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SUMMARY

For the past decade, cancer genomic studies have
focused on mutations leading to splice-site disrup-
tion, overlooking those having splice-creating poten-
tial. Here, we applied a bioinformatic tool, MiSplice,
for the large-scale discovery of splice-site-creating
mutations (SCMs) across 8,656 TCGA tumors. We
report 1,964 originally mis-annotated mutations
having clear evidence of creating alternative splice
junctions. TP53 and GATA3 have 26 and 18 SCMs,
respectively, and ATRX has 5 from lower-grade
gliomas. Mutations in 11 genes, including PARP1,
BRCA1, and BAP1, were experimentally validated
for splice-site-creating function. Notably, we found
that neoantigens induced by SCMs are likely several
folds more immunogenic compared tomissensemu-
tations, exemplified by the recurrent GATA3 SCM.
Further, high expression of PD-1 and PD-L1 was
observed in tumors with SCMs, suggesting candi-
dates for immune blockade therapy. Our work high-
lights the importance of integrating DNA and RNA
270 Cell Reports 23, 270–281, April 3, 2018 ª 2018 The Authors.
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data for understanding the functional and the clinical
implications of mutations in human diseases.
INTRODUCTION

Large-scale sequencing studies, such as The Cancer Genome

Atlas (TCGA) project, haveworked to address the functional con-

sequences of genomic mutations in tumors (Dees et al., 2012;

Kandoth et al., 2013; Lawrence et al., 2013; Niu et al., 2016),

with the larger goal of determining the underlying mechanisms

of cancer initiation and progression. Many studies have focused

on characterizing (1) non-synonymous somatic mutations that

alter amino acid sequence and (2) splice-disrupting mutations

at splice donors and acceptors (Jung et al., 2015). Current anno-

tation methods typically classify mutations as disruptors of

splicing if they fall on either the consensus intronic dinucleotide

splice donor, GT, or the splice acceptor, AG. As a group, splice

site mutations have been presumed to be invariably deleterious

because of their disruption of the conserved sequences that are

used to identify exon-intron boundaries.

While this classification method has been useful, increasing

evidence suggests that splice site mutations can lead to tran-

scriptional changes beyond disruption of the canonical junction
commons.org/licenses/by/4.0/).
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(Lim and Fairbrother, 2012; Mort et al., 2014; Rivas et al., 2015;

Sauna and Kimchi-Sarfaty, 2011; Steffensen et al., 2014). One

such example is the c.190 mutation in BRCA1. Conventional

annotation had predicted a missense mutation, p.C64G, but

our analysis of RNA sequencing (RNA-seq) data in ovarian

tumors harboring p.C64G and a published mouse model (Yang

et al., 2003) suggested the germline c.190 mutation leads to

the creation of an alternative splice junction, resulting in a trun-

cated null protein. Several case studies have reported observa-

tions of missense and silent mutations activating cryptic splice

sites in MLH1 (Nyström-Lahti et al., 1999), LMNA (Woolfe

et al., 2010), RB1 (Zhang et al., 2008), RNASEH2A (Rice et al.,

2013), MECP2 (Sheikh et al., 2013), BAP1 (Wadt et al., 2012),

and KIT (Chen et al., 2005), and other studies relate missense

and silent mutations to splicing changes (Jung et al., 2015;

Kahles et al., 2016; Soemedi et al., 2017; Supek et al., 2014).

Despite the broad clinical ramifications of mutation-induced

altered splicing, a systematic evaluation of their occurrence

and the resultant effects in cancer has yet to be undertaken,

and there have not been significant bioinformatics platforms

for doing so.

We developed a bioinformatic tool called MiSplice (mutation-

induced splicing) that integrates DNA and RNA-seq data

across thousands of samples to discover mutations that induce

splice site creation. In our large-scale analysis across 8,656

tumor samples, we report 1,964 such somatic mutations that

had originally been mis-annotated. Splice-site-creating muta-

tions (SCMs) are enriched in the new introns, with the highest

rate at the �3 nt position of acceptors with two-thirds of

such events at aGag and agGag repeats by creating an alterna-

tive junction 2 nt away. Partial and full splice creation capabil-

ities across these 1,964 sites were evaluated by measuring the

fraction of reads supporting the alternative junction, which we

termed the ‘‘junction allele fraction’’ (JAF) and which is found

to be negatively correlated with distance to the new splice

site. In total, 1,607 genes harbor SCMs, with 248 of them

having more than one mutation, including TP53, GATA3,

ATRX, and NF1. Recurrent SCMs were found in TP53,

GATA3, DDX5, KDM6A, PTEN, SETD2, SMAD4, BCOR,

SPOP, and BAP1, suggesting an association with cancer

development. Broadly speaking, integrated DNA and RNA

data can furnish a sound basis for discovering SCMs and for

accurately understanding functional consequences of muta-

tions in cancer and in other human diseases.

RESULTS

Splice-Site-Creating Mutation Discovery
We collected high-quality mutation calls from 8,656 tumors

across 33 cancer types derived from The Cancer Genome Atlas

having available TCGA RNA-seq data (STAR Methods). For

every mutation, we defined a set of control samples in the

same cancer cohort that lacked the same mutation in the gene

of interest. We sought to assess the landscape of SCMs across

cancer genomes by evaluating all mutations already having con-

ventional annotations and their potential splice-site-creating

effects (Figure 1A). To achieve this goal, we conducted analysis

using a bioinformatic tool, MiSplice (mutation-induced splicing),
that systematically evaluates mutations in a splicing context

using RNA-seq data (Figure 1B).

MiSplice manages large analyses using parallel computation

to search for alternative splice junctions within windows of

±20 bp from the mutation of interest. For example, of the

1,416,566 candidate mutations examined here, 4,448 had five

ormore unique RNA-seq reads supporting the predicted alterna-

tive junction in proximity to themutation. MiSplice then conducts

a series of further evaluations, including Ensembl-based filtering

of canonical junctions, establishing observational significance

by case comparison to a matched set of controls, and assessing

score and depth of each cryptic site usingMaxEntScan (Yeo and

Burge, 2004) and SamTools (Li et al., 2009). From the resultant

subset, MiSplice filters out human leukocyte antigen (HLA)

genes and sites whose junctions have insufficient difference

of expression, as judged from the case-control assessment.

Here, we evaluated promising alternative junctions with at least

5% of paired-end RNA-seq reads at the genomic location sup-

porting the alternative junction of interest.

MiSplice processing revealed 2,056 mutations (Table S1) that

potentially create an alternative splice site. Manual review indi-

cated a 2.09% false-positive rate, suggesting high specificity

of the MiSplice algorithm for discovering these types of muta-

tion-induced splicing events. Of these putative splice events,

1.90% and 0.47% are considered complex and are in highly

homologous gene regions, respectively, so they were excluded

from further analyses (STAR Methods).

Of the final 1,964 SCMs passing manual review (Table S1),

52% (1,016) are in annotated splice sites, suggesting disruption

of the canonical splice site and selection of a the alternative

splice site nearby (Figure 1C). Importantly, 26% (513) and 11%

(208) of the SCMs had previously been mis-annotated as

missense and silent mutations, respectively. In addition, we

found 58 insertions or deletions, 46 nonsense, and 123 non-cod-

ing region mutations that likewise create cryptic splicing sites.

Molecular and Biological Patterns of SCMs
Next, we characterized the sequence context for the 1,790

SCMs corresponding to single nucleotide mutations. The

sequences of each 9-mer (donor) and 23-mer (acceptor)

covering the mutation position were extracted for both the

mutant and the reference sequences. Their splice scores as

potential donor or acceptor sites were then estimated using

MaxEntScan (Table S1).

Mutations near the alternative splice junctions show higher

mutation rates in the introns for both 50 (p < 1 3 10�5, binomial

test) and 30 splice site (p < 1 3 10�6) (Figure 2A). More interest-

ingly, we found an enrichment of mutations at the third nucleo-

tide position in the intron, but depletion at the first and second

positions (especially for 30 splice site) (Figure 2A). Comparison

of splicing scores between splice-site-creating mutants and

reference forms shows that most mutants have stronger splice

signals than the reference (Figure 2B). Mutations that create

a G or T to produce an alternative 50 splice site dramatically

increase splice site strength. For 30 splice sites, mutations en-

riched on the third nucleotide of the newly created intron showed

the largest increase of splicing score (Figure 2B). Further exam-

ination of the sequence context around mutations at the third
Cell Reports 23, 270–281, April 3, 2018 271
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Figure 1. Splice-Site-Creating Mutation Discovery

(A) Examples of splice-site-creating mutations for different conventionally annotated mutation types. Splice-in is defined as mutations contained within the newly

created exons, and splice-out is when the mutation is present in the newly created intron.

(B) TheMiSplice workflow consists of three steps: alternative junction discovery, filtering, andmanual review. First, the user inputs the locations of RNA-seq BAM

files along with a mutation file. MiSplice searches the BAM file to identify any alternative splice junctions near the mutation of interest, while filtering out known

splice junctions and calculating the number of alternative junction-supporting reads for case and control samples. For the filtering step, the following sites are

removed:mutations in HLA genes, a low fraction of reads supporting the alternative splice junction, and sites expressed in controls. Finally, wemanually reviewed

all sites to validate the in silico predictions.

(C) Breakdown of 2,056 manually validated splice-site-creating mutations by conventional annotation.
nucleotide of 30 splice sites shows that 53% have a mutation on

aGag repeats and another 16% are mutated on agGag repeats,

all creating alternative junctions 2 nt away from the annotated

ones (Figure 2C). Mutations at the �3 position of the alternative

acceptor site would potentially enhance U2AF1 recognition of

the acceptor splice site. Previous studies have reported S34F

U2AF1 mutants preferentially skip exons that contain a T nucle-

otide at the �3 position (Okeyo-Owuor et al., 2015). Of the 192

mutations located at the�3 position from the alternative junction

and that contain an AG in the�2 and�1 positions, 56% undergo

aG>C transversion (21%G>A, 18%G>T, 3%C>T, 2%A>C,

1% A > T), with C being the preferred base at the �3 position for

U2AF1 binding (Figure 2D).

We also explored the relationship between the alternative and

canonical splice junctions. As expected,mutations at splice sites

dramatically reduced splice scores of the canonical splice junc-

tions, while strengthening those at the alternative splice junc-

tions in most cases. In contrast, a subset of missense and silent

mutations did not drastically alter the canonical junction, but

instead preferentially strengthened a nearby alternative splice

site (Figure 2E). When analyzing the raw splicing scores (canon-

ical and alternative site before and after mutation), we found that

1,089 out of 1,790 (61%) events showed higher splice score for
272 Cell Reports 23, 270–281, April 3, 2018
the alternative splice site than the canonical site, indicating incli-

nation for the alternative sites. Further, while 485 (27%) events

saw lower post-mutation alternative splice score, differences

between alternative and canonical scores had decreased, sug-

gesting that these mutations are still likely enhancing the prefer-

ence for the alternative site. Only 214 (12%) events did not show

evidence, suggesting increased post-mutational preference for

using the alternative site. These cases are a good illustration of

the fact that many other genomic splicing features are also rele-

vant, including exonic splicing enhancers (ESE), polypyrimidine

tract, branch point, and RNA-binding proteins. They are also

consistent with the general view that splice score is not definitive

(Jian et al., 2014). We emphasize that all 1,790 alternative splice

sites demonstrated usage based on patient RNA-seq data and

that 10 out of 11 (>90%) identified SCMs were validated exper-

imentally (see below).

Expressivity and Penetrance of SCMs
In the presence of the mutation, alternative splice junctions

exhibited a wide range of expression. To quantify this effect,

we measured alternative junction expression as the fraction of

alternatively spliced junction spanning reads over the total num-

ber of reads at the genomic location, what we refer to as the JAF.
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Figure 2. Sequence Contexts and Characteristics of Splice-Site-Creating Mutations

(A) Frequency distribution of splice-site-creating mutations relative to the newly created splice junction, with high frequency shown at the third nucleotide position

in the newly created intron.

(B) Comparison of splicing scores for the newly created splice site, before (reference) and after the mutation (mutant). A larger effect of mutations at the third

nucleotide position in the intron (especially for the 30 splice sites) is shown.

(C) Dominant nucleotide sequence context for splice-site-creating mutations at�3 position of the 30 splice site. Mutation position (red dot) is present 3 base pairs

away from the newly created exon.

(D) Transition and transversion rate at the�3 position of the 30 splice site. Most mutations are G > C transversions, strengthening the consensus sequence of the

splicing factor U2AF1.

(E) Comparison of splicing scores between the nearest canonical splice junction with and without a mutation compared to the newly created splice junction with

and without a mutation. Most mutations strengthen the alternative splice junction relative to the canonical splice junction.
Figure 3A shows the distribution of JAF’s for all high confidence

MiSplice predicted alternative junctions, separated by conven-

tional mutation annotations (Figure 3A). Currently, we use a

JAF cutoff of 5% for reporting the final high-confidence sites.

However, there are some potential alternative sites excluded

by this cutoff. Our analysis revealed alternative junction expres-
sion varies widely. As expected, DNA variant allele fraction (VAF)

and JAF have a generally positive correlation (Figure 3B), with

SCMs in KDM6A and FGFR2 having >75% DNA VAF and JAF.

However, a SCM in ARID1A has a DNA VAF of 23% and JAF

of 67%. Such large ranges have been noted for mutations

outside of the splice site (Broeks et al., 2003; Clarke et al.,
Cell Reports 23, 270–281, April 3, 2018 273
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Figure 3. Junction Allele Fraction of Splice-Site-Creating Mutations

(A) The junction allele fraction (JAF) is defined as the number of reads supporting the alternative spliced junction relative to total junction spanning reads. Dis-

tribution of JAF values separated by conventional annotation type.

(B) JAF versus DNA variant allele fraction (VAF) comparison by conventional annotation type. Most mutation types show a generally positive correlation between

JAF and VAF values.

(C) Splice-site-creating mutations expressed in the newly created exon of the alternative splice junction. Comparison of mutation position relative to the percent

of reads supporting the alternative junction and mutation (spliced-in JAF). The mean of each position is highlighted by the black point. For all positions, there is a

strong correlation between the presence of the splice-site-creating mutation and the alternative splice junction.
2000; Venables, 2004). Both the truncated and normal spliced

products can be observed for many variants, due to either the

wild-type allele or leaky splicing, for example, as observed in

RNASEH2A, NFU1, SMN1, CFTR, and NF2 (Boerkoel et al.,

1995; Caminsky et al., 2014; Ferrer-Cortès et al., 2016; Lohmann

and Gallie, 2004; Mautner et al., 1996; Pagani et al., 2003; Rice

et al., 2013; Svenson et al., 2001; Vezain et al., 2011).

Next, we considered the expression of mutations that are

spliced-in, i.e., mutations located within the exon of the alterna-
274 Cell Reports 23, 270–281, April 3, 2018
tively spliced product. To this end, we determined the ratio of the

number of alternative junction reads containing the mutation

versus total number of reads supporting the alternative junction

(Figure 3C; Table S1). Overall, most of the reads supporting the

alternative junction also support the mutation, a finding that sug-

gests a strong association between the mutation and alternative

splice junction. Regarding the 50 splice site, mutations within the

first 6 bp of the new exon junction have a much higher fraction

of alternative junction reads supporting them; and we see an
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Figure 4. Splice-Site-Creating Mutations across Genes and Cancer Types

(A) Distribution of splice-site-creating mutations in each gene separated by the total number of mutations in each gene. TP53 has the largest number of splice-

site-creating mutations, followed by GATA3 and ATRX.

(B) Genes with the highest number of pancancer splice-site-creating mutations. Circle size correlates with the total number of mutations for each gene (labeled

inside circle) and colored by cancer type. Splice-site-creating mutations in TP53 are present in many cancer types, while mutations in ATRX and GATA3 are

specific to LGG and BRCA, respectively.

(C) Proteins Timeless (PAB domain) and PARP1 (chain A) are colored green and pink, respectively. Originally annotated p.S939S mutation (red) and spliced-out

sequence (blue) are highlighted on PARP1 (chain A).

(D) 3D protein structure of PARP1 in complex with an inhibitor (PDB ID: 5WRQ). Drug inhibitor and PARP1 (chain A) are indicated in green and pink, respectively.
inverse correlation between the mutation and the junction as the

distance between them increases. For the 30 splice site, we

observe a similar trend, although with a higher variability as a

function of the distance from the alternative junction.

SCMs across Genes and Cancer Types
A total of 1,607 unique genes harbored SCMs, with 85% (1,359)

having one mutation and 15% (248) having two or more. TP53

contained the greatest number (26), followed by GATA3 (18).

While most SCMs were found outside the current cancer gene

compendium (Table S1), Figure 4A shows that a remarkable

number of cancer genes harbor splice altering variants, a phe-

nomenon supported in the literature (Sebestyén et al., 2016).

A pan-cancer view reveals that TP53 was the most mutated

across cancer types, while 18GATA3mutations and 6ATRXmu-

tations were specific to breast cancer (BRCA) and lower-grade

glioma (LGG), respectively.

We observed 137 mutations nearby to one another (±5 bp)

which lead to the creation of the same recurrent splice-site-

creating events, not only in TP53 but also in GATA3, DDX5,

KDM6A, SETD2, PTEN, SPOP, and BAP1. While somemutations

didnotoccurat thesameposition, 14mutationscreating thesame

alternative splice junction were found in the same exon, including

2 mutations in the third exon of BAK1. While most mutations in

close proximity created the same alternative splice junction, two

adjacent SCMs in CTNND1 and 2 nearby exonic mutations in

ACP2 and GMPPB created different alternative junctions.
SCMs can impact protein structure and have potential thera-

peutic implications. Poly ADP-ribose polymerase 1 (PARP1) is

an enzyme involved in recruiting protein members of DNA repair

pathways including Timeless PAB (PARP1 binding domain) (Fig-

ure 4C) (Xie et al., 2015). Since PARP1 is essential to many

cellular processes, including DNA repair, it is commonly tar-

geted by antitumor agents (Malyuchenko et al., 2015). PARP1

inhibitors targeting the catalytic domain disrupt DNA repair

mechanisms thereby increasing the effectiveness of chemo-

therapeutic agents (Figure 4D). Identifying mutations that

disrupt inhibitor binding are essential to properly evaluate treat-

ment options. MiSplice identified a conventionally annotated

silent PARP1 mutation (p.S939S) in a lung squamous cell carci-

noma (LUSC) patient that acts as a splice-site-creating variant

by creating a de novo donor site (Figure 5A). 82 reads sup-

ported the de novo donor site, which results in a 10 amino

acid deletion (p.940-p.950) that falls within the catalytic domain

(Figure 4D). Out of 173 LUSC control samples, none contained

reads supporting the alternative junction, providing strong evi-

dence that the annotated ‘‘silent’’ mutation is actually a SCM.

Previous reports of missense mutations at p.940 are predicted

to reduce PARP1 enzymatic activity by disrupting the binding

affinity of PARP1 to its substrate NAD+ (Alshammari et al.,

2014). The in-frame SCM likely disturbs the local structure of

PARP1 and thereby disrupts the interactions between PARP1,

its protein binding partners, and drugs binding within the pocket

(Figures 4C and 4D).
Cell Reports 23, 270–281, April 3, 2018 275
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Figure 5. Minigene Functional Assay of Splice-Site-Creating Mutations

(A) Integrative genomics viewer (IGV) screenshot of the conventionally annotated synonymous mutation in PARP1 in exon 21. RNA-seq reads of the candidate

splice-site-creating mutation reveal the creation of an alternative splice site (red reads) created by the conventionally annotated synonymous mutation.

(B) Candidate recurrent splice-site-creating mutations inBAP1. Conventionally annotated as synonymous variants, theBAP1-mutated region shows alternatively

spliced reads (red reads) in the IGV screenshot for each sample with the splice-site-creating mutation.

(C) IGV screenshot of a conventionally annotated synonymous mutation in RAD51C in exon 2.

(D) Maximum entropy score of the splice-site-creating variant before (purple) and after (red) the introduced mutation for each variant functionally validated in the

mini-gene splicing assay. In silico predictions suggest all mutations strengthen the alternative splice site.

(E) Candidate splice-site-creating mutations validated by the mini-gene splicing assay. Exons of interest were cloned into the pCAS2.1 vector and mutant (red);

wild-type (purple) plasmids were transfected into 293T cells; and total RNA was extracted to identify mutation-induced alternatively spliced products.
We identified twokidney renal clear cell carcinoma (KIRC) sam-

ples having the same conventionally annotated missense muta-

tion (c.233A > G, p.N78S) in BAP1, a nuclear deubiquitinase,

that created the same spliced-out alternative splicing product

(Figure 5B). Inactivation of BAP1 is prevalent among renal cell

carcinomas (Peña-Llopis et al., 2012) andan annotatedmissense

mutation (p.L570V) has been reported to create a cryptic splice

site in melanoma (Wadt et al., 2012). At the transcriptional level,

the expressions of the case and control samples are relatively

comparable, but at the translational level, one casewith available

protein data (RPPA) showed significantly lower expression

(p = 0.044, permutation test) relative to the controls (Figure S1;

Table S2). This result suggests the conventionally annotated

missensemutations in BAP1 likely create an alternatively spliced

transcript that is not readily expressed at the protein level.

We used a pCAS2.1 splicing reporter mini-gene functional

assay that was adapted from previous publications (Bonnet
276 Cell Reports 23, 270–281, April 3, 2018
et al., 2008; Gaildrat et al., 2010; Malone et al., 2016; Tournier

et al., 2008; Vreeswijk and van der Klift, 2012), to validate

SCMs in 11 cancer genes, including two originally annotated

silent mutations in PARP1, RAD51C, two splice site mutations

in TP53 and BRCA1, and several missense mutations in

ARID2, BAP1, BCOR, CDH1, KMT2A, PTEN, and TSC2. Wild-

type and mutant exons were cloned into a pCAS2.1 vector (Gail-

drat et al., 2010) and transiently transfected into HEK293T cells.

Total RNA was extracted to evaluate alternatively spliced prod-

ucts by RT-PCR. Examining the change in the MaxEntScan

score for the 11 genes revealed mutations in ARID2, BAP1,

BCOR, CDH1, PARP1, RAD51C, PTEN, and TSC2 having

dramatically stronger splice scores in the presence of the muta-

tion, while mutations in BRCA1, KMT2A, and TP53 did not (Fig-

ure 5D). Except for PTEN, variants with stronger splice scores

showed higher levels of the alternatively spliced product in the

mini-gene assay when compared to the wild-type. Variants



with moderate changes in splice score still showed evidence of

alternatively spliced transcripts, revealing the importance of uti-

lizing functional assays to evaluate the effect of mutations in a

splicing context in addition to in silico predictions. The mini-

gene assay confirmed 91% (10/11 genes) splicing alterations

in all tested genes and sequencing confirmed the alternatively

spliced products (Figure 5E; STAR Methods), suggesting a

strong concordance between MiSplice predicted SCMs and

the functional assay.

Neoantigens Introduced by SCMs
Wehave further investigated neoantigensproducedbySCMs.By

using the RefSeq transcript database, a total of 2,993 protein

sequences were translated for transcripts containing mutation-

induced alternative splice forms (Table S3). In the translation,

we allowed for different transcripts from each SCM. The HLA

types for each sample were adopted from the TCGA pancan

immune working group (Synapse ID: syn5974636). NetMHC4

and NetMHCpan-3.0 (Andreatta and Nielsen, 2016) were used

topredict thebinding affinity betweenepitopes and themajor his-

tocompatibility complex (MHC) and showed a high concordance

in total predicted neoantigens (Pearson = 0.94; Figure S2). We

found that alternative splice forms for some important genes

related to tumorigenesis, including SMARC1, KDM6A, and

NOTCH1, are highly immunogenic and can contain 40 or more

unique neoantigens (Figure 6A) (Dalgliesh et al., 2010; Papadakis

et al., 2015). In addition, themean number of neoantigens across

SCMs from NetMHCpan-4.0 and NetMHCpan-3.0 are 2.0 and

2.5, respectively, which are both higher than the average number

of around 1 for non-synonymous mutations. Furthermore, 28

genes contain recurrent neoantigen events (R3) across samples

(Figure 6B). In particular, GATA3 has the highest recurrence and

GATA3 SCMs were mutually exclusive with other mutation types

(Figure 6C). TheCA deletion at chr8:8111433 disrupts the canon-

ical splice site andanalternative splice site is used for creating the

alternative splice form, which results in a frame shifted protein

product spanning the Zinc-finger domain (Figures 6D and 6E).

19 unique neoantigen peptide sequences were mapped to the

frameshifted protein product for the 16 samples (Figure 6F). We

were further able to validate one alternative peptide sequence

using mass spectrometry data from a recent proteogenomics

study on 77 TCGA breast cancer patients (Mertins et al., 2016).

For one sample with the highly recurrent and expressed GATA3

SCM, we used MSGF+ to search publicly available mass spec-

trometry data for evidence of alternative GATA3 peptides. Fig-

ure6Gshowsone identifiedmass spectrumsupporting one alter-

nativeGATA3 peptide, which covers two immunogenic peptides

(KPKRRLPG and LIKPKRRLPG) predicted in TCGA-AR-A1AP.

High neoantigen burden is associated with an elevated

immune response (Turajlic et al., 2017). To test whether SCMs

affect immune response, we compared the expression of T cell

markers PD-1, CD8A and CD8B and PD1 immune checkpoint

blockades PD-L1 and PD-L2 (Figure 7). We selected six cancer

types (BRCA, BLCA, HNSC, LUAD, LUSC, and SKCM) with suf-

ficient samples containing SCMs for adequate statistical power.

Both T cell markers (PD-1, CD8A, and CD8B) and immune

checkpoint blockade PD-L1 show increased expression in sam-

ples with SCMs compared to samples without SCMs (Figure 7),
indicating alternative splice forms induced by SCMs increase the

overall immunogenicity of these cancers. The highly expressed

PD-L1 suggests PD-L1 immunotherapy as potential treatments

for samples containing SCMs.

DISCUSSION

In this study, we applied our newly developed bioinformatics tool

called MiSplice (mutation-induced splicing) to systematically

analyze splice-site-creating events that arise from somatic mu-

tations. Our analysis shows MiSplice reliably identifies SCMs

across multiple cancer types. Existing studies have largely

focused on splice-disrupting events in known splice sites, but

the current study substantially extends our knowledge into the

realm of SCMs in human cancer. For instance, we found 1,016

splice site mutations not only disrupt the canonical splice site

but also create an alternative splice site. We also found that

hundreds of mutations that would traditionally be classified as

missense, silent, indel, and nonsense are really acting as

SCMs. Many important cancer-related genes harbor these mu-

tations, such as TP53, ATRX, BAP1, CTNNB1, RB1, etc. It is

noteworthy that we found five SCMs in ATRX among 288 LGG

cases, likely leading to the disruption of ATRX function. A previ-

ous study has shown that loss of wild-type ATRX is associated

with tumor growth in glioma (Koschmann et al., 2016).

Characterization of these alternative splice events show that

most SCMs have a higher splice score, as measured by

MaxEntScan, in the post-mutation alternative splice site as

compared to the reference. These results are consistent with

the preferential selection of these alternative sites as new splicing

forms. For the splice-site mutation, the splice score associated

with the canonical junction is coincidently decreased after muta-

tion. However, while there is no difference in splice scores of

canonical junctions before and after missense and silent muta-

tions, the alternative splice site was often strengthened after

mutation. This suggests silent and missense mutations instead

act as modifiers of splicing by creating or strengthening cryptic

siteswithin theexonasopposed todisrupting thecanonical splice

site. In addition, we found a significant enrichment ofmutations at

the �3 position in the 30 splice site, the two dominant sequence

contexts being aGag and agGag, where G is at the �3 position.

In cases in which the mutation is retained in the alternative

splice junction, we distinguish mutations with two further cate-

gories, splice-in and splice-out. For splice-in mutations, we

can characterize the association between mutations and cryptic

splicing forms. For example, we found high concordance for

RNA-seq reads supporting alternatively spliced junctions and

mutations, suggesting the association between mutations and

cryptic splicing forms.

The current study has greatly extended insights into the tran-

scriptional ramifications of genomic alterations by identifying

nearly 1,964 alternative splice sites introduced by somatic muta-

tions and functionally validating 10 of 11 variants in a mini-gene

splicing assay. These events were conventionally annotated

as missense, silent, splice site, nonsense, or other mutations

when, in fact, we have shown that they often create cryptic splice

sites. This relative abundance of the alternative and wild-type

product suggests varying levels of junction usage, depending
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Figure 6. Schematic of GATA3 Splice-Site-Creating Mutations and Neoantigen Predictions

(A) Distribution of neoantigens predicted by NetMHCpan and NetMHC4. Genes with the highest number of neoantigens labeled. Mean value for each tool

indicated by X and labeled.

(B) Genes with the largest recurrence of predicted neoantigens across the dataset. GATA3 shows the highest recurrence.

(C) Mutual exclusivity of protein-affecting mutation (PAM), frameshifting indel (FS), in-frame indel (IF), and splice-site-creating mutations (SCM) inGATA3. (D) IGV

screenshot of GATA3 splice-site-creating mutation, which disrupts the canonical splice site and utilizes a cryptic splice site 7 bp downstream. Mutant reads

highlighted in red, and normal reads are in purple. CA deletion indicated in the figure.

(E) Predicted functional domains disrupted because of the recurrent splice-site-creating mutation in GATA3.

(F) Predicted neoantigen peptide sequences mapped to the frameshifted protein product for samples with GATA3 SCMs.

(G) Mass spectrum of GATA3 peptide in TCGA-AR-A1AP.
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Figure 7. PD-L1, PD-L2, PD-1, CD8A, and CD8B Expression

(A) Expression comparison of PD-L1, PD-L2, and T cell markers PD-1, CD8A, and CD8B between samples with (case) and without (control) SCMs across six

cancer types. p values: * less than 0.05; ** < 0.01; and *** < 0.001; ns, not significant.
on the context of the mutation, and emphasizes the importance

of validating predictions using a functional assay to understand

the full biological consequence. The alternative products may

be therapeutically targetable in some cancer patients. For

example, targeting neoantigens shows promising results in treat-

ing melanoma patients (Carreno et al., 2015). By further evalu-

ating human leukocyte antigen (HLA) genotypes and binding

affinities to theMHC, it is likely that new neoantigens from cryptic

splice sites may be discovered. The current study reveals that

alternative splice forms induced by SCMs are highly immuno-

genic and correlated with a high T cell immune response and

an elevated PD-L1 expression, suggesting the potential for

immunotherapy in these samples. Further investigation of the

cryptic splice sites by mass spectra or target assay are needed

to prioritize therapeutic targets in clinical trials.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Cell Lines

Human: HEK293T cells ATCC https://www.atcc.org/products/all/

CRL-3216.aspx

Oligonucleotides

Primers for cDNA amplification pCAS-KO1-

(50-TGACGTCGCCGCCCATCAC-30) pCAS-R
(50-ATTGGTTGTTGAGTTGGTTGTC-30)

This paper N/A

Primers for Q5 mutagenesis and restriction

enzyme primers for amplifying exons of

interest see Table S6

This paper N/A

Recombinant DNA

Plasmid: pCAS2 Inserm Laboratory N/A

Software and Algorithms

MaxEntScan Yeo and Burge, 2004 http://genes.mit.edu/burgelab/maxent/

Xmaxentscan_scoreseq.html

Samtools Li et al., 2009 http://samtools.sourceforge.net/

MiSplice In preparation https://github.com/ding-lab/misplice

Integrative Genomics Viewer Robinson et al., 2011 http://software.broadinstitute.org/software/igv/

Chemicals, Peptides, and Recombinant Proteins

Nucleospin PCR Cleanup Macherey-Nagel 740609.10

DNA Clean and Concentrator-5 Kit Zymo Research D4003

BamHI New England Biomedicine R0136S

MluI New England Biomedicine R0198S

T4 DNA Ligase New England Biomedicine M0202S

Q5 Site Directed Mutagenesis New England Biomedicine E0554S

Lipofectamine 2000 Thermofisher Scientific 12566014

Superscript III First-Strand Synthesis System Thermofisher Scientific 18080051

Qiaquick Gel Extraction Kit QIAGEN 28704

Other

Public MC3 MAF In preparation https://gdc.cancer.gov

MSGF+ N/A https://www.ncbi.nlm.nih.gov/pubmed/

?term=25358478

Mass Spectra Data from 77 TCGA Breast

Cancer Patients

N/A https://cptac-data-portal.georgetown.edu/

cptac/s/S029
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Li Ding

(lding@wustl.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

The Cancer Genome Atlas (TCGA) collected both tumor and non-tumor biospecimens from 10,224 human samples (https://

cancergenome.nih.gov/abouttcga/policies/informedconsent). Here, we use variants from a publicly available mutation annotation

file (MAF) complied by the MC3 working group (syn7824274).
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METHOD DETAILS

Dataset Description
Aligned RNA-seq bam files were analyzed using the ISB google. These cancer types are Acute Myeloid Leukemia [LAML], Adreno-

cortical carcinoma [ACC], Bladder Urothelial Carcinoma [BLCA], Brain Lower Grade Glioma [LGG], Breast invasive carcinoma

[BRCA], Cervical squamous cell carcinoma and endocervical adenocarcinoma [CESC], Cholangiocarcinoma [CHOL], Colon adeno-

carcinoma [COAD], Esophageal carcinoma [ESCA], Glioblastoma multiforme [GBM], Head and Neck squamous cell carcinoma

[HNSC], Kidney Chromophobe [KICH], Kidney renal clear cell carcinoma [KIRC], Kidney renal papillary cell carcinoma [KIRP], Liver

hepatocellular carcinoma [LIHC], Lung adenocarcinoma [LUAD], Lung squamous cell carcinoma [LUSC], Lymphoid Neoplasm

Diffuse Large B cell Lymphoma [DLBC], Mesothelioma [MESO], Ovarian serous cystadenocarcinoma [OV], Pancreatic adenocarci-

noma [PAAD], Pheochromocytoma and Paraganglioma [PCPG], Prostate adenocarcinoma [PRAD], Rectum adenocarcinoma

[READ], Sarcoma [SARC], Skin Cutaneous Melanoma [SKCM], Stomach adenocarcinoma [STAD], Testicular Germ Cell Tumors

[TGCT], Thymoma [THYM], Thyroid carcinoma [THCA], Uterine Carcinosarcoma [UCS], Uterine Corpus Endometrial Carcinoma

[UCEC], Uveal Melanoma [UVM]

MiSplice Pipeline
The MiSplice pipeline was developed to detect mutation-induced splicing events from RNA-seq data. It is written in Perl and

incorporates two standard tools, samtools and MaxEntScan. The pipeline is fully automated and can run multiple jobs in parallel

on LSF cluster. It executes the following steps:

1) Splitting large maf file into multiple smaller files with less mutations (currently, the default setting is 200).

2) Discovering splicing junctions within 20bps of the mutation with at least 5 supporting reads with mapping quality Q20 and then

filtering canonical junctions by using the Ensembl 37.75 database. We selected 20bp as a cut-off since it is the farthest

distance from the splice junction in a splice region.

3) Computing the number of supporting reads of above cryptic splice sites for control samples without mutations (Table S1).

4) Calculating the splicing scores for the cryptic splice sites via MaxEntScan.

5) Reporting the depth of each cryptic splice site via Samtools.

6) Filtering cryptic sites which fall in HLA loci or less than 5% of reads at the genomic location supporting the alternative junction

of interest.

7) Further filtering cryptic sites by comparing the supporting reads in control samples. The final reported cryptic sites must stand

as top 5% for the number of supporting reads in the case (with mutation).

Splice Site Score Estimation
For each cryptic splice site and nearby canonical splice site, the corresponding nucleotide sequences were first extracted for both

the mutant and reference sequences (9-mer and 23-mer for donor and acceptor, respectively). Their splice scores as potential donor

or acceptor sites were then estimated using MaxEntScan.

Neoantigen Prediction
For each predicted SCM, we use a curated RefSeq transcript database (version 20130722) to obtain the translated protein

sequences for transcript containing alternative splice forms induced by SCMs. Different length of epitopes (8-mer, 9-mer, 10-mer

and 11-mer) are constructed from the translated protein sequence. We use NetMHC3pan (Nielsen and Andreatta, 2016) and

NetMHC4 (Andreatta and Nielsen, 2016) to predict the binding affinity between epitopes and MHC. Epitopes with binding

affinity % 500nM which are also not present in the wild-type transcript are extracted from the following neoantigen analysis.

Manual Review
All splice-site-creating mutations were manually reviewed using the integrative genomics viewer (http://software.broadinstitute.org/

software/igv/). Mutations were placed into one of three categories: Pass, Complex, and No Support. Mutations were classified as

complex if more than one alternatively spliced product was observed for the mutated sample.

Code Availability
MiSplice is written in Perl and is freely available from GitHub at https://github.com/ding-lab/misplice under the GNU general public

license. MiSplice uses several independent tools and packages, including SamTools andMaxEntScan, all of which are likewise freely

available, but which must be obtained from their respective developers. TheMiSplice documentation contains complete instructions

for obtaining and linking these applications into MiSplice.

Mini-gene Splicing Assay
Exons of interest and approximately 150 bp of their flanking intron sequenceswere PCR amplified fromHEK293T genomic DNA using

primers carrying restriction enzyme sites for BamH1 and MluI. PCR products were cleaned up using NucleoSpin PCR Cleanup
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(Macherey-Nagel) or DNA Clean and Concentrator-5 Kit (Zymo Research) and digested with BamHI andMluI. The digested pCAS2.1

vector and PCR products were ligated using T4 DNA Ligase (NEB). Mutations were introduced via Q5 Site-Directed Mutagenesis

(NEB). WT and MUT constructs were confirmed by sequencing of the insert region. The plasmids were transiently transfected into

HEK293T cells using Lipofectamine 2000 (ThermoFisher Scientific). 24 hr post transfection, cDNA was synthesized using 2 to 3

ug of total RNA with the Superscript III First-Strand Synthesis System (ThermoFisher Scientific) and priming with Oligo(dT)20. Finally,

cDNA was amplified using pCAS-KO1-(50-TGACGTCGCCGCCCATCAC-30) and pCAS-R (50-ATTGGTTGTTGAGTTGGTTGTC-30)
and the alternative splicing patterns were evaluated on a 2.5% agarose gel with ethidium bromide. Qiaquick Gel Extraction Kit

(QIAGEN) was used to purify bands for sequencing (Figures S3, S4, S5, and S6; Tables S5, S6, and S7).

Cell Culture
HEK293T cells were cultured in Dulbecco’smodified Eagle’s medium (DMEM) supplemented with fetal bovine serum (FBS) and peni-

cillin streptomycin.

QUANTIFICATION AND STATISTICAL ANALYSES

MiSplice assesses the significance of the number of reads supporting the predicted alternative splice junction by comparing to read

counts from a control cohort. Specifically, a frequency distribution is constructed from the control cohort, from which threshold

values for 5% and 95% tails on the left and right, respectively, are determined. A series of logic tests is then conducted to discern

the best explanation of the data. Possible verdicts are low or high expression if the datum is outside the 5% or 95% thresholds,

respectively, average expression if no thresholds are exceeded, or no expression in this tissue if the thresholds are zero.
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