
Ph.D in Computer Science – XXXI cycle
Department of Computer Science “Giovanni Degli Antoni”

Settore scientifico disciplinare: INF/01

Design and Synthesis of High
Density Integrated Circuits

Ph.D Thesis of:
Luca Frontini

Tutor: Dr. Gabriella Trucco
Co-tutor: Prof. Valentina Ciriani

Ph.D school coordinator: Prof. Paolo Boldi

Academic year 2017–2018

Abstract

Gordon E. Moore, a co-founder of Fairchild Semiconductor, and later of Intel,
predicted that after 1980 the complexity of an Integrated Circuit (IC) would be
expected to double every two years. The prevision made by Moore held for decades,
for this reason it is also called “Moore’s law”.

The trend in ICs is driven by a reduction of area and power consumption.
Today scaled CMOS technologies are the main solution for digital processing.
However, the interconnection scaling is not optimal. At every new technology node,
the number of metal layers and their thickness increases, exploiting the vertical
direction. The reduction of the minimum distance between interconnections and the
growth in vertical dimension increase the parasitic capacitance and consequently
the dynamic power consumption. Moreover, due to the non-optimal scaling of the
interconnections, signal routing is becoming more and more challenging at every
technology node advancement. Very scaled technologies make possible to reach a
great transistor density. However, the design must comply to strict rules for metal
interconnections.

The aim of this thesis is to find possible solutions to the disadvantages of scaled
CMOS technologies. This goal is obtained in two different ways: using ad-hoc
design techniques on today CMOS technologies and finding new approaches to
logic synthesis of nanocrossbars, that are an emerging post-CMOS technology. The
two approaches used corresponds to the two parts of this thesis.

The first part presents the design of an Associative Memory (AM) focusing
the attention on develop design and logic synthesis techniques to reduce power
consumption. The field of applicability of AMs is real-time pattern-recognition
tasks. The possible uses range from scientific calculations to image processing
for intelligent autonomous devices to image reconstruction for electro-medical
apparatuses. In particular AMs are used in High-Energy Physics (HEP) experiments
to detect particle tracks. HEP experiments generate a huge amount of data, but
it is necessary to select and save only the most interesting tracks. Being the data
compared in parallel, AMs are synchronous ICs that have a very peaked power
consumption, and therefore it is necessary to minimize the power consumption. This
AM is designed within the projects IMPART and HTT in 28 nm CMOS technology,
using a fully-CMOS approach. The logic is based on the propagation of a “kill
signal” that, if one of the bits in a word is not matching, inhibits the switching of
the following cells. Thanks to this feature, the designed AM array consumes less
than 0.7 fJ/bit. A prototype has been fabricated and it has proven to be functional.

ii

The final chip will be installed in the data acquisition chain of ATLAS experiment
on HL-LHC at CERN.

In the future nanocrossbars are expected to reduce device dimensions and inter-
connection complexity with respect to CMOS. Logic functions are obtained with
switching lattices of four-terminal switches. The research activity on nanocrossbars
is done within the project NANOxCOMP.

To improve synthesis are used some algorithmic approaches based on Boolean
function decomposition and regularities, in particular P-circuits, EXOR-Projected
Sums of Products (EP-SOP), Dimension-reducible (D-RED) functions and autosym-
metric functions. The decomposed functions are implemented into lattices using
internal and external decomposition methods. Experimental results show that this
approaches reduce the complexity of the single synthesis problem and leads, in
average, to a reduction of lattice area and synthesis time. Lattices are made of
self-assembled structures and they have a non-negligible defectivity ratio. To cope
with this limitation, are presented some techniques to reduce sensitivity to defects.

Contents

1 Introduction 1
1.1 CMOS technology . 4
1.2 Switching lattices . 5
1.3 Thesis Organization and Overview 6

1.3.1 Part I: Scaled CMOS Technology 6
1.3.2 Part II: Switching Lattices 7

I Scaled CMOS Technology 9

2 Scaled fabrication processes 11
2.1 Technologies and materials . 12

2.1.1 High-κ dielectrics . 12
2.1.2 Regular Patterns . 13

2.2 Scaling issues . 14
2.2.1 Variability . 14
2.2.2 Interconnection capacitances 14
2.2.3 Digital Switching Noise 16

3 Associative Memory ICs 19
3.1 AM chip road-map . 21
3.2 AM chip architecture and functionality 23

Write mode . 23
Compare mode . 23

3.2.1 Variable resolution . 24
3.2.2 AM chip required specifications 25

3.3 KOXORAM Associative Memory Cell for AM07 25
3.3.1 Schematic Diagrams and Layout 28
3.3.2 KOXORAM cell working modes 28
3.3.3 Clockless logic . 28
3.3.4 Simulations . 30

iii

iv CONTENTS

3.3.5 Measurements . 30
3.4 Improvements for AM08 . 32

3.4.1 Hi performance technology 32
3.4.2 KOXORAM+ . 32
3.4.3 SRAM metastability . 33

Butterfly diagram . 33
SRAM design . 34

3.5 Quorum circuit . 34
3.5.1 Simulation Results . 39
3.5.2 Design Verification . 41

3.6 Digitally Controlled Oscillator 41
3.6.1 Circuit Structure . 43
3.6.2 Layout Design . 46
3.6.3 Simulations . 48

II Switching Lattices 51

4 Technology Description 53
4.1 Boolean function implementation 54
4.2 Synthesis methods . 56

4.2.1 Altun-Riedel . 56
4.2.2 Gange-Søndergaard-Stuckey 58

5 Decomposition Methods 59
5.1 P-circuits and EP-SOP forms . 59

5.1.1 P-circuits . 61
5.1.2 EXOR-Projected Sums of Products 63

5.2 D-reducible Boolean functions 67
5.3 Autosymmetric functions . 69
5.4 Internal Composition . 72

5.4.1 P-Circuits . 73
5.4.2 EXOR-Projected-Sums Of Products 77
5.4.3 D-Reducible functions 77
5.4.4 Experimental Results . 82

P-circuits and EP-SOP 82
D-Reducible functions 87

5.5 External Composition . 89
5.5.1 Autosymmetric functions 91
5.5.2 P-Circuits . 92

CONTENTS v

5.5.3 D-Reducible functions 93
5.6 Experimental results . 94

6 Defect Tolerance 101
6.1 Defect Injection Methodology 101
6.2 Metrics used for Sensitivity Analysis 102

6.2.1 Benchmarks and Simulations 102
6.3 Mitigation by Defect Avoidance 104

7 Conclusions 107
7.1 Concluding remarks . 107
7.2 Future developments . 109
7.3 Publications . 109

Appendices

A AM chip specifications 111
A.1 Main requirements . 111

Aggressive goals . 112
Full Custom simulation Corners 112
Interdisciplinary Applications 112

A.1.1 Cores . 113

Bibliography 116

List of Terms 127

Chapter 1

Introduction

From 1952 to 1956, Willard V. Quine [1, 2] and Edward J. McCluskey [3] developed
a new algorithm to minimize Boolean functions, called Quine-McCluskey algorithm.

At that time, logic circuits were built using discrete components. Quine-
McCluskey algorithm aims at minimizing the number of literals, and so the devices,
needed to synthesize a Boolean function. The minimization of device number was
a strong requirement to build digital circuits because it permits to reduce the cost
related to the components and to mitigate the problem of heat dissipation.

In 1958, Jack S. Kilby showed the first working Integrated Circuit (IC) [4] to
Texas Instruments managers, for the first time electronic components were integrated
onto a single substrate. The technology used to build ICs was the first step to extend
the use of transistors into mass-produced electronic circuits and microprocessors,
indeed in a few years the number of component inside a single IC grew up to more
than one hundred integrated devices.

Gordon E. Moore, a co-founder of Fairchild Semiconductor, and later of Intel,
wrote in an article published in 1965 [5]: “The complexity for minimum component
costs has increased at a rate of roughly a factor of two per year (Figure 1.1). Certainly
over the short term this rate can be expected to continue, if not to increase. Over the
longer term, the rate of increase is a bit more uncertain, although there is no reason
to believe it will not remain nearly constant for at least ten years”.

Later, in 1975, Moore revised his forecast [6] predicting that after 1980 the rate
of increase of complexity can be expected to double every two years instead of
one, as Figure 1.2 shows. He wrote that it was due to a reduction of “circuit and
device cleverness” that are particular production and design techniques, that permit
to improve device density.

The prevision made by Moore held for decades, for this reason the plot in
Figure 1.2b is also called “Moore’s law”.

The increasing density of ICs was obtained also using a new device: the Metal-

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Plot of relative manufacturing cost per component, published by G. Moore in [5].

(a) (b)

Figure 1.2: (a): approximate component count for complex integrated circuits vs. year of introduction.
(b): projection of the complexity curve reflecting the limit on increased density through invention.
Published by G. Moore in [6].

3

Oxide-Semiconductor Field-Effect Transistor (MOSFET). The MOSFET was dis-
covered by Julius E. Lilienfeld in 1925 and integrated into an IC by D. Kahng and
Martin M. Atalla at Bell Labs in 1959. The MOSFET was described by Moore in
1965 as a promising device for future digital ICs [7] because a MOSFET can scale
better than a Bipolar Junction Transistor (BJT) indeed MOSFET construction is
planar and can be easier integrated into fabrication processes.

With the implementation of Complementary Metal-Oxide Semiconductor (CMOS)
technology, that uses p-MOS and n-MOS transistors instead of resistors as pull-
up and pull-down, the BJT was almost completely substituted by MOS in digital
ICs. CMOS logic has less static power than BJT logic and pull-up and pull-down
resistors, are not necessary. This aspects led to the diffusion of CMOS because
they permit to fabricate low power consuming ICs that also present a higher device
density.

MOS transistor size has been scaled for decades in an almost regular way,
according to the Moore’s law [8, 9]. The trend in ICs is driven by a reduction of
area and power consumption. Today scaled CMOS technologies are the mainstream
solution for digital processing.

However, the interconnection scaling is not optimal [11, 12]. At every new
technology node, the number of metal layers and their thickness increases, exploiting
the vertical direction, as Figure 1.3 shows. The reduction of the minimum distance
between interconnections and the growth in vertical dimension increase the parasitic
capacitance and consequently the dynamic power consumption. Moreover, due to
the non-optimal scaling of the interconnections, signal routing is becoming more
and more challenging at every technology node advancement, and it is limiting IC
performances.

Interconnections

Transistors

Figure 1.3: Cross section of Intel 14 nm CMOS technology [10].

4 CHAPTER 1. INTRODUCTION

1.1 CMOS technology

Very scaled technologies make possible to reach a great transistor density. However,
the design must comply to strict rules for metal interconnections, and the reduction
of interconnections is more important than reduction of the number of components,
to optimize area and power consumption.

Today, to implement complex production-grade logic ICs it is necessary to deal
with the disadvantages of scaled CMOS technologies and mitigate them with ad-hoc
design techniques.

One of the applications where scaled CMOS technologies are used are Content
Addressable Memories (CAMs). CAMs write data at an address and then, during
comparison tasks, find addresses that match data. CAMs can be used for sparse
database search, cache or routing table.

Associative Memories (AMs) are a particular type of CAMs [13] because AMs
can handle also segmented data. The field of applicability of AMs is real-time
pattern-recognition tasks. The possible uses range from scientific calculations to
image processing for intelligent autonomous devices to image reconstruction for
electro-medical apparatuses.

In particular, AMs are used in High-Energy Physics (HEP) experiments to detect
particle tracks; the track of a particle is the path that a charged particle follows as
it transverses the various layers of the detector. HEP experiments generate a huge
amount of data, but not all the data are stored offline. The decision to store the data,
or not, is taken online by the trigger system of the experiment. For best results in
identifying interesting data and rejecting non-interesting ones, track identification
and reconstruction is often needed early in the trigger chain, when the data rate is
still high. In order to identify the tracks, AMs are used in the acquisition chain to
find a correlation between the input data coming from the detector pixels and a set
of pre-stored data [14, 15], for this reason they have to respect strict requirements
of timing and power consumption. Being the data compared in parallel, AMs are
synchronous ICs that have a very peaked power consumption, with peaks aligned
with the rising edge of the clock.

There are four critical factors, described above, for AM and more in general for
CMOS ICs:

1. signal routing and interconnections are critical due to scaling;

2. reduction of interconnections is more important than reduction of compo-
nents;

3. AM power consumption is peaked and need to be minimized;

4. AM has to satisfy the specifications given by the trigger system.

1.2. SWITCHING LATTICES 5

This thesis describes the research activities within the projects IMPART1 [16]
and HTT2 [17]. The final chip will be implemented in the data acquisition chain of
ATLAS (“A Toroidal LHC ApparatuS”) [18] experiment in the High Luminosity
Large Hadron Collider (HL-LHC) at Conseil Européen pour la Recherche Nucléaire
(CERN).

1.2 Switching lattices

In future, the Moore’s law will stop to be valid [11]. The only way to improve
speed, area, and power consumption will be to go over CMOS, by adopting new
technologies. One of the emerging post-CMOS technologies are nanocrossbars [19].

Nanocrossbars arrays are fabricated with relatively cheap bottom-up nano-
fabrication techniques rather than using purely lithography based conventional
production [20, 21, 22]. Due to the novel manufacturing techniques, fabric yields
to be in regular and dense form [23]. Because of their structure and technology,
they are area and power efficient but they have a non-negligible defectivity ratio.
Logic functions are obtained with arrays of crossbar-type switches. This structure is
expected to reduce device dimensions and interconnection complexity with respect
to CMOS.

Logic synthesis on nanocrossbars is one of the most important steps that are
necessary to utilize this technology instead of CMOS [24]. Nanocrossbars requires
different tools with respect to CMOS, due to the different type of switches. In
literature there are described two possible algorithms to synthesize Switching
lattices. The first one, developed by Altun and Riedel [25] produces lattices with
a size that grows linearly with the number of products of the starting Boolean
function, it runs in time that grows polynomially in the number of ISOP. The second
algorithm, developed by Gange, Søndergaard and Stuckey [26], uses a SAT-solver,
it provides minimum area lattices, but it uses a considerable amount of time and
resources.

As described above there are some interesting nanocrossbars peculiarities:

1. they are an emerging post-CMOS technology;

2. they are area and power efficient;

3. the optimum synthesis requires a considerable amount of time and resources;
1Innovative Multi-chip system for multi-purpose PAttern Recognition Tasks (IMPART) is a project

that consists in developing a cutting edge pattern recognition device for fast image analysis and future
trigger processors for HEP experiments.

2Hardware Tracking for the Trigger (HTT) is a Hardware-based Tracking for the ATLAS Trigger,
based on custom-designed AM ASICs for pattern recognition and FPGAs for track reconstruction and
fitting.

6 CHAPTER 1. INTRODUCTION

4. they have a non-negligible defectivity ratio;

This thesis describes the work done within the project NANOxCOMP3, that
aims to develop a complete synthesis methodology for nanoscale switching crossbars
that leads to the design and construction of an emerging computer [27].

1.3 Thesis Organization and Overview

Moore’s law is holding for decades, but its end is approaching. The major problems
of today scaled CMOS technologies are interconnection capacitance and routing
complexity.

Therefore the aim of this thesis is to to find possible solutions to the disadvan-
tages of scaled CMOS technologies.

This results are obtained using two different approaches: I) designing a commercial-
grade AM IC finding solutions to mitigate power consumption and routing problems;
II) developing nanocrossbars synthesis tools to improve the integration process. In
this way, it is possible mitigate current CMOS issues and, in the mean time, find
synthesis techniques for nanocrossbars to provide a proper synthesis tool set when
the fabrication processes will be suitable for mass-adoption.

1.3.1 Part I: Scaled CMOS Technology

This part is focused on scaled CMOS technologies, that today are the main solution
for digital processing. Then are analyzed their peculiarities to find design and
synthesis approaches that can be useful to design digital circuits, in particular AMs.

Chapter 2 analyzes scaled CMOS fabrication processes. The description helps to
identify the characteristics that can be exploited for the synthesis and the design,
such as the great device density, and the issues that is possible to mitigate, for
instance the non optimal interconnection scaling and the particular layout rules
related to fabrication processes.

Chapter 3 is focused on AM ICs. First are described some possible applications
of AMs. This description is useful to understand some design peculiarities and
the required specifications of timing and power consumption. Then are described
the AM chip architecture and the function of each logic block. The specifications
of the AM chip are published in [28]. Then it describes the design of an AM cell
that reduces power consumption with respect to previous solutions, using a logic

3NANOxCOMP has received funding from the European Union’s H2020 research and innovation
programme under the Marie Skłodowska-Curie grant agreement No 691178.

1.3. THESIS ORGANIZATION AND OVERVIEW 7

synthesis approach aiming at reducing interconnections instead of the number of
transistors. The cell is designed in 28 nm CMOS technology, using a fully-CMOS
approach. The designed AM cell permits, during comparison, to send a “kill”
signal to the cascaded cell to inhibit further switching if one of the input bits is not
matching the pre-stored data. Thanks to this feature, the CAM array requires less
than 0.7 fJ/bit per comparison and reaches a comparison frequency of 184 MHz.
Than are describes the layout design, the simulations that have been done to test the
SRAM metastability and the design techniques that used to avoid it.

Than are described the two blocks that will be included into the next test chip
to further improve the memory density and reduce the power consumption of the
AMs: the quorum circuit an the Digitally Controlled Oscillator(DCO). The quorum
circuit orders the outputs of the memory arrays and has a logic based on a divide
and conquer sorting algorithm. It will substitute the former standard cell circuit
occupying less silicon area. The DCO uses logic gates as delay elements to mitigate
the mismatch of scaled CMOS technology, it is used to spread the AM clock to
reduce the current peak due to AMs. The AM cells and the test of AM07 are
published in: [29, 30, 31]. The population count circuit is published in [32, 33]. The
DCO is published in [34]

1.3.2 Part II: Switching Lattices

Switching Lattices are an emerging technology that can solve some issues of scaled
CMOS technology. The synthesis of minimal Switching lattices is time and resource
intensive and can fail to synthesize the lattice in a reasonable amount of time. For
this reason, this part shows some methods aimed at reducing computing time and
lattice area, and describes some techniques for mitigating lattice faults.

In Chapter 4 describes the synthesis tools that today are used for switching
lattices. The description permits to show the peculiarities of each method.

In Chapter 5 studies an algorithmic approach to switching lattices based on
Boolean functions decomposition methods and regularities: P-circuits, EXOR-
Projected Sums of Products (EP-SOP), Dimension-reducible (D-RED) functions
and autosymmetric functions. It shows two different approaches to implement the
decomposed functions into lattices: internal and external decomposition. Internal
decomposition implements all the sub-lattices into one single lattice. External
decomposition uses a two level approach and requires additional inverters and
routing.

A large set of experimental results is presented showing in average an area and
synthesis time gain. The external decomposition method can obtain lattices that

8 CHAPTER 1. INTRODUCTION

have a total area smaller than the optimum single lattice. Internal decomposition
results on P-circuit are published in [35] and D-red are published in [36]. The article
that compare the decomposition methods is [37]. External decomposition results on
autosymmetric functions are published in [38]. The comparison between external
decomposition is published in [39].

In Chapter 6 enunciates a metric for sensitivity analysis of switching lattices
that takes in account SA0 and SA1 faults. Then, it shows several methodologies
that exploit the regularities of synthesis algorithms aimed at mitigating the lattice
defects. Part of this chapter is published in [40].

Part I

Scaled CMOS Technology

9

Chapter 2

Scaled fabrication processes

Microelectronic device industries invest a lot of resources to find novel technologies
to increase device density and circuit speed minimizing power consumption. This is
done optimizing the CMOS production process changing the fabrication procedures
and the materials used to build the devices [9].

The classic scaling (shown in Figure 2.1), described in [12] by R. Dennard
in 1975, cannot be strictly applied to production nodes under 130 nm [41], some
technology improvements are needed. Often below this threshold there were done
previsions of scaling problems due to technology limitations, materials or productive
processes, but then technology improvements and fabrication process modifications
succeeded into overcoming these limits.

The increase of device density and the adoption of new materials and fabrication
procedures requires some modification on design and synthesis of digital circuits,
in particular it is necessary to take into account the power consumption.

Device or circuit parameter Symbol Scaling factor

Device dimensions tox, L, W 1/k

Doping concentration Na k

Voltage V 1/k

Current I 1/k

Capacitance εA/tox 1/k

Delay time V C/I 1/k

Power dissipation V I 1/k2

Power density V I/A 1

Figure 2.1: Traditional MOSFET scaling as described by Robert Dennard, published by Bohr and
Young in [9]

11

12 CHAPTER 2. SCALED FABRICATION PROCESSES

(a) (b)

Figure 2.2: (a) Graph of the oxide leakage current versus gate voltage per different oxide thickness.
The oxide leakage current increases exponentially as the oxide thickness reduced linearly [43].
(b) Bonding structure of SiO2 indicating the minimum thickness of the bulk oxide is about 7Å [42].

2.1 Technologies and materials

In this section we describe the principal technologies used by scaled CMOS tech-
nologies.

2.1.1 High-κ dielectrics

For decades silicon oxide (SiO2) was used to build the gate oxide of MOSFETs.
The downsizing of MOS follows the rules shown in Figure 2.1: all the voltages
and dimensions are reduced by a factor k. To have an electric field of the scaled
transistor equal to the large device, the charge density, and so the oxide capacity
(Cox), have to be up-scaled by k.

The approach used approximately until 64 nm process was to the reduce oxide
thickness. In 28 nm and smaller technology nodes the needed thickness would be
near the minimum thickness of SiO2, 7 Å [42], that corresponds to two layers of
SiO2 atoms, as Figure 2.2a shows. Moreover the oxide leakage current increases
exponentially as the oxide thickness reduces linearly, as Figure 2.2b shows [43].
For this reason MOSFET with thin oxides are not suitable for low power circuits.

Either the physical and the technological constraints can be circumvented by
replacing the ultra-thin SiO2 with physically thicker high-κ materials. But the
most promising high-κ material, the hafnium oxide HfO2, presents problems due
to the interface between silicon and insulator, to provide better results it is used
the hafnium-silicon oxinitride (HfSiON). HfSiON is obtained by atomic layer
deposition to improve the oxide thickness uniformity. Figure 2.3a shows a PMOS

2.1. TECHNOLOGIES AND MATERIALS 13

(a) (b)

Figure 2.3: (a) Altera 5SGXEA7K2F40C2 Stratix V 28 nm HP PMOS, TEM photograph [45].
(b) Xilinx XC7K325T Kintex-7 TSMC 28 nm HPL, Plan View TEM photography [45], different
types of metals are used to fabricate PMOS and NMOS gates

in 28 nm TSMC technology, that uses high-κ dielectrics. HfSiON is not compatible
with polysilicon gate, for this reason it is used a metal gate electrode, made by
titanium nitride (TiN) for P-MOS and a titanium aluminum nitride (TiAlN) for
N-MOS gate [44]. In Figure 2.3b it is possible to notice the two different types of
material used to fabricate MOS gates.

2.1.2 Regular Patterns

Gates are fabricated using a gate-last approach, called also damascene. This fab-
rication procedure guarantee a precise gate alignment and make possible to use
different types of metals for PMOS and NMOS. Gate-last approach uses sacrificial
polysilicon gate structures that are substituted with the MOS metal gate.

The fabrication process is shown in Figure 2.4, from top-left to bottom-right:

• Deposition of Inter Layer Dielectric (ILD) over the sacrificial gate structures.

• Chemical Mechanical Polishing (CMP) to planarize the wafer.

• The sacrificial polysilicon is removed using a chemical attack.

• It is deposed a TiN gate for PMOS and a TiAlN gate for NMOS.

CMP is a critical polarization procedure because it is required to have a mini-
mum material density to provide a good planarization without damaging the struc-
tures below the planarization level. For this reason it is necessary to use dummy

14 CHAPTER 2. SCALED FABRICATION PROCESSES

gate structures to have a good planarization. Dummy gates, as Figure 2.5 shows,
are gate structures that does not intersect active area.

Transistor gates are build using phase shift masks [46, 47, 48]. In this way
it is possible to create structures that are smaller than the wavelength of the light
source used for the photolithography. Dummy gates are useful also for phase shift
lithography because this techniques exploit light interference phenomena to create
the gates and the most external gates of the interference figure may present some
defects.

2.2 Scaling issues

Very scaled transistors permit to have great device density, but the process shrinking
can lead to variability problems. Moreover interconnections do not scale as well as
transistors increasing routing complexity and interconnection capacitances.

2.2.1 Variability

Scaled technologies presents a non-negligible process variability. The two main
sources of variability are local mismatch, that involves devices of the same chip, and
global variation, that involves devices on different silicon wafers. For example in
scaled technologies the local mismatch can reach 40% in resistors and the variation
among different wafers can cause a great difference in circuit working speed and
power consumption.

It is possible to partially simulate process variability using Montecarlo simula-
tions on the device parameters. Silicon foundries gives the models of the typical-case
and worst-case corner that permit to simulate the parameters variability due to global
mismatch.

2.2.2 Interconnection capacitances

Interconnections scaling is not optimal as for transistors. To provide a good con-
nectivity the number of metal layers increases at every technology node exploiting
more and more the vertical dimension, as Figure 1.3 shows. Furthermore at every
technology node, to increase the metal routing density, the metals become thicker
to maintain the needed cross-section area and prevent electromigration. For this
reasons, as Figure 2.6 shows, the distance between the metals of the same layer, s,
is smaller than the distance between metals of different layers, d. Furthermore the
thickness of the metals, t, is almost the double of its minimum width w.

The dielectric used to fill the spaces between the metals is the same, so the
parasitic capacitance between metals of the same layer can be more than double

2.2. SCALING ISSUES 15

1011SSTfeeneyF2

ILD3

ILD3

ILD2
ILD2

ILD1 ILD1Poly

Poly

STI STI

Si Si

CMP
Conformal ILD deposition

Sacrificial Poly removal TiN (or TiAlN) Gate deposition

CMP

P-metal N-metal

Figure 2.4: Gate-last fabrication process.

Figure 2.5: Drawing of a 28 nm transistor, showing the dummy gates.

16 CHAPTER 2. SCALED FABRICATION PROCESSES

w

t

s w

w

t

s

w

d

Figure 2.6: In scaled technologies d is more than two times s, and t ≈ 2w. For this reason the
parasitic capacitances due to same metal layer are bigger than capacitance due to superposition of
different metal layers.

than the capacitance between different metal layers.

2.2.3 Digital Switching Noise

CMOS scaling leads to an exponential growth in device number, complexity and
speed. This can cause unwanted interactions. Indeed in mixed signal System-
on-Chip the switching of the digital circuits can influence the analog parts of the
chip. The noise generated by digital switching activity propagates through parasitic
elements due to interconnections and substrate affecting the system performance [49,
50, 51].

AM chips are massively parallel digital circuits. At each clock rising edge the
comparison between stored and input data causes high current spikes. The current
consumption produced an IR drop on the supply voltage of the memory; moreover,
parasitic inductances and capacitances on the printed circuit board can cause oscilla-
tions that sometimes affected the functionality of the chip. This problem is usually

2.2. SCALING ISSUES 17

mitigated adding decoupling capacitors to the chip package power pins [52]. For
the AM09 chip we propose also a complementary approach based on spreading
the current peak providing eight clocks with slightly different phases using a Phase
Locked Loop (PLL) based on a Digitally Controlled Oscillator (DCO), as explained
in Section 3.6.

Chapter 3

Associative Memory ICs

By starting from late 80s [13], Associative Memories (AMs) was designed for High
Energy Physics (HEP) applications. A common problem in HEP applications (in
particular at ATLAS experiment) is the identification of particle tracks [17].

ATLAS experiment at Large Hadron Collider (LHC) in Phase-II, will produce up
to 700 GB/s raw tracking data. Since a limited amount of events can be transferred
to a storage system of the PC farms (for subsequent off-line processing), it is
necessary to use an hardware trigger system to filter the relevant data for the event
physics analysis. In addition, the luminosity of the collider will strongly increase in
the next future. While in the past the trigger system do not take as input the track
reconstruction, in view of the Phase-II upgrade a new system trigger system which
performs the track reconstruction is needed. In this way, the system efficiency will
reach about 90%.

The capability of performing real-time identification of tracks at LHC leads to
a very high background rejection. For example, many overlapping proton-proton
collisions can be separated using tracks to reconstruct the primary vertexes. Due to
the complex structure of events, the trigger system must base its decision on a few
tracks among several tracks.

Track reconstruction is performed by means of complex processors designed to
achieves challenging constraints. For the Phase-I of LHC (up to 2020) the processor
that the ATLAS community uses for this job is called Fast TracKer (FTK) [53].
FTK is composed by 16384 AMchip (version 6) and can perform 31 Ecomp/bit/s.
For the next Phase-II of LHC (up to 2026) the process will by called Hardware for
the Track Trigger (HTT). HTT will be composed by 13824 AMchip (version 9) and
will can compare bit-wise 0.2 Zcomp/bit/s. The systems elaborate the information
in two steps:

1. pattern recognition: the hit data coming from eight detector layers (over 12
detector layers) is clustered in low-resolution centroids that can be used for a

19

20 CHAPTER 3. ASSOCIATIVE MEMORY ICS

bit-wise comparison thanks to the AMs;

2. track refining: the found roads (output of the AMs) merged with the data
coming from the whole 12 detector layers are used to refine the trajectories
of the particles by mean of the χ̃2 calculation.

The AM chip performs the first task exploiting parallelism to the maximum
level.

Theoretically, CPUs could provide the expected results (in terms of efficiency
and resolution) but they require very large computing power and costs to keep up
with the event rate of 250 MHz and the increase of luminosity (up to 2× 1035 cm−2 s−1)
of Phase II upgrade [54], which will result in more than 400 overlapping proton-
proton collisions in the same time-bin of the detector clock which identifies an
event. Due to the event complexity increase and to the huge amount of data, CPU’s
tracking capability (with a reasonable number of CPUs per system) will not be
sufficient to perform these tasks in future very-high luminosity runs. Trivially, if we
consider to use one flop operation to run four word bit-wise comparison, even the
most powerful supercomputer existing in the world (called IBM Summit) should
not be able to run this analysis. IBM Summit capability is 122.3 Pflops/s. The HTT
capability is 0.2 Zcomp/bit/s (2.7 Ecomp/word/s – 22.3x factor). However, the HTT
is a specific supercomputer able to run just only bit-wise comparison.

Currently, a dedicate system based on AM is the unique solution that can match
all the power, cost, and performance constraints [55].

The AM is a Application specific integrated circuit (ASIC) for pattern recogni-
tion based on a smart (CAM) architecture because the chip can store partial matches
as they are found and use these partial matches to find correlations among data
received at different times (each input bus is independent). In an AM each pattern is
stored in a single memory location, like in the commercial CAMs, but the total num-
ber of available bits can be organized in N independent words of M bits each. Each
word refers to a particular item to be identified in a flux of data that is distributed to
one or to a group of multiple words that occupy a particular position in the pattern.

AM has be successfully used for other applications such as image processing [56,
57] and genome sequencing [58].

During my P.h.D. I had the opportunity to work on the design of AM. For this
task, I had the responsibility to coordinate the group of Full Custom (FC) blocks.
In particular, I am the main designer of CAM cells, and some other important full
custom blocks (i.e., quorum). With my contribution the future AMchip (AM08 and
AM09) can met the power budget.

3.1. AM CHIP ROAD-MAP 21

Readout Tree

64 patterns4 Kipattern core 1 Kipattern

Input bus

readout bus

Figure 3.1: Simplified block diagram of the general architecture of the AM chips.

3.1 AM chip road-map

The silicon area for the AM06 [59] and the AM09 (the chips that we designed
for a large volume production) is 154 mm2. Such large chips costs few millions
of dollars, for this reason in the road-map there are two smaller chips to test the
circuits and the features of the bigger chip. The large chip is designed mainly for
HEP applications, but the smaller test chip provides features that can be used for
multidisciplinary applications.

After the successfully project (AM06) for the Phase-1 at LHC, the prototype
chips (AM07 and AM08) have an area of 10 mm2 and they contain 16 × 1024
patterns. The production chips (AM09) have an area of 154 mm2 and it contain
384 × 1024 patterns.

Smaller chips can be produced using a Multi Project Wafer (MPW) service to
reduce costs, while big-area chips have to be produced using a Multi Layer Mask
(MLM) service still to reduce costs. Therefore MLM is recommended for projects
that require low or medium production volume. In our case we have to produce
about 20 kchips.

22 CHAPTER 3. ASSOCIATIVE MEMORY ICS

CAMs CAMs CAMs CAMs CAMs CAMs CAMs CAMs
SR SR SR SR SR SR SR SR

CAMs CAMs CAMs CAMs CAMs CAMs CAMs CAMs
SR SR SR SR SR SR SR SR

CAMs CAMs CAMs CAMs CAMs CAMs CAMs CAMs
SR SR SR SR SR SR SR SR

CAMs CAMs CAMs CAMs CAMs CAMs CAMs CAMs
SR SR SR SR SR SR SR SR

CAMs CAMs CAMs CAMs CAMs CAMs CAMs CAMs
SR SR SR SR SR SR SR SR

W
rite D

ecoder

BLs/SLs-0 BLs/SLs-1 BLs/SLs-2 BLs/SLs-3 BLs/SLs-4 BLs/SLs-5 BLs/SLs-6 BLs/SLs-7

Readout
Tree

WLs

8FF quorum FF

8FF quorum FF

8FF quorum FF

8FF quorum FF

8FF quorum FF

Figure 3.2: 64 pattern base memory block.

That is follow now is the time schedule and the aims of each prototype or chip:

• AM07 prototype: submitted in December 2016. It contains two different
types of AM cells: KOXORAM and DOXORAM (an improved version
of XORAM [60]). The goal of this test-chip was to test the memory cells
and find which one consumes less power. The measurement confirmed the
simulations and KOXORAM is proven to be the less consuming cell among
the two. Designed in High Power Low-leakage (HPL) 28 nm technology.

• AM08 prototype: will be submitted in May 2019. It will be used to charac-
terize, the new technology, the FC blocks (i.e, quorum, KOXORAM+ cell),
the I/O circuits and protocols. This chip must have the same functionality of
the AM09 ASIC, but smaller memory size; It will be designed in High Power
and Computing (HPC) 28 nm technology.

• AM09pre pre-production: full area ASIC to be fabricated with a full-mask
set or MLM pilot run. Production corner wafers will be created; It will be
designed in HPC 28 nm technology.

• AM09 production: full area ASIC with refinements for the mass production.
It will be designed in HPC 28 nm technology.

The AM09-pre and the AM09 chips will be developed on the AM08 extending
the memory area, therefore the specifications of AM08 versions must be compatible
with the specifications of AM09.

3.2. AM CHIP ARCHITECTURE AND FUNCTIONALITY 23

CAMs CAMs CAMs CAMs CAMs CAMs CAMs CAMs
SR SR SR SR SR SR SR SR

CAMs CAMs CAMs CAMs CAMs CAMs CAMs CAMs
SR SR SR SR SR SR SR SR

CAMs CAMs CAMs CAMs CAMs CAMs CAMs CAMs
SR SR SR SR SR SR SR SR

CAMs CAMs CAMs CAMs CAMs CAMs CAMs CAMs
SR SR SR SR SR SR SR SR

CAMs CAMs CAMs CAMs CAMs CAMs CAMs CAMs
SR SR SR SR SR SR SR SR

W
rite D

ecoder

BLs/SLs-0 BLs/SLs-1 BLs/SLs-2 BLs/SLs-3 BLs/SLs-4 BLs/SLs-5 BLs/SLs-6 BLs/SLs-7

Readout
Tree

WLs

8FF quorum FF

8FF quorum FF

8FF quorum FF

8FF quorum FF

8FF quorum FF

´01`

MODE

Figure 3.3: Write mode operation in AM08

3.2 AM chip architecture and functionality

The future AM will be designed with a core approach. AM08 will be composed by
4 elementary core. AM09 will be composed by 96 elementary core. Each core will
contains 4 × 1024 patterns. Figure 3.1 shows the simplified block diagram of the
general architecture of the AM08 chips.

More details can be found in [28].
The memory inside AM chips is composed by repeating multiple times a 64

patterns elementary block.
Figure 3.2 shows the functional diagram of 64-rows base block. The memory

matrix consist of 64 patterns. Each line contains a pattern, that is composed by
eight CAMs blocks. Each CAM block consists of a 18 bit word (each bit correspond
to a CAM cell), and a Set Reset (SR) latch.

Write mode

The contents of the pre-defined pattern bank are propagated through the BLs. The
address corresponding to a row of the CAM array are fed thanks to the write decoder
that generate a one-hot signal for the WL bus (Figure 3.3). When the selected
Write Line (WL) corresponding to the designated address is turned on, the pattern
is written in the CAM segments at the selected address.

Compare mode

The information of hits coming from the detector is compared in parallel with the
18 bit word stored in each CAM block. The information is compared in parallel bus

24 CHAPTER 3. ASSOCIATIVE MEMORY ICS

by bus and row by row. If a 18-bit word find a bit-wise correspondence a SR latch
is set to high logic value.

For each row, the word of matches (the eight correpondences found) is registered
in eight Delay Flip-Flops (D-FFs) or High-Enable Latches located at the input of
the quorum circuit using a dedicated pulse (READ_EV). Normally, this pulse is
asserted when all the hits information has been fed into the AM. The pattern-match
signal is calculated inside the quorum logic considering the number of matching
words and other control signals such as the required matching threshold.

The pattern match outputs are read out with the readout clock and fed to the Road
Out Tree (ROT) based on the Fischer’s Tree [61]). The ROT reads out addresses of
matched patterns as well as encoded 8-bit information of matched word (so called
HITMAP) according to a priority embedded in the internal combinational logic.
Several hierarchical level of ROT with different input bits are used in the AM to
collect all the results.

Once an address/row is read out, the ROT generate a feed-back signal able to
assert a DFF located at the output of the quorum. If the output of this DFF is ‘1’ the
match output will be disabled. With this strategy, the ROT can proceed to the next
elaboration step.

3.2.1 Variable resolution

The AM can benefit of this nice feature called variable resolution: A large AM
cell bank stores all patterns of interest, for a given input resolution. The AM
extracts pattern addresses, when a sufficiently high number of words have matched
the incoming data. For most practical problems the set of all patterns with full
resolution is extremely large. The AM approach consists in performing pattern
matching at reduced resolution first, with a resolution adequate to simplify and
reduce the amount of data, and then refining the match inside a Field Programmable
Gate Array (FPGA).

A don’t care (DC) bit is used to increase the pattern recognition efficiency at
different resolutions. It is possible to use patterns of variable shape. As a result of
variable resolution, the number of fakes and the bank size decrease, and the effi-
ciency remains high. Hence, for a given efficiency, the number of patterns required
will decrease and a smaller pattern bank leads to a lower power consumption.

Figure 3.4 shows a qualitative example of the detection of four different particle
trajectories. For a given efficiency, the fixed resolution approach requires to store
three patterns, while with 1 or 2 DC bit it is necessary to store a single pattern. In
addition, for the 2 DC case it is possible to further improve the tracking efficiency.
Simulations demonstrated that an AM system with one single DC can be as effective
as a three times larger AM system with fixed resolution [62].

3.3. KOXORAM ASSOCIATIVE MEMORY CELL FOR AM07 25

(a) (b) (c)

Figure 3.4: Diagram illustrating the multi-bit implementation of variable resolution words. Red
rectangles are words without DC, green rectangles are words with one DC, yellow rectangles are
words with two DC. (a) shows fixed resolution words. (b) shows words with 1 DC-bit. (c) shows
words with 2-bit variable resolution, the pixels in this diagram have different scale with respect to the
others.

BL0

WL

SL0

R
A
M

X
O
R

BM0

BL1 SL1

R
A
M

X
O
R

BM1

BLn SLn

R
A
M

X
O
R

BMn WM

Figure 3.5: Structure of an associative memory

3.2.2 AM chip required specifications

The AM chip CAM related specifications and required features are listed in Ap-
pendix A, more detailed specifications can be found in [28].

3.3 KOXORAM Associative Memory Cell for AM07

The Figure 3.5 shows the conventional structure of a conventional CAM block. The
elementary cell has the capability to store one bit of information (in “write” mode,
when the WL signal is high, each cell stores the bit fed on the BLs), and to compare
the memory content with the input data (in “compare” mode the RAM contents
is compared with the bit at the SL input), providing at the output one bit which
indicates whether the input bit is equal to the stored bit (the “bit match” signal BM).
When all the bits in a stored word match the input data, then a “word match” signal
(WM) is produced at the output.

Since the bit-wise comparison operation can be performed with an XOR logic
gate, we have invented in the past a cell called “Xo(R)aM”, which is made of a 6T
SRAM cell and a pass-transistor XOR gate [60].

The new chip for the future upgrade of the ATLAS experiment will take ad-
vantage of the scaled features of the 28 nm CMOS technology, to integrate more

26 CHAPTER 3. ASSOCIATIVE MEMORY ICS

devices in the same silicon area [31]. The next generation associative memory
chip is expected to contain about 1.5 billion transistors. However, the increased
interconnection density in scaled technologies leads to higher parasitic capacitances,
which may become the major source of dynamic power dissipation. To overcome
this limitation, in the new design we adopted two complementary approaches.

1. The new associative memory cell must have a reduced switching activity, i.e.,
it may be disabled when its output is not relevant for the word matching.

2. The input signals must be fed through lines with low parasitic capacitances.

The two design aspects will be discussed in the following subsections.
A first approach to limit the power consumption is based on the reduction of

switching activity of the internal nodes. Since the “word match” signal is active only
when all the bits in a word are matching, it is obvious that a single non-matching
bit will produce a non-matching output; in this case, all the cells operating on
subsequent bits can be disabled to save power.

Cells can be disabled by propagating a “kill” signal. When a cell receives a
positive “kill” signal from the previous one, it does not perform any comparison
and it just propagates the “kill” signal to the next cell. If the input “kill” signal
is not active, then the previous bits matched, and the cell compares the input data
with the stored bit; if they do not match, the cell generates a positive “kill” signal at
the output. Thus, the word matching occurs when the last cell is not providing a
positive “kill” signal at its output.

This cell is called KOXORAM (Kill-Out XORAM), because it either performs
an XOR logic operation or propagated the “kill” signal at the output, depending of
the results of previous cells.

Since in fully CMOS technology the logic cells are inverting, we have designed
two cells: one with positive “kill” at the input (NKill_In) and negative “kill” at
the output (Kill_Out), and the other with negative “kill” at the input (Kill_In) and
positive “kill” at the output (NKill_Out). The two versions of the cells can be
cascaded, as shown in Figure 3.6. To limit the delay introduced by the propagation
of the “kill” signal, in our design we have split the 18 bit word into two parts, each
containing 9 bits; if the contents of both parts are matching the input data, the two

 NKOXORAM KOXORAM
KILL_IN OUT

NKILL_OUT<1>

NKOXORAM KOXORAM NKOXORAM

NKOXORAM NKOXORAM

NKOXORAMKOXORAM

KOXORAM

NKILL_OUT<0>

Figure 3.6: Connection of KOXORAM cells operating on the bits of a word

3.3. KOXORAM ASSOCIATIVE MEMORY CELL FOR AM07 27

Kill_Out signals are 0, and a NOR gate provides the matching signal at the output
(Figure 3.6).

Tables 3.1 and 3.2 show the Karnaugh’s maps of the two cells (KOXORAM and
NKOXORAM).

Table 3.1: Karnaugh map of the NKOXORAM cell

NKill_Out
(SL, A)

00 01 11 10

Kill_In
0 1 1 1 1
1 0 1 0 1

Table 3.2: Karnaugh map of the KOXORAM cell

Kill_Out
(SL, A)

00 01 11 10

NKill_In
0 1 0 1 0
1 0 0 0 0

The dynamic power due to switching activity is the major source of power
consumption. Therefore, a special care has been adopted in the design of intercon-
nections for input data.

First of all, different input lines are used: BLs carry the input data to be written
into the memory during the writing. SLs propagate the data coming from the input
bus to be compared with the data stored inside the CAM. In this way, the search
lines are not affected by the parasitic capacitances of the BLs and the switches
controlled by write lines (WL). Moreover, the SL signals are routed at a larger
distance each other, and they are sufficiently spaced from other signals in the same
metal layer, to reduce their capacitance.

BLs and WLs are much less critical, because the memory is written only at the
beginning of the operation.

Finally, the aspect ratio of memory cells is chosen in such a way to reduce the
cell height. As SLs are propagated vertically, height reduction helps in reducing
interconnection capacitance. To reduce further the length of SLs, two cells are
merged together. The same contact in the SL is used to drive the signal to four
MOS gates (two gates for the MOS transistors in line 0, and two gates for the MOS
transistors in line 1).

28 CHAPTER 3. ASSOCIATIVE MEMORY ICS

3.3.1 Schematic Diagrams and Layout

Figures 3.7 and 3.8 illustrate the schematic diagrams of the KOXORAM and of the
NKOXORAM cells, respectively.

Figure 3.9 shows the layout of four neighboring cells. The cell height is 0.91 µm,
and the width is 6.24 µm (3.12 µm for each block of two cells).

The total decoupled capacitance associated to the SLs is 0.27 fF for two cells
(0.2 fF due to gate capacitances, and 0.07 fF due to metal-metal capacitances).

3.3.2 KOXORAM cell working modes

The CAM cells have three different modes, as described in Table 3.3:

• compare, it is used during compare procedure;

• always match, it is used to implement the variable resolution;

• never match, it is used to guarantee the setup and hold timings and during
test procedures

In the KOXORAM cell this working modes are given by the synthesized logic
function. In NKOXORAM cell it is necessary to modify the input connections
inverting the SL and SLN signals and memorizing an inverted data swapping the
BL with the BLN signal, as shown in Figure 3.10.

3.3.3 Clockless logic

The CAM cell comparison procedure is completely clockless and without an enable
signal. The setup and hold times are guarantee using the never-match working mode
on one CAM cell as described in Figure 3.11. Precisely, during the setup and hold
times the SL<17> and SLN<17> signals are fixed to ‘1’ to prevent the kill signal
propagation, and so the final matching, instead during comparison the value of all
SLs and SLNs correspond to the input values coming from the detector.

Table 3.3: (N)KOXORAM cell working modes and signals at the interface between the CAM memory
block and the standard cells logic

Working mode A SL SLN Kill_Out NKill_Out

compare (match) 1/0 1/0 0/1 0 1
compare (not match) 0/1 1/0 0/1 1 0
don’t care – 1 1 0 1
never match – 0 0 1 0

3.3. KOXORAM ASSOCIATIVE MEMORY CELL FOR AM07 29

Figure 3.7: Schematic diagram of the KOXORAM cell

Figure 3.8: Schematic diagram of the NKOXORAM cell

Figure 3.9: Layout of four cells, arranged in two groups, to reduce interconnection capacitances of
search lines (SL/SLN)

KOXORAM NKOXORAM

S
L

S
LN B
L

B
LN S
L

S
LN B
L

B
LN

S
L

S
LN B
L

B
LNS
L

S
LN B
L

B
LN

STANDARD CELL LOGIC

Figure 3.10: Connection scheme between standard cells logic and (N)KOXORAM CAM cells.

30 CHAPTER 3. ASSOCIATIVE MEMORY ICS

3.3.4 Simulations

The KOXORAM cell has been extensively simulated to evaluate its performance
before fabrication. Interconnection parasitics have been extracted and used for
simulation in worst-case corners. The cell has been simulated with a nominal supply
voltage VDD = 1 V, and input data rate f = 200 MHz.

Simulation results demonstrate that in an 18-bit CAM made with the new cell the
match signal is asserted to the output with a typical delay of 0.9 ns. The maximum
delay, in the slow-slow corner, is 2.5 ns which is less than the input signal period
(5 ns). Figure 3.12 shows the delay of the matching signal at the output, in all the
worst-case corners.

The average energy is 0.69 fJ/bit, which is a figure lower than the consumption
of other designs in the technical literature (e.g., [63]).

The lower power consumption is due to the reduction of both the switching
activity of cells and the search line capacitances.

3.3.5 Measurements

The AM07 has been fabricated and tested [31]. The chip is fully functional and
operates up to 200 MHz. In order to measure the power consumption of cell arrays,
input data has been stimulated with a simple dynamic sequence. Input words
change between non-matching data (0x00000) and matching data (0x1ABE0).
500 rows of the memory bank have been written with 0x1ABE0, and 3596 rows
with (0x3FFFF).

Baseline current consumption has been measured with constant input (i.e.,
without switching activity on input data except for the SL<17>s). Current and
energy consumption are measured by enabling one memory bank at a time (4 ×
1024 patterns of 8 words each) with a switching activity equal to 0.5, i.e., when
one half of the input bits are changing their value with respect to the data in the
previous clock period; ∆ is defined as the difference between the measurement with
switching activity and the baseline measurement. Results of a measurement of 53
chips at 184.32 MHz are summarized in Table 3.4. It is worth remarking that we
found a good agreement between measurements and simulation results (within ±
10%).

Table 3.4: Current/energy consumption, measure done on 53 AM07.

Current [A]
bits involved

average energy sim Calibre
Mean STD dev. [fJ/bit] [fJ/bit] %

Baseline 3.80 ·10−2 8 ·10−4 524288
Activity on 1/8 input buses 4.70 ·10−2 1.3 ·10−3 524288

∆ (Activity on 1/8 input buses) 9.04 ·10−3 7.3 ·10−4 65536 0.748 0.69 108%

3.3. KOXORAM ASSOCIATIVE MEMORY CELL FOR AM07 31

SL<17>

SLN<17>

setup

comparison

SL(N)<16:0>

1

0
1

0
1

0

hold

Figure 3.11: Compare timings of a KOXORAM CAM cell.

Figure 3.12: Simulation result of an 18-bit CAM cell in different corners. Propagation delays at the
end of the chain are: 0.9 ns in typical case (cyan), 0.5 ns in fast-fast corner (blue), and 2.5 ns in
slow-slow corner (pink).

32 CHAPTER 3. ASSOCIATIVE MEMORY ICS

3.4 Improvements for AM08

Although the AM07 test shows good results, some design aspects have to be
improved for AM08 and AM09. The standard cell logic occupies a lot of silicon
area and the routing is very dense, it will become even more complicated in future
AM chip.

The quorum circuit is the standard cell logic circuit that occupies more area,
hence we redesign it with a full custom approach to reduce area occupation and
routing complexity.

To reduce the power consumption peak due to parallel propagation of data inside
SLs [52] we design a digital PLL that gives eight different clock with different
phases at the eight chip cores.

SRAM cells presents metastability issues, so the SRAM cells has been modified
to avoid it.

3.4.1 Hi performance technology

AM07 is fabricated using the low power version of the 28 nm technology. A low
power technology has a low leakage current to reduce power consumption during
standby. For this reason it is great for battery powered devices, that stays for a lot
of time in standby mode. The drawback is that transistors can output less current
than in high-performance technologies. Hence it is necessary to add more buffer
along signal paths, the fan-out of a logic gate is lower and the maximum length of
interconnection lines is shorter.

The high performance version of the technology is oriented to devices that are
not powered with batteries and have to perform heavy computing operations.

We choose the High performance technology for AM08 because being faster it
permits to reach the aggressive goals. Moreover the improvement due to optimiza-
tion of routing, fan-out and signal paths will permit us to reach a power consumption
similar to low power technology.

3.4.2 KOXORAM+

To reach the specification target of 400 MHz in typical case it is necessary to change
the architecture of the memory row. Due to the limited number of metal layers for
routing and the propagation speed of the technology used in AM07 the chain that
has a maximum of nine KOXORAM cell in series.

The new technology is faster and provides more metal layers suitable for rout-
ing, thus in AM08 the row has a series of 12 KOXORAM cell, as shown in Fig-
ure 3.13. This architecture is also less power consuming: the power used to
propagate the data in SLs is the same, but less power is used to propagate the

3.4. IMPROVEMENTS FOR AM08 33

kill signal. The probability of cell matching can be approximated to 50%. Being
PKill the power needed to propagate the kill signal, the architecture in Figure 3.6
consumes 2

∑9
n=1 PKill/2

n ≈ 2PKill and the architecture in Figure 3.13 consumes∑6
n=1 PKill/2

n + 2
∑12

n=7 PKill/2
n ≈ PKill.

Simulation with back-annotated netlist shows an energy consumption of 0.42 fJ/bit,
approximately 30% less than the former KOXORAM memory. KOXORAM+ ful-
fills the speed requirements of 400 MHz in typical and fast case and 250 MHz in
slow. Table 3.5 shows the minimum timings in each simulation corner.

3.4.3 SRAM metastability

AM07 tests shows that the current consumption at startup is higher than after
writing the CAM SRAM memories. The current at startup is 27± 6 mA and
after the writing is 4.40(0.01) mA per 16 × 1024 patterns, Figure 3.14 shows
the distribution of the 100 current measurements at startup of a single chip. This
behavour is typical of SRAM memories that present metastability. Indeed if the
output and the input of an inverter are at the same voltage there is a unstable
equilibrium point, an SRAM in that working point consumes a lot more power than
SRAM with definite states.

The AM09 chip will contain 3×128Ki patterns, and the power consumption at
startup due to metastability would be ≈0.5 A. To reduce the number of metastable
SRAM we design an asymmetric SRAM cell.

Butterfly diagram

Butterfly diagrams are commonly used to study the properties and the metastability
of an SRAM [64, 65, 66].

An example of butterfly diagram is shown in Figure 3.15. The butterfly diagram
is drawn plotting the two characteristics of the SRAM inverters on the same graph.
It is possible to extract a lot of information from this diagram, but we focus our
attention on metastability.

An SRAM is metastable when the crossing point between the two characteristics
is placed on the bisector of I and III quadrants (where VA = VB).

Table 3.5: Timings of KOXORAM+ memory

[ns] tt ss ff

setup 0.1 0.1 0.1
compare 0.8 1.7 0.5

hold 0.4 0.9 0.2

34 CHAPTER 3. ASSOCIATIVE MEMORY ICS

SRAM design

To characterize the SRAM we run a Montecarlo simulation on the space of tech-
nology parameters, with 1000 points, and we plot the butterfly diagrams and the
crossing points. The results of the Montecarlo simulation are shown in Figure 3.16.

In particular in Figure 3.16a there is the simulation of a completely symmetric
SRAM with minimum dimension transistors. The crossing points are placed across
the bisector, indicating a non-negligible metastable behavior.

To reduce the number of metastable SRAM cells we unbalance the SRAM
enlarging the width of a p-MOS transistor from 100 nm to 360 nm and opposite
n-MOS transistor from 100 nm to 180 nm. This modification is done without
increasing the area of the KOXORAM cell, as shown in Figure 3.16d, the extra
active area helps also to meet the design rule of minimum active area density.

In Figure 3.16b there is the simulation of the asymmetric SRAM, there are
less point near the bisector hence metastability will be rarer than in the symmetric
configuration. In Figure 3.16c there is a comparison of the distribution of distance
of the crossing points between symmetric and asymmetric SRAM. The distribution
shows that the asymmetric SRAM has a negligible probability to show a metastable
behaviour.

3.5 Quorum circuit

The AM architecture is structured in words of 18 bits. Each word contains the
spatial coordinates of a group of neighboring sensor pixels on the same layer of
the detector; 8 words (from 8 different detector layers) make a pattern, and every
matching between an input word and the stored data triggers a Set-Reset (SR) latch
to high-logic value [15]. To perform the trigger operation we need to know how
many patterns are matching. An obvious solution consist in counting how many SR
latches have been triggered by the input event data. To obtain a good performance,
we need to consider all the possible thresholds, from 0 to 8 matches. For this task, a
population count circuit is used.

Conventional population count circuits use full adders and half adders. Dalalah
et al. [67] propose an 8-bit circuit that employs CMOS logic gates, with 162
transistors in total. Pedroni, in [68] presents an 8 bit sorter composed by 56 logic
gates. Despite the literature solutions optimize the transistor number, for 28nm
technology is preferable to design a repetitive architecture to minimize the number
of interconnections in order to reduce area and dynamic power consumption.

In AM07 chip, the population count circuit is designed by synthesizing a
behavioral VHDL code with the Cadence RC software, and it is implemented using
the standard-cell library. With this approach, the area occupied by the population

3.5. QUORUM CIRCUIT 35

K
O
X
O
R
A
M

N
K
O
X
O
R
A
M

K
O
X
O
R
A
M

N
K
O
X
O
R
A
M

K
O
X
O
R
A
M

N
K
O
X
O
R
A
M

K
O
X
O
R
A
M

N
K
O
X
O
R
A
M

K
O
X
O
R
A
M

N
K
O
X
O
R
A
M

K
O
X
O
R
A
M

N
K
O
X
O
R
A
M

NKILL_OUT<0>

NKILL_IN K
O
X
O
R
A
M

N
K
O
X
O
R
A
M

K
O
X
O
R
A
M

N
K
O
X
O
R
A
M

K
O
X
O
R
A
M

N
K
O
X
O
R
A
M

NKILL_OUT<1>

OUT

Figure 3.13: Architecture of a single row of KOXORAM+ cell

17.5 20 22.5 25 27.5 30 32.5 35 37.5 40 42.5
0

10

20

30

40

Current [mA]

N
um

be
ro

fs
am

pl
es

Figure 3.14: Histogram of the measurements of current due to SRAM metastability at startup. The
histogram shows the distribution of 100 measurements of a single chip.

VA

VB

O

VA
=
V B

VDD

VSS

A
B

Figure 3.15: Example of butterfly diagram

36 CHAPTER 3. ASSOCIATIVE MEMORY ICS

0 0.2 0.4 0.6 0.8 1

V
A

 [V]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
B

 [
V

]

VDD

VSS

A
B

W=100
L=30

W=100
L=30

W=100
L=30

W=100
L=30

(a)

0 0.2 0.4 0.6 0.8 1

V
A
[V]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
B
[V
]

VDD

VSS

A
B

W=100
L=30

W=180
L=30

W=360
L=30

W=100
L=30

(b)

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 0.12
Distance from bisector [V]

0

10

20

30

40

50

60

70

80

90

N
u
m

b
e
r

o
f

o
cc

u
rr

e
n
ci

e
s

(c) (d)

Figure 3.16: (a),(b): Montecarlo butterfly diagrams showing the crossing points in blue. At the top
right of each diagram there is the schematic of the simulated SRAM cell reporting the width and
the length of each MOS transistors (in nm). (c): distribution of the distance of the crossing points
from the bisector. The symmetric SRAM is plotted in blue, the asymmetric in red. (d): layout of the
KOXORAM cell. On top there is the layout of the symmetric version and on bottom the layout of the
asymmetric one.

3.5. QUORUM CIRCUIT 37

count circuit is about three times the area of the CAM blocks. The RC compiler
reports a total area of 138 µm2.

For this reasons it is designed a new full custom circuit, where the single element
is based on the bubble-sort algorithm and uses a divide-and conquer approach to
perform the population count with a combinational logic implemented in fully-
CMOS approach. As in the bubble-sort algorithm in software, the circuit swaps
the logic values at the inputs to give an ordered set at the output. The outputs are
given to the threshold selector (designed using a multiplexer) that selects the output
corresponding to the required threshold, as shown in Figure 3.17.

The designed circuit is asynchronous, and it is made of three layers of combina-
tional logic. The output of the proposed circuit passes trough a full custom control
logic circuit, as described in [69]. This control logic is composed by:

• A threshold selector that selects the output corresponding to the chosen
threshold (Figure 3.17)

• SR latches that receive in input global signals and WL to put the output of
the single quorumA circuit to ‘1’ or ‘0’ independently from the inputs (this
feature is useful during the test procedure).

• Logic gates that uses global signals to put the output of the all quorum circuit
of a 64 word memory block to ‘1’ or ‘0’ independently from the inputs (this
feature is useful during the test procedure)

• an SR latch that stores the read flag signals that comes from the readout tree
and indicates if the readout procedure was already made.

The envisaged solution employs more transistors than the circuit proposed
in [69], but it leads to a more compact layout design, which occupies a smaller
silicon area.

The bubble-sort circuit exhibits also a better power consumption: as it is an
asynchronous circuit, it has less switching activity with respect to a synchronous
circuit.

The circuit goal is to obtain the number of zeros (or ones) within an 8-bit bus.
The positions of zeros are not a-priori predictable. As for the bubble-sort algorithm,
the idea consists in sorting the zeros and the ones (to separate them), and in finding
the position of the transition from 0 to 1 in the sorted array. To achieve this result,
we employ a combinational logic which shifts the ones towards the Most Significant
Bit (MSB) position of the output bus and the zeros towards the Least Significant Bit
(LSB) position.

In 28 nm technologies, the on-resistance of MOS transistors is too high to allow
a design with eight transistors connected in series. For this reason, it is not possible

38 CHAPTER 3. ASSOCIATIVE MEMORY ICS

1 1 1 10 0 0 0

1 1 1 1 0 0 0 0

Pop-Count

1

1

1

1
0

0

0

0

Threshold
selector

1

1

1

1
0

0

0

0

Threshold
selector

Out

thr. 1

thr. 2

thr. 3

thr. 4

thr. 5

thr. 6

thr. 7

thr. 8

Figure 3.17: The Pop-Count circuit swaps the logic values at the inputs and gives an ordered set at the
output. The output are then processed with a Threshold Selector, that selects the output corresponding
to the wanted threshold.

Figure 3.18: Top waveforms: analog signals; middle waveform: input bus; bottom waveform: output
bus. The zeros are shifted to the MSB positions, and the ones to the LSB positions

3.5. QUORUM CIRCUIT 39

to design a logic with 8 input/output bits, because its timing and functionality will
be degraded. Therefore, we limit the number of transistors in series to four.

The overall circuit is obtained by using two sets of three cascaded 4-bit bubble-
sorter circuits (Figure 3.19) and by scrambling some wires. A cascade of three
stages is needed to guarantee the complete sorting for all input bit configurations.

The boolean expressions for the elementary cells are:

Z = A + B + C + D (3.1)

Y = (A + D) · (B + C) + A · D + B · C (3.2)

X = C · D · (A + B) + A · B · (C + D) (3.3)

U = A · B · C · D (3.4)

The logic generates inverted signals at the output. From the four boolean
expressions (3.1–3.4), we derived a fully-CMOS circuit made of stacked transistors,
using the Euler’s graph method. Figure 3.20 shows the schematic diagrams of the
four parts of each block. The overall circuit is made of 48 transistors. Several
transistors are stacked in the layout, in order to save silicon area. Figure 3.21 shows
the layout of the elementary cell.

Compared with other solutions, this circuit occupies less silicon area. In fact,
the circuit described in the previous work [69] is larger by a factor of 1.17, and
a circuit with the same functionality implemented with the foundry standard cell
library is larger by a factor of 5.

3.5.1 Simulation Results

Simulations have been carried out in different corners. Simulations covered all
the possible 28 input bit combinations. Output results have been checked with a
behavioral model to guarantee the full functionality.

IN<0>
IN<1>
IN<2>
IN<3>

A<0>
A<1>
A<2>
A<3>

A
B
C
D

Z
Y
X
U

A<0>
A<1>
A<6>
A<7>

B<0>
B<1>
B<2>
B<3>

A
B
C
D

Z
Y
X
U

A<2>
A<3>
A<4>
A<5>

B<4>
B<5>
B<6>
B<7>

A
B
C
D

Z
Y
X
U

B<0>
B<1>
B<4>
B<5>

OUT<0>
OUT<1>
OUT<2>
OUT<3>

A
B
C
D

Z
Y
X
U

B<6>
B<7>
B<2>
B<3>

OUT<4>
OUT<5>
OUT<6>
OUT<7>

A
B
C
D

Z
Y
X
U

IN<4>
IN<5>
IN<6>
IN<7>

A<4>
A<5>
A<6>
A<7>

A
B
C
D

Z
Y
X
U

Figure 3.19: Schematic diagram of population counter

40 CHAPTER 3. ASSOCIATIVE MEMORY ICS

B

A

D

A

C

D

C

B

B

A

C

D

A

C

B

C

YNZN

A

B

C

D

C

A

D

B

C

D

A

B

A B

VSS

VSS
VSS

VDD VDD VDD

XN

UN

VSS

VDD

A

B

C

D

A B C D

C D

A B C D

A

B

C

D

Figure 3.20: CMOS schematics of the elementary cell. The four sub-circuits implement the four
boolean expressions in (3.1)–(3.4), respectively.

Figure 3.21: Layout of the elementary cell. Transistors have been stacked as much as possible, to
obtain a very compact design

3.6. DIGITALLY CONTROLLED OSCILLATOR 41

Results demonstrates the functionality of the circuit at the required speed:
400 MHz. To avoid possible spurious transitions, output data of the control logic
has been registered thanks to a conventional delay FF. Figure 3.18 shows a detail of
the simulated waveforms. Simulations have been performed with Cadence Analog
Mixed Simulator (AMS) and back-annotated via Mentor Graphics Calibre PEX
Extractor. The stimuli are generated using the output of a 8-bit counter written in
Verilog code.

The circuit consumes 3.75 aJ/bit. The previous full-custom implementation
occupies five times the area of the full-custom circuit and contains more transistors
and interconnections. In this technology the dynamic power consumption due to
charge and discharge of interconnections is not negligible. For this reason we can
tell that the power consumption of the full-custom quorum is certainly lower than
the standard-cell one.

3.5.2 Design Verification

Layout Versus Schematic (LVS) and Design Rule Check (DRC) have been per-
formed and results are clean.

3.6 Digitally Controlled Oscillator

AMs are massively parallel circuits. When an AM chip switches from ‘idle’ mode
to ‘compare’ mode the current rises from zero to several Ampere in about 0.1 ns

and current peaks are synchronous with the clock.
This current consumption generates a ripple on the supply voltage of the chip

that can affect the correct functionality of the whole device [59].
For this reason AM09 will implement a circuit to reduce this current peak,

splitting the single peak in eight smaller peaks.
This procedure is done using a PLL circuit that generates an internal clock that

is eight times faster than input clock. Then with the PLL clock it is possible to
generate eight different clock phases with the same frequency than the input clock,
as Figure 3.22 shows.

The PLL is based on a Digitally-Controlled Oscillator driven by a fairly sim-
ple state-machine. This circuit solution was chosen instead of typical Voltage-
Controlled Oscillators (VCOs). In fact VCO schematics are based on operational
amplifiers and passive components. The 28 nm technology is mainly intended for
digital circuits and generally do not provide modules for passive components that
can be used successfully in the design of analog circuits. Moreover, the value of
these analog components suffer from great process variability.

42 CHAPTER 3. ASSOCIATIVE MEMORY ICS

CLKIN

CLKDCO

CLK0

CLK1

CLK2

CLK3

CLK4

CLK5

CLK6

CLK7

Figure 3.22: The blue signal is the reference clock given in input to the AM chip. The red signal is the
clock generated by the PLL. The black signals are the clocks with the same frequency than the input
clock, but different phases.

3.6. DIGITALLY CONTROLLED OSCILLATOR 43

For these reasons the solution adopted is a ring oscillator with full-digital
frequency control, in which the analog part of the circuit is minimized and realized
only with active devices.

The main requirements for the DCO are: a frequency from 2 GHz to 3.2 GHz, a
power consumption of less than 10 mW and a phase noise not exceeding 1/8 of the
clock period. Linearity is not required, while monotonicity is a strong requirement.

3.6.1 Circuit Structure

The DCO is based on a ring oscillator with a frequency range from 2 GHz to
3.2 GHz in typical case. The oscillation frequency is tuned by acting on three
separate thermometric controls. The first one, namely the “coarse frequency control”
(12 bits), selects the length of the delay chain in the ring. The fastest configuration
is made of just an inverter and one delay element, while the slowest is made of
an inverter and 25 delay elements. The two other frequency controls, the “semi-
coarse control” (6 bits) and the “fine control” (63 bits) are used to adjust the delay
introduced by each element.

The length of the chain should be adjusted only at power-up because is intended
mainly to select between different operating frequencies (e.g., 2 GHz or 3 GHz)
and to compensate for frequency variations due to the fabrication process. During
operation, frequency and phase tracking is performed only with the “fine” and
“semi-coarse” controls. The multiplexer can be used also to activate-deactivate the
oscillator and to provide a start-up stimulus to avoid possible equilibrium states. The
bias circuit takes a 1 µA current reference, turns it into a voltage bias and distributes
it to the delay elements. Figure 3.23 shows a block diagram of the ring oscillator.

Each delay element is made of two inverters and a Local Voltage Bias Generator
(LVBG).

The first inverter, marked with “D” in Figure 3.23, is the main source of delay,

Voltage Bias

M
ux

B
ia

s
bl

oc
k

1 uA current
referenceBias

voltage

D B

Delay element

Fine control bits
Semi-coarse control bits

Local voltage
bias generator

D B

Delay element

Fine control bits
Semi-coarse control bits

Local voltage

D B

Delay element

Fine control bits
Semi-coarse control bits

Local voltage

D B

Delay element

Fine control bits
Semi-coarse control bits

Local voltage

D B

Delay element

Fine control bits
Semi-coarse control bits

Local voltage

D

bias generator bias generator bias generator bias generator

Voltage Bias Voltage Bias Voltage Bias Voltage BiasVoltage Bias

M
ux

Loop length Control bits (Coarse frequency control)

B
ia

s
bl

oc
k

1 uA current
referenceBias

voltage

D B

Delay element

Fine control bits
Semi-coarse control bits

Local voltage
bias generator

D B

Delay element

Fine control bits
Semi-coarse control bits

Local voltage

D B

Delay element

Fine control bits
Semi-coarse control bits

Local voltage

D B

Delay element

Fine control bits
Semi-coarse control bits

Local voltage

D B

Delay element

Fine control bits
Semi-coarse control bits

Local voltage

D

bias generator bias generator bias generator bias generator

Voltage Bias Voltage Bias Voltage Bias Voltage Bias

Figure 3.23: Block diagram of the ring oscillator. For clarity, only 5 delay elements of 25 are shown.
The bias block in the bottom-right corner produces a voltage bias used by the delay elements. The
multiplexer has 13 inputs (only 4 are shown).

44 CHAPTER 3. ASSOCIATIVE MEMORY ICS

Input Output

Bias 2

Semi
Coarse bit 1

Semi
Coarse bit 2

Semi
Coarse bit n

Bias 1

Semi
Coarse bit 1

Semi
Coarse bit 2

Semi
Coarse bit n

Vcc

P-side degeneration block

N-side degeneration block

MN0
MN<1> MN<2> MN<n>

MP<n>MP<2>MP<1>MP<0>

MP_inv

MN_inv

Figure 3.24: Schematic of the first inverter inside the delay element.

3.6. DIGITALLY CONTROLLED OSCILLATOR 45

while the second inverter (marked with a “B” letter in Figure 3.23) works like
an inverting buffer. Figure 3.24 illustrates the schematic diagram of the main
delay element. The two voltage bias BIAS1 and BIAS2 are propagated to the
degeneration transistors. The speed of the inverter made of transistors MPinv and
MNinv is determined both by the number of active degeneration transistors and by
their conductance. The number of active degeneration transistors is the frequency
“semi-coarse” control, while the analog bias BIAS1 and BIAS2 depend on the “fine”
control. The source of both the N-MOS and P-MOS transistors is degenerated with
an array of transistors. These arrays are responsible for a reduction in the current
flow from the power rails to the load connected to the output of this stage (and
vice-versa) during the switching phase of the NOT port. This translates directly
into a delay between the incoming signal and the one produced at the output. The
second inverter decouples the first from any possible capacitive load connected to
the output of the cell and squares up the signal.

Previous works [70, 71] implement similar circuits but with the gate of the
degeneration transistors connected either to VDD or VSS. This means that in similar
solutions the degeneration transistors contribute to the switching current flow with
their full conductance. In the same work was pointed out how the charge stocked
inside the parasitic capacitances of the degeneration transistors gives a relevant
contribution to the current flow during the switching phase. With this circuit solution
the frequency of the oscillator is heavily dependent on the threshold voltage, which,
in turn, has a relevant process variation. Our solution implements a double control of
the behavior of the degeneration blocks. In order to limit the frequency dependence
on the threshold voltage, the conductance of the degeneration transistors is controlled
with a mirror-like circuit and derived from a current reference.

Each degeneration transistor can be either switched “ON” or “OFF”; however,
when in the “ON” state, the gate voltage is not fixed to VDD or VSS, but it can
span across the available voltage dynamic range. In this way, the conductance of
each degeneration transistor can be modulated continuously. The digital control that
activates or deactivates each transistor is the “semi-coarse control” while the analog
voltage that biases the gate of the degeneration transistors when in “ON” state is
determined by the “fine control”. The activation of the degeneration transistors is
performed following a thermometric code to ensure monotonicity of the control.
Since there are two degeneration blocks, one on the N-side and one on the P-side,
the “fine control” is translated into two analog voltages, called BIAS1 and BIAS2,
that set the conductance of both the N-type degeneration transistors and the P-type
ones accordingly. The switches connected to the gate of the degeneration transistors
are designed with minimum capacitance, ensuring fast frequency response after
switching and minimum voltage bounce on the bias networks.

The voltage biases BIAS1 and BIAS2 are provided by a local voltage bias

46 CHAPTER 3. ASSOCIATIVE MEMORY ICS

generator built inside each delay element (see Figure 3.25). BIAS1 and BIAS2
are produced by mirroring the variable current IARRAY on a cascade of two trans-
diodes. The IARRAY current is produced by an array of P-type transistors. These
transistors can be switched “ON” and “OFF” with the “fine control”. When in
the “ON” condition, the gate voltage is fixed to a voltage bias derived from the
main 1 µA current reference. The array of digital signals that drives this array of
transistors must follow a thermometric code in order to guarantee monotonicity.

In fact, monotonicity is critical to ensure the stability of the digital feedback
loop of the PLL in which the DCO is inserted. The size of transistors in the array
are not uniform because the frequency response of the DCO to the current IARRAY

is not linear. These transistors have been sized in order to maximize the linearity
of the code-frequency response across the available dynamic range. The choice of
replicating the local voltage bias generator block inside each delay element, instead
of having just one that generates the references for all the delay elements, is dictated
by the requirements in response speed of the DCO to frequency control changes.
Since BIAS1 and BIAS2 are analog signals, their bandwidth is limited on one
side by the parasitic capacitance connected to the line and on the other side by the
transconductance and the bias current of MP2 and MN2.

Simulations demonstrated that, keeping a single central voltage bias generator
connected to all the delay elements, the frequency variation of the DCO induced
by a code change could not be faster than 30 ns. Embedding a local voltage bias
generator inside each delay element, the length of the BIAS1 and BIAS2 paths was
considerably reduced together with the associated parasitic capacitance. Moreover,
with this circuitry solution each local voltage bias generator drives just one array
of degeneration transistors, whose gate capacitance is dominant in determining
the time constant of the frequency changes. This solution reduces the frequency
response time from 30 ns to 10 ns.

3.6.2 Layout Design

The layout of the device was conceived keeping in mind that the propagation delays
introduced by metal connections and their associated parasitic capacitances are
absolutely critical and should be minimized, being process-dependent. The block
diagram of the delay elements placement is reported in Figure 3.26. The delay
elements are stacked in two columns, leaving the inverters of the ring in the middle.
The signal bus of all the possible ring routings runs in the middle and connects the
delay elements to the multiplexer.

The shortest ring length is chosen when the chip belongs to the slow fabrication
corner and the speed limitations of the DCO are potentially an issue. Thus the
total signal path, especially for the shortest ring configuration, is minimized and the

3.6. DIGITALLY CONTROLLED OSCILLATOR 47

Fine bit 1 Fine bit 2 Fine bit n

Vcc

Bias 1

Bias 2

1 uA current
reference input

Local Voltage
bias generator

(one for each delay
element)

Bias block
(one for the whole

circuit)

IARRAY

MN0 MN1 MN2 MN3

MP<1>MP<0> MP<2> MP<n> MP2
MP1

Figure 3.25: Schematic of the Local voltage bias generator inside each delay element. The schematic
of the bias block (one for the whole circuit) is reported on the left.

Figure 3.26: Block diagram of the delay elements placement in the layout.

48 CHAPTER 3. ASSOCIATIVE MEMORY ICS

inverters involved must be put very close to the multiplexer. The delay elements are
packed in a way to keep the relative distances between the inverters of the ring as
low as possible.

Each delay element has an area of 21.9 µm × 6.6 µm and the signal path inside
is minimized (see Figure 3.27). For this reason, the critical transistors are packed
on one side, leaving the static ones in the body of the block. The major part of
the area is occupied by the local voltage bias generator. The dimensions of each
building block are reported in Table 3.6. The long interconnections between the
delay elements and the MUX constitute a long parallel bus that travels across the
whole DCO. Such signal lines are realized alternating metal-2 and metal-3 to reduce
the parasitic capacitances between them. As common practice, local wirings are
realized with low-level metals while the power supply lines are made with higher-
level ones. The channel length of the transistors inside the LVBG are deliberately
chosen not minimal to reduce the process variability of their electrical parameters.

3.6.3 Simulations

In order to evaluate the performance of the DCO some post-layout simulations
have been performed. These include both transient at circuit start-up and long-term
simulations varying the frequency control code. The device demonstrated to start
oscillating properly independently from the start-up slope of the power voltage
lines. Transient simulations never showed the appearance of higher harmonics or
meta-stable states.

Since this circuit is strongly dependent on the fabrication speed corners, the
DCO behavior has been simulated in every corner in order to ensure its compliance
with the AM09 specifications.

Figure 3.28 shows the oscillation frequency as a function of the fine tuning code,
for different values of the coarse codes, in typical case. The achieved granularity is
fine enough to perform the desired phase-locking with acceptable phase error.

The DC current consumption ranges from 1 mA (2 GHz) to 5 mA (3.2 GHz)

Figure 3.27: Layout of a single delay element

3.6. DIGITALLY CONTROLLED OSCILLATOR 49

in typical corner. The frequency variation due to the temperature variation is less
than the variation due to corners. The influence of the temperature can be adjusted
changing the control bits during time.

Table 3.6: Size and relative area occupation of the delay element’s building blocks.

Description Width Length Area Percentage
[µm] [µm] [µm2] [%]

LVBG 21.6 3.7 79.3 55
Deg. block 14.5 2 29 20
Non-active area 24.9 17
MUX 6.8 1 6.8 5
Bias transistors 3.2 1.1 3.5 2
Inverters 1 0.9 0.9 1

Total 21.9 6.6 144.3 100

50 CHAPTER 3. ASSOCIATIVE MEMORY ICS

0 10 20 30 40 50 60
Fine tuning code

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Fr
e
q
u
e
n
cy

 [
 G

H
z

]

Figure 3.28: DCO frequencies versus fine tuning code in typical case.

Part II

Switching Lattices

51

Chapter 4

Technology Description

A switching lattice is a two-dimensional network of four-terminal switches. Each
switch is linked to the four neighbors of a lattice cell, so that these are either
all connected or disconnected, as Figure 4.1 shows. A Boolean function can be
represented using a switching lattice associating each four-terminal switch to a
Boolean literal: if the literal has value 1 the corresponding switch is connected
to its four neighbors, otherwise it is not connected. In this model, the Boolean
function evaluates to 1 if and only if there exists a connected path between two
opposing edges of the lattice, e.g., the top and the bottom edges (see Figure 4.3
for an example). The synthesis problem on a lattice thus consists in finding an
assignment of literals to switches in order to implement a given target function with
a lattice of minimal size.

Consider, for instance, a nanowire array where each crosspoint is controlled by
an input voltage. We consider crosspoints that behave like four-terminal switches
controlled by an input signal and therefore the proposed nanowire crossbar array can
be modeled as a lattice of four-terminal switches. Note that, in general, crossbars
can also be modeled by programmable contacts [23]. Conventional implementations
typically employ SRAMs for programming crosspoints; other techniques have been
suggested for implementing programmable crosspoints such as bistable switches that

ON OFF

Figure 4.1: On and Off 4-terminal switch

53

54 CHAPTER 4. TECHNOLOGY DESCRIPTION

form memory cores, molecular switches and solid-electrolyte nanoswitches [25].

4.1 Boolean function implementation

A Boolean function can be implemented by a lattice in terms of connectivity across
it (Figure 4.2):

• each four-terminal switch is controlled by a Boolean literal;

• each switch may be also labelled with the constant 0, or 1;

• if the literal takes the value 1, the corresponding switch is connected to its
four neightbours, else it is not connected;

• the function evaluates to 1 if and only if there exists a connected path between
two opposing edges of the lattice, e.g., the top and the bottom edges;

• input assignments that leave the edges unconnected correspond to output 0.

For instance, the 3 × 3 network of switches in Figure 4.3 (a) corresponds to the
lattice form depicted in Figure 4.3 (b), which implements the function f = x1x2x3+

x1x2 + x2x3. If we assign the values 1, 1, 0 to the variables x1, x2, x3, respectively,
we obtain paths of gray square connecting the top and the bottom edges of the
lattices (Figure 4.3 (c)), indeed on this assignment f evaluates to 1. On the contrary,
the assignment x1 = 0, x2 = 0, x3 = 1, on which f evaluates to 0, does not define
any path from the top to the bottom edge (Figure 4.3 (d)).

The synthesis problem on a lattice consists in finding an assignment of literals
to switches in order to implement a given target function with a lattice of minimal
size. The size is measured in terms of the number of switches in the lattice.

Figure 4.2: 3D draw of signal propagation inside a switching lattice. The input signal is given to each
four-terminal switch and the output is given by a path from the top to the bottom of the lattice

4.1. BOOLEAN FUNCTION IMPLEMENTATION 55

x2

x2 x2

x1 x3

x3 x2 x2

TOP

BOTTOM

(b)

x2

x1 x3

x3 x2 x2

x2

TOP

BOTTOM

(a)

(c) (d)

x1

x2 x2

x2 x2

x1 x3

x3 x2

TOP

BOTTOM

x2

x2 x2

x1 x3

x3 x2 x2

TOP

BOTTOM

x2

x1 x1

Figure 4.3: A four terminal switching network implementing the function f = x1x2x3+x1x2+x2x3
(a); its corresponding lattice form (b); the lattice evaluated on the assignments 1,1,0 (c) and 0, 0, 1 (d),
with grey and white squares representing ON and OFF switches, respectively.

56 CHAPTER 4. TECHNOLOGY DESCRIPTION

4.2 Synthesis methods

Switching lattices are composed by 4-terminal switches, so they require different
synthesis methods with respect to CMOS. In This paragraph we show the synthesis
methods used to synthesize lattices.

4.2.1 Altun-Riedel

A switching lattice can similarly be equipped with left edge to right edge con-
nectivity, so that a single lattice can implement two different functions. This fact
is exploited in [25] where the authors propose a synthesis method for switching
lattices simultaneously implementing a function f according to the connectivity
between the top and the bottom plates, and its dual function fD according to
the connectivity between the left and the right plates. Recall that the dual of a
Boolean function f depending on n binary variables is the function fD such that
f(x1, x2, . . . , xn) = fD(x1, x2, . . . , xn). This method produces lattices with a size
that grows linearly with the number of products in an irredundant sum of product
(SOP) representation of f , and consists of the following steps:

1. find an irredundant, or a minimal, SOP representation for f and fD: SOP (f) =

p1 + p2 + · · ·+ ps and SOP (fD) = q1 + q2 + · · ·+ qr;

2. assign each product pj (1 ≤ j ≤ s) of SOP (f) to a column and each product
qi (1 ≤ i ≤ r) of SOP (fD) to a row, as shown in Figure 4.4;

3. for all 1 ≤ i ≤ r and all 1 ≤ j ≤ s, assign to the switch on the lattice site
(i, j) one literal which is shared by qi and pj (the fact that f and fD are duals
guarantees that such a shared literal exists for all i and j).

This synthesis algorithm thus produces a lattice for f whose size depends on the
number of products in the irredundant SOP representations of f and fD, and it
comes with the dual function implemented for free. For instance, the lattice depicted
in Figure 4.3 has been built according to this algorithm, and it implements both the
function f = x1x2x3 + x1x2 + x2x3 and its dual fD = x1x2x3 + x1x2 + x2x3.

Figure 4.5a shows an example of lattice obtained using this synthesis method.
The time complexity of the algorithm is polynomial in the number of products.

However, the method does not always build lattices of minimal size for every target
function, since it ties the dimensions of the lattices to the number of products in the
SOP forms. In particular this method is not effective for Boolean functions whose
duals have a very large number of products. Another reason that could explain the
non-minimality of the lattices produced in this way is that the algorithm does not
use Boolean constants as input, i.e., each switch in the lattice is always controlled
by a Boolean literal.

4.2. SYNTHESIS METHODS 57

BOTTOM

TOP

L
E

FT

R
IG

H
T

q1 ∩ ps q2 ∩ ps qr−1 ∩ ps qr ∩ ps

q1 ∩ ps−1 qr ∩ ps−1

q1 ∩ p2 qr ∩ p2

q1 ∩ p1 q2 ∩ p1 qr−1 ∩ p1 qr ∩ p1

Figure 4.4: Altun-Riedel synthesis method. f is implemented from top to bottom and fD from left to
right.

58 CHAPTER 4. TECHNOLOGY DESCRIPTION

BOTTOM

TOP

L
E

FT

R
IG

H
T

x3 x3 x3 x3

x2 x2 x2 x2

x1 x1 x1 x1

x6 x5 x6 x4

x7 x7 x6 x4

x6 x7 x6 x4

x8 x8 x5 x4

x6 x8 x6 x4

(a)

BOTTOM

TOP

x3 0 x6

x1 x2 x6

x2 x5 x8

x4 x6 x7

(b)

Figure 4.5: Lattices obtained synthesizing the Boolean function f = x8x7x6x3x2x1 +

x8x7x5x3x2x1 + x4x3x2x1. At right the lattice obtained using Altun-Riedel synthesis method,
at left the lattice obtained with Gange-Søndergaard-Stuckey synthesis method.

4.2.2 Gange-Søndergaard-Stuckey

In [26], the authors proposed a different approach to the synthesis of minimal-sized
lattices, which is formulated as a satisfiability problem in quantified Boolean logic
and solved by quantified Boolean formula solvers. This method uses the Altun-
Riedel algorithm to find an upper bound on the dimensions of the lattice. It then
searches for successively better implementations until either an optimal solution is
found, or else a preset time limit has been exceeded. Experimental results show how
this alternative method can decrease lattice sizes considerably. In this approach the
use of fixed inputs is allowed, moreover the lattice considers only the top-to-bottom
paths and implements the function f , but not its dual.

Figure 4.5b shows an example of lattice obtained using this synthesis method.

Chapter 5

Decomposition Methods

The cost of implementing a four-terminal switching lattice could be mitigated by
exploiting Boolean function decomposition techniques. The basic idea of this
approach is to first decompose a function into some subfunctions, according to a
given functional decomposition scheme, and then to implement the decomposed
blocks with physically separated regions in a single lattice. Since the decomposed
blocks usually correspond to functions depending on fewer variables and/or with a
smaller on-set, their synthesis should be more feasible and should produce lattice
implementations of smaller size.

In the framework of switching lattice synthesis, where the available minimiza-
tion tools are not yet as developed and mature as those available for CMOS tech-
nology, we are interested in reducing the size of the function to be minimized with
a preprocessing phase. A smaller input function to a minimization algorithm can
imply a smaller area circuit and a reduced synthesis time.

5.1 P-circuits and EP-SOP forms

We now review two slightly different bounded-level logic networks called P-circuits
and EXOR-Projected Sums of Products forms (EP-SOP). Both networks are based
on generalizations of the standard Shannon decomposition, and can be seen as
special logic architectures which realize a Boolean function by projecting it onto
overlapping subsets. They were introduced in [72, 73, 74] and in [75, 76, 77], and
further studied in [78, 79].

We first give some preliminary definitions.
A completely specified Boolean function f is a function f : {0, 1}n → {0, 1}.

A completely specified Boolean function can also be interpreted as the set of points
x ∈ {0, 1}n such that f(x) = 1.

An incompletely specified Boolean function is a function f : {0, 1}n →

59

60 CHAPTER 5. DECOMPOSITION METHODS

{0, 1,−}, where − is called the don’t care value of the function. An incompletely
specified function can be described by three sets of points: the on-set, the off-set
and the don’t care set, which characterize the points in {0, 1}n with images 0, 1,
and −, respectively.

Given the Boolean space {0, 1}n described by the set {x1, . . . , xn} of n binary
variables, a literal is a variable or its complement; a cube is conjunction (or product)
of a set of literals, and a minterm is a cube when it represents only one point, i.e.,
when it is a conjunction of n distinct literals. Finally, a multiple-output Boolean
function f is a function f : {0, 1}n → {0, 1,−}m; it can be considered also as a
vector of Boolean functions {f1, f2, . . . , fm}.

P-circuits and EP-SOPs are extended forms of Shannon cofactoring, where the
expansion is with respect to an orthogonal basis xi ⊕ p (i.e., xi = p), and xi ⊕ p
(i.e., xi 6= p), where p is a function defined over all variables except for the critical
variable xi (e.g., the variable with more switching activity or with higher delay that
should be projected away from the rest of the circuit).

More precisely, let f be a completely specified Boolean function depending
on the set {x1, . . . , xn} of n binary variables. Consider the classical Shannon
decomposition

f = xif |xi + xif |xi ,

and the more general EXOR-based decomposition [80] [81]

f = (xi ⊕ p)f |xi=p + (xi ⊕ p)f |xi 6=p ,

that corresponds to the classical one when p = 0 (as before, p is a function non-
depending on xi). This decomposition partitions the Boolean space {0, 1}n into
two subsets: the subset of points where xi = p and the subset of points where
xi 6= p. The characteristic functions of these two subsets are (xi ⊕ p) and (xi ⊕ p),
respectively.

Note that these two subsets have always the same cardinality, for any function
p non-depending on xi. This is due to the presence of the EXOR operator in their
characteristic functions: indeed, for any minterm x ∈ {0, 1}n, x belongs to the
subset where xi = p, i.e., the subset where (xi ⊕ p) = 1, if and only if the minterm
obtained complementing the i-th bit of x belongs to the subset where xi 6= p, i.e.,
where (xi ⊕ p) = 1. The cofactors f |xi=p and f |xi 6=p correspond to the projections
of f onto the two subsets with xi = p and xi 6= p, respectively. Observe that this
decomposition is suitable for keeping xi disjoint from the rest of the circuit, but is
not oriented to area minimization. In fact, f |xi=p, and f |xi 6=p do not depend on the
variable xi, but the cubes of f intersecting both subsets xi = p and xi 6= p may be
split into two smaller subcubes when they are projected onto f |xi=p, and f |xi 6=p,
respectively.

P-circuits and EP-SOPs try to overcome this problem in different ways.

5.1. P-CIRCUITS AND EP-SOP FORMS 61

5.1.1 P-circuits

The main idea in P-circuits synthesis is to keep unprojected some of the points of
the original function. For this purpose, let I = f |xi=p ∩ f |xi 6=p be the intersection
of the two cofactors f |xi=p and f |xi 6=p. Note that the intersection I contains the
cubes whose products do not contain xi and that cross the two sets. In order to
overcome the splitting of these crossing cubes, we could keep I unprojected, and
project only the minterms in f |xi=p \ I and f |xi 6=p \ I , obtaining the expression

f = (xi ⊕ p)(f |xi=p \ I) + (xi ⊕ p)(f |xi 6=p \ I) + I .

Note that p, f |xi=p \ I , f |xi 6=p \ I and I do not depend on xi. However, the points
that are in I could be exploited to form bigger cubes in the projected sets. Therefore,
if a point is in I and it is useful for a better minimization of the projected parts, it can
be kept both in the projection and in the intersection. Moreover, if a point is covered
in both the projected sets, it is not necessary to cover it in the intersection. From
these observations, we can infer that the projected sub-circuits should cover at least
f |xi=p \ I and f |xi 6=p \ I , and must be contained in f |xi=p and f |xi 6=p, respectively.
Moreover, the part of the circuit that is not projected should be contained in the
intersection I .

In summary, we can define a P-circuit as follows, where S(f) indicates a SOP
circuit implementing a Boolean function f .

Definition 5.1.1 ([78]). A P-circuit of a completely specified function f is the circuit
P (f) denoted by the expression:

P (f) = (xi ⊕ S(p))S(f=) + (xi ⊕ S(p))S(f 6=) + S(f I)

where

1. (f |xi=p \ I) ⊆ f= ⊆ f |xi=p

2. (f |xi 6=p \ I) ⊆ f 6= ⊆ f |xi 6=p

3. ∅ ⊆ f I ⊆ I

4. P (f) = f .

This definition can be easily generalized to incompletely specified Boolean
functions f = {fon, fdc}. For the sake of simplicity, suppose that fon ∩ fdc = ∅;
otherwise, following the usual semantics, we consider fon \ fdc as the on-set of
f . Let I be the intersection of the projections of f onto the two sets xi = p and
xi 6= p:

I = (fon|xi=p ∪ fdc|xi=p) ∩ (fon|xi 6=p ∪ f
dc|xi 6=p).

62 CHAPTER 5. DECOMPOSITION METHODS

1 01 0

1

1

01

0

1

1

0

01

0

0
00 01 11 10

00

01

11

10

x6 x7
x3 x4

x1 = 0

1 10 0

1

0

11

0

1

1

1

00

1

0
00 01 11 10

00

01

11

10

x6 x7
x3 x4

x1 = 1

Figure 5.1: Karnaugh map of the benchmark z = z4(2). The cells in grey show the minterms that
belong to the intersection between the cofactors z|x1=0 and z|x1 6=0.

z = z ≠ z I

1 01 0

1

1

00

0

1

0

0

01

0

0
00 01 11 10

00

01

11

10

x6 x7
x3 x4

1 10 0

1

0

11

0

0

1

1

00

1

0
00 01 11 10

00

01

11

10

x6 x7
x3 x4

0 00 0

0

0

01

0

0

1

0

00

0

0
00 01 11 10

00

01

11

10

x6 x7
x3 x4

Figure 5.2: Karnaugh maps of the sets z=, z 6=, and zI defining an optimal P-circuit for z = z4(2)

with respect to x1 and to the function p = 0. The minterms in the intersection between z|x1=0 and
z|x1 6=0, now distributed among z=, z 6=, and zI , are highlighted in grey.

Definition 5.1.2 ([78]). A P-circuit of an incompletely specified function f =

{fon, fdc} is the circuit P (f) denoted by the expression:

P (f) = (xi ⊕ S(p))S(f=) + (xi ⊕ S(p))S(f 6=) + S(f I)

where

1. (fon|xi=p \ I) ⊆ f= ⊆ fon|xi=p ∪ fdc|xi=p

2. (fon|xi 6=p \ I) ⊆ f 6= ⊆ fon|xi 6=p ∪ fdc|xi 6=p

3. ∅ ⊆ f I ⊆ I

4. fon ⊆ P (f) ⊆ fon ∪ fdc.

As an example of P-circuit decomposition, let us consider the benchmark z4
taken from LGSynth93 [82], and in particular its third output z4(2), simply denoted
by z. This function, represented by the Karnaugh map in Figure 5.1, depends

5.1. P-CIRCUITS AND EP-SOP FORMS 63

on seven variables (x1, x2, . . . , x7), two of which (x2 and x5) are nonessential.
Consider the P-circuit decomposition with respect to the first variable x1 and to the
projection function p = 0. The three sets z=, z 6=, and zI that define an optimal
P-circuit representation of z = z4(2), with respect to x1 and to the function p = 0,
are depicted in Figure 5.2. Observe that the two minterms 0010 and 1000 in the
intersection between the cofactors z|x1=0 and z|x1 6=0 have been removed from zI

since they have been kept in both sets z= and z 6= in order to get smaller SOP forms.
Moreover, the other two points of the intersection, 0101 and 1111, are kept both in
zI and in the projection z 6=, where they are used to form bigger cubes. The P-circuit
representation of z = z4(2) is then given by the expression

P (z) = x1 S(z=) + x1 S(z 6=) + S(zI)

where S(z=) = x3x4x6+x3x4x6+x3x6x7+x3x6x7, S(z 6=) = x3x4x6+x3x4x6+

x3x6x7 + x3x6x7 + x3x4x6x7 + x3x4x6x7, and S(zI) = x3x4x6x7 + x3x4x6x7
are the SOP representations of z=, z 6=, and zI , respectively.

As we have seen, the idea for synthesis of P-circuits is to construct a network
for f by appropriately choosing the sets f=, f 6=, and f I as building blocks. Several
algorithms for performing such a choice have been studied and proposed in the
literature [72, 73, 74, 78]. In particular, in [78], it is shown how the structural
flexibility of P-circuits can be completely characterized by using Boolean relations,
and how the associated optimal P-circuit decomposition problem, with respect to a
given variable xi and a function p, can be efficiently solved using a Boolean relation
minimizer.

5.1.2 EXOR-Projected Sums of Products

Let us now consider the alternative decomposition methods leading to the definition
of EXOR-Projected Sums of Products (EP-SOPs). These forms are derived as a
special case of the generalized Shannon decomposition with remainder

f = (xi ⊕ p)(f |xi=p \R) + (xi ⊕ p)(f |xi 6=p \R) +R

that restructures a logic function into subsets of points defined by the generalized
cofactors with a remainder R containing the cubes that we do not want to split. In
particular, EP-SOP forms correspond to the special case p = xj , with i 6= j:

f = (xi ⊕ xj)(f |xi=xj \R) + (xi ⊕ xj)(f |xi 6=xj \R) +R .

Note that, while the intersection set I in the P-circuit decomposition scheme does
not depend on the variable xi, the remainder R depends in general on all the input
variables and is defined as the set of all minterms of f that could form a crossing

64 CHAPTER 5. DECOMPOSITION METHODS

cube, i.e., a cube of f intersecting both subsets xi = xj and xi 6= xj . In the
particular case p = xj , crossing cubes can be precisely identified as those cubes
described by products that do not depend on both xi and xj ; thus the remainder R
contains all points x in the on-set of f such that f takes the value 1 on at least one
of the two points obtained complementing in x the i-th or the j-th variable. In other
words, R contains all cubes described by products of literals

1. that depend on xi, but not on xj ;

2. that depend on xj , but not on xi;

3. that depend neither on xi, nor on xj .

If we denote with x(k) the point obtained complementing the k-th bit of x, we get

R = {x | f(x) = 1 ∧ (f(x(i)) = 1 ∨ f(x(j)) = 1)} .

Moreover, the two cofactors (f |xi=xj and f |xi 6=xj) can be equivalently defined as
incompletely specified Boolean functions depending on all input variables, in the
following way: 1) fon|xi=xj (fon|xi 6=xj) is the on-set of the original function f such
that xi = xj (resp. xi 6= xj); 2) fdc|xi=xj (fdc|xi 6=xj) is the set of points such that
xi 6= xj (resp. xi = xj). These don’t cares can be inserted in the cofactor f |xi=xj
since, in the decomposition, this function is multiplied by (xi⊕xj), which evaluates
to 0 when xi 6= xj . A symmetric observation holds for f |xi 6=xj . We will adopt this
alternative definition, so that all three functions occurring in the decomposition may
depend on all input variables (xi included).

For example, consider the function f in Figure 5.3(a), i = 1 and j = 2. In
the figure, the subset of the Boolean space where x1 = x2 (x1 6= x2, resp.) is
depicted in gray (white, resp.). Figure 5.3(b) shows the remainder for f . Finally,
the (non-projected) cofactors f |x1=x2 and f |x1 6=x2 are represented in Figures 5.3(c)
and 5.3(d), respectively. Note that f |x1=x2 corresponds to f for the points where
x1 = x2 and contains don’t care conditions where x1 6= x2. These don’t cares can
be inserted in f |x1=x2 since, in the decomposition, this function is multiplied by
(x1 ⊕ x2), which evaluates to 0 when x1 6= x2. A symmetric observation holds for
f |x1 6=x2 .

A clear advantage of this representation is that don’t care points can be used to
form bigger cubes. Consider, for instance, the two distinct cubes x1x2x3 and x1x2x3
in Figure 5.3(a). In the function f |x1=x2 , the corresponding cubes are merged
together in a bigger cube, i.e., x3, using don’t cares, as shown in Figure 5.3(c).
Instead, the cube x1x3x4 in Figure 5.3(a) is an example of crossing cube: it is split
into two minterms: x1x2x3x4 in Figure 5.3(c) and x1x2x3x4 in Figure 5.3(d) that
are covered by two different cubes (x1x4 and x1x3, resp.). Observe that, if we keep

5.1. P-CIRCUITS AND EP-SOP FORMS 65

1 10 1

0

1

01

0

0

0

1

11

0

1
 00 01 11 10

00

01

11

10

x3 x4
x1 x2

- -- -

0

-

01

-

0

-

1

11

-

1
 00 01 11 10

00

01

11

10

x3 x4
x1 x2

1 10 1

-

1

--

0

-

0

-

--

0

-
 00 01 11 10

00

01

11

10

x3 x4
x1 x2

1 10 0

0

0

01

0

0

0

0

01

0

1
 00 01 11 10

00

01

11

10

x3 x4
x1 x2

(a) f (b) R

(c) f |x1 = x2 (d) f |x1 ≠ x2

Figure 5.3: (a): A minimal SOP form for the function f . (b), (c) and (d): the remainder R, and the
cofactors f |x1=x2 and f |x1 6=x2 , together with the corresponding covers fR = x1x3x4 + x1x3x4,
f= = x3, and f 6= = x3x4, used in a minimal EP-SOP expression for f with respect to the pair of
variables x1 and x2.

66 CHAPTER 5. DECOMPOSITION METHODS

and cover this crossing cube only in the remainder R, then we do not need to cover
its minterms in the two cofactors; thus, the cubes x1x4 and x1x3 will not appear in
the final EP-SOP expression.

As for the P-circuit scheme, we can observe that the minterms in the remainder
R could be exploited to form bigger cubes in the projected sets, i.e., if a point is in
R and is useful for a better minimization of one of the cofactors, it can be kept both
in the projected cofactor and in the remainder. Therefore, in order to cover any point
of the function at least once and get a minimal decomposition form, with respect to
the variables xi and xj , we can decide to cover any minterm x in the remainder:

1. only in the remainder,

2. only in the corresponding cofactor (i.e., f |xi=xj if xi = xj or f |xi 6=xj if
xi 6= xj),

3. both in the remainder and in the corresponding cofactor.

The last choice can be convenient when x is useful for forming bigger cubes for
both the remainder and the cofactor. For instance, in the running example, the point
1100 can be used in f |x1=x2 to form the cube x3 and in the remainder R to form
the cube x1x3x4 with the point 1000.

In summary, we can rephrase the definition of an EP-SOP-circuit given in [76]
as follows (as before, S(f) indicates a SOP circuit implementing a Boolean function
f).

Definition 5.1.3 ([79]). An EP-SOP-decomposition, with respect to the variables
xi and xj , of a completely specified function f is the expression:

EP-SOP(f) = (xi ⊕ xj)S(f=) + (xi ⊕ xj)S(f 6=) + S(fR)

where

1. (fon|xi=xj \R) ⊆ f= ⊆ fon|xi=xj ∪ fdc|xi=xj

2. (fon|xi 6=xj \R) ⊆ f 6= ⊆ fon|xi 6=xj ∪ fdc|xi 6=xj

3. ∅ ⊆ fR ⊆ R

4. EP-SOP(f) = f .

For our running example in Figure 5.3, we get the EP-SOP form EP-SOP(f) =

(x1 ⊕ x2)(x3) + (x1 ⊕ x2)(x3x4) + (x1x3x4 + x1x3x4), that contains fewer and
bigger cubes than a classical minimal SOP cover f = x1x2x3 + x1x2x3x4 +

x1x2x3 + x1x3x4 + x1x2x4. Note that any point of the function is covered at least
once, by f=, f 6=, or fR. For example, 0000 is covered by f=, 1100 is covered by

5.2. D-REDUCIBLE BOOLEAN FUNCTIONS 67

both f= and fR, and 1000 is covered by fR (note that 1000 is also covered by f=

but not by (x1 ⊕ x2)f= in the final form).
This definition can be generalized to incompletely specified Boolean functions

f = {fon, fdc}. When f is an incompletely specified Boolean function, f |xi=xj
and f |xi 6=xj can be defined as follows: 1) fon|xi=xj (fon|xi 6=xj) contains the points
of fon such that xi = xj (resp. xi 6= xj); 2) fdc|xi=xj (fdc|xi 6=xj) contains the
points of fdc such that xi = xj (resp. xi 6= xj) together with the points such that
xi 6= xj (resp. xi = xj).The definition of the remainder R can be immediately
generalized to incompletely specified Boolean functions, noting that the points
potentially included in a crossing cube can now be defined as the points x in the
on-set or in the dc-set of f , such that the two points obtained complementing in x
the i-th and the j-th variable are not both included in the off-set.

Definition 5.1.4 ([79]). An EP-SOP-decomposition, with respect to the variables
xi and xj , of an incompletely specified function f = {fon, fdc} is the expression:

EP-SOP(f) = (xi ⊕ xj)S(f=) + (xi ⊕ xj)S(f 6=) + S(fR)

where

R = {x ∈ fon ∪ fdc |(x(i) ∈ fon ∪ fdc) ∨ (x(j) ∈ fon ∪ fdc)}

1. (fon|xi=xj \R) ⊆ f= ⊆ fon|xi=xj ∪ fdc|xi=xj

2. (fon|xi 6=xj \R) ⊆ f 6= ⊆ fon|xi 6=xj ∪ fdc|xi 6=xj

3. ∅ ⊆ fR ⊆ R

4. fon ⊆ EP-SOP(f) ⊆ fon ∪ fdc.

As for P-circuits, the problem of EP-SOP synthesis can be nicely formalized
and efficiently solved using Boolean relations, as discussed and proved in [79].

We finally observe that both decomposition techniques could be recursively
applied to the cofactors f=, f 6=, and f I or fR, but this leads to an increase in the
number of logic levels. Thus, this recursive approach could be very interesting for
the synthesis of unbounded multilevel forms.

5.2 D-reducible Boolean functions

D-reducible functions are functions whose points are completely contained in an
affine space A strictly smaller than the whole Boolean cube {0, 1}n:

68 CHAPTER 5. DECOMPOSITION METHODS

1
x1 x2

00

01

11

10

1

1 0

0

1

1

x3

1

0
x1 x2

x3 x4

00

01

11

10

00 01 11 10

0 0

0

0 0

0 0

0 1

01

1 0

1

1

0

0

Figure 5.4: Karnaugh maps of a D-reducible function f and its corresponding projection fA.

Definition 5.2.1. The Boolean function f : {0, 1}n → {0, 1} is D-reducible if
f ⊆ A, where A ⊂ {0, 1}n is an affine space of dimension strictly smaller than n.

Recall that an affine space is a vector space, or the translation of a vector space.
Formally, given a vector subspace V of ({0, 1}n,⊕), and a point α in {0, 1}n, then
the set A = α⊕ V = {α⊕ v | v ∈ V } is an affine space over V with translation
point α [83].

Let f be a D-reducible function. The minimal affine space A containing f is
unique and it is called the associated affine space of f . The function f can be
represented in the following way: f = χA · fA, where fA ⊆ {0, 1}dimA is the
projection of f onto A and χA is the characteristic function of A. Moreover, as
shown in [84], an affine space can be represented by a simple expression, called
pseudoproduct, consisting in an AND of EXORs or literals. In particular, an
affine space of dimension dimA can be represented by a pseudoproduct containing
(n− dimA) EXOR factors.

For instance, consider the function f = {0010, 0100, 0110, 1011, 1101} in
the Karnaugh map on the left side of Figure 5.4. The function f is D-reducible,
i.e., we can project it onto a space of dimension three (the space marked with
circles in the Karnaugh map). We can therefore study the new function fA that
depends only on three variables, represented in the Karnaugh map on the right side
of Figure 5.4. Notice that f and fA have the same number of points, but these
are now compacted in a smaller space. If we synthesize f and fA in the classical
SOP framework we obtain f = x1x3x4 + x1x2x4 +x1x2x3x4 + x1x2x3x4 , and
fA = x2x3 + x1x2 + x2x3 . (Note that f depends on all the variables x1, . . . x4.)
The new and more compact form for f is then f = (x1⊕x4)(x2x3+x1x2+x2x3) .

The EXOR (x1 ⊕ x4) represents the new Boolean space where we study fA.
The test that establishes whether a function f is D-reducible and the compu-

tation of the smallest affine space containing f can be performed in polynomial
time, by finding the reduced row echelon form of a matrix derived from any SOP

5.3. AUTOSYMMETRIC FUNCTIONS 69

representation of f (see [85] for more details). Moreover, the projection fA of f
onto A can be simply derived from f by deleting dimA variables. It is important to
note that fA can be computed starting from any SOP representation of f without
generating all its minterms.

5.3 Autosymmetric functions

In this section we briefly review autosymmetric functions that are introduced in [86]
and further studied in [87, 88, 89, 90, 91, 92]. For the description of these particular
regular functions we need to summarize several concepts of Boolean algebra [93].

Given two binary vectorsα andβ, letα⊕β be the elementwise EXOR between
α and β, for example 11010 ⊕ 11000 = 00010. We recall that ({0, 1}n,⊕) is a
vector space, and that a vector subspace V is a subset of {0, 1}n containing the
zero vector 0, such that for each v1 and v2 in V we have that v1⊕v2 ∈ V . The
vector subspace V contains 2k vectors, where k is the dimension of V , and it is
generated by a basis B containing k vectors. Indeed B is a minimal set of vectors
of V such that each point of V is an EXOR combination of some vectors in B.

Let us consider a completely specified Boolean function f : {0, 1}n → {0, 1},
recalling that f can be described as the set of binary vectors in {0, 1}n for which
f takes the value 1 (i.e., the ON-set of f). Using this notation we can give the
following definition. The function f is closed under a vector α ∈ {0, 1}n, if for
each vector w ∈ {0, 1}n, w ⊕ α ∈ f if and only if w ∈ f .

For example, the function f = {0000, 0001, 0010, 0011, 0100, 0101, 0110,

0111, 1000, 1011, 1101, 1110} is closed under α = 0011, as it can be easily veri-
fied.

It is easy to observe that any function f is closed under the zero vector 0.
Moreover, if a function f is closed under two different vectors α1, α2 ∈ {0, 1}n, it
is also closed under α1⊕α2. Therefore, the set Lf = {β: f is closed under β} is
a vector subspace of ({0, 1}n,⊕). The set Lf is called the vector space of f . For
instance, the function f of our previous example is closed under the vectors in the
vector space Lf = {0000, 0011, 0101, 0110}.

For an arbitrary function f , the vector space Lf provides the essential informa-
tion for the definition of the autosymmetry property:

Definition 5.3.1 ([90]). A completely specified Boolean function f is k-autosymmetric,
or equivalently f has autosymmetry degree k, 0 ≤ k ≤ n, if its vector space Lf
has dimension k.

In general, f is autosymmetric if its autosymmetry degree is k ≥ 1. For
instance, the function f of our running example is 2-autosymmetric since its vector
space Lf has dimension 2.

70 CHAPTER 5. DECOMPOSITION METHODS

We now define a special basis, called canonical, to represent Lf . Consider
a 2k × n matrix M whose rows correspond to the points of a vector space V of
dimension k, and whose columns correspond to the variables x1, x2, . . . , xn. Let
the row indices of M be numbered from 0 to 2k − 1. We say that V is in binary
order if the rows of M are sorted as increasing binary numbers. We have:

Definition 5.3.2 ([90]). Let V be a vector space of dimension k in binary order.
The canonical basis BV of V is the set of points corresponding to the rows of M
with indices 20, 21, . . . , 2k−1. The variables corresponding to the first 1 from the
left of each row of the canonical basis are the canonical variables of V , while the
other variables are non-canonical.

It can be easily proved that the canonical basis is indeed a vector basis [94]. The
canonical variables of Lf are also called canonical variables of f .

Example 5.3.1. Consider the vector space Lf of the function f of our running
example. We can arrange its vectors in a matrix in binary order:

x1 x2 x3 x4
0 0 0 0 0

1 0 0 1 1

2 0 1 0 1

3 0 1 1 0

The canonical basis is composed of the vectors in position 1 and 2, that are the
vectors 0011 and 0101. The canonical variables of f are x2 (corresponding to
the first 1 in 0101) and x3 (corresponding to the first 1 in 0011). The remaining
variables x1 and x4 are non-canonical.

For a vector α ∈ {0, 1}n and a subset S ⊆ {0, 1}n, consider the set α⊕S =

{α⊕ s | s ∈ S}. In a sense, the vector α is used to “translate” the subset S. If the
set S is a vector space, then its “translations” are called affine spaces:

Definition 5.3.3. Let V be a vector subspace of ({0, 1}n,⊕). The set A = α⊕V ,
α ∈ {0, 1}n, is an affine space over V with translation point α.

Note that α ∈ A, because S contains the zero vector 0, hence α = α⊕ 0

∈ A. Moreover, any other vector of A could be chosen as translation point α, thus
generating the same affine space.

There is a simple formula that characterizes the vector space associated to a
given affine space A, namely [93]:

V = α ⊕A, with α any point in A.

5.3. AUTOSYMMETRIC FUNCTIONS 71

That is, given an affine space A there exists a unique vector space V such that A =

α⊕V , where α is any point of A.
As proved in [87], the points of a k-autosymmetric function f can be partitioned

into ` = |f |/2k disjoint sets, where |f | denotes the number of points of f ; all these
sets are affine spaces over Lf . I.e., S = α⊕Lf , where S is any such a space and
α∈ f . Thus:

f =
⋃̀
i=1

(αi ⊕ Lf)

and for each i, j, i 6= j, (αi ⊕ Lf) ∩ (αj ⊕ Lf) = ∅. The vectors α1, . . ., α` are
chosen as all the points of f where all the canonical variables have value 0.

Example 5.3.2. Consider the function

f = {0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1011, 1101, 1110}

of our running example. By Example 5.3.1 the canonical variables of f are x2
and x3. Thus, if we take the points of f with all canonical variables set to 0, i.e.,
α1 = 0000, α2 = 0001, and α 1 = 1000, we have

f = (0000⊕ Lf) ∪ (0001⊕ Lf) ∪ (1000⊕ Lf),

where Lf = {0000, 0011, 0101, 0110}.

Autosymmetric functions can be reduced to “equivalent, but smaller” functions;
in fact, if a function f is k-autosymmetric, then there exists a function fk over n−k
variables, y1, y2, . . ., yn−k, such that

f(x1, . . . , xn) = fk(y1, . . . , yn−k) ,

where each yi is an EXOR combination of a subset of xi’s. These combinations
are denoted EXOR(Xi), where Xi ⊆ X , and the equations yi = EXOR(Xi),
i = 1, . . . , n − k, are called reduction equations. The function fk is called a
restriction of f ; indeed fk is “equivalent” to, but smaller than f , and has |f |/2k

points only.
The restriction fk can be computed from f and its vector space Lf by first

identifying the canonical variables, and then deriving the cofactor of f where
all the canonical variables are set to 0 (see [87] and [90] for more details). The
reduction equations correspond to the homogeneous system of linear equations
whose solutions define the vector space Lf , and they can be derived applying
standard linear algebra techniques as shown in [87, 90].

72 CHAPTER 5. DECOMPOSITION METHODS

Example 5.3.3. Consider the 2-autosymmetric function f in our running example,
with Lf = {0000, 0011, 0101, 0110} and canonical variables x2 and x3. We can
build f2 by taking the cofactor fx2=0,x3=0 = {00, 01, 10}, that contains only 3
points and corresponds to the function f2(y1, y2) = y1y2. The homogeneous system
whose solutions are {0000, 0011, 0101, 0110} is:{

x1 = 0

x2 ⊕ x3 ⊕ x4 = 0

Thus the reduction equations are given by

y1 = x1 (5.1)

y2 = x2 ⊕ x3 ⊕ x4 . (5.2)

Finally, the function f can be represented as:

f(x1, x2, x3, x4) = f2(y1, y2) = y1y2 = x1(x2 ⊕ x3 ⊕ x4) .

We can note that f is indeed a composition of f2 and the reduction equations (5.1)
and (5.2).

5.4 Internal Composition

We recall from [26] that given the switching lattices implementing two functions f
and g, we can easily consstruct the lattices representing their disjunction f + g and
their conjunction f · g composing the two lattices for f and g and using a padding
column of 0s and a padding row of 1s, respectively, as shown in Figure 5.5. In
particular, for the disjunction, the column of 0s separates all top-to-bottom paths
in the lattices for f and g, so that the accepting paths for the two functions never
intersect; this, in turn, implies that there exists a top-to-bottom connected path in
the lattice for f + g if and only if there is at least one connected path for f or for g.
If the lattices for f and g have a different number of rows, we add some rows of 1s
to the lattice with fewer rows, so that each accepting path can reach the bottom edge.
Similarly, for the conjunction the padding row of 1s allows to join any top-to-bottom
accepting path for the function f with any top-to-bottom accepting path for g, so
that the overall lattice evaluates to 1 if and only if both f and g evaluate to 1. As
before, if the lattices for f and g have a different number of columns, we add some
columns of 0s to the lattice with fewer columns, so that an accepting path for one
of the two functions can never reach the opposite edge of the lattice if the other
function evaluates to 0.

5.4. INTERNAL COMPOSITION 73

1

f

f g

0

0

0

…

g

1 1…

(a) (b)

Figure 5.5: Lattice implementation of f ∨ g (a) and of f ∧ g (b).

f = f ≠
1

f I

1

0
0

0

xi ⊕ pxi ⊕ p 00
0
0

0

1 1 1

1 1 1

Figure 5.6: Lattice implementation of a P-circuit.

More in general, these simple composition rules can be used to implement a
switching lattice for a function f starting from a decomposition of f into subfunc-
tions. The basic idea of this approach is to first decompose f according to a given
functional decomposition scheme, then generate the lattices for each component
function, and finally implement the original function by a single composed lattice
obtained by gluing together appropriately the lattices of the component functions.
Since the decomposed blocks usually correspond to functions depending on fewer
variables and/or with a smaller on-set, their synthesis should produce lattice imple-
mentations of smaller size, yielding an overall lattice of smaller dimension in an
affordable computation time. In this section, the lattice for the original function
has been obtained implementing the decomposed blocks with physically separated
regions in a single overall lattice. We will refer to this approach as internal compo-
sition.

5.4.1 P-Circuits

We can use these simple composition rules to derive a lattice describing a P-circuit
expression P (f) = (xi ⊕ S(p))S(f=) + (xi ⊕ S(p))S(f 6=) + S(f I) for a given
function f , using lattices for the three sets f=, f 6=, and f I and for the projection
functions (xi ⊕ p) and (xi ⊕ p) as building blocks, as depicted in Figure 5.6.

We now formally prove that the lattice implementation of a P-circuit P (f)

74 CHAPTER 5. DECOMPOSITION METHODS

0

0

0

0

f I

1

xi xi xi xi xi0

0

⋮ ⋮f =
1

xi

f ≠

(a)

1

0

111

0xj

1

xj

1

xi

1

00

xi 0

0

0

1 1

1

xj

xi xi

0

0

1 f I

1
f =

0 0
0

f ≠

0

0

0

xj

0

0

0

(b)

Figure 5.7: Lattice implementation of a P-circuit with projection function p = 0 (a) and with
projection function p = xj (b).

described in Figure 5.6 correctly implements the function f .

Theorem 5.4.1. Let f be a Boolean function depending on n binary variables,
and let P (f) = (xi ⊕ S(p))S(f=) + (xi ⊕ S(p))S(f 6=) + S(f I) be a P-circuit
representing f . The lattice obtained composing the lattices for the three sets f=,
f 6=, and f I and for the projection functions (xi ⊕ p) and (xi ⊕ p), as shown in
Figure 5.6, implements the function f .

Proof. In order to prove the theorem, we need to show that the function f evaluates
to 1 on a given input assignment if and only if there exists a connected path between
the top and the bottom edge of the lattice in Figure 5.6.

First suppose that f evaluates to 1 on a given input (x1, x2, . . . , xn). Then, at
least one of the three terms in the expression for P (f) must evaluate to 1. Suppose
that the first term (xi ⊕ S(p))S(f=) takes the value 1 on (x1, x2, . . . , xn). Then,
both (xi⊕S(p)) and S(f=) are equal to 1, giving rise to a top-to-bottom connected
path in the left side of the lattice. An analogous situation arises if the second or the
third term are equal to 1.

Now suppose that a given input assignment (x1, x2, . . . , xn) induces some
connected top-to-bottom paths on the lattice. Due to the presence of the two columns
of 0s, separating the left, center, and right portions of the lattice corresponding to

5.4. INTERNAL COMPOSITION 75

the implementations of the functions (xi⊕ p) f=, (xi⊕ p) f 6=, and f I , respectively,
each connected path is entirely contained in one of the three portions. This implies
that at least one of the three terms in input to the final OR gate of the P-circuit
representing f is equal to 1, and the thesis immediately follows.

The lattice description of the P-circuit can be simplified depending on the
chosen projection function. For instance, if we choose the P-circuit P (f) =

xi S(f=) + xi S(f 6=) +S(f I) based on the generalization of the classical Shannon
decomposition with projection function p = 0, which experimentally represents a
very efficient and effective solution, we get the lattice shown in Figure 5.7 (a), where
the two padding rows of 1s have been substituted with one row of cells assigned to
the literal xi and one row of cells assigned to xi. Figure 5.7 (b) shows the lattice
implementation of the P-circuit P (f) = (xi⊕xj)S(f=)+(xi⊕xj)S(f 6=)+S(f I)

corresponding to the choice p = xj . Both lattices correctly implement the function
f , as proved in the following corollary.

Corollary 5.4.1. The two lattices in Figure 5.7 implement the function f through its
P-circuit representations with projection functions p = 0 and p = xj , respectively.

Proof. Let us consider the first lattice, corresponding to the P-circuit representation
of f with projection function p = 0. As before, observe that each top-to-bottom
connected path must be entirely contained in one of the three portions of the lattice,
because of the two padding columns of 0s. Moreover, the row of cells assigned
to xi on top of the lattice for f= allows to derive a top-to-bottom connected path
for f from a connected path for f= if and only if xi = 0; analogously, the row
of cell assigned to xi on top of the lattice for f 6= allows to derive a top-to-bottom
connected path for f from a connected path for f 6= if and only if xi = 1. Finally,
any connected path for f I can be extended to a connected path for f . Thus the
thesis immediately follows from the definition of P-circuit and of the terms f=,
f 6 =, and f I (see Definitions 5.1.1 and 5.1.2).

Now consider the lattice in Figure 5.7 (b), corresponding to the P-circuit for f
with projection function p = xj . Any connected path for f I can be extended to a
connected path for f . Moreover, any connected path for f= can be extended to a
connected path for f if and only if both variables xi and xj assume the same value,
i.e., xi = xj , while any connected path for f 6= can be extended to a connected
path for f if and only if the two variables assume different values, i.e., xi = xj .
Since the presence of the two columns of 0s prevents the existence of top-to-bottom
connected paths intersecting different regions of the lattice, the thesis immediately
follows from Definitions 5.1.1 and 5.1.2.

As an example of synthesis of lattices based on the P-circuit decomposition,
let us consider the third output, here denoted by z, of the benchmark z4 taken

76 CHAPTER 5. DECOMPOSITION METHODS

x7

1

x3

x4

1

x6

1

x3

x6

1
1

x4

x7

1

x6x3x40 x7 011 x4 x71 1
1 11 x6x3 x3x3 x71 x40 0

x71 x6x3x6 x7 01 x31 1 0
0

0
0

0

x4

x7

x1
x4

x3

x3

x1

x4x6

x1

x3

x3

x3

x1

x6

x6

x3

x6

x1
x3

x6

x3

x1
x6

0

0

0
0

x4 x7x4 x7

x1
x3

x6x3

x6

x1
x3

x1

x6x3

x6

x1

Figure 5.8: Lattice for the benchmark z = z4(2) based on the P-circuit decomposition. The sublattices
for z=, z 6=, and zI are highlighted in grey.

from LGSynth93 [82], whose P-circuit decomposition is shown in Figure 5.2 and
discussed in Section 5.1.1. We can derive a lattice implementation of z using
lattices for the three subfunctions z=, z 6=, and zI as building blocks, as depicted in
Figure 5.7 (a). Recall from Section 5.1.1 that the SOP representations of the three
subfunctions are

S(z=) = x3x4x6 + x3x4x6 + x3x6x7 + x3x6x7 ,

S(z 6=) = x3x4x6 + x3x4x6 + x3x6x7 + x3x6x7 + x3x4x6x7 + x3x4x6x7 ,

S(zI) = x3x4x6x7 + x3x4x6x7 ,

and contain 4, 6, and 2 products, respectively. The SOP expressions for the corre-
sponding dual functions are

S(z=
D

) = x3x6 + x3x6 + x4x7 ,

S(z 6=
D

) = x3x4x6 + x3x4x6 + x3x6x7 + x3x6x7 + x3x4x6x7 + x3x4x6x7 ,

S(zI
D

) = x4 + x7 + x3x6 + x3x6 ,

with 3, 6, and 4 products, respectively. Using the method described in [25], we can
compute the three sublattices for z=, z 6=, and zI , whose dimensions are 3×4, 6×6,
and 4× 2. Finally, composing these three sublattices as shown in Figure 5.8, we
get an overall lattice of dimension 7× 14 for the benchmark z = z4(2). Note that
the synthesis method in [25] applied directly to z, without exploiting its P-circuit
decomposition, would produce a lattice of dimension 12× 12.

As already observed, the main idea behind this approach is that lattice synthesis
of the subfunctions f=, f 6=, and f I , which depend on n − 1 variables instead of
n and have a smaller on-set than f , should be an easier task, and should produce
lattices of reduced size, so that the overall lattice for f - derived using minimal

5.4. INTERNAL COMPOSITION 77

lattices for f=, f 6=, and f I as building blocks - could be smaller than the one derived
for f without exploiting its decomposition in P-circuits. This expectation has been
confirmed by our experimental results.

5.4.2 EXOR-Projected-Sums Of Products

In a very similar way, we can synthesize on lattice a function f exploiting its EP-
SOP decomposition form. The decomposed lattice has the same structure of the
lattice shown in Figure 5.7 (b), with the lattice for the intersection f I replaced
with a lattice for the remainder fR. Also recall that now the three building blocks
f=, f 6=, and fR depend on n variables, but contain fewer points than the original
function f . The lattice obtained in this way correctly implements the function f , as
stated in the following theorem, whose proof can be immediately derived from the
proofs of Theorem 5.4.1 and Corollary 5.4.1.

Theorem 5.4.2. Let f be a Boolean function depending on n binary variables, and
let EP-SOP(f) = (xi ⊕ xj)S(f=) + (xi ⊕ xj)S(f 6=) + S(fR) be an EP-SOP
form for f . The lattice obtained composing the lattices for f=, f 6=, fR, and for the
projection function (xi ⊕ xj) implements the function f .

5.4.3 D-Reducible functions

In this section we will discuss how to obtain a lattice for a D-reducible function
implementing the characteristic function of the affine space A and the projection fA
with physically separated regions in a single lattice. Recall from Section 5.2 that a D-
reducible function f can be written as f = χA ·fA, where A is its unique associated
affine space, χA is the characteristic function of A, and fA is the projection of f
onto A.

Given the two switching lattices implementing χA and fA, we can easily con-
struct the lattices representing their conjunction using a padding row of 1s, as shown
in Figure 5.9. Indeed, the row of 1s allows to join any top-to-bottom accepting path
for the characteristic function of A with any top-to-bottom accepting path for the
projection fA, so that the overall lattice evaluates to 1 if and only if both χA and fA
evaluate to 1. Of course, if the lattices for χA and fA have a different number of
columns, we add some columns of 0s to the lattice with fewer columns, so that an
accepting path for one of the two functions can never reach the opposite edge of the
lattice if the other function evaluates to 0.

Since the two functions fA and χA depend on fewer variables than the original
function f , their synthesis should be more feasible and should produce lattice
implementations of smaller area. In the framework of switching lattice synthesis,
where the available minimization tools are not yet as developed and mature as those

78 CHAPTER 5. DECOMPOSITION METHODS

0

1 1 1 ... 1

fA 0fA

1 1 1 ... 1

(a) (b)

χA
χA

Figure 5.9: Lattice implementations of a D-reducible function f = χA · fA. (a) Composition scheme
when the lattice for χA has fewer columns. (b) Composition scheme when the lattice for fA has fewer
columns.

available for CMOS technology, reducing the synthesis of a target Boolean function
to the synthesis of smaller functions could represent a very beneficial approach.

To further reduce the overall lattice area, we could exploit the peculiar structure
of the function χA, that represents the minterms of an affine subspace of {0, 1}n,
building its lattice representation block by block. More precisely, we have two
possible approaches for the synthesis of a minimal-sized lattice for χA: (i) directly
apply one of the synthesis methods presented in [25] and in [26], or (ii) build and
compose the lattices representing each EXOR factor, or group of EXOR factors,
occurring in χA. For this second approach, we now describe a method for imple-
menting a compact lattice representation of affine spaces that can be represented
by a 2-pseudoproduct, i.e., a product of EXOR of at most two literals. Observe
that the class of D-reducible functions whose affine subspace can be described
with a 2-pseudoproduct is particularly interesting as EXOR factors are considered
technologically feasible if they contain a bounded number of literals, typically
2 [95].

The problem of the minimization of the number of literals in the characteristic
function χA of the affine space A has been addressed in [96]. The representation of
an affine space is not unique, and different pseudoproducts can be characteristic func-
tions of the same affine space. Unfortunately, finding a minimal pseudoproduct, in
terms of number of literals, representing an affine space is an NP-hard problem [96],
therefore, in the same paper, a greedy heuristic algorithm has been designed. Thus,
to avoid the presence of EXOR factors with an unbounded number of literals in the
function χA, we can first heuristically find an optimal representation of the affine
space, and then remove from it all EXOR factors with more than two literals. In
this way we obtain the algebraic representation of a new affine subspace A′ that
contains the original affine space A, and we can still decompose f as f = χA′ · fA′ .

In the following analysis we will then restrict our attention to D-reducible

5.4. INTERNAL COMPOSITION 79

functions decomposed w.r.t. an affine subspace, not necessarily the smallest, rep-
resented by the product of single literals and EXOR factors of two literals. The
presence of at most two literals in each EXOR factors gives us a simple method
for partitioning the variables in order to determine a compact lattice for χA. First
of all, observe that the pseudoproduct describing A corresponds to a linear system,
whose solutions are exactly the minterms in A. For instance, the pseudoproduct
(x1⊕x3) · (x2⊕x4) ·x5 · (x1⊕x8), which describes an affine subspace of {0, 1}8,
is represented by the system

x1 ⊕ x3 = 1

x2 ⊕ x4 = 1

x5 = 1

x1 ⊕ x8 = 1

that can be rewritten as
x1 = x3
x2 = x4
x5 = 0

x1 = x8

From this system we immediately derive the following equalities

x1 = x3 = x8
x2 = x4
x5 = 0 ,

that suggest a natural partition of a subset of the input variables:

{{0, x5}, {x1, x3, x8}, {x2, x4}} ,

where each subset of the partition contains a set of literals (or the constant 0) that
get the same value on A. The input variables missing from the partition (x6 and x7
in the example) are the variables that can assume all the possible values on A. In
particular, in our example x5 must be always equal to 0, while x1, x3, and x8 must
have the same value (0 or 1), as well as x2 and x4.

As this example clearly suggests, it is always possible to describe an affine
space A, described by an EXOR of at most two literals, through a partition PA of
the input variables, where two variables, possibly complemented, are in the same
subset of the partition if and only if they are equal on A. This partition can now be
exploited to build the lattice for χA.

Theorem 5.4.3. Let A be an affine subspace of {0, 1}n described by the product
of single literals and EXOR of two literals, let PA be the partition of the subset of
input variables that defines A, and let n′ ≤ n be the number of distinct variables

80 CHAPTER 5. DECOMPOSITION METHODS

occurring in PA. Suppose that PA contains ` subsets of literals, in addition to the
subset C with the constant 0. Finally, let c be the number of literals in C. Then
A can be implemented with a lattice of area r × 2, where the number r of rows is
given by

r =

{
n′ if c ≥ `− 1

n′ + `− 1− c if c < `− 1

Proof. Let S ∈ PA, be one of the ` subsets of PA without the constant 0. The
literals in S must be equal to each other on A, thus this subset can be described by
the disjunction of two products: the product of all literals in S and the product of
the complement of each literal. Thus we can easily build the lattice for S, using
two columns representing the two products, that have the same length. Since the
two switches on each row are controlled by a variable and its complement, the
top-to-bottom accepting paths cannot intersect the two columns, therefore we do
not need the padding column of 0 between the two terms of the disjunction. Now,
let us consider the set C that contains the c literals that are constant and equal to
0 on A. This set can be implemented with a single column lattice, with a switch
assigned to each literal of C. Since this one column lattice must be composed with
the previous two column ones, we can extend it with a second column, identical to
the first one. Observe that each of the n′ literals in PA occurs in exactly one subset
of the partition, and therefore in exactly one row of the lattice.

To compose the sublattices and build the overall lattice representing A, we can
exploit the particular structure of the sublattice for C to save padding rows of 1s.
Indeed, thanks to the presence of the two identical columns, the two switches on
each row of the sublattice for C are controlled by the same Boolean literal. Thus,
each single row can be directly inserted between two sublattices representing EXOR
factors, as the repeated literal allows to extend any accepting path that reaches the
bottom of the first sublattice to the top of the other sublattice, whenever the literal
gets the value 0 (i.e., its complement is true). In other words, the sublattice for C
is split and each row is inserted between two sublattices for the other subsets of
PA, in order to save padding rows of 1s. Now observe that to join the ` sublattices
representing the subsets of PA other than C, we would need ` − 1 padding rows
of 1s, that can be all saved if C contains enough literals, i.e., if c ≥ `− 1. In this
case, the overall number of rows is given by the number n′ of literals occurring in
the partition PA. Otherwise, if c < `− 1, we must insert `− 1− c padding rows of
1s.

Applying the construction described in this theorem to our running example
χA = (x1 ⊕ x3) · (x2 ⊕ x4) · x5 · (x1 ⊕ x8), we get the lattice of size 12 depicted
in Figure 5.10 (a). Observe that we do not need the two padding rows of 1s after
and before the row whose switches are controlled by the same Boolean literal x5,

5.4. INTERNAL COMPOSITION 81

x8

x4

x1

x3

x4

x2

x1

x2

x3

x5

x8

x5

x4

x3

x8

x4

x2

x3

x2

x8

x5

x1

x5

x1

x3

x1

x5

x8

x3

x1

x8

x5

x4

x2

x4

x2

(a) (b)

Figure 5.10: Lattice implementations of the function χA = (x1⊕x3) · (x2⊕x4) ·x5 · (x1⊕x8): (a)
lattice derived applying Theorem 5.4.3; (b) lattice synthesized with the algorithm described in [25].

x3 x4 x1 x5 x6 x7 x8x2

x3 x4 x1 x5 x6 x7 x8x2

x9 x10

x9 x10

1

1

Figure 5.11: Left-to-right lattice implementation of the function χA = x1x2(x3 ⊕ x4) · (x5 ⊕ x6) ·
(x7 ⊕ x8) · (x9 ⊕ x10).

and that the number of rows is equal to the number of distinct variables occurring in
the characteristic function χA. Figure 5.10 (b) shows the lattice of size 24 for χA,
obtained using the synthesis algorithm described in [25]. The method based on SAT,
described in [26], synthesizes a lattice of size 12, equivalent to the one obtained
applying Theorem 5.4.3.

Now, consider the affine space χA = x1x2(x3 ⊕ x4) · (x5 ⊕ x6) · (x7 ⊕ x8) ·
(x9 ⊕ x10), corresponding to the partition PA = {{0, x1, x2}, {x3, x4}, {x5, x6},
{x7, x8}, {x9, x10}}. In this example, c < ` − 1, as c = 2 and ` = 4. Thus,
the lattice for χA, built applying Thereom 5.4.3, contains a padding row of 1s, in
addition to the n′ = 10 rows associated to the literals occurring in PA, as shown in
Figure 5.11 for a lattice with left-to-right connectivity.

With the construction described in Theorem 5.4.3, it is possible to derive lattices
more compact than those synthesized with the method presented in [25], with a gain
in area that increases with the number ` of subsets in the partition associated to the
affine space A. Consider for instance an affine space described by exactly ` EXOR
of two literals, with no literal in common. Applying our method, we can synthesize

82 CHAPTER 5. DECOMPOSITION METHODS

a lattice of area (2 `+ `− 1)× 2 = 6 `− 2, while the algorithm proposed in [25]
would synthesize a lattice of area 2` × 2 ` = 2`+1`, since the minimal SOP forms
for this affine space and for its dual contain 2` and 2 ` products, respectively.

In general, the affine subspaces containing EXOR of more than two literals
in their characteristic function, have a more complex structure, which cannot be
simply described with a partition of the input variables. In this case, we can build
a lattice implementation composing the lattices derived for each EXOR factor, or
group of EXOR factors, in the characteristic function χA of the given affine space
A. More precisely, we can implement a lattice representing the product of the
single literals and of the EXOR factors of two literals occurring in χA applying
Theorem 5.4.3, and compose it with the lattice implementations of the other EXOR
factors. Moreover, we can use the recursive method developed in [25] for the
specific case of the parity function, to implement an EXOR of m literals with a
lattice of area m × 2m−1, instead of the general method that would synthesize a
lattice of dimension 2m−1×2m−1. Finally, we can use the rows controlled by single
literals to join the sublattices of the different EXOR factors, in place of the padding
rows of 1s.

5.4.4 Experimental Results

In this section we report the experimental results obtained by applying the decom-
position with lattices described in Sections 5.4.1, 5.4.2 and 5.4.3. The experiments
have been run on a machine with two AMD Opteron 4274HE for a total of 16
CPUs at 2.5 GHz and 128 GByte of main memory, running Linux CentOS 6.6.
The benchmarks (in PLA form) are taken from LGSynth93 [82]. We considered
each output as a separate Boolean function. Due to the limited space available, we
report in the following only a significant subset of the functions as representative
indicators of our experiments.

In order to evaluate the utility of our approach, we compare our results with the
ones obtained by the methods presented in [25] and in [26]. We used ESPRESSO

to implement the method described in [25], and a collection of Python scripts for
computing minimum-area lattices by transformation to a series of SAT problems, to
simulate the results reported in [26].

P-circuits and EP-SOP

The algorithms for P-circuit and EP-SOP decomposition have been implemented
in C, using the CUDD library for OBDDs [97, 98, 99, 100] to represent Boolean
functions, and BREL [101] to solve Boolean relations, as detailed in [78, 79]. For
the P-circuit decomposition model, we evaluate and report the results for both
projection function p = 0, using xi = x0, i.e. we decompose with respect to

5.4. INTERNAL COMPOSITION 83

the first input variable of each benchmark, and for p = xj , using p = x1, that
is we decompose with respect to the subspace x0 ⊕ x1 described by the first two
variables. This choice of variables is arbitrary, as the main objective of this set
of experiments is to evaluate how decomposition techniques allow to mitigate the
cost of implementing switching lattices. However, we recall here that P-circuit
decomposition should be performed with respect to critical signal that should be
pushed closer to the outputs, i.e., we should choose as xi the signal with the highest
switching activity (to decrease power consumption), or with higher delay; on the
other hand, the choice of the function p should be driven by other considerations,
for instance area reduction.

EP-SOP decomposition, originally introduced mainly for area minimization, is
performed in this experiments with respect to the pair of variables appearing together
most frequently among the products of a minimal SOP for the target function, as
suggested in [79].

In Table 5.1 we report dimensions and areas of lattices, in Table 5.2 we report
simulation times. Each row of the tables lists the results for any separate output
function of the benchmark circuit.

More precisely, in Table 5.1, the first column reports the name and the number
of the considered output of each instance. The following columns report dimension
(X × Y) and area (Area = X · Y) of lattices for each method. In particular, the
first group refers to the synthesis of the lattices, as described in [25] (columns
2 and 3) and in [26] (columns 4 and 5) without any decomposition; the second
group refers to the synthesis of the lattices, as described in [25] (columns 6 and 7)
and in [26] (columns 8 and 9), based on the P-circuit scheme decomposition with
p = 0; the third group refers to the synthesis of the lattices, as described in [25]
(columns 10 and 11) and in [26] (columns 12 and 13), based on the P-circuit scheme
decomposition with p = xj ; finally, the last group refers to the synthesis of the
lattices, as described in [25] (columns 14 and 15) and in [26] (columns 16 and 17)
based on the EP-SOP decomposition. For each function, we bolded the best area.
We marked with − all cases where the synthesis of a non-decomposed lattice is
stopped.

Moreover, in some cases the method proposed in [26] fails in computing a result
in reasonable run time. For this reason, we set a time limit (equal to ten minutes) for
each SAT execution; if we do not find a solution within the time limit, the synthesis
is stopped. In the synthesis of sublattices, whenever [26] is stopped, we use the
respective sublattice synthesized with [25], because without a sublattice it would be
impossible to complete the synthesis of the overall decomposed lattice. We marked
these cases with ?. Note that, for many benchmarks, the method in [26] did not
find a solution within the fixed time limit for at least one sublattice, and had to be
replaced with [25]. We also note that some benchmarks (e.g., exam(5) or mp2d(9))

84 CHAPTER 5. DECOMPOSITION METHODS

Table 5.1: Proposed lattice sizes for standard benchmark circuits: a comparison of the proposed
method with the results presented in [25] and in [26]. All cases where the SAT-based synthesis of a
non-decomposed lattice (columns 4 and 5) is stopped after 10 minutes are marked with −. Results for
decomposed lattices are marked with ? when SAT-based synthesis [26] is stopped after 10 minutes
and replaced with [25].

Standard Synthesis Decomp. with p = x0 Decomp. with p = x0 ⊕ x1 Decomp. EP-SOP
[25] [26] [25] [26] [25] [26] [25] [26]

X×Y A X×Y A X×Y A X×Y A X×Y A X×Y A X×Y A X×Y A
adr4(1) 36×36 1296 − − 37×19 703 37×19 703? 37×21 777 37×21 777? 30×21 630 25×19 475?

alu2(2) 11×10 110 7×3 21 13×7 91 10×6 60 14×8 112 11×8 88 12×11 132 8×6 48?

alu2(5) 14×13 182 − − 16×10 160 16×10 160? 17×10 170 17×10 170? 15×14 210 15×14 210?

alu2(6) 4×4 16 4×3 12 4×4 16 4×3 12? 4×4 16 4×3 12? 4×7 28 4×6 24?

alu3(0) 5×4 20 − − 7×4 28 7×4 28 8×6 48 8×6 48 7×5 35 7×5 35
alu3(1) 8×7 56 4×3 12 10×5 50 8×5 40 11×7 77 9×7 63 9×8 72 6×6 36?

b12(0) 4×6 24 3×4 12 4×6 24 3×4 12? 6×7 42 6×7 42? 5×7 35 4×6 24?

b12(1) 7×5 35 4×4 16 7×5 35 4×4 16? 8×7 56 6×7 42? 8×6 48 5×6 30?

b12(2) 7×6 42 4×4 16 8×6 48 8×5 40? 11×7 77 11×6 66 10×8 80 10×7 70
bcc(5) 9×27 243 − − 9×26 234 9×26 234? 10×23 230 10×23 230? 10×20 200 10×20 200?

bcc(7) 11×31 341 − − 12×29 348 12×29 348? 12×28 336 12×28 336? 12×26 312 12×26 312?

bcc(8) 12×31 372 − − 13×29 377 13×29 377? 13×27 351 13×27 351? 13×24 312 13×24 312?

bcc(12) 11×31 341 − − 11×30 330 11×30 330? 12×28 336 12×28 336? 12×25 300 12×25 300?

bcc(27) 19×38 741 − − 20×33 660 20×33 660? 20×31 620 20×31 620? 21×29 609 21×29 609?

bcc(43) 10×20 200 − − 11×16 176 11×16 176? 10×22 220 10×22 220? 12×20 240 12×20 240?

bcd.div3(1) 3×4 12 3×3 9 5×4 20 5×4 20 5×5 25 5×5 25? 4×5 20 4×5 20?

bcd.div3(2) 3×4 12 3×3 9 5×4 20 5×4 20 7×5 35 7×5 35 4×5 20 4×5 20?

bcd.div3(3) 3×5 15 3×4 12 4×4 16 4×4 16? 5×5 25 5×5 25? 5×4 20 5×4 20?

bench1(2) 24×45 1080 − − 33×29 957 33×29 957? 31×27 837 31×27 837? 31×23 682 31×22 682?

bench1(3) 16×31 496 − − 20×18 360 21×18 378? 23×22 506 23×22 506? 21×17 357 21×17 357
bench1(5) 2×50 1350 − − 32×28 896 32×28 896? 28×22 616 28×22 616? 31×26 806 31×26 806?

bench1(6) 21×35 735 − − 26×24 624 26×24 624? 28×30 840 28×30 840? 26×26 676 26×26 676?

bench1(7) 21×43 903 − − 27×20 540 27×20 540? 28×28 784 28×28 784? 29×30 870 29×30 870?

bench1(8) 24×44 1056 − − 31×26 806 31×26 806? 29×28 812 29×28 812? 26×24 624 25×24 600?

bench(6) 4×8 32 3×4 12 6×3 18 6×3 18 5×5 25 5×5 25? 8×6 48 8×6 48
br2(4) 8×18 144 − − 8×18 144 8×18 144? 8×20 160 8×20 160? 10×15 150 10×15 150?

br2(5) 4×14 56 − − 4×14 56 4×14 56? 4×16 64 4×16 64? 6×13 78 6×13 78?

br2(6) 5×16 80 − − 5×16 80 5×16 80? 5×18 90 5×18 90? 7×13 91 7×13 91?

clpl(2) 2×2 4 2×2 4 3×2 6 3×2 6? 7×5 35 7×5 35 5×4 20 5×4 20?

clpl(3) 6×6 36 6×3 18 9×6 54 9×6 54? 10×8 80 10×8 80? 10×9 90 10×6 60
clpl(4) 5×5 25 5×3 15 8×5 40 8×5 40? 9×7 63 9×7 63? 9×8 72 9×6 54
co14(0) 14×92 1288 − − 15×80 1200 15×80 1200? 15×71 1065 15×71 1065? 15×67 1005 15×67 1005
dc1(0) 4×4 16 3×3 9 5×4 20 4×4 16? 5×6 30 5×6 30? 4×6 24 4×6 24
dc1(1) 2×3 6 2×3 6 3×3 9 3×3 9? 5×6 30 5×6 30? 5×6 30 5×6 30
dc1(4) 4×5 20 3×4 12 5×4 20 5×4 20? 7×6 42 7×6 42 7×6 42 7×6 42
dc1(6) 3×3 9 3×2 6 4×2 8 4×2 8? 7×5 35 7×5 35 3×6 18 3×5 15
dc2(4) 9×10 90 4×5 20 10×9 90 8×5 40? 13×12 156 9×7 63? 10×11 110 8×7 56?

dc2(5) 6×6 36 2×6 12 7×7 49 5×6 30? 10×8 80 6×7 42? 6×9 54 2×9 18?

dk17(0) 2×8 16 2×6 12 4×4 16 4×4 16? 5×6 30 5×6 30? 4×4 16 4×4 16
dk17(1) 2×8 16 2×6 12 4×4 16 4×4 16? 5×6 30 5×6 30? 4×4 16 4×4 16
dk17(3) 3×11 33 2×7 14 4×7 28 6×3 18? 7×7 49 7×6 42? 9×6 54 9×6 54
dk17(4) 3×9 27 2×7 14 6×4 24 6×4 24 8×6 48 8×6 48 6×7 42 6×6 36
dk27(6) 1×2 2 1×2 2 1×2 2 1×2 2? 2×5 10 2×5 10? 1×3 3 1×3 3?

ex4(4) 6×17 102 − − 6×17 102 6×17 102? 6×17 102 6×17 102? 6×20 120 6×20 120?

ex4(5) 45×35 1575 − − 45×35 1575 45×35 1575? 45×35 1575 45×35 1575? 45×38 1710 45×38 1710?

ex5(31) 8×4 32 6×3 18 10×4 40 10×3 30 11×5 55 11×5 55 9×7 63 7×6 42?

ex5(32) 10×4 40 6×4 24 13×3 39 13×3 39 13×5 65 13×5 65 13×5 65 13×5 65?

ex5(33) 7×3 21 − − 7×3 21 7×3 21? 11×5 55 11×5 55 8×6 48 8×6 48?

ex5(36) 8×2 16 8×2 16 10×2 20 10×2 20 12×4 48 12×4 48 13×4 52 13×4 52
ex5(38) 9×4 36 6×4 24 13×3 39 13×3 39 13×5 65 13×5 65 13×5 65 13×5 65
ex5(39) 8×2 16 − − 11×3 33 11×3 33 10×4 40 10×4 40? 11×5 55 11×5 55
ex5(40) 12×6 72 − − 15×5 75 13×4 52 17×7 119 15×6 90? 13×9 117 13×9 117?

ex5(43) 14×8 112 − − 17×6 102 13×4 52? 17×8 136 13×6 78? 16×14 224 16×14 224?

exam(5) 6×11 66 − − 7×6 42 6×5 30? 8×7 56 7×7 49? 7×9 63 8×6 48?

exam(9) 30×59 1770 − − 38×30 1140 33×30 990? 42×29 1218 42×29 1218? 39×47 1833 39×47 1833?

max128(5) 17×14 238 − − 19×9 171 14×5 70 20×12 240 13×7 91? 18×9 162 11×6 66?

max128(8) 10×5 50 − − 11×4 44 10×4 40? 9×6 54 9×6 54? 9×5 45 9×5 45?

max128(17) 25×26 650 − − 26×15 390 26×15 390? 25×16 400 25×16 400 18×11 198 11×7 77
mp2d(6) 6×10 60 − − 6×10 60 3×7 21? 7×11 77 5×10 50? 7×11 77 5×10 50?

mp2d(9) 8×6 48 − − 9×6 54 9×4 36? 11×7 77 11×7 77? 10×7 70 10×6 60
mp2d(10) 3×6 18 3×4 12 4×5 20 4×5 20? 3×7 21 2×7 14? 5×7 35 5×7 35?

z4(0) 15×15 225 4×5 20 16×11 176 6×6 36? 18×6 108 10×6 60 16×16 256 7×7 49?

z4(1) 28×28 784 − − 30×16 480 10×7 70 22×16 352 10×8 80 22×19 418 24×23 552?

Z5xp1(2) 11×12 132 − − 13×7 91 11×5 55? 13×9 117 13×7 91? 13×8 104 11×7 77?

Z5xp1(3) 18×18 324 − − 19×11 209 10×6 60? 19×12 228 13×7 91? 14×13 182 13×6 78?

5.4. INTERNAL COMPOSITION 85

Table 5.2: Proposed lattice synthesis times for standard benchmark circuits: a comparison of the
proposed method with the results presented in [25] and in [26]. All cases where the SAT-based
synthesis of a non-decomposed lattice (column 3) is stopped after 10 minutes are marked with −.

Standard Synthesis p = x0 p = x0 ⊕ x1 EP − SOP
[25] [26] [25] [26] [25] [26] [25] [26]
t(s) t(s) t(s) t(s) t(s) t(s) t(s) t(s)

adr4(1) 0 − 1.14 1.14 0 0 2.87 2.59
alu2(2) 0 5420.91 0.95 2.02 0 53.012 1.36 1470.75
alu2(5) 0 − 2.87 2.87 0 0 4.63 4.61
alu2(6) 0 5420.91 2.98 4.702 0 1.734 4.89 6.642
alu3(0) 0 − 0.03 0.03 0 0 0.07 0.07
alu3(1) 0 1.749 0.18 0.923 0 0.759 0.58 5.7
b12(0) 0 2.485 0 0.872 0 0 0.01 0.197
b12(1) 0 94.477 0.01 3.292 0 1.841 0.02 1271
b12(2) 0 309.477 0.11 4.672 0 4.505 0.63 5881
bcc(5) 1.09 − 0.39 0.4 0 0 3.51 3.51
bcc(7) 1.09 − 0.58 0.54 0.03 0.03 3.63 3.63
bcc(8) 1.09 − 0.66 0.65 0.03 0.03 1.09 3.7
bcc(12) 1.09 − 0.98 0.97 0 0 4.13 4.12
bcc(27) 1.09 − 2.35 2.32 0.03 0.03 12.55 12.36
bcc(43) 1.09 − 11.51 11.62 0 0 58.65 58.43
bcd.div3(1) 0 0.331 0.02 0.03 0 0 0.05 0.05
bcd.div3(2) 0 0.315 0.05 0.06 0 0 0.09 0.09
bcd.div3(3) 0 0.599 0.08 0.09 0 0 0.11 0.1
bench1(2) 0.04 − 13.45 13 0.332 0.03 11.73 11.71
bench1(3) 0.04 − 15.73 19.8 0 3.72 14.16 83.2
bench1(5) 0.04 − 23.76 23.88 0 0 20.56 20.58
bench1(6) 0.04 − 27.1 27.25 0 0 23.74 23.75
bench1(7) 0.04 − 30.21 32.547 0 0 27.08 27.07
bench1(8) 0.04 − 33.92 34.08 0 0 30.2 32.097
bench(4) 0 1.546 0.41 0.41 0 0.115 0.76 1.094
bench(5) 0 0 0.44 0.44 0 0 0.83 0.83
bench(6) 0 2.668 0.51 0.51 0 0 1.1 1.11
br2(4) 0 − 0.07 0.08 0 0 0.19 0.19
br2(5) 0 − 0.09 0.1 0 0 0.26 0.25
br2(6) 0 − 0.11 0.13 0 0 0.31 0.3
clpl(2) 0 0 0.24 0.23 0 0 0.44 0.42
clpl(3) 0 2953 0.96 10.078 0 9.127 1.19 308.15
clpl(4) 0 52.9 1.46 2.324 0 0.86 1.71 10.258
co14(0) 0 0.98 0.97 0 0 0.6 0.6
dc1(0) 0 0.413 0.01 0.207 0 0 0.04 0.04
dc1(1) 0 0 0.02 0.02 0 0 0.06 0.06
dc1(4) 0 0.585 0.04 0.04 0 0 0.14 0.14
dc1(6) 0 0.198 0.06 0.06 0 0 0.35 0.17
dc2(4) 0 1452.36 0.44 15.284 0 117.233 1.42 16.69
dc2(5) 0 35.305 0.52 2.424 0 5.72 1.54 45.741
dk17(0) 0 58.086 0.07 0.07 0 0 0.05 0.05
dk17(1) 0 56.658 0.14 0.14 0 0 0.1 0.1
dk17(3) 0 890.945 0.48 74.169 0 0.92 0.58 0.58
dk17(4) 0 788.761 0.66 0.67 0 0 0.68 1166
dk27(6) 0 0 0.11 0.13 0 0 0.08 0.08
ex4(4) 0.07 − 2.98 3 0 0 5.24 5.24
ex4(5) 0.07 − 8.34 8.36 0 0 10.69 10.68
ex5(31) 0.02 14.408 0.41 1.967 0 1.544 0.41 43.511
ex5(32) 0.02 2192.91 0.94 0.91 0 0 0.92 0.91
ex5(33) 0.02 − 1.23 1.21 0 0 1.24 1.23
ex5(36) 0.02 0.02 2.38 2.39 0 0 2.73 2.72
ex5(38) 0.02 1027.5 3.38 3.39 0 0 3.84 3.83
ex5(39) 0.02 − 3.83 3.84 0 0 4.32 4.31
ex5(40) 0.02 − 4.6 7.348 0 252.83 5.11 5.1
ex5(43) 0.02 − 6.18 96.164 0 819.055 6.96 6.94
exam(5) 0.03 − 4.89 40.155 0 67.401 4.94 16.151
exam(9) 0.03 − 11.19 7113.73 0 0 10.84 11.642
max128(5) 0 − 2.24 5266.51 0 10602.8 2.27 400.61
max128(8) 0 − 2.84 7.372 0 0 3.19 3.22
max128(17) 0 − 8 9.503 0 0 8.63 876.63
mp2d(6) 0 − 2.18 3164.15 0 433.23 2.62 424.213
mp2d(9) 0 − 2.37 2.847 0 0 2.99 3.05
mp2d(10) 0 1.704 2.37 2.4 0 0.327 3.01 3.279
z4(0) 0 1888.26 0.89 7.31 0 5.358 0.97 274.141
z4(1) 0 − 2.51 7329.12 0 6816.19 2.22 10.065
Z5xp1(2) 0 − 0.55 46.701 0 200.352 0.72 8.902
Z5xp1(3) 0 − 0.58 2279.54 0 9393.85 1.79 195.769

86 CHAPTER 5. DECOMPOSITION METHODS

show an overall area reduction with respect to the decomposed lattice synthesized
only with [25], even if only one or two sublattices are synthesized with [26].

The first column of Table 5.2 reports the name and the number of the considered
output of each instance. The following columns report the execution times for each
considered method. The time values include the time for the decomposition plus the
time for the synthesis of lattices used to compose the final lattice. For each function,
we bolded the best execution time. Note that the execution times for the method
in [25] are often equal to zero. To synthesize the lattices we used ESPRESSO that
has a time granularity of 0.01 s; smaller synthesis-times are indicated as zero.

In Table 5.3 we summarize the improvements of synthesis with decomposition
vs. synthesis without decomposition. Every line of the table shows a different type
of decomposition. The first column shows the considered decomposition scheme.
The second and third columns report the percentages of lattices with smaller area
with respect to the results reported in [25] and in [26], respectively. Columns four
and five report the average area gain of the lattices that have a smaller area after the
decomposition. Columns six and seven show the percentages of lattices taking less
time for synthesis (not necessary with a more compact area); finally the last two
columns report the average gain of execution time. The negative values of time gain
in column eight are due to the poor granularity of ESPRESSO time. The synthesis
in [25] is performed using ESPRESSO, and in many cases it takes less than 0.01 s.
There are negative values because the time for decomposition is usually less than
few seconds, and therefore it has a negligible impact on total synthesis time with
respect to area gain.

By comparing the two projection function p = 0 and p = xj for the P-circuit
decomposition model, we observe that we obtain better area results considering
the p = 0 choice, at the expense of a limited increase in the run time needed to
decompose the input functions.

By comparing our results with the ones obtained in [26], we obtain a higher
percentage of benchmarks with a smaller area by applying the EP-SOP circuit
decomposition scheme (35% of smaller area, in contrast to 15% and 13% obtained
with the P-circuit scheme), with an average gain of about 33%. The difference
between P-circuit-based and EP-SOP-based synthesis results is only partially ex-
plained by the fact that two decomposition methods differ in the way they handle
crossing cubes. Most likely, this difference is a consequence of the fact that the
two decompositions are performed with respect to different input variables. In
particular, EP-SOP decomposition is performed with respect to the pair of variables
appearing together most frequently among the products of a minimal SOP for the
target benchmark, while for P-circuits we used the first two variables x0 and x1.

5.4. INTERNAL COMPOSITION 87

Table 5.3: Results of the decomposition. The values indicate the improvement with respect to the
standard synthesis methods. When [26] does not complete, it is compared with [25].

Smaller area Average area gain Less time Average time gain

[25] [26] [25] [26] [25] [26] [25] [26]

p = x0 34% 15% 25% 30% 6% 25% -2900% 53%
p = x0 ⊕ x1 27% 13% 22% 27% 53% 50% 98% 57%
EP − SOP 27% 35% 28% 33% 2% 3% -4900% 90%

D-Reducible functions

EXOR factors are considered technologically feasible if they contain a bounded
number of literals, typically 2 [95]. For this reason, in our experiments we have
considered only D-reducible functions decomposed with respect to affine subspaces,
not necessarily the smallest, represented by the product of single literals and EXOR
factors of two literals. In the following, we will refer to these functions as 2D-
reducible functions.

The lattice implementation of the characteristic functions of the affine subspaces
have been derived applying Theorem 5.4.3, as they are described by products of
EXOR factors of at most two literals.

In Table 5.4 for each benchmark we compare the area of the lattice for the plain
benchmark with the area of the lattice built applying the decomposition based on
the D-reducibility property (see Figure 5.9). In more detail, the first column reports
the name of the benchmarks. The following four columns report the dimensions
(X ,Y), the area (Area) and the synthesis time (Time, in seconds) of plain lattices.
The other columns report the dimensions of the lattices obtained applying the
decomposition scheme. In particular we report the dimensions of the overall lattice
and the synthesis time (Xtot, Ytot, Areatot, Time), the dimension of the lattice
implementation of the affine spaces (Xχ, Yχ, Areaχ), and the dimension of the
projection of the benchmark on the affine space (XZ , YZ , AreaZ). In column eight
we have bolded the values where we obtain a more compact area. In the last row we
report the sum of the corresponding columns.

Results demonstrate that the lattice synthesis of 2D-reducible Boolean functions
allows to obtain a more compact area in 15% of the considered cases, with an
average gain of about 24%. In particular, considering only the subset of functions
whose affine subspace description contains at least one EXOR of two literals (i.e.,
not only single literals), we obtain a more compact area in about 11% of the cases,
with an average gain of about 40%. Moreover, our results show that for 2D-reducible
functions we can reduce the synthesis time of the lattices of about 50%, with respect
to the time needed for the synthesis of plain lattices. This is due to the fact that
the proposed approach is based on a polynomial-time computation of the lattice

88 CHAPTER 5. DECOMPOSITION METHODS

Table 5.4: Lattice sizes for 2D-reducible benchmark circuits: a comparison of plain and
decomposed lattices.

[25] 2D-Red
Benchmark X Y Area T ime Xtot Ytot Areatot Time Xχ Yχ Areaχ XZ YZ AreaZ

addm4(0) 9 12 108 0.32 3 8 24 27.4 1 3 3 3 5 15
addm4(1) 22 23 506 87.14 22 23 506 24.42 1 1 1 22 22 484
addm4(2) 33 36 1188 92.85 33 36 1188 1089 1 1 1 33 35 1155

amd(3) 4 5 20 446.04 3 7 21 36.79 1 1 1 3 6 18
amd(4) 10 14 140 723.56 10 14 140 55.98 1 1 1 10 13 130
amd(5) 6 2 12 37.72 2 8 16 1 2 6 12 2 2 4
amd(6) 6 3 18 1686.65 3 8 24 0.34 1 5 5 3 3 9
amd(7) 5 5 20 88.57 3 6 18 4.13 1 1 1 3 5 15

exam(4) 9 25 225 78.26 9 20 180 1286.98 1 2 2 9 18 162
exp(6) 5 4 20 1118.05 3 7 21 16.1 1 2 2 3 5 15

exp(10) 6 12 72 3361.18 6 5 30 294 1 2 2 5 4 20
exp(11) 6 12 72 2058.63 5 8 40 248 2 4 8 5 3 15
gary(2) 12 14 168 0.03 12 15 180 152.15 2 2 4 12 12 144
gary(3) 5 12 60 253.35 5 12 60 76.3 1 2 2 5 10 50
in2(6) 39 36 1404 0.1 39 35 1365 0.1 1 2 2 39 33 1287
in2(7) 17 26 442 0.03 17 26 442 0.06 1 1 1 17 25 425
in2(8) 27 31 837 0.06 27 31 837 0.08 1 1 1 27 30 810
in2(9) 40 36 1440 0.11 40 36 1440 0.11 1 1 1 40 35 1400
in5(6) 5 4 20 1129 3 7 21 1.03 1 3 3 4 4 16
m2(5) 8 9 72 1222.7 4 6 24 975 1 1 1 4 5 20

t1(0) 6 9 54 1409.76 3 8 24 1416.78 1 1 1 3 7 21
t1(1) 7 9 63 236.07 7 9 63 831.62 1 1 1 7 8 56
t1(3) 3 4 12 0.97 3 5 15 0.33 1 1 1 3 4 12
t1(4) 3 3 9 0.31 3 4 12 0.04 1 1 1 3 3 9
t1(5) 5 3 15 12.77 3 5 15 10.24 1 1 1 3 4 12

6997 14044.23 6706 6458

5.5. EXTERNAL COMPOSITION 89

implementation of the affine spaces, and this is useful to reduce the dimension of
the considered problem, allowing to reduce the overall time needed to compute the
solution.

5.5 External Composition

There are situations where internal composition cannot be directly applied. For
instance, consider a function f depending on n binary variables defined as

f(x1, . . . , xn) = g(y1, . . . , yk) ,

where (i) g is a Boolean function depending on k < n variables; (ii) for any i,
yi = hi(Si), Si ⊆ {x1, . . . , xn}, and hi is a Boolean function depending on |Si|
variables. Ideally, we would like to derive a lattice implementation for f substituting
in a lattice implementation for g each occurrence of a variable yj with a lattice
implementation of the corresponding function hj . This task, however, requires some
care to be performed correctly.

Consider a very simple case: f(x1, x2, x3, x4) = (x1 ⊕ x2)(x3 ⊕ x4), that can
be seen as a functional composition f = g(y1, y2) where g is simply a conjunction
of two variables, and y1 and y2 are EXORs of two variables. Then, we can build a
lattice for f (Figure 5.12(c)) starting from the very simple 2×1 lattice representation
of g (Figure 5.12(a)), and substituting y1 and y2 with the lattice representations of
(x1 ⊕ x2) and (x3 ⊕ x4), which are shown in Figure 5.12(b). Note that we need to
insert a row of 1s between the two sublattices, so that we can extend any accepting
path in the sublattice on top, with any accepting path in the bottom sublattice. The
overall lattice for f has size 5× 2. Notice that using the lattice synthesis method
presented in [25] directly on f , we would get a lattice of size 4× 4.

Now, consider the function f(x1, x2, x3, x4, x5) = (x1⊕x2)x3 + (x2⊕x5)x4.
Given a lattice for the function g = y1y3 + y2y4, we could try to build a lattice for
f by simply substituting the occurrences of y1 and y2 with sublattices for (x1 ⊕ x2)
and (x2 ⊕ x5), and the occurrences of y3 and y4 with x3 and x4, respectively. Note
that we need to duplicate some variables in order to get a rectangular lattice, besides
inserting a padding column of 0, as shown in Figure 5.13. Indeed, without the
padding column, the lattice would contain a top-to-bottom path on the assignment
11100, whereas f(1, 1, 1, 0, 0) = 0. As a final example, let us consider the parity
function of 4 variables

f(x1, x2, x3, x4) = x1 ⊕ x2 ⊕ x3 ⊕ x4 ,

that can be interpreted as f = g(y1, y2) = y1 ⊕ y2, where y1 = x1 ⊕ x2 and
y2 = x3 ⊕ x4. If we derive a lattice for f using this decomposition, we need to

90 CHAPTER 5. DECOMPOSITION METHODS

(a)

x2

x1

x2

x1y1

y2 x4

x3

x4

x3

(b)

x2

x1
x2

x1

x4

x3
x4

x3

(c)

1 1

Figure 5.12: (a) Lattice implementation of g = y1y2; (b) lattices for y1 = x1 ⊕ x2 and
y2 = x3 ⊕ x4; (c) final lattice for f = (x1 ⊕ x2)(x3 ⊕ x4)

(a)

x2

x1

x2

x1y1

y3 x5

x2

x5

x2

(b)

x2

x1
x2

x1

(c)

y2

y4 x3x3

0

0

0

x5

x2
x5

x2

x4x4

Figure 5.13: (a) Lattice implementation of g = y1y3 + y2y4; (b) lattices for y1 = x1 ⊕ x2
and y2 = x2 ⊕ x5; (c) final lattice for f(x1, x2, x3, x4, x5) = (x1 ⊕ x2)x3 + (x2 ⊕ x5)x4.

(a)

x2

x1

x2

x1y1

y2 x4

x3

x4

x3

(b)

y1

y2

x2

x1

x2

x1

1 1

x4

x3

x4

x3

x2

x1

x2

x1

1 1

x4

x3

x4

x3

0

0

0

0

0

(c)

Figure 5.14: (a) Lattice implementation of g = y1 ⊕ y2; (b) lattices for y1 = x1 ⊕ x2 and
y2 = x3 ⊕ x4; (c) final lattice for f(x1, x2, x3, x4, x5) = x1 ⊕ x2 ⊕ x3 ⊕ x4.

5.5. EXTERNAL COMPOSITION 91

x2

x1

x2

x1

x4

x3

x4

x3

y1 y1

y2 y2

x2

x1

x2

x1

x4

x3

x4

x3

y1 y1

y2 y2

Figure 5.15: Multiple lattice implementation of f(x1, x2, x3, x4, x5) = x1 ⊕ x2 ⊕ x3 ⊕ x4.

appropriately insert padding rows and columns as depicted in Figure 5.14: the
padding rows of 1s are needed to join the accepting paths in the sublattices on top,
implementing y1 and y1 with the accepting paths in the bottom sublattices for y2
and y2; while the column of 0s is needed to avoid intersections between accepting
paths on the left and on the right side of the overall lattices. Without the column of
0s, the lattice in Figure 5.14 would contain a top-to-bottom path e.g., on the input
assignment 0110. With the padding rows and columns, the size of the overall lattice
becomes 5 × 5, that is not competitive with the size of an optimal lattice for the
parity of 4 variables, which is 3× 5 [102].

A possible strategy to overcome some of these problems could be a different
lattice composition technique, that we could call external composition. The idea is
simply to use multiple nanoarrays, i.e., multiple lattices and to connect the output
of a lattice with one or more literals occurring in another lattice as depicted in
Figure 5.15. Observe that the overall lattice composition in this picture implements
the parity function of 4 variables as a 2×2 lattice representing g = y1⊕y2, connected
to two external lattice implementations for y1 = x1 ⊕ x2 and y2 = x3 ⊕ x4. In
this way, we get a multiple lattice implementation of overall size 12, smaller than
an optimal standard lattice for the parity of four variables, whose size is 15 [102].
As this simple example clearly shows, multiple lattices allow to reduce the number
of switches and thus the overall dimension of the lattice. However, the gain in the
dimension comes at the expense of an increase in the interconnection cost.

5.5.1 Autosymmetric functions

The lattice implementation of autosymmetric functions can be derived exploiting
the external lattice composition discussed in the previous Session 5.5. Recall from

92 CHAPTER 5. DECOMPOSITION METHODS

fk

yj

y1 = EXOR (X1)
y1

y1

yi

y2 = xt yi

y1

(a) (b)

...

...

yi = EXOR (Xi)

...
yj = xt

xt

...
fk

yj

y1 = EXOR (X1)
y1

y1

yi

y2 = xt yi

y1

(a) (b)

...

...

yi = EXOR (Xi)

...
yj = xt

xt

...

Figure 5.16: Multiple lattice implementation of an autosymmetric function: (a) lattice
implementation of the reduction equations; (b) lattice implementation of the restriction fk.

Section 5.3, that a k-autosymmetric function f can be decomposed as

f(x1, . . . , xn) = fk(y1, . . . , yn−k) ,

where (i) the restriction fk depends on n − k binary variables, and has |f |/2k

points only; and (ii) each yi is defined by a reduction equation, i.e., an EXOR
of a subset of the original variables xis: yi = EXOR(Xi), Xi ⊆ {x1, . . . , xn}.
Therefore, we can build a multiple lattice implementing f composing a lattice L(fk)

for the restriction fk with n− k sublattices representing the reduction equations:
for each i, 1 ≤ i ≤ n − k, the output of the sublattice L(yi) implementing yi
is connected, possible through an inverter, to all occurrences of the literal yi in
L(fk) (see Figure 5.16). Of course, for all variables yj whose associated reduction
equation is a single variable, e.g., xt, there is no need to connect the switch to an
external lattice, but just to xt.

Since fk depends on fewer variables, and has a smaller on-set with respect to f ,
its lattice synthesis should be an easier task, and should produce a lattice of reduced
size.

5.5.2 P-Circuits

In a very similar way, we can use external lattice composition in the lattice imple-
mentation of P-circuits.

As before, the lattice obtained by internal composition of the sublattices for
f=, f 6=, and f I , contains padding rows and columns of 1s and 0s, that could be in
part avoided applying the external decomposition scheme depicted in Figure 5.17

5.5. EXTERNAL COMPOSITION 93

f = f ≠
1

f I

1

0
0

0

xi ⊕ pxi ⊕ p 00
0
0

0

1 1 11 1 1

1

f ≠f =

f Ixi ⊕p

(a) (b)

Figure 5.17: Lattice implementation of P-circuits: (a) standard lattice implementation based
on internal composition; (b) multiple lattice implementation.

(b). The main lattice is composed of three columns of two switches. The first two
columns contains switches connected to the output of external lattices implementing
the projection function (xi ⊕ p) and the cofactors f= and f 6=; the last column
contains one switch connected to the output of the external lattice implementing
f I , and one switch with constant value 1 used to connect the accepting path in the
lattice for f I to the bottom edge of the main lattice. Observe that the lattice correctly
computes the disjunctions between f I and the projections of f= and f 6=, without
the need for padding columns of 0s. This is due to the fact that the lattice contains
only two rows, and that each accepting path must contain at least two switches in the
same column, as switches are not connected diagonally. Also note that the switch
with constant value 1 can be replaced with a second switch connected to f I , at the
expense of the interconnection cost, so that the lattice does not contain switches
labelled with constant values.

The overall lattice is therefore composed by a main lattice of size 6, four external
sublattices, and one inverter, with an evident gain in the overall area.

5.5.3 D-Reducible functions

In paragraph 5.4.4 we use D-reducible functions to independently find lattice imple-
mentations for the projection fA and for the characteristic function χA of A, and
then to compose them in a single lattice in order to construct the lattice for f , as
shown in Figure 5.18 (a).

From Figure 5.18 (a) we can note that the overall lattice contains the padding
row of 1s, used to join the accepting paths of χA and fA, and some extra columns of
0s added to the lattice with fewer columns so that the final lattice has a rectangular
shape and the accepting paths for one of the two functions never reach the opposite
edge of the lattice if the other function evaluates to 0. This extra row and columns
could be avoided using the external composition scheme as depicted in Figure 5.18
(b). The main lattice now consists in only one column of two switches, one switch

94 CHAPTER 5. DECOMPOSITION METHODS

0

1 1 1 ... 1

fA fA

(a) (b)

χAχA

Figure 5.18: Lattice implementation of a D-reducible function: (a) standard lattice implementation
based on internal composition; (b) multiple lattice implementation.

is connected to the output of an external lattice implementing χA and the other
switch is connected to the output of an external lattice for fA. Since the main lattice
consists in just two switches, we do not need any padding switch between them, and
the lattice evaluates to 1 if and only if both external sublattices evaluate to 1. The
size of the overall lattice is therefore given by 2 plus the sum of the sizes of the two
sublattices, and it is smaller than the size of the lattice in Figure 5.18 (a) obtained by
standard, internal composition. Only in a few cases, e.g., when the two sublattices
for χA and fA have the same number of columns and can be joined without the row
of padding 1s, the internal composition produces a lattice of smaller area, but just
for an additive factor 2.

5.6 Experimental results

In this section we report the experimental results obtained applying the multiple
lattice implementation of autosymmetric functions described in Section 5.5.1. Since
a k-autosymmetric function fk(y1, . . . , yn−k) depends on fewer variables w.r.t.
the corresponding original function f(x1, . . . , xn), our aim is to obtain lattices of
reduced size.

The algorithms have been implemented in C, using the CUDD library for
OBDDs [100, 99, 97, 98] to represent Boolean functions, and BREL [101] to solve
Boolean relations, as detailed in [79, 78]. The experiments have been run on a
machine with two AMD Opteron 4274HE for a total of 16 CPUs at 2.5 GHz and
128 GByte of main memory, running Linux CentOS 6.6. The benchmarks are taken
from LGSynth93 [82]. We considered each output as a separate Boolean function,
for a total of 607 functions, including 53 autosymmetric functions on which we
applied the lattice implementation described in the previous sections.

To evaluate the utility of our approach, in Table 5.5 we compare the lattice syn-
thesis results obtained applying the decomposition scheme based on autosymmetry,

5.6. EXPERIMENTAL RESULTS 95

Table 5.5: Proposed lattice sizes for autosymmetric benchmark circuits: a comparison of the proposed
method with the results presented in [25] and in [26]. When the synthesis of a lattice is stopped, there
is no lattice (−). Results are marked with ? when SAT is stopped.

#yi

[25] [26]
Std. Synth. Decomposed Synthesis Std. Synth. Decomposed Synthesis

Area fk Area XOR Area tot. Area inv. Area time fk Area fk Time XOR Area XOR Time tot. Area tot. time inv.
add6(0) 1 4 1 4 5 0 4 0.021 1 0.028 4 0.024 5 0.052 0
add6(1) 1 36 9 4 14 1 15 2.561 9 0.019 4 0.028 14 0.047 1
add6(2) 1 256 64 4 69 1 - - 15 124 4 0.026 20 0.026 1
add6(3) 1 1296 324 4 329 1 - - - - 4 0.029 329? 0.029 1
add6(4) 1 5776 1444 4 1449 1 - - - - 4 0.035 1449? 0.035 1
add6(5) 1 24336 6084 4 6089 1 - - - - 4 0.026 6089? 0.26 1
adr4(1) 1 345 324 4 329 1 - - - - 4 0.025 329? 0.025 1
adr4(2) 1 1296 64 4 69 1 - - - - 4 0.027 20? 0.027 1
adr4(3) 1 256 9 4 14 1 15 2.57 9 0.019 4 0.026 14 0.045 1
adr4(4) 1 36 1 4 5 0 - - 1 0.026 4 0.031 5 0.026 0
al2(11) 1 125 60 4 64 0 - - - - 4 0.021 64? 0.057 0
alcom(5) 1 12 6 4 10 0 12 0.028 6 0.025 4 0.3 10 0.325 0
b11(5) 1 6 2 4 6 0 6 0.023 2 0.025 4 0.025 6 0.05 0
b12(6) 1 54 35 4 39 0 20 918 20 1350 4 0.027 24 1350 0
dekoder(0) 1 8 3 4 7 0 8 0.027 3 0.024 4 0.022 7 0.046 0
dekoder(1) 1 6 2 4 6 0 6 0.024 2 0.023 4 0.023 6 0.046 0
dk27(8) 1 1 1 4 5 0 1 0.021 1 0.026 4 0.024 5 0.05 0
exps(18) 3 16 7 12 19 0 12 22.2 7 0.027 12 0.067 19 0.094 0
exps(19) 6 16 7 24 31 0 16 0.03 7 0.024 24 0.137 31 0.161 0
f51m(6) 1 4 1 4 5 0 4 0.03 1 0.025 4 0.026 5 0.051 0
luc(3) 1 16 9 4 13 0 12 0.861 9 0.024 4 0.031 13 0.055 0
m1(8) 1 15 8 4 12 0 12 1.65 8 0.333 4 0.024 12 0.357 0
max1024(0) 8 56 14 32 46 0 - - 14 1.16 32 0.202 46 116 0
max1024(1) 8 324 81 32 119 6 324 0.034 24 2543 32 0.198 63 2543 7
max1024(2) 9 1216 304 36 348 8 - - 304 0.036 36 0.23 348 0.266 8
max1024(3) 9 3072 800 36 844 8 3072 0.133 - - 36 0.22 844? 0.22 8
max1024(4) 9 6806 1978 36 2023 9 6806 0.23 1978 0.07 36 0.218 2023 0.288 9
max1024(5) 9 14274 3968 36 4013 9 - - - - 36 0.221 4013? 0.221 9
newcond(1) 2 8 3 8 11 0 8 0.244 3 0.023 8 0.051 11 0.074 0
newcwp(0) 2 20 6 8 15 1 12 0.521 6 0.023 8 0.053 15 0.076 1
newcwp(1) 1 16 1 12 13 0 9 0.303 1 0.025 9 0.281 10 0.306 0
newcwp(3) 2 4 1 4 5 0 4 0.022 1 0.021 4 0.027 5 0.048 0
p82(10) 2 10 4 4 8 0 8 0.106 4 0.021 4 0.025 8 0.046 0
pope.rom(18) 3 12 5 12 17 0 10 1.45 5 0.025 12 0.07 17 0.095 0
pope.rom(32) 1 8 3 4 7 0 6 0.086 3 0.027 4 0.028 7 0.055 0
pope.rom(34) 1 8 3 4 7 0 8 1806 3 0.023 4 0.019 7 0.042 0
pope.rom(35) 1 6 2 8 10 0 6 0.077 2 0.025 8 0.05 10 0.075 0
pope.rom(41) 1 10 4 4 8 0 10 0.022 4 0.031 4 0.023 8 0.054 0
radd(0) 1 4 1 4 5 0 4 0.025 1 0.021 4 0.026 5 0.047 0
radd(1) 1 36 9 4 14 1 15 2.45 9 0.026 4 0.027 14 0.053 1
radd(2) 1 256 64 4 69 1 - - 15 122.1 4 0.025 20 122 1
radd(3) 1 1296 324 4 329 1 - - - - 4 0.024 329? 0.024 1
rd53(1) 4 100 30 16 50 4 - - 12 0.676 16 0.118 32 0.794 4
rd53(2) 1 256 1 80 81 0 - - 1 0.022 - - 81? 0.022 0
rd73(2) 1 1225 1 448 449 0 - - 1 0.023 - - 449? 0.023 0
risc(4) 1 6 2 4 6 0 6 0.026 2 0.027 4 0.02 6 0.047 0
sqn(0) 2 272 49 8 58 1 - - 15 11 8 0.049 24 11.5 1
wim(2) 1 6 2 4 6 0 6 0.026 2 0.023 4 0.019 6 0.042 0
z4(1) 5 784 64 28 97 5 784 11.34 15 115 25 0.412 45 115 5
z4(2) 3 144 9 20 32 3 - - 9 0.021 17 0.341 29 0.362 3
z4(3) 1 16 1 12 13 0 9 0.29 1 0.027 9 0.286 10 0.313 0
z5xp1(8) 1 4 1 4 5 0 4 0.027 1 0.019 4 0.026 5 0.045 0
z9sym(0) 8 6192 2016 32 2056 8 - - - - 32 0.217 2056? 0.276 8

96 CHAPTER 5. DECOMPOSITION METHODS

Table 5.6: Proposed lattice sizes for standard benchmark circuits: a comparison of the proposed
external D-reducible decomposition method with the results of internal decomposition, [25] and [26].
When the synthesis of a lattice is stopped, there is no lattice (−). Results are marked with ? when
SAT is stopped.

[25] [26]
Std. synthesis Internal Decomp. External Decomp. Std. synthesis Internal Decomp. External Decomp.
X×Y Area X×Y Area χ fA cost Area X×Y Area X×Y Area χ fA cost Area

addm4(0) 9×12 180 9×15 135 1×3 9×12 2 113 - - 3×8 24 1×3 3×5 2 20
addm4(1) 22×23 506 22×23 506 1×1 22×22 1 486 - - 22×23 506? 1×1 22×22 1 486?

addm4(2) 33×36 1180 33×36 1188 1×1 33×35 1 1157 - - 33×36 1188? 1×1 33×35 1 1157?

adr4(4) 2×2 4 2×2 4 2×3 1×0 0 6 2×2 4 2×5 10 2×5 0×0 0 10
alu2(6) 4×4 16 4×5 20 1×1 4×4 1 18 3×4 12 4×4 16 1×1 4×3 1 14
amd(3) 6×8 48 6×9 54 1×1 6×8 1 50 4×5 20 3×7 21 1×1 3×6 1 20
amd(4) 10×14 140 10×14 140 1×1 10×13 1 132 - - 10×14 140? 1×1 10×13 1 132?

amd(5) 2×8 16 2×9 18 2×6 2×2 2 18 6×2 12 2×8 16 2×6 2×2 2 18
amd(6) 3×9 27 3×14 42 1×5 3×9 2 34 6×3 18 3×8 24 1×5 3×3 2 16
amd(7) 6×7 42 6×8 48 1×1 6×7 1 44 4×5 20 3×6 18 1×1 3×5 1 17
apla(0) 4×13 52 4×13 52 1×3 4×10 2 45 6×3 30 5×6 30 1×3 5×3 2 20
apla(1) 4×12 48 4×12 48 1×3 4×9 2 41 6×3 18 4×6 24 1×3 4×3 2 17
apla(2) 3×6 18 5×18 90 1×2 5×16 2 84 5×2 10 4×4 16 1×2 4×2 2 12
apla(7) 5×10 50 6×12 72 1×2 6×10 2 64 - - 4×6 24 1×2 4×4 2 20
apla(9) 5×15 75 6×22 132 1×2 6×20 2 124 - - 5×6 30 1×2 5×4 2 24
b10(2) 10×14 140 10×19 190 1×5 10×14 2 147 - - 10×14 140? 1×5 10×9 2 97?

br1(3) 2×12 24 2×13 26 2×13 2×1 2 30 - - 2×12 24 2×11 2×1 2 26
br1(4) 6×15 90 6×20 120 1×5 6×15 2 97 - - 5×9 45 1×5 5×4 2 27
br2(4) 8×18 144 8×20 160 1×2 8×18 2 148 - - 8×18 144? 1×2 8×16 2 132?

br2(5) 4×14 56 8×16 128 2×9 4×6 2 44 - - 4×21 84? 2×17 4×3 2 48?

br2(6) 5×16 80 5×17 85 2×7 5×9 2 61 - - 4×12 48? 2×7 4×4 2 32?

dk48(2) 2×13 26 2×22 44 1×9 2×13 2 37 - - 2×13 26? 1×9 2×4 2 19?

dk48(3) 2×13 26 4×17 68 2×15 1×0 0 30 - - 2×15 30? 2×15 0×0 0 30?

exam(4) 9×25 225 11×22 242 1×2 11×20 2 224 - - 9×20 180? 1×2 9×18 2 166?

exp(6) 6×7 42 8×12 96 1×2 8×10 2 84 5×4 20 3×7 21 1×2 3×5 2 19
exp(10) 6×12 72 6×15 90 1×2 6×13 2 82 - - 5×6 30 1×2 5×4 2 24
exp(11) 6×12 72 5×12 60 2×4 5×7 2 45 - - 5×8 40 2×4 5×3 2 25
gary(2) 12×14 168 12×15 180 2×3 12×12 2 152 - - 12×18 216? 2×5 12×12 2 156?

gary(3) 5×12 60 5×14 70 1×2 5×12 2 64 - - 5×12 60 1×2 5×10 2 54
in2(6) 39×36 1404 39×38 1482 1×2 39×36 2 1408 - - 39×35 1365? 1×2 39×33 2 1291?

in2(7) 17×26 442 17×27 459 1×1 17×26 1 444 - - 17×26 442? 1×1 17×25 1 427?

in2(8) 27×31 837 27×32 864 1×1 27×31 1 839 - - 27×31 837? 1×1 27×30 1 812?

in2(9) 40×36 1440 40×37 1480 1×1 40×36 1 1442 - - 40×36 1440? 1×1 40×35 1 1402?

in7(6) 11×18 198 11×21 231 1×3 11×18 2 203 - - 11×18 198? 1×3 11×15 2 170?

m2(6) 10×13 130 10×14 140 1×1 10×13 1 132 - - 10×13 130? 1×1 10×12 1 122?

m2(7) 14×14 196 14×15 210 1×1 14×14 1 198 - - 14×14 196? 1×1 14×13 1 184?

m2(12) 6×11 66 6×13 78 1×2 6×11 2 70 5×4 20 4×6 24 1×2 4×4 2 20
m2(13) 9×12 108 9×14 126 1×2 9×12 2 112 - - 4×8 32 1×2 4×6 2 28
m2(15) 16×18 288 17×19 323 1×1 17×18 1 308 - - 16×18 288? 1×1 16×17 1 274?

m4(9) 4×7 28 4×10 40 1×3 4×7 2 33 5×3 15 4×6 24 1×3 4×3 2 17
m4(10) 7×7 49 7×9 63 1×2 7×7 2 53 7×7 49 3×8 24 1×2 3×6 2 22
max128(3) 6×6 36 5×7 35 2×3 5×4 2 28 3×6 18 3×11 33 2×5 3×5 2 27
newapla1(6) 5×6 30 5×11 55 1×5 5×6 2 37 - - 5×6 30 1×5 5×1 2 12
newapla(0) 4×6 24 4×7 28 1×1 4×6 1 26 3×6 18 3×7 21 1×1 3×6 1 20
newcpla1(6) 6×11 66 6×13 78 1×2 6×11 2 70 - - 4×6 24 1×2 4×4 2 20
newcpla1(7) 7×6 42 7×7 49 1×1 7×6 1 44 4×5 20 3×6 18 1×1 3×5 1 17
newcpla1(8) 7×12 84 7×15 105 1×3 7×12 2 89 - - 5×7 35 1×3 5×4 2 25
newtpla1(1) 2×9 18 2×15 30 1×6 2×9 2 26 2×9 18 2×9 18 1×6 2×3 2 14
newtpla2(2) 2×9 18 2×17 34 1×8 2×9 2 28 2×9 18 2×9 18 1×8 2×1 2 12
newtpla(6) 3×12 36 3×16 48 1×4 3×12 2 42 - - 6×7 42 1×4 6×3 2 24
newtpla(9) 2×7 14 2×13 26 1×6 2×7 2 22 6×2 12 2×7 14 1×6 2×1 2 10
newxcpla1(1) 7×6 42 7×7 49 1×1 7×6 1 44 3×6 18 3×6 18 1×1 3×5 1 17
p1(2) 3×6 18 7×10 70 2×6 7×4 2 42 4×3 12 2×9 18 2×5 2×3 2 18
p1(11) 6×9 54 5×12 60 2×4 5×7 2 45 3×5 15 5×8 40 2×4 5×3 2 25

5.6. EXPERIMENTAL RESULTS 97

Table 5.7: Proposed lattice sizes for standard benchmark circuits: a comparison of the proposed
external P-circuit decomposition method, [25] and [26]. When the synthesis of a lattice is stopped,
there is no lattice (−). Results are marked with ? when SAT is stopped.

[25] [26]
Std. synthesis Internal Decomp. External Decomp. Std. synthesis Internal Decomp. External Decomp.
X×Y Area X×Y Area Af= Af 6= AfI cost Area X×Y Area X×Y Area Af= Af 6= AfI cost Area

adr4(1) 36×36 1296 37×19 703 324 324 0 5 653 − 37×19 703? 324? 324 0 5 653?

alu2(2) 11×10 110 13×7 91 6 5 56 7 74 7 × 3 21 10×6 60 6 5 15 7 33
alu2(5) 14×13 182 16×10 160 8 6 110 7 131 − 16×10 160? 8 6 110 7 131?

alu3(0) 5×4 20 7×4 28 2 3 4 7 16 3 × 3 9 7×4 28 2 3 4 7 16
alu3(1) 8×7 56 10×5 50 4 4 20 7 35 5 × 3 15 8×5 40 4 4 9 7 24
alu3(2) 10×11 110 12×8 96 4 8 56 7 75 6 × 4 24 11×5 55? 4 8 18 7 37?

b12(0) 4×6 24 4×6 24 20 0 0 3 23 3 × 4 12 3×4 12? 9 0 0 3 12?

b12(1) 7×5 35 7×5 35 28 0 0 3 31 4 × 4 16 4×4 16? 12 0 0 3 15?

bcc(5) 9×27 243 9×26 234 225 0 0 3 228 − 9×26 234? 225 0 0 3 228?

bcc(7) 11×31 341 12×29 348 280 10 0 5 295 − 12×29 348? 280 10 0 5 295?

bcc(8) 12×31 372 13×29 377 308 10 0 5 323 − 13×29 377? 308 10 0 5 323?

bcc(12) 11×31 341 11×30 330 319 0 0 3 322 − 11×30 330? 319 0 0 3 322?

bcc(27) 19×39 741 20×33 660 416 90 0 5 511 − 20×33 660? 416 90 0 5 511?

bcc(43) 10×20 200 11×16 176 78 60 0 5 143 − 11×16 176? 78 60 0 5 143?

bcd.div3(1) 3×4 12 5×4 20 3 1 2 7 13 3 × 3 9 5×4 20 3 1 2 7 13
bcd.div3(2) 3×4 12 5×4 20 3 1 3 7 14 3 × 3 9 5×4 20 3 1 3 7 14
bcd.div3(3) 3×5 15 4×4 16 6 0 3 5 14 3 × 4 12 4×4 16? 6 0 3 5 14?

bench1(2) 24×45 1080 33×29 957 350 504 0 5 859 − 33×29 957? 350 504 0 5 859?

bench1(3) 16×31 496 20×18 360 104 136 14 7 261 − 21×18 378? 104 136 12 7 259?

bench1(5) 27×50 1350 32×28 896 128 78 448 7 661 − 32×28 896? 128 78 448 7 661?

bench1(6) 21×35 735 26×24 624 160 345 0 5 510 − 26×24 624? 160 345 0 5 510?

bench1(7) 21×43 903 27×20 540 247 190 14 7 458 − 27×20 540? 247 190 10 7 454?

bench1(8) 24×44 1056 31×26 806 375 345 0 5 725 − 31×26 806? 375 345 0 5 725?

bench(6) 4×8 32 6×3 18 2 2 6 7 17 3 × 4 12 6×3 18 2 2 6 7 17
br2(4) 8×18 144 8×18 144 0 136 0 2 138 − 8×18 144? 0 136 0 2 138?

br2(5) 4×14 56 4×14 56 0 52 0 2 54 − 4×14 56? 0 52 0 2 54?

br2(6) 5×16 80 5×16 80 0 75 0 2 77 − 5×16 80? 0 75 0 2 77?

clpl(2) 2×2 4 3×2 6 0 1 4 4 6 2 × 2 4 3×2 6? 0 1 1 4 6?

clpl(3) 6×6 36 9×6 54 1 10 20 6 37 6 × 3 18 9×6 54? 1 10 12 7 30?

clpl(4) 5×5 25 8×5 40 1 8 12 6 27 5 × 3 15 8×5 40? 1 8 9 7 25?

co14(0) 14×92 1288 15×80 1200 1027 13 0 5 1045 − 15×80 1200? 1027 13 0 5 1045
dc1(0) 4×4 16 5×4 20 9 2 0 5 16 3 × 3 9 4×4 16? 6 2 0 5 13?

dc1(1) 2×3 6 3×3 9 2 0 3 5 10 2 × 3 6 3×3 9? 2 0 3 5 10?
dc1(4) 4×5 20 5×4 20 9 0 3 5 17 3 × 4 12 5×4 20? 9 0 3 5 17?

dc1(6) 3×3 9 4×2 8 2 0 2 5 9 3 × 2 6 4×2 8? 2 0 2 5 9?

dc2(4) 9×10 90 10×9 90 48 18 0 5 71 4 × 5 20 8×5 40? 16 12 0 5 33?

dc2(5) 6×6 36 7×7 49 12 18 0 5 35 2 × 6 12 5×6 30? 8 10 0 5 23?

dk17(0) 2×8 16 4×4 16 6 2 0 5 13 2 × 6 12 4×4 16? 6 2 0 5 13?

dk17(1) 2×8 16 4×4 16 6 2 0 5 13 2 × 6 12 4×4 16? 6 2 0 5 13?
dk17(3) 3×11 33 4×7 28 0 0 28 0 28 2 × 7 14 6×3 18? 0 0 18 0 18?

dk17(4) 3×9 27 6×4 24 3 2 6 7 18 2 × 7 14 6×4 24 3 2 6 0 18
dk17(6) 1×3 3 1×3 3 0 0 3 0 3 1 × 3 3 1×3 3? 0 0 3 0 3?

exp(4) 6×17 102 6×17 102 0 0 102 0 104 − 6×17 102? 0 0 102 0 102?

exp(5) 45×35 1575 45×35 1575 0 0 1575 0 1577 − 45×35 1575? 0 0 1575 0 1575?

exp(32) 10×4 40 13×3 39 10 8 4 7 29 6 × 4 24 13×3 39 10 8 4 7 29
exp(33) 7×3 21 7×3 21 0 1 15 4 20 − 7×3 21? 0 1 15 4 20?

exp(34) 10×4 40 12×5 60 2 4 30 7 43 6 × 4 24 11×3 33 2 4 15 7 28
exp(36) 8×2 16 10×2 20 1 1 12 6 20 8 × 2 16 10×2 20 1 1 12 7 21
exp(38) 9×4 36 13×3 39 12 8 1 6 28 7 × 4 24 13×3 39 12 8 1 7 28
exp(39) 8×2 16 11×3 33 1 8 8 6 23 − 11×3 33 1 8 8 7 24
exp(40) 12×6 72 15×5 75 16 18 12 7 53 − 13×4 52 8 12 9 7 36
exp(43) 14×8 112 17×6 102 36 35 0 5 76 − 13×4 52? 18 18 0 5 41?

exam(5) 6×11 66 7×6 42 4 0 30 5 39 − 6×5 30? 4 0 16 5 25?

exam(9) 30×59 1770 38×30 1140 754 143 0 5 902 − 33×30 990? 754 24 0 5 783?

max128(5) 17×14 238 19×9 171 16 80 21 7 124 − 14×5 70 9 24 12 7 52
max128(8) 10×5 50 11×4 44 18 8 0 5 31 − 10×4 40? 15 8 0 5 28?

max128(17) 25×26 650 26×15 390 144 182 0 5 331 − 26×15 390? 144 182 0 5 331?

mp2d(6) 6×10 60 6×10 60 0 54 0 2 56 − 3×7 21? 0 18 0 2 20?

mp2d(9) 8×6 48 9×6 54 0 15 5 4 24 − 9×4 36? 0 9 5 4 18?

mp2d(10) 3×6 18 4×5 20 8 4 0 5 17 3 × 4 12 4×5 20? 8 4 0 5 17?

z4(0) 15×15 225 16×11 176 0 24 77 4 105 4 × 5 20 6×6 36? 0 10 12 4 26?

z4(1) 28×28 784 30×16 480 32 32 192 7 263 − 10×7 70 12 12 24 7 55
Z5×p1(2) 11×12 132 13×7 91 12 36 8 7 63 − 11×5 55? 12 16 8 7 43?

Z5×p1(3) 18×18 324 19×11 209 80 80 0 5 165 − 10×6 60? 20 20 0 5 45?

98 CHAPTER 5. DECOMPOSITION METHODS

with the results obtained with the standard synthesis methods presented in [25] and
in [26], without exploiting the autosymmetry property. In Table 5.6 and Table 5.7 we
compare the lattice synthesis results obtained applying the external decomposition
scheme to D-reducible functions and P-circuits, with the corresponding internal
decomposition scheme and the results obtained with the standard synthesis methods
presented in [25] and in [26], without exploiting the decomposition property.

To simulate the results reported in [26], we used a collection of Python scripts
for computing minimum-area switching lattices, by transformation to a series of
SAT problems.

Each row of Table 5.5 lists the results for each separate autosymmetric output
function of the benchmark circuit. More precisely, the first column reports the
name and the number of the considered output of each instance; the second column
reports the number of EXOR lattices used to implement the reduction equations
(yj) when the decomposition method is applied. The following five columns refer
to the synthesis of lattices as described in [25], with (columns 4-7) and without
(column 3) the multiple lattice decomposition based on autosymmetry. In particular,
column 3 shows the area of lattices derived applying the standard synthesis method
(i.e., without exploiting the autosymmetry property), column 4 shows the area of
the lattice for the restriction fk, column 5 shows the total area of the lattices for the
EXOR terms yi, column 6 shows the total area occupied by lattices (TotalArea =

Afk+
∑

iAyi+num.inv), and column 7 indicates the number num.inv of inverters
necessary to make the signal routing. The synthesis in [25] is performed using
ESPRESSO, and in all cases it takes less than 0.01 s, that is the minimum time
resolution of the synthesizer; for this reason the synthesis time is omitted.

Columns 8 to 16 refer to lattices synthesized using the methodology presented
in [26], with and without decomposition on multiple lattices. In particular columns
8 and 9 report the area and the synthesis time of lattices obtained with standard
synthesis; columns 10 and 11 report the area and the synthesis time of the lattice for
the restriction fk, column 12 and 13 report the total area of the lattices for the EXOR
terms yi and their synthesis time; columns 14 and 15 show the total area occupied
by lattices (TotalArea = Afk +

∑
iAyi + num.inv) and the total synthesis time;

finally, column 16 indicates the number num.inv of inverter necessary for signal
routing.

For each function, we bolded the best areas (col. 3 vs col. 5 vs col. 6 and col. 8
vs col. 14) and the best total time (col. 9 vs col.15).

Each row of Table 5.6 lists the results for each separate D-reducible output
function of the benchmark circuits. More precisely, the first column reports the
name and the number of the considered output of each instance; The following two
columns refer to the synthesis of lattices as described in [25], without lattice de-
composition (columns 2-3), with internal decomposition (column 4-5), and external

5.6. EXPERIMENTAL RESULTS 99

decomposition (column 6-9). In particular, columns 2-3 show the dimension and
the area of lattices derived applying the standard synthesis method (i.e., without
exploiting the D-reducibility property), columns 4-5 show the dimension and the
area of the lattice obtained applying the internal decomposition method, column 6
shows the dimension of χ, column 7 shows the dimension of the lattice of fA, col-
umn 8 shows the cost in term of lattice area due to external decomposition, column
9 shows the total area occupied by lattices (TotalArea = Aχ +AfA + cost).

Columns 10 to 17 of Table 5.6 refer to lattices synthesized using the methodol-
ogy presented in [26], the content refers to the same lattice as columns 2-9.

For each function, we bolded the best areas (col. 3 vs col. 5 vs col. 9 and col.
11 vs col. 13 vs col. 17).

Each row of Table 5.7 lists the results for each separate output function, repre-
sented as a P-circuit, of the benchmark circuits. More precisely, the first column
reports the name and the number of the considered output of each instance. The
following two columns refer to the synthesis of lattices as described in [25], without
lattice decomposition (columns 2-3), with internal decomposition (column 4-5), and
external decomposition (column 6-10). In particular, columns 2-3 show the dimen-
sion and the area of lattices derived applying the standard synthesis method (i.e.,
without exploiting the P-circuit decomposition), columns 4-5 show the dimension
and the area of the lattice obtained applying the internal decomposition method,
column 6 shows the dimension of the lattice of the projection f=, column 7 shows
the dimension of the lattice of the projection f 6=, column 8 shows the dimension of
the lattice of the intersection f I , column 9 shows the cost in term of lattice area due
to external decomposition, and column 10 reports the total area occupied by lattices
(TotalArea = Af= +Af 6= +AfI + cost).

Columns 11 to 19 of Table 5.7 refer to lattices synthesized using the methodol-
ogy presented in [26], the content refers to the same lattice as columns 2-10.

For each function, we bolded the best areas (col. 3 vs col. 5 vs col. 10 and col.
12 vs col. 14 vs col. 19).

In some cases the method proposed in [26] fails in computing a result in reason-
able run time. For this reason, we set a time limit (equal to ten minutes) for each SAT
execution; if we do not find a solution within the time limit, the synthesis is stopped.
We marked with − all cases where the synthesis of lattices has been stopped. In the
synthesis of sublattices, whenever [26] is stopped, we use the sublattices synthe-
sized with [25], because without a sublattice it would be impossible to complete the
synthesis of the overall decomposed lattice. We marked these cases with ?. Note
that, for many benchmarks, the method in [26] did not find a solution within the
fixed time limit for at least one sublattice, and had to be replaced with [25].

The results are promising. Considering the methodology presented in [25], for
the class of autosymmetric functions (see Table 5.5) we obtain a smaller total area

100 CHAPTER 5. DECOMPOSITION METHODS

Table 5.8: Comparison between external decomposition method with not decomposed lattice and
internal decomposed lattice

Decomposition method
Not-decomposed lattices Lattice with internal decomposition

less area area gain less area area gain

D-reducible
[25] 16% 9% 78% 9%
[26] 54% 9% 75% 6%

P-circuit
[25] 54% 36% 93% 15%
[26] 60% 39% 93% 17%

Autosymmetric
[25] 58% 53% – –
[26] 48% 60% – –

w.r.t. the standard synthesized lattices in 58% of the benchmarks, with an average
gain of 53%. Considering the methodology presented in [26], we obtain a smaller
total area in 48% of the benchmarks, with an average gain of 60%. Note that in
many cases the synthesis time necessary to decompose the function as described in
this paper (column 15 in Table 5.5) is smaller than the time necessary to perform
the standard synthesis (column 9 in Table 5.5).

As for external vs internal decomposition, we report in Table 5.8 the overall
results concerning the external decomposition applied to all different decomposition
methods with respect to standard synthesized lattices and internal decomposition.
In this table, each row is referred to a different decomposition method. Column
2 shows the synthesis method used for the experiment, columns 3 and 4 show the
percentage of lattices with less area and how much area is gained with respect to
not-decomposed lattice, columns 5 and 6 show the percentage of lattices with less
area and how much area is gained with respect to internal decomposed lattices. The
comparison between internal and external decomposition shows a high percentage
of lattices where external decomposition produces lattices with less area with
respect to internal decomposition. This is due to the typical construction of external
decomposition that can omit the padding cells and columns or rows of ones or zeros
to connect the decomposed sub-lattices together. Note that a direct comparison
between columns 3-4 and 5-6 is not correct because not all the lattices with internal
decomposition are smaller that the not-decomposed lattices, and a lattice with
external decomposition can be smaller that a lattice with internal decomposition but
bigger that the non-decomposed lattice.

These results clearly show how the use of multiple lattices often allows to reduce
the number of switches and thus the overall dimension of the lattice, even if the gain
in the dimension comes at the expense of an increase in the interconnection cost.

Chapter 6

Defect Tolerance

The fault density of crossbars can be up to 10% of the entire crossbar, we consider
all faults independent, as reported in [103].

The fault injection in lattices is performed substituting a single cell with an
always Stuck-At 1 (SA1) or Stuck-At 0 (SA0) cell. The fault injection procedure is
repeated for each cell of the lattice.

We use a method that utilizes a prior sensitivity analysis of crossbar to specify
critical switches, and strengthens them with proposed mitigation factors. The same
naming conventions are applicable, regarding defects which are categorized as SA1
and SA0.

6.1 Defect Injection Methodology

We perform a defect injection with uniform distribution to lattice reaching defect
densities up to 10%. Every cell (a four-terminal switch) is presumed to have only
SA0 or SA1. Once the "defective" lattice is obtained, the algorithm generates all
the possible 2n inputs (where n is the number of variables). For each input, the
simulation algorithm compares the given output with the correct one. Let E0

ij (resp.,
E1
ij), with 1 ≤ i ≤ r, 1 ≤ j ≤ s (where r are the number of rows and s the

number of columns of the lattice), be the number of defective outputs with a SA0
(resp., SA1) in the cell (i, j) of the given lattice. Note that 0 ≤ {E0

ij , E
1
ij} ≤ 2n.

Moreover, when E0
ij (resp., E1

ij) is equal to 0 we have that, for any possible input,
the lattice output is never changed by the SAF in the cell (i, j). In this case,
we call the cell (i,j) robust w.r.t. SA0 (resp., SA1). Let R0 (resp., R1) be the
total number of robust cells w.r.t. SA0 (resp., SA1) in the lattice. Finally, let
E0 =

∑i=r
i=1

∑j=s
j=1E

0
ij (resp., E1 =

∑i=r
i=1

∑j=s
j=1E

1
ij) be the total number of

defective output with SA0 (resp. SA1) in the simulation. For an example of
function f = x4x5x7 + x4x6x7 + x4x5x6x7 + x4x6x7 + x4x6x7 realized in

101

102 CHAPTER 6. DEFECT TOLERANCE

1 1 1 2 1
1 2 1 2 1
1 2 1 2 1
1 2 1 2 1
1 2 1 0 1

1 0 1 0 0
1 0 1 1 1
1 2 0 2 2
0 1 1 0 0
0 2 2 2 0

b) c)

𝒙𝟒 𝒙𝟕 𝒙𝟓 𝒙𝟒 𝒙𝟒
𝒙𝟓 𝒙𝟕 𝒙𝟒 𝒙𝟕 𝒙𝟔
𝒙𝟕 𝒙𝟒 𝒙𝟕 𝒙𝟔 𝒙𝟕
𝒙𝟒 𝒙𝟕 𝒙𝟔 𝒙𝟕 𝒙𝟒
𝒙𝟒 𝒙𝟔 𝒙𝟕 𝒙𝟒 𝒙𝟕

a)
Figure 6.1: a) Lattice design for the example function f and its sensitivity map for b) SAO and c)
SA1.

Figure 6.1(a) (with the method in [25]), in the Figure 6.1(b) (resp., 6.1(c) shows the
map containing E0

ij (resp., E1
ij) in each cell.

6.2 Metrics used for Sensitivity Analysis

In order to evaluate the sensitivity of a lattice to SA0 and SA1 defects, we propose
two metrics. The first one measures the average number of defective outputs
considering sensitive cells to SA0 or SA1 only. The second one measures the
average number of defective outputs in the entire lattice. Note that the total number
of cells is the area of the lattice (i.e., r × s), the number of non-robust cells for
SA0 (resp., SA1) is r × s−R0 (resp., r × s−R1), and 2n is the total number of
inputs. (1) Sensitivity of defective cells is the total number of inputs that give an
uncorrected output (E0 and E1) divided by the total number of inputs (2n), for each
non-robust cell (r × s−R0 or r × s−R1). In the case of SA0 the metric can be
expressed as: S0

C = E0/(2n(r × s − R0)). The same reasoning can be done for
SA1 defect sensitivity. (2) Sensitivity of lattice is the total number of inputs that
give an uncorrected output divided by the total number of inputs for each cell, in
the case of SA0 is: S0

L = E0/(2n(r × s)). The SA1 case is analogous.

6.2.1 Benchmarks and Simulations

The defect simulations have been run on a machine with two AMD Opteron 4274HE
for a total of 16 CPUs at 2.5 GHz and 128 GByte of main memory, running Linux
CentOS 7. The benchmarks functions are expressed in PLA form and are taken
from a subset of LGSynth93 [82]. A total of about 580 functions were considered,
and each output of a function is implemented as a separate Boolean function.

The software used for simulations is written in C++. We used ESPRESSO
to implement the method described in [25], and a collection of Python scripts for
computing minimum-area lattices by transformation to a series of SAT problems,
to simulate the results reported in [26]. Each SAT execution is stopped after ten
minutes.

6.2. METRICS USED FOR SENSITIVITY ANALYSIS 103

Table 6.1: A sample of benchmark functions synthesized with [25] and [26] approaches and their
sensitivity values

name r × s n E0 S0
C S0

L % R0

r×s E1 S1
C S1

L % R1

r×s
Synthesis with Dual Method [25]

add6(1) 6×6 4 19 0.06 0.03 47% 9 0.06 0.02 75%
alu2(2) 11×10 8 462 0.03 0.02 35% 121 0.02 0.01 80%
b11(1) 3×6 7 28 0.02 0.01 44% 73 0.03 0.03 6%
dc2(0) 4×6 7 117 0.05 0.04 17% 162 0.08 0.05 33%

exam(5) 6×11 9 1868 0.07 0.06 17% 131 0.02 0.01 74%
z4(2) 12×12 5 70 0.03 0.02 51% 14 0.03 0 90%

Synthesis with Quantified Boolean Logic [26]
add6_G_1 5×3 4 31 0.15 0.13 13% 32 0.14 0.13 7%
alu2_G_2 7×3 8 464 0.1 0.09 14% 384 0.08 0.07 5%
b11_G_1 3×5 7 45 0.03 0.02 7% 128 0.07 0.07 7%
dc2_G_0 4×4 7 104 0.06 0.05 13% 132 0.07 0.06 13%

In Table 6.1, we report a sample of benchmark functions and their sensitivity
values, according to the metrics presented before. In particular, Table 6.1 refers to
lattice synthesized as described in [25] and [26]. The benchmarks that are present
in Table 6.1 with dual method were stopped after ten minutes of SAT execution, but
that was not the case for the rest.

More precisely, in both methods, the first column reports the name and the
number of the considered output of each function. The following columns report
dimension (r × s) required for the synthesis of a given function according to each
decomposition method, and the number of input variables n. Columns from 4 to 7
refers to SA0 defect metrics (resp., columns from 8 to 11 to SA1 metrics) showing
the total number of errors E0, the Sensitivity of defective cells S0

C , the Sensitivity
of lattice S0

L and the percentage of robust cells %R0/(r × s).

Table 6.2 describes the overall results for the benchmarks we have considered.
It also shows the average values for the considered metrics. We can note that the
percentage of cells that are considered robust according to our metrics is higher
in the first approach [25]. This is due to the more constrained structure of the
lattices produced by the first synthesis method. Indeed, the method proposed in
[25] computes a lattice for f and its dual that is in general less compact than the
lattice given by [26] (see, the column Average area in Table 6.2). Moreover, we
can note that the sensitivity of the lattice to stuck-at-defects (SAD) is quite low for
both methods. In fact, the experiments show that, in general, non-robust cells -in
presence of a SAD- compute a defective output for a very limited number of inputs.

104 CHAPTER 6. DEFECT TOLERANCE

Table 6.2: Overall results of the simulations

Synthesis
Method

Average
area

Average
n

S0
C S0

L % R0

r×s S1
C S1

L % R1

r×s

[25] 30 6 0.05 0.05 20% 0.06 0.05 29%
[26] 15 7 0.07 0.06 9% 0.07 0.07 8%

6.3 Mitigation by Defect Avoidance

From the above results, it can be seen that the two analyzed mapping algorithm
shows different sensitivities of the output of a given function. As a matter of fact, the
more restrictive an algorithm is in terms of area (results closer to optimal solution),
the higher the defect sensitivity of the output to cell defect of SA0 or SA1. It is
mandatory to include in the mapping algorithm defect-avoidance heuristics.

In order to mitigate the sensitivity of a lattice to SAD, we propose the following
possible strategy applied to the synthesis method proposed in [25] which has been
proven as less sensitive to SAD impact on the output functions: (1) For a given
mapped function, if a potential SA0, SA1 defect affects a robust cell identified by
the defect injection campaign, the lattice still computes the correct output, thus we
do not need any mitigation with defect tolerant design. (2) However, if an injected
defect occurs in a multiple-choice cell, if a different literal can be chosen to make
the cell robust, we change the literal with the new one. (3) Otherwise, if the injected
SA0 defect is proven as being critical for the output value, the column that contains
that defective cell has to be replaced by spare columns. In case of an SA1 the row
that contains the defective cell has to be replaced by a spare row. Note that, in
this case, the output still provides a correct function f from top to bottom, but the
function from left to right could be changed and become a function which will not
be dual of f anymore.

As an example, consider the lattice synthesized in Figure 6.2(a) with f =

x4x5x7 + x4x6x7 + x4x5x6x7 + x4x6x7 + x4x6x7 by using synthesis method
presented in [25]. The example shows one case of mitigation of 3 independent SAD
affecting the crossbar implementing the function, yielding an approximative 10%
defects. In Figure 6.2, SA1 cells are marked in blue and SA0 cells a remarked in
red.

To avoid output errors due to these SAD we have used the following strategy:

1. Identify robust cells for a given function mapping. Example: the defect in
first row, fifth column is non-influent on the value of the output (robust cell),
the sensitivity map, obtained through defect injection campaign, shows that
this cell is not sensitive to SA1 for the mapped function.

6.3. MITIGATION BY DEFECT AVOIDANCE 105

Figure 6.2: a) defect-free lattice; b) lattice with defects: SA0 in red and SA1 in blue; and c) lattice
with the defect fixed.

2. Identify the swapping of literals during synthesis process on a column of a
high sensitive cell. Example: the defect in fifth row, fourth column is sensitive
to SA1. The former choice in the yellow cell was x7, choosing x4 the fifth
row, fourth column cell, if it will be affected by a SA1 at fabrication time,
will not affect the output of the function.

3. Identify the critical cell for the output value and add a spare column per
critical cell. Example: the defect in the third row and second column will
influence the value of the output and no swapping operands is possible, thus
the only solution remains to add a spare column (in green) identical to the
column containing the SA0 defect, and perform the spare and replace strategy.
By using spare columns, the mapping algorithm can eliminate columns of
the crossbar susceptible to affect the output value of the function in case SA
defect appear at fabrication or in the field.

Chapter 7

Conclusions

7.1 Concluding remarks

The first part of the thesis presented some design and synthesis techniques for a
high density IC. After an analysis of the design issues typical of scaled technology
nodes the applications and the architecture of the AMs chip were described. The
AM chip is used inside the data acquisition chain of ATLAS.

The second part of the thesis presented the switching lattices that are one of
the emerging post-CMOS technologies. Switching lattices use a 4-terminal switch
that allows to implement logic functions in a very compact way. Logic synthesis of
switching lattices is a necessary step for large scale adoption and it is important to
optimize lattice size and synthesis computing time.

Part I presents a new AM cell, called KOXORAM, that uses a new compari-
son logic based on the propagation of a kill signal. KOXORAM consumes less
energy with respect to previous AM cells (Figure 7.1), fulfilling the requirements
of energy consumption and speed. This cell was implemented in the AM07 test
chip. Measurements shown an energy consumption of 0.69 fJ/bit at a speed of
184.32 MHz. During the test AM07 showed metastability on SRAM cells. A design
methodology, based on SRAM analysis with butterfly diagrams, it is developed to
avoid metastability.

A new memory line architecture, called KOXORAM+, was designed to match
the aggressive speed requirements. Simulations of KOXORAM+ show an energy
consumption of 0.42 fJ/bit at a working frequency of 400 MHz. KOXORAM+ will
be implemented in AM08 test chip.

In an AM chip digital circuits implemented using standard cells occupies a lot
of area. Standard cells synthesis of digital circuits speeds up the design, but the
resulting circuits occupy more silicon area and consume more power with respect

107

108 CHAPTER 7. CONCLUSIONS

to a full custom digital circuit because they contains more transistors and metal
interconnections. For this reason a full custom quorum logic has been presented.
The quorum occupies, with respect to the same circuit designed with standard cells,
about one fifth of the area and consumes 3.75 aJ/bit.

AM chips present a very peaked current consumption at each clock rising edge.
To mitigate it we spread clocks with different phases, derived from the input clock,
to different chip cores. In this way the power consumption is distributed during the
whole clock period. A DCO, that covers a frequency range between 2 GHz and
3.2 GHz, is used to lock the external clock and to generate the clocks with different
phases.

The next AM chip prototype (AM08), where will be included all the circuits
presented in this thesis, will be submitted to the silicon foundry in May 2019. The
test of AM08 will start in October 2019.

Part II presents the synthesis of switching lattices using an algorithmic approach
based on Boolean function decompositions (P-circuit and EP-SOP) and regularities
(D-reducible and autosymmetric functions).

The used approach consists on dividing the synthesis problem in smaller prob-
lems reducing computing time and lattice size using the presented decomposition
techniques and function regularities. In particular we studied two approaches inter-

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

XORAM (65nm)

XORAM (28nm)

KOXORAMKOXORAM+

Energy consumption [fJ/bit]

A
re

a
[µm2

]

AM cells

Figure 7.1: Graph that compare the energy consumption and the area of different AM cells. On
x axis there is the energy consumption for each bit, on y axis the area of a single cell. The value
for KOXORAM+ is obtained with a simulation with parasitics, the other values are obtained with
measurements.

7.2. FUTURE DEVELOPMENTS 109

nal and external decomposition. Internal decomposition consists on implementing
the output of the preprocessing process into a single lattice. External decomposition
uses a two layer approach connecting the output of a lattice with one or more literals
occurring in another lattice.

Simulation shows that these approaches lead to a reduction of synthesis time
and lattice area. There are some cases of external decomposition where the sum of
the lattices areas is smaller than the area of the minimal single lattice.

Nanocrossbars are produced using self assembly nanotechnologies that can
lead to fabrication defects. For this reason we present a preliminary study on
defect avoidance that considers single SA1 or SA0 events. We define a metric for
sensitivity analysis and a simulation of the effects of defects on lattices. Moreover
we present some techniques that can be used to mitigate the effect of faults.

7.2 Future developments

To reduce area occupation and power consumption of standard cell digital circuits it
would be interesting to redesign the AM readout circuit using a full custom approach.
However it is necessary to take into account possible drawbacks of this approach:
the full custom design requires a great effort, due also to the need of exhaustive
simulations, and once the design process is finished it is difficult to implement
subsequent circuit modifications.

The study of nanocrossbars outlined some interesting connections between logic
synthesis and defect tolerance. It would be interesting to use the properties of
synthesis methods, Boolean functions decompositions and regularities to develop a
synthesis method that can minimize the effects of lattice faults.

7.3 Publications

Part of the work presented in this thesis is published in articles and conference
proceedings.

Part I:

• The first version of XORAM AM cell was designed in 2012 [60] and the
first implementation of this cell was in designed in 64 nm and included in the
AM06 [59]. The first version of XORAM in 28 nm is AM07 [31, 104].

• The specifications of AM08 are published in [28].

• The KOXORAM cell measurement results are published in [30] and, the
characterization of the AM07 is published in [29].

110 CHAPTER 7. CONCLUSIONS

• The full-custom pop-count circuit is published in [32], a former version that
contains also the control logic is published in [69].

• The DCO circuit is published in [34].

Part II:

• Preliminary article on nanocrossbars are published in [105, 106].

• The internal decomposition methods use P-circuits, D-reducible functions and
EP-SOP [35, 36]. The comparison between different decomposition methods
is published in [37].

• The external decomposition results regarding autosymmetric functions are
in [38]. The comparison between internal and external decomposition is
published in [39]

• A preliminary study of nanocrossbar defectivity is published in [40].

Appendix A

AM chip specifications

A.1 Main requirements

• Bits for input word required: 16;

• Bits for internal CAM cell required: 18. The input word is 16, the other two
bits are used to provide DC bits;

• Number of words per pattern: 8;

• Possibility to merge/split patterns: three options:

– merge 2 patterns into a single 16 bit word pattern;

– merge 4 patterns into a single 32 bit word pattern;

– split a pattern into two 4 words patterns or one single pattern of 4 words.

• CAM energy consumption: < 1 fJ/bit (including standby), if possible this
specification has to be reduced as much as possible;

• Non-core power consumption: 500 mW;

• Core minimum clock frequency: 250 MHz;

• Max pass-through latency: 100 ns for AM09. (50 ns for AM08);

• Minimum number of patterns: 3×128 Ki for AM09 (16 Ki for AM08);

• Working temperatures: 0 ◦C to 120 ◦C;

• Quorum logic thresholds: {0; 1; 6; 7; 8; 9};

• Data inputs/outputs compatible with LVDS18.

111

112 APPENDIX A. AM CHIP SPECIFICATIONS

Aggressive goals

The AM ASIC will be considered in specifications also if these goals are not fully
met. However meeting or getting closer to these goals improve performance.

• Core clock frequency: 400 MHz (typical and fast corners only)

• Number of patterns: 4×128 Ki for AM09.

• CAM energy consumption: ≤ 0.5 fJ/bit.

Full Custom simulation Corners

• Worst Speed: ss, 0.9 V, 0 ◦C (250 MHz)

• Typical: tt, (1, 1.1) V, 25 ◦C (400 MHz)

• Worst Power: ff, 1,1 V, 0 ◦C (400 MHz)

• Crossed: fs, 0.9 V, 0 ◦C (250 MHz)

• Crossed: sf, 0.9 V, 0 ◦C (250 MHz)

The corner files are given by the silicon foundry and refers to the conductibility
of nMOS and pMOS transistors, for example the fs corner is characterized by fast
nMOS and slow pMOS transistors.

Interdisciplinary Applications

The AM chip can be used for interdisciplinary applications that require fast and
efficient pattern matching.

Image Processing largely depends on pre-processing and post-processing steps.

• Direct FPGA interface: one AM chip will be connected with one FPGA

• Working as a hardware accelerator easily interfacing with PCs and HPCs (e.g.
PCI express interface card)

DNA Processing compares long word.

• Global quorum: implemented in standard cells after the global readout tree;
perform pop-count on hitmaps of a sequence of patterns then apply a global
threshold;

• Conditional writing:

A.1. MAIN REQUIREMENTS 113

– bus by bus implemented in standard cells;

– bit by bit (masked write) made with 2 extra transistors per BL decoder.

A.1.1 Cores

AM08 will be composed of four “design-cores”: The Table A.1 shows the features
that will be present in each core:

Table A.1: Core features and options

Feature Core

1 2 3 4
CAM block variable row number (64, 128, 256) x
SRAM-like reading x x
full custom quorum circuit x x x

The core 1 is similar to what designed in AM07, it will be placed to reduce risks
if the full custom quorum does not work. The core 2 is the baseline, it contains the
full custom quorum circuit. The core 3 and 4 will be used to test the new feature
of SRAM-like reading. If this feature adds a power consumption lower than 5%
with respect to cores 1 and 2 this new feature will be integrated in AM09. Core 4
will implement the variable row number architecture. In AM07 and AM06 we used
blocks of 64 rows. However, blocks with more rows (128 and 256) can improve the
memory density.

The possibility to read the bit content of CAM like SRAM will permit fast chip
debug.

List of Terms

AM Associative Memory. i, 4–7, 16, 19–21, 24, 37, 107, 109

ASIC Application specific integrated circuit. 5

ATLAS A Toroidal LHC ApparatuS. ii, 5, 19, 107

BJT Bipolar Junction Transistor. 3

CAM Content Addressable Memory. 4, 20, 28

CERN European Organization for Nuclear Research. ii, 5

CMOS Complementary Metal-Oxide Semiconductor. i, ii, 3–5, 7, 11, 16

CMP Chemical Mechanical Polishing. 12, 14

D-FF Delay Flip-Flop. 23

DC don’t care. 24, 25, 111

DCO Digitally Controlled Oscillator. 16, 38, 40, 41, 108

FPGA Field Programmable Gate Array. 5, 24

HEP High-Energy Physics. i, 4, 5, 19, 20

HL-LHC High Luminosity Large Hadron Collider. ii, 5

HTT Hardware Tracking for the Trigger. i, 5

IC Integrated Circuit. i, 1, 3, 4, 6, 107

ILD Inter Layer Dielectric. 12

IMPART Innovative Multi-chip system for multi-purpose PAttern Recognition
Tasks. i, 5

115

116 Terms and abbreviations

LHC Large Hadron Collider. 19

LVBG Local Voltage Bias Generator. 38, 41

MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor. 1, 3, 12

PLL Phase Locked Loop. 16, 37, 38, 40, 46

SA0 Stuck-At 0. 101–105, 109

SA1 Stuck-At 1. 101–105, 109

SR Set Reset. 23

VCO Voltage-Controlled Oscillator. 38

VLSI Very Large Scale Intergation. 20

Bibliography

[1] W. V. Quine, “The problem of simplifying truth functions,” Am.
Math. Mon., vol. 59, no. 8, pp. 521–531, 1952. Available: http:
//www.jstor.org/stable/2308219

[2] W. V. Quine, “A way to simplify truth functions,” Am. Math. Mon., vol. 62,
no. 9, pp. 627–631, 1955. Available: http://www.jstor.org/stable/2307285

[3] E. J. McCluskey, “Minimization of Boolean functions,” Bell Syst. Tech. J.,
vol. 35, no. 6, pp. 1417–1444, Nov 1956.

[4] J. S. Kilby, “Miniaturized electronic circuits,” 02 1959. Available:
http://www.patentlens.net/patentlens/patent/US_7062320/

[5] G. Moore, “Cramming more components onto Integrated Circuits,” Journal
of Electronics, pp. 114–117, April 1965.

[6] G. Moore, “Progress in digital integrated electronics,” in 1975 International
Electron Devices Meeting, vol. 21, 1975, pp. 11–13.

[7] G. Moore, “The M0S transistor as an individual device and in integrated
arrays,” in 1958 IRE International Convention Record, vol. 13, March 1965,
pp. 44–52.

[8] M. Bohr, “A 30 year retrospective on Dennard’s MOSFET scaling paper,”
IEEE Solid-State Circuits Society Newsletter, vol. 12, no. 1, pp. 11–13,
Winter 2007.

[9] M. T. Bohr and I. A. Young, “CMOS scaling trends and beyond,” IEEE
Micro, vol. 37, no. 6, pp. 20–29, November 2017.

[10] D. James, “Intel’s 14-nm Parts are Finally Here!” chip-
works, 2014, accessed: December 20, 2018. Avail-
able: https://www.chipworks.com/about-chipworks/overview/blog/intel%
E2%80%99s-14-nm-parts-are-finally-here

117

http://www.jstor.org/stable/2308219
http://www.jstor.org/stable/2308219
http://www.jstor.org/stable/2307285
http://www.patentlens.net/patentlens/patent/US_7062320/
https://www.chipworks.com/about-chipworks/overview/blog/intel%E2%80%99s-14-nm-parts-are-finally-here
https://www.chipworks.com/about-chipworks/overview/blog/intel%E2%80%99s-14-nm-parts-are-finally-here

118 BIBLIOGRAPHY

[11] “International Technology Roadmap for Semiconductors (ITRS) reports,”
http://www.itrs2.net, 2015, accessed: December 20, 2018.

[12] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc,
“Design of ion-implanted MOSFET’s with very small physical dimensions,”
IEEE J. Solid-State Circuits, vol. 9, no. 5, pp. 256–268, Oct 1974.

[13] M. Dell’Orso and L. Ristori, “VLSI structures for track finding,” Nucl.
Instrum. Methods Phys. Res. A, vol. Nucl. Instrum. Methods Phys. Res.,
no. 2, pp. 436 – 440, 1989. Available: http://www.sciencedirect.com/science/
article/pii/0168900289908620

[14] A. Andreani et al., “The FastTracker Real Time Processor and its impact
on Muon Isolation, Tau and b-Jet online selections at ATLAS,” IEEE Trans.
Nucl. Sci., vol. 59, no. 2, pp. 348–357, April 2012.

[15] V. Cavaliere et al., “Design of a hardware track finder (Fast Tracker) for the
ATLAS trigger,” J. Instrum., vol. 11, no. 02, p. C02056, 2016. Available:
http://stacks.iop.org/1748-0221/11/i=02/a=C02056

[16] “IMPART: A Multi-Purpose chip for PAttern Recognition Tasks,” http://
albertostabile3.wixsite.com/impart, accessed: December 20, 2018.

[17] ATLAS Collaboration, “Technical Design Report for the Phase-II Upgrade of
the ATLAS TDAQ System,” CERN, Tech. Rep. ATL-COM-DAQ-2017-160,
2017.

[18] The ATLAS Collaboration et al., “The ATLAS Experiment at the CERN
Large Hadron Collider,” J. Instrum., vol. 3, no. 08, p. S08003, 2008.
Available: http://stacks.iop.org/1748-0221/3/i=08/a=S08003

[19] H. Yan, H. S. Choe, S. Nam, Y. Hu, S. Das, J. F. Klemic, J. C.
Ellenbogen, and C. M. Lieber, “Programmable nanowire circuits for
nanoprocessors,” Nature, vol. 470, pp. 240 EP –, Feb 2011. Available:
http://dx.doi.org/10.1038/nature09749

[20] G. M. Whitesides and B. Grzybowski, “Self-assembly at all scales,”
Science, vol. 295, no. 5564, pp. 2418–2421, 2002. Available: http:
//science.sciencemag.org/content/295/5564/2418

[21] W. Lu and C. M. Lieber, “Nanoelectronics from the bottom up,” Nat.
Mater., vol. 6, pp. 841 EP –, Nov 2007, review Article. Available:
http://dx.doi.org/10.1038/nmat2028

http://www.itrs2.net
http://www.sciencedirect.com/science/article/pii/0168900289908620
http://www.sciencedirect.com/science/article/pii/0168900289908620
http://stacks.iop.org/1748-0221/11/i=02/a=C02056
http://albertostabile3.wixsite.com/impart
http://albertostabile3.wixsite.com/impart
http://stacks.iop.org/1748-0221/3/i=08/a=S08003
http://dx.doi.org/10.1038/nature09749
http://science.sciencemag.org/content/295/5564/2418
http://science.sciencemag.org/content/295/5564/2418
http://dx.doi.org/10.1038/nmat2028

BIBLIOGRAPHY 119

[22] K. Ariga, M. V. Lee, T. Mori, X.-Y. Yu, and J. P. Hill, “Two-
dimensional nanoarchitectonics based on self-assembly,” Adv. Colloid
and Interface Sci., vol. 154, no. 1, pp. 20 – 29, 2010. Available:
http://www.sciencedirect.com/science/article/pii/S0001868610000072

[23] Y. Chen, G.-Y. Jung, D. A. A. Ohlberg, X. Li, D. R. Stewart, J. O.
Jeppesen, K. A. Nielsen, J. F. Stoddart, and R. S. Williams, “Nanoscale
molecular-switch crossbar circuits,” Nanotechnology, vol. 14, no. 4, p. 462,
2003. Available: http://stacks.iop.org/0957-4484/14/i=4/a=311

[24] L. Amarú, P. E. Gaillardon, S. Mitra, and G. D. Micheli, “New Logic Synthe-
sis as Nanotechnology Enabler,” Proc. IEEE, vol. 103, no. 11, pp. 2168–2195,
Nov 2015.

[25] M. Altun and M. D. Riedel, “Logic Synthesis for Switching Lattices,” IEEE
Trans. Comput., vol. 61, no. 11, pp. 1588–1600, Nov 2012.

[26] G. Gange, H. Søndergaard, and P. J. Stuckey, “Synthesizing Optimal
Switching Lattices,” ACM Trans. Des. Autom. Electron. Syst., vol. 20, no. 1,
pp. 6:1–6:14, Nov. 2014. Available: http://doi.acm.org/10.1145/2661632

[27] “NANOxCOMP,” http://www.nanoxcomp.itu.edu.tr, accessed: December 20,
2018.

[28] A. Stabile et al., “Phase-II Associative Memory ASIC Specifications,”
INFN, CERN; LPNHE; UNIMI, Milano, Paris, Melbourne, London, Pisa,
Perugia, Bergamo, Tech. Rep. CERN-OPEN-2018-003, May 2018, preprint.
Available: https://cds.cern.ch/record/2320701

[29] A. Annovi et al., “Characterization of an associative memory chip in 28 nm
CMOS technology,” in 2018 IEEE International Symposium on Circuits and
Systems (ISCAS), May 2018, pp. 1–5.

[30] A. Annovi, L. Frontini, V. Liberali, and A. Stabile, “Design and characteriza-
tion of new content addressable memory cells,” in 2018 IEEE International
Symposium on Circuits and Systems (ISCAS), May 2018, pp. 1–5.

[31] A. Annovi et al., “A low-power and high-density associative memory in
28 nm CMOS technology,” in 2017 6th International Conference on Modern
Circuits and Systems Technologies (MOCAST), May 2017, pp. 1–4.

[32] L. Frontini, V. Liberali, and A. Stabile, “A very compact population count
circuit for associative memories,” in 2018 7th International Conference on
Modern Circuits and Systems Technologies (MOCAST), May 2018, pp. 1–3.

http://www.sciencedirect.com/science/article/pii/S0001868610000072
http://stacks.iop.org/0957-4484/14/i=4/a=311
http://doi.acm.org/10.1145/2661632
http://www.nanoxcomp.itu.edu.tr
https://cds.cern.ch/record/2320701

120 BIBLIOGRAPHY

[33] L. Frontini, A. Stabile, and V. Liberali, “Population count circuits for associa-
tive memories: A comparison study,” in 2017 6th International Conference
on Modern Circuits and Systems Technologies (MOCAST), May 2017, pp.
1–4.

[34] S. Capra, F. Crescioli, L. Frontini, M. Garci, and V. Liberali, “A digitally-
controlled ring oscillator in 28 nm CMOS technology,” in 2018 IEEE In-
ternational Symposium on Circuits and Systems (ISCAS), May 2018, pp.
1–5.

[35] A. Bernasconi, V. Ciriani, L. Frontini, V. Liberali, G. Trucco, and T. Villa,
“Logic synthesis for switching lattices by decomposition with P-Circuits,” in
2016 Euromicro Conference on Digital System Design (DSD), Aug 2016, pp.
423–430.

[36] A. Bernasconi, V. Ciriani, L. Frontini, and G. Trucco, “Synthesis on switch-
ing lattices of dimension-reducible boolean functions,” in 2016 IFIP/IEEE
International Conference on Very Large Scale Integration (VLSI-SoC), Sept
2016, pp. 1–6.

[37] A. Bernasconi, V. Ciriani, L. Frontini, V. Liberali, G. Trucco, and T. Villa,
“Enhancing logic synthesis of switching lattices by generalized Shannon
decomposition methods,” Microprocessors and Microsystems, vol. 56, pp.
193–203, 2018.

[38] A. Bernasconi, V. Ciriani, L. Frontini, and G. Trucco, “Composition of
Switching Lattices and Autosymmetric Boolean Function Synthesis,” in
2017 Euromicro Conference on Digital System Design (DSD), Aug 2017, pp.
137–144.

[39] A. Bernasconi, V. Ciriani, L. Frontini, and G. Trucco, “Composition
of switching lattices for regular and for decomposed functions,”
Microprocessors and Microsystems, vol. 60, pp. 207 – 218, 2018. Available:
http://www.sciencedirect.com/science/article/pii/S0141933118300449

[40] M. C. Morgül, L. Frontini, I. Vatajelu, and L. Anghel, “Integrated
Synthesis Methodology for Crossbar Arrays,” in IEEE NANOARCH’2018.
Athens, Greece: Academic Press, London, UK, Jul. 2018. Available:
https://hal.archives-ouvertes.fr/hal-01898674

[41] K. J. Kuhn, “Moore’s Law Past 32nm: Future Challenges in Device Scaling,”
in 2009 13th International Workshop on Computational Electronics, May
2009, pp. 1–6.

http://www.sciencedirect.com/science/article/pii/S0141933118300449
https://hal.archives-ouvertes.fr/hal-01898674

BIBLIOGRAPHY 121

[42] H. Wong and H. Iwai, “On the scaling issues and high-κ replacement of
ultrathin gate dielectrics for nanoscale MOS transistors,” Microelectronic
Engineering, vol. 83, no. 10, pp. 1867 – 1904, 2006. Available:
http://www.sciencedirect.com/science/article/pii/S016793170600253X

[43] S. H. Lo, D. A. Buchanan, Y. Taur, and W. Wang, “Quantum-mechanical
modeling of electron tunneling current from the inversion layer of ultra-thin-
oxide nMOSFET’s,” IEEE Electron Device Lett., vol. 18, no. 5, pp. 209–211,
May 1997.

[44] L. P. B. Lima, H. F. W. Dekkers, J. G. Lisoni, J. A. Diniz, S. Van Elshocht,
and S. De Gendt, “Metal gate work function tuning by Al incorporation in
TiN,” Journal of Applied Physics, vol. 115, no. 7, p. 074504, 2014. Available:
https://doi.org/10.1063/1.4866323

[45] “A Review of TSMC 28 nm Process Technology,”
https://www.chipworks.com/about-chipworks/overview/blog/
review-tsmc-28-nm-process-technology, accessed: December 20,
2018.

[46] H. Levinson, Principles of Lithography, ser. SPIE Press Monograph. Society
of Photo Optical, 2005.

[47] S. Chii-ming, H. Yi-yu, T. Yu-cheng, L. Hung-yueh, T. Kao-tsai,
and W. Jong-bor, “Alternating phase shift mask,” 12 2005. Available:
http://www.freepatentsonline.com/6977127.pdf

[48] Z. Krivokapic and C. A. Spence, “Attenuated phase shift mask,” 07 1999.
Available: http://www.freepatentsonline.com/5928813.pdf

[49] G. Boselli, G. Trucco, and V. Liberali, “Effects of digital switching noise on
analog circuits performance,” in 2007 18th European Conference on Circuit
Theory and Design, Aug 2007, pp. 160–163.

[50] A. Afzali-Kusha, M. Nagata, N. K. Verghese, and D. J. Allstot, “Substrate
Noise Coupling in SoC Design: Modeling, Avoidance, and Validation,” Pro-
ceedings of the IEEE, vol. 94, no. 12, pp. 2109–2138, Dec 2006.

[51] S. Donnay and G. Gielen, Substrate Noise Coupling in Mixed-Signal ASICs.
Springer, 2003.

[52] L. Frontini, A. Stabile, and V. Liberali, “Power Distribution Network opti-
mization for Associative Memories,” in 2017 6th International Conference
on Modern Circuits and Systems Technologies (MOCAST), May 2017, pp.
1–4.

http://www.sciencedirect.com/science/article/pii/S016793170600253X
https://doi.org/10.1063/1.4866323
https://www.chipworks.com/about-chipworks/overview/blog/review-tsmc-28-nm-process-technology
https://www.chipworks.com/about-chipworks/overview/blog/review-tsmc-28-nm-process-technology
http://www.freepatentsonline.com/6977127.pdf
http://www.freepatentsonline.com/5928813.pdf

122 BIBLIOGRAPHY

[53] N. Kimura and A. Collaboration, “Atlas ftk a - very complex - custom super
computer,” Journal of Physics: Conference Series, vol. 762, no. 1, p. 012005,
2016. Available: http://stacks.iop.org/1742-6596/762/i=1/a=012005

[54] G. Apollinari, A. I. Béjar, O. Brüning, P. Fessia, M. Lamont, L. Rossi, and
L. Tavian, High-Luminosity Large Hadron Collider (HL-LHC): Technical
Design Report V. 0.1, ser. CERN Yellow Reports: Monographs. Geneva:
CERN, 2017. Available: http://cds.cern.ch/record/2284929

[55] J. Gradin, M. Mårtensson, and R. Brenner, “Comparison of two hardware-
based hit filtering methods for trackers in high-pileup environments,”
Journal of Instrumentation, vol. 13, no. 04, p. P04019, 2018. Available:
http://stacks.iop.org/1748-0221/13/i=04/a=P04019

[56] M. M. Del Viva, G. Punzi, and D. Benedetti, “Information and perception of
meaningful patterns,” PloS one, vol. 8, no. 7, p. e69154, 2013.

[57] P. Luciano, C. . Sotiropoulou, S. Gkaitatzis, M. Viti, S. Citraro, A. Retico,
P. Giannetti, and M. Dell’Orso, “A Hardware Implementation of a Brain
Inspired Filter for Image Processing,” IEEE Transactions on Nuclear Science,
vol. 64, no. 6, pp. 1374–1381, June 2017.

[58] M. A. Mirzaei, F. Crescioli, S. Viret, W. Tromeur, G. Calderini, G. Mar-
chiori, G. Baulieu, and G. Galbit, “A Novel Associative Memory Based
Architecture for Sequence Alignment,” in 2016 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW), May 2016,
pp. 473–478.

[59] A. Annovi, M. M. Beretta, G. Calderini, F. Crescioli, L. Frontini,
V. Liberali, S. Shojaii, and A. Stabile, “AM06: the Associative
Memory chip for the Fast TracKer in the upgraded ATLAS detector,”
J. Instrum., vol. 12, no. 04, p. C04013, 2017. Available: http:
//stacks.iop.org/1748-0221/12/i=04/a=C04013

[60] L. Frontini, S. Shojaii, A. Stabile, and V. Liberali, “A new XOR-based
content addressable memory architecture,” in 2012 19th IEEE International
Conference on Electronics, Circuits, and Systems (ICECS 2012), Dec 2012,
pp. 701–704.

[61] P. Fischer, “First implementation of the MEPHISTO binary readout
architecture for strip detectors,” Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment, vol. 461, no. 1, pp. 499 – 504, 2001, 8th Pisa Meeting

http://stacks.iop.org/1742-6596/762/i=1/a=012005
http://cds.cern.ch/record/2284929
http://stacks.iop.org/1748-0221/13/i=04/a=P04019
http://stacks.iop.org/1748-0221/12/i=04/a=C04013
http://stacks.iop.org/1748-0221/12/i=04/a=C04013

BIBLIOGRAPHY 123

on Advanced Detectors. Available: http://www.sciencedirect.com/science/
article/pii/S0168900200012833

[62] A. Annovi et al., “A new variable-resolution Associative Memory for high
energy physics,” in 2011 2nd International Conference on Advancements
in Nuclear Instrumentation, Measurement Methods and their Applications,
June 2011, pp. 1–6.

[63] A. T. Do, C. Yin, K. Velayudhan, Z. C. Lee, K. S. Yeo, and T. T. Kim,
“0.77 fJ/bit/search Content Addressable Memory Using Small Match Line
Swing and Automated Background Checking Scheme for Variation Toler-
ance,” IEEE J. Solid-State Circuits, vol. 49, no. 7, pp. 1487–1498, July
2014.

[64] M. Wieckowski, D. Sylvester, D. Blaauw, V. Chandra, S. Idgunji, C. Pietrzyk,
and R. Aitken, “A black box method for stability analysis of arbitrary SRAM
cell structures,” in 2010 Design, Automation Test in Europe Conference
Exhibition (DATE 2010), March 2010, pp. 795–800.

[65] J. U. Horstmann, H. W. Eichel, and R. L. Coates, “Metastability behavior
of CMOS ASIC flip-flops in theory and test,” IEEE J. Solid-State Circuits,
vol. 24, no. 1, pp. 146–157, Feb 1989.

[66] J. Lohstroh, “Static and dynamic noise margins of logic circuits,” IEEE J.
Solid-State Circuits, vol. 14, no. 3, pp. 591–598, June 1979.

[67] A. Dalalah, S. Baba, and A. Tubaishat, “New Hardware Architecture for
Bit-counting,” in Proceedings of the 5th WSEAS International Conference on
Applied Computer Science, ser. ACOS’06. Stevens Point, Wisconsin, USA:
World Scientific and Engineering Academy and Society (WSEAS), 2006, pp.
118–128. Available: http://dl.acm.org/citation.cfm?id=1973598.1973623

[68] V. A. Pedroni, “Compact Hamming-Comparator-based rank order filter for
digital VLSI and FPGA implementations,” in 2004 IEEE International Sym-
posium on Circuits and Systems (IEEE Cat. No.04CH37512), vol. 2, May
2004, pp. II–585–8 Vol.2.

[69] L. Frontini, A. Stabile, and V. Liberali, “Population count circuits for Associa-
tive Memories: A comparison study,” in 2017 6th International Conference
on Modern Circuits and Systems Technologies (MOCAST), May 2017, pp.
1–4.

http://www.sciencedirect.com/science/article/pii/S0168900200012833
http://www.sciencedirect.com/science/article/pii/S0168900200012833
http://dl.acm.org/citation.cfm?id=1973598.1973623

124 BIBLIOGRAPHY

[70] M. Maymandi-Nejad and M. Sachdev, “A digitally programmable delay
element: design and analysis,” IEEE Trans. VLSI Syst., vol. 11, no. 5, pp.
871–878, Oct 2003.

[71] M. Maymandi-Nejad and M. Sachdev, “A monotonic digitally controlled
delay element,” IEEE J. Solid-State Circuits, vol. 40, no. 11, pp. 2212–2219,
Nov 2005.

[72] A. Bernasconi, V. Ciriani, G. Trucco, and T. Villa, “On Decomposing Boolean
Functions via Extended Cofactoring,” in Design Automation and Test in
Europe (DATE), 2009, pp. 1464–1469.

[73] A. Bernasconi, V. Ciriani, G. Trucco, and T. Villa, “Logic Synthesis by
Signal-Driven Decomposition,” in Advanced Techniques in Logic Synthesis,
Optimizations and Applications, K. Gulati, Ed. Springer New York, 2011,
pp. 9–29.

[74] A. Bernasconi, V. Ciriani, V. Liberali, G. Trucco, and T. Villa, “Synthesis of
P-Circuits for Logic Restructuring,” Integration, vol. 45, no. 3, pp. 282–293,
2012.

[75] A. Bernasconi, V. Ciriani, and R. Cordone, “EXOR Projected Sum of Prod-
ucts,” in 14th International Conference on Very Large Scale Integration,
2006.

[76] A. Bernasconi, V. Ciriani, and R. Cordone, “On Projecting Sums of Products,”
in 11th Euromicro Conference on Digital Systems Design: Architectures,
Methods and Tools, 2008, pp. 787–794.

[77] A. Bernasconi, V. Ciriani, G. Trucco, and T. Villa, “Projected Don’t Cares,”
in Euromicro Conference on Digital Systems Design (DSD12), 2012, pp.
57–64.

[78] A. Bernasconi, V. Ciriani, G. Trucco, and T. Villa, “Using Flexibility in
P-Circuits by Boolean Relations,” IEEE Trans. Computers, vol. 64, no. 12,
pp. 3605–3618, 2015.

[79] A. Bernasconi, V. Ciriani, G. Trucco, and T. Villa, “Minimization of EP-
SOPs via Boolean relations,” in IFIP/IEEE VLSI-SoC 2013 - International
Conference on Very Large Scale Integration of System-on-Chip, 2013, pp.
112–117.

[80] J. C. Bioch, “The Complexity of Modular Decomposition of Boolean Func-
tions,” Discrete Applied Mathematics, vol. 149, no. 1-3, pp. 1–13, 2005.

BIBLIOGRAPHY 125

[81] V. Kravets, “Constructive Multi-Level Synthesis by Way of Functional Prop-
erties,” Ph.D. dissertation, Computer Science Engineering, University of
Michigan, 2001.

[82] S. Yang, “Logic Synthesis and Optimization Benchmarks User Guide Version
3.0,” Microelectronic Center, User Guide, 1991.

[83] A. Bernasconi and V. Ciriani, “DRedSOP: Synthesis of a New Class of
Regular Functions.” in Euromicro Conference on Digital Systems Design
(DSD), 2006, pp. 377–384.

[84] V. Ciriani, “Synthesis of SPP -Level Logic Networks using Affine Spaces,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 22, no. 10, pp.
1310–1323, 2003.

[85] A. Bernasconi and V. Ciriani, “Dimension-reducible boolean functions based
on affine spaces,” ACM Trans. Design Autom. Electr. Syst., vol. 16, no. 2,
p. 13, 2011.

[86] F. Luccio and L. Pagli, “On a New Boolean Function with Applications,”
IEEE Trans. Comput., vol. 48, no. 3, pp. 296–310, 1999.

[87] A. Bernasconi, V. Ciriani, F. Luccio, and L. Pagli, “Fast Three-Level Logic
Minimization Based on Autosymmetry,” in ACM/IEEE 39th Design Automa-
tion Conference (DAC), 2002, pp. 425–430.

[88] A. Bernasconi, V. Ciriani, F. Luccio, and L. Pagli, “Implicit Test of Regular-
ity for Not Completely Specified Boolean Functions,” in IEEE/ACM 11th
International Workshop on Logic & Synthesis (IWLS), 2002, pp. 345–350.

[89] A. Bernasconi, V. Ciriani, F. Luccio, and L. Pagli, “Three-Level Logic
Minimization Based on Function Regularities,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 22, no. 8, pp. 1005–1016, 2003.

[90] A. Bernasconi, V. Ciriani, F. Luccio, and L. Pagli, “Exploiting Regularities
for Boolean function synthesis,” Theory Comput. Syst., vol. 39, no. 4, pp.
485–501, 2006.

[91] A. Bernasconi, V. Ciriani, F. Luccio, and L. Pagli, “Synthesis of Autosym-
metric Functions in a New Three-Level Form,” Theory Comput. Syst., vol. 42,
no. 4, pp. 450–464, 2008.

[92] A. Bernasconi, V. Ciriani, and G. Trucco, “Biconditional-BDD Ordering
for Autosymmetric Functions,” in 2015 Euromicro Conference on Digital

126 BIBLIOGRAPHY

System Design, DSD 2015, Madeira, Portugal, August 26-28, 2015, 2015, pp.
211–217.

[93] P. Cohn, Algebra Vol. 1. John Wiley & Sons, 1981.

[94] V. Ciriani, “A New Approach to Three-Level Logic Synthesis,” Computer
Science Department, University of Pisa, Technical Report TR-02-03, 2002.

[95] N. Weste and K. Eshraghian, Principles of CMOS VLSI Design. Addison-
Wesley Publishing Company, 1993.

[96] A. Bernasconi and V. Ciriani, “Logic synthesis and testability of D-reducible
functions,” in IFIP/IEEE VLSI-SoC 2010 - International Conference on Very
Large Scale Integration of System-on-Chip,, 2010, pp. 280–285.

[97] R. Bryant, “Graph Based Algorithm for Boolean Function Manipulation,”
IEEE Trans. Comput., vol. 35, no. 9, pp. 667–691, 1986.

[98] S. Minato, “Zero-Suppressed BDDs for Set Manipulation in Combinatorial
Problems,” in ACM/IEEE 30th Design Automation Conference (DAC), 1993,
pp. 272–277.

[99] A. Bernasconi, V. Ciriani, and L. Lago, “On the error resilience of ordered
binary decision diagrams,” Theor. Comput. Sci., vol. 595, pp. 11–33, 2015.

[100] A. Bernasconi and V. Ciriani, “Index-Resilient Zero-Suppressed BDDs: Def-
inition and Operations,” ACM Trans. Design Autom. Electr. Syst., vol. 21,
no. 4, pp. 72:1–72:27, 2016.

[101] D. Bañeres, J. Cortadella, and M. Kishinevsky, “A Recursive Paradigm to
Solve Boolean Relations,” IEEE Trans. Comput., vol. 58, no. 4, pp. 512–527,
2009.

[102] M. C. Morgul and M. Altun, “Logic Circuit Design with Switching Nano Ar-
rays and Area Optimization (in Turkish),” in Elektrik, Elektronik, Bilgisayar
ve Biyomedikal Mühendisligi Sempozyumu (ELECO), 2014.

[103] C. Chen, H. Shih, C. Wu, C. Lin, P. Chiu, S. Sheu, and F. T. Chen, “RRAM
Defect Modeling and Failure Analysis Based on March Test and a Novel
Squeeze-Search Scheme,” IEEE Trans. Comput., vol. 64, no. 1, pp. 180–190,
Jan 2015.

[104] A. Annovi et al., “A XOR-based associative memory block in 28 nm CMOS
for interdisciplinary applications,” in 2015 IEEE International Conference
on Electronics, Circuits, and Systems (ICECS), Dec 2015, pp. 392–395.

BIBLIOGRAPHY 127

[105] D. Alexandrescu, M. Altun, L. Anghel, A. Bernasconi, V. Ciriani, L. Frontini,
and M. Tahoori, “Logic synthesis and testing techniques for switching nano-
crossbar arrays,” Microprocessors and Microsystems, vol. 54, pp. 14–25,
2017.

[106] D. Alexandrescu, M. Altun, L. Anghel, A. Bernasconi, V. Ciriani, L. Frontini,
and M. Tahoori, “Synthesis and performance optimization of a switching
nano-crossbar computer,” in 2016 Euromicro Conference on Digital System
Design (DSD), Aug 2016, pp. 334–341.

	Introduction
	CMOS technology
	Switching lattices
	Thesis Organization and Overview
	Part I: Scaled CMOS Technology
	Part II: Switching Lattices

	I Scaled CMOS Technology
	Scaled fabrication processes
	Technologies and materials
	High- dielectrics
	Regular Patterns

	Scaling issues
	Variability
	Interconnection capacitances
	Digital Switching Noise

	Associative Memory ICs
	AM chip road-map
	AM chip architecture and functionality
	Write mode
	Compare mode

	Variable resolution
	AM chip required specifications

	KOXORAM Associative Memory Cell for AM07
	Schematic Diagrams and Layout
	KOXORAM cell working modes
	Clockless logic
	Simulations
	Measurements

	Improvements for AM08
	Hi performance technology
	KOXORAM+
	SRAM metastability
	Butterfly diagram
	SRAM design

	Quorum circuit
	Simulation Results
	Design Verification

	Digitally Controlled Oscillator
	Circuit Structure
	Layout Design
	Simulations

	II Switching Lattices
	Technology Description
	Boolean function implementation
	Synthesis methods
	Altun-Riedel
	Gange-Søndergaard-Stuckey

	Decomposition Methods
	P-circuits and EP-SOP forms
	P-circuits
	EXOR-Projected Sums of Products

	D-reducible Boolean functions
	Autosymmetric functions
	Internal Composition
	P-Circuits
	EXOR-Projected-Sums Of Products
	D-Reducible functions
	Experimental Results
	P-circuits and EP-SOP
	D-Reducible functions

	External Composition
	Autosymmetric functions
	P-Circuits
	D-Reducible functions

	Experimental results

	Defect Tolerance
	Defect Injection Methodology
	Metrics used for Sensitivity Analysis
	Benchmarks and Simulations

	Mitigation by Defect Avoidance

	Conclusions
	Concluding remarks
	Future developments
	Publications

	AM chip specifications
	Main requirements
	Aggressive goals
	Full Custom simulation Corners
	Interdisciplinary Applications

	Cores

	Bibliography
	List of Terms

