). To ensure an 

equivalent comparison between the male and female samples I devised a non-

parametric procedure for comparing highly interacting regions of the genome. 

Finally, I have also devised a novel, TAD boundary calling procedure that is both 

fast and accurate and is sensitive to small scale domains on the chromatin fibre. 

Using these tools and carefully designed analysis procedures we were able to detect 

previously unknown differences in the male dosage compensated X chromosome. 
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3.0 Materials & Methods 

The passages herein have been quoted verbatim or adapted from the following 

sources: Pal et al., (manuscript in revision). 

Hi-C data processing 

Hi-C data was processed with the hiclib (2016-07-14 version - commit fe3817a; 

https://bitbucket.org/mirnylab/hiclib) and cooler (v0.3.0; 

https://github.com/mirnylab/cooler) packages by Leonid Mirny’s lab for ICE 

normalization(Imakaev et al. 2012). hicpipe based explicit normalisation was also 

applied to specific cases as an alternative. hicpipe was used for the probabilistic 

bias modeling normalization proposed by Yaffe and Tanay (Yaffe and Tanay 2011). 

Whereas, ICE was used for implicit matrix balancing normalisation. 

We aligned reads to the dm3 genome build considering only chrX, 2 and 3. chr4, Y 

and the heterochromatic portions (named with suffix “Het”) were left out. For ICE, 

bowtie2 was used for alignment. Whereas, hicpipe used bowtie (Langmead et al. 

2009) (v1.1.2) for alignment. 

For hicpipe we used default parameters, except SEGMENT_LEN_THRESHOLD, 

which was set to 800 for the sex-sorted embryos dataset. This parameter was set 

after examining the distribution of the sum of distances between read pairs and their 

nearest downstream fragment end. 

For the ICE pipeline the iterative_mapping module in hiclib was used for aligning 

reads to the reference genome. hiclib alignments were run using Bowtie2 

(Langmead and Salzberg 2012) version 2.2.9. For the sex-sorted embryo datasets 

(GSE94115) the following parameters were adopted: min_seq_len=20, 

len_step=10, seq_start=0 and seq_end=49. In the S2 and clone-8 cell lines data 

obtained from Ramirez et al. (Ramírez et al. 2015) we used: min_seq_len=20, 
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len_step=10, seq_start=0 and seq_end=50. For the Kc167 cell line data from Li et 

al. (Li et al. 2015) we used: min_seq_len=20, len_step=10, seq_start=0 and 

seq_end=50. Additional bowtie2 flags were --mm and --very-sensitive. 

The following filtering parameters were applied for hiclib: For embryos, S2 and 

clone-8 samples the maximumMoleculeLength was set to 800, for Kc167 samples 

maximumMoleculeLength was set to 300 (as in the original publication). Duplicates 

were filtered using the filterDuplicates function. Later, the technical replicates were 

merged into their corresponding sample. The final read numbers are available in 

Table 1. 

The Hi-C data has been summarised at several resolutions (bin sizes), including 

25Kb, 10Kb and 3.5Kb. At the highest resolution (3.5Kb bins) we verified that in the 

Hi-C maps at least 80% of the bins had at least 1000 reads as proposed previously 

(Rao et al. 2014). Finally, the binned matrices were normalised with ICE 

chromosome by chromosome (chromosome-wise) using 

mirnylib.numutils.iterativeCorrection and genome-wide using cooler 

iterative_correction. To allow rows or columns for normalization we required at least 

40 as sum of read counts. Furthermore, to remove non-informative read pairs the 

first two diagonals were removed during normalization (interactions at distances 0 

or 1 bin). Finally, the tolerance value was set to 1e-02. 

 

Computing decay of Hi-C signal  

The interactions at distances ranging from 2 bins (50Kb for 25Kb matrices) to 100 

bins (2.5Mb for 25Kb matrices) were considered. In the normalized Hi-C matrices, 

NAs, NaNs and infinite values were set to 0. The median Hi-C signal (y-axis) was 

computed at each distance (x-axis). 

When indicated, the Hi-C signal was transformed into contact probabilities (contact 
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frequencies) by assuming the contact probability is maximum (equal to 1) when 

considering neighboring genomic loci. To this concern the median normalized Hi-C 

signal is computed for each diagonal and divided by the median signal at the first 

informative diagonal (2 bins distance) to obtain contact frequencies. Then the 

median contact frequencies are log10 transformed (y-axis) to be plot against the log 

of genomic distance (x-axis) in the log-log plots. This procedure is applied in Figures 

5, 7, 8.  

Previous literature proposed an alternative probabilistic transformation of Hi-C 

matrices (Giorgetti et al. 2014), based on the same assumptions of maximum 

contact probability near the diagonal. We also applied this transformation where the 

signal inside every cell of the Hi-C matrix is divided by the mean normalized signal 

at the first informative diagonal (2 bins distance) to obtain a contact probability. Any 

resulting value greater than 1 was set to 1. This method is only applied to Figure 11. 

We then used the lm function in R to fit a linear model to the values in the log-log 

plot to obtain the slope coefficient. The linear model fitting was done for values at 

distances ranging from 2 bins (50Kb or 4.69 in the log10 scale) to 15 bins (375KB or 

5.57 in the log scale), i.e. in a range of distances where the decay is close to linear 

in the log-log plot. 

The interaction decay differences are assessed by computing the pairwise 

differences of slope coefficients (deltas) between autosomes or between chrX and 

autosomomes. The slope coefficient deltas of chrX vs autosomes are then 

compared to those between autosome pairs using Wilcoxon test as indicated in 

individual boxplots. 

Alternatively, to assess the difference between the interaction frequency plots, the 

cumulative density functions (CDFs) of the interaction probability for autosomes or 

chrX are computed. CDFs of interaction probability were estimated from 50Kb to 
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2.5Mb as cumulative sums of median Hi-C contact frequencies for each distance, 

then divided by the cumulative sum maximum value to make it equal to probability 

1. Kuiper's statistic for pairwise comparisons between autosomes or between chrX 

and autosomomes is then computed as the sum of absolute values for the maximum 

positive and negative differences between CDFs as 

 

V = 	max	(()*+,-. −	()*+,-0) + 	max	(()*+,-0 −	()*+,-.) 

 

The difference in the estimated pairwise Kuiper's statistics of chrX vs autosomes 

are then compared to those between autosome pairs using Wilcoxon test as 

indicated in individual figures. 

 

Down-sampling of Hi-C matrices 

To account for the disparities in coverage due to copy number and sequencing 

depth differences between male and female samples, we used two approaches for 

down sampling of read counts, as indicated in the text. In the first, we simulated the 

effect of single copy number on male autosomes by randomly down sampling 50% 

of the autosomal reads in the male samples. For this we used the 

numpy.random.binomial function in python with the probability parameter set to 0.5. 

The down-sampled observed read counts were then normalized using 

chromosome-wise ICE. This method was used to check the rate of Hi-C decay when 

the copy number of autosomes is similar to that of chrX (Figure 7).  

In the second approach, we down-sampled all female chromosomes (observed cis 

read counts) by the ratio of cis interactions count present in the corresponding male 

chromosome, to make the total sum of observed cis read counts comparable 

between male and female samples, chromosome by chromosome. The down-
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sampled observed read counts were normalized with chromosome-wise ICE. This 

approach was used to verify the effect on TAD calls, and the effect on clustering of 

top-scoring interactions between the male and down-sampled female samples 

(Figure 19, Figure 29). 

Polymer folding simulation  

We simulated the generic large-scale dynamical folding of the diploid Drosophila 

genome using Rigid-body Langevin Dynamics (Carrivain et al. 2014) at room 

temperature T=300 K. The eight chromosomes were modelled as simple self-

avoiding polymers composed of 10-Kb segments (rigid cylinders of length 170 nm 

and diameter 25 nm corresponding to a 10-nm fiber). At the beginning of each 

simulation, chromosomes started in a mitotic Rabl-like configuration, followed by a 

smooth confinement into a sphere of diameter 4 μm mimicking the nucleus. Then 

the dynamics of the genome was tracked during two hours of real time. Average 

contact probabilities were calculated over thousands of independent simulations. As 

in Hi-C, we merged trans contacts between homologous with cis intra-chromosomal 

contacts. 

We considered four situations: two with a female diploid genome (two copies of 

chromosomes 2, 3, 4 and X) and two with a male genome (two copies of chr2, 3, 4 

and one copy of chrX and Y). For both sexes, we examined one case without pairing 

between homologous chromosomes and one case where pairing was imposed by 

adding springs between homologous segments every 100Kb. 

 

Non-parametric selection and clustering of top-scoring interactions 

For the non-parametric selection of top-scoring interactions we used normalized Hi-

C data binned at 25Kb bins. NAs, NaNs and Infinite values were set to 0 and we 

discarded the first two diagonals (interactions occurring at distances 0 or 1 bin). We 
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then selected the highest 5% (default threshold, applied unless otherwise specified) 

of normalized Hi-C contact values in any given diagonal as the top-scoring 

interactions (Figure 16). When indicated, different thresholds were adopted as 

percentage of highest scoring interactions, as well as thresholds on the maximum 

distance of interacting loci pairs. 

To define clustered top-scoring interactions we consider the euclidean distance 

between any pair of top-scoring interactions (i, j) with coordinates (ix, iy) and (jx, jy), 

respectively, in the space of Hi-C matrix bins coordinates. With bin size 25Kb, the 

distance D for each pair is defined as: 

 

3 = 45 −	65 0 +	 47 −	67
08
×	25000 

 

If distance 3 ≤ 25>? interaction 6 and 4 are grouped under the same cluster name. 

During merging, in an iterative process the list of clusters is scanned and clusters 

sharing elements are merged into larger clusters. Finally, we obtain a list of clusters 

containing unique interactions. We report the difference in the proportion of 

clustered top-scoring points. With default settings (3 ≤ 25>?) the procedure is 

equivalent to cluster neighboring top-scoring interactions only. 

 

Estimating propensity of each chromosome to participate in trans interaction 

For each chromosome pair (@, ?), where @	 ≠ 	? are chromosomes {2D, 2E, 3D, 3E, G} 

the expected number of trans interactions is estimated with a null model where trans 

interactions originating from any chromosome are uniformly distributed over the 

other chromosomes (targets). This is estimated by adjusting the expected counts 

by the target chromosomes length and copy number. For example, the expected 



45 
trans interactions I0J,0K originating from chr2L and targeting chr2R is estimated as: 

 

I0J,0K =
(0K	×	L0K
(M	×	LM	

	×	N0J 

 

where ? contains the set of target chromosomes 2E, 3D, 3E, G  (all except the origin 

chromosome 2L). Whereas (O and LO are the expected copy number and length, 

respectively, of the specified chromosome i. Then N0J is the total number of trans 

contacts originating from the chromosome 2L. 

 

Defining domain boundaries in 3.5Kb bins using LSD 

Domain boundaries have been defined on 3.5Kb bins matrices using Local Score 

Differentiator (LSD)(code available at 

https://bitbucket.org/koustavpal1988/fly_dc_structuralchanges_2018/). The 

directionality index (DI values) was computed as in Dixon et al. 2012 (Dixon et al. 

2012) on a window of 35Kb (10 bins) using the ComputeDirectionalityIndex function. 

We then computed the forward and backward differences of the DIs using the 

Forwards.Difference and Backwards.Difference functions defined as the difference 

in DIs between a bin and its adjacent downstream or upstream bin, respectively. 

 

∆3QRS-TU-V = 3QO − 3QOW. 

 

∆3QMU+XTU-V = 	3QO − 3QOY. 

 

We then identify domain starts and domain ends using the outliers of the forward 

and backward differences within a local window of 30 bins corresponding to 105kb 
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in a 3.5Kb binned matrix. Outliers are detected as follows: 

 

 

 

First, we define fences on the forward and backward differences distribution as 

 

Z[\([RS-TU-V = ] ∆3QRS-TU-V, 0.25 − 1.5	×	(] ∆3QRS-TU-V, 0.75

− 	] ∆3QRS-TU-V, 0.25 ) 

 

Z[\([MU+XTU-V

= ] ∆3QMU+XTU-V, 0.75 + 1.5	×	(] ∆3QMU+XTU-V, 0.75

− 	] ∆3QMU+XTU-V, 0.25 ) 

 

where, ] ∆3Q, 0.75 − 	] ∆3Q, 0.25  is the interquartile range ∆3Q, ] ∆3Q, 0.25  and 

] ∆3Q, 0.75  are the 25th and 75th quantiles of the ∆3Q distributions within the 

window. 1.5 is the Tukey’s constant used to select outliers in the local window values 

distribution. 

Domain starts require the 3Q value to be finite, ∆3QRS-TU-V ≤ Z[\([RS-TU-V and 

∆3QRS-TU-V ≤ 3Q. Domain ends require the 3Q value to be finite, ∆3QMU+XTU-V ≥

Z[\([MU+XTU-V and ∆3QMU+XTU-V ≥ 3Q. 

An additional filter, requiring 3Q ≤	0 for domain starts, and 3Q ≥ 0 for domain ends 

is also applied for a stricter definition of boundaries (strict parameter). This 

parameter was set to FALSE (strict=FALSE) in the analyses for this study, unless 

otherwise noted. LSD by default also attempts to fill in any gaps that may exist 

between two called domains by connecting the end and start of two consecutive 
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domains (Fill.gaps parameter), this parameter was set to FALSE (Fill.gaps=FALSE) 

in the analyses for this study, unless otherwise noted. 

As LSD identifies domain starts and ends separately, a list of unique domain end 

positions is considered and extended on both sides by 1/2 bin size to obtain bins 

spanning adjacent start and end bins as reference border region for downstream 

analyses. We used the MakeBoundaries function to carry out this transformation 

and obtain 3.5Kb (equal to bin size) wide domain border regions.  

 

Defining domain boundaries using other TAD callers 

Armatus (Filippova et al. 2014) (v2.1) TAD caller was obtained from 

https://github.com/kingsfordgroup/armatus, and run with the parameters −b 

specifying the resolution (10Kb), −c specifying gamma values ranging from 0.1 to 

1 with 0.1 step . 1, .2, . . . ,1  and –e. 

DomainCaller (Dixon et al. 2012) was obtained from the public repository by the 

original authors (http://bioinformatics-

renlab.ucsd.edu/collaborations/sid/domaincall_software.zip) and was run with 

directionality index computed at 2Mb distance on 10Kb matrices. As previously 

reported by multiple groups (Rao et al. 2014; Forcato et al. 2017) the original code 

was affected by a problem causing the program to exit due to a division by zero in 

random generated numbers that may occur randomly with larger matrices. To 

circumvent this problem we used the patch as proposed in(Forcato et al. 2017), 

where the program reiterates the random number generation. 

TADBit (Serra et al. 2017) 

(v0.1_alpha.360)(https://github.com/3DGenomes/TADbit) was executed using 

default parameters on uncorrected counts in 10Kb bins matrices. 

In all three cases, we computed the proportion of non-matching domain boundaries 
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using as reference the list of TAD starts produced by the TAD callers. 

 

Defining boundary change annotations  

We used exact match of domain boundaries, i.e. intersection of the lists of genomic 

bins marking the boundary, to classify boundaries as disappearing, appearing or 

unchanged between the male and female samples.  

 

Insulators binding at domain boundaries 

Insulators binding peaks obained from ChIP-chip experiments were first queried on 

modMine and downloaded from the modENCODE data repository(Contrino et al. 

2012). In particular, we used BEAF32, CP190 and CTCF in Kc167 (respective IDs: 

3745, 3748, 908), in S2 (respective IDs: 274, 925, 3281) and BEAF32, CP190 and 

CTCF in embryos (5130, 5131, 5057, respectively). 

The binding peaks were overlapped to the 3.5Kb binning table associated with the 

chromosome-wise ICE normalized Hi-C matrices using the GenomicRanges 

package(Lawrence et al. 2013). The number of overlaps per bin was counted for 

each peak file using countOverlaps function. 

We then created a 10 bin (35Kb) window around the domain boundaries. To do so, 

we considered the bins mid-point as reference coordinate. Boundaries at less than 

35Kb distance from the start and end of the chromosome were removed. Then we 

aggregated the peaks count per bin for each insulator and boundary class, and the 

counts were averaged. Finally, for visualization we applied spline smoothing as 

implemented in the ggplot package (geom smooth, glm method with natural cubic 

spline and 10 degrees of freedom). 

To compute the median insulators enrichment around domain boundaries, we used 

the same ChIP-chip datasets listed above, for which we retrieved the enrichment 
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signal (.wig) files from the modENCODE data repository. Signal files (.wig) were 

rescaled by dividing the signals in each file by their 99th percentile, to facilitate 

comparisons across datasets accounting for potential differences in ChIP efficiency. 

Insulator average profiles were calculated using deepTools (Ramírez et al. 2016) 

(version 2.5.3). Each average profile is displayed in a 10Kb window centered on 

domain boundaries, with a bin size of 100bp. 

 

Dosage compensated gene annotation  

The list of genes responding to dosage compensation were obtained from Zhang et 

al., 2010 (Zhang et al. 2010) (GEO GSE16344). Following their criteria, we 

considered genes detected in all replicates, then  

 selected genes with mean expression ³4 RPKM in wild type control S2 cells and 

ratio £ 0.74 between mean expression after MSL2 knockdown vs control.  

 

MSL binding sites definition  

MSL binding site definitions were obtained from three previous articles. The refined 

list of High Affinity sites (HAS) were obtained from Ramirez et al. 2015 Table S2 

(Ramírez et al. 2015), and the original HAS list was obtained from Straub et al. 2008 

Table S1(Straub et al. 2008). CES sites were obtained from Alekseyenko et al. 2008 

Table S1(Alekseyenko et al. 2008).  

 

CLAMP binding sites definition  

CLAMP binding sites as defined by Soruco et al. 2013(Soruco et al. 2013) were 

provided by E. Larschan. 
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Computing enrichment of MSL binding sites and CLAMP binding sites around 

domain boundaries 

Mid-points of MSL and CLAMP binding sites were used as reference positions. For 

each factor (m) We computed the randomly expected binding sites per genomic bins 

(If) assuming a uniform distribution as null model: i.e. we divided the total number 

of binding sites (gf) by the length of chrX (Dh) measured as number of (3.5Kb) bins. 

 

If =
gf
Dh

 

 

Next, for each domain border (belonging to the disappearing, appearing or same 

classes), we considered a window with size up to 15 bins (52.5Kb) on both sides. If 

such windows overlap for any pair of neighboring domain boundaries, they are 

shortened by assigning equally to both boundaries the intervening region. This is an 

important point as avoids overestimating the association of any boundary class to 

genomic features, while allowing at the same time a definition of boundaries at fine 

scale (i.e. small domains). 

Then we counted the number of binding sites windows around boundaries of each 

class, then divided by the windows total length. This result is the observed average 

number of binding sites per bins in the regions around boundaries of each class. 

The final results are reported as log2 ratio of observed over expected average 

number of binding sites per bin. 

 

Computing distance of dosage compensated genes to nearest domain 

boundary 

Around domain boundaries we considered a window of up to 15 bins, adjusted for 
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overlap with neighboring boundaries windows as described above. We then used 

the findOverlaps function from the GenomicRanges(Lawrence et al. 2013) package 

to compute the overlap between these windows and TSS and TES of dosage 

compensated genes (considering on both strands). Then we computed the distance 

between the TSS (or TES) and the mid-point of the domain boundary.  

 

Computing Insulation Score  

The insulation score as defined in (Crane et al. 2015) is calculated on our data as 

the mean Hi-C signal in a 35Kb (10 bins) squared sliding window. We started from 

our 3.5Kb Hi-C matrices and computed the insulation score moving the squared 

sliding window along the main diagonal. We ignored the first and last 10 bins of the 

chromosome. We removed the non-informative diagonals: first two diagonals, i.e. 

interactions occurring at distance 0 and 1. 

The insulation score values were then normalized by the mean insulation score of 

each chromosome as in the original study (Crane et al. 2015). Since the domain 

boundaries are defined at the intersection between the TAD start and end bins, the 

mean normalized insulation score from the two adjacent bins is considered. 

 

Distribution of normalized CLAMP signal files 

CLAMP ChIP-seq enrichment signal files (.wig files from GSE39271) were rescaled 

by dividing the signals in each file by their 99th percentile. This conservative 

normalization was applied to facilitate comparisons across samples accounting for 

potential differences in ChIP efficiency.  

The CLAMP binding sites were assigned to the 3.5Kb genomic bin overlapping the 

mid-point of the binding site itself. For each bin containing a CLAMP binding site, 

the highest wig signal was obtained within the bin	ij@bj and I\) positions. This 
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signal value was allocated as the probable CLAMP summit within that bin. We then 

fetched the unique list of nearest CLAMP bin for each of the disappearing 

boundaries in the core-set and report the summit values for those bins. 

 

4C tag enrichment near domain boundaries 

The 4C data by Ramírez et al.(Ramírez et al. 2015) based on 18 probes were 

processed as is. 

The 4C data by Schauer et al.(Schauer et al. 2017) based on 11 probes were 

instead further filtered as we noted larger differences between replicates for some 

probes. Namely, we discarded 4C data originating form a specific probe if the two 

replicates have ³ 2 fold difference in the total number of sequenced reads. To further 

avoid unbalanced comparisons, for each pair of samples compared (e.g. S2 WT vs 

MSL2-i) we considered a specific probe only if the it has £ 1.5 fold difference in the 

total number of sequenced reads across the compared samples. Thus, we obtained 

a total of 76 high quality 4C-seq dataset across 11 probes.  

We used a similar strategy as Ramirez et al. (Ramírez et al. 2015). First, we 

reassigned 4C read counts to our reference DpnII fragment ends table as obtained 

from the cooler package. Read counts per fragment were binarised thus assigning 

value of 1 to fragments with one or more overlapping reads, and a value of 0 to 

fragments without any overlapping read. Replicates are then further merged and 

converted to 1 or 0 values based on if a replicate contained any counts in the 

corresponding 4C-seq dataset. 

To compute the 4C enrichment value (I), the fragments (*b@c) were further 

converted to their corresponding mid points positions	(e) and a small 20Kb window 

(klfUmm) was extended on both sides aggregating (by summing) all values (n) within 
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that window. This sum was further divided by the sum of all values aggregated within 

a larger 600Kb window (kMOo) used to estimate the expected background signal. 

 

If = Lpc.q 	
nO

OrfW	Tstuvv
OrfY	Tstuvv

nO
OrfW	Twxy
OrfY	Twxy

+ 1  

 

With kMOo ≤ e ≤ L+,- − kMOo  to avoid windows extending beyond the chromosome 

start or end. The enrichment value I constitutes the observed over expected 4C 

signal ratio and was log10 transformed with the addition of a pseudocount value of 1 

for downstream analyses. 

 

To summarize the average 4C enrichment signal around domain boundaries mid 

points (eV), grouped by class, the 4C data associated to fragments are mapped to 

the corresponding Hi-C bin (?) and their mean enrichment value assigned to the 

bin (IM). A window up to distance k from the boundary (eV) is considered. The 

bins are then converted to their relative position (z) with respect to the bin 

containing the domain boundary mid (?fV). Thus, the enrichment values (IM) are 

eventually assigned to their corresponding position (I{) relative to any domain 

boundary (±35Kb). Finally, we compute the mean of enrichment values I{ for 

each position (z). 
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4.0 Results 

4.1 About the Hi-C datasets presented in this study 

The Hi-C data used for this project was originally generated using the 

simplified Hi-C protocol. This means that the restriction enzyme digested ends were 

not filled in using biotin tagged bases and the enrichment of ligation junctions 

containing biotin was not done (Sexton et al. 2012). The Hi-C data was provided by 

G Cavalli. We obtained on average 1 billion reads for each of the sex-sorted male 

and female embryo datasets. The male sample had 7 runs across two biological 

replicates and the female sample had 6 runs across two biological replicates (Table 

1).  

Table 1 Adapted from Pal et al., 2018 (manuscript in revision): Read 
statistics in sex-sorted male female drosophila Hi-C datasets 
Sample Replicate Total Pairs Discarded Pairs Kept Pairs 

Male A1 160,609,800 146,322,053 14,287,747 
Male A2 158,119,428 144,025,206 14,094,222 
Male A3 160,559,337 146,270,219 14,289,118 
Male A4 160,178,817 145,910,435 14,268,382 
Male B1 177,854,486 161,473,733 16,380,753 
Male B2 176,891,839 160,551,750 16,340,089 
Male B3 180,632,426 164,470,001 16,162,425 
Male Merge 1,174,846,133 1,069,023,397 105,822,736 

Female A1 175,074,039 153,986,896 21,087,143 
Female A2 175,040,306 153,974,981 21,065,325 
Female A3 174,952,576 153,885,812 21,066,764 
Female B1 190,498,730 157,274,570 33,224,160 
Female B2 189,735,995 156,545,059 33,190,936 
Female B3 193,144,206 159,953,270 33,190,936 
Female Merge 1,098,445,852 935,620,588 162,825,264 
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Furthermore, we also sourced publicly available Hi-C data on S2 (male), 

Clone8 (male) (Ramírez et al. 2015) and Kc167 (female) (Li et al. 2015) cell lines. 

All Hi-C datasets were processed using the HiCLib (Imakaev et al. 2012). 

Additionally, we also obtained data generated using insitu Hi-C on drosophila S2 

male cell lines from the same group for ongoing collaborations (Ogiyama et al. 

2018). It is worth noting the effect these two techniques have on the filtering of Hi-

C data. We employed the default filters used within the library and in addition we 

filtered for the sum of distances between mate pair mapping site and its nearest 

downstream restriction site. One of the key differences to note are the number of 

read pairs lost during the filtering of dangling ends (Figure 3). These are read pairs 

originating from un-ligated ends, or read pairs that are too close to each other. For 

the simplified Hi-C protocol on sex-sorted embryos, nearly one third of all read pairs 

were lost after applying this filtering step, whilst single-sided or read pairs where 

only one mate mapped to the genome was comparatively much lower. This would 

be expected from simplified Hi-C since the biotin enrichment was not done to enrich 

only those products which contained a ligation junction. Comparatively, for the insitu 

Hi-C protocol, dangling ends represent a very small proportion of read pairs filtered, 

whereas the single-sided read pairs represent a much larger fraction. Similarly, the 

cell lines, which followed the originally described Hi-C protocol show much smaller 

proportion of dangling ends. 
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Figure 3 - Read filtering statistics for the different Hi-C datasets. All datasets in this study were 
processed with HiCLib (Imakaev et al. 2012). We processed drosophila embryo datasets generated 
using the Simplified Hi-C protocol. We also processed data generated using normal Hi-C for cell lines 
(S2, Kc167, Clone8). We also processed insitu Hi-C data in S2 for an ongoing collaboration. It is 
clearly evident, that not using the biotin enrichment step results in the generation of many more non-
informative reads (read pairs resulting due to the sequencing of un-ligated fragments or those that 
are too near). On the other hand, protocols which make use of biotin enrichment show a much smaller 
fraction of dangling ends as these protocols all make use of the biotin enrichment step. 
 
4.2 The number of reads left after processing varies between different 
pipelines 

Although some Hi-C analysis pipelines have emerged as being highly 

popular today (Imakaev et al. 2012; Durand et al. 2016), at the inception of this 

project that was not the case. A significant amount of time was divested towards 

solving dependencies and testing different Hi-C analysis pipelines. Two different Hi-

C processing workflows were used: HiCPipe(Yaffe and Tanay 2011) and HiCLib 

(Imakaev et al. 2012). HiCLib allowed for better modulation of the filters applied 

post-alignment. Furthermore, we were able to incorporate it into an easy-to-deploy 

pipeline built using BASH. For HiCPipe we used the default filters used by the entire 

pipeline. For HiCLib, post-filtering we obtained more than 100 million read pairs for 

both samples. Whereas, for HiCPipe we obtained 70 million for the male sample 
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and 124 million for the female sample (Table 1).  

Furthermore, HiCPipe employs a very aggressive duplicates removal 

procedure by imposing an equivalency between all interacting fragments at the read 

pairs level by binarising all read counts. Therefore, even if two fragments have 100 

read pairs validating them, in the HiCPipe workflow these two fragments are treated 

as having one read pair. Although this assumption may be sufficient at lower 

resolution Hi-C data, this may hinder downstream data analysis for Hi-C data binned 

at much higher coverage (Jin et al. 2013). Therefore, we report our analysis using 

data processed with HiCLib, whereas the usage of HiCPipe processed data is 

presented solely as an alternative analysis of interaction decays. The embryo 

datasets processed with HiCLib (Imakaev et al. 2012) were subjected to two 

different normalizations from the same library. The first, chromosome-wise ICE 

normalises each chromosomal Hi-C map without taking into account the trans or 

between chromosome contacts. Genome-wide ICE on the other hand takes into 

account these trans contacts, normalising each Hi-C map to the genome-wide 

average. 

4.3 The male chromosome X Hi-C maps shows higher long-range contacts 

The male X chromosome exists in a single copy state. Whereas, the female 

X chromosome exists in two copies. Assuming equal sequencing depth of the 

experiment, the male chrX is expected to contain at most half as many read pairs 

as the female chrX and the autosomes. The male chrX cis Hi-C map has on average 

3.5 times less number of reads than any female cis Hi-C map and 2.2 times less 

number of reads than the male autosome Hi-C maps. Thus, we asked if there are 

any observable differences in the global interaction pattern between the male and 

female chrX. A log2 ratio was computed between the independently normalised 

(chromosome-wise ICE) chrX Hi-C maps. We expected that the male chrX should 
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display lower contact frequencies than the female, as the chrX exists in lower copy 

number. Yet, we noticed an increase in contact probabilities in the male Hi-C maps 

at longer distances (500Kb - 1Mb). At shorter distances, the female Hi-C map 

consistently has higher signal. Beyond these distances, the male chrX has higher 

signal and these interactions border regions in the Hi-C map that may correspond 

to TADs. This suggests that the increase in contact probabilities is observed in 

contacts that would occur between TADs in the inter-TAD contact space (Figure 4). 

 
Figure 4 Adapted from Pal et al., 2018 The male X chromosome participates in more long-range 
contacts. Sex sorted embryo datasets binned at 10Kb were normalised chromosome by 
chromosome using HiCLib (Imakaev et al. 2012). Depicted above is a 3MB segment of chromosome 
X showing the fold change of Hi-C signal between male and female embryos. TAD structuring seems 
to be preserved for the most part (black triangular regions). In these regions the female Hi-C matrices 
consistently shows higher signal (black). The male single copy X chromosome starts to show more 
equivalent signal in the inter-TAD regions (dark blue regions) at distances greater than 250Kb. At 
distances greater than 500Kb, the male chrX consistently shows Hi-C signal that is nearly at par with 
the female chrX (dark blue) with interspersed regions showing very high contact frequencies (white). 
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4.4 Higher long-range contacts have a quantifiable effect on Hi-C signal decay 

After this qualitative observation, I wanted to quantify and confirm these 

observations. Therefore, I computed the Hi-C interaction decay as a function of the 

distance for the sex-sorted male and female embryos, alongside additional male 

(Ramírez et al. 2015) and female (Li et al. 2015) cell lines. For this analysis, I 

considered each autosome arm independently of the other and removed 

chromosomes 4 and Y. We did this, owing to their smaller footprint, chr4 is 

approximately 6Mb in size, while the Y chromosome is 347Kb in size. Furthermore, 

the Y chromosome is mostly un-mappable due to the presence of repetitive regions 

(Charlesworth 2001) and chromosome 4 is mostly heterochromatic (Sun et al. 

2000). Also, the Y chromosome itself is not directly linked to sex determination in 

drosophila (Samata and Akhtar 2018). 

Log-log interaction decay plots were computed for each of the independently 

normalised chromosomal arms and the X chromosome. I noticed that in the log-log 

plot the chrX showcased a switching pattern between the male and female samples. 

This was observed in both the cell lines and the sex-sorted embryo datasets. 

Namely, as dosage compensation came into effect, the male chrX behaves 

differently from the autosomes (Figure 5). While all of the autosomes, except for 

chr2R behave in a similar fashion the chrX interaction decay slowly moved away 

from the autosomes and ended with a larger median interaction value at larger 

distances in the male sample. This is a result, confirmed using the sex-sorted 

embryos and two independently generated cell line Hi-C datasets (Ramírez et al. 

2015; Li et al. 2015) from two different years. This shows the chrX having a much 

slower decay than the autosomes. Or in other words, the chrX had higher contact 

frequencies in the mid-/long-range distances.  
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Figure 5 Adapted from Pal et al., 2018 Male chrX shows slower decay in Hi-C signal. 25KB binned 
Hi-C data for embryos and cell lines were normalised chromosome by chromosome using HiCLib 
(Imakaev et al. 2012). Shown, is the log10 median Hi-C signal (y-axis) at each genomic distance 
within the distance range of 50Kb to 2.5Mb (x-axis). The median Hi-C signal at each distance was 
additionally normalised by the Hi-C signal at the first distance considered (50Kb) to make the 
differences visually observable. Comparing the chrX between males and females across embryos 
and cell lines, we observed that although the decay starts at the same point (y-axis value 1), the chrX 
starts to move away from the autosomes at longer distances. This is observed in the male samples 
in both embryos and cell lines. But, this pattern is not present in either of the female samples. 
 

To confirm that indeed the chrX has a slower decay rate, I computed the 

slope coefficients for each of the chromosomes. The differences (delta) between 

these slope coefficients (Figure 6) shows that the chrX slope is less negative than 

the autosomes in the male samples (average difference 0.11) and shows the rate 

of Hi-C signal decay is slower in the male chrX, which would be an effect observed 

due to more long-range contacts. Furthermore, we observed the same effect in both 

the sex-sorted embryos and cell lines datasets. This was not observed in either of 

the female samples. A similar behaviour observed in chr2R in both the sexes can 

be explained by the increased propensity to preferentially participate in trans 

interactions with chr2L as evidenced in Figure 23. 
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Figure 6 Adapted from Pal et al., 2018 The Hi-C signal decay is quantifiably slower in the male 
chrX. Using linear modelling between the distance ranges of 50Kb and 400Kb, the slope coefficients 
were estimated for the Hi-C signal decay profiles. The pairwise differences of slope coefficients 
between all chromosomes shows that the chrX has a less negative slope than the autosomes. This 
is observed in the male samples, but is not observed in the female samples. 

 

4.5 The difference between the slope coefficients is not due to a difference in 

copy number 

I reasoned that the difference in slope coefficients might be due to a 

difference in copy number and thus the coverage of Hi-C map. The autosomes being 

in higher copy number are at a higher sequencing depth and coverage. This means 

that the total number of events sampled by the autosomes from the ensemble space 

is theoretically higher than chromosome X. Therefore, the pattern that was observed 

may be a different signal saturation achieved in the respective chromosomal Hi-C 

maps. Furthermore, a number of interactions can be observed in the Hi-C maps 

(Figure 4) wherein the male Hi-C maps have extremely high contact frequencies. 

Although, the functional relevance of these interactions were not subjected to further 

investigation, it has been noted previously that normalization procedures in consort 

with lower density of Hi-C maps may sometimes create spurious signal (Rao et al. 

2014). Therefore, the presence of these interactions and the lower overall signal 

density could be a bias affecting the slower Hi-C signal observed in the male 
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chromosome X.  

To validate the hypothesis that the lower copy number of chrX is not causally 

linked to the slower interaction decay observed in the male samples, we randomly 

downsampled the Hi-C counts in the autosomal cis data, such that the total 

interaction frequency was half as much as the original datasets. We were able to 

confirm that random downsampling of the autosomes did not change the difference 

in interaction decays that we originally observed (Figure 7). 

 
Figure 7 Adapted from Pal et al., 2018 The difference in the decay of Hi-C signal between chrX 
and autosomes is not due to differences in copy number. The 25Kb binned cis Hi-C matrices for the 
autosomes in males were downsampled randomly to simulate a condition where the autosomes have 
a single copy, such that the total signal originating from each autosome is half as much as the original 
Hi-C matrix. The log10 median Hi-C signal is plotted against the genomic distance ranging between 
50Kb and 2.5Mb. The median Hi-C signal at each distance was normalised by the median Hi-C signal 
at the first diagonal (50Kb) (left). The slope coefficients were computed using linear modelling for 
values within the distance ranges of 50Kb and 400Kb and the pairwise comparison is shown (right). 
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4.6 The difference between the slope coefficients is not due to biases in 

biological replicates 

Reproducibility of signal between replicates in Hi-C data has been widely 

investigated (Yardimci et al. 2017) and different methods have been proposed. 

Therefore, we were interested in investigating if the difference between slope 

coefficients was a bias from the different replicates used for the experiments. 

Different methodologies have been proposed for testing reproducibility have been 

proposed (Yardimci et al. 2017). We went a step further and tested both the 

reproducibility of Hi-C signal and effect across biological replicates. To investigate 

whether the differences in slope coefficients was an outcome of a bias in replicates 

we conducted similar analyses across both biological replicates in males and 

females. Hi-C contact matrices were independently normalised and compared 

across both biological replicates in males and females (Figure 8). The segregation 

pattern that we observed previously was still present in both replicates when 

computing the difference of slope coefficients between chrX and autosomes (Figure 

9). Furthermore, the difference of slope coefficients are strongly correlated between 

both biological replicates in male and female Hi-C maps (Figure 10). 

 
Figure 8 Adapted from Pal et al., 2018 The difference in the decay of Hi-C signal between chrX 
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and autosomes is not an effect due to biases in biological replicates. The 25Kb binned cis Hi-C 
matrices for each of the replicates in the male and female embryos were normalised chromosome 
by chromosome. For each chromosome the median log10 Hi-C signal is plotted against genomic 
distance in the range of 50Kb to 2.5Mb. The median Hi-C signal at each distance was normalised by 
the median Hi-C signal at the first diagonal (50Kb). The pattern wherein the chrX decay line moves 
away from the autosomes is still visible in the male samples, but is absent in the female samples. 

 
Figure 9 Adapted from Pal et al., 2018 The difference in the decay of Hi-C signal between chrX 
and autosomes is not an effect due to biases in biological replicates. The slope coefficients were 
computed using linear modelling for values within the distance ranges of 50Kb and 400Kb (Figure 
8) and the pairwise comparison is shown for each of the replicates in the sex-sorted male and female 
embryos. 

 
Figure 10 The difference in slope coefficients are highly correlated between the biological replicates. 
The pairwise differences of slope coefficients (Figure 9) are highly correlated between replicates in 
both male and female samples in the sex-sorted embryos and show very high spearman/pearson 
correlation. 
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method, HiCRep (Yang et al. 2017) to compute the correlation between both 

replicates in the male and female embryos. HiCRep smoothes the read counts in a 

Hi-C matrix and computes a stratum adjusted correlation coefficient (SCC) (Yang et 

al. 2017). Adjusting for the distances separating interacting genomic loci by 

assigning weights, HiCRep computes a correlation value between the two Hi-C 

matrices. The replicates show an average SCC value of 0.97 for the male embryos 

and 0.98 for the female embryos. 

4.7 The difference between the slope coefficients is not due to the presence 

of extreme values in the Hi-C maps  

One of the filters generally employed post-alignment is the filter for extreme 

values. Herein, the top 0.5% of contacts between genomic loci are removed and set 

to zero. This is done so that downstream statistics are not biased by the presence 

of these values. In analyses such as the ones depicted above, the analyses would 

be biased by extreme values only if the mean interaction frequency was used. We 

chose to keep these values and instead used the median interaction frequency, 

which is extremely robust to the tails of a distribution. Even though we never used 

the mean contact frequency in any of the analyses above, we can demonstrate that 

the presence of extreme values are neither biasing our observations or inferences. 

We employed an extreme smoothing procedure by normalising all interaction 

values by the median interaction value at the starting diagonal. Any values which 

are greater than this median value are set to 1 (Giorgetti et al. 2014). Therefore, we 

are able to control for extreme values. Since Hi-C data follows a power-law equation, 

this transformation assumes that at distances greater than 20Kb, contact 

frequencies cannot be greater than the median contact frequency of genomic loci 

separated by a distance of 20Kb. 

Using this procedure, we are able to show that the difference between chrX 
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interaction decay still exists between male and female embryos after smoothing 

extreme values (Figure 11). Furthermore, Hi-C normalisation methods are known 

to introduce spurious extreme values in sparse matrices (Rao et al. 2014). Using 

this same transformation across different normalization procedures we demonstrate 

that the difference between slope coefficients still exists after controlling for the 

extreme values which may have been present in the Hi-C experiment itself or may 

have been introduced by the normalisation procedure (Figure 12). We also note, 

that the hippie normalisation procedure binarises contacts between all genomic loci 

pre-normalisation. This makes all contacts equivalent. Even in this case, the 

difference is still present after binarization and smoothing of the distributions (Figure 

11 hicpipe). 

 
Figure 11 Adapted from Pal et al., 2018 The differences in Hi-C interaction decay are extremely 
robust to outliers and extreme values in the Hi-C maps. 25Kb binned Hi-C data for the sex-sorted fly 
embryos were normalised using three normalisation procedures. From left to right, chromosome by 
chromosome implicit normalisation using HiCLib (Imakaev et al. 2012), genome-wide implicit 
normalisation using HiCLib (Imakaev et al. 2012), and hicpipe (Yaffe and Tanay 2011) based explicit 
normalisation. The normalised interaction frequencies were then converted into probabilistic values 
by normalising with the mean interaction frequency at distance 50Kb (Giorgetti et al. 2014). Any 
values which were greater than this value was set to 1. It is observed, that even after this extreme 
transformation the pattern wherein the chrX decay line moves away from the autosomes is still visible 
in the male samples, but is absent in the female samples. 
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Figure 12 Adapted from Pal et al., 2018 The differences in slope coefficients are extremely robust 
to outliers and extreme values in the Hi-C maps. The slope coefficients were computed using linear 
modelling for values within the distance ranges of 50Kb and 400Kb (Figure 11) and the pairwise 
comparison is shown for the male (top) and female sex-sorted embryos across the three 
normalisation methods. 
 

4.8 The difference between slope coefficients not an effect due to homologous 

pairing 

We also considered a scenario wherein the pairing of homologous 

chromosomes may have an influence on the chrX specific differences in interaction 

decay. Homologous chromosomes are known to be paired throughout the cell cycle 

in D. melanogaster, although the exact molecular mechanisms are not completely 

characterized yet (Joyce et al. 2016). Between chromosome or trans interactions 

originating from the homologous chromosomes cannot be distinguished from the cis 

or within-chromosomal contacts. I reasoned, that since the male chrX is the only 

one without a pair, this may affect the interaction slope decay.  

To understand what effects the homologous chromosomal pairing has on the 

interaction decay profiles, collaborators conducted polymer simulations on a paired 

and unpaired chromosome. Taking a single chromosome starting from a RabI-like 

configuration, molecular dynamics simulations were done using 10Kb beads on a 
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string in the presence or absence of preferential physical pairing across the entire 

length of the chromosome (Figure 13). With these simulations, we were able to 

show that in the absence of pairing, a faster decay is seen in the polymer simulation, 

which would translate into less long-range interactions. But, in our data, we 

observed an increase in long-range contacts resulting in a slower decay in the 

interaction decay analysis. Therefore, we were able to show that the difference in 

slope coefficients is not an effect due to lack of homologous pairing. 

 
Figure 13 Adapted from Pal et al., 2018 Log-log plot shows the expected interaction frequency 
decay with distance obtained using molecular dynamics simulations. Male and Female sexes were 
considered with either a single or double copy of the X chromosome with or without the presence of 
pairing. Data shows the expected decay for a chromosome in double copy (with pairing) or single 
copy (no pairing) (black (Female) and red lines (Male), respectively). For any given binned genomic 
distance the log10 interaction frequency is reported (y-axis). Distances ranging from 10Kb to 5Mb 
are shown.  

 

4.9 The difference between the slope coefficients is significant  

Using non-parametric measures, we confirmed the significance of this 

difference in the rate of decay to be significant in both the male embryos and cell 

line (Figure 14). In other words, the deltas between chrX and autosomes is 

significantly different from the deltas between the autosomes. This pattern was not 

observed for the female samples. I also compared the normalised Hi-C signal in the 

male and female samples across implicit and explicit normalisation methods by 

computing the Kuiper’s statistic. In this case too, we found the signal to be 

significantly different between chrX and autosomes (Figure 15). 
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Figure 14 Adapted from Pal et al., 2018 The differences in slope coefficients are significant. Boxplot 
of slope coefficient differences for the Hi-C decay rates (Figure 6) grouped by autosomes or chrX in 
male and female embryos (left) or cell lines (right). The difference in rates of decay between 
autosomes and chrX chromosome is highly significant in male samples only (Wilcoxon test p-value 
0.001). 
 

 
Figure 15 Adapted from Pal et al., 2018 Kuiper’s statistic is reported as an alternative to comparing 
the the differences in slope coefficients. Kuiper’s statistic is reported grouped by autosomes and 
chrX in male and female embryos (left and centre) or cell lines (right). We considered both 
chromosome by chromosome and genome-wide implicit normalisation using HiCLib (Imakaev et al. 
2012). Kuiper's statistic is computed as the sum of absolute values for the maximum positive and 
negative differences between the cumulative density functions (CDFs) of the interaction probability 
for autosomes or chrX. CDFs of interaction probability were estimated from 50Kb to 2.5Mb as 
cumulative sums of median Hi-C contact frequencies for each distance, then divided by the 
cumulative sum maximum value to make it equal to probability 1. 
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4.10 A novel method to quantify structural differences between chromosomes 

using Hi-C data 

We showed that the chrX participates in more long-range contacts. This is 

not an effect due to biological or technical biases. Yet, we were not sure if these 

long-range interactions were functional or random interactions occurring due to 

increased accessibility of the chromosome X. Functional interactions are those that 

occur between enhancers and promoters or between insulator binding regions. The 

identification of peaks or significantly interacting regions on Hi-C data using 

statistical methodologies is capable of identifying such interactions. One possible 

approach at our disposal was to identify such peaks in the male and female 

embryos. We could have then compared the proportion of dissimilar interactions 

that are between known/predicted regulatory regions. This would have allowed us 

to directly quantify the proportion of newly established long-range contacts in the 

male matrix that are between regulatory regions. It would have opened up the 

possibility for us to investigate the establishment of accessibility driven functional 

long-range interactions.  

In our recent study (Forcato et al. 2017), we observed that all existing peak 

callers are extremely biased by a strong dependency between the number of peaks 

called and the coverage in the experiment. In our case, this was a problem as the 

single copy X chromosome cis Hi-C maps had half as many reads as the autosomes 

and three times less reads as the female X chromosome. Therefore, a direct 

comparison of peaks in the Hi-C data could not be made as the male and female 

Hi-C maps would never reach an equal statistical power. To resolve this issue, we 

devised a non-parametric approach that would allow us to compare the male and 

female Hi-C maps, irrespective of the difference in Hi-C signal between both 

samples.  
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In this procedure, we select the top-scoring interaction in any diagonal of a 

matrix. The selection of top-scoring interactions is based on setting a threshold on 

the quantiles. This threshold is set for each diagonal independent of every other 

diagonal. At the end of the selection, we are left with all interactions that were above 

the set threshold at that given diagonal. We call these interactions the “top-scoring” 

interactions (Figure 16). For example, using a threshold of 5%, we select the top 

5% interactions in both the male and female Hi-C maps. Please note, that since we 

always select the top 5% at any given diagonal, we are left with the same number 

of top-scoring interactions in both datasets. What changes between the points is the 

spatial distance between adjacent top-scoring points located in different diagonals. 

 
Figure 16 Adapted from Pal et al., 2018 An outline of the procedure for categorising top-scoring 
interactions are shown. Each diagonal represents a certain genomic distance separating interacting 
genomic loci. Progressively, interaction values are selected at each diagonal. Therefore, interaction 
frequencies are selected by the genomic distance separating the participating genomic loci. At each 
distance, the top 5% interactions are selected. These interactions are assigned a value of 1 and are 
called the top-scoring interactions (yellow). 

  

I noted, that after completing this procedure on the male and female Hi-C 

maps, both Hi-C maps look remarkably similar on the autosomes, with most of the 

points being conserved across both male and female samples (Figure 17, left 

panel). This is not true for chrX, where most of the top-scoring interactions are 

conserved, but other regions can be seen which are also dissimilar and less 

clustered between the two (Figure 17 right panel). 
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Figure 17 Adapted from Pal et al., 2018 Representative region of chr3R and chrX is shown after 
selecting top 5% interactions in the 25Kb binned male and female sex-sorted Hi-C datasets using 
the procedure outlined in Figure 18. Male is shown in the upper triangle (blue), whereas female is 
shown in the lower triangle (red). Since the top-scoring interactions are selected at each diagonal, 
the total number of top-scoring interactions are the same between male and female samples. But, 
the spatial positioning of these top-scoring interactions may not be same. Notice how similar both 
the male and female top-scoring patterns look in chr3R, but the same is not observed in the chrX. 

 

We then devised a clustering procedure in euclidean space to quantify the 

difference in spatial distances between top-scoring interactions. My clustering 

procedure does not assume a pre-set number of clusters, but rather depends on the 

assumption that functional interactions will cluster with many other such interactions 

that may facilitate its occurrence. On the other hand, random interactions which are 

largely driven by accessibility will remain unclustered in space since there is no 

physical constraints to positively select such interactions. 

4.11 The dosage compensated male chrX participates in more random 

interactions 

Using the clustering procedure described above, I clustered the top-scoring 

interactions in the male and female Hi-C maps. I observed, that the differences 

between the clustered data points in female versus male is higher for chrX as 

compared to the autosomes. Namely, the male chrX shows more top-scoring 

interactions that could not be clustered (Figure 18). 

22.5

24

25.5

22.5 24 25.5
19

20.5

22

19 20.5 22

G
en

om
ic

 p
os

iti
on

 (M
b)

chr3R chrX

Male Female
Genomic position (Mb) Genomic position (Mb)



73 

 
Figure 18 Adapted from Pal et al., 2018 Male chrX shows a higher proportion of unclustered top-
scoring interaction. Top 5% interactions in the 25Kb binned male and female sex-sorted Hi-C 
datasets were clustered by iteratively aggregating all top-scoring interactions which were within a 
distance of 25Kb. This was done for all top-scoring interactions within a distance of 2.5Mb. Finally 
we report the difference in proportion of top-scoring interactions that could not be 
assigned/associated to a cluster/other nearby top-scoring data points.  

 

We wanted to ascertain whether the observations were biased by different 

factors. First, I ascertained that the lower copy number of the male chrX could result 

in the generation of a larger fraction of randomly occurring top-scoring interactions. 

I also considered a scenario where the choice of normalisation method and 

parameters may affect which data points are categorised as top-scoring. Finally, I 

considered biases due to the experimental procedure which may be solely 

responsible for introducing more random top-scoring interactions in our analysis. 

I demonstrate that even when considering different normalisation methods 

(chromosome-wise ICE, genome-wide ICE, hicpipe explicit biases modelling) and 

different percentile/distance thresholds for selecting and clustering the top-scoring 

interactions during the procedure, the chrX persistently clusters less (Figure 19). 

Furthermore, to check if the lower coverage of male chrX is generating more random 

top-scoring interactions, I randomly downsampled the female cis Hi-C maps, such 

that the total number of counts were equivalent to the corresponding chromosomal 

cis Hi-C map in the male embryos. My observations still hold true when comparing 

the downsampled female Hi-C matrix to the male Hi-C matrix (Figure 19). 
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Figure 19 Adapted from Pal et al., 2018 The finding that chrX clusters less is not biased by 
algorithm parameters or copy number based differences in coverage. The 25Kb binned Hi-C matrices 
for the male and female sex-sorted embryos normalised with implicit (ICE) (Imakaev et al. 2012) or 
explicit (hicpipe) (Yaffe and Tanay 2011) procedures (top axis) were passed through different 
combinations of top-scoring interaction thresholds ranging from 3% to 10% (x-axis). Furthermore, 
the maximum distance separating sampled interactions was also iteratively changed in the ranges 
of 1MB to 3MB (right axis). To control for differences in copy-number the female chrX Hi-C matrix 
was randomly downsampled to the same coverage as the male chrX Hi-C matrix (right). In almost 
all cases, the difference between the proportion of unclustered top-scoring points between the male 
and female Hi-C datasets is higher for chrX than for autosomes. 

  

Finally, I also used the clustering procedure on the three different drosophila 

cell lines; S2 (male), Kc167 (female), Clone8 (male). These male and female cell 

line Hi-C data were generated by independent groups, using independently 

standardised experimental protocols and machines. Even when comparing these 

datasets, I observed that the male chrX consistently clusters less than the female 

chrX (Figure 20). 
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Figure 20 Adapted from Pal et al., 2018 The chrX also clusters less in male cell lines. 25Kb binned 
Hi-C matrices for the male and female cell lines (male Clone8, female Kc167, male S2) normalised 
with implicit procedures (Imakaev et al. 2012) were passed through different combinations of top-
scoring interaction thresholds ranging from 3% to 10% (x-axis). The maximum distance separating 
sampled interactions was also iteratively changed in the ranges of 1MB to 3MB. In almost all cases, 
the difference between the proportion of unclustered top-scoring points between the male (Clone8, 
S2) and female (Kc167) Hi-C datasets is higher for chrX than for autosomes. 

 

Taken in context with the previous results, even if the male chrX shows more 

mid-/long-range interactions compared to the female (Figure 4), the top-scoring 

interactions seem to be more randomly distributed (Figure 17). These results would 

be in line with a scenario wherein the dosage compensated male chrX is globally 

more accessible, thus more prone to participate in non-specific accessibility driven 

random non-functional events which can be detected in Hi-C data. 
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4.12 The dosage compensated male chrX is more accessible 

I wanted to confirm that the random distribution of top-scoring interactions 

were indeed driven by increased chrX accessibility. To confirm increased 

accessibility, I investigated the inter-chromosomal Hi-C contacts as an estimation 

for non-specific interactions. Herein, the working hypothesis is that increased 

accessibility may result in more trans interactions. Trans interactions are those 

where either end of a read pair maps to different chromosome. I observed, that the 

chrX participates in more trans interactions. This has been observed across both 

embryos and cell lines (Figure 21). Therefore, the chrX is indeed more accessible. 

 
Figure 21 Adapted from Pal et al., 2018 The male chrX participates in more trans interactions than 
it does in cis interactions. The ratio of the total number of trans read pairs over cis read pairs is shown 
for each chromosome in male and female Hi-C datasets for both embryos and cell lines.  

  

Furthermore, I considered a scenario wherein this effect might be due to the 

non-existence of pairing in the male chrX. The interactions occurring between 

homologous chromosomes are generally captured as cis interactions. But the 

homologous pairing effect is not present in male drosophila. The absence of this 

might lead to the effect wherein a relatively higher trans interaction is observed in 

the male sample. Thus, the effect of homologous chromosome pairing may 

introduce an additional bias factor. I tested the effects of copy number on the trans 

distribution and verified that the sex-sorted embryos trans interactions from the 

autosomes are specifically enriched on the male chrX (Figure 22). Yet, the same 
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effect is not observed in the female samples. Also, we were not able to confirm these 

findings in the cell lines (Figure 23). 

 
Figure 22 Adapted from Pal et al., 2018 The male chrX has a higher propensity to participate in 
trans interactions when compared to autosomes or the female dataset. The trans interactions for 
each chromosome (rows) was divided by a random expected value. Assuming a uniform distribution, 
the random expected value estimates the expected fraction of trans interactions belonging to the 
chromosome (rows) from the total trans interactions from any partner chromosome (columns) after 
adjusting for copy number (Methods). The log2 ratio of observed over expected fraction of trans 
interactions is reported in the heat map. This heatmap is not symmetric as the expected number of 
interactions is different depending on the origin vs target chromosome pairs. The diagonal is grey as 
cis-interactions are not considered. 

 
Figure 23 Adapted from Pal et al., 2018 The propensity of chrX to participate in more trans 
interactions is not observed in the cell lines. The trans interactions for each chromosome (rows) was 
divided by a random expected value. Assuming a uniform distribution, the random expected value 
estimates the expected fraction of trans interactions belonging to the chromosome (rows) from the 
total trans interactions from any partner chromosome (columns) after adjusting for copy number 
(Methods). The log2 ratio of observed over expected fraction of trans interactions is reported in the 
heat map. This heatmap is not symmetric as the expected number of interactions is different 
depending on the origin vs target chromosome pairs. The diagonal is grey as cis-interactions are not 
considered. 

  

Therefore, I conclude that the dosage compensated chrX is more accessible 

and thus more prone to make random long-range interactions detectable using Hi-

C. 
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4.13 A novel method for detecting genome compartmentalisation 

Eukaryotic genomes have been progressively compartmentalised into higher 

order ensemble folding structures. Starting from the largest to the smallest, the 

genome has been compartmentalised into large-scale compartments (Lieberman-

Aiden et al. 2009) that correlate with previously described band domains on the 

basis of trypsin digestion susceptibility (Manuelidis 1990) or on the basis of GC 

content (Saccone et al. 1993; Bernardi 1995). Compartments correlate with active 

and inactive regions of the genome (Lieberman-Aiden et al. 2009) and change 

between differentiation states (Dixon et al. 2015). With increases in Hi-C sequencing 

depth, compartments have been further compartmentalised into folding structures 

popularly termed as Topologically Associated Domains (TADs) (Dixon et al. 2012; 

Sexton et al. 2012). TADs are regions of aggregated chromatin in Hi-C maps, 

wherein regions of chromatin that are distant in linear space tend to contact each 

other more than their adjacent neighbour. 

TADs are largely invariant and do not change between differentiation states 

(Dixon et al. 2015). Rather, the insulation between TADs change between 

differentiation states (Dixon et al. 2015). Insulation, is a metric that quantifies the 

separation between TADs as a ratio of the intra-TAD versus inter-TAD contact 

frequency (Crane et al. 2015; Zhan et al. 2017). TADs are bounded by directionally 

oriented insulator proteins such as CTCF (Shih and Krangel 2013; Rao et al. 2014) 

or BEAF32/CP190 in drosophila (Sexton et al. 2012). Although, the removal of these 

proteins is not enough to drive large scale changes in TADs, resulting in changes in 

local insulation (Nora et al. 2017; Shih and Krangel 2013). In eukaryotes, TADs are 

correlated with transcriptional states (Rowley et al. 2017) and early/late replicating 

regions of the genome (Pope et al. 2014). In drosophila, the appearance of TADs 

coincide with activation of transcription during zygotic development (Hug et al. 
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2017). 

I was therefore motivated to see if dosage compensation in drosophila 

resulted in any detectable changes in TADs. The dosage compensation mechanism 

in drosophila specifically targets active genes on the X chromosome and up 

regulates them by a non-constant factor. This up-regulation results in an average 

genome-wide up-regulation of two-fold. A multitude of previous studies have shown 

that TADs are largely invariant and are highly resilient to change (Dixon et al. 2015; 

Nora et al. 2017; Rodríguez-Carballo et al. 2017). Furthermore, a slew of literature 

suggests a causal link between transcription/replication and TADs (Pope et al. 2014; 

Rowley et al. 2017; Hug et al. 2017).  

The identification of TADs has generally been based on detecting a change 

in a global distribution. These distributions quantify various metrics. Most popular 

are the insulation based methods (Crane et al. 2015; Zhan et al. 2017). Within TAD 

regions showcase a different interaction decay profile compared to the outside TAD 

regions (Fudenberg et al. 2016). Interaction decay profile based methods have also 

been proposed (Weinreb and Raphael 2015). One of the first metrics proposed, 

directionality index (Dixon et al. 2012), is a bias metric that quantifies the propensity 

of each genomic loci to participate in either upstream or downstream interactions in 

a Hi-C map. If two regions are very far away and have high contact frequency, this 

translates to highly positive (downstream) bias for one region and a highly negative 

(upstream) bias for its partner region. The regions where a highly negative bias 

changes to a highly positive bias are generally the regions that mark the boundaries 

of TADs (Dixon et al. 2012).  

Based on literature evidence, I assumed that transcriptional activity is one of 

the primary factors required for TAD emergence (Hug et al. 2017; Rowley et al. 

2017; Le Dily et al. 2014). Since different genes have highly variable expression 
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values, the effect of most genes would result in local perturbations on the chromatin 

fibre. These changes would not be detectable on a global distribution, but can be 

detectable when using the local distribution. On the basis of this hypothesis, I 

proposed Local score differentiator (LSD). 

I use the directionality index (DI) to measure the upstream/downstream bias 

(Figure 24 top). From this bias, I compute the difference of DI between neighbouring 

loci to quantify the consecutive changes in biases (Figure 24 middle). At adjacent 

loci, where one has a highly negative DI and the other a highly positive DI, the 

difference between these two Di values will be highly positive or highly negative 

(Figure 24 middle). Using these delta values, I detect the change points where a 

highly negative DI becomes highly positive as outliers in a local DI distribution 

(Figure 24 bottom). 

 
Figure 24 Adapted from Pal et al., 2018 Local Score differentiator (LSD) is a simplified approach 
towards detecting TAD boundaries. Starting from any normalised Hi-C matrix, the directionality index 
(DI) (Dixon et al. 2012) is first computed over a user defined window size. Next, the first derivative 
of the DI is computed (delta DIs). Then using a sliding window across the genome, local outliers are 
detected in the delta DI distribution as TAD boundaries. 

Normalized Hi-C data

Compute Directionality Index

Compute Delta DI

Outline domain boundaries
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4.14 Local score differentiator is extremely fast and accurate 

In a recent study, we compared existing TAD calling procedures in terms of 

their true positive rate (TPR) and false discovery rate (FDR) when identifying TADs 

on simulated datasets (Forcato et al. 2017). I vetted LSD against these TAD calling 

procedures. In terms of calling TADs on these simulated Hi-C datasets, LSD out-

performed all other TAD calling procedures in terms of true positive rate (TPR) and 

false discovery rate (FDR) (Figure 25). 

 
Figure 25 Adapted from Pal et al., 2018 LSD boundary calls are extremely robust in terms of true 
positive rate and false discovery rates. In a recent study we simulated Hi-C data (Forcato et al. 2017) 
and compared existing TAD calling algorithms. I used these simulated data to generate TAD 
boundary calls with LSD. In both cases, LSD showcased extremely high signal to noise ratio and 
showcased the highest TPR and lowest FDR. TADBit is the only other TAD calling algorithm, which 
performs as well as LSD. 

 

TADBit (Serra et al. 2017) was identified as one of the most accurate TAD 

calling procedures in our previous study. Indeed, TADBit was also the only other 

TAD calling procedure that is similar to LSD in terms of performance. Therefore, we 

compared the speed of both TAD calling procedures on human 10Kb matrices from 

the Rao et al., 2014 study. TADBit is very slow, with the largest matrix belonging to 

chr6 taking nearly 10 days to complete (Figure 26). On the other hand, LSD 

processed the same matrix in less than 6 minutes. This represents an improvement 

of nearly 2500%. 
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Figure 26 Adapted from Pal et al., 2018 Using 5Kb human Hi-C data from the Rao et al., 2014 
study, I did TAD calls with both LSD and TADBit, to compare the speed of both these algorithms. 
LSD (top) is faster than TADBit (bottom) by a factor of nearly 2500%.  

 

4.15 Chromosome X shows a higher proportion of non-matching TAD 

boundaries 

I then applied this TAD calling procedure to the independently normalised 

male and female Hi-C datasets binned at 10Kb. Across various combinations of 

parameters for computing the DI and detecting outliers, I observed that the chrX 

consistently shows a higher fraction of non-matching TAD boundaries between the 

male and female embryos (Figure 27). 
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Figure 27 Adapted from Pal et al., 2018 The chrX consistently shows a higher fraction of non-
matching TAD boundaries between male and female samples. Using various analysis parameter 
combinations LSD was used to do TAD calls on sex-sorted male female Hi-C datasets binned at 
10Kb and normalised chromosome by chromosome with ICE. I iterated over two parameters, the 
size n of the directionality index window (upper axis) and the size m of the local window to scan for 
outliers (x-axis) across each chromosome (y-axis). 

 

To ensure that my boundary calling procedure was not introducing technical 

biases in the analysis, I also used three additional TAD calling procedures (Filippova 

et al. 2014; Dixon et al. 2012; Serra et al. 2017). In all three cases, I observed a 

higher proportion of non-matching TAD boundaries in the chrX (Figure 28). 

 
Figure 28 Adapted from Pal et al., 2018 The chrX also shows a higher fraction of non-matching 
TAD boundaries between male and female samples across other TAD calling approaches. Using 
default parameters, we did TAD calls using published TAD calling procedures (Filippova et al. 2014; 
Dixon et al. 2012; Serra et al. 2017) on sex-sorted embryos Hi-C data binned at a resolution of 10Kb 
and normalised with ICE chromosome by chromosome. Shown, are the proportion of non-matching 
boundaries between male and female samples using Domaincaller (Dixon et al. 2012), armature 
(Filippova et al. 2014) and TADBit (Serra et al. 2017).  

 

I then tested if my observations were biased due to various factors such as 

the binning resolution, choice of normalisation and the copy number difference in 

chrX between males and females. To control for copy number, I downsampled the 

female chrX and predicted TADs using LSD. Across various parameter scales I 

observed that the chrX consistently showed a higher proportion of non-matching 

domain boundaries (Figure 29). Using LSD, I am also able to show that my 
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observations are not biased by the choice of normalisation, binning resolution or 

parameter setting during the TAD calls (Figure 30). 

 
Figure 29 Adapted from Pal et al., 2018 The higher proportion of non-matching boundaries 
between male and female samples is not a function of the copy number difference. The 10Kb binned 
chrX Hi-C data for female embryos were downsampled to match the coverage of their corresponding 
male chromosome. The proportion of non-matching TAD boundaries between male and female 
samples is shown iterating over various combinations of DI windows (x-axis) and Local windows (y-
axis). Colour intensity is mapped to their corresponding numbers.  

 
Figure 30 Adapted from Pal et al., 2018 The higher proportion of non-matching boundaries 
between male and female samples is not a function of normalisation or binning resolution. TAD calls 
using 5 different DI window sizes with a corresponding Local window size which is twice the size of 
the DI window, shows that the higher proportion of non matching domain boundaries (y-axis) in the 
chrX (x-axis) between male and female embryos is not linked to the binning resolution (upper axis) 
or the choice of normalisation (right-axis). The choice of the DI parameters were motivated by 
selecting parameters that would sample values from short-range, mid-range or long-range 
interactions.  
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4.16 Qualitative classification of non-matching domain boundaries correlates 

with dosage compensation 

In order to verify if there was an association between dosage compensation 

and the non-matching domain boundaries. I binned the embryo datasets at 3.5Kb, 

the highest resolution possible for our data and using LSD, I predicted TADs and 

reduced the TADs to their respective boundaries. I then moved to assign a 

qualitative classification to these boundaries, so as to make a comparison between 

the male and female embryos. Boundaries which were found in both male and 

female embryos are labelled as Same, boundaries which were found only in the 

male sample were called as Appearing and boundaries found only in the female 

sample were called as Disappearing (Figure 31). In total, 851 boundaries were 

found on chrX across both male and female embryos. Of these 851 boundaries, 377 

(44.3%) were categorised as same, 174 (20.4%) were categorised as appearing 

and 300 (35.3%) were categorised as disappearing boundaries.  

 
Figure 31 Adapted from Pal et al., 2018 The non-matching boundaries in chrX can be qualitatively 
categorised. TAD calls were done on 3.5Kb binned Hi-C matrices for the sex-sorted male and female 
embryos normalised chromosome by chromosome with ICE (Imakaev et al. 2012). We noticed, that 
at regions where boundaries weren’t matching between male and female, specifically cases were 
observed where a boundary was identified in the female sample, but not in the male sample. In such 
cases, the Hi-C data also seemed to be a bit blurry and the separation between adjacent TADs was 
less clear. To annotate these changes, we created three categories. Same boundaries are those that 
were identified across both samples, Appearing boundaries are those that are identified only in the 
male sample and finally Disappearing boundaries are those that were identified only in the female 
sample.  
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We saw, that in many cases the qualitative assignment was able to explain 

our observations. A number of disappearing domain borders coincide with regions 

showing weakened insulation in the male sample, but the structures are still visible 

in the female sample. To quantify these differences, I computed the insulation score 

(Crane et al. 2015) for each boundary. The insulation score tries to quantify the 

number of interactions occurring across a boundary. The lower the insulation score, 

the less interactions occur across the genomic loci (Crane et al. 2015), as would be 

expected from domain boundaries. Comparing the insulation score at each 

disappearing boundary between male and female, we find that disappearing 

boundaries are significantly less insulated than the same region in female embryos 

(wilcoxon test p-value 0.001) (Figure 32). 

 
Figure 32 Adapted from Pal et al., 2018 Disappearing boundaries in chrX show higher change in 
insulation that those in autosomes. We adapted the insulation score metric as previously described 
(Crane et al. 2015) and compared the insulation of TAD boundaries between male and female 
samples. We observed, that chrX (right) disappearing boundaries showcased a significant change 
in insulation between male and female sex-sorted embryos (Wilcoxon test p-value 0.001) when 
compared to the autosome chr3R (left). 
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which are up-regulated by the dosage compensation machinery) (Figure 33). 

 
Figure 33 Adapted from Pal et al., 2018 Disappearing boundaries are associated to dosage 
compensation features. Left, log2 enrichment of dosage compensation complex binding sites is 
shown around domain borders. Three definitions of dosage compensation binding sites have been 
used from three different laboratories: Kuroda (Alekseyenko et al. 2008), Becker (Straub et al. 2008) 
and Akhtar (Ramírez et al. 2015) laboratories. The expected frequency was computed based on 
random uniform distribution of such sites along the chrX. Right, the frequency density of domain 
boundaries near dosage compensated gene TSS (left) or TES is shown. 
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4.17 Changes in insulation are not correlated to changes in insulator binding 

profiles 

There are two affecters that may influence this change in insulation. The first, 

is a transcriptionally coupled change in insulator binding. This may translate towards 

a real change in higher-order chromatin structure. The second, relates to an 

increase in open chromatin regions near dosage compensated genes and dosage 

compensation complex binding sites. If more open chromatin regions are present 

near weakening boundaries, these boundaries will have a higher propensity to 

interact with their neighbours, resulting in higher contact frequency as compared to 

the female sample. To de-convolute these two possibilities, we first investigated the 

insulator binding landscape in S2 (male), Kc167 (female) cell lines alongside mixed 

embryos. We selected three principal insulator proteins; BEAF32, CP190 and CTCF 

from the modENCODE project (Contrino et al. 2012). Although, we saw a few 

specific changes, we did not observe a general pattern of association between 

insulator binding and the changes in insulation (Figure 34). Near equivalent 

proportion of domain boundaries are present near insulator peaks as defined by 

modENCODE (Figure 35) across both cell lines and embryos. The average number 

of insulator peaks overlapping domain boundaries is also very similar across cell 

lines and embryos (Figure 36). Finally, the average insulator binding intensity 

around domain boundaries is also very similar across both cell lines and embryos 

(Figure 37). In neither case did we observe an enrichment of CTCF profiles. This is 

in line with previous studies that have demonstrated that drosophila domain 

boundaries are not strongly associated to CTCF (Hou et al. 2012; Sexton et al. 

2012). 
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Figure 34 Adapted from Pal et al., 2018 Insulator profiles remain largely unchanged between 
different boundary classes and sexes. I obtained several publicly available insulator profiles from 
modENCODE (Contrino et al. 2012). Principally, I looked into profiles for BEAF32 and CP190, the 
major insulator proteins present in drosophila. Additionally, I also considered CTCF. To control for 
unknown biases, I tried to limit the search to insulator profiles which were produced by the same lab 
in the same year. Above, a small 500kb segment of chrX is shown with the various insulator profiles 
across S2 and Kc cell lines. Although, certain specific examples of insulator binding changes are 
evident, there does not seem to be any generalised differences in insulator binding. 
 

 
Figure 35 Adapted from Pal et al., Nat. 2018 Almost all domain boundaries, irrespective of their 
boundary change class are near an insulator peak as identified by modENCODE. The fraction of 
boundaries which are near (within 10 bins or 35Kb) of such an insulator peak are shown for BEAF32, 
CP190 and CTCF across S2, Kc and mixed embryos. 
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Figure 36 Adapted from Pal et al., 2018 The distribution of insulators (BEAF32, CP190, CTCF) 
binding peaks around the different TAD boundary classes is shown within a distance of 35Kb (10 
bins distance) in S2, Kc and mixed Embryos. 
 

 
Figure 37 Adapted from Pal et al., 2018 The raw ChIP-chip enrichment signal from modENCODE 
is being reported. modENCODE enrichment is lowess smoothed (500bp bandwidth) M values (log2 
signal intensities of CHiP over control). Enrichment values have been scaled by the 99th percentile. 
The average signal of insulators binding (BEAF32, CP190 and CTCF) is shown around TAD 
boundaries of each class. 
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4.18 4C-seq validates correlation between changes in accessibility and 

insulation 

I now considered the second hypothesis. Increased accessibility of chromatin 

regions near dosage compensated genes lead to the changes in insulation that we 

observed in the male and female embryo datasets. Namely, increased accessibility 

will lead to an increase in the propensity of these genomic regions to participate in 

contacts with other nearby regions by random chance. To validate this hypothesis, 

I sourced nearly 200 high-quality 4C-seq datasets spread out over 29 viewpoints on 

the chrX, with DC induction and repression in cell lines.  

I also noted that almost all of the 4C viewpoints were near to or were overlapping 

MSL binding sites. Of the 28 probes used, 25 (~90%) were within a distance of 3.5 

Kb to a MSL binding site mid-point. I also showed in previous results that there is a 

distance dependency between a boundary being classified as disappearing and 

MSL binding sites. Considered together with previous studies (Ramírez et al. 2015) 

which presented the existence of a MSL binding site interaction network, lead me to 

hypothesize that the accessibility induced random interactions may be present in 

both male and female genomes, but since transcription related accessibility may be 

thought to be higher in the dosage compensated X chromosome, these random 

interactions may also increase.  

Traditionally, peak calls are done using 4C-seq datasets. I argue that peak calls are 

designed to quantify functional interactions occurring in 4C data. 4C-seq peak 

callers are not designed to quantify random interactions, since these interactions 

would have extremely low statistical power. To quantify these random interactions, 

I designed 4C meta profiles for each boundary class for each probe (Figure 38). I 

observed that disappearing boundaries tend to have higher 4C signal enrichment in 

the regions near domain boundaries (+/- 7Kb) and also in general (Figure 39). 
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Appearing boundaries have the lowest 4C signal enrichment in general and same 

regions exhibit profiles which fall in-between Disappearing and Appearing 

boundaries (Figure 39). This is true for both S2 and Kc cell lines. I confirmed this 

pattern in all 4C probes (Figure 40) from the Ramírez et al., 2015 study (Ramírez 

et al. 2015). Although, disappearing boundaries show this same pattern in all probes 

across both male and female cell lines, the pattern is even greater in the male (S2) 

samples compared to the female (Kc) samples (Figure 39 right, Wilcoxon p-value 

0.001). My observation is consistent with a scenario where higher accessibility near 

disappearing borders results in lower insulation due to random contacts.  

 
Figure 38 Adapted from Pal et al., 2018 Schematic view of the construction of a 4C meta-profile is 
shown. Starting from a 4C counts file, the counts are first binarised (values greater than 0 are 
assigned 1, everything else is 0). Taking the binarised values, these values are assigned to their 
corresponding 3.5Kb bin, to make the comparison possible between the 4C and Hi-C data. Then, for 
every 3.5Kb bin all values are summed up in a sliding window of size 20Kb. These values are then 
normalised by the sum of all values in a window of 600Kb. This is in line with previous literature 
(Ramírez et al. 2015). Taking all three boundary change classes, 35Kb windows are aggregated 
around all boundaries within each class and the corresponding enrichment signal is averaged and 
log10 transformed to create a meta-profile for a single boundary for a single 4C viewpoint. 
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Figure 39 Adapted from Pal et al., 2018 A representative 4C meta-profile is shown for S2 and Kc 
cell lines. We observed, that the Disappearing boundaries show higher 4C tag enrichment than the 
Same and Appearing boundaries. Whereas, the Appearing boundaries show the lowest 4C tag 
enrichment and the Same boundaries show an intermediate signal. Notice, the average 4C tag 
enrichment signal peaks near (+/-7Kb) the disappearing boundaries. 
 

 
Figure 40 Adapted from Pal et al., 2018 The average signal observed from the 4C meta-profiles in 
the +/- 7Kb region around each TAD boundaries class is shown for all 17 probes obtained from a 
previous study (Ramírez et al. 2015). Each point represents the average signal observed in a +/-7Kb 
window around the boundaries for a single probe. We observed, that consistently the disappearing 
boundaries showed high signal, whereas the appearing showed the lowest signal and the same 
boundaries showed intermediate levels of enrichment. In case of the disappearing boundaries, the 
signal originating from the male S2 samples were significantly higher than the female Kc samples.  
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Figure 41 Adapted from Pal et al., 2018  Taking the core-set of disappearing boundaries we plot 
the average signal observed from the 4C meta-profiles in the +/- 7Kb region around the TAD 
boundaries class for 17 probes obtained from a previous study (Ramírez et al. 2015). The core-set 
is defined as boundaries which are lying in-between dosage compensated genes and showing at 
least 10% change in insulation. Each point represents the average signal observed in a +/-7Kb 
window around the boundaries for a single probe. Also here, we observed, that consistently the 
disappearing boundaries showed high signal, and the signal originating from the male S2 samples 
were significantly higher than the female Kc samples. Furthermore, we obtained additional 4C data 
for S2 and Kc samples, with induction and repression of DC (Schauer et al. 2017). We also observed 
comparable patterns here in the Kc vs S2 (right top, * Wilcoxon test 0.05) and the Kc vs induction of 
DC (right bottom).  
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signal was observed in control S2 (GFP) than in DC repressed S2 (MSL2 RNAi) 

cells (Figure 41 bottom right). 

 

4.19 Changes in CLAMP binding drive changes in insulation 

I then investigated the driver of increased chromatin accessibility during 

dosage compensation. Previous studies have shown that CLAMP an MSL loader 

protein is required for proper binding of the dosage compensation complex on chrX 

(Soruco et al. 2013). Based on MSL dependency, CLAMP binding sites were 

grouped into three distinct groups. CLAMP binding at Group A sites are completely 

dependent on MSL binding, while group B corresponds to partial dependence and 

group C corresponds to independent CLAMP binding. More recently, studies have 

shown that CLAMP bound regions are surrounded by very large open chromatin 

regions which stretch upto 14Kb (Urban et al. 2017). 

Therefore, I was intrigued to see if CLAMP binding is associated to 

disappearing domain boundaries. I found that CLAMP binding sites, specifically 

group A and B are enriched near disappearing boundaries (Figure 42 right). Then I 

looked more closely at the core set of disappearing boundaries to validate whether 

a link between CLAMP and lower insulation is present. I observed that CLAMP 

ChIP-seq binding strength is higher near the core set of disappearing boundaries in 

the S2 cells as compared to Kc cells (Figure 42 left). Therefore, it is clear that open 

chromatin regions near CLAMP binding sites are causing the change in insulation. 
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Figure 42 Adapted from Pal et al., 2018 The core-set of disappearing boundaries is strongly 
correlated with CLAMP. Right, Enrichment (log2 observed over expected ratio) of CLAMP binding 
sites around the domain borders grouped by the TAD boundary classes is shown. Three groups of 
CLAMP binding sites as previously defined (Soruco et al. 2013) are considered. The expected 
frequency was computed based on random uniform distribution of CLAMP binding sites along chrX. 
Left, the highest CLAMP binding strength is shown. Taking the CLAMP binding sites grouped by 
their affinity for dosage compensation binding, we found the point of highest wig signal intensity and 
call this the binding strength. The signal has been further normalised by the 99th percentile signal of 
the WIG file to make the comparison possible between S2 and Kc samples. The S2 shows very 
clearly that CLAMP has higher binding strength near the core-set of disappearing boundaries. 

  

My observations are therefore in line with a model where local changes in 

chromatin accessibility associated to DC are reflected as differentially insulated 

regions in Hi-C maps. This study is current under review. 

4.20 HiCLegos - Fast scalable solutions for analyzing Hi-C data 

In our previous study, we chose well-known Hi-C datasets (Jin et al. 2013; 

Rao et al. 2014; Sexton et al. 2012; Dixon et al. 2012; 2015; Lieberman-Aiden et al. 

2009) for benchmarking the performance of existing peak callers and TAD callers. 

Some of these studies, used Hi-C data binned at 5Kb (Jin et al. 2013; Rao et al. 

2014). We were severely hampered in terms of processing time and memory 

requirements by this resolution (Forcato et al. 2017) and had to process the datasets 

at a much lower resolution. We resorted to reporting the results of these high-

resolution datasets by binning them at 40Kb (Forcato et al. 2017). This already 

pointed towards a scalability issue for current Hi-C analysis tools and methods. 
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Furthermore, the resolution of existing Hi-C datasets have been continuously 

increasing over the years, with the latest highest resolution Hi-C dataset being one 

in mouse processed at a resolution of 850bp (Bonev et al. 2017) using the SHAMAN 

package (Cohen et al. 2017). Consortium efforts are also underway, with the aim of 

providing reference Hi-C data in cell lines alongside analysis procedures for dealing 

with high resolution Hi-C data (Dekker et al. 2017). Fast, efficient procedures for 

interactive visualisation of Hi-C data has also been proposed (Kerpedjiev et al. 2018; 

Durand et al. 2016).  

These methods are based on python, whilst most of the biological community 

veers towards R. Although methods have been described for accessing Hi-C data 

in the R community (Lun et al. 2016; Lun and Smyth 2015), these methods are not 

scalable since they do not make use of on-disk data stores (Lun et al. 2016). Even 

when they do, these methods are not user-friendly (Lun and Smyth 2015) from a 

storage and access point of view. Also, there does not exist a standard data format 

such as GFF or Bed for the perpetuation of Hi-C data. Although efforts are underway 

for standardising such formats (Dekker et al. 2017). Different tools and algorithms 

require the usage of different data formats. The most common ones being that of 

an n-column tab-separated file (Durand et al. 2016) or an nom dimensional matrix 

file. Many pipelines adopt variations of either one leading to difficulties in porting 

one data format to another (Yaffe and Tanay 2011). Finally, the problem of solving 

dependencies on most Hi-C analysis procedures makes most of the tools and 

methods in-accessible to users.  

I propose HiCLegos (manuscript in prep.), an R package making use of the 

HDF specification for storing and accessing Hi-C data. HiCLegos is a package that 

is integrated within the R bioconductor project (under review). Currently, HiCLegos 

provides methods for storing nxm dimensional matrices and mcool files generated 
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by the 4D nucleome project. In the access part, users are able to couple their 

retrieval operations with overlap operations making natural language search 

possible. Furthermore, HiCLegos also contains methods for making biologically 

relevant retrieval calls, such as the retrieval of contacts between loci separated by 

a certain distance (Figure 43). In cases, where the matrix is very large, users can 

decide to store only a part of the matrix until a certain distance. Although, not yet 

implemented, I will provide export methods for exporting Hi-C data in different 

formats in later releases. 

 
Figure 43 A schematic view of a HiCLegos workflow is shown. HiCLegos works by using on-disk 
HDF files. It accepts as input 4D nucleome cool files, 2D matrix files and n column tables. It further 
uses GenomicRanges based overlap operations to create a highly robust environment for accessing 
and using Hi-C data. Furthermore, it provides three basic retrieval methods, the retrieval of matrix 
subsets, retrieval of diagonals and the retrieval of specific rows or columns.  

 

HiCLegos has been built so that the internal complexity of the data structure 

remains hidden from users, yet they are able to manipulate and access the data, 

while being able to keep the results of those analysis associated to the data store. 

As the name suggests, this package has been built so as to allow external users the 

ability to build additional packages using HiCLegos. As a demonstration, LSD 

comes packaged with HiCLegos. The time required to process data using LSD and 

its performance in terms of TPR and FDR have been outlined previously (see sub-
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section 3.11). Finally, HiCLegos also provides single-command modules for 

creating Hi-C heatmaps and plotting structural features such as TADs on the maps.  

To demonstrate the efficiency of this paradigm, I used HiCLegos to process 

high-resolution drosophila Hi-C data and compared it with base R procedures. 

HiCLegos generally outperforms base R functions in terms of read times when 

reading a matrix into the database (Figure 44). High-resolution Hi-C matrices are 

very demanding in terms of memory and time. I compared HiCLegos against normal 

R functions in terms of retrieval. HiCLegos has no additional memory overhead 

since the package relies on the usage of on-disk databases (Figure 45 left). Base 

R generally outperforms HiCLegos methods when using low-resolution matrices, 

but when using high-resolution matrices HiCLegos performs faster (Figure 45 right).  

 
Figure 44 The data loading time of HiCLegos is compared to that of normal base R functions. I used 
2D matrices to test this operation. The x-axis depicts the increasing dimensions of the matrix and the 
y-axis corresponds to the time required to load the matrix. As matrix size increases, HiCLegos 
becomes increasingly more efficient.  
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Figure 45 The efficiency of HiCLegos retrieval is depicted for retrieving matrix diagonals. HiCLegos 
consumes no extra memory as matrix size increases (left), whereas base R operations consume 
increasingly more memory. Also, as matrix size increases, the time required to complete the 
operation is higher for base-R than it is for HiCLegos (right).  
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5.0 Discussion 

Higher-order chromatin structure has been studied for over a century and has 

been revolutionised over the past decade with the application of next-generation 

sequencing technologies (Dekker et al. 2002). These technical advancements have 

revealed a progressively compartmentalised chromatin folding landscape 

(Lieberman-Aiden et al. 2009; Dixon et al. 2012; Sexton et al. 2012; Phillips-Cremins 

et al. 2013; Rao et al. 2014; Wang et al. 2018). This landscape is highly conserved 

and is correlated with transcription (Rowley et al. 2017) and replication (Pope et al. 

2014). It has been observed, that while compartments (Lieberman-Aiden et al. 

2009) correlating with band domains (Manuelidis 1990; Saccone et al. 1993; 

Bernardi 1995) change during differentiation (Dixon et al. 2015), their underlying 

units (TADs) are highly stable and robust to change. TADs respond to experimental 

conditions mimicking mutational pressure by showing local changes in their 

structure (Rodríguez-Carballo et al. 2017; Geeven et al. 2015; Nora et al. 2017). 

Therefore, the reason for TAD (Topologically Associated Domain) formation and 

maintenance are intriguing. Previously, observations pointed towards transcription 

being a predictor for TAD formation (Rowley et al. 2017). Activation of transcription 

was later causally correlated to TAD emergence during drosophila development 

(Hug et al. 2017). 

Dosage compensation systems provide an efficient system for studying the 

link between transcription and higher-order chromatin structure. In mammalian 

dosage compensation systems where one X chromosome is completely silenced, 

TADs are not observed (Giorgetti et al. 2016). Indeed, the mammalian inactivated 

X chromosome expresses a few genes, and the regions where these genes are 

expressed, TAD like structures are observed (Giorgetti et al. 2016). Together these 

results suggest a causal link between transcription and chromatin structure. On the 
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other hand, TADs are known to be bounded by insulator binding sites (Sexton et al. 

2012; Hou et al. 2012; Dixon et al. 2012). These insulator binding sites are 

directionally oriented in an inward facing manner (Rao et al. 2014; Guo et al. 2015). 

Mutations and changes at these sites have been implicated in disease biology. 

Notably, the IDH mutations are considered to be an oncogenic driver in cancer 

(Cohen et al. 2013). In IDH mutant cells, methylation in CTCF sites near the 

PDGFRA TAD lead to a lower insulation of the TAD and an increase in contacts 

between PDGFRA, a cancer driver, and enhancers outside the TAD (Flavahan et 

al. 2016). A change in orientation of CTCF sites has been linked to limb 

malformation (Lupiáñez et al. 2015) and changes in gene expression patterns (Guo 

et al. 2015). Therefore, higher-order chromatin structure cannot be ruled out as a 

by-product of processes such as transcription and replication. Broadly viewed, these 

results point towards a causal and maintainer relationship between transcription and 

higher-order chromatin folding.  

Herein, the dosage compensation mechanisms in D. melanogaster and C. 

elegans comes into focus. Both mechanisms affect fine grain changes in 

transcriptional regulation. In drosophila, active genes on the single-copy male chrX 

are up-regulated by an average factor of two-fold. On the other hand, dosage 

compensation in C. elegans affects a down-regulation of both X chromosomes in 

the hermaphrodite. In case of the latter, the X chromosomes adopt a distinct 

structure which is more insulated than the autosomes (Crane et al. 2015). Yet, in 

case of the former, i.e. drosophila, genome-wide studies using Hi-C did not observe 

any structural changes (Ramírez et al. 2015; Schauer et al. 2017). Firstly, previous 

studies using the same Hi-C datasets reported no structural differences (Schauer et 

al. 2017) due to the partitioning of the genome into compartments (Lieberman-Aiden 

et al. 2009). Compartment analysis (Lieberman-Aiden et al. 2009) has revealed 
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structural changes during differentiation (Dixon et al. 2015), where various 

transcriptional networks are silenced and other activated. The same cannot be 

expected in drosophila dosage compensation where already active genes are up-

regulated. Secondly, prior studies (Ramírez et al. 2015) also utilised drosophila cell 

lines for the analysis. Drosophila cell lines, principally the S2 (male) and Kc (female) 

cell lines are severely biased by copy number changes (Lee et al. 2014). These 

copy number differences tend to influence the Hi-C signal, which is not accounted 

for by current implicit normalisation procedures (Servant et al. 2018). On top of this, 

wild-type drosophila males also carry one copy of chrX, presenting half as many 

reads as its counterpart in females. This requires the adoption of chromosome 

specific analysis and normalisation procedure. Lastly, a scenario where selected 

genes are affected by dosage compensation would not affect the chromatin fibre in 

the same way across the entire chromosome. Most TAD calling procedures are not 

designed for detecting local fluctuations in the chromatin fibre, rather these 

algorithms detect large-scale folding structures (Dixon et al. 2012; Serra et al. 2016). 

Therefore, a need exists to investigate local genome compartmentalisation further. 

I developed ad-hoc analysis procedures allowing me to detect a change in 

the global interaction landscape in male flies. The non-parametric selection of top-

scoring interactions and polymer folding simulations helped me to confirm my 

observations. The differences in interaction decay between the dosage 

compensated X chromosome and autosomes were small, but robust, reproducible 

and significant. I concluded that the male chrX is more prone to participate in long-

range contacts. These long-range contacts did not cluster together, suggesting that 

these interactions were not stable interactions as would be expected from 

functionally relevant interactions but rather random events occurring due to 

increased accessibility. My observations pointed towards a globally more open and 
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accessible chrX, resulting in more Hi-C signal at larger distances.  

I then moved on to investigate the differences in chrX domains between 

sexes. For this task, I developed algorithms to take into account the differential 

dosage compensation effects in the genome and to also take into account copy 

number related issues. I created a TAD calling procedure, Local Score Differentiator 

(LSD) which uses locally defined thresholds. This, as opposed to using genome-

wide or chromosome-wise defined thresholds ensures that LSD is sensitive to local 

fluctuations in the chromatin fibre. LSD is also a very fast boundary calling 

procedure. This allowed us to utilise high-resolution matrices and to identify domain 

boundaries that change between male and female. I then identified a subset of lowly 

insulated domain boundaries which are associated to dosage compensation 

complex binding and transcriptional response of genes to dosage compensation. To 

confirm lower levels of insulation in chrX, I utilised publicly available 4C-seq data 

across cell lines, including data for induction (in female cells) or inhibition (in male 

cells) of DC. Thus, I concluded that changes in chromatin accessibility is also 

affecting insulation across these boundaries and that these changes are detected 

by Hi-C.  

I then investigated the general reason preceding this change in accessibility. 

I looked into insulator binding profiles across cell lines. Although specific patterns 

were visible, a clear generalised pattern was not observed. Analysing known 

dosage compensation co-factors allowed me to identify differences in CLAMP 

binding. CLAMP is a protein implicated in the binding of the dosage compensation 

complex (Soruco et al. 2013). Recently, it was reported that CLAMP binding leads 

to an increase in chromatin accessibility (Urban et al. 2017). This clearly explained 

the preservation of insulator binding alongside localised changes in insulation seen 

in the Hi-C matrices.  
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In this project I have shown that the dosage compensation of fly chrX leads 

to an increase in global accessibility and local changes in insulation. By developing 

new analysis methods, I have been able to detect these changes with genome-wide 

Hi-C data. This is in line with previous literature, which postulated that an increase 

in accessibility may be expected. I have shown that these structural changes in 3D 

chromatin architecture are subtle but detectable with Hi-C. This the first such report 

of its kind as previous literature utilising Hi-C data on drosophila cell lines were not 

able to detect these changes. 

With the help of this particular project and our previous work where we 

comparatively assessed the performance of Hi-C analysis procedures in terms of 

peak calling and TAD calling, I identified a need for a standard Hi-C analysis 

framework within the R community which is predominantly the language of choice 

for biologists. The variety of Hi-C data formats makes analysis of Hi-C data 

seemingly complicated and time intensive. Consortium efforts are currently 

underway for standardising Hi-C data formats (Dekker et al. 2017). Yet, such 

formats may not play well with pre-existing Hi-C analysis pipelines and methods. 

This may seem to be a triviality as it is only a matter of re-casting the data into the 

format of choice. But as Hi-C data generation achieves newer heights, the time 

required to re-cast this data also increases. The highest resolution Hi-C data 

generated nearly 40 billion reads and analysed the dataset at a resolution of 850bp 

in a mouse genome (Bonev et al. 2017). Therefore, it is not exaggerated to state 

that the time is near when Hi-C data binned at 500bp in humans is the norm. Indeed, 

during the course of our previous study (Forcato et al. 2017), we encountered 

unoptimised code which created severe bottlenecks in hicpipe (Yaffe and Tanay 

2011) when analysing high-resolution Hi-C data. By changing a single line, we were 

able to achieve significantly faster processing times. These high-resolution Hi-C 
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datasets are extremely difficult to access, as these datasets require a long time to 

load. For analysing such datasets the usage of on-disk data formats has been 

proposed. HDF, or Hierarchical Data Format is one such on-disk data format. This 

is a general specification and therefore it requires adaption towards specific use 

cases. HDF data formats are in use in the Python ecosystem but Hi-C analysis 

libraries based on HDF files are lacking in the R statistical environment. To meet 

this requirement I have developed HiCLegos. HiCLegos, as the name suggests is a 

library which aims to be a building block for future Hi-C analysis tools and methods 

utilising on-disk data formats in the R ecosystem. The library encapsulates the 

underlying complexity of the HDF specification and exposes biologically meaningful 

data access methods. An example of such a method is the retrieval of values 

corresponding to interactions between genomic loci separated by a certain distance. 

By providing users the ability to retrieve Hi-C data using human readable genomic 

coordinates, HiCLegos makes the entry into Hi-C data analysis easier for beginners. 

Furthermore, Hi-C legos simplifies data loading by providing specific methods for 

loading matrices, tables or binary data formats created with other such libraries in 

the python ecosystem. As a proof of concept, Local Score Differentiator (LSD) also 

uses HiCLegos methods for data access making it an extremely fast TAD calling 

procedure. HiCLegos also contains visualisation methods for plotting publication-

ready heat maps. In total, HiCLegos represents nearly 3400 lines of code, spread 

out across 177 unique functions, of which 35 are exposed to the user. 

In summary, novel analysis methods and frameworks allowed us to 

investigate the changing structure of the drosophila dosage compensated X 

chromosome. Using these tools, we found that as a whole increased chromatin 

accessibility affects Hi-C signal and local chromatin compartmentalisation. 

Although, the reasons behind the specific structural changes driving this change in 
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insulation is still unclear. Essentially the question remains what structural events 

lead up to an decrease in insulation, and how do these events connect the 

preferential positioning of CLAMP binding sites and gene TSS near lowly insulated 

regions. Emerging hypothesis within the field suggests that transcription induced 

supercoiling may play a role in driving genome compartmentalisation (Racko et al. 

2017). Furthermore, the structural events preceding or following gene up-regulation 

is still not clear. Previous studies have postulated that increased recycling of 

polymerase via gene looping and/or increased processivity (i.e. decreased 

premature termination) may be possible mechanisms for gene up-regulation (Ferrari 

et al. 2014).  

Previous studies have shown that dosage compensation binding sites tend 

to contact each other and possibly occupy a spatially distinct region in 3D space 

(Ramírez et al. 2015). Yet, these regions interact in a similar manner in both the 

male and female genomes (Ramírez et al. 2015), therefore their contribution 

towards a changing chromosome conformation was unlikely. Although we cannot 

rule out their contribution in changing global chromatin conformation, our preliminary 

results suggest that lowly insulated regions tend to occupy a very distinct region in 

the nuclear space. This shows a very striking difference between the male and 

female genomes. Taking into context the findings from our study, I hypothesise that 

these regions form transcriptional hubs similar to the active chromatin hub observed 

in the β-globin locus (Gavrilov et al. 2013). Since, these low-insulation regions are 

also near MSL binding sites and CLAMP binding sites, this hypothesis requires 

further investigation. 
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