
            

PAPER • OPEN ACCESS

A trapped-ion simulator for spin-boson models with
structured environments
To cite this article: A Lemmer et al 2018 New J. Phys. 20 073002

 

View the article online for updates and enhancements.

Related content
Dissipative ground-state preparation of a
spin chain by a structured environment
Cecilia Cormick, Alejandro Bermudez,
Susana F Huelga et al.

-

A robust scheme for the implementation of
the quantum Rabi model in trapped ions
Ricardo Puebla, Jorge Casanova and
Martin B Plenio

-

Micromotion-enabled improvement of
quantum logic gates with trapped ions
Alejandro Bermudez, Philipp Schindler,
Thomas Monz et al.

-

This content was downloaded from IP address 159.149.193.149 on 18/12/2018 at 14:04

https://doi.org/10.1088/1367-2630/aac87d
http://iopscience.iop.org/article/10.1088/1367-2630/15/7/073027
http://iopscience.iop.org/article/10.1088/1367-2630/15/7/073027
http://iopscience.iop.org/article/10.1088/1367-2630/18/11/113039
http://iopscience.iop.org/article/10.1088/1367-2630/18/11/113039
http://iopscience.iop.org/article/10.1088/1367-2630/aa86eb
http://iopscience.iop.org/article/10.1088/1367-2630/aa86eb
https://oasc-eu1.247realmedia.com/5c/iopscience.iop.org/508404786/Middle/IOPP/IOPs-Mid-NJP-pdf/IOPs-Mid-NJP-pdf.jpg/1?


New J. Phys. 20 (2018) 073002 https://doi.org/10.1088/1367-2630/aac87d

PAPER

A trapped-ion simulator for spin-bosonmodels with structured
environments

ALemmer1, CCormick2, DTamascelli1,3, T Schaetz4, S FHuelga1 andMBPlenio1

1 Institut für Theoretische Physik and IQST,Universität Ulm, Albert-Einstein Alle 11,D-89069Ulm,Germany
2 IFEG, CONICET andUniversidadNacional deCórdoba, X5000HUA, Córdoba, Argentina
3 Dipartimento di Fisica, Università degli Studi diMilano, Via Celoria 16, I-20133Milano, Italy
4 Physikalisches Institut, Albert-Ludwigs-Universität Freiburg,Hermann-Herder-Str. 3, D-79104 Freiburg, Germany

E-mail:martin.plenio@uni-ulm.de

Keywords: quantum simulation, trapped ions, spin-bosonmodels

Abstract
Wepropose amethod to simulate the dynamics of spin-bosonmodels with small crystals of trapped
ionswhere the electronic degree of freedomof one ion is used to encode the spinwhile the collective
vibrational degrees of freedom are employed to form an effective harmonic environment. The key idea
of our approach is that a single dampedmode can be used to provide a harmonic environmentwith
Lorentzian spectral density.More complex spectral functions can be tailored by combining several
individually dampedmodes. The protocol is especially well-suited to simulate spin-bosonmodels
with structured environments.We propose toworkwithmixed-species crystals such that one species
serves to encode the spinwhile the other species is used to cool the vibrational degrees of freedom to
engineer the environment. The strength of the dissipation on the spin can be controlled by tuning the
coupling between spin and vibrational degrees of freedom. In this way the dynamics of spin-boson
models withmacroscopic and non-Markovian environments can be simulated using only a few ions.
We illustrate the approach by simulating an experiment with realistic parameters and showby
computing quantitativemeasures that the dynamics is genuinely non-Markovian.

1. Introduction

The spin-bosonmodel is an archetypicalmodel of an open quantum system. It is applied in numerous contexts
ranging from chemical reactions [1] and biologicalmolecular aggregates [2] to solid state physics [3–5]. The
model describes a single spin coupled to a dissipative environment formed by an infinite set of harmonic
oscillators. It is well-known that the effect of thermal oscillator environments on a quantum system is fully
described by a single scalar function, the spectral density (also spectral function) of the environment [4].
Although approximate analytic solutions have been found for some spectral densities [3, 4], no closed analytic
solution of the spin-bosonmodel is known.Meanwhile, dynamics and thermodynamical properties of spin-
bosonmodels have been investigated by a number of numerical approaches including techniques based on the
numerical renormalization group [5], time-dependent densitymatrix renormalization group [6, 7], path
integralMonte Carlo [8], or the quasi-adiabatic propagator path integral approach [9]. Numerical simulations
are especially needed for environments with spectral densities where the reorganization energy is of the order of
the spectral width or for highly structured environments with long-lived vibrationalmodes. In these cases,
strong system-environment correlations can lead to highly non-trivial dynamics and it is known that reduced
effectivemodels do not represent the dynamics faithfully [10, 11].Moreover, these types of spectral densities,
which are of particular relevance for the excitonic and electronic dynamics in biomolecular systems [12], pose
considerable challenges for the numericalmethods. One example for this is the prediction of the results of
nonlinear spectroscopywhich is exceedingly hard on conventional computers already for small systems [13].
Therefore, an experimental simulator of spin-bosonmodels with a high degree of control is desirable.
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Trapped atomic ions provide a clean and highly controllable systemwheremany dynamical quantities are
directly accessible. They have proven to be a versatile platform for the simulation of awide range of physical
models including defect formation in classical phase transitions [14–16] as well as open and closed quantum
systems [17–22]. The simulation of spin-bosonmodels using trapped atomic ions has been proposed previously
[23] requiring rather large crystals comprising 50–100 ions. These crystals feature a large number of vibrational
modeswhich can be used to act as amesoscopic environment for the spin.However, for such large crystals the
level of control needed to simulate spin-bosonmodels is experimentally very hard to achieve.

In this work, we develop a proposal to simulate the dynamics of spin-bosonmodels with small crystals of
trapped ions. Our procedure also relies on the vibrational degrees of freedom to act as the environment, but it
makes use of the fact that a dampedmode produces a Lorentzian spectral density [1]. This result was derived in
[1] assuming that the damping is provided by an oscillator reservoir withOhmic spectral density. Cooling of
trapped ions, however, is usually described by a Lindblad equation.Here, we show that the Lorentzian spectral
density can also be obtained for appropriate parameters if the damping ismodeled by a Lindblad equation,
extending the results of [24–27]. Combining several dampedmodes, arbitrary spectral densities can be
constructed. The shape of the tailored spectral density is controlled by the couplings of the spin to themodes, the
mode frequencies and the damping rates. Accordingly, both the shape of the spectral density and the strength of
the dissipation can be tuned by the experimenter. Aswe show below, the effective Lorentzian spectral density can
typically only be attributed to the damped oscillator in Lindblad description if the damping rate is considerably
smaller than themode frequency. Therefore, our protocol is especially well-suited for the simulation of spin-
bosonmodels with environments that feature structured spectral densities. The spectral densities constructed
with the protocol are continuous functions of frequency and can thus be identifiedwith an environmentmade
up of amacroscopic number ofmodes as it occurs in the condensed phase. Accordingly, with ourmethod one
can tailor environments with continuous and highly structured spectral densities using only a small number of
oscillators to form the environment.

It is interesting to note that this approach is useful already for a small number ofmodes that are used to
model the environment because the direct numerical simulation of a spin coupled to dampedmodes in Lindblad
description becomes inefficient already for a fewmodes. The reduced overhead of our protocol brings the
simulation of spin-bosonmodels and the prediction of nonlinear spectroscopy of such systems to the realmof
state-of-the-art trapped-ion setups.

The article is structured as follows. In section 2, we introduce the spin-bosonmodel and the concept of the
influence functional. Then, in section 3we discuss the spectral densities generated by damped oscillators in
differentmodels of damping. Based on these results, we introduce our protocol for the simulation of spin-boson
models and benchmark the procedure with a comparison to a numerically exact simulation of the fullmany-
body dynamics in section 4.We then proceed to illustrate how the protocol can be implementedwith currently
available ion trap experiments. In section 5, we show that the protocol is robust to themost common
experimental sources of noise. Finally, in section 6we show that the dynamics in our simulations are truly non-
Markovian by computing two quantitativemeasures of non-Markovianity.We closewith a summary of our
results and discuss future perspectives for simulations of spin-bosonmodels with trapped ions in section 7.

2. Spin-bosonmodel

The spin-bosonmodel describes a two-level system (spin 1/2) in a dissipative environment which ismodeled by
an infinite set of non-interacting harmonic oscillators. Denoting the energy splitting between the spin states ñ∣
and ñ∣ by ò and the coupling between themby D, theHamiltonian of the global system reads [3]

 
 å ås s s l w= -

D
- + +( ) ( )† †H a a a a

2 2
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2
, 1z x z

n
n n n

n
n n nsb

where s = ñá - ñá∣ ∣ ∣ ∣z and s = ñá + ñá∣ ∣ ∣ ∣x . ( )†a an n denotes the raising (lowering) operator of
environmentalmode n andωn its frequency while the realλn describe the couplings of the spin to the
environmental oscillators. The spectral density which determines the influence of the oscillator environment on
the spin [3, 4] reads

åw p l d w w= -( ) ( ) ( )J 2
n

n n
2

with δ theDirac δ-function. For amacroscopic environment, one assumes that the frequencies are so closely
spaced that J(ω) becomes a continuous function ofω.

One is generally interested infinding the reduced dynamics of the spin for an environment with a certain
spectral density. The path integral formalism [28] provides uswith an exact expression for the propagator of the
spin statewhere the effects of the environment are already included. For factorizing initial conditions
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r r r= Ä bs0 with some spin state ρs and the environmentalmodes in a thermal state ρβ at inverse temperature

b = -( )k TB
1, the propagator for the spin reads [29]

ò ò= ¢ ¢
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Here, the path integral ò Dq
q

qf

0

runs over all spin state trajectories connecting q(0)=q0 and q(t)=qf, S0[q] is the

action of the free spin evolution and F [q, q′] is the Feynman–Vernon influence functional [29]. The influence
functional contains the effect of the environment on the spin dynamics. For an oscillator environment and the
considered coupling it can bewritten as [3]

*ò ò¢ = - ¢ ¢ - ¢ ¢ ¢ - - ¢ - ¢
¢⎧⎨⎩
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Here
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2

is the reservoir correlation functionwith l= å +( )†X a an n n n . Note that the correlation function
inequation (5) is evaluatedwith respect to the free evolution of the environmental oscillators. Alternatively, L(t)
can be expressed in terms of the spectral density J(ω):
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Hence, we see that the influence of the environment on the spin is equivalently given either by the coordinate
correlation function of the environment or by its spectral density.

3. Environments of damped harmonic oscillators

The key idea underlying our proposal for the simulation of spin-bosonmodels is the result that a harmonic
oscillator damped by an oscillator bathwithOhmic spectral density yields an effective environment with
Lorentzian spectral density [1]. In this section, wewill analyze this effective spectral density and compare it to
that of a damped harmonic oscillator in Lindblad description. In particular, we show that the twomodels of
damping yield the same effective spectral density for appropriate parameters. To this end, we analyze the
correlation functions of the two reservoirs and showwhen the correlation functions and their spectral
representations coincide. The observation that different environments that produce the same influence
functional have the same effect on the dynamics of a reduced system [29] completes the argument that also a
damped oscillator in Lindblad description can act as an effective harmonic environment.

Let us start by considering an environment that consists of a single harmonic oscillator of free oscillation
frequencyΩwhich is damped by an oscillator reservoir withOhmic spectral function w w= w w-( )J K eO

c . Here,
K is a constant andωc a high-frequency cutoff. For brevity, we call this damped harmonic oscillator ‘Ohmic
oscillator’ in the following. For a strictlyOhmic environment, i.e. w  ¥c , that causes damping at rateκ on the
coordinate of the oscillator, the effective spectral density generated by the damped oscillator on the spin is
Lorentzian [1]

w l
k

k w w
k
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2
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2

Here, w k= W -m
2 2 is the reduced frequency of the damped oscillator and l the spin-oscillator coupling as

inequation (1). Note thatwe restrict our considerations to the underdamped regime k < W.
In trapped-ion experiments, themotion of the ions is usually expressed in terms of a set of normalmodes,

each of which is a harmonic oscillator. Cooling of themodes is commonly described by a Lindblad equation
[30, 31]. Therefore, it is not immediately clear if we can obtain an effective spectral density as for theOhmic
oscillator,equation (7).Wewill now show that this is possible and that we obtain the same spectral function for
appropriate parameters. It is easier to start by considering the reservoir correlation functions in the time domain
in order to establish the correspondence between the effective environments for the twomodels of damping.

3.1. Reservoir correlation functions
The reservoir correlation function L(t) inequation (5)may bewritten explicitly in terms of the environmental
coordinate correlation functions. To see this, note that we canwrite
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where xn is the position operator of oscillator nwithmassmn and  w= ( )x m2n n n0, . Using the above
identity, wemaywrite the reservoir correlation function inequation (5) as

å
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wherewe have used that the oscillators are independent.We note again that for the coupling between spin and
environment in theHamiltonian inequation (1) the coordinate correlation function of the free environmental
oscillators determines the influence on the spin.

In the following, we consider only a single oscillator and therefore we omit the index n. Since the coordinate
correlation function á ñb( ) ( )x t x 0 is in general complex-valued

á ñ = +b( ) ( ) ( ) ( ) ( )x t x S t A t0 i , 10

where = á ñb( ) { ( ) ( )}S t x t x, 01

2
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2i
, also L(t) is a complex-valued function
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with real and imaginary parts L′(t) and ( )L t .
For the oscillator damped by a strictlyOhmic bath, the coordinate correlation function and thus L(t) can be

calculated analytically [3, 32]. For a bath at inverse temperatureβ, we obtain
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with theMatsubara frequencies n p b= ( )n2n , and

l w = - k-( ) ( ) ( )∣ ∣L t tsin e . 14t2
m

Note that we again assumed the underdamped regimeκ<Ω here. The reservoir correlation function for the
Ohmic oscillator can also bewritten in the formofequation (6)


òp
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where Jeff (ω) is given inequation (7).
In Lindblad description, a damped harmonic oscillator coupled to a thermal reservoir at inverse temperature

β evolves according to

Dr w r r= - + k˙ [ ] ( )†
¯a ai , , 16nm ,

where a, a† are the ladder operators of the dampedmode and the frequencyωm is taken to include possible
renormalizations due to the damping. The dissipator reads [33]

D r k r r k r r= + - + - +k ( ¯ )[ ] ¯ [ ] ( )¯
† † † †n a a a a n a a aa1 h.c. 17n,

Note that the above formof the Lindblad equation is also used to describe laser cooling of trapped ions [30, 31].
In the following, we call the damped oscillatorwhere the damping is described by the Lindblad equation (16)
‘Lindblad oscillator’. Employing the quantum regression theorem, we can compute the coordinate correlation
function á ñ = +b( ) ( ) ( ) ( )x t x S t A t0 i,L L L of the Lindblad oscillator. Inserting the resulting expressions
intoequation (9), we obtain the reservoir correlation function of the Lindblad oscillator

= ¢ + ( ) ( ) ( ) ( )L t L t L ti . 18L L L

The real part reads


l

b w
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2
cos e , 19t

L
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m

and the imaginary part is given by

l w = - k-( ) ( ) ( )∣ ∣L t tsin e . 20t
L

2
m

Comparing equations (14) and(20), wefind that the imaginary parts of the reservoir correlation functions L(t)
and LL(t) are exactly equal. Note that herewe have tacitly assumed that the damping ratesκ and the reduced
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oscillator frequenciesωm are the same in both cases. However, despite this assumption ¢ ( )L tL has a different
functional form than L′(t) inequation (12).

Since  = ( ) ( )L t L tL , we can alsowrite ( )L tL in terms of Jeff(ω) ofequation (7) by taking the imaginary part
ofequation (6). This is, however, not the case for ¢LL(t).Writing ¢LL(t) as inequation (6), we obtain

ò w w b w w¢ = ¢
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¥
( ) ( ) ( ) ( )L t J td coth 2 cosL

1

0 eff , where
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Hence, LL(t) in general cannot bewritten in terms of a single spectral density but takes the form
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Despite the differences, it is possible to obtain very good agreement also between the real parts L′(t) and ¢LL(t)
and their frequency space representations equations (7) and(21). References [32, 34] estimate that the quantum
regression theorem can only yield quantitatively correct predictions for the two-time correlation functions of
the damped harmonic oscillator if k w m and bk  1. Indeed, under these assumptionswe find very good
agreement between both L′(t) and LL′(t) and their frequency space representations w( )Jeff and ¢Jeff (ω).We can
understand the two conditions as follows. The Lindblad equation (16)with the dissipator inequation (17) is a
good description for the damped oscillator for weak coupling between the oscillator and its environment which
is reflected by the condition k w m. Furthermore, at very low temperatures the decay of L′(t) is dictated by the
Matsubara frequencies in L2(t). This decay cannot be reproduced by ¢LL (t)which only features a single decay
rate. For

k n bk p= ( ) ( )2 1, 231

the smallestMatsubara frequency ismuch larger than the decay rateκ andwe can neglect L2(t) if we are interested
in not too short time scales [3]. In this case, L′(t)≈L1(t)which can be correctly reproduced by the regression
theorem result ¢LL (t) in the considered parameter regime, aswewill see shortly.

Recalling thatβ=1/(kBT), we find that the condition inequation (23) puts a lower bound on the
temperaturewhere the identification of L(t) and LL(t) is possible for afixed cooling rate. However, also too high
temperatures lead to deviations such that there is an intermediate temperature rangewhere the best agreement is
achieved (see appendix A for amore detailed discussion).

Thus, we have established a regimewhere the coordinate correlation function of the Lindblad oscillator
approximately coincides with that of theOhmic oscillator. Summarizing, we require

k w k b p ( ) ( )and 2 1 24m

for the functions LL(t) and L(t) to coincide. In this regime, the Lindblad oscillator produces the same reservoir
correlation function and thus influence functional as theOhmic oscillator. According to the equivalence
theorem in [35], in this regime the Lindblad oscillator acts as an effectivemacroscopic reservoir with Lorentzian
spectral density as given inequation (7) above.

For ion-trap experiments, one usually considers themean occupation number n̄ of the bosonicmodes
rather than their temperature and therefore it is desirable to cast condition(23) in a formwhere it depends on n̄.
Assuming a thermal state for a bosonicmode, we can associate the temperature w= +[ ( ¯)]T k nlog 1 1Beff to
themode and the condition bk p ( )2 1becomes

p
k
w

+


( )
( )¯

log 1

2
1. 25n

1

m

In order tomake our considerationsmore quantitative and to illustrate that thematch of the reservoir
correlation functions is indeed very good for parameters of interest, wemake a numerical comparison of the
functions L(t) and LL(t) in the regime k w n ,m 1. Since the imaginary parts of the two functions are equal, we
focus on the real parts L′(t) and LL′(t). Infigure 1we plot L′(t)/λ

2 including the first 104Matsubara frequencies
togetherwith LL(t)/λ

2 for the parameters specified in table 1 below. These parameters are realistic for an ion trap
experiment. In part (a) of thefigurewe compare L′(t) and LL′(t) on short and in part (b) on intermediate time
scales. One can appreciate excellent agreement between the two functions.

3.2. Frequency space
In the previous section, we have seen that in the parameter regime specified inequation (24) the Lindblad
description of the damped harmonic oscillator reproduces the reservoir correlation function L(t) of theOhmic
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oscillator. In fact, in almost all cases environments are characterized by their spectral density rather than their
correlation function L(t), which is obtained from the spectral density J(ω) throughequation (6).

The frequency space representation for the real part of the correlation function of the Lindblad oscillator is
given inequation (22). Comparing the functions Jeff (ω) and ¢Jeff (ω) from equations (7) and(21), wefind that in
general w w¢ ¹( ) ( )J Jeff eff and that we hence cannot write LL(t) as a function of a single spectral density as
inequation (6), in general. Yet, fromour considerations in the previous sectionwe expect that for parameters
satisfyingequation (24)wehave

w w¢ »( ) ( ) ( )J J , 26eff eff

such that we canwrite LL(t) as


òp

w w
b w

w w» -
¥

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥( ) ( ) ( ) ( ) ( )L t J t t

1
d coth

2
cos i sin . 27L

0
eff

In this case, the reservoir correlation function can also bewritten in the formofequation (6) as for amacroscopic
oscillator environment.

Infigure 2we compare the left and right hand sides ofequation (26) for the parameters specified in table 1
forwhichwe found excellent agreement between the correlation functions LL(t) and L(t) (see figure 1). Panel (a)
shows Jeff (ω) (solid line) and ¢Jeff (ω) (triangles) for small frequencies and part (b) shows the behavior around the
resonanceωm/2π=100 kHz. Both parts of the figure show that we obtain very good agreement in frequency
space, too. Part (c) of the figure shows the relative error

Figure 1.Comparison of L′(t)=L1(t)+L2(t) fromequation (13) including thefirst 104Matsubara frequencies (blue solid lines) and
LL′(t) fromequation (19) (dashed–dotted line and crosses) forωm/2π=100 kHz,κ/2π=1.25 kHz and w =¯ ( )n 0.025m

(b = ´ -5.91 10 6 s). Panel (a) shows the time evolution for short times, while panel (b) illustrates the behavior on an intermediate
time scale.

Figure 2.The figure compares Jeff(ω) ,equation (7) (solid line), and ¢Jeff (ω),equation (21) (triangles), forωm/2π=100 kHz,κ/2π=
1.25 kHz and =n̄ 0.025 (b = ´ -5.91 10 6 s). Part (a) shows the behavior for small frequencies while part (b) depicts the two
functions around the resonanceωm/2π=100 kHz. In part (c)we show the relative error òJ fromequation (28) over the relevant
frequency range covered by the spectral density.

Table 1.Parameters for the simulation of a spin-bosonmodel with
Lorentzian spectral density with trapped ions.

ωm/2π k p2 w¯ ( )n m b   p( )2

100 kHz 1.25 kHz 0.025 ´ -5.91 10 s6 0 kHz
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w
=

¢ -∣ ( ) ( )∣
( )

( )J J

J
, 28J

eff eff

eff

which is remarkably small over thewhole rangeω/2π=0–150 kHz.Note that the increase in the relative error
for higher frequencies is because the spectral density Jeff(ω) goes to zeromore rapidly than w¢ ( )Jeff . However,
since both contributions are small, the effect of this difference should be negligible as long as the frequency of the
spin coupled to this effective environment does not lie in this range.

In summary, we confirm the result of the previous section: for appropriate choices ofmode frequency,
cooling rate and temperature, the damped oscillator evolving according to the Lindblad equation can be
attributed the effective spectral density Jeff(ω),equation (7), of amacroscopic oscillator environment. Note that
the treatment is not perturbative in the spin-motion couplingλ, so that this equivalence is valid for arbitrary
values ofλ as long as the Lindblad equation holds.

4. Trapped-ion simulations of spin-bosonmodels

In this section, we introduce our protocol for the simulation of spin-bosonmodels.We illustrate the procedure
for a trapped-ion experiment but it can also be adapted to other experimental platforms.

4.1. Simulation protocol
TheHamiltonian of the spin-bosonmodel wewant to simulate is given inequation (1). The influence of the
environment on the spin dynamics is determined by the spectral density inequation (2)whichwe assume to be a
smooth function ofω here.

In the previous section, we have seen that a Lindblad oscillator yields an effective environment with spectral
density Jeff(ω) fromequation (7) if the parameters satisfy the conditions inequation (24). Let us now assume
that a spin is coupled toN independent damped harmonic oscillators in Lindblad description that satisfy the
constraints inequation (24). Then, a spectral density Jeff,n(ω) given byequation (7)with the correspondingλn,
κn,ωn can be attributed to oscillator n, n=1,K,N.

The combined influence functional of different statistically and dynamically independent environments
is given by the product of the individual influence functionals [29]. Using this property for the environment
composed of theN independent Lindblad oscillators yields the reservoir correlation function


ò åp
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Here,βn is the temperature of the reservoir associatedwith oscillator n. If all reservoirs have the same
temperature, i.e.βn=β for n=1,K,N, their spectral densities add up and one can construct effective spectral
densities

åw w=
=

( ) ( ) ( )J J . 30
n

N

n
1

eff,

Hence, theN independent Lindblad oscillators yield an effective environment with the spectral density J(ω)
ofequation (30). If the number of available oscillators is not restricted, any spectral density can be decomposed
as inequation (30). In the limiting case of infinitelymany oscillators and vanishing damping,equation (30)
yieldsequation (2). Of course, in practice the number of oscillatorsN is finite. Yet, this still allows us to create a
large variety of spectral densities.

If wewant to approximate a certain target spectral density JT(ω)withN oscillators, we canfind the
values for theλn,κn,ωn, n=1,K,N that reproduce the desired spectral density byminimizing the
functional [36]

òl k w w w w= -
¥

[{ }] ∣ ( ) ( )∣ ( )E J J, , d . 31n n n
0

T
2

Note that the optimization is subject to the conditions inequation (24) if we use Lindblad oscillators to form the
environment. Therefore, if we use Lindblad oscillators andwant to employ as few oscillators as possible, the
procedure works best for structured environments.

Summarizing the above idea, in order to simulate a spin-bosonmodel described by theHamiltonian
inequation (1)with a spectral density J(ω), we have to engineer a physical system in such away that it evolves
according to

D
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i
, , 32
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n
sb ,
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where the conditions inequation (24) are satisfied for eachmode and the spectral densities associatedwith the
dampedmodes fulfillequation (30). TheHamiltonian H̃sb is the same as that inequation (1) but the index n
nowonly runs over the set of dampedmodes.

In order to confirm the above statement, we simulated the dynamics of sá ñ( )tz and sá ñ( )tx for the full spin-
bosonHamiltonian inequation (1)with spectral density Jeff(ω) fromequation (7)using the numerically exact
TEDOPA algorithm [6] and compared themwith those given byequation (32)with H̃sb for a singlemode.
Details regarding the TEDOPA simulation technique and its implementation are given in appendix B.We
considered an initial product state

r r= ñá Ä b∣ ∣ ( ), 330

where ρβ is a thermal state with b = ´ -5.91 10 s6 which corresponds to w =¯ ( )n 0.025m for the Lindblad
oscillator. Furthermore, we take ò=0,ωm/2π=100 kHz andκ/2π=1.25 kHz. These parameters are
summarized in table 1.We chose a spin-mode couplingλ/2π=100 kHz and computed the evolution for spin
energiesΔ/2π=−50 and−100 kHz. The results are displayed infigure 3. For both values ofΔwe obtain very
good agreement which shows that the analogy to themacroscopic environment also holds whenwe probe the
effective spectral density generated by the Lindblad oscillator away from the resonance andwith a non-
perturbative coupling.Note that one simulation forΔ/2π=−50 kHz took 15 days using 16 cores on a
computing cluster which oncemore indicates the value of a trapped-ion simulator, especially for structured
environments.

4.2. Ion trap implementation
Let us nowproceed to illustrate how the ideas discussed above can be implemented in an ion-trap experiment.
We considerN singly charged atomic ionswithmassesmj confined in a linear Paul trapwith effective harmonic
trapping potential.We assume trapping conditions such that laser cooled ions form a linear Coulomb crystal
along zwith equilibriumpositions = ( )zr 0, 0,j j

T0 0 . Themotional degrees of freedom can then be described in
terms ofN uncoupled normalmodes in each spatial direction [37, 38] and themotional Hamiltonian reads

å w=
a

a a a ( )†H a a , 34
n

n n nm
,

, , ,

whereωn, α is the frequency ofmode n in spatial directionαä{x, y, z}with ladder operators a a
†a a,n n, , .

For simplicity we focus on the case of a spin coupled to a single dampedmodewhich corresponds to a spin-
bosonmodel with Lorentzian spectral density as inequation (7). This system already exhibits an interesting
phenomenology and has been studiedwith a variety of numerical and analytical approaches, see e.g. [39–42]. For
this purpose, we only needN=2 ions: one ion is used to encode the spinwhile the other ion provides
sympathetic cooling of the sharedmodes ofmotion. In order to avoid that the cooling lasers couple to the spin
transition, we choose toworkwithmixed-species ion crystals. Alternatively, one could rely on single site
addressing. The internal levels of the spin ion are described by theHamiltonian


w

s= ( )H
2

, 35z
s

0

while the internal levels of the coolant ion are adiabatically eliminated from the dynamics leading to the effective
description inequation (17) of the cooling [30, 31].

Figure 3.Benchmark of the spin-boson simulation protocol. In part (a) of thefigurewe plot the time evolution of sá ñ( )tz in natural
time units D∣ ∣ · t for the initial product state inequation (33) and the parameters given in table 1. The spin-motion couplingwas
λ/2π=100 kHz and the spin energies wereΔ/2π=−50 kHz andΔ/2π=−100 kHz. The solid lines show the time evolution
under the full spin-bosonHamiltonian inequation (1)with spectral density Jeff(ω) fromequation (7). The symbols depict sá ñ( )tz

evolving according toequation (32)with a singlemode and the same parameters, describing a spin coupled to a damped oscillator in
Lindblad description. (b) Same as (a) for sá ñ( )tx .
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For concreteness we consider a crystal composed of 24Mg+ and 25Mg+. 25Mg+ has a nuclear spin andwe can
use the states = = ñ º ñ∣ ∣F m3, 3F and = = ñ º ñ∣ ∣F m2, 2F of the 2S1/2 electronic hyperfine ground-state
manifold to encode the spin. The spin can be driven either by amicrowave or in a two-photon stimulated Raman
configurationwhile the desired coupling of the spin to themotional degrees of freedom in theσ z basis is
provided by a ‘walking standingwave’. In this configuration the spin states are off-resonantly coupled to the P
manifold by two laser beams near 280 nmwhose beat note is tuned close to one of themotionalmode
frequencies [43]. The interaction of the spin ionwith the applied fields is described by (see appendices C andD)

 s s=
W

+
W

+w f w+ - + - ( )( )H
2

e
2

e e h.c., 36t t zk r
int

d i odf i id L 2 L L

whereΩd is the Rabi frequency of the appliedmicrowave or stimulated Raman field andωd≈ω0 its frequency.
Ωodf, kL,ωL,fL are the effective laser Rabi frequency, wave vector, frequency and phase, respectively and r2
denotes the position of the spin ion.Directing kL along z the laser only couples to themotion along this axis. A
two-ion crystal features two axialmodes, an in-phase and an out-of-phasemode ofmotionwith frequenciesω1,z

≡ω1 andω2,z≡ω2. The twomodes are well separated in frequency such that choosing the laser frequency
ωL≈ω2 the spin only couples to the ouf-of-phasemode. In an interaction picture rotatingwith themicrowave
andmotional frequencies and under the rotatingwave approximation, the system’sHamiltonian reads (see
appendixD)

  


d
s s

l
s d= +

W
- + +( ) ( )† †H a a a a

2 2 2
, 37z x z

sb1
d

2 2 m 2 2

where δ=ω0−ωd is the detuning of thefield driving the spin transition and d w w w= - m 2 L 2 the
detuning of the laser from themotionalmode. The spin-motion coupling is given by l h= - W f+(∣ ∣ )i e zk

2 odf
i L 2

0
L

with the Lamb–Dicke factor h w= ( ) ˜ ∣ ∣m M k22 2 2 22 L . Note that the laser phase can be chosen such thatλ is
real. M̃22 is the out-of-phasemode amplitude at the spin ion inmassweighted coordinates andm2 itsmass.
Identifying  d = ,Ωd=−Δ and δm=ωm,we obtain the desiredHamiltonian, namely the spin-boson
Hamiltonian ofequation (1) for a singlemode. Adding the cooling on the second ion, the full system evolves
according toequation (32). This is the desired time evolution for a simulation of the spin-bosonmodel with a
Lorentzian spectral density as inequation (7).

We simulate the dynamics of the system for experimentally realistic parameters.We consider an axial
potential where a single 24Mg+ ion has a center-of-mass frequencyωcom/2π=2.54 MHz. This potential leads
to an out-of-phasemode frequencyω2/2π=4.36 MHz and η2≈0.15 for themixed crystal wherewe assumed
that the lasers inducing the spin-dependent force are at right angles. Furthermore, we assume that EIT cooling
[31] is applied to the 24Mg+ ionwhich has already been used to sympathetically coolmixed-species ion crystals
[44].We assume a cooling rate 2κ/2π=2.5 kHz and a steady-state population =n̄ 0.025 of themodewhich is
realistic in light of the results in [44]. Note that one has tomake sure that the conditions inequation (24) hold for
the effectivemode frequencyωm=δm,which is the detuning of the spin-motion coupling and thusmuch
smaller than the physicalmode frequency.We choose thefield driving the spin to be resonant, i.e. ò=0, and a
detuningωm/2π=100 kHz of the spin-motion coupling. Accordingly, we recover the parameters of table 1 and
the correspondence holds. Note that experimentally afinite bias ò can easily be included by introducing a
detuning to thefield driving the spin transition. In the simulations, we truncate themotionalHilbert space at
nmax=15 excitations whichmakes truncation errors negligible.

Infigure 4we show the dynamics of sá ñ( )tz underequation (32)where =H̃ Hsb sb1 fromequation (37)
with the parameters of table 1 for an initial state as inequation (33).We vary the spin-motion coupling
λ/2π=10–200 kHz. In panel (a)we show the dynamics forΔ/2π=3 kHz. In this case the spin samples the
low frequencies of the spectral density inequation (7). For smallω the spectral density showsOhmic behavior
Jeff(ω)∼ω.We observe a transition fromdamped to overdamped oscillations with increasing spin-mode
couplingλ. This behavior is expected for anOhmic spectral density atfinite temperatures [3, 4]. Note, however,
that our spectral density Jeff(ω), even if Ohmic for small frequencies, does not yield the same correlation function
as a strict Ohmic environment. Thereforewe can only expect qualitatively similar dynamics [39, 40]. In panel (b)
we show sá ñ( )tz forΔ/2π=100 kHz such that the spin is resonant with themode. The remaining parameters
and the initial condition are the same as in part (a). In this regime, the spin dynamics shows a very complex
behaviorwhich onewould intuitively call non-Markovian. In order to verify that the observed dynamics is truly
non-Markovian, we computed two quantitativemeasures of non-Markovianity. The results are presented in
section 6 below. For now,we remark that the twomeasures witness non-Markovianity for both the resonant and
theOhmic case for l ¹ 0.
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5. Impact of experimental sources of noise

In this section, we present an estimate of the impact of typical experimental sources of noise on the quality of the
simulations of the spin-bosonmodel dynamics.We consider two different types of noise. First, we consider the
impact of a generic dephasing noise on the experimental results. Although it can be suppressed verywell inmany
experiments, dephasing is ubiquitous in trapped-ion experiments. The second source of noise that we consider
is related to the concrete implementation of the protocol that we propose. Theσ z spin-motion coupling via
opticalfields utilizes coupling of the spin states via a decaying state. In general, this type of coupling leads to
decoherence due to residual off-resonant excitation of the upper level (see appendix C).

5.1.Dephasing noise
Weconsider the implementation of the spin-bosonHamiltonian as presented in the previous section and
assume that the spin levels are additionally subject to dephasing noise. Including noise effects on the spin, the
state ρ of the spin ion and the relevant dampedmode evolves according to

D D


r r r= - + +k˙ [ ] ( ) ( )¯H
i

, , 38nsb1 , s

whereHsb1 is the spin-bosonHamiltonian for a singlemode ofequation (37). The dissipator now consists of two
parts:Dk n̄, describes the damping of themode and is given inequation (17)whileDs describes the additional
dissipative effects on the spin. For dephasing noiseDs is given by

D r s rs r=
G

-( ) ( )
2

. 39z z
s

deph

This dissipator causes decay of the form -Ge tdeph on the spin coherences where the decay constantΓdeph is related
to *T2 through *G = T1deph 2 .

Infigure 5, we compare the noise free dynamics of the spin, given byequation (32) above, with those given
byequation (38) including the dephasing noise inequation (39). The parameters are again those of table 1 and
we use the initial condition ofequation (33).We vary the spin-motion couplingλ/2π=10–200 kHz. In parts
(a) and (b) offigure 5 the spin energy isΔ/2π=3 kHz. Part (a) shows the dynamics for * =T 12 ms and part (b)
shows the dynamics for * =T 102 ms. These coherence times have already by far been surpassedwithmagnetic
field sensitive trapped-ion qubits, see e.g. [45], where coherence times of 300 ms have been observed. Thefigure
shows that for * =T 102 ms there is already no appreciable effect in the dynamics for theOhmic case. For the
resonant caseΔ/2π=100 kHz there is no visible effect already for * =T 12 ms as can be appreciated in part (c)
of the figure. This is due to themuch shorter time scale in this case. In the light of these results, it seems fair to
neglect dephasing noise.

5.2.Decoherence due toσ z spin-motion coupling
The use of opticalfields to obtain theσ z spin-motion coupling introduces additional decoherence on the spin
through off-resonant scattering of photons from the applied beams.We analyze the effects of this type of
decoherence on the quality of the spin-bosonmodel simulations in this section.Motivated by the results of the
previous section, we neglect dephasing noise in our analysis. The dissipative effects of the considered spin-

Figure 4.The plots show the dynamics of sá ñ( )tz in natural time unitsD · t underequation (32)with =H̃ Hsb sb1

fromequation (37) for the simulation parameters specified in table 1 and the initial condition ofequation (33). This setting
corresponds to a spin-bosonmodel with a Lorentzian spectral density as inequation (7).We vary the spin-motion couplingλ. The
values ofλ/2π in kHz are given in the bars on top of the plots. In part (a) the spin energyΔ/2π=3 kHz ismuch smaller than the
mode frequencyωm/2π=100 kHz, so that the environment is approximatelyOhmic. In part (b) themode is resonantwith the spin
(Δ/2π=100 kHz).
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motion coupling only act on the spin. Accordingly, the systemof spin andmode again evolves according
toequation (38) but with a different dissipatorDs than that ofequation (39).

In order tofind expressions for the Lindblad operators that describe the dissipative effects due to theσ z spin-
motion coupling, we use a simplified three-levelmodel for the internal structure of 25Mg+. Themodel and the
calculations to obtain the effective Lindblad operators are summarized in appendix C.With the effective
Lindblad operators wefind, the spin dissipator now reads

D år r r= -
= 
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where the index l runs over the applied laser beams.We consider that two laser beams are applied andΩl,s is the
Rabi frequency of laser l coupling spin state s to the upper level. wD W G , ,l sR , 0 denotes the detuning of the
beams from the excited state and theΓs are the decay rates from the upper level to spin state s.

The Lindblad operators inequation (41) describe Rayleigh scatteringwhere the spin state is not altered upon
a scattering event but can introduce dephasing. Those inequation (42) describe Raman scatteringwhere the
spin state is changed upon a scattering event. If we assume that themodulus of the Rabi frequencies of the two
lasers providing the spin-dependent force is approximately equal W » W∣ ∣l s, 0, we can estimate the effective
scattering rateΓeff≈ΓΩL/ΔR, where W = W D( )2L 0

2
R is the approximate effective laser Rabi frequency.

Hence, decoherence can be largely suppressed if we chooseΔR large enough.
For the spontaneous emission rate and the Lamb–Dicke parameterwe take the parameters of 25Mg+Γ/2π=

41.4MHzandη≈0.15, whichwe also used in theprevious section. Furthermore, we assume an equal branching
ratio for thedecay of the excited level to the spin states and assume that all laser Rabi frequencies have the same
modulus W = W∣ ∣l s, 0.

Infigure 6we present the dynamics resulting fromequation (38)without the spin dissipatorDs, as
presented infigure 4, and compare them to the dynamics incorporating the effects ofDs from equation (40).
Again, we use the parameters of table 1with the initial condition inequation (33) and vary the spin-motion
couplingλ/2π=10–200 kHz. Parts (a) and (b) offigure 6 compare the dynamics for the quasi Ohmic case
Δ/2π=3 kHz and laser detuningsΔR/2π=100 GHz andΔR/2π=1 THz, respectively. The solid lines
represent the unperturbed dynamics while the symbols incorporate the effects of the additional decoherence on
the spin. For a detuning of 100 GHz, the spin dynamics is noticeably perturbed already forweak spin-motion
couplings. Yet, the right qualitative behavior of the dynamics is preserved. For the large detuning, there is only an
appreciable effect for the strongest spin-motion coupling. Finally, part (c) of thefigure shows the dynamics for
the resonant caseΔ/2π=100 kHz and a laser detuningΔR/2π=100 GHz. In this case, there is no appreciable
effect on the spin dynamics, again due to themuch shorter time scale.

The results of figure 6 show that, as we expected, errors due to theσ z spin-motion coupling can be
suppressed to a large extent if the laser detuning can be chosen large enough. In order to avoid this source of

Figure 5.Effects of dephasing on the spin-bosonmodel simulationwith trapped ions. Part (a) shows the dynamics given
byequation (38)without noise (solid lines) andwith dephasing noise as given byequation (39) (symbols) for * =T 12 ms in the quasi
Ohmic caseΔ/2π=3 kHz. Part (b): Same as (a)with * =T 102 ms. Part (c) shows the dynamics for the resonant caseΔ/2π=
100 kHz and * =T 12 ms. The values ofλ/2π in kHz are given in the bars on top of the plots. The remaining simulation parameters are
those used forfigure 4 and are reported in table 1 and the text.
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error, one could also rotate the spin basis and provide spin-motion coupling in a different basis, for instance by a
Mølmer–Sørensen interaction [46]. Anotherway to circumvent the considered type of noise would be to use the
spin-motion coupling induced in the near field ofmicrowave currents [47], where the considered type of spin-
motion coupling is also available but spontaneous emission is negligible.

6.Quantification of the degree of non-Markovianity of the dynamics

In this section, we investigate the non-Markovian character of the dynamics presented infigure 4. There are
several different ways to define non-Markovian dynamics. Here, we compute two quantitativemeasures of
non-Markovianity:NRHP andNBLP as presented in [48, 49], respectively.

First we analyze the non-Markovian character of the dynamics presented infigure 4 according to the
measureNRHP. To this end, let us consider an open quantum systemoffinite dimension dwhose time evolution
is described by a completely positive and trace preserving dynamicalmap Et t, 0

. For an initial state ρ(t0), the
system’s state at a later time t t0 is given by

Er r=( ) ( ) ( )t t . 43t t, 00

According to [48], the dynamicalmap describes aMarkovian evolution if and only if themap Et t,2 1
exists and is

completely positive for all  t t t2 1 0 .The degree of non-Markovianity of a dynamics over an interval I,NRHP,
is then obtained by quantifying the departure of the Et t,2 1

from complete positivity over that interval. In
particular, we have
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where the integral extends over those subintervals of Iwhere >¯ ( )g t 0. The functionχ[x]=1 for x>0 and
χ[x]=0 else and by definition ‘0/0’=0 . The function ¯ ( )g t is given by =¯ ( ) [ ( )]g t g ttanh where
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Here, ... 1denotes the trace norm and yñ = å ñ=∣ ∣n n,
d n

d1
1 is amaximally entangled state of the open system

with an ancillary systemof the same size. E  y yÄ ñá+[ ]∣ ∣t t, is the so-calledChoimatrix and is positive if and
only if E +t t, is completely positive [50]. Note that g(t) vanishes if E +t t, is completely positive. Thus, for a
Markovian dynamics g(t)=0 for all times andNRHP evaluates to zero.

We evaluatedNRHP numerically for the spin-boson systemconsisting of a spin coupled to a dampedmode
describedbyequation (32)with theHamiltonian inequation (37).We considered the parameters thatweused
to producefigure 4,which are given in table 1, and the initial state inequation (33). Thenumerical computation
ofNRHP requires the evaluationof a discrete versionofequation (45). Since the evaluation of themeasure is
numerically demanding for the considered case, we restricted the time intervals thatwe inspected toT=0.01/Δ
for the ‘Ohmic’ case (Δ/2π=3 kHz) and toT=0.1/Δ for the resonant case (Δ/2π=100 kHz). In both cases,
wedivided the time intervals inN=104 steps to approximateequation (45).More details regarding thenumerical
evaluationofNRHP are given in appendix E. The results of these computations are shown infigure 7(a).

Figure 6. Impact of the dissipative effects of theσ z spin-motion coupling using opticalfields on the spin-bosonmodel simulation. In
the figure the dynamics without noise on the spin, given byequation (38)without s , are represented by solid lines and are the same
as that infigure 4. The symbols depict the dynamics incorporating noise as given byequation (40). Part (a) shows the dynamics for the
quasi Ohmic caseΔ/2π=3 kHz and aRaman beamdetuningΔR p/2 =100 GHz. Part (b) shows the same as part (a) for
ΔR/2π=1 THz. In part (c)we show the dynamics for the resonant caseΔ/2π=100 kHz andΔR/2π=100 GHz. The values ofλ/
2π in kHz are given in the bars on top of the plots. The remaining simulation parameters are those used for figure 4 and are reported in
table 1 and the text.
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Let us now turn to themeasure of non-MarkovianityNBLP [49]. The computation ofNBLP is somewhat
easier than that ofNRHP.NBLP was originally proposed as ameasure of non-Markovianity based on the
monotonicity of the trace distance under completely positive and trace preserving evolutions and is given by [49]

N ò s=
r s>

( ) ( )t tmax d , 46
I

BLP
, 01 2

where E Es r r=( ) ( )t D ,
t t t t t

d

d , 1 , 20 0
and (· ·)D , is the trace distance. The integral extends over those subintervals

of Iwhereσ (t)>0. Thus,NBLP detects non-Markovianity of a dynamicalmap Et t, 0
if the trace distance between

two initial states ρ1 and ρ2 increases in the course of the dynamics induced by Et t, 0
. A nonzero value ofNBLP can

be associatedwith a backflowof information from the environment to the system [49]. It is known that optimal
state pairs ρ1, ρ2 that saturate themaximum inequation (46) are orthogonal and lie on the boundary of state
space [51]. However, sincewe onlywant towitness non-Markovian dynamics we do not need to perform the
maximization inequation (46).We can provide a useful lower bound onNBLP by computing themeasure for
the eigenstates  ñ∣ , ñ∣ x and ñ∣ y of the Paulimatricesσ z,σ x andσ y, respectively, as initial states.

For the numerical computation ofNBLP we considered thewhole interval [0, 20/Δ] for both values ofΔ.
We consideredN=104 equally spaced points ti in that interval and computed the time evolution for the spin
starting in each of the eigenstates of the Paulimatrices.We then computed the discrete version ofNBLP

N å= -
- >+

+( ) ( )D D 47
i D D

t tBLP
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1

1

for the pairs of eigenstates belonging to the same Paulimatrix. Here, the sum runs over those iwhere the term in
brackets is larger than zero and E Er r= ( )D D ,t t t t t, 1 , 2i i i0 0

.We note that due to the finite number of
‘measurements’ therewill be a small deviation from the true value ofNRHP [52]. The results for the initial state
pairs that led to the largest values ofNBLP are shown in part (b) offigure 7. The values for the ‘Ohmic’ case are
obtained for the initial spin states r = ñá( ) ∣ ∣0 xs and in the resonant case for the initial spin
states r = ñá ñá( ) ∣ ∣ ∣ ∣0 ,s .

In both cases themeasure is non-zero for all couplingsλ/2π>0 . An evaluation ofNRHP requires process
tomography and is therefore experimentally time-consuming already for a single spin.Hence, itmight be easier
to experimentally detect non-Markovian dynamics usingNBLP which only requires state tomography.We
remark thatNBLP witnesses non-Markovianity in all regionswhereNRHP does. The somewhat discontinuous
behavior ofNBLP for the resonant case is due to the finite time interval we are sampling. Also note thatNBLP, as
we consider it here, is not normalized. Accordingly, since the time interval we are considering in the ‘Ohmic’
case ismuch longer than that for the resonant case, we cannot compare the degree of non-Markovianity of the
two cases forNBLP.

7. Conclusions and outlook

In summary, ourwork provides a route towards the physical simulation of spin-bosonmodels with continuous
spectral densities using damped oscillators in Lindblad description. Due to the constraints that have to be
satisfied such that we can attribute a continuous Lorentzian spectral density to the damped oscillator in Lindblad
description, the protocol we have developed ismost promising for the simulation of structured environments.
For these environments, our protocol has the potential to achieve a significant reduction of the technical
requirements for the implementation of this paradigmaticmodel for decoherence and dissipation employing
trapped ions.

Figure 7.Part (a) shows themeasure of non-MarkovianityNRHP in the intervals [0.01/Δ] and [0.1/Δ] for the ‘Ohmic’ and resonant
cases, i.e. the dynamics presented in parts (a) and (b) offigure 4, respectively. Part (b) depicts themeasure of non-MarkovianityNBLP

over thewhole interval [0, 20/Δ] for both cases.
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The joint effect of different dampedmodes allows one to tailor a large variety of spectral densities with rich
non-Markovian features.We showed that it is possible to carry out simulations of non-trivial dynamicsmaking
use of just onemotionalmode, and illustrated the practicality of our approach by simulating an experiment with
realistic parameters.

In order to tailormore complex spectral densities than in this simulated proof-of-principle experiment, one
would need to couple the spin to two ormore dampedmodes with the appropriate couplings and cooling rates
thatmatch the effective spectral density to the desired one. In case severalmodes are used, it could be
advantageous to use the transversemodes ofmotion. Due to the smaller bandwidth of the transverse phonon
frequencies it is easier to couple to and cool severalmodes at the same time. It should be borne inmind that the
cooling rates should be considerably smaller than the spacing betweenmodes. Only then the damping of each
mode can be described by a dissipator as inequation (17). In order tofill possibly unwanted gaps in the effective
spectral density, one could then use themodes of the second transverse direction ofmotion and place the
effective frequencies of thesemodes between those of thefirst direction.

Let usfinally note that themodel can be extended in twoways.More complex spectral densities can be
obtained by includingmoremodes by either addingmore coolant ions or coupling the spin to themodes of
more than one spatial direction.More spins can be included by addingmore spin ions. Spin–spin interactions
are nowadays routinely implemented such thatmodels of interacting spins coupled to a dissipative environment
can be realized. Then, trapped ions could be used as a testbed for the dynamics of exciton transport in complex
spectral densities as it occurs in photosynthetic pigment protein complexes. Especially higher order spectral
responses, e.g. 2D electronic spectroscopy, of these systems are exceedingly hard to compute numerically even
for only a few electronic sites coupled to an environment with structured spectral density [13]. In this way,
trapped ions could contribute to the understanding of the physicalmechanisms underlying photosynthesis.
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AppendixA. Correlation functions ofOhmic and Lindblad oscillator

In this appendix, we showhowone can see that the reservoir correlation functions L(t) and LL(t) for theOhmic
and Lindblad oscillators coincide when the conditions inequation (24) are satisfied. The real and imaginary
parts of L(t) are specified in equations (13) and(14), while those of LL(t) are given in equations (19) and(20).
Since the imaginary parts are equal, we focus on the real parts.

¢LL(t) only features a single decay rate and therefore cannot reproduce the contribution L2(t) in L′(t)which
incorporates theMatsubara frequencies. Furthermore, ¢LL(t) cannot reproduce the sine component in ( )L t1 .
Accordingly, we need to be able to neglect L2(t) and the sine contribution in L1(t) to identify ¢ ( )L tL and L′(t).

We start by considering L2(t). TheMatsubara frequencies νn determine the time scale onwhich L2(t) decays,
the smallest decay rate being ν1. Accordingly, if the decay rateκ ismuch smaller than the smallestMatsubara
frequency n1, L2(t) drops to zeromuch faster than L1(t) [32, 34]. This is the regimewhere

k
n

k b
p

=  ( )
2

1, A1
1

andwe recoverequation (23) of themain text. In this regime, one expects that L2(t) contributes to L(t) only on
very short time scales and is negligible if we are interested in not too short time scales [3]. This is the case in our
considerations. If ( ) ( )L L0 02 1 , we can neglect L2(t) completely.

Assuming that we can neglect L2(t) on the time scales of interest, the decay of correlations is given by L1(t)
which only features a single decay rate. Now,we need tofind the regimewhere

»( ) ( ) ( )L t L t . A2L 1

In the limit b k  1, we can expand the sine and cosine terms in L1(t) in this small parameter. Tofirst order we
obtain
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wherewe have used  bk bw ( )sinh m in the last step. Employing the identity
= -( ) ( )x xcoth sinh cosh 1x

2
finally yields = ¢( ) ( )L t L t1 L if the reservoirs are at the same inverse temperature

β. Accordingly, we assume that the reservoir in the Lindblad description and theOhmic oscillator bath have the
same inverse temperatureβ.

Let us now assume that the values ofκ andωm are fixed.We should note now that the condition
inequation (A1), which characterizes the regimewhere L2(t) is negligible, favors higher temperatures. However,
in order to suppress the sine component in L1(t), lower temperatures aremore favorable. Accordingly, we
estimate that the approximation is best in some intermediate temperature regime.

In order to illustrate the above statement, we compute the distance
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between the functions L(t) and LL(t). d can be evaluated analytically to yield
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Weevaluate d for different cooling rates andmean occupation numbers while keeping themode frequency fixed
atωm/2π=100 kHz. The results are depicted infigure A1.Note that higher bars in thefigure correspond to
smaller values of d.We observe that increasingκ increases the difference between the two functions. For afixed
cooling rate we observe that the distance isminimal for intermediate values of n̄. This confirms our
considerations above.

Appendix B. TDMRG simulations using the TEDOPAalgorithm

Formacroscopic environments, theHamiltonian of the spin-bosonmodel considered in this
work,equation (1), becomes

Figure A1.The figure shows the distance d,equation (A4), between the correlation function = ¢ + ( ) ( ) ( )L t L t L ti , with real and
imaginary parts in equations (13) and(14), including thefirst 104Matsubara frequencies and LL (t),equation (18), for different values
of the cooling rateκ andmean occupation number n̄. Themode frequencyωm/2π=100 kHz is the same for all combinations ofκ
and n̄. Higher bars correspond to smaller values of d.
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wherewe have introduced a hard cutoffωmax for the frequencies in the environment. The spectral density J(ω) is
then given by

w p w=( ) ( ) ( )J h . B52

To simulate the evolution of the spin-bosonmodel, we resorted to the time evolving densitymatrix with
orthogonal polynomials (TEDOPA) algorithm.Here, we briefly present the TEDOPA scheme and refer to [6, 7]
for amore detailed presentation of the algorithm. TEDOPA is a certifiable and numerically exactmethod to treat
open quantum systemdynamics [7, 53].

In a two-stage process TEDOPAfirst employs a unitary transformation reshaping the spin-bosonmodel into
a one-dimensional configuration.Newoscillators with creation and annihilation operators †bn and bn are defined
using the unitary transformationsUn(ω)

w w w=( ) ( ) ( ) ( )U h p , B6n n

ò w w=
w

w( ) ( )† †b U ad , B7n n
0

max

where w = ¼( )p n, 0, 1,n are orthogonal polynomials with respect to themeasure dμ(ω)=h2(ω)dω [6].
While in certain cases it is possible to perform this transformation analytically [6], in general a numerically stable
procedure is used [54]. This transformationmaps the environment to a semi-infinite one-dimensional chain of
oscillators with nearest-neighbor interactions. In this configuration, the spin only interacts with the first site of
the chain. TheHamiltonian(B1) becomes

  å ås w= - + + + +
=

¥

=

¥

+ +( ) ( ) ( )† † † †H H
t

b b b b t b b b b
2

. B8z

n
n n n

n
n n n n nsys

0
0 0

0 0
1 1

The nearest-neighbor geometry as well as the coefficientsωn and tn are directly related to the recurrence
coefficients of the three-term recurrence relation defining the orthogonal polynomials pn(ω) [6]. This
transformation from the spin-bosonmodel to a one-dimensional geometry is depicted infigure B1.

In the second step, this emerging configuration is treated by the time evolving block decimation (TEBD)
method. TEBD generates a highfidelity approximation of the time evolution of a one-dimensional system
subject to a nearest-neighborHamiltonianwith polynomially scaling computational resources. TEBDdoes so by
dynamically restricting the exponentially largeHilbert space to itsmost relevant subspace thus rendering the
computation feasible [55, 56]. TEBD is essentially a combination of anMPS description for a one-dimensional
quantum system and an algorithm that applies two-site gates that are necessary to implement a Suzuki–Trotter
time evolution. Together withMPS operations such as the application ofmeasurements this yields a powerful
simulation framework. An extension tomixed states is possible by introducing amatrix product operator to
describe the densitymatrix, in complete analogy to anMPS describing a state [55]. Such an extension is needed
in our simulations in order to build the thermal state of the oscillator chain.

A last step is necessary to adjust this configuration further to suit numerical needs. The number of levels for
the environment oscillators is restricted to a value dmax to reduce the required computational resources. A
suitable value for dmax is related to the sites average occupationwhich, in turn, depends on the environment
structure and temperature. In our simulations, we set dmax=5: this value provides converged results for all

Figure B1. Illustration of the transformation of the spin-bosonmodel into a one-dimensional configurationwhere the system is only
coupled to the environment’sfirst site.
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examples provided. TheHilbert space dynamical reduction performed by TEBD is determined by the bond
dimension. The optimal choice of this parameter depends on the amount of long range correlations in the
system. For all the simulations used in this work, a bond dimensionχ=200 provided converged results. At last,
we observe that themapping described above produces a semi-infinite chain thatmust be truncated in order to
enable simulations. In order to avoid unphysical back-action on the systemdue tofinite-size effects, i.e.
reflections from the end of the chain, the chain has to be sufficiently long to completely give the appearance of a
‘large’ reservoir. These truncations can be rigorously certified by analytical bounds [53]. For the examples
provided in themain text, chains of n=15 sites are enough to avoid boundary effects. In order to further
optimize our simulations, we augmented our TEDOPA codewith a reduced-rank randomized singular value
decomposition (RRSVD) routine [57, 58]. Singular value decomposition (SVD) is at the heart of the
dimensionality reduction TEBD relies on. RRSVD is a randomized version of the SVD that provides an
improved-scaling SVD,with the same accuracy as the standard state-of-the-art deterministic SVD routines.

In order to benchmark the quality of the effectivemodel presented in themain text, we compared the
dynamics of the full spin-bosonmodel inequation (B1)with spectral density as inequation (7) of themain text
with those of a spin coupled to a damped harmonic oscillator in Lindblad description inequation (32). The
simulation parameters are found in table 1 and the results are presented infigure 3.We set the hard cutoff of the
macroscopic environment inequation (B3) toωmax/2π=200 kHz. For both cases, one can appreciate very
good agreement between the two dynamics.

Note that the simulation of one curve for the caseΔ/2π=−50 kHz took 15 days with 16 cores on the
bwForCluster JUSTUS such that simulations for the caseΔ/2π=3 kHz as presented infigure 4 of themain text
are out of reach.

AppendixC. Spin-dependent optical dipole forces

In order to implement the spin-bosonHamiltonian inequation (37) of themain text with trapped ions, we
make use of the so-called spin-dependent optical dipole forces. In this section, we derive theHamiltonian for the
optical dipole forces. For clarity, we consider a somewhat simplified level structure.We employ the formalism of
[59] to obtain expressions for the effective operators of a ground-statemanifold weakly coupled to a decaying
excited statemanifold.

We consider an ionwhere the internal levels form aΛ-type three-level system consisting of the ground states
ñ∣ and ñ∣ which are separated in energy by w0 and have an electric dipole transition to a decaying excited state
ñ∣e (see figureC1). The freeHamiltonian of the system reads

å= ñá
= 

∣ ∣ ( )H i i C1
i e

iat
, ,

with òi the energy of the corresponding state.We assume that the dipole transitions are driven by two laser fields
with frequenciesω1/2 which couple to both transitions and denote the Rabi frequency of laser l on transition
ñ  ñ∣ ∣s e byΩl,s. In a rotatingwave approximation using wW ∣ ∣l s l, , we obtain the interactionHamiltonian

 å å=
W

ñá +w

= = 

-( ) ∣ ∣ ( )H t e s
2

e h.c. C2
l s

l s t
L

1,2 ,

, i l

Note that we have included the phase factors f+( )e k ri l l , where r denotes the ion’s position and k l(fl) the laser
wave vector (phase), into the Rabi frequencies. Finally, we assume that spontaneous emission from the excited
level to the ground states is properly described by a dissipator in Lindblad form

D år r r= -
= 

⎜ ⎟⎛
⎝

⎞
⎠{ } ( )† †L L L L

1

2
, , C3

s
s s s s

,

where = G ñá∣ ∣L s es s and G = G + G  is the overall decay rate of the excited state. Putting the pieces together,
the system evolves according to

D


r r r= - + +˙ [ ( ) ] ( )H H t
i

, . C4at L

Let us now introduce the detuning

  d w= - -( ) ( )C5l s e s l,

of laser l for transition ñ  ñ∣ ∣s e . Here, we assume d wD W G  , ,l s l s, R 0 , . In this case, the lasers are far off-
resonant for all transitions and the ground states are only weakly coupled to the excited state.We can then
adiabatically eliminate the excited state from the dynamics and obtain an effective dynamics in the ground state
manifold. Applying the formalismof [59] to our system,we obtain the effective Lindblad equation
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The effectiveHamiltonianHeff has three contributionsHeff=Hg+Hsr+Hodf. Thefirst part contains the
shifted ground state levels

 å= + D ñá( )∣ ∣ ( )H s s , C7
s

s sg

where theΔòs are the ac-Stark shifts of the spin levels due to the applied laser beams
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The second part,Hsr, describes two-photon stimulated Raman transitions between the spin states where a
photon is absorbed fromone laser beam followed by stimulated emission into the other beam
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The third part of the effectiveHamiltonian is a time-dependent ac-Stark shift that can be used to create the
optical dipole force
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TheHamiltonianHodf can bewritten in terms of s = ñá - ñá∣ ∣ ∣ ∣z such that we obtain
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+
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e
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where have introduced the Rabi frequencies

* * * *W = W - W W = W + W   ( ) ( ) ( )1

2
,
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. C14odf rw

Thus, we obtain three effects on the spin states. Thefirst is an ac-Stark shift of the spin levels due to the laser
fields. The differential ac-Stark shift between spin levels can usually be canceled in experiments by adjusting
polarization and intensity of the lasers [60]. Hence, we ignore this contribution. Alternatively, it could be
absorbed intoω0.

FigureC1.Thefigure shows a three levelΛ-system consisting of the ground states ñ∣ and ñ∣ which are separated in frequency byω0

and both feature a dipole-allowed transition to the decaying excited state ñ∣e . The transitions are driven by two lasers with frequencies
ω1/2 andΩl,s denotes the Rabi frequency of laser l on transition ñ  ñ∣ ∣s e .ΔR is roughly the detuning of the lasers from the excited
state. Depending on the effective laser frequencyωL=ω1−ω2, different operations on the ground states can be implemented (see
text). Spontaneous emission from the excited to the ground states happens at ratesΓs and is indicated by the curly lines.
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If one chooses the frequency difference between lasers close to the transition frequency between the spin
statesω1−ω2≈ω0, the second part of theHamiltonian is resonant and one can drive coherent two-photon
stimulated Raman transitions between the spin states. In this case, we usually haveΩodf,Ωrw=ω0, the third
contributionHodf is highly off-resonant and can be neglected in a rotatingwave approximation.

Finally, there is the regime of the spin-dependent optical dipole forces where the beatnote between the two
lasersmatches one of themotional frequenciesω1−ω2≈ωk. Usually w wk 0 such that now the stimulated
Raman processes inHsr are highly off-resonant and can be neglected in a rotatingwave approximation. Hence,
in this regimewe arrive at the effectiveHamiltonian
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with the effective laser frequencyωL=ω1−ω2 and phasefL=f1−f2. Furthermore, we havewritten the
phases e k ri l explicitly again and introduced the effective laser wave vector kL=k1−k2. Note that we have
omitted the first part ofHodf inequation (C13). For our choice of laser frequency this termwould couple to the
motion but it can usually be canceled choosing the appropriate laser intensities, polarizations and
detunings [60].

Let us turn to the dissipative part. The effective Lindblad operators are found to read:

d d d d
= G

W
- G

+
W

- G
ñá + G

W
- G

+
W

- G
ñá

w w w w

 


-




-





-




-



⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟∣ ∣ ∣ ∣ ( )L

e

2 i

e

2 i

e

2 i

e

2 i
, C16

t t t t
eff 1,

i

1,

2,
i

2,

1,
i

1,

2,
i

2,

1 2 1 2

d d d d
= G

W
- G

+
W

- G
ñá + G

W
- G

+
W

- G
ñá

w w w w

 


-




-





-




-



⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟∣ ∣ ∣ ∣ ( )L

e

2 i

e

2 i

e

2 i

e

2 i
. C17

t t t t
eff 1,

i

1,

2,
i

2,

1,
i

1,

2,
i

2,

1 2 1 2

By keeping only the dominant contributions, i.e. those parts of the action of the Lindblad operators that are
time-independent, and using d Dl s, R we obtain effective operators
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These are the effective operators of equations (41) and(42) of themain text. Thefirst two terms describe
Rayleigh scatteringwhere the spin state is not altered upon a scattering event but can introduce dephasing. The
other operators describe Raman scatteringwhere the spin state is changed upon a scattering event. If we assume
themodulus of the Rabi frequencies is approximately equal W » W∣ ∣l s, 0, we can estimate the effective scattering
rateΓeff≈ΓΩL/ΔRwhere W = W D( )2L 0

2
R is the approximate effective laser Rabi frequency. Hence,

decoherence can be largely suppressed if we chooseΔR large enough.

AppendixD. Spin-bosonHamiltonianwith trapped ions

In this section,we showhow toobtain the spin-bosonHamiltonian inequation (37)of themain text in an ion
trap experiment. In themain textwe consider a 24Mg+–25Mg+ crystal. 25Mg+has electronic hyperfine ground
stateswith total angularmomentumF=2, 3 for the valence electron in the 2S1/2 statewhosedegeneracy canbe
lifted by amagneticfield.Apossible choice for a qubit are the states = = ñ º ñ∣ ∣F m3, 3F and =∣F 2,

= ñ º ñ∣m 2F . Thehyperfine splittingbetween theF=2 andF=3 states is about w p 2 1.80 GHz.At a
magneticfield of a fewGauss the other hyperfine states arewell separated from thequbit states due to theZeeman
interaction andwe can assume theHamiltonian


w

s= ( )H
2

D1z
s

0

for the internal levels of 25Mg+where s = ñá - ñá∣ ∣ ∣ ∣z .
The two ions interact through their Coulomb interaction and theirmotion is coupled. If the ions are

sufficiently cold, they form a so-calledCoulomb crystal and performonly small oscillations about equilibrium.
We assume trapping conditions such that the ions form a string along z and their equilibriumpositions read

= ( )zr 0, 0,j j
T0 0 . Theirmotion is then conveniently described in terms of normalmodes [37, 38]. For a crystal

ofN ions, we obtainNmodes in each direction such that, taking into account the coupled harmonicmotion, the
system’sHamiltonian becomes
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Here,ωn, α is the frequency ofmode n in directionα and a a( )†a an n, , creates (annihilates) an excitation in the
correspondingmode. 24Mg+ is used to sympathetically cool the ions’ coupledmotion. Since the internal levels
are adiabatically eliminated in the description of laser cooling [30, 31], we have omitted those of 24Mg+ here. The
spin transition can be driven either directly by amicrowave or in a two-photon stimulated-Raman configuration.
We adopt the convention thatwewill call thefield driving the spin transition the ‘microwave’ independent of the
physical realization.

Let us now assume that the spin is driven by amicrowavewith frequencyωd andRabi frequencyΩd and that
we apply a spin-dependent force as inequation (C15). The interactionHamiltonian then reads

 s s=
W
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+w f w+ - + - ( )( )H
2

e
2

e e h.c., D3t t zk r
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d i odf i id L 2 L L

wherewe have set themicrowave phase to zero and performed a rotatingwave approximation. This is the
Hamiltonian inequation (36) of themain text.Ωodf denotes the effective laser Rabi frequency andωL, kL andfL
the effective laser frequency, wave vector and phase.We assume kL=kez such that the laser only couples to the
motion along z.We have = +z zrjz j j

0 where the zj can bewritten in terms of the quantized normalmodes [38]:
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wheremj is themass of ion j, M̃jn the amplitude ofmotionalmode n at ion j inmass-weighted coordinates and
ωn=ωn,z (for the operators accordingly). The full Hamiltonian of the system then reads
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L andwe have introduced the Lamb–Dicke factors
h w= ˜ ( )M k m2n n n2 2 . Note that we have assumed that the 25Mg+ ion is located at site2.

Let us now focus on the contribution of theHamiltonian inequation (D6) in the brackets. Usually, for an
optical wave vector h  1n such thatwe can expand the exponential containing the creation and annihilation
operators tofirst order in the ηn. In the axial direction the two-ion crystal features an in-phase and an out-of-
phasemode ofmotion that are well separated in frequency.More precisely, we consider a trapping potential
such that a single 24Mg+ ion has a center-of-mass frequencyωm/ 2π=2.54 MHz. The in-phase and out-of-
phasemode frequencies of the 24Mg+–25Mg+ crystal are then given byω1/2π=2.51MHz and
ω2/2π=4.36 MHz, respectively. If we choose the laser frequency close to the out-of-phasemode frequency
ωL≈ω2 as well as w h w wW W -  ∣ ∣2 ,odf L 1 odf 1 L , we can neglect all terms except one that couples the
internal levels to the out-of-phasemode in a rotatingwave approximation.We then arrive at the final
Hamiltonian

  
d
s s h s= +

W
+

W
+d

⎛
⎝⎜

⎞
⎠⎟

˜
˜

( )†H a
2 2

i
2

e h.c. , D7z x z t
int

d
2

odf
2

i m

where d w w w= - m 2 L 2 is the detuning of the laser from the out-of-phasemode. Finally, we can cast the
aboveHamiltonian in a time-independent form andwe recoverequation (37) of themain text

  


d
s s

l
s w= +

W
- + +˜ ( ) ( )† †H a a a a

2 2 2
, D8z x z

int
d

2 2 m 2 2

where l h= - W̃i 2 odf can always be taken to be real and δm=ωm. Thus, themode frequency in our simulation
is given by the detuning of the spin-dependent force. A physicallymeaningfulmode frequency should be
positive. Accordingly, we chooseωL such that δm>0.

Appendix E.Numerical computation of themeasure of non-MarkovianityNRHP

In this section, we detail howwenumerically evaluated themeasure of non-MarkovianityNRHP. In particular,
we explain howwe evaluted g(t) fromequation (45). Aswe stated in themain text, in order to evaluateNRHP we
divide the time interval I=[0,T] that wewant to inspect for non-Markovian dynamics inN equally spaced
discrete times ti (t0=0, tN=T).We then compute the time evolution of the basis states ñá =  ∣ ∣k j k j, , , for all
ti. Bywriting the time-evolved states rñá =∣ ∣( ) ( )k j t ti kj i as a vector
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r r r r=    ( ) [ ( ) ( ) ( ) ( )]v t t t t t, , ,kj i kj i kj i kj i kj i
T

, , , , , we canwrite the dynamicalmap Et t, 0
inmatrix

representation

=    ( ) [ ( ) ( ) ( ) ( )] ( )E t t v t v t v t v t, , , , . E10

Thematrix for the time evolution from t1 to t2 where  t t t2 1 0 is then computed by

= -( ) ( ) ( ) ( )E t t E t t E t t, , , , E22 1 2 0
1

1 0

where E−1(t1, t0) is the normalmatrix inverse. TheChoimatrix E  y yÄ ñá[ ]∣ ∣t t,2 1
is proportional to the

reshuffledmatrix ER (t2, t1) of thematrix E(t2, t1) [61]. In particular, the Choimatrix is given by

E  y yÄ ñá =[ ]∣ ∣ ( ) ( )
d

E t t
1

, , E3t t,
R

2 12 1

where d is the dimension of the finite dimensional open quantum system. For the case of a spin ER(t2, t1) reads

=

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
( ) ( )E t t

E E E E
E E E E
E E E E
E E E E

, , E4R
2 1

11 12 21 22

13 14 23 24

31 32 41 42

33 34 43 44

where Emn corresponds to entrym, n of the 4×4matrix E (t2, t1). Now, in order to obtainNRHP we evaluated a
discrete version of g(t) according to

E  y y
=

Ä ñá -

-
=

-

-+

+

+

+   
( )

[ ]∣ ∣ ( )
( )g t

t t

E t t

t t

1 , 1
. E5i

t t

i i

d i i

i i

, 1

1

1 R
1 1

1

i i1

The difficulty in evaluating g(ti) is to decidewhich values of the numerator count as zero andwhich are counted
asfinite. The numerical calculations were performed using Python’sNumpy and Scipy libraries. The oscillator’s
Hilbert space was truncated at amaximal phonon number nmax=15. The states were evolved in time by
vectorizing the Lindblad equation and applying thematrix exponential of the Liouvillian on the vectorized form
of the densitymatrix using the scipy.sparse.linalg.expm_multiply routine. For a number of parameters the
resulting densitymatrices were compared to the densitymatrices obtained by performing thematrix exponential
first with scipy.sparse.linalg.expm and then thematrix vectormultiplication. For all of the spin basis states the
resultingmatrices typically showed trace distances of a few times 10−16. Summing the largest errors of all the
basis states yielded a few times 10−15. Taking this value as a rough estimate of the numerical precisionwe set
g(t)=0 if the numerator was smaller than 10−14. Finally,NRHP in this numerical approximation is given by

N
å

= = >

>

[ ( )]
( )( )

( )

g t

N

tanh
, E6

i g t

N
i

g t
RHP

1, 0

0

i

i

where >( )Ng t 0i
is the number of events where >( )g t 0i . For the ‘Ohmic’ case (Δ/2π=3 kHz)we chose

T=0.01/Δ andN=104 and for the resonant case (Δ/2π=100 kHz)T=0.1/Δ andN=104.Note that
taking a too small time step eventually leads to discontinuous behavior inNRHP.
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