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Abstract 

The mechanisms leading to self-assembly of misfolded proteins into amyloid aggregates have been 

studied extensively in the test tube under well controlled conditions. However, to what extent these 

processes are representative of those in the cellular environment remains unclear. Using super-

resolution imaging of live cells, we show that an amyloidogenic polyglutamine-containing protein first 

forms small, amorphous aggregate clusters in the cytosol, chiefly by diffusion. The dynamic 

interaction among these clusters limits their elongation and leads to structures with a branched 

morphology, which differ from the predominantly linear fibrils observed in vitro. A proportion of these 

clusters then assemble via active transport at the microtubule organising center to initiate the formation 

of perinuclear aggresomes. Although it is widely believed that aggresome formation is entirely 

governed by active transport along microtubules, we demonstrate, using a combined approach of 

advanced imaging and mathematical modeling, that diffusion becomes the principal mechanism 

driving aggresome expansion. The increasing surface area of the expanding aggresome increases the 

rate of accretion due to diffusion of cytosolic aggregates, and this pathway soon dominates the 

aggresome assembly process. In extreme cases, this is sufficient to clear the cytoplasm of peripheral 

clusters. We also show that aggresomes mature over time, becoming more compacted as the structure 

grows. The presence of large perinuclear aggregates profoundly affects the behaviour and health of 

the cell and here we show via super-resolution imaging that aggresome formation and development 

are governed by highly dynamic processes that are important in the design of potential therapeutic 

strategies. (250 words) 

  

Significance statement 
Aggresome formation, which leads to severe cell damage including DNA breaks and apoptosis, is 

believed to be solely governed by active transport of protein aggregates along microtubules. However, 

we have used super-resolution imaging and mathematical modeling to show that diffusion, in fact, is 

the predominant process in aggresome assembly. Diffusion of aggregation-prone proteins initially 

drives formation of small, branched aggregate clusters, which undergo random motion and 

demonstrate fast fusion and fragmentation behaviour. Active transport along microtubules is then 

responsible for aggresome nucleation, but diffusion plays the main role in further deposition of 

aggregate clusters, which occurs at an increasing rate as the aggresome expands. Our data also 

highlight the marked contrast between in-cell and in vitro aggregate assembly processes. (120 words) 
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“\body”Introduction 
The misfolding of polypeptides and their subsequent aggregation into insoluble amyloids is a 

characteristic of many neurodegenerative diseases (1, 2). Polyglutamine (polyQ) is generated by the 

expansion of clustered glutamine codons in various unrelated protein-coding genes and is implicated 

in neurodegenerative conditions such as Huntington’s disease (HD). Accumulation of misfolded polyQ 

leads to the formation of aggregates in cytosol and aggresomes near the microtubule organising center 

(MTOC) (3), but the details of the protein aggregation process remain unclear. In a previous study (4), 

we showed that cells first generate cytoplasmic aggregates which coalesce into aggresomes, which 

take up a considerable volume in the cell and can lead to DNA damage and interference with the cell 

cycle (5, 6). Mechanistic information on the assembly process of misfolded proteins is clearly of 

pathological significance, and investigations at the molecular scale are critical to a detailed 

understanding of this process. Conventionally, the kinetics of amyloid aggregation reactions are 

studied in the test tube. In vitro experiments have for example demonstrated how monomers of polyQ 

proteins assemble at seeding sites, leading to elongation of fibrillary aggregates (7, 8). Such fibrils 

grow to 1-2 μm in length in vitro, and they feature a well-defined morphology and are subsequently 

bound into loosely compacted bundles (9, 10).  

 

In vitro experiments enable perfectly adjusted solution conditions, where protein nucleation, diffusion 

and elongation kinetics can be tightly controlled (11). However, the intracellular environment is far 

more complex, featuring active transport, multiple phases, molecular crowding, and 

compartmentalisation, all of which likely affect the kinetics and attributes of protein aggregate 

formation (12). Therefore, although in vitro assays are a convenient tool, their relevance to the 

physiological situation needs to be examined. In cells, polyQ aggregates appear to be structurally 

heterogeneous, being composed of a mixture of granules, straight and tortuous filaments, and fibrils 

(13).  Intriguingly, fibrillar structures in cells are typically 7-8 nm in diameter, similar to their in vitro 

counterparts, but their length rarely exceeds 300 nm or so (14). They are thus morphologically similar 

to those formed in vitro but of significantly reduced length (10). In terms of dynamics, intracellular 

aggregates display distinct patterns that differ fundamentally from their in-solution counterparts. A 

previous study has demonstrated the remarkable mobility of polyQ aggregates within the cell nucleus 

and these intranuclear aggregates were shown to disrupt normal patterns of gene expression (15). In 

the current paper we focus on the formation of aggresomes in the cytosol. We investigate the nucleation 

and expansion phases of aggresomes in the perinuclear region and distinguish active from passive 
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transport phenomena. Using a combination of advanced optical imaging modalities, including high 

speed structured illumination microscopy (SIM), single particle tracking (SPT), and mathematical 

modeling of aggregate transport in the cell, we establish that aggresome formation is initiated by active 

transport of small aggregates, which are dispersed throughout the cytosol, to the MTOC. However, at 

later stages aggresome expansion is mainly driven by diffusion of protein aggregates.  

 

 
Results 

 

Aggresomes expand in volume by recruitment of polyQ clusters  

We have previously established stable HEK cell lines expressing a tetracycline-inducible partial exon 

1 sequence of huntingtin protein with an expanded polyQ region of 72 glutamine residues (HDQ72) 

fused to the SNAP-tag protein or to EGFP (6). With continuous induction of HDQ72, intracellular 

polyQ aggregates, including perinuclear aggresomes, begin to appear within a week (Fig. 1A, Fig. 

S1A), although the proportion of the cell population containing aggregates remains more or less 

constant at about 30 percent (Fig. S1B). This suggests that any aggregate-containing cells that die are 

replaced by newly divided cells, in which aggregation is already underway, or is imminent (6).  

 

To assess aggregate formation in real time, we performed time-lapse imaging of cells expressing 

EGFP-HDQ72, with image capture every 15 min over a 15 h period (Fig. 1A and B). We observed the 

appearance and gradual increase in size of a compact perinuclear aggresome (white arrows in Fig. 1A), 

while the fluorescence of the rest of the cytoplasm simultaneously decreased (Fig. 1A and C). In 

contrast, the fluorescence intensity in cells without aggregates remained constant throughout this time 

period (Fig. 1B and C). Quantification of cytoplasmic fluorescence intensity, excluding the main 

aggregation site, revealed lower fluorescence intensity in aggregate-containing cells in comparison to 

non-aggregate containing cells (Fig. 1D upper panel). Furthermore, plotting the average cytoplasmic 

fluorescence against the size of aggregates showed these parameters to be inversely correlated with 

each other (Fig. 1D lower panel). Taken together, these findings suggest that large polyQ aggresomes 

are formed in the perinuclear region, presumably by continual accretion of monomers or small 

aggregates from the cytosol. In addition, even when polyQ protein is continuously expressed, a large 

aggresome seems able to clear the cytoplasm of the majority of smaller aggregates. 
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Aggregate assembly in cells is determined by an interplay of diffusion and active transport 

processes  
The growth of perinuclear aggresomes at the expense of the cytosolic polyQ fraction led us to 

investigate how monomeric HDQ72 or small aggregates are added to the perinuclear site. To address 

this, we performed high-resolution spatio-temporal imaging of aggregation events by SIM (16) using 

a custom-built setup, capable of 90 nm spatial resolution at frame rates of up to 22 Hz (17). The 

resulting time-lapse videos revealed that cytosolic polyQ aggregates are small compact structures, 

which are clusters of short fibrils and highly branched and labile in nature, frequently undergoing rapid 

motion (Video 1), with a size that rarely exceeds ca. 500 nm in scale (Fig. 2). Therefore, we define 

these small aggregated species as aggregate clusters. Using a SPT algorithm, we identified individual 

aggregate clusters and analysed their trajectories over a 24 s period at a frame rate of 5 Hz (Fig. 2A). 

The data revealed motion that is overwhelmingly random in fashion for most of the clusters identified. 

Individual particles moved at speeds ranging from 0 to 2 μm s-1 and were initially in localized domains 

where they fused with other clusters, as shown in Fig. 2B and Video 2. In addition to random movement, 

a small proportion of aggregates appeared to be transported actively, as indicated by rapid linear 

movements over distances up to 8 μm. In total, less than 3% of all aggregates were found to undergo 

active transport. Fig. 2C shows both passive (diffusional) and active transport events for small clusters. 

The zoomed regions show that passive transport can lead to both the fission (fragmentation) of 

aggregate clusters (red rectangle) and their fusion (orange rectangle). The former is suggestive of shear 

forces prevailing in the dense and multiphasic cellular environment. Unlike the situation in vitro, the 

size of the elongated aggregates within cells appears to be limited by fragmentation: only 1% of 

clusters were observed to extend beyond 1.5 μm in size, and 90% of all clusters were less than 500 nm 

in size (Fig. S2). The fusion revealed that small aggregates cluster by fusion of different aggregate 

particles (orange rectangles in Fig. 2B and C). Even within large aggresomes, individual small clusters 

were in motion (Fig. 2D and Video3), although at slower speeds than their freely diffusing counterparts 

(Fig. 2B and C). There is also evidence of active transport in Fig. 2C: along the green track shown in 

the left panel, one observes highly directed motion, likely along a microtubule (MT).  

It was previously suggested that small aggregates are transported along MTs to form aggresomes at 

the MTOC, as MT inhibition via nocodazole treatment resulted in a pronounced reduction in the 

formation of aggresomes (3, 18, 19). Our data provide strong and direct evidence of aggregate transport 

along directional tracks, likely along MTs. We measured active transport at velocities averaging 

around 1 μm s-1, which is of the order expected for microtubule-assisted transport by motor proteins 

(20, 21). Although active transport represents only a very small proportion of cluster movements, over 
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long periods of time (>16 h) most cytosolic clusters had translocated to a perinuclear region near the 

MTOC. The most parsimonious explanation of this observation is that diffusion is responsible for this 

deposition of aggregated polyQ protein at the aggresome. Indeed, as shown below, this is likely to be 

the predominant mechanism, because, as shown in Figure 1A, almost all of the cytosolic polyQ is 

adsorbed onto the aggresomes after 16 h. In summary, our recordings reveal a highly dynamic interplay 

between fragmentation and fusion, and between diffusional and active transport, all of which affect 

the formation and fate of small aggregate clusters within cells.  

A small proportion of aggregate clusters bind with HDAC6 and MTs 

Previous studies reported that cytosolic aggregates are recruited by HDAC6 and bind to dynein for 

active transport along MTs (22, 23). Therefore, to gain further information on the degree of active 

transport of polyQ clusters in our model, we performed immunostaining against HDAC6 and tubulins 

in HDQ72-expressing cells, followed by super-resolution imaging and 3D reconstruction. In Fig. 3A, 

3D rendering of the zoomed-in region shows dense distributions of aggregate clusters (green) and 

HDAC6 (red); however, aggregate clusters recruited by HDAC6, which display overlapped regions in 

yellow (Fig. 3A, right panel), are not widely observed. We quantified the proportion of clusters 

recruited by HDAC6 and found that they represent ca. 11% of all aggregates. In Fig. 3B, super-resolved 

structures of MTs (red) and aggregate clusters (green) demonstrate similar results, showing that ca. 9% 

of aggregates are attached to tubulins (highlighted by blue arrows in the right panel). These numbers 

are higher than the fraction of aggregate clusters that were observed to undergo directional transport 

(3%, see earlier section).  The difference may suggest that some MT associated transport appears 

random in motion as reported in (24) may thus not have been discriminated in the motion analysis of 

the SPT tracks.  

 

Large perinuclear aggresomes comprise adsorbed amorphous polyQ clusters that arrive from 

the cytosol 
Super-resolution microscopy offers morphological and structural details of large perinuclear 

aggresomes. Fig. 4 shows a perinuclear aggresome, imaged with 3D SIM (Fig 4A, and Video 4), which 

reveals amorphous structures near the aggresome core, with small, isolated clusters appearing in the 

periphery (Fig. 4A, zoomed in region of 1 and 2 and Video 5). The small polyQ aggregate clusters 

feature a very different morphology to those observed in the test tube, e.g. in fibril elongation assays 

(25, 26), or the fibril bundles formed in solution (27), both of which feature clearly defined linear 

structures. Instead, the cytosolic clusters we observe here, have multiple, tangled branches and are 

limited in size to less than 1.5 μm. The appearance of a dense core region of the aggresome and a less 
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compacted peripheral region containing discernible individual species led us to speculate that 

individual small clusters are recruited to the large perinuclear aggresomes located at the MTOC (3), 

and that this association and the ensuing aggresome growth and compaction are responsible for the 

consumption of cytoplasmic protein material presented in Fig. 1. 

 

Aggresomes are assembled by small clusters in an irreversible and partially disordered fashion by 

diffusion, which leads to their amorphous and tangled morphology. Assembly of amorphous 

aggregates in this fashion has been shown to lead to structures with fractal morphologies (28). To test 

whether this premise is true in the present case, and to give further credence to the hypothesis that 

aggresome development is primarily governed by diffusion driven phenomena we performed a fractal 

analysis on the evolving aggresome topologies. We calculated the fractal dimension Df, relating the 

cluster mass to the evolving cluster sizes (see Materials and Methods and Fig. S3). The results show 

that the radius of gyration (used as a characteristic measure of cluster size) scales linearly with the 

number of small clusters identified within them, an observation typical of fractal objects (Fig. 4B). In 

what follows, the fractal dimension is used in a computational model of aggresome formation.  

 

Mathematical modeling of aggresome formation and expansion 

To gain a better understanding of our experimental observations, we developed a mathematical model 

describing the formation and growth of perinuclear aggresomes, which included both diffusion and 

active transport processes. We considered an aggresome to be a spherical fractal ensemble of 

elementary building blocks, resembling the experimental observation of cytosolic clusters assembling 

into a fractal superstructure. Transport was modelled using a diffusion equation to mimic Brownian 

motion of aggregate clusters in the cytosol and a pure advection equation for active transport to the 

MTOC along MTs. The model reduces to a moving-boundary transport problem where two distinct 

motion processes take place at the same time. This leads to two Cauchy problems, linked by overall 

matter conservation, for diffusion and active transport, respectively, in a spherical geometry. 

Conservation of matter at the solid-liquid (or aggresome surface) interface is implemented to describe 

the quantity of polyQ clusters migrating into the growing aggresome and to update the position of the 

radius of the expanding aggresome (the moving lower boundary of the domain where the differential 

equations are solved). Full details of the computational approach are presented in the Supporting 

Information.   
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Fig. 5A compares the experimentally measured growth of aggresomes over a 16-hour span with the 

model results. The full model (black line) comprises both active transport (green line) and diffusion 

(blue line) components and provides an excellent fit to the experimental data (red dots). The model 

clearly demonstrates that aggresome growth is dominated by diffusion, although inclusion of active 

transport is required in a comprehensive model of the process. Next, we correlated the aggresome 

expansion in time with the concentration of aggregate clusters in the cytosol (Fig. 5B).  As time 

increases (colour of curves changing from black to red), the cytosolic concentration is clearly seen to 

decrease (decrease in plateau region of curves, at far distance).  For each time point, the cytosolic 

concentration is also seen to decrease with proximity to the aggresome surface, thus the process 

exhibits clear source-sink behaviour.  The trends captured in the model shown in Fig. 5B, are consistent 

with the results from the time-lapse imaging shown in Fig. 1A, which also shows a continuously 

decreasing cytosolic of polyQ concentration as aggresome grow in size. Recruitment of clusters leads 

to aggresome expansion and depletion of cytosolic clusters. It is interesting to note, that in some cells, 

the cytosolic polyQ concentration was not observed to change in time, and no substantial aggresomes 

formed (Fig. 1B).  This observation, in conjunction with the modelling results, suggests that there 

exists a delicate balance of cluster formation and removal rates in the cell, which will be discussed in 

further detail in the following sections. 

 

The aggresome core becomes increasingly dense over time 

To further validate our observation and modeling that perinuclear aggresomes grow by accretion of 

cytoplasmic material, we devised an experimental system to visualize the addition of newly 

synthesised polyQ protein onto existing perinuclear aggresomes using a stable cell line for inducible 

expression of SNAP-tagged HDQ72 protein (5). In this system, newly synthesised protein of interest 

can be irreversibly, covalently and sequentially labelled by two different dyes (29). Thus, we induced 

the expression of SNAP-HDQ72 with tetracycline for 14 days to allow aggregates to form and then 

added TMR-Star (580 nm emission peak, red) to the culture for 30 min to label the HDQ72 protein 

already synthesised within the cells. We then replaced the medium containing TMR-Star and grew the 

cells for three more days without label before adding 505-Star (532 nm emission, green) for 30 min. 

This allowed newly expressed HDQ72 protein to be labelled with a different colour. After washing 

out 505-Star, cells were incubated at 37˚C for another two hours to stabilise them before fixation with 

ice cold methanol followed by confocal microscopy (Fig. 6A).  

 



	
9	

We identified two types of aggresome in this way. First, aggresomes were observed in which the core 

was labelled by both colours, suggesting that the newly expressed HDQ72 could enter the core region 

of an already formed aggresome (agg1 in Fig. 6A). Second, we observed aggresomes with a red core 

surrounded by a green shell of newly added HDQ72, indicating that such aggresomes have an 

impermeable core (agg2 in Fig. 6A). A typical aggresome of this type is also shown in a series of 

confocal z-stack images to provide a 3-D overview (Fig. 6A, right-most panel). High resolution SIM 

imaging (Fig. 6B) revealed some mixing of SNAP labels at the interface between core (red) and 

peripheral shell (green), consistent with the surface of such aggresomes being less compact than the 

core, permitting diffusive mixing and intercalation of fragments on the aggresome surface.  

 

We were able to demonstrate, using the labelling scheme in Fig. 6A and a series of confocal z-stack 

images, that, while large aggresomes consist of proteins expressed during both labelling periods (Fig. 

6C, white arrows), small aggregates (Fig. 6C, red arrows) separate from this aggresome were 

composed only of newly expressed proteins (green only). This indicates that small aggregate clusters 

are either transported to aggresomes, or that they are degraded within a few days of synthesis. This 

directly confirmed our modeling that aggresomes initiate from a nucleation site and then expand 

rapidly by attracting small aggregate clusters. We also found that aggresomes with an impermeable 

core comprise less than 20% of the total population after three month of gene induction. Compared 

with permeable aggresomes that vary in size from 1 μm to 9 μm in diameter, impermeable aggresomes 

are all >4 μm in diameter, indicating that an impermeable core structure is associated with larger 

aggresomes. In summary, our two-colour labelling experiments suggest that aggresomes mature from 

permeable, loose structures into structures with more compacted cores (Fig. 6D). We take two potential 

conclusions from the observations presented so far. First, aggregated protein in late-stage aggresomes 

with compacted cores is less likely to dissociate. Second, the increasing surface area of late aggresomes 

increases the probability that new material will adsorb. Taken together, these phenomena may explain 

the near-complete depletion of cytosolic polyQ in cells where large aggresomes are present (see Fig. 

1A). It may also explain why in some cells large aggresomes never form, because in these cases 

fragmentation is dominant over accumulation. These processes are distinctly different to what is 

observed in test tube experiments. 

 

The morphology of polyQ aggregates in cell models mimics that of aggregates in a mouse model 

of Huntington’s disease 
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One of the characteristics of HD is the accumulation of polyQ aggregates in both nuclear and 

cytoplasmic regions of brain cells. To investigate to what extent our data reflect the morphological 

details of polyQ structures found in models of HD pathology, we performed experiments in brain 

sections of the R6/2 mouse, a transgenic strain that expresses a version of exon1 of the human 

huntingtin gene that encodes at least 150 glutamine repeats (30). Fig. 7A shows a large nuclear 

aggregate visualised with 3D SIM using the EGFP-HDQ72 HEK cell model. The structure is similar 

in appearance to that of perinuclear aggresomes in that cell model (see Fig. 4), although the 

mechanisms of formation are likely different in the nucleus. The brain sections from the R6/2 mouse 

were immunostained with the S830 anti-huntingtin antibody and imaged for comparison. In contrast 

to the HEK cell model, perinuclear aggresomes were less abundant and large aggregates featured 

predominantly in the nuclear domain. However, the morphology of nuclear aggregates appeared very 

similar to that in the HEK cell model (see Fig. 7B). Again, the aggregates appear highly condensed at 

their core (white arrow, Fig. 7A and B), but more loosely structured at their periphery.  

 

The experiments confirmed that the morphological diversity of aggregate structures formed in the 

mouse model is similar to that in the HEK cell model, confirming that the cell line is representative of 

protein aggregation in models of HD, thus providing a convenient means to study molecular aspects 

of the disease and therapeutic strategies.  

 

Discussion 
PolyQ fibril formation kinetics have been widely studied both in vitro under controlled solution 

conditions. However, polyQ aggregates formed in cells show different structural characteristics to their 

in vitro counterparts. For example, elongation into long fibrillary structures has not been observed in 

the cell, and fibrils do not usually extend significantly beyond a mean length of ca. 125 nm (14), in 

stark contrast to their solution counterparts, which can extend to several microns in length (9, 10). Our 

experiments demonstrate that the assembly of short fibrils into larger structures is primarily driven by 

diffusion rather than elongation by end-on monomer addition, but also involved fast fusion and 

fragmentation events that lead to the formation of branched clusters of ca. 500-1000 nm in diameter.  

 

This, together with other data we report here, leads to a different view of aggresome formation than 

proposed previously. It has been suggested that aggresome formation is dependent on HDAC6- and 

dynein-facilitated active transport along MTs (22). While we find that this is an important first step in 

the nucleation of aggresomes, subsequent aggresome expansion is primarily driven by diffusion. A 
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model of aggresome formation shows that, initially, rates of aggregate accumulation via active 

transport and diffusion are comparable (Fig. 5A), but they rapidly diverge once nucleation has occurred 

(time 0 in Fig. 5A). The nascent aggresome near the MTOC grows in size and forms amorphous and 

fractal objects (Fig. 4B) with rapidly increasing surface area (Fig. 1A and 5B). This accelerates the 

capture rate for new aggregate material arriving by diffusion (Fig. 5B) and this gradually becomes the 

primary route for aggresome expansion (Fig. 5A and C). The model explains why in some cells the 

soluble and cytosolic fraction of polyQ gets rapidly depleted, because the rate of consumption by the 

aggresome exceeds the production of new protein (see Fig.1A and 5B for experimental and model data, 

respectively). On the other hand, some cells do not form aggresomes at all, and the initial nucleation 

near the MTOC never takes place. This suggests that in these cells degradation mechanisms, e.g. by 

lysosomal or UPS mediated degradation of monomeric species, are sufficiently strong to prevent the 

formation of cytosolic aggregate clusters and this prevents their subsequent assembly into aggresomes. 

On the other hand, our study shows that transport of small fibrils from the cytosol, leads to the 

nucleation of aggresomes near the MTOC. Strategies for therapeutic intervention should thus focus on 

preventing the nucleation of small aggregate species in the cytosol, keeping the protein pool soluble 

in order for UPS degradation to function optimally, and thus preventing fibrillary species from arriving 

at the MTOC. Fibrillar structures are known to be difficult to degrade in the cell (31, 32) and thus their 

transport to the MTOC just leads to irreversible clustering. This suggests that the UPS that can target 

monomers for degradation (32, 33, 34) is a key target for the prevention of aggresome formation. The 

conclusions are consistent with a previous finding that inhibition of the active transport pathway via 

nocodazole treatment of cells, known to lead to microtubule depolymerisation, did indeed prevent 

aggresome formation near the MTOC, however, it led to protein accumulation and aggregation in the 

cytosol (3; 18, 19).    

 

In the literature, there is an ongoing debate on the relative toxicities of monomeric and aggregated 

protein species in the cell (35). Much of the recent literature has focused on soluble species as the main 

problem in amyloid mediated neuropathology and suggestions have been made to drive the 

amyloidogenic protein species into an aggregated and thus more passive state (36, 37). However, the 

current work suggests that this may not be the right strategy after all: Large intracellular aggregates 

have been shown to produce long term toxicity, for example, by inducing DNA damage and apoptosis 

(6). Therefore, increasing the rate of fibril formation in the cytosol may be a risky strategy, as this 

enhances the likelihood of aggresome formation as we show here. 
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In conclusion, we have shown through a combined approach of advanced experimental analysis and 

modelling that both ATP mediated and purely passive, physical phenomena play very important roles 

in the homeostasis of misfolded protein. The study highlights differences as well as similarities of the 

protein aggregation processes occurring in vitro and in the cell. 

 

Materials and Methods 

 

Materials 

L-glutamine, zeocin, hygromycin, blasticidin, DMEM, PBS, FBS, hoechst33342 solution and agarose 

were purchased from Sigma-Aldrich. TMR-Star and 505-Star staining reagents were purchased from 

New England Biolabs. Antibodies against HDAC6 (7558S) (dilution for immunofluorescence 1:300) 

were from Cell Signalling Technology, and against α -tubulin (T5168) (dilution for 

immunofluorescence 1:300) from Sigma-Aldrich.   

 

Cells 
Details on plasmids and construction of the stable cell line were as described previously (Lu et al., 

2015 B). Briefly, mammalian Flp-In T-REx293 cells were grown in T75 or T25 flasks or 6-well plates 

by incubation at 37°C in a 5% CO2 atmosphere. Complete medium for normal cell growth consisted 

of 90% DMEM, 10% FBS with 2 mM L-glutamine; antibiotics were used as appropriate. Cells were 

kept in logarithmic phase growth and passaged on reaching 80-90% confluence (approximately every 

3-4 days). Medium was changed every two or three days.  

 

Mice 

All experimental procedures performed on mice were conducted under a project licence from the 

Home Office (Animal Scientific Procedures Act 1996) and approved by the King's College London 

Ethical Review Process Committee. Hemizygous R6/2 mice (30) were bred by backcrossing R6/2 

males to (CBA × C57BL/6) F1 females (B6CBAF1/OlaHsd; Harlan Olac). Mice were genotyped and 

the CAG repeat was measured as previously described (38). Animals were housed under a 12 h light/12 

h dark cycle, with unlimited access to water and food (Special Diet Service, Witham, UK) in a 

conventional unit. Cages were environmentally enriched with a cardboard tube. Animals were 

sacrificed through terminal anesthesia with Euthatal (Marial, Harlow, UK) at 14 weeks of age. Brains 

were removed and fixed in 4% Parafix (Pioneer Research Chemical Ltd., Essex, UK) for 48 h. The 

brains were then rinsed in phosphate buffered saline (PBS) and stored in 30% sucrose, 0.05% sodium 



	
13	

azide in PBS until sectioning. Coronal sections from a female mouse (CAG = 215) and wild type 

control were taken serially at 50 μm thickness on a freezing microtome (HM430 Microm, Thermo 

Scientific), and stored at -20°C in tissue cryoprotective solution containing 0.05% sodium azide until 

staining.  

 

Sections were washed in PBS prior to non-specific binding blocking with 1 h incubation in 10% normal 

serum with 0.3% Triton X- 100 in PBS. They were then incubated overnight at 4°C in primary antibody 

against S830 (1:2000), raised against exon 1 huntingtin with 53 glutamines (39), prior to incubation in 

secondary Alexa-488 fluorescent dye (Molecular Probes) for 2 h at RT. After a subsequent 15-min 

incubation in Hoechst (Invitrogen) sections were washed in PBS and cover-slipped with Vectashield 

(Vector Laboratories, Peterborough, UK). 

 

Microscopy 

After induction for various times, SNAP-HDQ72-expressing cells were incubated for 30 min at 37°C 

with 300 mM SNAP-Cell TMR-Star (New England Biolabs) dissolved in complete medium. After 

labeling, samples were washed three times with complete medium and incubated for 30 min prior to 

imaging. Images were recorded with an OMX V3 super-resolution microscope. Confocal microscopy 

and immunofluorescence protocols were as described previously (6). 

 

Fixed samples were imaged on a confocal microscope (Leica TCS SP5, using the Leica Application 

Suite (LAS AF)) with a HCX PL APO 40x/1.25-0.75 oil objective lens (Leica) or HCX PL APO 

60x/1.40-0.60 oil objective lens (Leica) at room temperature. Fluorochromes used for individual 

experiments are stated in the figure legends. For the time-lapse fluorescence intensity measurements, 

cells were grown in glass-bottom petri-dishes at 37°C in a 5% CO2 atmosphere. On the day of imaging, 

samples were first stabilised in the incubation chamber of the Leica TCS SP5 system with continuous 

air supply (37°C and 5% CO2). Complete medium was used for live-cell imaging experiments and half 

the medium replaced every two days. The time interval between consecutive image captures varied 

from 5 min to 15 min, as appropriate. The entire set-up was controlled using the Leica LAS AF 

software, and ImageJ was used for image processing and analysis.  

 

For the aggresome permeability measurements, we recorded confocal image stacks for both labels 

used, and only those aggregates were classified as permeable aggregates that were homogenously 

labelled throughout their volume with both colours.  
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To visualize intracellular aggregate motion, we used our custom-built SIM providing a spatial 

resolution approaching 90 nm at frame rates reaching 22 Hz (17). Cells were grown in glass-bottom 

petri-dishes at 37°C in a 5% CO2 atmosphere. On the day of imaging, petri-dishes were first stabilised 

in the incubation chamber of the SIM system with continuous air supply (37°C and 5% CO2). Hardware 

control and image reconstruction were performed with software written in LabView and Matlab (16, 

40). For motion analysis and visualisation ImageJ was used.  

 

Footnotes 
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Figure 1. Perinuclear aggresomes sequester	and	deplete	soluble	HDQ72	from	the	cytosol.	
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Figure	2.	PolyQ aggregates	undergo	frequent	fusion	and	fragmentation	events	in	the	cell.
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Figure	3.	Most	of	polyQ aggregates	do	not	colocalise with	HDAC6	nor	microtubules.	
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Figure 4. High	resolution	optical	imaging	of	intracellular	HDQ72-SNAP	aggresome	morphology.	
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Figure	5.	in	silico	modelling of aggresome formation
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Figure	6.	Dynamic	imaging	of	aggresome	growth.
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A	Cell	models

Figure	7.	Intranuclear aggregates	in	HEK	cells	have	a	similar	morphology	to	those	observed	in	an	
R6/2 mouse	model.
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Figure Legends 

 

Figure 1. Perinuclear aggresomes sequester and deplete soluble HDQ72 from the cytosol.  

 

(A) Time-lapse images recorded by confocal microscopy of an aggregate-containing cell over a time 

period of 15 h. The cytoplasmic concentration of soluble EGFP-HDQ72 protein is seen to decrease 

over time, as it is subsumed into the large perinuclear aggresome. White arrows highlight a perinuclear 

aggresome. Scale bar: 10 μm. 

(B) Time-lapse images of a cell in which no aggregation takes place over a period of 15 h. There is no 

noticeable decrease of the cytosolic fluorescence signal, indicating that the concentration of EGFP-

HDQ72 remains constant. Scale bar: 10 μm.  

(C) Plot of the fluorescence intensity change for recordings such as shown in A) and B). Results are 

shown for three cell samples containing aggresomes (blue colours) and three which were devoid of 

aggresomes (red colours).  

(D) Upper panel: Average fluorescence intensity from the cytosol of aggresome-free (N=78) and 

aggresome-containing (N=106) cells. Error bars correspond to standard deviations from the mean. 

**** indicates a P value<0.0001 in an unpaired t-test. Lower panel: Correlation of average cytoplasmic 

fluorescence intensity with the size of perinuclear aggresomes observed (N=106).   

 

Figure 2. PolyQ aggregates undergo frequent fusion and fragmentation events in the cell. 
(A) High-speed SIM recordings of intracellular aggregate dynamics. All small aggregates are subjected 

to dramatic random movements, which lead to collisions and contacts among clusters. Using a SPT 

algorithm we identified individual particles and analysed their trajectories in time at a frame rate of 5 

Hz (middle and right-hand panel). The velocity spectrum shown applies to all panels. Scale bars: 5 μm 

(left panel), 1 μm (right panel). 

(B) Example images of individual particles in quasi-random motion. Dashed orange and red rectangles 

highlight fusion and fission events, respectively. Scale bars: 500 nm. 

(C) Aggregate motion includes both active and passive transport components. The purple circles 

highlight regions where small clusters where identified in the automated analysis. The dashed orange 

and red rectangles indicate regions where fusion and fragmentation take place, respectively. Scale bar: 

2 μm. 

(D) Loose clusters in the periphery of the aggresome are highly mobile. The panels show motion paths 

of individual fragments within the aggresome (middle panel). SPT reveals that the mobility of 
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aggregate fragments is higher in the in the cytosol than in the aggresome (right hand panel). Scale bars: 

5 μm (left panel), 1 μm (middle panel). 

 

Figure 3. Most polyQ aggregates do not colocalise with HDAC6 nor microtubules.  
(A) Left: A section slice of cytosolic aggregates (green) in HEK cells that are immunostained against 

HDAC6 (red) and α-tubulin (green). Middle: Magnified 3D rendering of the marked region from left. 

Right: Magnified 3D rendering of the marked region from middle panel, showing examples of small 

polyQ clusters bound to HDAC6, which represents a very small proportion of the total. Scale bars 

from left to right: 4 μm, 1 μm and 300 nm, respectively.  

(B) left: A section slice of cytosolic aggregates (green) in HEK cells that are immunostained against 

α-tubulin (red). Middle: 3D rendering of the region from left. Right: Magnified rendering of the 

marked region from middle, showing examples of small polyQ clusters either bound to microtubules 

(blue arrowheads), in which the yellow colour indicates the colocalisation of the two parts, or 

dissociated from microtubules (white arrowheads). Scale bars from left to right: 2 μm, 2 μm and 400 

nm, respectively.  

 

Figure 4. High resolution optical imaging of the morphology of an intracellular HDQ72-SNAP 
aggresome.  

(A) High resolution SIM images of an aggresome and its peripheral regions. The highlighted regions 

(1-2) are shown in the corresponding panels. Scale bars: 2 μm. 1) Zoomed in view of peripheral region 

of the aggresome containing individual, unconnected aggregate fragments that are not associated with 

the main body of the aggresome. 2) Example of amorphous small protrusions from the aggresome 

surface, containing fused aggregate fragments that have arrived from the cytosol. Scale bars: 1 μm (1) 

and 500 nm (2). 

(B) Number of particles in an aggregate N as a function of cluster radius of gyration Rg for all aggregate 

clusters, where we can derive the fractal dimension Df. a refers to the radius of the elementary building 

block made up of small aggregate clusters which, for modelling purposes, is assumed to be spherical.  

 

Figure 5. Mathematical modeling of aggresome formation 

(A) Modeling of two modes of assembly pathways in aggresome formation. Aggresome formation 

driven by diffusion (blue line) is a closer fit to the real experimental data shown in red spots, indicating 

a greater contribution to aggresome expansion. Green line represents pure MT dependent active 

transport.  The black line represents the combined modes of diffusion and active transport.              
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(B) Modeling of aggresome expansion with decreasing cytosolic aggregate concentration. Each line 

represents the size of aggresome and cytosolic aggregate concentration; the null concentration point 

of each line represents the interface of aggresome and cytosol, whose value on the x-axis shows the 

aggresome radius that increases in time. The circles represent the expanding aggresome at different 

time points in this modelling.  

(C) Schematic of the process of aggresome formation. Expression of aggregation-prone protein 

HDQ72 leads to accumulation of aggregate clusters in cytosol. These clusters can be recruited by 

HDAC6 and undergo MT-dependent active transport or diffusion. Aggregate clusters undergoing 

active transport are delivered to the MTOC and form a nucleation core on which other aggregate 

clusters can assemble. As aggresomes expand in size, it provides a greater surface area to interact with 

diffusing aggregates, thus recruiting them at a faster rate and accelerating aggresome growth. 

Therefore, aggresome expansion driven by diffusion is an irreversible process that depletes the cytosol 

of HDQ72. MTs are shown in light blue, cytosolic aggregate clusters undergoing diffusion are in green, 

aggregate clusters undergoing active transport are in dark green, HDAC6 is in purple and dynein in 

red. 

 

Figure 6. Dynamic imaging of aggresome growth. 
(A) - (C) The aggresome core becomes increasingly dense and impermeable over time. 

(A) Cartoon to demonstrate the two-colour labelling protocol. Cells expressing SNAP-HDQ72 were 

labelled with TMR-Star at day 0 (red colour), and three days later with 505-Star (green). Confocal 

images reveal two types of aggresome. In early-stage aggresomes, newly added material diffuses into 

core domains, leading to complete overlap of the two colours in the images. In contrast, late-stage 

aggresomes become increasingly impermeable (dense) and the newly adsorbed material remains 

spatially distinct from the core region. Scale bar: 5 μm. Right panel: confocal slices for agg2.  

(B) 3D SIM images of an impermeable aggresome. Labelling protocol as in (A). Both the inner part 

and peripheral regions of aggregates were composed of small clusters. Scale bar: 2 μm.  

(C) Sequential labelling with alternating dyes reveals that the core region becomes increasingly 

impermeable over time. Scale bar: 7.5 μm. 

(D) Cartoon to illustrate aggresome formation. Multiple fragments (green) cluster around a central 

seeding site (red) to form a large aggregate core.  

 

Figure 7. Intranuclear aggregates in HEK cells have a similar morphology to those observed in 
an R6/2 mouse model. 
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(A) 3D SIM images of intranuclear aggregates in the HEK cell model expressing SNAP-HDQ72. 

Numerous small clusters and a large aggregate were embedded inside nucleus. The right-hand panel 

shows a zoomed-in version of the region in the white rectangle. Scale bars: 2 μm (left panel), 500 nm 

(right panel).  

(B) 3D SIM images of immunostained intranuclear polyQ aggregates in the R6/2 mouse model at 14 

weeks of age. The aggregates feature a similar morphology to that observed in the cell model. Right 

panel: zoomed-in region shows the amorphous clusters. Scale bars: 2 μm (left panel), 500 nm (right 

panel).  

 

Supporting Information 

1. Mathematical model of aggresome growth 
 
To support and better understand the experimental observations, a mathematical model has been 

developed to describe the formation and growth Poly-Q perinuclear aggresome. 

 

The system will be modelled as composed of a spherical aggresome, considered to be a fractal 

aggregate with well-defined radius of gyration and made of elementary building blocks (clusters) all 

with the same average size and an effective diffusion coefficient. The aggresome is located at the 

centre of a cell supposed to be a perfect sphere. The space between the aggresome and the cell 

boundary is filled with cytosol. The cytosol is populated homogeneously by clusters taken to be 

spherical objects characterized by the same size, so the presence of any poly-Q monomer in the liquid 

medium is neglected. 

 

Considering the geometry of the system, a spherical symmetry condition has been hypothesized, so 

that the concentration of Poly-Q in the liquid phase, expressed as clusters/m3, will depend on time and 

radial coordinate only. The model describes the growth of only one large aggresome at the center of 

the cell, neglecting the formation of other Poly-Q agglomerates. 

 

As it was mentioned earlier, the transport of the clusters from the cytosol to the aggresome is governed 

by two different effects, Brownian motion along the radial direction and active transport through a 

MTs. These two contributions will be considered to be independent from one other, so when a cluster 

will enter the MTOC it won’t be influenced by the diffusive transport that takes place inside the cytosol. 

Finally, it has been evaluated the initial concentration of clusters inside the cell thanks to image 

analysis. Great attention was paid to this step: as mentioned earlier, only 5% of the total clusters are 
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under active transport and this proportion will be considered during the initialization of the input 

parameters. 

 

The model thus reduces to a moving-boundary Stefan problem where two distinct transport processes 

take place at the same time. This leads to two separate Cauchy problems, for diffusive and active 

transport, respectively, in a spherical geometry with a moving-boundary given by the interface between 

solid aggresome (growing as a function of time) and the liquid-like cytosol which fills the surrounding 

space. Conservation of matter at the solid-liquid (or aggresome-liquid interface) interface is 

implemented to describe the quantity of Poly-Q migrating into the growing aggresome and to update 

the position of the radius of the increasing aggresome (the moving lower boundary of the domain 

where the differential equations are solved). 

 

The two Cauchy problems have been formulated for diffusive and active transport and are shown 

below in equation (1)-(7): every building-block (cluster) is either moving under Brownian motion in 

the cytosol or being actively transport (advected) inside one of the MTOC. For the diffusive transport 

we have the following diffusion equation with its boundary and initial conditions: 

 

 

 

 

 

 

 

 

 

while for the advective transport in the MTOC we have the following pure-advection equation 

with its boundary conditions: 
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D is the diffusion coefficient, considered to be constant along the radial coordinate, Vr is the radial 

component of the advection speed inside the MTOC (taken to be independent of r, based on 

experimental evidence), R the radius of the growing aggresome corresponding to the position of the 

solid-liquid interface during time, Rcell the characteristic size of the cell taken to be spherical, the 

initial concentration of clusters inside the cytosol that will be transported by Brownian motion, and

 is the initial concentration of clusters inside the MTOC that are subsequently transported by pure 

advection to the aggresome. 

The update of the solid-liquid interface is obtained by enforcing conservation of matter at the 

aggresome interface r = R: the RHS of equation (8) below represents the flux of matter that is included 

in the solid phase during the time span δt. This leads to the deposition of an external shell of aggregates 

to the surface of the aggresome that causes an increase of the mass of the aggresome expressed in the 

LHS of (8). 

 

 

 

 

 

In this case τ represents the temporal variable integrated between t and t + δt, meanwhile q represents 

the amount of matter necessary to increase the system by a unit of volume. Because the aggresome is 

a fractal aggregate, its density (number of building blocks per unit volume) is not constant, and 

decreases over time because of the spatially self-similar nature of the growth process. It is possible to 

relate q(t) to the fractal dimension df of the aggresome and its radius of gyration R, and to the radius of 

the single building block (cluster) a via the following relation 

 

 

The fractal scaling prefactor kg and the fractal dimension df are related to the number of building blocks 

N inside the aggresome via the standard fractal scaling relation 
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Even though q varies with time overall, it will be considered constant over the small time-step δt taken 

for the discretization of the transport equations. Dividing both intervals by δt and doing the limit for 

δt → 0 we obtain 

 

 

 

 

Because the integrand function in (11) is continuous and limited inside every interval [t,t+δt] it is 

possible to apply the Mean Value Theorem (MVT) defined in (12) 

  

 

 

 

 

where tint is an intermediate point inside the interval [t,t + δt]. Applying MVT together with the 

definition of the first derivative IN (11) we obtain 

  

 

Finally (13) can be reduced to the following final equation through some simple mathematical passages 

 

  

 

 

Equation (13) is numerically solved with an explicit first order finite difference scheme where q will 

be maintained constant over each time span and equal to its value related to the lower limit of every 
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interval; of course a proper time step needs to be chosen such that the approximation of q being 

constant over each time interval will lead to reliable results. 

Full details about the numerical resolution of the model and the input data adopted are provided in the 

supporting information. 

2. Numerical solution 

 

The system (1)-(4) can be numerically solved by using the Crank-Nicholson method: the continuous 

space coordinate will be divided into a series of N discrete intervals and the implicit finite difference 

scheme will be applied for j = n+1,..,N where n+1 is the node related to the solid-liquid interface; (16) 

is a general line of the linear system that needs to be solved. 

 

 

 

The values of the coefficients A(j), B and E(j) are reported in (17) - (19) 

 

 

 

 

  

 

 

 

 

δr is the interval between two consecutive nodes and δt is the time step adopted in this work. 

The two boundary conditions (2)-(3) can be respectively written as 
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The second one represents as a symmetry condition that, thanks to the use of a ghost node N +1: the 

Nth point of the grid can be used as a mirror between neighbouring cells; so the coefficients of the last 

line of the linear system become 

 

 

  

Regarding the other Cauchy problem, it has been demonstrated that the analytical solution of a pure 

convection equation, knowing the initial concentration 

 

 

 

 

 

 

 

 

 

 

Table 1: list of input data together with the respective SI units adopted in this work distribution  

Cliq,
C 

0, is 

  

Thanks to (22), the active transport of aggregates inside the microtubes can be modelled as a plug flow 

of matter from the cell liquid medium to the aggresome. In the main text we describe the theoretical 
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approach to update the position of the solid-liquid interface, what follows is the explicit first order 

discretization adopted in this work 

 

 

  

The evaluation of qi at each time step can be done through equation (9), but before it has been necessary 

the evaluation of kg and df using (10). Experimentally it was possible to find kg = 1.75 and df = 2.08; 

finally, the complete list of input data is shown in Table 1; the value of Vr is considered as negative 

because the direction of the active transport is opposite as the one related to the radial direction 

considered in this work. 

 
Figure S1  

A. Confocal images of an EGFP-HDQ72 cell with an aggresome visible in the perinuclear area.  

B. Proportion of EGFP-HDQ72 cells containing aggregates at different time points after tetracycline 

induction. Three independent experiments were performed with around 200 cells assessed per 

population per experiment. 

 

Figure S2  
Quantification of aggregate cluster numbers of different length scales. Cell samples were fixed and 

279 aggregate clusters were recorded and analysed by 3D SIM.   

 

Figure S3 

Examples of binary images of aggregates used for gyration radius analysis. Scale bar: 1 μm.   

 

Video 1. High-speed SIM recording (2 Hz) of cytosolic polyQ aggregates. 

Video 2. High-speed SIM recording (6 Hz) of aggregate particles in quasi-random motion.  

Video 3. High-speed SIM recording (2 Hz) of small cluster motion within an aggresome.  

Video 4. 3D SIM reconstruction of an aggresome and small aggregate clusters.  

Video 5. 3D SIM reconstruction of a small, amorphous cluster. 

 

 

 


