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We implemented the vibrational density of states (DOS) of a disordered lattice of elastically-bound
spherical particles (to represent partial charges, in our case) in the general Lorentz sum rule for the
dielectric response. Focusing on systems right at the glass transition temperature, we selected the
vibrational density of states of a marginally stable disordered lattice, which features a strong boson
peak (excess of soft modes over Debye ∼ ω2

p law), and compared the calculated dielectric function
with experimental data for the paradigmatic case of glycerol at T . Tg. Good agreement is found
for both the reactive (real part) of the response and for the α-relaxation peak in the imaginary part,
with a significant improvement over earlier theoretical approaches in the reactive modulus. On the
low-frequency side of the α-peak, the absence of phonon-like continuum modes due to mechanical
instability right at the glass transition explains the linear ∼ ω scaling observed in experiments.
α-wing asymmetry and stretched-exponential behaviour are recovered on the high-frequency side
of the peak, and in the time-domain, respectively, and are shown to be directly caused by the soft
boson-peak modes.

I. INTRODUCTION

Supercooled liquids that undergo a liquid-glass tran-
sition exhibit an abrupt and dramatic slowdown of the
atomic/molecular dynamics upon approaching the glass
transition temperature Tg [1–4]. The α-relaxation de-
scribes the slowest component of the time-relaxation (or
autocorrelation function) of material response, including
mechanical relaxation, relaxation of density fluctuations
or of the dielectric polarization [5]. The α-relaxation phe-
nomenon has always been associated with the collective
and strongly cooperative motion of a large number of
atoms/molecules which rearrange in a long-range corre-
lated way [1]. This process has also been interpreted,
within the energy landscape picture, as the transition of
the system from one meta-basin to another, which in-
volves the thermally activated jump over a large energy
barrier [6–8].

Modern theories of dielectric response of matter [9, 10]
are based on the Lorentz model [11, 12], which approxi-
mates electrons as classical particles bound harmonically
to positive background charges. Upon assuming that all
oscillators move at the same natural frequency, the re-
laxation function ε(t) is a simple-exponential increasing
function of time, while the imaginary part ε′′(ω) of the
complex dielectric function ε∗(ω), features a resonance
peak given by a Lorentzian function [11, 12].

Correcting to account for the rotational Brownian mo-
tion in the case of strongly anisotropic molecules, as in
the Debye dielectric-relaxation theory [9], does not alter
the simple-exponential relaxation. While this may be a
good approximation for gases and high-T liquids, it is
not valid for glasses, as is well known since the time of
Kohlrausch [13, 14]. For supercooled liquids in general,
and for glasses in particular, the Kohlrausch stretched-

exponential function ∼ exp[−(t/τ)]β provides a good em-
pirical fit of the relaxation function and of the dielectric
loss [1, 2, 5, 15–17].

Mode-coupling theory (MCT) developed by W. Goetze
and co-workers, has provided a general interpretation of
the α-peak in dielectric relaxation using a framework
where the many-body microscopic dynamics of charges
is treated statistically, in the same way as for an ensem-
ble of classically interacting spherical particles [4]. The
most striking success of MCT has been the first-principles
derivation of the Kohlrausch stretched-exponential relax-
ation for α-relaxation in the liquid phase.

While MCT has had tremendous success in describ-
ing supercooled liquids at T > Tg, the situation is
quite different at T ' Tg or in the glass at T < Tg.
Here, although MCT provides a theoretical foundation
for Kohlrausch stretched-exponential behaviour, direct
comparisons with experimental data have not been pos-
sible due to the difficulty of calibrating various param-
eters in the theory. This scenario is the most striking
for the paradigmatic case of glycerol: this is the most
widely studied organic glass-former in the experimental
literature, yet no microscopic theory has been used to de-
scribe the dielectric response of this material apart from
empirical models (e.g. Havriliak-Negami), which have no
physics in them.

Here we take a very different approach: instead of the
liquid-state approach of MCT, we take the opposite point
of view, and describe the dynamics in analogy with a
disordered solid-state lattice of particles which perform
harmonic oscillations. Due to the disorder in the lattice
(and in particular due to the absence of local inversion
symmetry [18]), the low-frequency part of the vibrational
density of states (DOS) is dominated by an excess of soft
modes over the Debye ω2

p law valid for crystals.
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This excess of soft modes in the DOS is universally
known in the literature on glassy physics and disordered
systems as the ”boson peak” [19–22]. In the following we
use this terminology and we refer to the broad ensemble
of all these excess soft modes over Debye ω2

p law as the
boson peak. It is important to note that, in the sub-
field of dielectric spectroscopy of glasses, the terminology
”boson peak” is used to designate an isolated peak in
the THz frequency regime of the dielectric loss modulus
ε′′. In our work we will never refer to or consider this
THz-frequency peak in the loss modulus, so there is no
ambiguity in our terminology and the term ”boson peak”
is used exclusively to designate the ensemble of excess
non-Debye modes in the low-ωp part of the vibrational
DOS.

Famous physicists in the past have attempted to ex-
plain stretched-exponential relaxation (which is the hall-
mark of the α-relaxation in glasses) in terms of the un-
derlying cooperative coupling of vibrational degrees of
freedom [15–17]. In spite of these efforts, the link be-
tween quasi-localized soft vibrational modes or boson
peak modes in the DOS, and the α-relaxation process,
has surprisingly received less attention, with important
exceptions like Ref. [23] and the macroscopic model for
viscoelasticity of Ref. [24]. This is despite the fact that
both the boson peak in the vibrational DOS and the α-
relaxation process display a strong T -dependence near Tg
(for the T -dependence of the boson peak, see e.g. [25, 26].

Although Kohlrausch stretched-exponential relaxation
has been reported also below Tg [27], this behaviour can-
not be explained with MCT which is only valid at T > Tg.
For the first time, we provide a simple and explicit set of
relations between the dielectric relaxation functions and
the DOS of disordered lattices, which gives rise to the
observed stretched-exponential relaxation in time and to
the α-relaxation peak in the loss modulus of glycerol at
T . Tg. An excellent agreement is found for the reac-
tive modulus, whereas the loss modulus agreement has
to be improved by refining the model with a more realis-
tic DOS (e.g from atomistic simulations) for glycerol in
future studies.

II. EXTENDED THOMSON-LORENTZ MODEL
OF DIELECTRIC RESPONSE

In the following, we work within the Thomson-Lorentz
plum-pudding model of disordered elastically bound clas-
sical charges (basically on the same general coarse-
graining level as in Ref. [3]). Within the Lorentz sum
rules, we make use of a DOS ρ(ωp) obtained by nu-
merical diagonalization of a model random lattice of
harmonically-bound spherical particles obtained by driv-
ing a dense Lennard-Jones system into a metastable
glassy energy minimum with a Monte-Carlo relaxation
algorithm, and then replacing all the nearest-neighbour
pairs with harmonic springs all of the same length and
spring constant [18]. Springs are then cut at random

in the lattice to generate random network lattices with
variable mean coordination Z, from Z = 9 down to the
isostatic limit Z = 2d = 6. It is important to notice that
this simplified model DOS is convenient for its simplic-
ity and to single-out generic features of glassy behaviour,
but in order to obtain very accurate fittings more realis-
tic simulated DOS (e.g. from molecular simulations) will
be employed in the future.

A. Vibrational DOS and its T-dependence

The DOS obtained from numerical diagonalization of
the simulated network is expressed in terms of dimen-
sionless eigenfrequencies ωp. Generally, the eigenfre-
quency ωp obtained from numerics and the eigenfre-
quency ω′p of the real experimental systems are related

via ω′p ≈
√
κ/mωp where m is the effective mass of the

charged particle and κ the spring constant, under the

condition that
∫ ω′

D

0
ρ′(ω′p)dω

′
p =

∫ ωD
0

ρ(ωp)dωp. We use

the constant C =
√
κ/m as a fitting parameter. κ and

m are both equal to unity in the numerical simulation of
the DOS, whereas their values are of course different for
different experimental systems (in the case of dielectric
response, m is to understood as an effective mass).

Also, the DOS obtained from diagonalization of the
model random networks, depends on the average coor-
dination number Z. For example, the boson peak fre-
quency drifts towards lower values of ωp according to the
scaling ωBPp ∼ (Z − 6). Hence, Z is the crucial control
parameter of the relaxation process which in a real molec-
ular glass changes with T . Therefore, in order to use our
numerical DOS data in the evaluation of the dielectric
function, we need to find a physically meaningful relation
between Z and T at the glass transition. Within this pic-
ture, Z represents the effective number of intermolecular
contacts, which increases the number of positive charges
to which a negative charge is bound in the material.

In all experimental systems which measure the T -
dependent material response, the temperature is varied
at constant pressure, which implies that thermal expan-
sion is important. Following previous work, we thus
employ thermal expansion ideas [28] to relate Z and
T . Upon introducing the thermal expansion coefficient
αT = 1

V (∂V/∂T ) and replace the total volume V of the
sample via the volume fraction φ = vN/V occupied by
the molecules (v is the volume of one molecule), upon
integration we obtain ln (1/φ) = αTT + const. Approx-
imating Z ∼ φ locally, we get Z = Z0e

−αTT . Imposing
that Z0 = 12, as for FCC crystals at T = 0 in accor-
dance with Nernst principle, we finally get, for glycerol,
Z ≈ 6.02 when T = 184K. This is very close to the
reported Tg for this material [27].

It is seen in Fig.1 and in Fig. 2 that for the case
Z = 6.1, i.e. very close to the solid-liquid (glass) transi-
tion that occurs at Z = 6, a strong and broad boson peak
is present in the DOS. Upon increasing Z towards higher
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FIG. 1. Density of states (DOS) with respect to eigenfre-
quency ωp at Z = 6.1 (solid line), i.e. close to the marginal
stability limit Z = 6 that we identify here as the solid-liquid
(glass) transition; plots of the DOS at Z = 7, Z = 8, Z = 9
are also shown, and are marked as dashed, dot dashed and
dotted lines, respectively.
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FIG. 2. The DOS normalized by Debye’s ω2
p law, for (from

bottom to top): Z = 9, Z = 8, Z = 7, Z = 6, which gives
evidence of the boson peak at low ωp. The eigenfrequency of
boson peak scales as ωBP

p ∼ (Z − 6) as know from work for
disordered systems with cental-force interactions [18, 21].

values the boson peak is still present but its amplitude
decreases markedly upon increasing Z. At Z = 6.1, the
continuum Debye regime ∼ ω2

p is not visible or absent,
whereas a very small gap between ωp = 0 and the lowest
eigenfrequency exists. Hence, under conditions close to
the glass transition where the system loses its shear rigid-
ity, the vibrational spectrum is dominated by a large and
broad excess of soft modes with respect to Debye ∼ ω2

p

law at low frequency.

B. Dielectric response as a function of the
vibrational DOS

In order to determine the dependence of the polariza-
tion and of the dielectric function on the frequency of
the field, we have to describe the displacement r of each
molecule from its own equilibrium position under the ap-
plied field E. Upon treating the dynamics classically, the
equation of motion for a charge i under the forces coming
from interactions with other charges and from the applied
electric filed, is given by the following phenomenological
Lorentz damped oscillator equation [11]

mr̈i + νṙi +H
ij
rj = qE (1)

where m is the (effective) mass of the charged group,
and q is its net electric charge. The Hessian H

ij
=

∂U/∂ri∂rj , where U is the total potential energy of the
system, represents the restoring attractive interactions
from oppositely-charged nearest-neighbour charges, that
tend to bring the charge i back to the rest position that i
had at zero-field. ν is a phenomenological damping coef-
ficient due to local frictional collisions in the dense glassy
environment. To solve this equation, the first step is to
take the Fourier transform: ri(t) → r̃i(ω), resulting in
the equation:

−mω2r̃i + iνωr̃i +H
ij
r̃j = qẼ. (2)

We then implement normal-mode decomposition:
r̃i(ω) = ˆ̃rp(ω)vpi , and the equation reduces to

−mω2 ˆ̃rp + iων ˆ̃rp +mω2
p
ˆ̃rp = qẼ,

which is solved by ˆ̃rp(ω) = − qẼ
mω2−iνω−mω2

p
. Upon sum-

ming the two contributions, the total displacement ex-
pressed as a sum over the k = 1...3N normal modes thus
reads

δˆ̃ri(ω) = −
3N∑
k=1

q

mω2 − iνω −mω2
p,k

Ẽ(ω) (3)

where ωp,k denotes the k-th normal mode frequency.
Each particle contributes to the polarization a moment

p
i

= qδri. In order to evaluate the macroscopic po-

larization using Eq. (3), we need to add together the
contributions from all molecular degrees of freedom in
the system, P =

∑
i pi. In order to this analytically,

we use the standard procedure of replacing the discrete
sum over the total 3N degrees of freedom of the solid
with the continuous integral over the eigenfrequencies ωp,∑3N
k ... =

∑3
α=1

∑N
i=1 ... →

∫
ρ(ωp)...dωp, which gives

the following sum rule in integral form for the polariza-
tion in glasses

P̃ (ω) = −
[∫ ωD

0

ρ(ωp)q
2

mω2 − iνω −mω2
p

dωp

]
Ẽ(ω). (4)
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Here, ρ(ωp) is the vibrational DOS, and ωD is the cut-
off Debye frequency arising from the normalization of the
density of states. The complex dielectric permittivity ε∗

is defined as ε∗ = 1 + 4πχe where χe is the dielectric sus-
ceptibility which connects polarization and electric field
as [11]: P = χeE. Hence, we obtain the complex dielec-
tric function expressed as a frequency integral as

ε∗(ω) = 1−
∫ ωD

0

Aρ(ωp)

ω2 − i(ν/m)ω − C2ω2
p

dωp (5)

where A is an arbitrary positive constant, ν is the mi-
croscopic damping parameter for charge mobility, C =√
κ/m, and ωD is the Debye cut-off frequency (i.e.

the highest eigenfrequency in the vibrational DOS spec-
trum). As one can easily verify, if ρ(ωp) were given by
a Dirac delta, one would recover the standard simple-
exponential (Debye) relaxation [11]. Note that the the-
ory can be extended to deal with molecules that have
stronger inner polarizability by replace previous field E
with local electric field Eloc. The detailed derivation is
provided in Appendix A. However, it turns out that, this
qualitative predictions are not very different from the ba-
sic theory without Lorentz field.

It is important to emphasize that, in Eq.(5), low-
frequency soft modes which are present in ρ(ωp) neces-
sarily play an important role also at low applied-field
frequencies ω, because of the ω2 term in the denomina-
tor. As we will see below, this fact in our theory implies a
direct role of the boson peak on the α-relaxation process.

C. Finite-size effects in the DOS

Since we are using a DOS obtained numerically from
a system with a finite (∼ 4000) number of particles in
simulations, it is important to correctly take care of fi-
nite size effects in Eq.(5). In numerical simulations,
the DOS ρ(ωp) is not a continuous function, but dis-
crete and can be conveniently represented as ρ(ωp) =
1

3N

∑3N
k=1 δ(ωp−ωp,k). Thus, we rewrite Eq.(5) as a sum

rule over a discrete distribution of ωp,k:

ε∗(ω) = 1−
∑
k

A

ω2 − i(ν/m)ω − C2ω2
p,k

(6)

where A has absorbed the scaling constant and ωp,k de-
notes the eigenfrequency associated with the k-th normal
mode. Since the dielectric function is a complex quan-
tity, we can split it into its real and imaginary parts, i.e.
ε∗(ω) = ε′(ω)− iε′′(ω):

ε′(ω) = ε′(∞) +
∑
k

A1(C2ω2
p,k − ω2)

(C2ω2
p,k − ω2)2 + (ων/m)2

, (7)

ε′′(ω) =
∑
k

A2(ων/m)

(ω2 − C2ω2
p,k)2 + (ων/m)2

, (8)

Here, A1, A2, ε
′(∞) are re-scaling constants that have to

be calibrated in the comparison with experimental data.
In particular, it is important to note that the experi-
mental data of dielectric permittivity and dielectric loss
are not necessarily given in the same units and there is,
in general, no coherence between the offsets in the plots
of the ε′ and ε′′ curves. For this reason, the values of A1

and A2 do not necessarily coincide.

As remarked above and as observed in all numerical
calculations of the DOS in the vicinity of the mechanical
stability point of disordered solids, there exits a lowest
non-zero eigenfrequency ωp,min, and a vanishingly small
gap between ωp = 0 and ωp,min = 0.00036. Therefore,
when ω � ωp,min, ε′′(ω) becomes

ε′′ ≈
∑
k

A2ων/m

C4ω4
p,k

∼ ω. (9)

III. APPLICATION TO EXPERIMENTAL DATA

We now present our theoretical fittings of state-of-the-
art experimental data [27, 29] on glycerol at T ≈ Tg
using Eq.(7)-(8), also in comparison with the empirical
best-fitting Kohlrausch stretched-exponential relaxation
fitting. In Fig. 3 we plotted the comparisons for ε′(ω)
at T = 184 K, i.e. slightly below Tg, obtained by im-
plementing the numerical DOS of Fig.1 for Z = 6.1 in
Eq.(7). In this case, it is clear that our theoretical model
performs significantly better than the Kohlrausch best-
fitting (that is optimized for the joint the fitting of di-
electric loss below). This suggests that excess soft modes
are important for the fitting of the dielectric response at
the glass transition.

In Fig. 4 we present fittings of the dielectric loss, ε′′(ω).
In this case it is seen that our theory, given by Eq. (8),
provides a reasonably good fitting of the α-peak on both
the left-hand and the right-hand side of the peak, and
the overall quality of the fitting is comparable to the one
of the Kohlrausch best empirical fitting. Our theoretical
model provides the crucial connection between the salient
features of the DOS near Tg and the corresponding fea-
tures of the response. Of course, at the higher-frequency
end of the α-wing, other effects may as well be important
which are not described by our model: in particular, the
existence of Johari-Goldstein β-relaxation-type contribu-
tions to the loss modulus in this regime has been shown
for a variety of systems [30–34].

On the left-hand ascending side of the peak, our
model is dominated by the vanishingly small gap be-
tween the zero-modes and the lowest boson-peak eigen-
mode ωp,min = 0.00036, which leads to the power-law,
∼ ω1 as derived in Eq.(9), for the ascending part of the
peak. On the high-ω side of the peak, where the dynam-
ics is dominated by the soft boson-peak modes and the
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FIG. 3. Real part of the dielectric function as a function of the
frequency of the applied field. Symbols are experimental data
of the real part of the dielectric function of glycerol at T =
184 K from Ref. [29]. The solid line is our theory, Eq. (7).
The dashed line is the real part of the Fourier transform when
we consider the best-fitting (empirical) stretched-exponential
function with β = 0.65. We have taken C = 10, ν/m = 1620
and A1 = 0.039. For the empirical fitting with β = 0.65,
τ = 6555. A rescaling constant is used to adjust the height of
the curves.

DOS is approximately flat as a function of ωp in Fig.1,
our model, reproduces, remarkably, the α-wing behaviour
still in good agreement with the experimental data.

IV. DIELECTRIC RELAXATION IN THE TIME
DOMAIN

We are also interested in the dielectric response in the
time domain. The time dependent dielectric function ε(t)
and complex dielectric function ε∗(ω) are related as:

dε(t)

dt
=

1

2π

∫ ∞
−∞

(ε∗(ω)− ε(ω =∞))eiωtdω (10)

ε∗(ω) = ε(ω =∞)−
∫ ∞
0

dε(t)

dt
e−iωtdt (11)

.
By using Eq.(5), we can write the analytical form of

ε(t) as follows (see Appendix B for the details of the
derivation):

ε(t) = B +∫ ωD

0

Aρ(ωp)

2K

(
e(K−ν/2m)t

K − ν/2m
+
e−(K+ν/2m)t

K + ν/2m

)
dωp, (12)

where K
.
=
√

(Cωp)2 − ν2

4m2 , while B is a re-scaling con-

stant. This equation is a key result: it provides a direct
and quantitative relation between the macroscopic relax-
ation function of the material and the DOS. As we show
below, the presence of a boson peak in ρ(ωp) directly
causes stretched-exponential decay in ε(t) via Eq.(12).
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FIG. 4. Dielectric loss modulus as a function of the fre-
quency of the applied field. Symbols are experimental data
of the imaginary part of dielectric function of glycerol at
T = 184K from Ref. [29]. The solid line is the theory pre-
sented in this work. The dashed line is the imaginary part
of the Fourier transform when we consider the best-fitting
(empirical) stretched exponential (Kohlrausch) function with
β = 0.65. In our theory, we have taken C = 10, ν/m = 1620
and A2 = 0.0437 in Eq. (8). For the empirical fitting
β = 0.65, τ = 6555. A rescaling constant is used to adjust
the height of the curves.

In Fig. 5, we plot predictions of Eq.(12) with the pa-
rameters calibrated in the glycerol data fitting, along
with the Kohlrausch function [35, 36], for the relax-
ation in the time domain. It is seen that our theory
based on soft modes is able to perfectly recover stretched-
exponential relaxation, with stretching-exponent β =
0.56, over many decades in frequency. Without the
boson-peak modes in the DOS, we have checked that
stretched-exponential relaxation cannot be recovered,
and the decay is simple-exponential. Hence, our Eq.(12)
provides the long-sought cause-effect relationship be-
tween soft modes and stretched-exponential relaxation.

V. CONCLUSIONS

We have re-considered the nature of the α-relaxation
peak of simple glass-formers from the standpoint of soft
modes and lattice dynamics, as opposed to the tradi-
tional views based on MCT and liquid-state concepts.
We started from the same presumption of Ref. [3] that
dielectric α-relaxation emerges from many-body dynam-
ics in a statistical way, transcending the details of charge
dynamics. This should especially be true for glycerol,
a paradigmatic glass-forming molecule. With our mi-
croscopic framework we are able to reproduce the di-
electric response of glycerol in reasonable agreement
with state-of-the-art experimental data. Our physically-
informed theoretical fitting compares well with empiri-
cal Kohlrausch fittings. For the reactive modulus ε′(ω),
our model provides a significantly better fitting than the
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FIG. 5. Time-dependent dielectric response. The solid line
is calculated from our theory using Eq.(12) with physical pa-
rameters calibrated in the fitting of Fig.3. The dashed line
represents the stretched-exponential Kohlrausch function that
more closely approximates our theory, calculated using the
parameters β = 0.56 and τ = 5655. Rescaling constants are
used to adjust the height of the curves.

best Kohlrausch fitting. For the loss modulus, our model
fitting is able to reproduce the α-wing asymmetry al-
though the fit is not perfect in the high-frequency end
of the peak, and this could be improved in future work
using a more realistic calculation of the DOS for the spe-
cific material. For the loss modulus ε′′(ω), on the low-
frequency side of the α-peak, we show that the response
is controlled by the absence of the continuum ∼ ω2

p Debye
modes in the DOS. The high-ω side of the peak (α-wing)
is instead related, within our model, to the boson-peak
excess (over Debye) modes in the DOS, where the DOS is
nearly flat with respect to the eigenfrequency due to the
approach of mechanical instability at the glass transition.
In the time-domain response, remarkably, our theory re-
covers a stretched-exponential relaxation with β = 0.56,
over the entire time domain. These unprecedented results
show, for the first time, that stretched-exponential relax-
ation in glasses is directly caused by the quasi-localized
boson-peak excess modes contribution to the relaxation
spectrum. These results open up new opportunities to
understand the crucial link between α-relaxation, boson
peak and dynamical heterogeneity [38, 39] in glasses.
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Appendix A: local field effect on the total
polarization

We consider a spherical cavity around the give
molecule such that the general dielectric outside the cav-

ity can be replaced by a system of bound charges. Then
we write

Eloc = E0 + Ed + Es + Enear, (A1)

where E0 is the external field, Ed is the depolarizing
field generated by the bound charges on the outer sur-
face of the dielectric medium, Es is the field due to bound
charges on the surface of the cavity and Enear comes
from the configuration of all nearby molecules[40]. We
have Ed = −4πP since the normal component of the dis-
placement D is continuous across the vacuum-dielectric
boundary (this claims D = E0 = E + 4πP )and assume
Enear vanishes in a system where dipoles distributes ran-
domly in uncorrelated positions. We then have

Eloc = E +
4π

3
P , (A2)

in which we used the fact that spherical polarization
field impose Es = 4π

3 P .

With E replaced by Eloc, we now write equation of
motion (1) as

mr̈i + νṙi +H
ij
rj = q(E +

4π

3
P ). (A3)

As a consequence, we instead have

δˆ̃r(ω) = −
3N∑
k=1

q

mω2 − iνω − ω2
p,k

(Ẽ(ω) +
4π

3
P̃ (ω))

(A4)
If we have N0 = V/N unite cells per unit volume, the
macroscopic polarization is

P = N0(qδr + αElocal) (A5)

where α is the electronic polarizability[41]. Combining
(A2), (A4) and (A5) together, we obtain

ε(ω) = 1 + 4π
χ(ω)

V
N −

4π
3 χ(ω)

,

χ(ω) = q2
∫ ωD

0

ρ(ωp)

mω2 −mω2
p + iων

dωp + α (A6)

where we have used D = εE = E + 4πP .

Appendix B: Derivation of Eq.(12) for the relaxation
function in the time-domain

We recall that the Fourier transform of a function f(x),
in this article, is defined as:

f̂(ω) =

∫ ∞
−∞

f(x)e−iωxdx (B1)

while the inverse Fourier transform is defined as

f(x) =
1

2π

∫ ∞
−∞

f(ω)eiωxdω. (B2)
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From Eq.(11) in the main article, we firstly need to find
the time derivative of ε(t):

dε(t)

dt
= − 1

2π

∫ ∞
0

∫ ωD

0

Aρ(ωp)e
iωt

ω2 − (Cωp)2 − iων/m
dωpdω

(B3)
by using Eq.(11). We can change the order of integration,
which gives:

∫ ωD

0

Aρ(ωp)

∫ ∞
0

− 1

2π

eiωt

ω2 − (Cωp)2 − iων/m
dωdωp.

Note that, for the inner integration, i.e.,∫∞
0
− 1

2π
eiωt

ω2−(Cωp)2−iων/mdω, we could make an an-

alytic continuation of ω to the complex plane and use
contour integration to evaluate the Bromwich integral.
However, we can achieve the same result via a simpler
route just using the Fourier inversion theorem [42] that
we recall below.

Theorem (The Fourier Inversion Theorem). Suppose
f is integrable and piecewise continuous on R, de-
fined at its points of discontinuity so as to satisfy
f(x) = 1

2 [f(x−) + f(x+)] for all x. Then f(x) =

lim
ε→0

1
2π

∫
e−iξxe−ε

2ξ2/2f̂(ξ)dξ, x ∈ R. Moreover, if f̂ ∈

L1, then f is continuous and f(x) = 1
2π

∫
e−iξxf̂(ξ)dξ,

x ∈ R.

The uniqueness of the inverse Fourier transform is
guaranteed by this theorem. If we can find a function of
time, whose Fourier transformation gives back the com-
plex dielectric function ε∗(ω), then this function would
be the time derivative of the dielectric relaxation ε(t).

We use the following ansatz

e−γt sin (Kt)

K
H(t) (B4)

where γ = ν
2m and K =

√
− ν2

4m2 + (Cωp)2 and H(t) is a

Heaviside step function, whose Fourier transformation is
expressed as 1

ω2−iνω/m−(Cωp)2 .

However, we need to put care in taking ν � 2mCωD,
which amounts to restricting our analysis to the high-
friction overdamped dynamical regime. In this way, we
finally obtain (for t > 0)

dε(t)

dt
= e−

νt
2m

∫ ωD

0

Aρ(ωp) sinh (
√

ν2

4m2 − (Cωp)2t)√
ν2

4m2 − (Cωp)2
dωp.

(B5)
Upon further integrating over t, we recover Eq.(8) in the
main article.

Appendix C: Behavior of ε when ω → 0

We take the limit ω → 0 in Eq. (1):

lim
ω→0

ε(ω)∗ = lim
ω→0

(
1−

∫ ωD

0

Aρ(ωp)

ω2 − i(ν/m)ω − C2ω2
p

dωp

)
= 1−A · lim

ω→0

∫ ωD

0

ρ(ωp)

ω2 − i(ν/m)ω − C2ω2
pdωp
(C1)

We expand ρ(ωp) around ωp = 0:

ρ(ωp) = ρ(0) +ρ′(0)ωp+
ρ′′(0)

2
ω2
p +

ρ(3)(0)

6
ω3
p + ... (C2)

Thus, after substituting E.q(C2) into E.q(C1), we have

lim
ω→0

ε(ω)∗ = 1−A lim
ω→0

∫ ωD

0

ρ(0) + ρ′(0)ωp + ρ′′(0)
2 ω2

p + ρ(3)(0)
6 ω3

p + ...

ω2 − i(ν/m)ω − C2ω2
p

dωp

= 1−A lim
ω→0

∫ ωD

0

(ρ(0) + ρ′(0)ωp + ρ′′(0)
2 ω2

p + ρ(3)(0)
6 ω3

p + ...)(ω2 + i(ν/m)ω − C2ω2
p)

ω4 − 2ω2ω2
p + ω4

p + ω2ν2/m2
dωp

= 1−A lim
ω→0

∫ ωD

0

W0(ω) +W1(ω)ωp +W2(ω)ω2
p +W3(ω)ω3

p + ...

ω4 − 2ω2ω2
p + ω4

p + ω2ν2
dωp (C3)

where W0(ω) = ρ(0)(ω2 + iν/mω),W1(ω) = ρ(0)′(ω2 +

iν/mω),W2(ω) = −ρ(0)C2 + ρ(0)′′

2 (ω2 + iω),W3(ω) =
(ω2+iν/mω)ρ(3)(0)

6 − C2ρ′(0) In order to let the integrand
continuous on for both real and imaginary part, (ω, ωp) ∈
R+ ∪ {0} ×R+ ∪ {0}(then it makes sense to change the
order of integration/limit at (0,0)), we must have ρ(ωp) ∼
0, ρ′(ωp) ∼ 0, ρ′′(ωp) ∼ 0, ρ(3)(ωp) ∼ 0 as ωp → 0. There
is no restriction for ρ(4)(ωp) or higher order as ωp ∼ 0.

Hence, we must have ρ(ωp) ∼ ωn for n > 3. In order to
get linear scaling for ε′, we can let ρ(ωp) ∼ ω4

p, then from
E.q(C3), we actually want to know the behavior of

lim
ω→0

∫ ωD

0

ω4
p

ω2 − iν/mω − C2ω2
p

dωp. (C4)
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