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Abstract

We propose a method to simulate the dynamics of spin-boson models with small crystals of trapped
ions where the electronic degree of freedom of one ion is used to encode the spin while the collective
vibrational degrees of freedom are employed to form an effective harmonic environment. The key idea
of our approach is that a single damped mode can be used to provide a harmonic environment with
Lorentzian spectral density. More complex spectral functions can be tailored by combining several
individually damped modes. The protocol is especially well-suited to simulate spin-boson models
with structured environments. We propose to work with mixed-species crystals such that one species
serves to encode the spin while the other species is used to cool the vibrational degrees of freedom to
engineer the environment. The strength of the dissipation on the spin can be controlled by tuning the
coupling between spin and vibrational degrees of freedom. In this way the dynamics of spin-boson
models with macroscopic and non-Markovian environments can be simulated using only a few ions.
We illustrate the approach by simulating an experiment with realistic parameters and show by
computing quantitative measures that the dynamics is genuinely non-Markovian.

1. Introduction

The spin-boson model is an archetypical model of an open quantum system. It is applied in numerous contexts
ranging from chemical reactions [ 1] and biological molecular aggregates [2] to solid state physics [3-5]. The
model describes a single spin coupled to a dissipative environment formed by an infinite set of harmonic
oscillators. It is well-known that the effect of thermal oscillator environments on a quantum system is fully
described by a single scalar function, the spectral density (also spectral function) of the environment [4].
Although approximate analytic solutions have been found for some spectral densities [3, 4], no closed analytic
solution of the spin-boson model is known. Meanwhile, dynamics and thermodynamical properties of spin-
boson models have been investigated by a number of numerical approaches including techniques based on the
numerical renormalization group [5], time-dependent density matrix renormalization group [6, 7], path
integral Monte Carlo [8], or the quasi-adiabatic propagator path integral approach [9]. Numerical simulations
are especially needed for environments with spectral densities where the reorganization energy is of the order of
the spectral width or for highly structured environments with long-lived vibrational modes. In these cases,
strong system-environment correlations can lead to highly non-trivial dynamics and it is known that reduced
effective models do not represent the dynamics faithfully [10, 11]. Moreover, these types of spectral densities,
which are of particular relevance for the excitonic and electronic dynamics in biomolecular systems [12], pose
considerable challenges for the numerical methods. One example for this is the prediction of the results of
nonlinear spectroscopy which is exceedingly hard on conventional computers already for small systems [13].
Therefore, an experimental simulator of spin-boson models with a high degree of control is desirable.
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Trapped atomic ions provide a clean and highly controllable system where many dynamical quantities are
directly accessible. They have proven to be a versatile platform for the simulation of a wide range of physical
models including defect formation in classical phase transitions [ 14—16] as well as open and closed quantum
systems [17—22]. The simulation of spin-boson models using trapped atomic ions has been proposed previously
[23] requiring rather large crystals comprising 50—100 ions. These crystals feature a large number of vibrational
modes which can be used to act as a mesoscopic environment for the spin. However, for such large crystals the
level of control needed to simulate spin-boson models is experimentally very hard to achieve.

In this work, we develop a proposal to simulate the dynamics of spin-boson models with small crystals of
trapped ions. Our procedure also relies on the vibrational degrees of freedom to act as the environment, but it
makes use of the fact that a damped mode produces a Lorentzian spectral density [ 1]. This result was derived in
[1] assuming that the damping is provided by an oscillator reservoir with Ohmic spectral density. Cooling of
trapped ions, however, is usually described by a Lindblad equation. Here, we show that the Lorentzian spectral
density can also be obtained for appropriate parameters if the damping is modeled by a Lindblad equation,
extending the results of [24—27]. Combining several damped modes, arbitrary spectral densities can be
constructed. The shape of the tailored spectral density is controlled by the couplings of the spin to the modes, the
mode frequencies and the damping rates. Accordingly, both the shape of the spectral density and the strength of
the dissipation can be tuned by the experimenter. As we show below, the effective Lorentzian spectral density can
typically only be attributed to the damped oscillator in Lindblad description if the damping rate is considerably
smaller than the mode frequency. Therefore, our protocol is especially well-suited for the simulation of spin-
boson models with environments that feature structured spectral densities. The spectral densities constructed
with the protocol are continuous functions of frequency and can thus be identified with an environment made
up of a macroscopic number of modes as it occurs in the condensed phase. Accordingly, with our method one
can tailor environments with continuous and highly structured spectral densities using only a small number of
oscillators to form the environment.

Itis interesting to note that this approach is useful already for a small number of modes that are used to
model the environment because the direct numerical simulation of a spin coupled to damped modes in Lindblad
description becomes inefficient already for a few modes. The reduced overhead of our protocol brings the
simulation of spin-boson models and the prediction of nonlinear spectroscopy of such systems to the realm of
state-of-the-art trapped-ion setups.

The article is structured as follows. In section 2, we introduce the spin-boson model and the concept of the
influence functional. Then, in section 3 we discuss the spectral densities generated by damped oscillators in
different models of damping. Based on these results, we introduce our protocol for the simulation of spin-boson
models and benchmark the procedure with a comparison to a numerically exact simulation of the full many-
body dynamics in section 4. We then proceed to illustrate how the protocol can be implemented with currently
available ion trap experiments. In section 5, we show that the protocol is robust to the most common
experimental sources of noise. Finally, in section 6 we show that the dynamics in our simulations are truly non-
Markovian by computing two quantitative measures of non-Markovianity. We close with a summary of our
results and discuss future perspectives for simulations of spin-boson models with trapped ions in section 7.

2. Spin-boson model

The spin-boson model describes a two-level system (spin 1/2) in a dissipative environment which is modeled by
an infinite set of non-interacting harmonic oscillators. Denoting the energy splitting between the spin states | )
and || ) by e and the coupling between them by 7 A, the Hamiltonian of the global system reads [3]

Hy, = o on — lozz Idn(a, + a)) + Zﬁwna;an, (D
2 2 2 4 -
where 0% = 1) (1] — |1){l] and o = 1) (]| + |1} (T]. 4, (a,) denotes the raising (lowering) operator of
environmental mode n and w,, its frequency while the real A, describe the couplings of the spin to the
environmental oscillators. The spectral density which determines the influence of the oscillator environment on
the spin [3, 4] reads

J) =7 Ab(w — wy) )

with 6 the Dirac d-function. For a macroscopic environment, one assumes that the frequencies are so closely
spaced that J(w) becomes a continuous function of w.

One is generally interested in finding the reduced dynamics of the spin for an environment with a certain
spectral density. The path integral formalism [28] provides us with an exact expression for the propagator of the
spin state where the effects of the environment are already included. For factorizing initial conditions
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Py = p; @ pgwith some spin state p; and the environmental modes in a thermal state pat inverse temperature
B = (kg T)™!, the propagator for the spin reads [29]

G(t, 0) = f qu Dgq eﬁ(So[q]*SO[q’])F[q’ q/] 3)
9o

Here, the path integral f ’ Dq runs over all spin state trajectories connecting q(0) = goand q(f) = g5 So[q]is the

action of the free spin evolutlon and F[g, q'] is the Feynman—Vernon influence functional [29]. The influence
functional contains the effect of the environment on the spin dynamics. For an oscillator environment and the
considered coupling it can be written as [3]

Flg, q'] = exp{ fo "y fo " ds[q(ty — gL — $)q(s) — IF(E — s)q’(s)]}. (4)

Here
1
L(t) = e (X ()X (0))s %)

is the reservoir correlation function with X = 3°, 72\, (a, + a,j'). Note that the correlation function
in equation (5) is evaluated with respect to the free evolution of the environmental oscillators. Alternatively, L(f)
can be expressed in terms of the spectral density J(w):

L(t) = l foc dw ](w)[coth(ﬁ—ﬁw) cos(wt) — isin(wt)]. 6)
7 Jo 2

Hence, we see that the influence of the environment on the spin is equivalently given either by the coordinate
correlation function of the environment or by its spectral density.

3. Environments of damped harmonic oscillators

The key idea underlying our proposal for the simulation of spin-boson models is the result that a harmonic
oscillator damped by an oscillator bath with Ohmic spectral density yields an effective environment with
Lorentzian spectral density [ 1]. In this section, we will analyze this effective spectral density and compare it to
that of a damped harmonic oscillator in Lindblad description. In particular, we show that the two models of
damping yield the same effective spectral density for appropriate parameters. To this end, we analyze the
correlation functions of the two reservoirs and show when the correlation functions and their spectral
representations coincide. The observation that different environments that produce the same influence
functional have the same effect on the dynamics of a reduced system [29] completes the argument that also a
damped oscillator in Lindblad description can act as an effective harmonic environment.

Let us start by considering an environment that consists of a single harmonic oscillator of free oscillation
frequency Q2 which is damped by an oscillator reservoir with Ohmic spectral function Jo(w) = Kwe “/“, Here,
Kisaconstantand w, a high-frequency cutoff. For brevity, we call this damped harmonic oscillator ‘Ohmic
oscillator’ in the following. For a strictly Ohmic environment, i.e. w. — 00, that causes damping at rate « on the
coordinate of the oscillator, the effective spectral density generated by the damped oscillator on the spin is
Lorentzian [1]

e =N . B ; ‘
]ff(w) I:K'Z + (w _ wm)z K/2 + (w + Wm)2:| (7)

Here, wy, = V2 — k2 is the reduced frequency of the damped oscillator and /) the spin-oscillator coupling as
in equation (1). Note that we restrict our considerations to the underdamped regime x < €.

In trapped-ion experiments, the motion of the ions is usually expressed in terms of a set of normal modes,
each of which is a harmonic oscillator. Cooling of the modes is commonly described by a Lindblad equation
[30, 31]. Therefore, it is not immediately clear if we can obtain an effective spectral density as for the Ohmic
oscillator, equation (7). We will now show that this is possible and that we obtain the same spectral function for
appropriate parameters. It is easier to start by considering the reservoir correlation functions in the time domain
in order to establish the correspondence between the effective environments for the two models of damping.

3.1. Reservoir correlation functions
The reservoir correlation function L(¢) in equation (5) may be written explicitly in terms of the environmental
coordinate correlation functions. To see this, note that we can write
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Iidp(ay + a)) = P2 Xns (¥

Xo,n

where x,, is the position operator of oscillator n with mass m,,and x, , = /72 /(2m,w,) . Using the above
identity, we may write the reservoir correlation function in equation (5) as
2

A
L(t) = Z Zn <xn(t)xn(0)>ﬂ) (9)

n xO,n

where we have used that the oscillators are independent. We note again that for the coupling between spin and
environment in the Hamiltonian in equation (1) the coordinate correlation function of the free environmental
oscillators determines the influence on the spin.

In the following, we consider only a single oscillator and therefore we omit the index 7. Since the coordinate
correlation function (x (#)x(0))s is in general complex-valued

(x(1)x(0))s = S(t) + iA(1), (10)
where S(t) = %({x(t), x(0)})gand A(t) = %([x(t), x(0)])3, also L(t) is a complex-valued function
L(t) = L'(¢) + il" (1) (11)

with real and imaginary parts L'(¢) and L” (¢).
For the oscillator damped by a strictly Ohmic bath, the coordinate correlation function and thus L(¢) can be
calculated analytically [3, 32]. For a bath at inverse temperature 3, we obtain

L'(t) = Li(t) + La(t), (12)
where
L) = /\2[ sinh(B/tm) cos(wmt) + sin(/i6r) sin(wmltI):|e“|’|,
cosh(B/wm) — cos(A0kK) cosh(BAwm) — cos(A0kK)
. _)\ZSme 00 I/neiy"ltl (13)

B (4 vi)? — AR
with the Matsubara frequencies v, = 271/ (%f3), and
L'(t) = — X sin(wpyt)e "l (14)

Note that we again assumed the underdamped regime x < 2 here. The reservoir correlation function for the
Ohmic oscillator can also be written in the form of equation (6)

L(t) = lfoc dw ]eff((U)I:COth(ﬁ—ﬁu}) cos(wt) — isin(wt)], (15)
T Jo 2

where J.¢(w) is given in equation (7).
In Lindblad description, a damped harmonic oscillator coupled to a thermal reservoir at inverse temperature
B evolves according to

p = —ilwma'a, pl + Zap, (16)

where a, a' are the ladder operators of the damped mode and the frequency wy,, is taken to include possible
renormalizations due to the damping. The dissipator reads [33]

Doip = k(A + Dapa’ — alap] + kiila'pa — aa’p] + h.c. (17)

Note that the above form of the Lindblad equation is also used to describe laser cooling of trapped ions [30, 31].
In the following, we call the damped oscillator where the damping is described by the Lindblad equation (16)
‘Lindblad oscillator’. Employing the quantum regression theorem, we can compute the coordinate correlation
function (x(#)x(0))s,. = Sp.(¢) + 1AL (¢) of the Lindblad oscillator. Inserting the resulting expressions

into equation (9), we obtain the reservoir correlation function of the Lindblad oscillator

Lu(t) = L{ (1) + iL{'(¢). (18)
The real part reads
Li(t) =X coth(%) cos(wmt)e sl (19)
and the imaginary part is given by
L] (t) = — N sin(wpt)e ", (20)

Comparing equations (14) and (20), we find that the imaginary parts of the reservoir correlation functions L(¢)
and L; (¢) are exactly equal. Note that here we have tacitly assumed that the damping rates ~ and the reduced
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oscillator frequencies wy, are the same in both cases. However, despite this assumption L; (¢) has a different
functional form than L'(¢) in equation (12).

Since L{’(t) = L"(t), we canalso write L’ (t) in terms of J.s{(w) of equation (7) by taking the imaginary part
of equation (6). This is, however, not the case for L} (). Writing L{ (¢) as in equation (6), we obtain
L) = % fooc dw Jls (w) coth(ﬁﬁw/Z) cos(wt), where

coth(%)
e(w) = N 2 ul + r . 21
]ff( ) coth(%) |:/‘€2 + (w — wm)z K2 + (W+Wm)2 @V
Hence, L; () in general cannot be written in terms of a single spectral density but takes the form
Li(t) = l fx dw l:]e/ff (w)coth (ﬁTﬁw) cos(wt) — et (w)sin(wt) ] (22)
m Jo

Despite the differences, it is possible to obtain very good agreement also between the real parts L'(f) and L/ (¢)
and their frequency space representations equations (7) and (21). References [32, 34] estimate that the quantum
regression theorem can only yield quantitatively correct predictions for the two-time correlation functions of
the damped harmonic oscillator if £ < wy, and %8k < 1.Indeed, under these assumptions we find very good
agreement between both L'(f) and L;/(t) and their frequency space representations J. (w) and J/;(w). We can
understand the two conditions as follows. The Lindblad equation (16) with the dissipator in equation (17)isa
good description for the damped oscillator for weak coupling between the oscillator and its environment which
isreflected by the condition £ < wy,. Furthermore, at very low temperatures the decay of L'(¢) is dictated by the
Matsubara frequencies in L,(f). This decay cannot be reproduced by L () which only features a single decay
rate. For

k/v = hpr/Q2T) < 1, (23)

the smallest Matsubara frequency is much larger than the decay rate x and we can neglect L,(¢) if we are interested
in not too short time scales [3]. In this case, L'(f) & L,(#) which can be correctly reproduced by the regression
theorem result L] (£) in the considered parameter regime, as we will see shortly.

Recalling that 6 = 1/(kgT), we find that the condition in equation (23) puts alower bound on the
temperature where the identification of L(¢) and Ly (¢) is possible for a fixed cooling rate. However, also too high
temperatures lead to deviations such that there is an intermediate temperature range where the best agreement is
achieved (see appendix A for a more detailed discussion).

Thus, we have established a regime where the coordinate correlation function of the Lindblad oscillator
approximately coincides with that of the Ohmic oscillator. Summarizing, we require

K<€ wy and kAB/Q27m) <K 1 (24)

for the functions Ly (f) and L(#) to coincide. In this regime, the Lindblad oscillator produces the same reservoir
correlation function and thus influence functional as the Ohmic oscillator. According to the equivalence
theorem in [35], in this regime the Lindblad oscillator acts as an effective macroscopic reservoir with Lorentzian
spectral density as given in equation (7) above.

For ion-trap experiments, one usually considers the mean occupation number 7 of the bosonic modes
rather than their temperature and therefore it is desirable to cast condition (23) in a form where it depends on 7.
Assuming a thermal state for a bosonic mode, we can associate the temperature Tor = 7w/ [kglog(1 + 1/7)]to
the mode and the condition 78k /(27) < 1becomes

log(1 + ,1;) K

< L (25)
2T Wm

In order to make our considerations more quantitative and to illustrate that the match of the reservoir
correlation functions is indeed very good for parameters of interest, we make a numerical comparison of the
functions L(t) and Li (¢) in the regime x < wy,, 4. Since the imaginary parts of the two functions are equal, we
focus on the real parts L'(f) and L;/(£). In figure 1 we plot L'(£)/ \* including the first 10* Matsubara frequencies
together with L; (£)/\* for the parameters specified in table 1 below. These parameters are realistic for an ion trap
experiment. In part (a) of the figure we compare L'(f) and L; '(¥) on short and in part (b) on intermediate time
scales. One can appreciate excellent agreement between the two functions.

3.2. Frequency space
In the previous section, we have seen that in the parameter regime specified in equation (24) the Lindblad
description of the damped harmonic oscillator reproduces the reservoir correlation function L(¢) of the Ohmic

5
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a) | — Ohm < Lindblad | b) [ — Ohm << Lindblad

17 | p
(o] [a\]
< <
~— ~—
= =

O 1 -1 % 1

0 K-t 0.02 0 K-t 0.5

Figure 1. Comparison of L'(f) = Ly(£) + Ly(t) from equation (13) including the first 10* Matsubara frequencies (blue solid lines) and
L{/(t) from equation (19) (dashed—dotted line and crosses) for wy,/2m = 100 kHz, /27 = 1.25 kHzand 71(wy,) = 0.025

(/48 = 5.91 x 107 s). Panel (a) shows the time evolution for short times, while panel (b) illustrates the behavior on an intermediate
time scale.

a) 5 b 15 ) 0.15
o > ()

5 '3 s o Jiglw) >
= =

3 3 0.05
~ ~

0 0 0

0 w/2m (kHz) 80 85 w/2m (kHz) 115 0

w/2m (kHz) 150

Figure 2. The figure compares J.i(w) , equation (7) (solid line), and J/;(w), equation (21) (triangles), for wy, /27 = 100 kHz, r/2m =
1.25 kHzand 71 = 0.025 (/43 = 5.91 x 107 s). Part (a) shows the behavior for small frequencies while part (b) depicts the two

functions around the resonance wy, /27 = 100 kHz. In part (c) we show the relative error ¢; from equation (28) over the relevant
frequency range covered by the spectral density.

Table 1. Parameters for the simulation of a spin-boson model with
Lorentzian spectral density with trapped ions.

Wm/2m K/2m 7i(Wm) V] €/ (h2m)

100 kHz 1.25 kHz 0.025 591 x 10°%s 0 kHz

oscillator. In fact, in almost all cases environments are characterized by their spectral density rather than their
correlation function L(#), which is obtained from the spectral density J(w) through equation (6).

The frequency space representation for the real part of the correlation function of the Lindblad oscillator is
given in equation (22). Comparing the functions J.¢(w) and J(w) from equations (7) and (21), we find that in
general Jl;(w) = g (w)and that we hence cannot write Ly (f) as a function of a single spectral density as

in equation (6), in general. Yet, from our considerations in the previous section we expect that for parameters
satisfying equation (24) we have

Ji (W) =2 Jetr (W), (26)

such that we can write L; (¢) as

Li(t) = 1 foc dw ]eff(W)I:COth(ﬁ—/iu)) cos(wt) — isin(wt)]. 27)
T Jo 2

In this case, the reservoir correlation function can also be written in the form of equation (6) as for a macroscopic
oscillator environment.

In figure 2 we compare the left and right hand sides of equation (26) for the parameters specified in table 1
for which we found excellent agreement between the correlation functions Ly () and L(¢) (see figure 1). Panel (a)
shows J.¢(w) (solid line) and Jg(w) (triangles) for small frequencies and part (b) shows the behavior around the

resonance wy,/2m = 100 kHz. Both parts of the figure show that we obtain very good agreement in frequency
space, too. Part (c) of the figure shows the relative error

6
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(28)

W) — Jer ()]
€] =
Jett (W)

which is remarkably small over the whole range w/2m = 0-150 kHz. Note that the increase in the relative error
for higher frequencies is because the spectral density J.¢{(w) goes to zero more rapidly than J; (w). However,
since both contributions are small, the effect of this difference should be negligible as long as the frequency of the
spin coupled to this effective environment does not lie in this range.

In summary, we confirm the result of the previous section: for appropriate choices of mode frequency,
cooling rate and temperature, the damped oscillator evolving according to the Lindblad equation can be
attributed the effective spectral density J.g(w), equation (7), of a macroscopic oscillator environment. Note that
the treatment is not perturbative in the spin-motion coupling A, so that this equivalence is valid for arbitrary
values of ) aslong as the Lindblad equation holds.

4. Trapped-ion simulations of spin-boson models

In this section, we introduce our protocol for the simulation of spin-boson models. We illustrate the procedure
for a trapped-ion experiment but it can also be adapted to other experimental platforms.

4.1. Simulation protocol

The Hamiltonian of the spin-boson model we want to simulate is given in equation (1). The influence of the
environment on the spin dynamics is determined by the spectral density in equation (2) which we assume tobe a
smooth function of w here.

In the previous section, we have seen that a Lindblad oscillator yields an effective environment with spectral
density J.(w) from equation (7) if the parameters satisfy the conditions in equation (24). Let us now assume
that a spin is coupled to N independent damped harmonic oscillators in Lindblad description that satisfy the
constraints in equation (24). Then, a spectral density J.¢ ,(w) given by equation (7) with the corresponding \,,,
K W, can be attributed to oscillator n,n = 1, ..., N.

The combined influence functional of different statistically and dynamically independent environments
is given by the product of the individual influence functionals [29]. Using this property for the environment
composed of the Nindependent Lindblad oscillators yields the reservoir correlation function

1 o, X By Fiw
L(t)=— f dw Z]eff,n (w)| coth ( i ) cos(wt) — isin(wt) |. (29)
w Jo 1 2
Here, (3, is the temperature of the reservoir associated with oscillator . If all reservoirs have the same
temperature, i.e. 5, = Sforn = 1,..., N, their spectral densities add up and one can construct effective spectral
densities

N

J@) = > Jeftn(w). (30)
n=1

Hence, the Nindependent Lindblad oscillators yield an effective environment with the spectral density J(w)

of equation (30). If the number of available oscillators is not restricted, any spectral density can be decomposed

asin equation (30). In the limiting case of infinitely many oscillators and vanishing damping, equation (30)

yields equation (2). Of course, in practice the number of oscillators N is finite. Yet, this still allows us to create a

large variety of spectral densities.

If we want to approximate a certain target spectral density Jr(w) with N oscillators, we can find the
values for the A, k,,, w,, 1 = 1, ..., Nthat reproduce the desired spectral density by minimizing the
functional [36]

El{ A ks )] = j; Y Al @) — J )P G1)

Note that the optimization is subject to the conditions in equation (24) if we use Lindblad oscillators to form the
environment. Therefore, if we use Lindblad oscillators and want to employ as few oscillators as possible, the
procedure works best for structured environments.

Summarizing the above idea, in order to simulate a spin-boson model described by the Hamiltonian
in equation (1) with a spectral density J(w), we have to engineer a physical system in such a way that it evolves
according to

i~
p= = Hu pl + S 2, (32)
n
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Figure 3. Benchmark of the spin-boson simulation protocol. In part (a) of the figure we plot the time evolution of (¢ (¢)) in natural
time units |A| - ¢ for the initial product state in equation (33) and the parameters given in table 1. The spin-motion coupling was
A/2m = 100 kHz and the spin energies were A /2m = —50 kHzand A /27 = —100 kHz. The solid lines show the time evolution
under the full spin-boson Hamiltonian in equation (1) with spectral density Js(w) from equation (7). The symbols depict (o (¢))
evolving according to equation (32) with a single mode and the same parameters, describing a spin coupled to a damped oscillator in
Lindblad description. (b) Same as (a) for (o*(¢)).

where the conditions in equation (24) are satisfied for each mode and the spectral densities associated with the
damped modes fulfill equation (30). The Hamiltonian Hy, is the same as thatin equation (1) but the index n
now only runs over the set of damped modes.

In order to confirm the above statement, we simulated the dynamics of (o (¢)) and (o* (1)) for the full spin-
boson Hamiltonian in equation (1) with spectral density J.g(w) from equation (7) using the numerically exact
TEDOPA algorithm [6] and compared them with those given by equation (32) with Hy, for a single mode.
Details regarding the TEDOPA simulation technique and its implementation are given in appendix B. We
considered an initial product state

Po = |T> <T| & Pg» (33)

where pjis a thermal state with 73 = 5.91 x 10~° s which corresponds to 7 (wy,) = 0.025 for the Lindblad
oscillator. Furthermore, we take € = 0, w,,,/2m = 100 kHzand /27 = 1.25 kHz. These parameters are
summarized in table 1. We chose a spin-mode coupling A/27 = 100 kHz and computed the evolution for spin
energies A/2m = —50 and —100 kHz. The results are displayed in figure 3. For both values of A we obtain very
good agreement which shows that the analogy to the macroscopic environment also holds when we probe the
effective spectral density generated by the Lindblad oscillator away from the resonance and with a non-
perturbative coupling. Note that one simulation for A /27 = —50 kHz took 15 days using 16 cores on a
computing cluster which once more indicates the value of a trapped-ion simulator, especially for structured
environments.

4.2.Ton trap implementation

Let us now proceed to illustrate how the ideas discussed above can be implemented in an ion-trap experiment.
We consider N singly charged atomic ions with masses 11; confined in a linear Paul trap with effective harmonic
trapping potential. We assume trapping conditions such that laser cooled ions form a linear Coulomb crystal
along z with equilibrium positions ! = (0, 0, ZJO )T, The motional degrees of freedom can then be described in

j
terms of N uncoupled normal modes in each spatial direction [37, 38] and the motional Hamiltonian reads

Hy = /wnaf) o nas (34)
n,a
where w,_, is the frequency of mode 7 in spatial direction € {, y, z} with ladder operators al w Ana-

For simplicity we focus on the case of a spin coupled to a single damped mode which corresponds to a spin-
boson model with Lorentzian spectral density asin equation (7). This system already exhibits an interesting
phenomenology and has been studied with a variety of numerical and analytical approaches, see e.g. [39—42]. For
this purpose, we only need N = 2 ions: one ion is used to encode the spin while the other ion provides
sympathetic cooling of the shared modes of motion. In order to avoid that the cooling lasers couple to the spin
transition, we choose to work with mixed-species ion crystals. Alternatively, one could rely on single site
addressing. The internal levels of the spin ion are described by the Hamiltonian

H = /i~207, (35)
2
while the internal levels of the coolant ion are adiabatically eliminated from the dynamics leading to the effective
description in equation (17) of the cooling [30, 31].

8
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For concreteness we consider a crystal composed of **Mg* and >Mg*. Mg has a nuclear spin and we can
use thestates |[F = 3, mp = 3) = ||)and |[F = 2, mp = 2) = |7) of the 251/2 electronic hyperfine ground-state
manifold to encode the spin. The spin can be driven either by a microwave or in a two-photon stimulated Raman
configuration while the desired coupling of the spin to the motional degrees of freedom in the o *basis is
provided by a ‘walking standing wave’. In this configuration the spin states are off-resonantly coupled to the P
manifold by two laser beams near 280 nm whose beat note is tuned close to one of the motional mode
frequencies [43]. The interaction of the spin ion with the applied fields is described by (see appendices C and D)

Hy = fi&g+e*iwdf + fi%ei(hfﬁ%)e*iwuo—z + h.c, (36)
2 2

where (24 is the Rabi frequency of the applied microwave or stimulated Raman field and wyq ~ wy its frequency.
Qodp ki, wr, ¢y are the effective laser Rabi frequency, wave vector, frequency and phase, respectively and r,
denotes the position of the spin ion. Directing k; along z the laser only couples to the motion along this axis. A
two-ion crystal features two axial modes, an in-phase and an out-of-phase mode of motion with frequencies w; ,
= wj and w, , = w,. The two modes are well separated in frequency such that choosing the laser frequency
wr & w, the spin only couples to the ouf-of-phase mode. In an interaction picture rotating with the microwave
and motional frequencies and under the rotating wave approximation, the system’s Hamiltonian reads (see
appendix D)

) 724

o

2
Hgp1 = 702 + N *— 7(“2 + ﬁzT)O'z + ﬁéma;az, (37)

where § = wy — wgyis the detuning of the field driving the spin transition and 6, = w, — wy <K w, the
detuning of the laser from the motional mode. The spin-motion coupling is given by A = —ir, Qygrei(kil=+1)
with the Lamb-Dicke factor 7, = /7 /(2m,w,) My,|ky . Note that the laser phase can be chosen such that A is
real. My, is the out-of-phase mode amplitude at the spin ion in mass weighted coordinates and 1, its mass.
Identifying /40 = ¢,y = —Aand 6, = wy,, we obtain the desired Hamiltonian, namely the spin-boson
Hamiltonian of equation (1) for a single mode. Adding the cooling on the second ion, the full system evolves
according to equation (32). This is the desired time evolution for a simulation of the spin-boson model with a
Lorentzian spectral density as in equation (7).

We simulate the dynamics of the system for experimentally realistic parameters. We consider an axial
potential where a single **Mg " ion has a center-of-mass frequency weom/2m = 2.54 MHz. This potential leads
to an out-of-phase mode frequency w,/2m = 4.36 MHzand 1), ~ 0.15 for the mixed crystal where we assumed
that the lasers inducing the spin-dependent force are at right angles. Furthermore, we assume that EIT cooling
[31]is applied to the **Mg" ion which has already been used to sympathetically cool mixed-species ion crystals
[44]. We assume a cooling rate 2k /27 = 2.5 kHz and a steady-state population 7i = 0.025 of the mode which is
realistic in light of the results in [44]. Note that one has to make sure that the conditions in equation (24) hold for
the effective mode frequency wy, = 6, which is the detuning of the spin-motion coupling and thus much
smaller than the physical mode frequency. We choose the field driving the spin to be resonant, i.e. ¢ = 0,and a
detuning w,,/27 = 100 kHz of the spin-motion coupling. Accordingly, we recover the parameters of table 1 and
the correspondence holds. Note that experimentally a finite bias € can easily be included by introducing a
detuning to the field driving the spin transition. In the simulations, we truncate the motional Hilbert space at
Nmax = 15 excitations which makes truncation errors negligible.

In figure 4 we show the dynamics of (0%(¢)) under equation (32) where Hg, = Hg, from equation (37)
with the parameters of table 1 for an initial state as in equation (33). We vary the spin-motion coupling
A/2m = 10-200 kHz. In panel (a) we show the dynamics for A /27 = 3 kHz. In this case the spin samples the
low frequencies of the spectral density in equation (7). For small w the spectral density shows Ohmic behavior
Jett(w) ~ w. We observe a transition from damped to overdamped oscillations with increasing spin-mode
coupling A. This behavior is expected for an Ohmic spectral density at finite temperatures [3, 4]. Note, however,
that our spectral density J.¢{w), even if Ohmic for small frequencies, does not yield the same correlation function
as a strict Ohmic environment. Therefore we can only expect qualitatively similar dynamics [39, 40]. In panel (b)
we show (0% (¢)) for A /2w = 100 kHz such that the spin is resonant with the mode. The remaining parameters
and the initial condition are the same as in part (a). In this regime, the spin dynamics shows a very complex
behavior which one would intuitively call non-Markovian. In order to verify that the observed dynamics is truly
non-Markovian, we computed two quantitative measures of non-Markovianity. The results are presented in
section 6 below. For now, we remark that the two measures witness non-Markovianity for both the resonant and
the Ohmic case for A = 0.
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Figure 4. The plots show the dynamics of (¢%(¢)) in natural time units A - ¢ under equation (32) with Hy, = Hg,
from equation (37) for the simulation parameters specified in table 1 and the initial condition of equation (33). This setting
corresponds to a spin-boson model with a Lorentzian spectral density as in equation (7). We vary the spin-motion coupling \. The
values of A /27 in kHz are given in the bars on top of the plots. In part (a) the spin energy A /27 = 3 kHz is much smaller than the
mode frequency wy,/2m = 100 kHz, so that the environment is approximately Ohmic. In part (b) the mode is resonant with the spin
(A/27m = 100 kHz).

5. Impact of experimental sources of noise

In this section, we present an estimate of the impact of typical experimental sources of noise on the quality of the
simulations of the spin-boson model dynamics. We consider two different types of noise. First, we consider the
impact of a generic dephasing noise on the experimental results. Although it can be suppressed very well in many
experiments, dephasing is ubiquitous in trapped-ion experiments. The second source of noise that we consider
is related to the concrete implementation of the protocol that we propose. The o * spin-motion coupling via
optical fields utilizes coupling of the spin states via a decaying state. In general, this type of coupling leads to
decoherence due to residual off-resonant excitation of the upper level (see appendix C).

5.1. Dephasing noise

We consider the implementation of the spin-boson Hamiltonian as presented in the previous section and
assume that the spin levels are additionally subject to dephasing noise. Including noise effects on the spin, the
state p of the spin ion and the relevant damped mode evolves according to

p= —%[Hsbl, ol + (Ds + D) p, (38)

where Hy,, is the spin-boson Hamiltonian for a single mode of equation (37). The dissipator now consists of two
parts: &,  describes the damping of the mode and is given in equation (17) while & describes the additional
dissipative effects on the spin. For dephasing noise Z; is given by

Fdeph

Dsp = 5 (o%po® — p). (39)

This dissipator causes decay of the form e~ on the spin coherences where the decay constant [ gepn is related
to T5" through Laeph =1 / Ty.

In figure 5, we compare the noise free dynamics of the spin, given by equation (32) above, with those given
by equation (38) including the dephasing noise in equation (39). The parameters are again those of table 1 and
we use the initial condition of equation (33). We vary the spin-motion coupling /27w = 10-200 kHz. In parts
(a)and (b) of figure 5 the spin energy is A /2w = 3 kHz. Part (a) shows the dynamics for T," = 1 msand part (b)
shows the dynamics for T5° = 10 ms. These coherence times have already by far been surpassed with magnetic
field sensitive trapped-ion qubits, see e.g. [45], where coherence times of 300 ms have been observed. The figure
shows that for T5° = 10 ms there is already no appreciable effect in the dynamics for the Ohmic case. For the
resonant case A /27 = 100 kHz there is no visible effect already for T5° = 1 ms as can be appreciated in part (c)
of the figure. This is due to the much shorter time scale in this case. In the light of these results, it seems fair to
neglect dephasing noise.

5.2. Decoherence due to o * spin-motion coupling

The use of optical fields to obtain the o * spin-motion coupling introduces additional decoherence on the spin
through off-resonant scattering of photons from the applied beams. We analyze the effects of this type of
decoherence on the quality of the spin-boson model simulations in this section. Motivated by the results of the
previous section, we neglect dephasing noise in our analysis. The dissipative effects of the considered spin-
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Figure 5. Effects of dephasing on the spin-boson model simulation with trapped ions. Part (a) shows the dynamics given

by equation (38) without noise (solid lines) and with dephasing noise as given by equation (39) (symbols) for T5* = 1 ms in the quasi
Ohmic case A /27 = 3 kHz. Part (b): Same as (a) with T5* = 10 ms. Part (c) shows the dynamics for the resonant case A /27 =

100 kHzand T3 = 1 ms. The values of \/27 in kHz are given in the bars on top of the plots. The remaining simulation parameters are
those used for figure 4 and are reported in table 1 and the text.

motion coupling only act on the spin. Accordingly, the system of spin and mode again evolves according
to equation (38) but with a different dissipator Z than that of equation (39).

In order to find expressions for the Lindblad operators that describe the dissipative effects due to the o spin-
motion coupling, we use a simplified three-level model for the internal structure of >Mg ™. The model and the
calculations to obtain the effective Lindblad operators are summarized in appendix C. With the effective
Lindblad operators we find, the spin dissipator now reads

Ip=Y, (ijp { ' Lis p}). (40)
Jok=T,1
Here, the Lindblad operators Lj; are given by
€0, 2
T I —— ¢ 41
TZ 4AR lz,: 42 @D
and
|02
Ly = [} L= [T 0, 42
1= TZ 4AR 11 l; IA2 (42)

where the index I runs over the applied laser beams. We consider that two laser beams are applied and €2, is the
Rabi frequency of laser / coupling spin state s to the upper level. Ag > ¢, I', wy denotes the detuning of the
beams from the excited state and the ['; are the decay rates from the upper level to spin state s.

The Lindblad operators in equation (41) describe Rayleigh scattering where the spin state is not altered upon
ascattering event but can introduce dephasing. Those in equation (42) describe Raman scattering where the
spin state is changed upon a scattering event. If we assume that the modulus of the Rabi frequencies of the two
lasers providing the spin-dependent force is approximately equal |€2; ;| & €2, we can estimate the effective
scattering rate I'oe = T € /Ag, where Q; = Q3 /(2Ag) is the approximate effective laser Rabi frequency.
Hence, decoherence can be largely suppressed if we choose Ay large enough.

For the spontaneous emission rate and the Lamb-Dicke parameter we take the parameters of >Mg " I'/271 =
41.4 MHzand 7 ~ 0.15, which we also used in the previous section. Furthermore, we assume an equal branching
ratio for the decay of the excited level to the spin states and assume that all laser Rabi frequencies have the same
modulus € 5| = .

In figure 6 we present the dynamics resulting from equation (38) without the spin dissipator %, as
presented in figure 4, and compare them to the dynamics incorporating the effects of & from equation (40).
Again, we use the parameters of table 1 with the initial condition in equation (33) and vary the spin-motion
coupling \/27m = 10-200 kHz. Parts (a) and (b) of figure 6 compare the dynamics for the quasi Ohmic case
A/27m = 3 kHzand laser detunings Ar/27 = 100 GHzand Ar/27 = 1 THz, respectively. The solid lines
represent the unperturbed dynamics while the symbols incorporate the effects of the additional decoherence on
the spin. For a detuning of 100 GHz, the spin dynamics is noticeably perturbed already for weak spin-motion
couplings. Yet, the right qualitative behavior of the dynamics is preserved. For the large detuning, there is only an
appreciable effect for the strongest spin-motion coupling. Finally, part (c) of the figure shows the dynamics for
the resonant case A /27 = 100 kHz and a laser detuning Ar /27 = 100 GHz. In this case, there is no appreciable
effect on the spin dynamics, again due to the much shorter time scale.

The results of figure 6 show that, as we expected, errors due to the o spin-motion coupling can be
suppressed to a large extent if the laser detuning can be chosen large enough. In order to avoid this source of
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Figure 6. Impact of the dissipative effects of the o spin-motion coupling using optical fields on the spin-boson model simulation. In
the figure the dynamics without noise on the spin, given by equation (38) without D, are represented by solid lines and are the same
as that in figure 4. The symbols depict the dynamics incorporating noise as given by equation (40). Part (a) shows the dynamics for the
quasi Ohmic case A/2m = 3 kHzand a Raman beam detuning Ag /277 = 100 GHz. Part (b) shows the same as part (a) for

Ag/27m = 1 THz. In part (c) we show the dynamics for the resonant case A /27 = 100 kHzand Ar/27 = 100 GHz. The values of \/
2w in kHz are given in the bars on top of the plots. The remaining simulation parameters are those used for figure 4 and are reported in
table 1 and the text.

error, one could also rotate the spin basis and provide spin-motion coupling in a different basis, for instance by a
Molmer—Serensen interaction [46]. Another way to circumvent the considered type of noise would be to use the
spin-motion coupling induced in the near field of microwave currents [47], where the considered type of spin-
motion coupling is also available but spontaneous emission is negligible.

6. Quantification of the degree of non-Markovianity of the dynamics

In this section, we investigate the non-Markovian character of the dynamics presented in figure 4. There are
several different ways to define non-Markovian dynamics. Here, we compute two quantitative measures of
non-Markovianity: Aryp and A1 p as presented in [48, 49], respectively.

First we analyze the non-Markovian character of the dynamics presented in figure 4 according to the
measure Agrp. To this end, let us consider an open quantum system of finite dimension d whose time evolution
is described by a completely positive and trace preserving dynamical map &, ,,. For an initial state p(t,), the
system’s state at a later time t > ¢ is given by

p(t) = & 1o (to). (43)

According to [48], the dynamical map describes a Markovian evolution if and only if the map &;, , exists and is
completely positive forall £, > # > t;.The degree of non-Markovianity of a dynamics over an interval I, A Rpp,
is then obtained by quantifying the departure of the &;, , from complete positivity over that interval. In
particular, we have

20

JVRHP = .
Jrgo X181

(44)

where the integral extends over those subintervals of Iwhere g(¢t) > 0. The function x[x] = 1forx > 0and
X[x] = 0else and by definition ‘0/0’=0. The function g () is given by g(t) = tanh[g(¢)] where

[6rse,e @ WD) (W[ — 1‘

€

g() = lim (45)
e—0"

Here, ||...||; denotes the trace norm and |[¢)) = %Zz: \In, n)is a maximally entangled state of the open system

with an ancillary system of the same size. [&}. . ; ® 1]]1) (1| is the so-called Choi matrix and is positive if and
onlyif &, . , is completely positive [50]. Note that g(f) vanishes if &, , . , is completely positive. Thus, fora
Markovian dynamics g(f) = 0 for all times and A'rpp evaluates to zero.

We evaluated A rup numerically for the spin-boson system consisting of a spin coupled to a damped mode
described by equation (32) with the Hamiltonian in equation (37). We considered the parameters that we used
to produce figure 4, which are given in table 1, and the initial state in equation (33). The numerical computation
of A'rup requires the evaluation of a discrete version of equation (45). Since the evaluation of the measure is
numerically demanding for the considered case, we restricted the time intervals that we inspected to T = 0.01/A
for the ‘Ohmic’ case (A /27 = 3 kHz)andto T = 0.1/A for the resonant case (A /27w = 100 kHz). In both cases,
we divided the time intervalsin N = 10* steps to approximate equation (45). More details regarding the numerical
evaluation of //ryyp are given in appendix E. The results of these computations are shown in figure 7(a).
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Figure 7. Part (a) shows the measure of non-Markovianity ./jyp in the intervals [0.01/A]and [0.1/A] for the ‘Ohmic’ and resonant
cases, i.e. the dynamics presented in parts (a) and (b) of figure 4, respectively. Part (b) depicts the measure of non-Markovianity 41 p
over the whole interval [0, 20/ A] for both cases.

Let us now turn to the measure of non-Markovianity .45 p [49]. The computation of ./ p is somewhat
easier than that of A'ryp. A5 p Was originally proposed as a measure of non-Markovianity based on the
monotonicity of the trace distance under completely positive and trace preserving evolutions and is given by [49]

ABLp = max o(t)dt, (46)

Pr2 1,0>0

where o (t) = %D (&1,1,Pp> 61,1,0,) and D (-,-) is the trace distance. The integral extends over those subintervals
of Iwhereo (f) > 0. Thus, .4#prp detects non-Markovianity of a dynamical map &, ;, if the trace distance between
two initial states p; and p, increases in the course of the dynamics induced by &, ;. A nonzero value of 451 p can
be associated with a backflow of information from the environment to the system [49]. It is known that optimal
state pairs p;, p, that saturate the maximum in equation (46) are orthogonal and lie on the boundary of state
space [51]. However, since we only want to witness non-Markovian dynamics we do not need to perform the
maximization in equation (46). We can provide a useful lower bound on .41 p by computing the measure for
the eigenstates | T /), | %), and |£), of the Pauli matrices 0%, o *and 0, respectively, as initial states.

For the numerical computation of .4/g p we considered the whole interval [0, 20/ A] for both values of A.
We considered N = 10* equally spaced points ¢; in that interval and computed the time evolution for the spin
starting in each of the eigenstates of the Pauli matrices. We then computed the discrete version of A% p

JVBLP = Z (DfH,l - Dt,‘) (47)

i,Dy, —Dy>0

for the pairs of eigenstates belonging to the same Pauli matrix. Here, the sum runs over those i where the term in
brackets is larger than zero and Dy, = D (&,,1,0)> 6:,1,0,)- We note that due to the finite number of
‘measurements’ there will be a small deviation from the true value of Aryp [52]. The results for the initial state
pairs that led to the largest values of A5 p are shown in part (b) of figure 7. The values for the ‘Ohmic’ case are
obtained for the initial spin states p,(0) = |£) (%], and in the resonant case for the initial spin

states p,(0) = [1) (11, 11) (LI.

In both cases the measure is non-zero for all couplings A/27 > 0. An evaluation of A Ryp requires process
tomography and is therefore experimentally time-consuming already for a single spin. Hence, it might be easier
to experimentally detect non-Markovian dynamics using ./ p which only requires state tomography. We
remark that /5 p witnesses non-Markovianity in all regions where 4/ryp does. The somewhat discontinuous
behavior of /51 p for the resonant case is due to the finite time interval we are sampling. Also note that A5 p, as
we consider it here, is not normalized. Accordingly, since the time interval we are considering in the ‘Ohmic’
case is much longer than that for the resonant case, we cannot compare the degree of non-Markovianity of the
two cases for Agrp.

7. Conclusions and outlook

In summary, our work provides a route towards the physical simulation of spin-boson models with continuous
spectral densities using damped oscillators in Lindblad description. Due to the constraints that have to be
satisfied such that we can attribute a continuous Lorentzian spectral density to the damped oscillator in Lindblad
description, the protocol we have developed is most promising for the simulation of structured environments.
For these environments, our protocol has the potential to achieve a significant reduction of the technical
requirements for the implementation of this paradigmatic model for decoherence and dissipation employing
trapped ions.
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The joint effect of different damped modes allows one to tailor a large variety of spectral densities with rich
non-Markovian features. We showed that it is possible to carry out simulations of non-trivial dynamics making
use of just one motional mode, and illustrated the practicality of our approach by simulating an experiment with
realistic parameters.

In order to tailor more complex spectral densities than in this simulated proof-of-principle experiment, one
would need to couple the spin to two or more damped modes with the appropriate couplings and cooling rates
that match the effective spectral density to the desired one. In case several modes are used, it could be
advantageous to use the transverse modes of motion. Due to the smaller bandwidth of the transverse phonon
frequencies it is easier to couple to and cool several modes at the same time. It should be borne in mind that the
cooling rates should be considerably smaller than the spacing between modes. Only then the damping of each
mode can be described by a dissipator as in equation (17). In order to fill possibly unwanted gaps in the effective
spectral density, one could then use the modes of the second transverse direction of motion and place the
effective frequencies of these modes between those of the first direction.

Let us finally note that the model can be extended in two ways. More complex spectral densities can be
obtained by including more modes by either adding more coolant ions or coupling the spin to the modes of
more than one spatial direction. More spins can be included by adding more spin ions. Spin—spin interactions
are nowadays routinely implemented such that models of interacting spins coupled to a dissipative environment
can be realized. Then, trapped ions could be used as a testbed for the dynamics of exciton transport in complex
spectral densities as it occurs in photosynthetic pigment protein complexes. Especially higher order spectral
responses, e.g. 2D electronic spectroscopy, of these systems are exceedingly hard to compute numerically even
for only a few electronic sites coupled to an environment with structured spectral density [13]. In this way,
trapped ions could contribute to the understanding of the physical mechanisms underlying photosynthesis.
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Appendix A. Correlation functions of Ohmic and Lindblad oscillator

In this appendix, we show how one can see that the reservoir correlation functions L(¢) and Ly (¢) for the Ohmic
and Lindblad oscillators coincide when the conditions in equation (24) are satisfied. The real and imaginary
parts of L(¢) are specified in equations (13) and (14), while those of L; (¢) are given in equations (19) and (20).
Since the imaginary parts are equal, we focus on the real parts.

L/ (t) only features a single decay rate and therefore cannot reproduce the contribution L,(£) in L(f) which
incorporates the Matsubara frequencies. Furthermore, L/ () cannot reproduce the sine component in L; (#).
Accordingly, we need to be able to neglect L,(£) and the sine contribution in L (#) to identify L] (t) and L'(£).

We start by considering L,(#). The Matsubara frequencies v, determine the time scale on which L,(t) decays,
the smallest decay rate being v/,. Accordingly, if the decay rate ~ is much smaller than the smallest Matsubara
frequency vy, L,(f) drops to zero much faster than L, (#) [32, 34]. This is the regime where

K K0

—=—x1, (A)
141 2

and we recover equation (23) of the main text. In this regime, one expects that L,(#) contributes to L(#) only on
very short time scales and is negligible if we are interested in not too short time scales [3]. This is the case in our
considerations. If L,(0) < L;(0), we can neglect L,(¢) completely.

Assuming that we can neglect L,(f) on the time scales of interest, the decay of correlations is given by L, (#)
which only features a single decay rate. Now, we need to find the regime where

L) ~ Ly(b). (A2)

In thelimit 37k < 1, we can expand the sine and cosine terms in L, (¢) in this small parameter. To first order we
obtain
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Figure A1l. The figure shows the distance d, equation (A4), between the correlation function L(¢) = L/(¢t) + iL”(t), with realand
imaginary parts in equations (13) and (14), including the first 10" Matsubara frequencies and Ly (t), equation (18), for different values
of the cooling rate x and mean occupation number 7. The mode frequency wy,/2m = 100 kHz is the same for all combinations of
and 7. Higher bars correspond to smaller values of d.

_\2 Slnh(ﬂmm) ﬁﬁﬂ . —klt|
Li(t) =~ X [—cosh(ﬁfiwm) — 1cos(wml‘) + —cosh(ﬁf&um) 7 sm(wmltl)]e
p sinh(B/tm) cos(wmt)e (A3)

cosh(Blwn) — 1

where we have used 70k < sinh(/0wy,) in the last step. Employing the identity
coth g = sinh(x) / (coshx — 1) finallyyields L, (t) = L{ (t) ifthe reservoirs are at the same inverse temperature
B. Accordingly, we assume that the reservoir in the Lindblad description and the Ohmic oscillator bath have the
same inverse temperature (.

Let us now assume that the values of k and w,, are fixed. We should note now that the condition
in equation (A1), which characterizes the regime where L,(¢) is negligible, favors higher temperatures. However,
in order to suppress the sine component in L,(#), lower temperatures are more favorable. Accordingly, we
estimate that the approximation is best in some intermediate temperature regime.

In order to illustrate the above statement, we compute the distance

1 00
d= j; dt[L(t) — Ly ()] (Ad)

between the functions L(#) and L (¢). d can be evaluated analytically to yield

K w 8KWy = 1
d=c¢ + ¢q m m , A5
T2 4+ Wi, lmz + Wi, B (wa + K24 vE)? — 4R (45)
where we used the abbreviations
= sinh(8/iwm) B coth(ﬁﬂwm),
cosh(B/wm) — cos(A0kK) 2
sin((3/k)
Cd =

N cosh(B7wm) — cos(/iBk)

We evaluate d for different cooling rates and mean occupation numbers while keeping the mode frequency fixed
atwy,/2m = 100 kHz. The results are depicted in figure A 1. Note that higher bars in the figure correspond to
smaller values of d. We observe that increasing « increases the difference between the two functions. For a fixed
cooling rate we observe that the distance is minimal for intermediate values of 7i. This confirms our
considerations above.

Appendix B. TDMRG simulations using the TEDOPA algorithm

For macroscopic environments, the Hamiltonian of the spin-boson model considered in this
work, equation (1), becomes
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Figure B1. Illustration of the transformation of the spin-boson model into a one-dimensional configuration where the system is only
coupled to the environment’s first site.

H= Hsys + Heny + Hings (BD)

€ A
Hsys = EO.Z — TO'X, (BZ)

“)max
Hew = 7 dw walaw, (B3)
0
Zﬁ wmax T
Hi = —0°C [T dwn@a. + a, (B4)
0

where we have introduced a hard cutoff wy,,,, for the frequencies in the environment. The spectral density J(w) is
then given by

J(w) = Th*(w). (B5)

To simulate the evolution of the spin-boson model, we resorted to the time evolving density matrix with
orthogonal polynomials (TEDOPA) algorithm. Here, we briefly present the TEDOPA scheme and refer to [6, 7]
for amore detailed presentation of the algorithm. TEDOPA is a certifiable and numerically exact method to treat
open quantum system dynamics [7, 53].

In a two-stage process TEDOPA first employs a unitary transformation reshaping the spin-boson model into
a one-dimensional configuration. New oscillators with creation and annihilation operators b, and b,, are defined
using the unitary transformations U, (w)

Up(w) = h(w)p,(w), (B6)
b= [ dw Uyw)al, B7
p= [ vl (B7)
where p (w), n = 0, 1, ...areorthogonal polynomials with respect to the measure dyu(w) = W (w)dw[6].

While in certain cases it is possible to perform this transformation analytically [6], in general a numerically stable
procedure is used [54]. This transformation maps the environment to a semi-infinite one-dimensional chain of
oscillators with nearest-neighbor interactions. In this configuration, the spin only interacts with the first site of
the chain. The Hamiltonian (B1) becomes

0 o0
H=Hy — 12020 + b)) + S Awabl by + 3 fta(b buys + bub, ). (BS)
2 n=0 n=0
The nearest-neighbor geometry as well as the coefficients w,, and t,, are directly related to the recurrence
coefficients of the three-term recurrence relation defining the orthogonal polynomials p,,(w) [6]. This
transformation from the spin-boson model to a one-dimensional geometry is depicted in figure B1.

In the second step, this emerging configuration is treated by the time evolving block decimation (TEBD)
method. TEBD generates a high fidelity approximation of the time evolution of a one-dimensional system
subject to a nearest-neighbor Hamiltonian with polynomially scaling computational resources. TEBD does so by
dynamically restricting the exponentially large Hilbert space to its most relevant subspace thus rendering the
computation feasible [55, 56]. TEBD is essentially a combination of an MPS description for a one-dimensional
quantum system and an algorithm that applies two-site gates that are necessary to implement a Suzuki-Trotter
time evolution. Together with MPS operations such as the application of measurements this yields a powerful
simulation framework. An extension to mixed states is possible by introducing a matrix product operator to
describe the density matrix, in complete analogy to an MPS describing a state [55]. Such an extension is needed
in our simulations in order to build the thermal state of the oscillator chain.

Alast step is necessary to adjust this configuration further to suit numerical needs. The number of levels for
the environment oscillators is restricted to a value d,,,, to reduce the required computational resources. A
suitable value for d,,,, is related to the sites average occupation which, in turn, depends on the environment
structure and temperature. In our simulations, we set d,.x = 5: this value provides converged results for all
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examples provided. The Hilbert space dynamical reduction performed by TEBD is determined by the bond
dimension. The optimal choice of this parameter depends on the amount of long range correlations in the
system. For all the simulations used in this work, abond dimension x = 200 provided converged results. At last,
we observe that the mapping described above produces a semi-infinite chain that must be truncated in order to
enable simulations. In order to avoid unphysical back-action on the system due to finite-size effects, i.e.
reflections from the end of the chain, the chain has to be sufficiently long to completely give the appearance of a
‘large’ reservoir. These truncations can be rigorously certified by analytical bounds [53]. For the examples
provided in the main text, chains of n = 15 sites are enough to avoid boundary effects. In order to further
optimize our simulations, we augmented our TEDOPA code with a reduced-rank randomized singular value
decomposition (RRSVD) routine [57, 58]. Singular value decomposition (SVD) is at the heart of the
dimensionality reduction TEBD relies on. RRSVD is a randomized version of the SVD that provides an
improved-scaling SVD, with the same accuracy as the standard state-of-the-art deterministic SVD routines.

In order to benchmark the quality of the effective model presented in the main text, we compared the
dynamics of the full spin-boson model in equation (B1) with spectral density as in equation (7) of the main text
with those of a spin coupled to a damped harmonic oscillator in Lindblad description in equation (32). The
simulation parameters are found in table 1 and the results are presented in figure 3. We set the hard cutoff of the
macroscopic environment in equation (B3) to wy../2m = 200 kHz. For both cases, one can appreciate very
good agreement between the two dynamics.

Note that the simulation of one curve for the case A /27 = —50 kHz took 15 days with 16 cores on the
bwForCluster JUSTUS such that simulations for the case A /2w = 3 kHz as presented in figure 4 of the main text
are out of reach.

Appendix C. Spin-dependent optical dipole forces

In order to implement the spin-boson Hamiltonian in equation (37) of the main text with trapped ions, we
make use of the so-called spin-dependent optical dipole forces. In this section, we derive the Hamiltonian for the
optical dipole forces. For clarity, we consider a somewhat simplified level structure. We employ the formalism of
[59] to obtain expressions for the effective operators of a ground-state manifold weakly coupled to a decaying
excited state manifold.

We consider an ion where the internal levels form a A-type three-level system consisting of the ground states
[T)and ||) which are separated in energy by /vy and have an electric dipole transition to a decaying excited state
le) (see figure C1). The free Hamiltonian of the system reads

Ho= ) eli)(i (C1)
i=]Te
with ¢; the energy of the corresponding state. We assume that the dipole transitions are driven by two laser fields
with frequencies w; ,, which couple to both transitions and denote the Rabi frequency of laser [ on transition
s) — |e) by 2. In a rotating wave approximation using |{); ;| < wj, we obtain the interaction Hamiltonian

HL(t)—fZZ > 25 e wle) (s| + h.c. (C2)
=1,2s=[,T

Note that we have included the phase factors el®"+¢), where r denotes the ion’s position and k (¢;) the laser
wave vector (phase), into the Rabi frequencies. Finally, we assume that spontaneous emission from the excited
level to the ground states is properly described by a dissipator in Lindblad form

B 1 .
Dp = Z (LspLsI - _{LSILS:‘ P})> (C3)
s=L1 2
where L, = \/T,|s) (eland T = T} + T} is the overall decay rate of the excited state. Putting the pieces together,
the system evolves according to

) i

p= _g[Hat + HL (1), p] + Zp. (CH

Let us now introduce the detuning

152(66_65)/ﬁ_wl (CS)

oflaser I for transition [s) — |e). Here, weassume &3 ™~ Ar > wy, (U5, I Inthis case, the lasers are far off-
resonant for all transitions and the ground states are only weakly coupled to the excited state. We can then
adiabatically eliminate the excited state from the dynamics and obtain an effective dynamics in the ground state
manifold. Applying the formalism of [59] to our system, we obtain the effective Lindblad equation

17



10P Publishing

New J. Phys. 20 (2018) 073002 A Lemmer et al

|

Figure C1. The figure shows a three level A-system consisting of the ground states || ) and |T) which are separated in frequency by wj
and both feature a dipole-allowed transition to the decaying excited state |e). The transitions are driven by two lasers with frequencies
w1, and £ denotes the Rabi frequency of laser [ on transition |s) — |e). A is roughly the detuning of the lasers from the excited
state. Depending on the effective laser frequency wy, = w; — w, different operations on the ground states can be implemented (see
text). Spontaneous emission from the excited to the ground states happens at rates I' and is indicated by the curly lines.

i 1
p::——é{faﬁ,p]+—§2(Lf“p(Lf“ﬁ‘—-54<Lf“ﬁLf“,p})- (o)
k

The effective Hamiltonian Hghas three contributions Heg = Hy + Hy + Hoqr. The first part contains the
shifted ground state levels

Hy =) (& + Ae)ls) (sl (C7)
where the A¢, are the ac-Stark shifts of the spin levels due to the applied laser beams
Q%6
Aey= -3 s Ao 2’”' B (C8)
Ls 461,5 + F2
The second part, Hy,, describes two-photon stimulated Raman transitions between the spin states where a
photon is absorbed from one laser beam followed by stimulated emission into the other beam
_ Q;/r’l + A —i(wp—wp)t
Hy =71y, —=cte ir—wit 4 he, (C9)
I,
Here, we have introduced o = 1) (]| = (¢7)" and
st Q;k Ql’;l(él’,i + 5I,T)
F= . (C10)
(261’,1 — il (Zém + i)
The third part of the effective Hamiltonian is a time-dependent ac-Stark shift that can be used to create the
optical dipole force
Hogt = 71y %ei(”‘*“”tm (s| + h.c., (C11)
where
Qf (626 + b1
gL EL LU D, (C12)
(262’5 — IF) (2(5],5 + IF)
The Hamiltonian H,q4¢can be written in terms of 0% = |1) (1| — |]) (|| such that we obtain
Hogt = ﬁ%e*i@l*“”tl + 7 %e*i(‘*’lf“’z)‘az + hc,, (C13)
where have introduced the Rabi frequencies
Qoar = (@ = QD Doy = (@ + . (C14)

Thus, we obtain three effects on the spin states. The first is an ac-Stark shift of the spin levels due to the laser
fields. The differential ac-Stark shift between spin levels can usually be canceled in experiments by adjusting
polarization and intensity of the lasers [60]. Hence, we ignore this contribution. Alternatively, it could be
absorbed into wy.
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If one chooses the frequency difference between lasers close to the transition frequency between the spin
statesw; — w, & wy, the second part of the Hamiltonian is resonant and one can drive coherent two-photon
stimulated Raman transitions between the spin states. In this case, we usually have Q45 21, << wy, the third
contribution H,g¢is highly off-resonant and can be neglected in a rotating wave approximation.

Finally, there is the regime of the spin-dependent optical dipole forces where the beatnote between the two
lasers matches one of the motional frequencies w; — w; & wy. Usually wy < wjy such that now the stimulated
Raman processes in Hy; are highly off-resonant and can be neglected in a rotating wave approximation. Hence,
in this regime we arrive at the effective Hamiltonian

Hee = 7 %JZ + (ﬁ %ei(kﬂﬂ’ﬁe*iw”az + h.C-) (C15)
with the effective laser frequency w; = w; — w, and phase ¢; = ¢; — ¢,. Furthermore, we have written the
phases e*" explicitly again and introduced the effective laser wave vector k; = k; — k. Note that we have
omitted the first part of H,q¢in equation (C13). For our choice of laser frequency this term would couple to the
motion but it can usually be canceled choosing the appropriate laser intensities, polarizations and
detunings [60].

Let us turn to the dissipative part. The effective Lindblad operators are found to read:

@) e—iwlt Q, e —iw,t e —iwt Q e—iwzt
L = ﬁ[ R ]u u+f( al al .)mm, (C16)

2(51’l — il 262’1 2(5 1,1 — i’ 262>T — il

261)T — il 2(52 261 2621 — il

[9) efiwlt O, e —iw,t Qe —iwt Q efiwzl
Lif = Jﬁ( GRS )w T|+(( & 2l JIT><lI- (C17)

By keeping only the dominant contributions, i.e. those parts of the action of the Lindblad operators that are
time-independent, and using &, ; ~ Ay we obtain effective operators

|QIT| 1 €2, |2
L= I L, =— T g% C18
1= TE: a0 =3 151: e (C18)
and
€2, 2 €212
Ly = |I; ot L= |T —— 0. (C19)
B AR A v

These are the effective operators of equations (41) and (42) of the main text. The first two terms describe
Rayleigh scattering where the spin state is not altered upon a scattering event but can introduce dephasing. The
other operators describe Raman scattering where the spin state is changed upon a scattering event. If we assume
the modulus of the Rabi frequencies is approximately equal [€; ;| & 2y, we can estimate the effective scattering
rate Doge = T' Q0 /Ag where Q; = Q2 /(2Ay) is the approximate effective laser Rabi frequency. Hence,
decoherence can be largely suppressed if we choose Ap large enough.

Appendix D. Spin-boson Hamiltonian with trapped ions

In this section, we show how to obtain the spin-boson Hamiltonian in equation (37) of the main text inan ion
trap experiment. In the main text we consider a **Mg"—**Mg " crystal. Mg has electronic hyperfine ground
states with total angular momentum F = 2, 3 for the valence electron in the S, ,, state whose degeneracy can be
lifted by a magnetic field. A possible choice for a qubit are the states |[F = 3, mp = 3) = |[)and|F = 2,

mp = 2) = |1). The hyperfine splitting between the F = 2 and F = 3 statesis about wy /27 ~ 1.8 GHz. Ata
magnetic field of a few Gauss the other hyperfine states are well separated from the qubit states due to the Zeeman
interaction and we can assume the Hamiltonian

H, = ﬁ%oz (D1)

for the internal levels of Mg ™ where o> = |1) (1] — |1) (l|.

The two ions interact through their Coulomb interaction and their motion is coupled. If the ions are
sufficiently cold, they form a so-called Coulomb crystal and perform only small oscillations about equilibrium.
We assume trapping conditions such that the ions form a string along z and their equilibrium positions read

= (0, 0, Z]Q ). Their motion is then conveniently described in terms of normal modes [37, 38]. For a crystal
of Nions, we obtain N modes in each direction such that, taking into account the coupled harmonic motion, the
system’s Hamiltonian becomes
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Hy, = 70 5z + Z /zlun,aalaan,a. (D2)
2 no
Here, w,, . is the frequency of mode # in direction o and a,l o (a,,o) creates (annihilates) an excitation in the
corresponding mode. **Mg" is used to sympathetically cool the ions’ coupled motion. Since the internal levels
are adiabatically eliminated in the description of laser cooling [30, 31], we have omitted those of **Mg™ here. The
spin transition can be driven either directly by a microwave or in a two-photon stimulated-Raman configuration.
We adopt the convention that we will call the field driving the spin transition the ‘microwave’ independent of the
physical realization.
Let us now assume that the spin is driven by a microwave with frequency wq and Rabi frequency {24 and that

we apply a spin-dependent force as in equation (C15). The interaction Hamiltonian then reads

Hine = fi& remiwat ﬁ%ei(km*‘%)e’iwaz + h.c, (D3)
2 2

where we have set the microwave phase to zero and performed a rotating wave approximation. This is the
Hamiltonian in equation (36) of the main text. 2,4¢denotes the effective laser Rabi frequency and wy, k; and ¢
the effective laser frequency, wave vector and phase. We assume k; = ke, such that the laser only couples to the
motion along z. We have rj, = Z]Q + zj where the z; can be written in terms of the quantized normal modes [38]:

- /3
zj = My |=—— (a, + a), (D4)
" 2mjwy

where m; is the mass of ion j, M;, the amplitude of motional mode n at ion j in mass-weighted coordinates and
wy, = wy,, (for the operators accordingly). The full Hamiltonian of the system then reads

H = Hy + Hjn. (D5)

Moving to an interaction picture with respect to Hy = 7 (wy / 2)o? + 7 Zn’awn,aa;’ «9n,a> We obtain the
transformed interaction Hamiltonian

3 6 Q Q i (ane it g felont)
Hint:ﬁgaz+57do-x+(ﬁ ;)’dfel;n aye ale .

Tlatgz h.c.), (D6)

where § = wy — wa> Qogr = Qogre!®?+0 and we have introduced the Lamb-Dicke factors
n, = My, k7 / 2myw,) . Note that we have assumed that the > Mg " ionis located at site 2.

Let us now focus on the contribution of the Hamiltonian in equation (D6) in the brackets. Usually, for an
optical wave vector 1), < 1 such that we can expand the exponential containing the creation and annihilation
operators to first order in the 7,,. In the axial direction the two-ion crystal features an in-phase and an out-of-
phase mode of motion that are well separated in frequency. More precisely, we consider a trapping potential
such that a single **Mg™ ion has a center-of-mass frequency wy,/ 2 = 2.54 MHz. The in-phase and out-of-
phase mode frequencies of the **Mg " —*>Mg™" crystal are then given by w, /27 = 2.51 MHzand
w,/2m = 4.36 MHz, respectively. If we choose the laser frequency close to the out-of-phase mode frequency
wr &~ wyaswellas Qogr <K 2wy, 1, Qogr K |wy — wi, we can neglect all terms except one that couples the
internal levels to the out-of-phase mode in a rotating wave approximation. We then arrive at the final
Hamiltonian

6

I:Iint - ﬁzﬂ'z + ﬁ%ax + (ﬁlnz Q;dfago-zeiémt + h.C.], (D7)

where 6,, = wy; — wp K w; is the detuning of the laser from the out-of-phase mode. Finally, we can cast the
above Hamiltonian in a time-independent form and we recover equation (37) of the main text

i = 207 + o = Doy 1 af)o* + fumalas (D8)
where A\ = —in, oqr can always be taken to be real and 6, = wy,. Thus, the mode frequency in our simulation

is given by the detuning of the spin-dependent force. A physically meaningful mode frequency should be
positive. Accordingly, we choose wy such that 6, > 0.

Appendix E. Numerical computation of the measure of non-Markovianity .4/ 3p

In this section, we detail how we numerically evaluated the measure of non-Markovianity .A'ryp. In particular,
we explain how we evaluted g(f) from equation (45). As we stated in the main text, in order to evaluate Aryp we
divide the time interval I = [0, T] that we want to inspect for non-Markovian dynamics in N equally spaced
discrete times t; (t; = 0, t5y = T). We then compute the time evolution of the basis states |k) (j|, k, j = 1, forall
t;. By writing the time-evolved states |k) (j|(;) = py;(ti) asavector
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Vi (8) = [Pk 11 (8> Prip (8> pig 11 (s Py ()], we can write the dynamical map &, ,, in matrix
representation

E(t, to) = [vi1(8), vi (), vi1(2), v (D] (E1)

The matrix for the time evolution from ¢, to t, where t, > # > t, is then computed by

E(tZa tl) = E(tZa tO)Eil(tb tO)) (EZ)

where E~'(,, t) is the normal matrix inverse. The Choi matrix [&,, ® 1]|1) (¢/| is proportional to the
reshuffled matrix EX (t,, f;) of the matrix E(t,, t;) [61]. In particular, the Choi matrix is given by

(6, ® T10) (4] = %ER(tz, 0, (E3)

where d is the dimension of the finite dimensional open quantum system. For the case of a spin EX(t,, t;) reads

ER(t, ) = (E4)

where E,,,,, corresponds to entry m, nof the4 x 4 matrix E (,, t;). Now, in order to obtain A'gpp we evaluated a
discrete version of g(f) according to

1, @ TG @l — 1 IZE i, 8l — 1

tiv1 — & Liv1 — &

g ) = (E5)
The difficulty in evaluating g(t;) is to decide which values of the numerator count as zero and which are counted
as finite. The numerical calculations were performed using Python’s Numpy and Scipy libraries. The oscillator’s
Hilbert space was truncated at a maximal phonon number #,,,, = 15. The states were evolved in time by
vectorizing the Lindblad equation and applying the matrix exponential of the Liouvillian on the vectorized form
of the density matrix using the scipy.sparse.linalg.expm_multiply routine. For a number of parameters the
resulting density matrices were compared to the density matrices obtained by performing the matrix exponential
first with scipy.sparse.linalg.expm and then the matrix vector multiplication. For all of the spin basis states the
resulting matrices typically showed trace distances of a few times 10~ '°. Summing the largest errors of all the
basis states yielded a few times 10~ . Taking this value as a rough estimate of the numerical precision we set
g(H) = 0ifthe numerator was smaller than 10~ '*. Finally, .#zyp in this numerical approximation is given by
S tanh[g (t;)]

i=1,g(t;))>0
Nemp = — g ) (E6)

Netp>0

where N ()0 is the number of events where g (;) > 0. For the ‘Ohmic’ case (A/27 = 3 kHz) we chose
T = 0.01/Aand N = 10*and for the resonant case (A /27 = 100 kHz) T = 0.1/A and N = 10*. Note that
taking a too small time step eventually leads to discontinuous behavior in A Rpp.
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