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Chapter 1 

 

Introduction 

 

1.1 Theory of Chemical Bonding 

The comprehension of interactions between atoms in molecules and rationalization of the 

concept of chemical bond within the framework of quantum mechanics is one of the main topics of 

modern quantum chemistry.
1
 Indeed, the application of quantum mechanics to chemistry, produced 

a revolution in the concept of chemical bond.  

Nevertheless, the chemical bond is traditionally described using concepts developed from 

experimental observations and practical intuitions, though not linked directly quantum mechanics. 

For example, atomic charges, electronegativity, aromaticity, bond order, charge transfer etc. 

refers to properties that are not directly connected with an observable, therefore both their 

prediction and experimental validation remains ambiguous. In fact, one of the greatest challenges in 

theoretical chemistry is connecting quantum mechanics with those intuitive chemical concepts.  

This challenge includes a comprehensive characterization of the nature and strength of 

chemical bonds. Some applications of quantum chemical approaches will be illustrated in the 

following paragraphs.  

The carbon-carbon bond, corner stone of the organic chemistry, is the prototype of the 

covalent, homopolar, bond. This interaction is based on the electron-sharing (ES) between two 

atoms having the same electronegativity, and the electronic charge is necessarily equally 

distributed. Elements with different electronegativity, instead, produce a displacement of the 

charge, resulting in a heteropolar bond. Interactions based on the charge transfer from an atom to 

another are typical in the inorganic and organometallic chemistry. The donor-acceptor (DA) 

interaction (or dative bond), is indeed the result of the donation of an electron pair from a Lewis 

base, called “Donor”, to a Lewis acid, the “Acceptor”. A typical example of this kind of interaction 

is that responsible for the adducts between NH3 and BH3. These simple and intuitive schemes, 

based on the electronegativity and charge transfer can be reconsidered under a quantum mechanics 

point of view.
2,3
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A covalent bond can be seen as the interaction between two open-shell fragments. In this case, 

each fragment contributes with one electron to the formation of the covalent interaction. C-C bond 

in ethane for example, will be the result of the electron sharing of two CH3

. In this interaction, the 

electron sharing comes from the mixing of two singly occupied valence orbitals, each localized on 

one fragment (Figure 1.1). 

 

 

 

 

 Figure 1.1. Electron-sharing (ES) and donor-acceptor (DA) interactions.   

In DA interactions, on the other hand, bond arises from the overlap of frontier orbitals of the 

two groups of atoms, namely the doubly occupied valence orbital of the donor and the empty 

valence orbital of the acceptor (Figure 1.1). However, many factors can be involved in the 

formation and strengthening of this interaction.
4,5

 Donor-Acceptor interactions are usually much 

longer and weaker than pure covalent bond, where the electron-sharing from fragments is involved. 

Nevertheless, no correlation was found between bond length and bond strength in DA 

interactions.
3
 To better understand the differences between each kind of interactions, it is common 

practice to consider the bond’s cleavage. In the donor-acceptor like, chemical bond is broken 

heterolitically, where the electron pair is associated only to one fragment, whereas in the covalent 

interaction, the breaking is homolitical.  

Another special case of this kind of interactions is coordination to transition metals (TM) by 

organic ligands in organometallic compounds. Metal-carbonyl complexes have been widely adopted 

as reference systems for the analysis of metal-ligand bonding.
6,7

 Many studies in the past years 

discussed the nature of this interaction, both through experiments and theoretical calculations. The 

Dewar-Chatt-Duncanson (DCD) model
8
 (Figure 1.2) is probably the most used to explain the nature 

of the interaction between a transition metal and ligands like carbonyl molecules, olefins, etc. DCD 

model implies a combination of two phenomena: the σ-donation from the highest occupied 

molecular orbital (HOMO) of the ligand to an empty orbital of the transition metal and the π-back-
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donation from filled d-orbitals of metal atom to a vacant orbital of the ligand, which usually is an 

anti-bonding orbital.  

 

 

Figure 1.2. DCD model, applied to M-CO interaction. 

 

This qualitative model provides a satisfactory explanation for the bond formation mechanism in 

metal-carbonyl complexes. Moreover, the effect of back-donation could be directly correlated to the 

variation of the CO stretching frequency. However, a quantitatively and straightforward distinction 

between σ-donation and π-back-donation contributions to the M-CO bond is still a matter of 

discussion.
9
 

Obviously, once the chemical bond between two atoms is formed, it is not easy to recognize the 

individual contribution of A and B and retrieve the “genealogy” of the bond. The question may be 

tackled by analyzing changes occurring when two atoms/fragments form a new molecule, which 

implies recognizing these entities inside the newly formed object. 

Quantum chemistry and theoretical methods based on quantum mechanics are becoming more 

and more sophisticated in the calculation and prediction of molecular properties, shortening the gap 

between pure theory and experimental observations. Geometries and vibrational spectra, nowadays 

can be computed with high accuracy, reproducing experimental observation and predicting 

unknown systems. Furthermore, computational methods have been used also to give insight in the 

electronic structures of molecules and periodic systems. During last decades, a plethora of 

methodology aiming to reveal the nature behind molecular interactions have been proposed. The 

great number of these methods reflect in some way the unclearness and complexity of the problem 
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that they were proposed to solve. Nevertheless, a solid connection with macroscopic observations 

and general intuitive concepts is as well a very important point to deal with. A number of methods 

exists, that focus either on the partition of the electronic energy or of the electronic charges in 

specific region of the space (mostly atomic domains), or on the direct analysis of the molecular 

wavefunction or electron density distribution without any explicit partition. Some of the most 

relevant methods are: the energy decomposition analysis (EDA) by Morokuma and Kitaura
10

, the 

extended transition state (ETS) by Ziegler and Rauk
7
, the natural bond orbital method (NBO) by 

Weinhold
11

, its consequent combination with EDA, the natural energy decomposition analysis 

(NEDA) by Glendening and Streitwieser
12

, the charge decomposition analysis (CDA) by Dapprich 

and Frenking
13

, the constrained space orbital variation (CSOV) by Bagus
14

, the symmetry adapted 

perturbation theory (SAPT)
15

, the quantum theory of atoms in molecules (QTAIM) by Bader
16

, the 

energy decomposition based QTAIM partition, the interacting quantum atoms (IQA) by Pendás et 

al.
17

, and many others. 

When so many methods for the analysis the chemical bond are present, because of sharing the 

common purpose and often the same terminology, but differing in the theoretical derivation, 

contradictions and discrepancies emerge. Indeed, a major issue is brought by using different 

definitions to refer to general and common terms. One clear example is the definition of ionic or 

covalent character of a bond, which differs significantly from one method to the others.
17,18,19

  

In next paragraphs we will introduce the models and the methodologies used to analyze 

chemical bonds and interactions in our systems. Those have been divided in two main groups, 

concerning 1) the analysis of the electron density and 2) the analysis of the energy. Even if IQA 

would belong to both groups, its information are of energetic character, so it was put in the second 

group. Then, the applications of those methodologies to study chemical systems will be showed and 

analyzed during next chapters. 
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1.2 Electron and Charge Density Analysis 

The terms Electron Density and Charge Density are frequently interchanged, with the latter 

usually (but improperly) used to address the former when obtained via X-ray diffraction 

experiments. However, for the sake of clarity, it is important to point out that the two terms are not 

synonima.
20

 In fact, in a molecular system made of   electrons, the one-electron probability 

function  ( ) is defined as 

 ( )   ∫  [ ( )  ( )  ( )] [ ( )  ( )  ( )]  ( )   ( )                      (1.1) 

Ψ is the electronic wave-function and  ( )   is the probability of finding one electron in the 

element of volume dr. Whereas, the charge density is the sum of both electron and nuclear densities 

in position space. 

 

1.2.1 Quantum Theory of Atoms in Molecules (QTAIM) 

The Quantum Theory of Atoms in Molecules (QTAIM), developed by Bader
16

, has been 

extensively adopted both by theoreticians and experimentalists because based on a quantum 

mechanical observable (r) (1.1). Indeed, (r) can be obtained via quantum chemical calculations 

as well as from x-ray diffraction experiments
21,22

. Based on the partition of the electron density, this 

method defines an atom as an entity constituted by a nucleus and its electronic distribution, 

enclosed in a volume called basin Ω. The atomic basin is the region of space where the electron 

density is connected to the nucleus through gradient vectors. Each nucleus is necessarily an attractor 

in each basin. The electron density is indeed a scalar quantity, but its gradient,  , is a vector. The 

boundary condition of the atomic basin is defined by the zero-flux surface S(r,Ω) 

 

 (r)    (r)                      (1.2) 

  

Where  (r) is the normal to the surface. Basins do not overlap with each other and atomic 

regions are well defined. To each basin, is associated one and only one atom, and the position of the 

nucleus correspond to a maximum of the electron density in the real space (Figure 1.3).  
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Figure 1.3. Gradient paths, basins and bond critical points (green spheres) of the adduct NH3-BH3. 

 

QTAIM analyze the electron density using topological objects and descriptors, in particular the 

critical points. A critical point occurs when the gradient of a function is zero. 

 

 (r)   
  (r)

 x
    

  (r)

 y
    

  (r)

  
                    (1.3) 

 

In the QTAIM, the function under examination is the electron density of a chemical system. It 

is possible to assign a rank w and signature σ to each critical point, based on the Hessian matrix 

computed at that point. The Hessian is a 3×3 matrix containing all the second derivatives of  with 

respect to the position defined in the Cartesian coordinates x, y and z. 

 The rank is the number of non ero eigenvalues (λi, i=1,2,3) of the Hessian matrix, meanwhile 

di signature is the sum of the sign of each eigenvalue (Figure 1.4). So critical points are 

characterized by the curvature of the electron density at that point. A critical point (3,-3), which 

means rank = 3, and signature = -3, is a local maximum, corresponding to nuclear positions. 

However, peculiar examples exist of non-nuclear attractors (NNAs),
23,24

 corresponding to point 

of electron density concentration, often located in metallic systems between two (or more) atoms. 

The (3,-1) is a saddle point corresponding to an accumulation of electron density in two dimension, 

and a depletion in the third one. It is called bond critical points (bcp) because found along the line 

of connection between two atoms (bond path), although they do not necessarily address the 
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occurrence of a two-center chemical bond
25

. The network of all the bond paths is called molecular 

graph. In Figure 1.3 it is represented the molecular graph of the adduct NH3-BH3. 

Finally, (3,+1) is a ring critical point (rcp) and (3,+3) are local minima (cage critical points, 

ccp), occurring within cages.  

 

 

Figure 1.4. Picture from reference
16

.  

 

The numbers of critical points in a molecular system are related by the Poincaré-Hopf equation, 

whereas if a periodic system is considered, the relation is defined by the Morse equation. 

 

 (nuclei) -  (bonds)    (rings) -  (cages)   n       {
   n     in molecular system

n     in periodic system
          (1.4) 

 

Based on Bader’s partition, many topological descriptors were developed in order to extract 

useful and meaningful chemical information.
6,26,27

 In particular, many of these descriptors are used 

to analyze bond critical points. The value of the electron density at the bond critical point b(r) is 

the first indicator of the strength of the corresponding interaction. The higher the value of b(r),  the 

stronger is supposed to be the bond. This may be true for covalent interactions (only if a 

homogeneous series of bonds is compared), being the electron sharing more relevant, but b(r) is 

not directly proportional to the bond order. Moreover, the correlation between electron density at 
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the bcp and dissociation energy is not always univocal, as it will be discussed in the rest of the 

thesis.  

The bond ellipticity is another descriptor, defined as 

 

    (
  

  
 -  )                   (1.5) 

 

and it represents the deviation of the electron density distribution at the bond critical point from 

the cylindrical symmetry, generating a relation with the character of a chemical bond, like σ or π.
16

 

Indeed, it has a value of zero for bonds having cylindrical symmetry, like C-C bond in ethane. In 

the case of ethylene,   increases to  .3, result of the concomitance of both σ and π bond. Another 

relevant topological descriptor is the delocali ation index δ(A,B)
28

, which measures the number of 

electron pairs shared between two atoms. Electron sharing is a fundamental aspect of covalent bond, 

and so, δ(A,B) gives information also on the covalent character of a two-atoms interaction. One of 

the greatest advantage of this descriptor is that it does not require a bond critical point between 

atoms. In fact, electron sharing (hence interactions) can be present even in absence of a bcp.
29,30

 

Indeed, δ(A,B) is extremely useful for elusive interactions, such as metal-metal bond
31

. So far, 

descriptors focused mainly on the analysis of the electron density have been proposed. However, 

many important information concerning chemical bond are still hidden in (r). The analysis of the 

curvature of the electron density, also called Laplacian,  
2
(r) defined as 

 

 
 
(r)   

   (r)

   
   

   (r)

   
   

   (r)

   
   ( )               (1.6) 

 

can reveal these hidden aspects. The Laplacian of a scalar function shows regions of local 

concentration or depletion. Applied to the electron density, it provides a useful representation of the 

electronic distribution around an atom, defining regions of charge concentrations ( 
2
(r) < 0  L(r) 

> 0) and charge depletion ( 
2
(r) > 0  L(r) < 0).

27
 It is useful also to use the function L(r), defined 

in (1.6), because it is positive in regions of local concentrations, and negative in depletions. 

The Laplacian is amenable to a topological analysis as the electron density and critical points in 

the space of  
2
(r) are of particular interest in the analysis of atomic coordination. Regions of 

space coinciding with outer (valence) shell are of particular interest. Minima of  
2
(r) are called 

valence shell charge concentrations (VSCCs) while maxima of  
2
(r) are called valence shell 

charge depletions (VSCDs). The formers can be associated with the localization of electron-pairs, 
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providing a physical connection with the VSEPR theory.
32,33

 If a charge concentration point lies on 

a bond path, it is called bonding charge concentration (bonding CC). It corresponds to the electron-

pair shared by two atoms. If not, it is a nonbonding charge concentration (nonbonding CC), 

associable with s lone pair. In Figure 1.5 the four VSCC points of the oxygen atom in the molecule 

of H2O are reported, corresponding with two bonding and two nonbonding electron pairs. 

 

  

Figure 1.5. Red concentration, blue depletion, yellow points VSCC (left bonding, right 

nonbonding). 

  

Moreover, thanks to the local expression of the virial theoreom 

 

(
  

  
)  

( )    ( )   ( )                           (1.7) 

 

which relates the Laplacian of the electron density to the kinetic energy density  ( ) and the 

potential energy density  ( ), a direct relationship between the electron density and the energy 

exists. The first term is always positive, whereas the potential energy is always negative. 

The total energy density  ( ), defined as 

 

 ( )   ( )   ( )                             (1.8) 

 

tells if an interaction is dominated by potential energy, like in covalent interactions, or by 

kinetic energy, as in more ionic interactions.
34

 In this way, the total energy measured at the bond 

critical points,   ( ), gives information about the bond’s character. 

Further, the energy density at the bcp’s has been widely adopted to characteri e 

chemical bonds and elusive interactions like metallophilicity.
35–37

 The ratio between the 
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module of potential energy density at the bond critical point      and the kinetic energy 

density at the bcp    can be particularly informative. If         > 2, the interaction is 

typically covalent, whereas for a ratio smaller than 1 the nature of the interaction is mainly 

closed-shell type. For 1 <         <  2, the character is classified as intermediate.
35,37

 

QTAIM offers a unique and exact partition of the space and atomic properties (e.g. atomic 

charges, but also atomic energies) can be calculated from the integration over atomic basins. Having 

defined atoms in a molecule, it is possible to determine any atomic property. This bring to the 

concept that molecular properties are the sum of the individual atomic properties. For example, the 

charge Q of a topological atom can be defined as the difference of its electronic population N with 

the nucleus charge Z. The electron population is obtained by the integration of all the volume 

elements dτ over all the atomic basin Ω. 

 

 (Ω) ∫ qdτ
 

                                    (1.9) 

 

Others atomic properties can be defined in the same way, like atomic dipole moments, 

quadrupole moments, etc. One of the greatest advantages of topological analysis proposed by Bader 

is indeed that it is applied on a physical observable, and so, it can be carried out also on the electron 

density obtained from single crystal x-ray diffraction experiment, as shown in the next section.  

 

1.2.2 Electron density from X-ray diffraction 

As anticipated, theoretical computation is not the only way to obtain the electron density of a 

chemical system. This information can be extracted from the scattered intensities of a single crystal 

x-ray diffraction experiment. The measured intensities are proportional to the square of the modulus 

of the structure factors F( ). Then, a Fourier transform (FT) relation exists between structure 

factors and thermal averaged electron density of the unit cell 

 

F( )   ∫ 〈 ( )〉       
          

                (1.10) 

 

  is the scattering vector defined in the reciprocal space and the integration is computed over 

all the volume of the unit cell. However, it is not possible to completely derive the thermal averaged 

electron density from the structure factors, because of several practical problems.
21
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Nevertheless, measured structure factors can be used to refine the parameters of a model of the 

electron density through a least-square method. In this way, one obtains an “experimental electron 

density”. In order to refine a model from X-ray scattering intensities, the electron density is 

considered as the sum of atomic electron densities: 

 

          ( )   ∑   (     )  (1.11) 

 

ri is the position of the atomic nucleus i. The independent atom model (IAM) is typically 

adopted to obtain crystal structures. In IAM, only atomic coordinates and displacement parameters 

are refined against the experimental structure factors, without considering the electronic 

redistribution due to interactions. This refinement does not return any information about chemical 

bonds, apart from interatomic distances. To overcome this problem, the experimental charge density 

can be modeled using aspherical terms. In the Hansen & Coppens formalism,
38

 each atomic electron 

density is further expanded as follow: 

 

  ( )                ( )          
       (   )   ∑ ∑           (   )       

       (        )             
        (1.12) 

 

Pi are population parameters,   are contraction/expansion parameters, ρ(r) are spherically 

averaged Hartree-Fock or Dirac-Fock density functions of the free atom for core and valence. The 

first two terms describe the core and valence electron density as spherical functions, that can be 

expanded or contracted by the   parameter. The last term in the equation represents the so called 

deformation density, which is the main contribution to the deviation from the classic independent 

atom model. It is a summation of deformation functions described by a radial term R(r), typically a 

normalized single Slater-type density function, multiplied by density-normalized spherical 

harmonics y(r/r) up to a given order (in our models lmax = 4). The radial function of the last term has 

to describe the bond region, therefore they are more diffuse.  

 

  ( )     
     

(    ) 
(   ) ( ) (      )                        (1.13) 

 

Note that    and   parameters, used respectively to scale the spherical and aspherical densities 

are numerically different.  -formalism is a consequence of using Slater-type radial functions
39

, 
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provides notable flexibility to the radial density. When   > 1, the valence shell results contracted, 

therefore the same charge density is found at smaller value of r. Consequently, values of   < 1 

produces an expansion.   
  satisfies the normalization requirement

38
. The contraction/expansion 

parameters act exclusively on the valence shell, because the core is considered unperturbed. 

Nevertheless it is possible to give the same flexibility al to the inner charge density, however 

either extremely high resolution or theoretical data are required
40

.  In the multipolar formalism, the 

atomic charge deformation density is expressed as product of radial functions and angular functions. 

Spherical harmonic     (   ) are real functions able to describe dipoles (  = 1), quadrupoles (  

= 2), octupoles (  = 3) and hexadecapoles (  = 4) (Figure 1.6).  

 

Figure 1.6. Representation of multipolar functions with   = 1,2 and 3.
38

 

 

In general, the expansion is truncated at the hexadecapoles, but in principle it could continue 

for higher values of  . Spherical harmonics are necessary to model the valence electron density 

involved in the formation of chemical bond. Quadrupoles and hexadecapoles are essential to model 

d-orbitals in transition metals.
41,42

 Combination of monopoles and octupoles, on the other hand, can 

describe hybridization in organic molecules.
43,44

  

The multipolar expansion can be formulated also in reciprocal space for the atomic contribution 

to the unit cell structure factors |F(H)|. If experimentally measured x-ray diffraction intensities are 

available, they can be used to refine the population coefficients of the atomic charge density using a 

least-square minimization of the differences between observed and computed aspherical structure 

factors.
45

 Multipolar refinement is obviously sensitive to the data quality, indeed extremely accurate 

intensities measured up to high resolution are needed. Information about valence electrons comes 

from low-angle scattering, meanwhile at high-angle only core’s electrons scattering persist. Notable 

number of data are required to deal with the great amount of parameters generated by multipolar 

expansion. Low temperature is crucial to attenuate the blurring due to thermal motions and 

highlight deformations due to chemical bonding. From the multipolar expansion model, all atomic 

or molecular electrostatic moments and topological indices become easily available.
21

 Information 
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about chemical bonding, strength and interatomic interactions are now reachable. Even the 

electronic configuration of d-orbital in transition metals can be known.
46

 

Structure factors can be obtained thought periodic calculations. Theoretical data avoid 

problems induced by thermal motion. Moreover, a direct comparison of model made by 

experimental and computed charge densities becomes possible. 

 

 

1.3 Interaction Energy 

1.3.1 Interacting Quantum Atoms (IQA) 

In this section, the theoretical aspects of the Interacting Quantum Atoms (IQA) developed by 

Blanco et al.
17

, an energy partition based on QTAIM
16

, is reported.  

The first step is the partition of the first-order and second-order density matrix, generated from 

a N-electrons wave function  , defined in the spatial and spin space by the vectors x: 

 

  (   
 )   ∫ (      )  (        )                                        (1.14) 

  (   )   (   )∫ (     )  (     )                                    (1.15) 

 

From these defined density matrices, it is possible to calculate the energy of the system described 

by the multi-electrons wave function   as expectation value Hamiltonian operator  ̂. 

 

 ̂     ̂     ̂                           (1.16) 

 

Where  ̂ is the mono-electronic kinetic energy operator,  ̂ the mono-electronic nuclear 

attraction to a nucleus of charge Z
X
.     describes the inter-nuclear repulsion, derived applying the 

Born-Oppenheimer approximation, and finally     is the inter-electronic repulsion. Considering two 

nuclei, A and B, the last two terms are defined as follow: 

 

      
 A B

  AB
                             (1.17) 

 ee   
 

 r  
                  (1.18) 
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Where Z
A
 and Z

B
 are the charges of the nuclei A and B respectively,  AB is the inter-nuclei 

distance and r12 is the inter-electrons distance. The total energy of a multi-body system, expectation 

value of Ĥ  is named E. At this point, the partition of the density matrices will follow, and then that 

it is possible, after some arrangement, to separate the one-atom and two-atoms energy 

contributions.
47

 QTAIM provides an exhaustive real space partition of any multi-body system into 

so called atomic basins ΩA, and because each basin contains one nucleus, ΩA  A, and it is 

possible to partition the first order density matrix into atomic contributions 

 

  (   
 )  ∑   (   

 )                  (1.19) 

 

Where   (1) equal to 1 if r1  Ω and 0 elsewhere, then ∑      . Mono-electronic properties 

are partitioned as well in this way, moreover, any mono-electronic operator, like  ̂ and  ̂, can be 

seen as sum of single basin-acting operators. 

 

    ∑ ∫  ̂
  

  (   
 )     ∑  ̂ 

               (1.20) 

 

Following the notation proposed by Blanco
17

, the electron-nucleus attraction, previously named 

 ̂, from now on will be named    
   if the electrons in basin A are interacting with the nucleus in 

basin A (intra-atomic electrostatic interaction), or    
   if the electrons in basin A are interacting 

with the nucleus in basin B (inter-atomic electrostatic interaction). Care must be taken not to 

confuse    
   with    

  , because in the second one, electrons in basin B are interacting with the 

nucleus in basin A, but    
   coincides with    

  . In Figure 1.7 this distinction schematically is 

represented. 

 

 

Figure 1.7. Energy term from the interaction of basins A with B. 
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The partition of the second-order density matrix is less intuitive then the one for   (   
 ), but 

possible as well.
48

 Li and Parr demonstrated that 

 

  
  (   )    (   )  ( )  ( )               (1.21) 

 

allowing the partition of the two-electrons inter-basins energy. Finally, it becomes possible to 

write the expression 

 

     ∑    
    

 

 
∑ ∑    

  
                             (1.22) 

  

where    
   is the intra-basin energy and    

   the inter-basin energy between basin A and B. 

The Interacting Quantum Atoms partition method, produces in this way a straightforward real 

space partition of the total energy into one-body (AA) and two-body (AB) contributions: 

 

   ∑(       
       

  )   

 

 

 
∑(   

       
       

       
  ) 

   

 

  ∑      
    

 

 
∑     

  
     (1.23) 

 

where    is its atomic kinetic energy; and    ,    ,    , and     are the potential energies 

describing the pairwise interactions between the electrons and nuclei of basin A and B. The sum of 

all the intra-basin terms (A) defines the self-energy of a quantum atom (     
 ) or a group of atoms 

  (     
 ), whereas the inter-basin ones correspond to the interaction energy between atom pairs, 

    
  . A further partition of     

   is possible into a classical term    
   and an exchange-correlation 

term    
  :  

 

    
       

       
   (1.24a) 

 

   
       

      
   (1.24b) 

 

   
       

       
       

      
    (1.24c) 
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where   
   is the Coulombic part of    . It appears from (1.24c) that    

   refers to the classic 

(or quasi-classic) component of the interaction energy, meanwhile    
   describes the quantum-

mechanics part, the so called exchange-correlation (XC) energies. Those have no classical 

equivalent, and so, it is easy to extract them as the difference in (1.24b). Moreover,    
   and    

   

can be associated with the classical notions of ionicity and covalency respectively.
49

  

 

1.3.2 Energy Decomposition Analysis (EDA) 

The Energy Decomposition Analysis (EDA) is based on the formalism introduced by 

Morokuma and Kitaura
10

 and by Ziegler and Rauk
50

, who realized a procedure to partition the 

energy of a chemical bond into well define contributions. EDA extracts bonding information from a 

molecule, that will be named  , as results of the interaction between fragments   and  , that are 

used as reference state. The wave function   , which coincide with the wave function    , having 

energy   , is the result of the interaction between fragments    and   , referring to their relaxed 

geometry at the electronic ground states    
  and    

 , with energies   
  and    

 .
19

 The resulting 

total bond energy    depends on two major components:  

 

         (  
      

 )                       (1.25) 

 

Where    is the dissociation energy.       , the preparation energy, is the energy necessary to 

promote fragments (  and  ) from their equilibrium geometry and electronic ground state to the 

geometry and electronic state which they display in the assembled molecule (    and    , with 

energies     and    ).        is so expressed as: 

 

        (       )      (  
      

 )              (1.26) 

 

The preparation energy is a destabilizing contribution, and it quantifies the effort necessary to 

“prepare” the fragments for their final state in  . 

      , on the other hand, is the interaction energy between the two fragments forming the 

molecule.  

 

              (         )                            (1.27) 
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It is the stabilizing contribution to the total energy   , associated with the gain of energy 

resulting from the interaction of the two prepared fragments. The EDA formalism enables a further 

partition of this term as a sum of energy contributions: 

 

                           (1.28) 

                   (1.29) 

 

      is the electrostatic interaction energy between the prepared fragments which are 

calculated with a frozen electron density distribution calculated for the same geometry that they 

assume in the complex. The interaction of the two fragments   and  , combined in the final 

geometry   from infinite distance is the quasi-classic Coulomb energy, which is usually an 

attractive term.         gives the destabilizing energy caused by exchange (often called Pauli 

repulsion, because ascribed to the Pauli exclusion principle, although this is not a true potential). 

The exchange energy is calculated from the wave function orthogonalization and 

antisymmetrization: 

 

  
     ̂{     }               (1.30a) 

  
   ⟨  

 | ̂|  
 ⟩                                                          (1.30b) 

 

 ̂ is the antisymmetrizing operator and   the normalization factor.       and         are 

frequently added to give the so-called steric energy    , but it should not be confused with the 

loosely defined steric interaction between substituents in a molecule.       gives the stabilization 

which arises from the orbital interactions when the wave function is fully relaxed. In this model, the 

orbitals of the wave function   
  are relaxed by mixing with SCF computation the virtual orbitals 

to generate orbitals of the final, exact wave function   . It is always stabilizing and it can be 

further broken down into orbital contributions with different symmetry, which refers to the 

irreducible representations   of the point group of   51
 

 

            
                (1.31a) 

       ∑    
               (1.31b) 
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      can be associated with the covalent contributions to the bond whereas the electrostatic 

term with the ionic bonding,
8
 that means that the ratio between ionic/covalent character of the bond 

can be obtained.
19,52

 In this way,       can used to estimate the strength of the electrostatic bonding, 

while       for the covalent bonding
53,54

.  

 

1.4 Conclusions 

In this introductory chapters, the theoretical background necessary to read this thesis has been 

discussed. This includes important tools for the investigation of the nature of the chemical bond. 

The purpose of this work is connecting these interpretative tools (grounded on mathematics and 

physics) with chemistry and material science, that make use of simple models to describe the 

features of a compound (like chemical bonding, properties, etc.) and exploit its functionalities. A 

typical problem is the apparently different response coming from various theoretical approaches, 

that however require homogeneity. For example, for partition methods like QTAIM, IQA and EDA, 

one of the main differences, apart from the function which is analyzed (electron density or energy), 

is the necessity to define a reference state or not. In EDA the formalism is necessarily based on a 

reference state, so the interacting fragments must always be defined. On the other hand, in QTAIM, 

the partition of the electron density occurs directly on the system under investigation and provides 

an unbiased perspective, without the need to define a fragment. However, a reference is often 

useful, even if no necessary. Only the introduction of e reference in QTAIM enables a proper 

comparison with EDA of energy contribution to the chemical bond.  

Each of these methods has strengths and weaknesses. QTAIM for example, has the advantage 

to analyze an observable and therefore can straightforwardly compare theoretical and experimental 

results
6,22

 revealing the modification and redistribution of the electron density both in molecular and 

periodic systems. This method takes advantage of topological descriptors to connect quantum-

mechanical expectation values (for example, critical points of the Laplacian of the electron density 

 
2
  ) and a theory, (for example, the valence shell electron pair repulsion ( SEPR).

55,33
 Moreover, 

the relationship between the topological bond path with the chemical bond concept is not always 

possible. Bond order based on this partition produced as well many ambiguities and disagreement: a 

value of almost 1.5 for the carbon monoxide molecule, in contrast with the traditional picture of the 

weak triple bond.
56

 On the other hand, energy partition analysis,
7,52

 which so far belong solely to the 

theoretical methods, but that in principle could be carried out also on experimental data
57

, can be 

combined with fragment molecular orbital analysis and separated into irreducible representation 
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contributions to the total bonding, according to the considered point group. Indeed it is possible to 

separate the energy contributions in Oh metal carbonyl complexes with respect to the irreducible 

representations eg and t2g, enabling the qualitative and quantitative quantification
58

 of the σ-

donation and π-back-donation, within the framework of the DCD model.
7
 Anyhow, generation of 

meaningful fragments, i.e. reference states, is not trivial except for simple molecules. The analysis 

of periodic systems can be particularly tricky. Moreover, the interaction between two fragments do 

not always correspond to the interaction between two specific atoms. Even in simple adducts, like 

NH3---BH3, calculating the energy difference of the final molecule with the respect of two 

independent molecules NH3 and BH3 does not strictly coincide to calculate the specific interaction 

energy between nitrogen and boron. 

 

1.5 Aim of the Thesis 

Our major purposes were: 

 

 to show how energy decomposition methods based on different space partition; i.e., Hilbert 

space (EDA) and real space (IQA), can bear to the very same conclusions. 

 to investigate elusive chemical bonds by combining different theoretical methodologies. 

 to find structure/properties correlations induced by emerging inter-atomic interactions. 

 to use accurate X-ray diffraction experiments under various conditions, i.e. low temperature 

or high pressure, to investigate complex systems.  
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Chapter 2 

 

Comparing Energy Partition Methods 

 

2.1 Interacting Quantum Atoms with Reference States 

As suggested by Cukrowski
1
, the contribution of a molecular fragment, consisting of 

interacting atoms, can be quantified through the so-called fragment attributed molecular system 

energy change (FAMSEC). Generalizing the idea of Pendás et al.
2
 reported in Chapter 1, we define 

the deformation self-energy           
  of a given fragment  , belonging to a molecule ( ) as the 

difference between the fragment self-energy in the final state      
 , i.e. interacting with the other 

fragments in the molecule  , and the self-energy in the reference state          
 , i.e. the isolated 

fragment, but with the very same geometry as in the molecule. 

 

          
       

           
   ∑      

            
 

     ∑       
 

    (2.1) 

 

The reference electronic state is not constrained to the final one.           
  is typically positive 

(destabilizing) and it accounts for the change of the self-energy of a given fragment during the 

interaction. Because of the variation of the intra-fragment interaction     
  , of a fragment   

composed by one or more atomic basins (A, B   ), from its reference state         
  , which still 

exhibit the geometry in the final molecule ( ), we need a definition of a deformation energy also 

for this term,          
 . 

 

         
  

 

 
∑     

            
  

   
     

 (2.2) 
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If a fragment is generated by only one atomic basin, the          
  will obviously vanish. With 

          
  and          

  it is possible to describe the global intra-fragment energy deformation, but 

another term is necessary, namely the sum of inter-fragment interactions: 

 

    
   

 
 

 
∑     

   
   

     

 
 

 
∑ (∑ ∑     

  
      )   

     

 (2.3) 

 

    
   

 is not a deformation energy, as in equations (2.1) and (2.2); instead it is total interaction-

energy between fragments   and  . In general, when n fragments are present,     
   

 is the sum of 

n(n-1)/2 inter-fragment interactions. Coupling equations (2.3) with (2.1) and (2.2), and summing 

over all the fragments ( ) of the molecule ( ), one obtains the global energy binding contribution 

      
   

 of many interacting fragments (Scheme 2.1). 

 

      
   

     
   

 ∑ (          
 )  ∑ (         

  )   (2.4) 

 

 

 

 

Scheme 2.1 Fragmentation of the adduct H3N---BH3 and corresponding energy terms.   

 

 

 



 

27 

 

In the simple case of only two fragments (   ): 
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∑         

  
   
     

 (2.5) 

 

which takes into account both the intra-fragment and inter-fragment energy contributions, 

generating a more compact equation for the fragments binding energy: 

 

      
   

           
            

 
      

   
 (2.6) 

 

According to (1.23) and using (1.24a), (1.24b) and (1.24c), it is possible to decompose the self-

energy deformation           
  and the fragment’s interaction-energy      

   
 into kinetic and 

potential energy contributions, in order to gather them together in a more chemical intuitive way: 
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With these equations it is possible to define two main potential energy terms: a classical one 

         
   

, and a quantum-mechanical one     
   

. 

 

         
   

          
          

           
  

        
  

     
   

      
   

     
   

     
   

 (2.11) 

 

    
   

          
           

  
      

   
 (2.12) 

 

Equations (2.11) and (2.12), together with the kinetic energy terms, result in the fragments 

binding energy. 

 

      
   

       
        

 
          

   
     

   
 (2.13) 

 

Which coincides with equations (2.4) and (2.6). 

Noteworthy, this formalism, that introduces reference states in the evaluation of the interaction 

energy, enables to compare the IQA results with those obtained with energy decomposition analysis 

(EDA) (see next paragraph). 

In practice, the attainment of these energy contributions is only the final step of the procedure 

that will be explained. A real space density matrix partition needs a density matrix, which can be 

computed either from Hartree-Fock (HF), post-HF (MP2, CCSD, etc.) or from Kohn-Sham Density 

Functional Theory (KS-DFT). For this last case, only some DFT exchange-correlation models are 

supported for IQA partition in AIMALL software (see below), i.e. LSDA, B3LYP and M06-2X.
3,4

  

The first operation is to compute a single point calculation of the molecule  . For the 

following examples, KS-DFT calculation with B3LYP exchange-correlation functional
5,6

, carried 

out on Gaussian09 package
7
, will be considered. It is important to underline that usually the 

geometry is previously fully optimized, but this is not strictly required for this kind of energy 

decomposition. It means that it can be carried out on geometries that are not a minimum of the 

potential energy surface (PES), like transition states. Once that the convergence of the self-

consistent-field (SCF) cycles is reached, one can use the wave function based on Gaussian-type 

orbitals (GTO) to produce the Bader’s partition of the charge density. For this purpose, the software 

AIMALL can be used. Moreover, AIMALL allows the partition of the density matrix and the 

obtainment of the energy contributions, i.e., IQA analysis can be done simultaneously. The 
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drawback of Interacting Quantum Atoms partition is the time consuming and the computational cost 

required for the integrations when transition metals are present and if the system is quite extended. 

Once that the real-space integration is correctly concluded, i.e. that all the electron density have 

been assigned to the basins, the atomic partition of the energy is straightforward.  

As recently pointed out
4
, many terms comes out from this procedure, in particular for the two-

atoms terms. One of these term is the so-called     energy, which refers to the calculation over all 

the atoms in the system, but  . So, it coincides with the equivalence 

 

∑     
        

   

                  (2.14) 

  

Accordingly, the total interaction energy of the molecular system becomes 

 

     ∑ ∑     
  

                     (2.15) 

 

The calculation over    has the advantage of being more accurate and less time 

consuming.Summation over   should produce the same results of working with   , but typically 

small differences appear, particularly errors associated with semi-analytical integration or the grid 

quadrature.
4
 In Table 2.1 the energy terms of IQA partition from AIMALL package are reported, 

highlighting the mutual correspondence between terms from procedure above and those found from 

the software.   

 

Table 2.1. Nomenclature of IQA energy terms computed with AIMALL. 

  Partition terms AIMALL terms 
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The second step for the attainment of       
   

 and the terms     
   

 (    ) and          
   

 

(         ) is the calculation of energy contributions of the reference states for two fragments   and 

 . This is the typical fragmentation used to study interactions occurring between two sub-systems 

forming a molecule, like coordination of a ligand to the metal center, donor-acceptor interaction, 

bond dissociation, etc. 

The procedure is therefore very similar to the one described above for  , in fact just a single 

point calculations on fragments   and   is needed. It is very important, anyhow, to keep the same 

geometry that    and   have in  , on the other hand, no restriction is imposed to the electronic 

state. Once the gas-phase wave functions are obtained, IQA analysis can be done. Then, the energy 

differences from equations (2.1) and (2.2)  can be easily computed, and so       
   

 from equation 

(2.13), as well as its energy terms. Following this procedure, it is possible to calculate not only the 

fragments binding energy, which accounts for the stabilization coming from the interaction, but 

more important, the variation of the kinetic, classic and exchange-correlation energy terms. As 

already mentioned, classic and exchange-correlation terms can be associated with to the ionic and 

covalent character respectively.
8
 In particular the ratio          

   
(         

   
     

   
)⁄  intuitively 

assesses the major character contribution. Hereinafter, we will refer to     
   

 and          
   

 as      

and           respectively. 

 

2.2 Energy Decomposition Analysis 

From the Energy Decomposition Analysis (Chapter 1) it is possible to extract general energy 

terms which constitute the total bonding energy      
9
. Those terms are of course the same of 

above coming from application of the Hamiltonian operator to the wave function, i.e., the 

electrostatic energy, the kinetic energy, the coulomb energy and the exchange-correlation energy 

(XC).  

 

                                                   

                                        (2.16) 

 

Being the same kind of energy contribution of IQA, in principle one can compare them 

directly. For this purpose, we will gather together the electrostatic and the coulomb terms in a so 

called Classic term, as shown in equation (2.16). These general energy terms from EDA come from 
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all the three main steps of the bonding analysis. For example,  the kinetic energy will be the sum of 

the kinetic energy contributions to      ,         and       , and so on for the other terms. 

The practical procedure one has to follow in order to extract the energy terms of (1.28) 

according to EDA (Ziegler and Rauk) is implemented in the software ADF2014.
10,11

 The energy 

decomposition analysis is automatically calculated for the atomic contributions, however, it is 

possible to carry out an energy decomposition defining molecular fragments   and   (or more). 

The computed energy terms will refer to the interaction between fragments. It is important that 

reference states of   and   are the same in IQA and EDA to compare the same sub-systems 

interactions. Moreover, ADF uses Slater type orbitals (STOs) as basis functions for the SCF 

calculations.  

The comparison between IQA and EDA partition methods is summarized in scheme 2.2. In the 

next section, examples on typical donor-acceptor interactions will be proposed and analyzed in 

order to validate this procedure. In this context, hereinafter we will refer to our protocol of reference 

states for all the IQA results.  

 

   

Scheme 2.2. Schematic procedure to compare reference-states-IQA with EDA. 
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2.3 Methods 

IQA: The program package AIMALL was used for carry out the Bader’s partition and the IQA 

energy analysis of the molecular systems. The wave functions were calculated with Gaussian09
7
, 

using the level of theory B3LYP/6-311+G(d,p).
5,6

 B3LYP is one of the few DFT models supported 

by AIMALL for the correct evaluation    
   in the IQA analysis

4
. The molecular geometries were 

optimized and the nature of the minima have been verified by calculation of the vibrational 

frequencies.  

EDA: DFT calculations have been performed with the program package ADF2014
11

, using the  

level of theory B3LYP/ATZ2P  (augmented triple-ζ with double polari ation functions Slater type 

orbitals (STOs) basis functions) for the SCF calculations. All the structures have been optimized 

and verified as minima on the potential energy surface by calculation of the vibrational frequencies.  

 

2.4 Results and discussion 

2.4.1 Donor-Acceptor interaction in H3E---ZH3 (E = N, P, As ;Z = B, Al) 

The donor-acceptor interactions between Lewis bases (H3E; E = N, P, As) and Lewis acids 

(ZH3; Z = B, Al) will be analyzed. H3E and ZH3 were treated as close-shell fragments. Because all 

electrons are paired, the resulting interaction will involve the HOMO of the donor (H3E) with the 

LUMO of the acceptor (ZH3). The analysis of the energy terms of EDA and IQA using our protocol 

of comparison is reported in Figure 2.1 and Table 2.2. The same reference states were used for the 

two decomposition methods.  
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Figure 2.1. Energy terms and interaction energies in donor-acceptor complexes, upper side: Z=B, 

lower side: Z=Al; ● level of theory BLYP/T P. 
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Table 2.2. Energy terms form EDA and IQA for the H3E---ZH3 donor-acceptor interaction. 

  BH3 AlH3 

  

NH3 PH3 AsH3 NH3 PH3 AsH3
a 

EDA 

Epauli 110.2 119.7 90.3 58.6 41.2 33.0 (34.5) 

Eels -77.1 -61.7 -45.6 -58.5 -30.6 -23.1 (-23.0) 

Esteric 33.1 58.0 44.7 0.1 10.6 9.9 (11.6) 

Eorb -74.8 -92.5 -69.3 -30.4 -26.1 -22.2 (-22.4) 

%Eels 50.8 40.0 39.7 65.8 53.9 50.9 (50.6) 

%Eorb 49.2 60.0 60.3 34.2 46.1 49.1 (49.4) 

Eint -41.7 -34.5 -24.6 -30.2 -15.5 -12.3 (-10.9) 

EKinetic 77.6 44.6 22.0 58.9 16.9 5.5 (7.0) 

EClassic -70.1 -27.7 -8.5 -53.1 -10.9 -0.8 (-2.5) 

EXC -49.2 -51.3 -38.1 -36.0 -21.5 -17.0 (-15.3) 

%Classic 58.8 35.1 18.2 59.6 33.5 4.4 (14.3) 

%XC 41.2 64.9 81.8 40.4 66.5 95.6 (85.7) 

IQA 

Ebind -41.9 -33.5 -24.4 -30.4 -15.8 -12.2 

EKinetic 70.4 37.9 24.4 49.2 15.4 11.0 

EClassic -64.7 -23.1 -11.4 -47.4 -11.2 -6.7 

EXC -47.6 -48.4 -37.4 -32.3 -19.9 -16.4 

%Classic 57.6 32.3 23.4 59.5 36.1 29.0 

%XC 42.4 67.7 76.6 40.5 63.9 71.0 

 

a 
Values in parenthesis refer to energy terms computed with the level of theory BLYP/TZP 

Several terms are reported in Figure 2.1, in particular the total interaction (or binding) energy, 

as defined in equations (2.13) and (2.16), the electrostatic and orbitalic terms from EDA and the 

ratio [   (            )]  and [        (            )] , both from IQA or EDA, that well 

represent the main energy variation during the formation of the interaction. Our results reveal an 

excellent agreement between the energy terms computed with the two partition methods. The 

energy differences       
   

 and       have the same values, as well as the ratio between Classic and 

XC energies. Analyzing the case with Z=B, an excellent agreement is observed, not only regarding 

   of interaction, but also in the ratio XC/Classic. Both methods show that H3N---BH3, the most 

stabilized donor-acceptor interaction has dominant Classic character. Moreover, EDA electrostatic 

and orbitalic terms well reproduce previous studies carried out by Bessac and Frenking.
12

        in 

our work (50.8%, with      = -77.1 kcal/mol) is almost identical to the one of previous works 

(50.4%, with      = -77.3 kcal/mol)
12,13

, which is associated with the degree of ionic character for 

the interaction. Nevertheless,         , instead of          , has the meaning of “degree of ionicity” 

in IQA. The main difference in the definition of covalent or ionic bond for IQA and EDA are 
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indeed in the terms              and             respectively. The electrostatic term in EDA 

comes from the interaction between two frozen (non-interacting) charge density (  and  ), at the 

geometry of the final system  . On the other hand, Classic term in IQA arise from all the mono- 

and multi-electronic interactions which do not have a pure quantum mechanical nature, indeed 

associated with the exchange-correlation. Even if a disagreement on what is considered as ionic or 

covalent exists in the terminology, the energy is consistent and the very same values are reached 

using the two methods. However, with these results it is not possible, and we do not want, to judge 

terminologies for the bond character, but we want to highlight that the variations of the interaction 

energy are the same. Similar results are found also for H3N---AlH3, with even better agreement, 

differing for just 0.2 kcal/mol in           , and 0.1% in %Classic (or %XC). Classic and 

electrostatic terms are again the main energy contributions to the interaction, nevertheless, the ratio 

Classic/XC almost unchanged from B to Al, whereas electrostatic/orbitalic ratio changes from 

50.8%/49.2% to 65.8%/34. %, this implies more EDA’s ionic character in H3N---AlH3 interaction. 

Moving to phosphane and arsane, the energy contributions change.            decrease almost 

linearly, becoming less stabilizing, meaning that PH3 and AsH3 in this interaction are weaker Lewis 

bases than NH3. Then XC term is the main energy contribution. Concerning H3P---ZH3 complexes, 

a good agreement with previous work is found, both for the        and        trends.
12

 From our 

analysis, Classic and XC trends of Z=B, Al are very similar, revealing the same inversion of main 

contributions from N to P. This inversion reveals a significant difference between NH3 and PH3 in 

the donor-acceptor interaction with borane and alane. Nevertheless, the relative increment of XC is 

not only due to an higher value of     , but to a drop of           (Table 2.2). 

Only in H3P---BH3 a slight increment of the XC energy is observed and then it decreases again 

for AsH3. In the alane complexes, on the other hand, exchange-correlation energy decreases 

constantly, but the classic term drops even more severely. The most relevant discrepancy was found 

for H3As---AlH3. According to EDA, the XC reaches 96% of the total energy, mainly because the 

Classic term contribute with just 0.8 kcal/mol to the stabilization. However, this low          , is 

not observed in IQA, for which H3As---AlH3 is similar to H3As---BH3. Also in this case the Classic 

term is smaller than for the other complexes of the series, anyway it still contributes with 6.7 

kcal/mol to the total interaction energy. Our first hypothesis to explain the EDA’s out of trend was 

based on the numerical issue that ADF has with hybrid functional due to part of the exchange 

energy calculated as pure Hartree-Fock (HF), emphasized when a large and diffuse basis set is 

used
14

 (see also https://www.scm.com/doc/ADF/Input/Hartree-Fock_RI.html). However, for this 

specific example, it is unlikely that the error is due to a bad treatment of the HF exchange energy 

https://www.scm.com/doc/ADF/Input/Hartree-Fock_RI.html
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introduced by the B3LYP functional, because      is rather similar in EDA and IQA. Moreover, 

      
   

 and       differ only by 0.1 kcal/mol, so the total energy is well computed. The main 

difference is indeed in the kinetic and Classic terms. Decreasing the level of theory to a GGA 

functional (BLYP), but retaining the basis-set, for the calculation with ADF, the XC energy slightly 

decreases to -15.9 kcal/mol, whereas the kinetic term increases to 6.7 kcal/mol and the Classic 

energy becomes more negative by 1 kcal/mol, changing the percentage of Classic/XC to 10.4% and 

89.6% respectively. Decreasing even more the level of theory to BLYP/TZP, the ratio turns to 

14.3% and 85.7%. So, an issue in the treatment of heavy atoms with large basis-set appears quite 

clear, in particular in the evaluation of kinetic and Coulombic terms.  

 

2.4.2 Bonding in transition metal carbonyl compounds 

To further test our protocol, we analyzed the dissociation of a carbonyl molecule in a series of 

tetrahedral isoelectronic transition metal complexes [M(CO)4]
n
 (n= +1, 0, -1, -2) (Figure 2.2, Table 

2.3). The metal ion in the [M(CO)4]
n
 and [M(CO)3]

n
 fragment is taken as closed–shell d

10
, so the 

charge is adjusted in order to occupy all the d-orbitals. The series moves from the cationic specie 

[Cu(CO)4]
+
 to the di-anionic [Fe(CO)4]

2-
 complex, increasing of the π-back-donating character of 

the metal center. Tiana et al.
8
 showed that the net Bader’s charges on the metal ions in these 

complexes are close to zero or slightly positive, meaning that the electrons flow mainly through the 

carbonyl molecules. Consequently, the higher the negative charge, the more the π-back-donation to 

the anti-bonding orbital of the ligands. The energy terms of the interaction between one carbonyl 

molecule with the unsaturated fragment [M(CO)3]
n
 and Bader’s atomic charges for the metal 

centers calculated for the complex [M(CO)4]
n
 are reported in Figure 2.2 and Table 2.3. 
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Figure 2.2. Energy terms and interaction energies in transition metal carbonyl [M(CO)4]
n
. 

 

Table 2.3. Energy terms form EDA and IQA for the M
n
(CO)4transition metal carbonyl compounds. 

  

[Cu(CO)4]
+ 

Ni(CO)4
 

[Co(CO)4]
- 

[Fe(CO)4]
2- 

EDA 

Epauli 60.2 116.1 154.4 169.9 

Eels -50.6 -90.4 -117.9 -124.8 

Esteric 9.5 25.7 36.5 45.0 

Eorb -30.9 -56.6 -90.1 -123.3 

%Eels 62.1 61.5 56.7 50.3 

%Eorb 37.9 38.5 43.3 49.7 

Eint -21.4 -30.8 -53.6 -78.2 

EKinetic 8.2 64.8 136.8 227.4 

EClassic -29.9 -80.1 -147.0 -200.1 

EXC 0.3 -15.5 -43.3 -105.5 

%Classic 101.2 83.8 77.2 65.5 

%XC -1.2 16.2 22.8 34.5 

IQA 

Ebind -21.5 -31.1 -54.1 -81.2 

EKinetic 7.3 69.3 138.9 214.7 

EClassic -28.5 -84.1 -149.7 -206.2 

EXC -0.2 -16.3 -43.4 -89.7 

%Classic 99.2 83.8 77.5 69.7 

%XC 0.8 16.2 22.5 30.3 

 Q(M) 0.67 0.48 0.46 0.55 
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 and       values are again the very same, with a minor difference of 3 kcal/mol only in 

the iron complex. The interaction becomes more and more stabilizing as the charge becomes more 

negative, in agreement with an increase of π-back-donation.
8,15,16

 The dominant role in the (CO)3M-

CO bond formation comes from the Classic term, although it decreases gradually. Along the series, 

a drop in %Classic occurs from [Cu(CO)4]
+
 to Ni(CO)4, due to a notable increment of exchange-

correlation contribution. However, the Classic term not only remains the main contribution to the 

total energy, but actually becomes stronger and stronger. The stabilization given by the XC term 

becomes than more relevant, reaching the 30-35% of the total interaction energy in [Fe(CO)4]
2-

. 

Indeed, Tiana et al. showed that the electron correlation increases the π-back-donation effect.
8
 The 

results from EDA and IQA are very well in agreement. The largest discrepancy is found for the iron 

complex, where %Classic and %XC differ for just 4% from one method to the other. 

Absolute values of the energy terms in this complex are also interesting to analyze:      from 

EDA and IQA terms differs by 15.8 kcal/mol, whereas           by just 6 kcal/mol. Also the kinetic 

energy term has a discrepancy of 12.7 kcal/mol. Very likely, this is due to numerical errors caused 

by the higher charge in combination with an irksome level of theory for ADF. In fact, difficulties in 

SCF convergence were observed for this system. Some peculiarities appear also in [Cu(CO)4]
+
: 

     (EDA) is slightly destabilizing, producing a %Classic higher than 100%, while      (IQA) 

has the opposite sign, so it is stabilizing. Nevertheless, the difference  between these two terms is 

less than 0.5 kcal/mol, and both methods agree in addressing the metal-carbonyl interaction in 

[Cu(CO)4]
+
, as almost completely supported by the Classic energy term. This result well describes 

the representation of Cu
+
 d

10
as a closed-shell cation, which interacts electrostatically with carbon 

atoms. Indeed, the calculated Bader’s charge of the metal ion is equal to   .67, the most positive 

computed for these complexes, and very close to the ideally oxidation state +1. In the other three 

cases, with the increment of the negative charge, there is more intense flow of electron density 

towards the carbonyl molecules, on which the LUMO is mainly localize, corresponding to the DCD 

picture of the π-back-donation. Moreover, the charge of the metal atom is almost +0.5 for Ni, Co 

and Fe, which is quite far from the expected oxidation state of -1 and -2 for Co and Fe. 

According to these results, the σ-donation of carbonyl molecules to the metals doesn’t seem to 

be relevant, otherwise more negative charge should appear on the metals centers. Because the 

electrons move towards the ligands, the π-back-donation becomes the dominant character. Indeed, 

metal charges remain positive and almost constant, even in [Fe(CO)4]
2-

, the most stable tetrahedral 

complex. Finally,        and        from pure EDA treatment, the main character of the bond 

would be electrostatic and that the orbitalic contribution increases with the negativity of the charge. 
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However, their ratio is less unbalanced than the Classic/XC one, reaching 50% each in 

[Fe(CO)4]
2-

. Compared with previous works by Frenking et al.
16

 on octahedral carbonyl complexes, 

trends are very similar, revealing the same strengthening of the orbitalic term in the bond character 

with the increasing of the negative charge of the metal center.  

 

2.4.3 Homolytic cleavage of covalent bond 

So far we tested our protocol on donor-acceptor closed-shell fragments, obtaining excellent 

agreements between the two partition methods. In this paragraph, covalent bonds will be 

investigated, in particular, systems like X3C-CX3 (X=H, F, Cl) and H3E-EH3 (E=C, Si, Ge). All 

fragments were generated in order to break homolytically the single C-C or E-E bond. However, in 

this context, some additional approximations had to be introduced. In EDA, the spatial part of the 

wave-functions of the two interacting fragments and the final system is required to be the same. For 

doing so, the reference states has to be considered as Restricted Open-Shell fragments during the 

computation. Such constrain on the spatial part is not required in IQA, being the interaction energy 

calculated in two different steps. It means that the spatial part of the reference states is allowed to 

relax upon the effect of the unpaired spin electrons. This is done considering the fragments as 

Unrestricted Open-Shell. In order to address the drawbacks of comparing energy terms from 

Restricted and Unrestricted calculations, the molecule of ethane will be used as test (Figure 2.3 and 

Table 2.4). 
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Figure 2.3. Representation of the energy term contributions from the open-shell calculation 

computed with EDA and IQA. 

 

Table 2.4. Energy terms form EDA and IQA for the molecule of ethane (H3C-CH3). 

H3C-CH3 

  

Restricted  

EDA 

Epauli 215.7  

Eels -137.0  

Esteric 78.6  

Eorb -192.4  

%Eels 41.6  

%Eorb 58.4  

Eint -113.8  

EKinetic 160.8  

EClassic -173.4  

EXC -101.2  

%Classic 63.1  

%XC 36.9  

  

Restricted Unrestricted 

IQA 

Ebind -111.5 -110.2 

EKinetic 99.9 97.6 

EClassic -131.5 -130.9 

EXC -79.9 -76.9 

%Classic 62.2 63.0 

%XC 37.8 37.0 
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In the IQA analysis, the comparison between a Restricted Open-shell and an Unrestricted 

Open-shell computation of the electronic energy produced some differences. However, being the 

system under examination relatively small, results are overall very similar. The main discrepancy 

by just 3 kcal/mol is found in      (Table 2.4). The fragments binding energy is more stabilizing 

when restricted fragments are considered. Obviously, starting from more destabilized fragments, a 

greater stabilization will be produced in the final step.           doesn’t seem to suffer the initial 

spin-state, the difference in IQA between restricted and unrestricted is by 0.6 kcal/mol. Whereas the 

difference in      is greater. Indeed, spin-state affects more the electrons correlation than the 

quasi-classic electron-electron and electron-nuclei interactions. 

      and       
   

, as well as          and     in IQA and EDA are again extremely similar, 

in particular comparing unrestricted fragments (IQA) with the results from EDA. On the other hand, 

a notable discrepancy between terms          ,           and      arises. Particularly, the kinetic 

energy is almost 61 kcal/mol more stable in the real space partition, meanwhile Classic and XC are 

found to be roughly 42 kcal/mol and 21 kcal/mol more unstable (their sum almost equals the gain in 

kinetic energy). In EDA, the kinetic energy contribution comes mainly from the renormalization of 

the two frozen electron densities, corresponding to        . Probably, the excess observed is an 

effect of this step, which anyhow disappears during the final relaxation, where more stable Classic 

and XC terms are produced. Indeed, the ratio between           and      is not affected. 

Moreover, imposing the restricted space surely affect the kinetic energy. In fact, according to IQA 

results, allowing the relaxation of the spatial part, the kinetic energy decreases, though just 2.3 

kcal/mol. Even if the singular energy term from the two partition methods are no longer directly 

comparable, the total interaction/binding energy and the ratio of the main stabilizing terms still 

bring to the very same conclusion. This intriguing aspect needs further investigation in the future. 

Considering all these observations, only the results from Unrestricted Open-shell fragments for 

IQA will be presented for next examples X3C-CX3 (X=H, F, Cl) and H3E-EH3 (E=C, Si, Ge), 

reported in Figure 2.4 and in Table 2.5. The choice of using an Unrestricted Open-shell instead of 

Restricted-Open shell is because the latter is not a needed constrain in IQA, contrary to EDA. 

 



 

42 

 

 

 

Figure 2.4 Energy terms and interaction energies in covalent bonds, upper side: X3C-CX3 (X=H, F, 

Cl), lower side H3E-EH3 (E=C, Si, Ge). 
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Table 2.5. Energy terms form EDA and IQA for the molecule X3C-CX3 (X=F, Cl) and H3E-EH3 

(E=Si, Ge)  

  

F3C-CF3 Cl3C-CCl3 H3Si-SiH3 H3Ge-GeH3 

EDA 

Epauli 271.7 302.3 113.8 121.3 

Eels -170.1 -155.5 -94.4 -102.2 

Esteric 101.6 146.8 19.4 19.1 

Eorb -196.2 -219.4 -95.7 -89.1 

%Eels 46.4 41.5 49.7 53.4 

%Eorb 53.6 58.5 50.3 46.6 

Eint -94.7 -72.7 -76.3 -70.0 

EKinetic 214.7 250.9 94.5 57.4 

EClassic -185.5 -199.5 -101.7 -69.5 

EXC -123.9 -124.0 -69.1 -57.9 

%Classic 60.0 61.7 59.5 54.6 

%XC 40.0 38.3 40.5 45.4 

IQA 

Ebind -91.1 -71.6 -73.4 -68.3 

EKinetic 124.7 189.7 57.3 45.9 

EClassic -124.9 -159.8 -79.5 -69.2 

EXC -90.9 -101.4 -51.1 -45.0 

%Classic 57.9 61.2 60.9 60.6 

%XC 42.1 38.8 39.1 39.4 

  

 

 

As in the previous examples, the total interaction energies from the two partition methods 

produce very similar values, within a maximum difference of just 3.6 kcal/mol. Focusing on the 

alkyl halides, the discrepancy between the percentage of Classic and XC terms increases with the 

electronegativity of the halide. In fact, in C2Cl6 their difference is just of 0.5%, whereas for the 

fluorinate alkane this reaches the 2.1%. %XC increases as well with the electronegativity of X 

substituents. Stabilization of      follows the trend Cl> F> H, both for IQA and EDA, even if the 

latter shows no difference between Cl and F. On the other hand,           has two different trends 

for the two decomposition methods: Cl> F> H for EDA and Cl> H> F for IQA. Differences in the 

Classic energy contribution do not affect much the final character of the C-C bonds, which remains 

comparable. 
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Indeed, it arises that the interactions in X3C-CX3 (X=H, F, Cl), which are universally 

considered as covalent bonds, have the Classic term as main contribution. This aspect was already 

observed by Frenking et al.
17

, indeed even non-polar bond can have strong electrostatic character. 

Canonical terms from EDA, on the other hand, suggest that the main character of the X3C-CX3 

and H3E-EH3 interactions is covalency, coming from the dominant orbitalic term. Analyzing the 

energy contributions to the orbitalic energy      , the only stabilizing term is the kinetic energy, 

and all the other terms (XC, Coulomb, etc.) are actually slightly destabilizing. The covalent 

character is referred to the sharing of electron in the region between the two atoms, this expansion 

of the electron could in the inter-atomic region produces a relevant stabilization of the kinetic 

energy. In conclusion, both EDA and IQA agree that the typical C-C covalent bond has actually a 

dominant Classic nature, in terms of    computed using the reference-states formalism 

Finally, we analyze the results for the group 14 E-E bond(E=C, Si, Ge). Si-Si interaction 

energy is much weaker than the one of ethane, but comparable to Cl3C-CCl3. Indeed, both XC and 

Classic terms are smaller, but their ratio is still the very same found for the other covalent bonds, 

revealing the Classic term as the main one. EDA and IQA, are in excellent agreement. However, 

some differences appear for E=Ge. According to IQA, the character of the interaction energy do not 

change compared to C and Si, however, the energy terms from EDA suggest a slight increment of 

the XC character. Nevertheless, the difference in %Classic and %XC between the two methods is 

just 5%. Differences in the kinetic energies are still present between EDA and IQA, showing higher 

values (in module) of all the energy terms computed in ADF. Canonical EDA terms reveal an 

inversion of the bond character from C to Ge, from dominant orbitalic term to dominant 

electrostatic term.    terms from our protocol do not reveal any inversion or displacement of the 

bond’s character, indeed, %Classic remains almost constantly the 60% of the total energy. 
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2.5 Conclusions 

The protocol here reported proved to work well, meaning that it returns a substantially 

compatible interpretation of interactions from two very different partitioning schemes, especially 

when dealing with donor-acceptor adducts. In fact, for the first time, we have shown that energy 

terms calculated from real and Hilbert space partitions coincide. EDA and IQA are energy 

decomposition methods with solid and deep roots in quantum mechanics and are physically 

consistent but differ in the way fragments and individual energy contributions are defined. Indeed, 

energy is uniquely defined as the expectation value of the Hamiltonian but its partition depends on 

the way in which borders are calculated and on the reference framework. By introducing a reference 

state in the IQA formalism, a direct comparison with EDA was enabled, which allowed to prove 

that both interaction energies and their contribution terms are consistent and reproducible.  
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Chapter 3 

 

Chemical Bonding in Semi-Interstitial Metal Carbonyl 

Clusters 

 

In this chapter, the effect of interstitial pnictogen elements on molecular structures and 

chemical bonding of metal carbonyl clusters will be analyzed. The ability of group V atoms to 

expand metal cages and generate high nuclearity clusters is well known. However, the nature of 

chemical bond between interstitial atom and the metallic cage, as well as its effect on the molecular 

properties, is not completely understood yet. Particularly, the class of metal carbonyl clusters 

presenting semi-interstitial atoms have been poorly investigated so far, especially from the 

theoretical point of view. In this context, the systems [Co6X(CO)16]
-
 with X=P,As have been 

analyzed. Moreover, two different conformers differing for the length of just one Co-Co distance, 

have been isolated for the cluster with As, but not for P. The factors which may trigger this 

unprecedented case of conformational polymorphism and the nature of X-Co and Co-Co 

interactions have been studied through DFT computations and analyzed with decomposition 

methods (AIM, EDA, IQA) in combination with high resolution x-ray diffraction, refined with the 

Hansen&Coppens multipolar model. 
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Sect o  1 

 

Periodic Trends in [Co6X(CO)16]
-
 Clusters: Structural, 

Synthetic and Energy Changes Produced by Substitution of P 

with As 

 

3.1.1 Introduction 

Thanks to their tendency to catenation, the heavier elements of group V (As, Sb, Bi) are 

particularly useful to construct molecular architectures, in combination with transition metals. The 

concern about this chemistry reached its highest point in the ’8 -’9  years, and scientists focused 

essentially on structural aspects. Owing to this wide interest and this structural complexity, the field 

was synthetically illustrated by Greenwood
1
 and was thoroughly reviewed by Whitmire.

2
 

Depending on the number of substituents (and the number of orbitals available for bonding), 

the main group element may act simply as an exo-skeleton ligand, be a well-defined vertex of the 

cluster skeleton, or occupy an interstitial position. Accordingly, AsR3 are typical ligands in 

organometallic chemistry,
3
 AsR fragments mimic M(CO)n moieties as vertices of the cage,

4,5
 and 

As atoms may be fully surrounded by metals in clusters like [Rh10As(CO)22]
3-

.
6
 Transition and main 

group elements may play interchangeable roles, as shown by the complete series As4-n{Co(CO)3}n 

(n = 0,
1
 1,

7
 2,

8
 3 ,

9
 4

10,11
), which nicely illustrate the isolobal principle.

12
 Moreover, the construction 

of molecular architectures with different structural elements can be relevant for catalysis, since the 

formation of strong E-M bonds can confer extra stability to the molecules.
2
 Accordingly, the quoted 

[Rh10As(CO)22]
3-

 was self-assembled in conditions suitable for the homogeneous catalytic 

conversion of CO-H2 mixtures into oxygenated compounds, and proved to be stable at partial 

pressures of CO as high as 260 atm.
6
 More recently, this class of compounds has been used as 

single source for the preparation of binary and ternary phases which,
13

 on turn, can find application 

for magnetic nanoparticles,
14

 for the deposition of thin films
15

 or for electrocatalysis.
16,17

 In the 

latter field, the presence of the main group element helps in forming amorphous layers which are 
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more catalytically active than bulk metal. In particular cobalt phosphides emerged as materials 

extremely active for both the hydrogen and oxygen evolution reactions (HER and OER).
18,19,20,21

 

For all these reasons, we devoted our attention to the synthesis of new Co-As clusters, trying to 

incorporate As atoms into small simple molecular compounds, to be exploited as precursors of 

larger clusters, possibly with interstitial As atoms. The first result in this field is the isolation of the 

anion [Co6As(CO)16]
-
, whose formula exactly matches that of the corresponding [Co6P(CO)16]

-
 

phosphide,
22

 but differs from it for several structural and chemical aspects. 

 

3.1.2 Experimental section and computational details 

All the solvents were purified and dried by conventional methods and stored under nitrogen. 

All the reactions were carried out under oxygen-free nitrogen atmosphere using the Schlenk-tube 

technique.
23

 Infrared spectra in solution were recorded on a Nicolet iS10 spectrophotometer, using 

calcium fluoride cells previously purged with N2. A batch of Na[Co(CO)4] was prepared by 

dissolving 20 g of Co2(CO)8 in anhydrous THF (50 mL), and allowing it to react with small pieces 

of Na, until the IR bands of the reactant disappeared (2-3 days). The pale solution was filtered, and 

the THF was dried in vacuum, under moderate heating, to remove all traces of solvent. ν(CO) in 

THF : 2010vw, 1887vs, 1857 m cm
-1

 

 

3.1.2.1 Synthesis of Na[Co6As(CO)16] 

Na[Co(CO)4] (960 mg, 4.4 mmol) and As2O5∙xH2O (480mg; 1.75 mmol) were suspended in 

THF (25 mL) and stirred at room temperature. A brown solution was formed, and some CO 

evolution was observed. After 1 day of stirring, the solution was filtered and the solvent was 

partially removed in vacuum. 30 mL of heptane were added dropwise and the solution furtherly 

concentrated, until most of the product precipitated. The suspended solid was collected by filtration, 

washed with    mL of heptane, and dried. ν(CO) in MeOH :   75vw,    7vs,    4s,  975w,  8 9 

m cm
-1

 (Figure 3.1.1). 
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3.1.2.2 Synthesis of (PPh4)[Co6As(CO)16] 

3.1.2.2.1 

The crystals used for X-ray diffraction were obtained dissolving Na[Co6As(CO)16], obtained as 

above, in the minimum amount of Methanol, and layering with a solution of PPh4Cl in 2-propanol 

(ca. 0.5 mg/mL). After diffusion was completed, the mother liquors were eliminated by syringe. 

The solid residue was washed with 2-propanol and dried.  

 

3.1.2.2.2 

To obtain larger amounts of compound, Na[Co6As(CO)16] was dissolved in Methanol and 

treated with a concentrated solution of PPh4Cl in 2-propanol. After complete precipitation occurred, 

the solid was collected by filtration, washed with 2-propanol and dried. Typical yields 45-50% 

(calculated on Co). Calc for C40H20AsCo6O16P C 39.51 ; H 1.66 %; found C 39.7 ; H 1.4 %. ν(CO) 

in THF : 2074vw, 2027vs, 2012s, 1975w, 1954w, 1809 m cm
-1

 (Figure 3.1.1) 
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Figure 3.1.1. The IR spectra of Na[Co6As(CO)16] in MeOH (left) and PPh4[Co6As(CO)16] in THF 

(right) 

 

3.1.2.3 Single crystal X-ray diffraction 

Crystal data are summarized in Table 3.1.1. An oblique prismatic crystal of compound (α-

1[PPh4], see below) of dimensions 0.33  0.18  0.17 mm and an irregular-shaped crystal of 

compound (β-1[PPh4], see below) of dimensions 0.13  0.12  0.12 mm, both mounted on glass 

fibers in the air, were transferred to an Enraf-Nonius CAD4 automated diffractometer. Graphite-

monochromated Mo-Kα, radiation was used. In both cases the setting angles of  5 random 

reflections ( 6 <  θ <   °) were used to determine by least-squares fit accurate cell constants and 

orientation matrices. The two data collections were performed by the ω-scan method, within the 

limits 3 <  θ <  5°, using a variable scan speed (from 3 to   ° min
-1

) and a variable scan range of 

(α+ .35tanθ)" [α   . °( α-1[PPh4]) and  . °( β-1[PPh4])], with a 25% extension at each end for 
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background determination. Reflections corresponding to the ±h, +k, +l and +h, +k, +l indices were 

collected for compounds (α-1[PPh4]) and (β-1[PPh4]), respectively. The total numbers of reflections 

measured were 7788 (α-1[PPh4]) and 7946 (β-1[PPh4]). Three standard reflections were measured 

every 3 h and no significant crystal decay was observed in both data collections. The intensities 

were corrected for Lorentz and polarization effects. An empirical absorption correction was applied 

in both cases based on ψ scans 
24

 (ψ  -360° every 10°) of suitable reflections with χ values close to 

90°; the maximum, minimum, and average relative transmission values were 1.00, 0.55, and 0.84 

for complex (α- 1[PPh4]) and 1.0 ,  .7 , and  .85 for (β-1[PPh4]), respectively. Two sets of 3897 

(α-1[PPh4]) and 2168 (β-1[PPh4]) independent significant reflections, with I >3 σ(I), were used in 

the structure solutions and refinements. Both structures were solved by direct methods (SHELXS). 

The refinements were carried out by full-matrix least-squares methods using SHELXL-2014/7.
25

 

Anisotropic thermal parameters were assigned only to phosphorous and the anionic atoms. Phenyls 

have been treated as rigid bodies with hydrogen atoms riding on their carbon atoms on idealized 

positions. Final Fourier difference maps showed residual peaks not exceeding ca. 0.8 e/ A
-3

. The 

final values of the conventional agreement indices R1 and wR2 [I > 2σ(I)] were 0.0414 and 0.0828 

for compound α-1[PPh4] and  . 483 and  . 9 3 for compound β-1[PPh4], respectively. The final 

positional parameters are listed in Tables 3.1.4 and 3.1.5 for α-1[PPh4] and β-1[PPh4], respectively. 
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Table 3.1.1. Crystal data and experimental details for α-1[PPh4] and β-1[PPh4] 

Identification code    α-1[PPh4]     β-1[PPh4]  

Empirical formula    C40 H20 As Co6 O16 P    C40 H20 As Co6 O16 P 

Formula weight    1216.03     1216.03  

Temperature     298(2) K     298(2) K  

Wavelength               0.71073    0.71073  

Crystal system                Monoclinic     Orthorhombic 

Space group      P 21/c     P b c a  

a/Å      10.082(3)    21.191(5)  

b/Å     21.266(5)    20.370(5) 

c/Å     20.791(5)     21.284(5) 

/°     90.0     90.0 

β/°     91.05(2)    90.0 

γ/°     90.0     90.0 

V/Å
3 

    4457(3)     9187(4)  

Z, Calculated density /Mg m
-3

  4, 1.812    8, 1.758 

Absorption coefficient /mm
-1

  3.023     2.933 

F(000)                 2392      4784  

Crystal size /mm    0.33  0.18  0.17    0.13  0.12  0.12  

θ-range/°    2.998 to 24.974    3.189 to 24.898  

Limiting indices   -  ≤ h ≤  ,  ≤ k ≤ 5,  ≤ l ≤ 4    ≤ h ≤ 5,  ≤ k ≤ 4,  ≤ l ≤ 5 

Reflections collected/unique  7788 / 7788    7946 / 7946  

Completeness to θ-max  99.8 %     99.4 %  

Absorption correction           Psi-scan 

Max. and min. transmission   1.0 and 0.78     1.00 and 0.91  

Refinement method     Full-matrix least-squares on F
2
  

Data / restraints / parameters   7788 / 0 / 409     7946 / 0 / 409  

Goodness-of-fit (F
2
)    0.995      0.902  

R1, wR2 [I > 2σ(I)]   0.0414, 0.0828    0.0483, 0.0923  

R1, wR2 (all data)   0.1476, 0.1010    0.2961, 0.1329  

Largest diff. peak and hole/e Å
-3

  0.705, -0.504     0.804, -1.024 
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3.1.2.4. Computational details 

All the calculations were performed with GAUSSIAN 09 package.
26

 Initial structures were 

taken from single crystal X-ray diffraction results. Full geometry optimizations of the isomers were 

carried out considering C2 point group, followed by frequency calculation to confirm the nature of 

the minima and to obtain thermochemical data. The functional M06
27

 was chosen with 6-

311+G(d,p) basis for all the atoms. The same level of theory (M06/6-311+G(d,p)) was used for both 

geometry optimizations and frequencies calculations. Solvent effect was accounted for subsequent 

geometry optimizations using the Polarizable Continuum Model (PCM)
28

. A standard cavity was 

used, and the dielectric constant of tetrahydrofuran (THF) was 7.4257, and the initial structures 

were taken from the optimizations in gas phase. Simulated IR spectra are given in the Supporting 

information of this chapter (Figure 3.2.9). 

 

3.1.3 Results and discussions 

3.1.3.1 Synthesis of [Co6As(CO)16]
-
 

As(I) and As(III) compounds such as (AsPh)6 
4,5

 or (AsMe)5,
7
 AsCl3,

8
 AsH3 

9
 or AsPh3

6
 are 

typically used as sources of As. Conversely, we used PCl5 as a source of P atoms in molecular 

cobalt clusters.
29

 Since arsenic pentahalide are unstable and not commercially available, we tested 

the condensation of arsenic acid, (the hydrated As2O5∙2H2O) with the sodium salt of [Co(CO)4]
-
. 

The reaction in THF at room temperature is smooth, as clearly evidenced by the darkening of 

the reaction mixture and the CO evolution. After about 1 day of stirring, the infrared spectrum of 

the reaction mixture shows the presence of new carbonyl compounds, together with some unreacted 

[Co(CO)4]
-
. When the As/Co is lower than 1, the most intense bands are located at 2025, 2011 and 

1808 cm
-1

, assignable to the anion [Co6As(CO)16]
-
; minor bands at higher wavenumbers denote the 

presence of neutral clusters, possibly the trimer As3Co9(CO)24.
9
 Conversely, if the As/Co is 

increased to about 2, different uncharacterized species are formed, presumably richer in As and 

similar to the known [Co4Sb2(CO)11]
2-

 
30

 and [Co4Bi2(CO)11]
2-

 anions.
31

 Neutral and anionic species 

can be easily separated, by extracting the former with hydrocarbon solvents. After repeated washing 

with hexane, the salt Na[Co6As(CO)16] is left behind. It is dissolved in methanol, and layered with a 

dilute solution of PPh4Cl in 2-propanol. Diffusion of the two solutions allowed crystal growth. 
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Alternatively, the compound can be isolated by precipitation with ammonium or phosphonium 

salt, and used for further studies. Among these, we are currently investigating the pyrolysis of 

[Co6As(CO)16]
-
, in different solvents and at different temperatures. 

 

3.1.3.2 Solid state structure 

The samples obtained from methanol (method 3.1.2.2.1 in the experimental) contained crystals 

featuring two different morphologies (larger oblique prisms or smaller irregular chunks) both 

affording reasonable X-ray diffraction patterns (though, of different quality). Conventional single 

crystal X-ray diffraction analysis afforded a full structural characterization of both species. They 

resulted to be two conformational polymorphs of the [Co6As(CO)16][PPh4] salt (α-1[PPh4] and β-

1[PPh4]). In fact, the two structures differ not only in the packing of the cationic and anionic 

moieties in the crystal (they feature, in fact, different space group types and lattice parameters) but 

also in the stereochemistry of the anionic cluster units (1a in α-1[PPh4] and 1b in β-1[PPh4], 

respectively). Actually, 1a and 1b are constitutional isomers rather than conformers, given the 

presence or the absence of a weak Co-Co bond (vide infra). Thus, strictly speaking, the term 

‘conformational polymorphs’ could be questionable here. However, we find this terminology 

substantially correct because 1a and 1b easily interconvert in solution (vide infra) and, more 

generally, metal carbonyl clusters often display ligands (and even metal-cage) fluxionalities in 

solution.
32

 α-1[PPh4], which crystallizes in the monoclinic space group P21/c, has a significantly 

higher density (1.812 vs.  .758 g/cm3) and a better crystallinity than β-1[PPh4], which crystallizes 

in the orthorhombic Pbca space group. As a matter of facts, eight small ‘cavities’ (each of ca.    

Å
3
) can be computed in β-1[PPh4]. However, they are too small to host solvent molecules and, 

within the limits due to poor sample diffraction, do not contain any residual electron density. Thus, 

the packing in β-1[PPh4] appears to be truly less efficient than that in α-1[PPh4] and must be 

correlated to the slightly different molecular geometries of 1a and 1b. α-1[PPh4] is isomorphous to 

the known [Co6P(CO)16][PPh4] salt
22

; accordingly, the stereochemistry of 1a resembles that of 

[Co6P(CO)16]
-
 (hereinafter, 2) but for the differences inherent to the larger semi-interstitial atom (As 

vs. P). Thus, one may describe the anionic cluster cage as a folded chain of four edge-sharing 

triangles surrounding a “semi-interstitial” arsenic atom (see the folding angles Table 3.1.2). The 

anions are close to the idealized C2 symmetry, with the twofold axis passing through the heteroatom 

and the middle of the Co1-Co2 edge. However, the metal cage has an approximate C2v symmetry. 
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Accordingly, the Co-E bonds belong to two classes: the bonds to Co5 and Co6 atoms are 

significantly shorter than the other four. The Co-Co interactions can be divided into three classes: 

the four edges involving the external Co5 and Co6 atoms, the four shorter edges involving the 

central quadrilateral and the very long Col-Co2 edge, (see Table 3.1.2). All Co-Co bond distances 

are comparable to those found in many cobalt carbonyl clusters but the very long Col-Co2 

interactions. Of the sixteen CO groups, fourteen are terminal and two symmetric edge-bridging. The 

cobalt atoms Co5 and Co6 bear three terminal carbonyls, whereas each of the other metal atoms is 

connected to one edge-bridging and to two terminal carbonyls. The main difference between 1b and 

1a concerns atoms Co1 and Co2 (see Figure 3.1.2 for a comparison between the two geometries). In 

fact, in 1b the weak Co1-Co2 bond has an even longer distance, exceeding the limit to classify it as 

a bond. This elongation implies a rotation of ca. 20° about the pseudo three-fold axis of the 

Co(CO)3 moieties of Co1 and Co2. Quite evident is especially the different orientation of the C15 

and C16 carbonyls, bridging Co1-Co3 and Co2-Co4 bonds respectively (see Figure 3.1.2). This 

rearrangement preserves the overall C2 symmetry of the anion but lowers (from C2v to C2) that of 

the cage.  

 

 
 

Figure 3.1.2. The overlay between structures 1a (red) and 1b (blue) as obtained from the 

corresponding α-1 and β-1 salts. Note in particular the longer Co1-Co2 contact in 1b and the 

rotation of Co(CO)3 moieties for Co1 and Co2. The root mean square deviation between the two 

geometries is 0.6 Å. 
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Figure 3.1.3. The isomer 2a, 2b and the transition state TS2, from M06/6-311+G(d,p) calculations. 
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Table 3.1.2. Selected bond distance and angles of isomers 1a, 1b, 2a, 2b and of the transition states TS1 and TS2 for [Co6X(CO)16]
-
 (X = As, P) 

from X-ray diffraction or from theoretical calculations (M06/6-311+G(d,p)). The theoretical calculations are in C2 symmetry.  

 X = P X = As 

 Expt. Theor. Expt. Theor. Expt. 

 2a
22

 2a
 

TS2
 

2b
 

1a 1a
 

TS1
 

1b 1b
 

Selected Co-Co averaged distances 

Co1-Co2 2.935 2.801 3.150 3.487 2.944 2.800 3.045 3.489 3.457 

Co5-Co(1,3), Co6-Co(2,4) 
2.664 

2.646 

2.673 

2.680 

2.628 

2.644 

2.602 

2.623 

2.720 

2.703 

2.724 

2.728 

2.678 

2.687 

2.634 

2.658 

2.660 

2,672 

Co1-Co(3,4), Co2-Co(3,4) 
2.574 

2.575 

2.670 

2.570 

2.660 

2.555 

2.631 

2.538 

2.607 

2.595 

2.695 

2.564 

2.682 

2.564 

2.671 

2.544 

2.636 

2.579 

Co5-Co6 4.105 4.153 4.107 4.092 4.385 4.441 4.436 4.408 4.364 

Selected E-Co (E = P, As) averaged distances 

X-Co(1,2,3,4) 2.263 2.255 2.274 2.287 2.371 2.378 2.392 2.400 2.390 

X-Co(5,6) 2.170 2.193 2.181 2.181 2.265 2.283 2.281 2.279 2.266 

Dihedral angles (°) between edge sharing triangles 

Co(1,2,3)/Co(1,2,4) 143.4 135.4 145.3 159.9 145,0 137.5 144.2 159.3 159.7 

Co(1,2,3)/Co(1,3,5) 122.9 123.8 120.1 115.4 125.1 126.0 124.3 118.9 119.1 

Co(1,2,4)/Co(2,4,6) 122.0 123.8 120.1 115.4 124.3 126.0 124.3 118.9 118.4 

Dihedral angles (°) between E, Co1,Co3 plane and carbonyls 

E,Co(1,3),C(1) 105.7 112.3 112.4 88.9 105.0 111.1 109.6 87.7 85.2 

E,Co(1,3),C(2) -156.9 -148.7 -151.7 -176.1 -159.2 -152.2 -155.0 -176.5 -179.5 

E,Co(1,3),C(15) -64.8 -36.7 -63.1 -84.4 -69.8 -46.6 -64.4 -86.0 -86.7 
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3.1.3.3 Computational results 

We have simulated the structures of anions 1a and 1b, as well as of the already known 2a and 

of the not yet isolated 2b. Moreover, we searched for energy pathways interconnecting the isomers 

and found the transition states TS1 and TS2 (Figure 3.1.3). All geometry optimizations and 

frequency calculations were performed using density functional theory (DFT) (see experimental 

section for more details). The calculated geometries of 1a, 1b and 2a are in good qualitative and 

quantitative agreement with the experimental results (Table 3.1.2). Co1-Co2 distance is not very 

sensitive to the change of semi-interstitial atom, in fact 1a/2a and 1b/2b show similar lengths. 

Compared with X-ray data, the gas phase DFT calculations underestimate the Co1-Co2 

distance in anions a, which further confirms the flexibility of this bond, very likely sensitive to the 

data collection conditions (such as P or T) when determined in the solid state. We tested also the 

possible role of the dielectric medium surrounding the anion and therefore optimized the geometries 

in various polarizable continuum model (PCM)
28

, simulating solvents with different dielectric 

constant. However, this variable did not affect much the computed molecular geometries. The 

computed transition states show that the Co1-Co2 distance is in fact intermediate between 2a and 

2b for the phosphide, whereas it results closer to 1a for the arsenide. The bond distances and angles 

confirm that TS1 is an early transition state (see Scheme 3.1.1). In Table 3.1.3, we report energy 

differences between isomers a and b. ΔE is the electronic energy difference which is independent 

from the medium (in vacuo or PCM returns the same value). From frequency calculations, we 

derived the corresponding enthalpies and Gibbs free energy differences (ΔH, ΔG), using thermal 

corrections at   atm and  98 K. ΔGPCM represents the difference between free energy of solvation in 

THF obtained through PCM. 

 

Table 3.1.3. The energy differences between isomers a and b for both 1 and 2. Results are in 

kcal/mol  

X ΔE
 

ΔH
 

ΔG
 

ΔGPCM 

As 4.9 4.8 2.4 5.1 

P 2.8 2.6 0.1 2.9 
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For both As and P derivatives, the isomers b are the most stable, however the thermodynamic 

driving force is certainly more pronounced for the As-derivative, whereas the Gibbs free energy 

difference (in pure gas phase) is negligible for the P-derivative. We also analyzed the potential 

energy surface of these clusters. We carried out linear transit calculations in vacuo, by constraining 

various values of the Co1-Co2 distance, and computed the local transition states using the 

Synchronous Transit-Guided Quasi-Newton method.
33

 Only TS2 features a single imaginary 

frequency, corresponding to the stretching of Co1-Co2, whereas TS1 shows an additional negative, 

albeit small, eigenvalue (-10.4 cm
-1

), which corresponds to a real frequency in TS2. The 

discrepancy between anions 1 and 2 is probably due to the size of the integration grid, as for 

example observed by Ding and co-workers.
34

 The overall reaction paths can be summarized as in 

scheme 3.1.1. 

 

 
Scheme 3.1.1. Calculated energy [kcal/mol] Pathway for isomerization. 

 

Here we note that the early transition state of 1 implies a much smaller barrier ΔE(TS1, 1a) 

compared with ΔE(TS1, 1a).  From these data, we conclude that: 1) in both cases, the isomer with the 

longest Co1-Co2 bond is the most stable, but the reaction equilibrium in the As derivative is 

certainly more shifted towards the “open” isomer 1b (of course, this preference is fully consistent 

with the larger atomic radius of As); 2) the kinetic barrier for this interconversion is higher for the P 

derivative, but anyway not very high and one should expect both species to be present in solution. 

These conclusions should be merged with what previously observed on the crystal structure of 

the two isomers: isomers a, although less stable in isolation, are better stabilized by packing forces 
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that counterbalance the unfavorable form of the cluster in polymorphs α. This may explain the 

reason why isomers a are always observed for both As and P, although being only the kinetic 

products. The calculated ΔE and ΔG may, in part, explain the reason why isomer b has not been 

isolated (yet) for the P derivative. In fact, the thermodynamic driving force toward 2b is weaker 

than for 1b and a higher kinetic barrier is present. Nevertheless, it is sensible to anticipate that an 

isomer of type 2b should exist and could be in principle isolated. 

 

3.1.4 Conclusions 

The reaction between Na[Co(CO)4] and arsenic acid yields [Co6As(CO)16]
-
, which is the first 

known anionic Co-As derivative, and other uncharacterized species. [Co6As(CO)16]
-
 and 

[Co6P(CO)16]
-
 share a quite similar geometry, however we observed for the As derivative an 

additional isomer (featuring one absent Co-Co bond), not yet known for the P-substituted species. 

Theoretical calculations predict for both species that the larger cage is the more stable isomer, 

although the experimentally observed packing for this species is much less efficient, which may 

explain its more elusive behavior.  
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Table 3.1.4.  Atomic coordinates ( x10
4
) and equivalent isotropic displacement parameters (A

2
x10

3
) 

for α-1[PPh4]. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 

Atom       x       y      z  U(eq) 

Co(1)   9810(1) 2567(1) 9671(1) 46(1) 

Co(2)   10899(1) 3140(1) 10857(1) 50(1) 

Co(3)   9387(1) 3727(1) 10020(1) 50(1) 

Co(4)   10162(1) 1980(1) 10760(1) 45(1) 

Co(5)   7269(1) 2985(1) 9770(1) 47(1) 

Co(6)   9064(1) 2698(1) 11684(1) 54(1) 

C(1)   9075(7) 2142(3) 9031(3) 64(2) 

 O(1)   8655(6) 1841(3) 8615(3) 103(2) 

C(2)   11006(8) 2998(3) 9257(3) 73(2) 

 O(2)   11865(6) 3214(3) 8975(3) 105(2) 

C(3)   12497(8) 2832(3) 10717(4) 70(2) 

O(3)   13549(5) 2661(3) 10624(3) 99(2) 

C(4)   11168(7) 3532(4) 11584(4) 74(2) 

 O(4)   11470(5) 3819(3) 12021(3) 115(2) 

C(5)   9493(8) 4169(3) 9288(4) 75(2) 

 O(5)   9561(7) 4467(3) 8836(3) 126(3) 

C(6)   8578(7) 4288(3) 10515(4) 71(2) 

 O(6)   8071(6) 4630(3) 10847(3) 113(2) 

C(7)   11493(7) 1659(3) 11235(3) 62(2) 

O(7)   12305(5) 1435(3) 11545(3) 91(2) 

C(8)   9039(7) 1332(3) 10682(3) 62(2) 

 O(8)   8335(6) 924(3)  10612(3) 100(2) 

C(9)   7322(7) 3262(3) 8951(4) 60(2) 

O(9)   7315(6) 3418(3) 8430(2) 92(2) 

C(10)   6403(7) 2250(3) 9746(3) 60(2) 

 O(10)   5848(6) 1790(3) 9741(3) 108(2) 

C(11)   6103(7) 3498(3) 10140(3) 61(2) 

O(11)   5382(5) 3822(3) 10385(3) 92(2) 

C(12)   10254(8) 2414(4) 12264(3) 83(2) 

 O(12)   10970(6) 2238(4) 12653(3) 137(3) 

C(13)   7793(8) 2117(4) 11783(3) 65(2) 

O(13)   6974(6) 1755(3) 11839(3) 94(2) 

C(14)   8363(6) 3399(4) 12035(3) 64(2) 

O(14)   7929(6) 3831(3) 12263(3) 95(2) 

C(15)   10921(7) 1881(3) 9930(3) 58(2) 

O(15)   11711(5) 1559(3) 9692(2) 90(2) 

C(16)   11115(7) 3898(3) 10368(3) 59(2) 

O(16)   11921(5) 4287(2) 10318(3) 92(2) 

As   8678(1) 2837(1) 10614(1) 38(1) 

P   5812(2) -383(1)            12095(1) 42(1) 

C(111)   5652(4) -1219(2) 12185(2) 47(2) 

C(112)   5862(4) -1605(2) 11657(2) 66(2) 

C(113)   5775(5) -2254(2) 11721(2) 84(2) 

C(114)   5477(5) -2518(2) 12312(2) 88(2) 

C(115)   5266(4) -2132(2) 12841(2) 83(2) 
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C(116)   5353(4) -1483(2) 12777(2) 63(2) 

C(121)   7509(3) -170(2)            11986(2) 41(1) 

C(122)   8059(4) 342(2)  12310(2) 56(2) 

C(123)   9390(4) 491(2)  12234(2) 73(2) 

C(124)   10171(3) 127(2)  11834(2) 75(2) 

C(125)   9621(4) -384(2)  11510(2) 88(2) 

C(126)   8290(4) -533(2)  11586(2) 67(2) 

C(131)   4832(3) -149(2)  11410(2) 46(2) 

C(132)   5152(3) 396(2)  11079(2) 62(2) 

C(133)   4345(4) 601(2)  10571(2) 78(2) 

C(134)   3219(4) 261(2)  10396(2) 69(2) 

C(135)   2899(3) -285(2)  10728(2) 63(2) 

C(136)   3706(4) -489(2)            11235(2) 55(2) 

C(141)   5227(4) 13(2)  12792(2) 45(2) 

C(142)   5874(3) -55(2)  13383(2) 53(2) 

C(143)   5388(4) 247(2)  13923(2) 64(2) 

C(144)   4255(4) 617(2)  13871(2) 74(2) 

C(145)   3607(3) 685(2)  13280(2) 78(2) 

C(146)   4093(4) 383(2)  12740(2) 63(2) 

  

Table 3.1.5.  Atomic coordinates (x10
4
) and equivalent isotropic displacement parameters (A

2 
x10

3
) 

for β-1[PPh4]. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 

Atom      x       y      z  U(eq) 

Co(1)   -915(1)             617(1)  2579(1) 45(1) 

Co(2)   16(1)  -776(1)  2543(1) 48(1) 

Co(3)   -262(1)             105(1)  1679(1) 45(1) 

Co(4)   -370(1)  -75(1)  3474(1) 45(1) 

Co(5)   9(1)  1318(1) 2079(1) 51(1) 

Co(6)   869(1)  -179(1) 3270(1) 56(1) 

As   209(1)  392(1)  2639(1) 42(1) 

C(1)   -1542(5) 535(5)  2044(5) 66(3) 

 O(1)   -1990(4) 511(5)  1745(4) 116(3) 

C(2)   -1187(4) 1318(5) 3007(5) 55(3) 

O(2)   -1383(4) 1756(4) 3275(4) 84(3) 

C(3)   -371(5) -1398(5) 2965(5) 58(3) 

 O(3)   -629(4) -1847(4) 3185(4) 100(3) 

C(4)   603(5)  -1274(5) 2157(5) 56(3) 

 O(4)   983(4)  -1588(4) 1927(4) 111(3) 

C(5)   441(5)  -70(5)  1250(5) 61(3) 

O(5)   900(4)  -170(4) 979(4)  91(3) 

C(6)   -764(5) 253(5)  1020(5) 58(3) 

O(6)   -1045(4) 338(4)  582(3)  85(3) 

C(7)   -528(5) -682(6) 4072(5) 64(3) 

 O(7)   -641(4) -1028(4) 4464(4) 103(3) 

C(8)   -349(5) 614(6)  3999(5) 72(3) 

 O(8)   -339(5) 1043(4) 4334(4) 116(3) 

C(9)   81(5)  1920(5) 2685(5) 56(3) 

O(9)   117(4)  2305(4) 3079(4) 87(3) 
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C(10)   -601(5) 1623(5) 1572(5) 62(3) 

O(10)   -976(4) 1830(4) 1241(4) 97(3) 

C(11)   714(5)  1405(5) 1650(5) 62(3) 

O(11)   1172(4) 1487(4) 1366(4) 96(3) 

C(12)   1534(5) -279(6) 2783(6) 90(4) 

 O(12)   1966(4) -357(6) 2466(5) 157(5) 

C(13)   841(5)  -912(6) 3733(6) 78(4) 

 O(13)   864(4)  -1375(4) 4037(5) 118(3) 

C(14)   1109(5) 452(6)  3807(6) 76(4) 

 O(14)   1271(4) 862(4)  4126(4) 112(3) 

C(15)   -1209(4) -38(5)  3154(4) 48(3) 

O(15)   -1698(3) -294(3) 3253(3) 69(2) 

C(16)   -572(5) -772(5) 1868(5) 55(3) 

O(16)   -965(3) -1121(3) 1657(3) 76(2) 

P   1942(1) 2865(1) 4616(1) 45(1) 

C(111)   2202(3) 2212(3) 5108(3) 50(3) 

C(112)   2703(3) 1815(3) 4925(2) 63(3) 

C(113)   2942(2) 1347(3) 5337(3) 72(3) 

C(114)   2680(3) 1276(3) 5932(3) 62(3) 

C(115)   2179(3) 1673(3) 6115(2) 68(3) 

C(116)   1940(2) 2141(3) 5703(3) 60(3) 

C(121)   2351(3) 3605(3) 4808(3) 46(3) 

C(122)   2323(3) 4134(3) 4396(2) 61(3) 

C(123)   2603(3) 4728(3) 4557(3) 73(3) 

C(124)   2911(3) 4793(3) 5130(3) 86(4) 

C(125)   2939(3) 4264(4) 5542(3) 95(4) 

C(126)   2659(3) 3671(3) 5381(3) 77(4) 

C(131)   2100(3) 2677(3) 3817(3) 46(3) 

C(132)   2695(3) 2801(3) 3570(3) 82(4) 

C(133)   2832(3) 2627(4) 2954(4) 98(4) 

 C(134)  2374(4) 2328(4) 2584(3) 105(4) 

 C(135)  1778(4) 2204(4) 2831(4) 133(6) 

C(136)   1641(3) 2378(4) 3448(4) 98(4) 

C(141)   1114(2) 2984(3) 4750(3) 48(3) 

C(142)   874(3)  3615(3) 4814(3) 50(3) 

C(143)   228(3)  3711(3) 4881(3) 70(3) 

C(144)   -178(2) 3174(3) 4884(3) 72(3) 

C(145)   63(3)  2543(3) 4820(3) 84(4) 

C(146)   709(3)  2448(2) 4753(3) 67(3) 
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Section 2 

 

Electron Density Analysis of Metal Clusters with Semi-

Interstitial Main Group Atoms. Chemical Bonding in 

[Co6X(CO)16]
-
 Species 

 

3.2.1 Introduction 

Since the discovery of the first high nuclearity (n ≥ 6) metal carbonyl cluster, [Co6(CO)15]
2-

 in 

1967 by Chini,
35

 many investigations on these intriguing species have been carried out in order to 

understand and rationalize the chemical bonding, to predict molecular structures and to investigate 

their potential catalytic activity. Even before the characterization of [Co6(CO)15]
2-

, the nuclearity of 

a cluster could be increased using p-block atoms, following the discovery of [Fe5C(CO)15].
36

 

Afterwards, Vidal synthesized and characterized the first high nuclearity clusters featuring 

interstitial elements of group V, namely [Rh9P(CO)21]
2-

,
37

 [Rh10P(CO)22]
3-

,
38

 and [Rh10As(CO)22]
3-

.
6
 

Finally, using the relatively large atomic radius of pnictogens, combined with their ability to 

stabilize unusual geometry, Chini et al.
22

 isolated semi-interstitial anionic clusters, like 

[Co6(CO)16P]
-
. The organometallic chemistry community recently rehashed the interest on these 

compounds, when other high nuclearity clusters have been reported.
39,40,41

 Some carbonyl clusters 

with semi-interstitial, exposed group V atoms have shown high catalytic performance in the C-H 

activation of 3-picoline.
42

 Moreover, cobalt-phosphide materials are extremely efficient in both 

hydrogen and oxygen evolution reactions (HER, OER),
19,21

 whereas some metal-As carbonyls were 

found to be promising for magnetic properties.
14

  

Transition-metal clusters have always attracted the curiosity of theoretical chemists because of 

the elusive nature of the metal-metal bonds and the cooperative σ-donation/π-back-donation 

mechanism of the metal-ligand interactions. The research studies published in the last twenty years 

made use of different theoretical approaches in order to rationalize the nature of chemical bonding, 

including charge density analysis
43

 or energy decomposition analysis.
44

 From some of these studies, 

it emerged, for example, that the radial W-Au bonds, the aurophilic interactions and relativistic 



 

68 

 

effects stabilize the icosahedral WAu12 cluster,
45

 a molecule that was theoretically predicted by 

Pyykkӧ before its observation in the gas-phase. Hopffgarten and Frenking
46

 studied a number of 

icosahedral [M(EH)12] compounds, using theoretical tools for an accurate analysis of the nature of 

the M-E and E-E interactions and for quantifying the atomic contributions to the stability of the 

molecular structure.  

The nature of bonding between metals and interstitial or semi-interstitial main group atoms is 

still largely unexplored, especially from the point of view of charge density analysis. This prompted 

us to investigate theoretically and experimentally a class of semi-interstitial carbonyl clusters, 

namely [Co6X(CO)16]
-
 (X = As, P; hereinafter 1 and 2 respectively). As we recently reported,

41
 this 

cluster has two conformers,
i
 differing for the presence or absence of a short Co-Co distance (namely 

Co1-Co2). Hereinafter, the isomers are named a and b, respectively. For X = As, both isomers (1a 

and 1b) have been isolated and structurally characterized
41

 as salts of tetraphenylphosphonium. For 

X = P only isomer 2a, with short Co-Co distance, has been isolated, so far.
22

 The species 2b, i.e., 

[Co6P(CO)16]
-
 with long Co1-Co2 distance, has not been observed yet, at least in the form of a 

single crystal. In fact, from X-ray diffraction studies, -1[PPh4] and -2[PPh4], containing 1a and 

2a cluster units respectively, crystallize in the P 21/c space group and are isomorphous whereas -

1[PPh4], having 1b unit, is a polymorph which crystallizes in the Pbca space group. This intriguing 

stereochemical flexibility and the promising applications of this class of compounds (catalysis, 

HER/OER, magnetic nanomaterials, etc.), motivated us to carry out an in-depth investigation on the 

nature of X-Co and Co-Co interaction, using both charge density and energy partition approaches: 

Quantum Theory of Atoms in Molecules (QTAIM)
47

, Energy decomposition Analysis (EDA)
48

, 

Interacting Quantum Atoms (IQA)
49

 and Wiberg Bond Indices (WBI)
50

. For species 2a, a high 

resolution X-ray diffraction experiment was also possible, that enabled an experimental model
51

 of 

the charge density distribution, in order to complement and validate the theoretical analysis.  

 

 

 

 

                                                 

 

i
 Because in both cases a clear Co-Co bond cannot be identified (as discussed in the rest of this 

paper), we prefer using here the term “conformational isomers”, which are in fact due to different 

rotation of some Co(CO)3 groups, leading to a short or a long Co1-Co2 distance. 
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3.2.2 Experimental section and computational details 

3.2.2.1 Single crystal X-ray diffraction 

The single crystal 2a_1 (dimension 0.1, 0.1, 0.2 mm) was collected on a Bruker-APEX-II X-

ray diffractometer, using Mo K graphite-monochromatized radiation, with generator working at 50 

kV and 30 mA. Data were collected at T = 100 K using an Oxford cryosystem series 600; -scans 

of 0.3° were adopted and a total of 5354 frames with exposure times of 40, 80 and 120 seconds 

were collected. The data were integrated using SAINT (version V7.23A
52

), and corrected 

analytically for absorption and empirically (with SADABS
53

) for the other anisotropies of the 

diffraction. The single crystal 2a_2 was mounted on an Agilent SuperNova diffractometer, 

equipped with a MoK microsouce (50 kV and 0.8 mA), Al-filtered
54

. Data were collected at T = 

110 K using an Oxford cryosystem 700, with -scans of 1.0° were adopted and a total of 4282 

frames with exposure times of 20, 30 and 120 seconds were collected. The software CrysAlisPro 

Version 1.171.37.35g
55

, was used to perform data collection and reduction. Data were corrected for 

absorption (analytically) and diffraction anisotropies using ABSPACK
55

  routine of Crysalis. More 

information about the two experiments are reported in Table 3.2.1. 
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Table 3.2.1. Crystallographic Data and Structure Refinement Parameter for 2a_1 and 2a_2 

Identification code  -2a_1 -2a_2 

Empirical formula  C40 H20 Co6 O16 P2 C40 H20 Co6 O16 P2 

Formula weight  1172.08 1172.08 

Temperature  100 K 110 K 

Wavelength  0.71073 0.71073 

Crystal system  Monoclinic Monoclinic 

Space group  P21/c P21/c 

a/Å 10.0109(4) 10.0180(1) 

b/Å 20.8610(8) 20.8737(1) 

c/Å 20.4255(8) 20.4382(1) 

β/° 92.176(2) 92.1609(4) 

V/Å
3
 4262.5(3) 4270.85(5) 

Z, Calculated density /Mg 

m
-3

 
4, 1.826  4, 1.823 

Absorption coefficient 

/mm
-1

 
2.428 2.423 

Θ-range/° 1.952 to 45.294 1.951 to 45.506 

Reflections 

collected/unique 
121109 / 32541 329282 / 36061 

Rmerge 0.0345 0.0461 

Rrim 0.0403 0.0488 

Multiplicity (inf-0.5 Å) 3.7 9.1 

Multiplicity (inf-0.7 Å) 7.0 12.1 

Spherical Atom Refinement   

Data / restraints / 

parameters 
32541 / 0 / 577 36061 / 0 / 577 

Goodness-of-fit (F
2
) 1.003 1.028 

R1, wR2 [I >  σ(I)] 0.0382, 0.0704 0.0296, 0.0678 

R1, wR2 (all data) 0.0784, 0.0812 0.0450,  0.0736 

Multipolar Refinement   

Data / restraints / 

parameters 
21540 / 0 / 1917 28825 / 0 / 1917 

Goodness-of-fit (F
2
) 1.1405 1.2502 

R1, wR2 [I >  σ(I)] 0.0289, 0.0407 0.0211, 0.0500 

R1 (all data) 0.0393 0.0233 
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3.2.2.1.1 Multipolar expansion  

In Table 3.2.1, we report the results of conventional and multipolar refinements for the salt 

[Co6P(CO)16]
-
[PPh4]

+
 (2a_1, 2a_2), carried out with ShelX

25,56
 and XD

57
 programs, respectively 

(Table 3.2.1). The multipolar refinement was carried out using data with I > 2(I), using the Hansen 

and Coppens model, as showed in equation (1.12). For Co and P atoms, the multipolar expansion 

was truncated at the hexadecapole level, for O and C at the octupole level. The scattering factors of 

cobalt atoms was constructed from the 4s
2
3d

7
 configuration of the isolated atom, but the population 

of the 4s valence orbitals was not refined and all the deformation density of Co atoms was 

constructed from 3d orbitals for all atoms. The Volkov and Macchi atomic functions
58

 were 

employed to describe the radial densities of all atoms. The positions of H atoms were kept fixed at a 

C-H distance equal to 1.079 Å, according to average neutron diffraction data for 

tetraphenylphosphonium cation. The H thermal motion was considered isotropic and only the 

monopole and the C-H oriented dipole parameters were refined. Expansion/contraction parameters 

  and  ’ were refined for each kind of element: two different sets were assigned to phosphorus (to 

discriminate the phosphide from the phosphonium atoms) and carbon (to distinguish carbonyl 

carbons and phenyl carbons). For all expansion/contraction parameters,  ’ were constrained to  , in 

order to avoid divergence of the refinement. For hydrogen atoms,   and  ’ were kept equal to the 

standard value of 1.2. Third- and fourth- Gram-Charlier coefficients of anharmonicity (Table S3.2) 

were refined for Co and P (phosphide) atoms. The residual distribution and normal probability plots 

of diffraction intensities discrepancies and other parameters are reported in Figures 3.2.1- 3.2.3 and 

inTables S3.1-S3.3.  

The two experimental charge densities of the anion [Co6P(CO)16]
-
 were analyzed using the 

QTAIM routine implemented in the module XDPROP. In Figure 3.2.4 and Table 3.2.2 we report 

the main topological indices, the charges of the semi-interstitial atom Q(X). The Lagrangian 

function integrated within an atomic basin, L(Ω), should vanish and therefore it is an indicator of 

accuracy of the integration. With our models, for P atom this value resulted equal to - .  ·  
-3 

au in 

2a_1 and -3.83·  
-3 

au in 2a_2, for metal atoms, from Co1 to Co6 respectively, L(Ω) values resulted 

 .5 ·  
-2
,  .6 ·  

-2
,  .74·  

-2
, 4.38·  

-2
,  . 5·  

-1
 and  .  ·  

-1
  au in 2a_1 and -2.72·  

-4
, 1.10·  

-

3
,  .  ·  

-2
, 1.74·  

-2
,  . 3·  

-1
, 2.83·  

-2
 au in 2a_2. 
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Figure 3.2.1. The local coordinate system adopted for all multipolar models. For each atom, blue is 

Z axis, green is Y axis and red is X axis.  

 

Figure 3.2.2. The normal probability plots
ii
 of the intensities residuals for 2a_1 (left) and 2a_2 

(right) refinements.  

                                                 

 

ii
 Abrahams, S. C.; Keve, E. T. Normal probability plot analysis of error in measured and derived 

quantities and standard deviations. Acta Cryst., 1971, A27, 157-165. 
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Figure 3.2.3. Residual distributions for 2a_1 (left) and 2a_2 (right) models. First line: normal 

probability plot for anharmonic models; Second line: fractal plot of the residual distribution for the 

two anharmonic motions; Third line normal probability plot for harmonic models; Fourth line 

normal probability plot for harmonic models. 
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3.2.2.2 Computational details 

EDA: DFT calculations have been performed with the program package ADF2014
59

, using the 

functional B3LYP and the triple zeta with double polarization functions (TZ2P) Slater type orbitals 

(STOs) as basis functions for the SCF calculations. All the structures have been optimized and 

verified as minima on the potential energy surface by calculation of the vibrational frequencies.  

QTAIM/IQA: The program package AIMALL was used. The wave functions were calculated 

with Gaussian09 
26

, using the B3LYP functional and correlation-consistent triple zeta (cc-PVTZ) 

basis set. B3LYP is one of the few DFT models supported by AIMALL for the correct evaluation 

   
   in the IQA analysis

60
. The molecular geometries were optimized and the nature of the minima 

have been verified by calculation of the vibrational frequencies.  

Wiberg bond indices: they were computed on the B3LYP/cc-PVTZ optimized geometries using 

the NBO3.1 program linked to Gaussian09. 

 

3.2.3 Results and discussions 

3.2.3.1 The molecular structures and the crystal packing 

As we reported in a previous Section,
41

 the salt [Co6As(CO)16]
-
[PPh4]

+
 (1[PPh4]) is known in 

two different conformational polymorphs, α-1a[PPh4] and β-1b[PPh4]. The solid state form α (space 

group, P21/c) is similar for 1a and 2a (i.e. [Co6P(CO)16]
-
[PPh4]

+
,
 22

), whereas the form β (space 

group, Pbca) has been observed for 1b only and never obtained for the phosphide analogue.  

Both anionic isomers feature a cluster cage (an ‘unfolded’ octahedron), made of a folded chain 

of four edge-sharing triangles surrounding a “semi-interstitial” heteroatom. The idealized symmetry 

is C2, with the two-fold axis going through the heteroatom and the midpoint of the Co1-Co2 edge. 

The most striking difference between the isomers a and b is the Co1-Co2 distance, which is 

shorter for a (2.944(1) in 1a, 2.935(2) Å in 2a) and longer for b (3.457(2) Å in 1b). Theoretical 

calculations predict that in gas phase and in solution the isomers of type b would be the most stable 

forms for the [Co6X(CO)16]
-
 anions. In the solid state, however, polymorphs type α (hence, the 

isomers type a) have a much more efficient type of packing, as revealed by the mass densities of the 

arsenides polymorphs ( .8   for α-1a and 1.758 g/cm
-3

 for β-1b). The quality of the crystal samples 

is also much better for the α-1b polymorph, compared to β-1b; this may be an indication (together 

with the higher density of α-1a and the missing β-2b) of β-type polymorphs being only kinetic 

products, not always isolable. The higher quality of samples α-2a enabled us to carry out extensive 
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data collections with the purpose of an experimental determination of the charge density, not 

possible for α-1a or β-1b. For sake of improving the precision of the measured quantities, two 

different crystals of [Co6P(CO)16]
-
[PPh4]

+
 (Table 3.2.1), hereinafter 2a_1 and 2a_2, respectively, 

were measured. The two structure determinations (all carried out at low T) provide very similar 

values of the “critical” Co -Co2 distance, namely 2.8901(2) Å for 2a_1 and 2.8922(1) Å for 2a_2 

(from spherical atom refinement), but they significantly differ from the characterization by Chini et 

al.
22

, carried out at room temperature, 2.935(2) Å. Indeed, multi temperature diffraction shows that 

Co1-Co2 is quite flexible and it significantly contract as the sample is cooled. 

 

3.2.3.2 Charge Density Analysis 

QTAIM enable to gain, from the electron density distribution only, important insight into the 

nature of the chemical bonding, which is especially useful when dealing with non-standard kind of 

bonding, especially metal-metal bonding and metal-interstitial atoms bonding
43

, both present in 

species 1 and 2. As anticipated, the crystal sample quality enabled the experimental determination 

only for isomer 2a, whereas 1a, 1b and, obviously, the elusive 2b are determined only by 

theoretical simulations. 

In Figure 3.2.4, we report the topological indices for the main interactions in the anionic 

clusters. This enables a comparison between the two kinds of isomers (a vs b) and the two kinds of 

semi-interstitial atoms (P vs. As). From theoretical calculations, one may also obtain quantities 

related to the electron pair distribution, as for example the electron delocalization indices
61,62

 that 

are very useful, especially to characterize the electron-donor ability of interstitial atoms. In keeping 

with all bridged metal-metal bonds
63

, the molecular graphs of all clusters lack of direct Co-Co bond 

paths, with the exception of Co1-Co3 (and the symmetry equivalent Co2-Co4) in 1b. If optimized 

with the basis set 6-311+G(d,p), 1a also features the same bond path, although with almost 

overlapping bond and ring critical points. As we previously discussed for carbonyl bridges, the lack 

of a bond path does not necessarily imply the absence of a Co---Co interaction, but simply the 

dominance of the through-bond interaction over the direct through-space one.
64

 Therefore, the main 

feature of the molecular graphs is the connection of all Co atoms to the semi-interstitial atom. Given 

the C2 symmetry of the gas phase molecules and the pseudo-symmetry in the solid state, the Co-X 

paths can be grouped into three symmetry independent interactions, namely to Co1 (= Co2), Co3 (= 

Co4) and Co5 (= Co6) (Figure 3.2.4, 3.2.5). 
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Figure 3.2.4. Results of the Theoretical and Experimental Topological Analysis.  Theoretical 

calculations refer to the point group symmetry C2, meaning that X-Co1 = X-Co2, X-Co3 = X-Co4, 

X-Co5 = X-Co6, Co1-Co3 = Co2-Co4. 
 
Theoretical values of ʃ  (r) are reported in Table 3.2.2. 

Experimental values of Q(Con) and δ(Con,Com) are reported in Table 3.2.3. 1a= Blue; 1b=Red; 

2a=Cyan; 2b= White. -2a_1,2 = Cyan -weft (1= horizontal strings, 2= diagonal strings ). 
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Figure 3.2.5. Molecular graph of the system [Co6X(CO)16]
-
 (for type-a conformer). 
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Table 3.2.2. Results of the Theoretical and Experimental Topological Analysis 
a,b,c

   

 
BCP  (r) [e Å

-3
]  

2
 (r) [e Å

-5
] G(r) [he

-1
] H(r) [hÅ

-3
]   r1 [Å] r2 [Å] 

1a 

As-Co1 0.44 2.19 0.29 -0.14 0.17 1.244 1.149 

As-Co3 0.48 1.97 0.30 -0.16 0.02 1.238 1.135 

As-Co5 0.53 2.30 0.35 -0.19 0.08 1.211 1.103 

 
Q(As) = -0.24 

 
  

   
         

1b 

As-Co1 0.41 2.07 0.27 -0.12 0.36 1.284 1.163 

As-Co3 0.50 1.84 0.31 -0.18 0.19 1.238 1.130 

AsX-Co5 0.56 2.64 0.40 -0.22 0.08 1.203 1.092 

Co1-Co3 0.29 1.00 0.14 -0.07 1.47 1.307 1.295 

 
Q(As) = -0.22 

 
  

   
         

2a 

P-Co1 0.51 2.22 0.34 -0.19 0.16 1.164 1.118 

P-Co3 0.55 1.99 0.35 -0.21 0.01 1.167 1.105 

P-Co5 0.61 2.05 0.40 -0.25 0.07 1.140 1.079 

 
Q(P) = -0.37 

 
  

   
         

2b 

PCo1 0.47 2.21 0.31 -0.15 0.26 1.213 1.132 

P-Co3 0.56 1.94 0.35 -0.22 0.16 1.165 1.098 

P-Co5 0.63 2.33 0.43 -0.27 0.07 1.133 1.069 

 Q(P) =
 

-0.35       

         

2a_1 

P-Co1 0.54 2.91 0.42 -0.22 0.50 1.1611 1.084 

P-Co2 0.54 2.92 0.42 -0.22 0.43 1.1709 1.0815 

P-Co3 0.53 1.97 0.38 -0.24 0.30 1.2024 1.0623 

P-Co4 0.59 2.62 0.46 -0.28 0.13 1.1903 1.0971 

P-Co5 0.68 1.10 0.47 -0.39 0.15 1.1324 1.0297 

P-Co6 0.69 1.78 0.52 -0.39 0.22 1.1246 1.0717 

 Q(P) = -0.52       

2a_2 

P-Co1 0.52 3.05 0.41 -0.20 0.59 1.185 1.081 

P-Co2 0.44 3.38 0.36 -0.13 0.30 1.187 1.092 

P-Co3 0.52 3.01 0.41 -0.20 0.10 1.186 1.082 

P-Co4 0.55 2.25 0.41 -0.25 0.14 1.210 1.073 

P-Co5 0.66 0.56 0.43 -0.39 0.27 1.161 0.988 

P-Co6 0.67 1.39 0.48 -0.38 0.09 1.159 1.033 

 Q(P) = -0.45       
 

a
 In theoretical calculation it was considered the point group symmetry C2, meaning that values in 

cp X-Co1 = X -Co2, X -Co3 = X -Co4, X -Co5 = X -Co6, Co1-Co3 = Co2-Co4. 
 b

 Theoretical 

values of δ(X,Y) and ʃ  (r) are reported in Table S3.1. 
c
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Table 3.2.3. Charges and delocalization indexes for not bonded Cobalt atoms 

 
Q(Co1) Q(Co3) Q(Co5) δ(Co ,Co ) δ(Co ,Co3) δ(Co ,Co4) δ(Co ,Co5) δ(Co4,Co6) 

 
Q(Co2) Q(Co4) Q(Co6) 

 
δ(Co ,Co4) δ(Co ,Co3) δ(Co ,Co6) δ(Co3,Co5) 

1a 0.43 0.40 0.42 0.22 0.37 0.23 0.33 0.24 

1b 0.43 0.42 0.37 0.04 0.49 0.25 0.33 0.32 

2a 0.45 0.42 0.43 0.20 0.35 0.23 0.34 0.27 

2b 0.44 0.44 0.39 0.04 0.48 0.25 0.34 0.33 

2a_1 
0.45 

0.49 

0.51 

0.46 

0.38 

0.46 
     

2a_2 
0.66 

0.74 

0.57 

0.57 

0.51 

0.57 
     

 

 

From the calculated and experimental molecular graphs (Figure 3.2.4, Table 3.2.2), Co-X 

interactions are in general quite strong, because they feature a relatively large amount of electron 

density at the bond critical points, significantly negative values of the energy density, low values of 

the kinetic energy density and large electron delocalization indices. A caveat is necessary, though, 

because the valence shell electrons of the metals are shared among all 6 Co atoms, which implies 

only a much smaller amount of electron pair delocalization per each Co-Co interaction. The main 

differences between X= P and X = As are the larger negative charge of P and the larger 

delocalization of the electrons in Co-P bonds. The theoretical charges are in agreement with the 

experimental values for 2a, in both samples we measured (see Table 3.2.2, 3.2.3). On the other 

hand, it seems that the type of isomer does not affect so significantly the charge of the main group 

atom, despite the rather different set of Co-X bonds. 

Given the absence of direct Co-Co bond paths (apart from 1b), only delocalization indices can 

shed light on these interactions (Table 3.2.3). The electron sharing between Co atoms is in general 

slightly weaker than with the semi-interstitial atoms (Figure 3.2.4), in keeping with general trends 

of bridged metal-metal interactions 
43

. In addition, Co1-Co4 (equivalent to Co2-Co3), which is also 

supported by a carbonyl bridge, is even weaker with an electron sharing down to less than 0.3 pairs. 

Given the rather distorted nature of the Co cages in both kinds of isomers, it is very important 

to characterize the hybridization state of the interstitial atoms. From electron density distribution, 

this can be achieved through the analysis of the Laplacian distribution within the atomic basin. In 

fact, L(r) = - 
2
ρ(r), has been widely used to characterize electron pair distribution and therefore 

atomic hybridization and interatomic interactions, because the Laplacian enhances the features of 
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the charge distribution and the electron pair localization. Valence shell charge concentrations 

(VSCC), i.e. (3,+3) critical points of L(r), for the semi-interstitial atoms have been searched and 

located both theoretically and experimentally, Figure 3.2.6. All values are reported in Table 3.2.4. 

 

 

   

 

1a 2a -2a_1 

   

1b 2b -2a_2 

 

Figure 3.2.6. Experimental and Theoretical Atomic Graph of P and As atom. Color coding follows 

the  
2
 (r) [e Å

-5
] scale on the right. 
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0.0 

-5.0 

 
2
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] 



 

81 

 

Table 3.2.4. Theoretical and Experimental (3,+3) cps values of L(r) in the Atomic Graph of semi-

interstitial atoms
a 

 
 

CP type distance r [Å]  
2
 (r) [e Å

-5
]    CP type distance r [Å]  

2
 (r) [eÅ

-5
] 

1a 1,2 (3,+3) 1.04 0.159  

2a_1 

1 (3,+3) 0.817 -4.885 

 3,4 (3,+3) 1.07 0.438  2 (3,+3) 0.815 -5.658 

      3 (3,+3) 0.819 -4.467 

1b 1,2 (3,+3) 1.03 0.153  4 (3,+3) 0.818 -4.929 

 3,4 (3,+3) 1.08 0.327       

      

2a_2 

 

1 (3,+3) 0.808 -4.715 

2a 1,2 (3,+3) 0.80 -4.767  2 (3,+3) 0.805 -6.497 

 3,4 (3,+3) 0.81 -3.59  3 (3,+3) 0.807 -5.097 

      4 (3,+3) 0.808 -4.620 

2b 1,2 (3,+3) 0.79 -5.029      

 3,4 (3,+3) 0.81 -3.694       
 

 

a
 In theoretical calculation it was considered the point group symmetry C2, meaning that values of 

cp1 = cp2 (Co5, Co6), cp3 = cp4 (Co3, Co4). 

 

The distribution and the number of VSCCs reflects the stereochemistry of an atom, better than 

its connectivity. In fact, the bonds to a given atom may be elusive or differ in nature and therefore 

not usable to ascertain the hybridization state. Here, this is very important for the semi-interstitial 

atoms. From the theoretical calculations, P features four  SCC’s in the third (valence) shell 

suggesting a distorted tetrahedral coordination. Similarly, in the fourth shell, As has four maxima at 

L(r) < 0. Strictly speaking, they are not charge concentrations. However, one should take into 

account that, even in the isolated atom, As has a vanishing maximum of the spherically averaged 

Laplacian in the fourth shell, which occurs at L(r) < 0
3
. Thus the local maxima in the fourth shell, 

albeit with L(r) < 0, can be taken as representative of the valence orbital state of As, as they are for 

P. Both VSCC’s distributions (and especially for X = P) clearly differ from what expected with the 

geometrical hexa-coordination of the semi-interstitial atoms. In 2a and 2b, the maxima are directed 

towards Co3, Co4, Co5 and Co6, with uneven values of  (r) and  
2
 (r) (Table 3.2.4), bringing a 

higher charge concentration to Co5 and Co6, which increases going from 2a to 2b. Analogously, 

the four maxima in 1a and 1b point towards Co3, Co4, Co5 and Co6, with a trend in the Laplacian 

values that reflects the behavior of  
2
 (r) in the phosphide isomers (i.e. more negative towards Co5 

and Co6). Thus, in keeping with distances and electron density sharing, the interaction of the 

interstitial atom is stronger with the two Co atoms for which the hypothetical edge of an octahedron 
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is clearly broken (Co5-Co6 is in excess of 4 Å in all isomers). Instead, the interactions with the two 

atoms involved in the short or long Co-Co bond (i.e. Co1, Co2) are anyway weak in both isomers. 

So weak, that the atomic graph of P does not show any charge localization in that direction. 

The experimental atomic graphs are in good agreement with the theoretical values. In both cases, 

there are four charge concentrations. Together with the distances of the critical points from the P 

nucleus and  
2
 (r) values (Table 3.2.4), this confirm the computational prediction. Therefore, when 

X = P, one can speak of a distorted tetrahedral stereochemistry for the interstitial atom, better than a 

distorted octahedral one. Although weaker, and based on theoretical calculations only, the same 

conclusion holds for the As clusters. 

 

3.2.3.3 Energy breakdown 

While the charge density partition inform on the hybridization states, and could take advantage 

of experimental confirmation, even more insight could be obtained from an energy decomposition. 

Therefore, for this analysis we rely only on theoretical values and we present here two kinds of 

analysis, the interacting quantum atom (where the charge density is used to define the atomic 

basins) and the energy decomposition analysis (where atoms are pre-defined by their atomic basis 

sets).  
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Figure 3.2.7. Interaction Energy     
  , classic term    

   and exchange-correlations term    
   from 

IQA decomposition; 1a= Blue; 1b=Red; 2a=Cyan; 2b= White; The terms for Co1-Co2 of 1b and 

2b have been omitted because the long distance produced too weak interactions. 

 

 

 

 

 



 

84 

 

3.2.3.3.1 Interacting Quantum Atoms 

The IQA energy terms are reported in Figure 3.2.7 and Table 3.2.5. The interaction energies 

between semi-interstitial atoms and Co atoms are always larger than the Co-Co ones. Of course, this 

is favored by the cooperation between the electron-sharing (exchange) and the columbic term. For 

Co-X, both are favorable, at variance from Co-Co, that are of course associated with strongly 

destabilizing columbic terms. Nevertheless, the exchange is quite large and clearly dominating, 

confirming that the X-Co strength decreases along the series X-Co5 > X-Co3 > X-Co1. The trend is 

more pronounced for the b isomers. The P atom gives rise not only to a larger orbital overlap with 

the metal atoms (Table 3.2.5; see in particular the high values of    
  ), but also to a stronger 

electrostatic interaction,    
  , caused by its more negative charge. Overall, the interaction of P with 

the cage is stronger than that of As, in terms of both covalency and ionicity. The higher ratio 

between covalency and ionicity for X=As is simply due to the lower negative charge of As and it 

should not be misinterpreted. Indeed, an interaction like Co-P can be simultaneously more covalent 

and more electrostatic
65

 (Table 3.2.5). Ongoing from a to b,    
  

 becomes more negative for X-

Co5, whereas X-Co3 remains almost constant and X-Co1 becomes more positive. The classical 

potential energy    
   doesn’t follow the same trend, in fact it always increases from a to b, 

particularly for X-Co1 and X-Co5.  

The energy decomposition of the Co-Co bonds show that they are dominated by the exchange-

correlation interaction, as expected for metal-metal bonds
66

. The strongest interaction is Co1-Co3, 

though highly dependent on both the cage conformation and the semi-interstitial atom. The 

interactions of Co1 with Co4 and Co5 depend mainly on the conformation of the cluster and Co1-

Co4, which is bridged by a carbonyl, is poorly stabilizing or even destabilizing. Co1-Co2 has a 

considerable elongation on going from isomers a to b, producing a large difference in the 

interaction energy. Even if    
   has almost the same value for the two semi-interstitial atoms,    

   

is much more destabilizing in the phosphide clusters. An overall stabilizing energy for this 

interaction (Table 3.2.5) was found only for 1a. As expected, Co4-Co6 is similar to Co1-Co5 but 

weaker, except for 2a.  
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Table 3.2.5. Theoretical IQA values X-Co and Co-Co [kcal/mol]  

 
 

Eint Vcl Vxc % ionicity % covalency 

1a 

As-Co1 -88.7 -13.6 -75.2 15.3 84.7 

As-Co3 -95.6 -10.5 -85.1 11.0 89.0 

As-Co5 -107.4 -6.9 -100.5 6.4 93.6 

Co1-Co2 -2.7 19.1 -21.8   

Co1-Co3 -21.8 18.5 -40.3   

Co1-Co4 1.6 22.3 -20.7   

Co1-Co5 -9.5 20.2 -29.7   

Co4-Co6 -8.4 16.9 -25.3   

       

1b 

As-Co1 -79.4 -11.5 -67.9 14.5 85.5 

As-Co3 -94.6 -9.6 -85.0 10.1 89.9 

As-Co5 -108.6 -4.4 -104.2 4.0 96.0 

Co1-Co2 13.1 15.7 -2.5   

Co1-Co3 -30.4 19.7 -50.1   

Co1-Co4 1.4 24.2 -22.8   

Co1-Co5 -18.8 16.1 -35.0   

Co4-Co6 -17.9 15.8 -33.7   

       

2a 

P-Co1 -110.1 -24.6 -85.5 22.3 77.7 

P-Co3 -114.2 -19.8 -94.4 17.4 82.6 

P-Co5 -126.5 -15.2 -111.3 12.0 88.0 

Co1-Co2 2.3 22.2 -19.8   

Co1-Co3 -17.3 21.1 -38.4   

Co1-Co4 4.3 25.1 -20.8   

Co1-Co5 -8.7 22.8 -31.6   

Co4-Co6 -9.3 19.0 -28.3   

       

       

2b 

P-Co1 -97.1 -21.5 -75.6 22.2 77.8 

P-Co3 -114.6 -19.1 -95.5 16.7 83.3 

P-Co5 -127.2 -12.0 -115.2 9.4 90.6 

Co1-Co2 15.2 17.4 -2.3   

Co1-Co3 -27.1 21.9 -49.0   

Co1-Co4 3.2 26.8 -23.6   

Co1-Co5 -18.1 18.4 -36.5   

 Co4-Co6 -17.1 18.3 -35.3   
 

 

The most evident change due to the isomerization is the elongation (or shortening) of Co1-Co2. 

However, less evident are the changes of the other interactions. We can pinpoint the following 

correlation: the longer is Co1-Co2, the weaker becomes X-Co1 (=X-Co2), whereas, as reported in 

Figure 3.2.7,     
   of Co1-Co3 (Co2-Co4) increases in modulus. The above discussed trends are 

confirmed also by the Wiberg indices, see Table 3.2.6.  
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Table 3.2.6. Wiberg Bond Index of X-Co and Co-Co  

 
X-Co1 X-Co3 X-Co5 Total WBI (X) Co1-Co2 Co1-Co3 Co1-Co4 Co1-Co5 Co4-Co6 

1a 0.456 0.524 0.671 3.998 0.190 0.309 0.234 0.320 0.202 

1b 0.408 0.530 0.712 3.961 0.063 0.441 0.241 0.294 0.273 

2a 0.484 0.537 0.669 4.075 0.173 0.298 0.224 0.329 0.222 

2b 0.428 0.553 0.708 4.047 0.053 0.437 0.232 0.303 0.282 
 

 

The total WBI values for the semi-interstitial atoms are almost constant in all isomers but the 

individual interactions have different strength. The WBI reflects also what it was obtained in the 

atomic graph analysis: the values of X-Co5 are the largest and very similar in all the isomers. 2b 

has the highest value of X-Co3, which is quite close X-Co5, and a much lower value of X-Co1, in 

agreement with the previously discussed tetracoordination. Bond index for Co1-Co3 features the 

very same value for both 1b and 2b, meaning that also for the phosphide isomer the presence of a 

metal-metal interaction cannot be not excluded. All the other Co-Co indexes follow the trend 

outlined by the IQA analysis, in particular in the low sensitive values for Co4 and Co5, but also in 

the behavior with Co2.  

 

3.2.3.3.2 Energy Decomposition and Fragment Interaction Analysis 

The traditional EDA implies the definition of two closed- or open-shell fragments, whose 

interaction is evaluated in terms of the classical Morokuma’s scheme
67

. The identification of the 

fragments and the assignment of their electronic configuration are essential and may bias the 

interpretation.
68,69

 The atomic charges, the stereochemistries and the stability of known metal 

clusters, imply that the fragments to consider are 
1
X

-1
 and [Co6(CO)16]

0
.        implies a) the 

excitation of the semi-interstitial atom (X
-1

) from its ground state triplet to the singlet excited state 

and b) the deformation of the Co6(CO)16
70

 cluster geometry to produce the distorted geometries of a 

and b (See Table 3.2.7). 
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Table 3.2.7. Preparation Energies [kcal/mol] for the cluster [Co6X(CO)16]
-
 

 

3
X

-1
 → 

1
X

-1
 Co6(CO)16 → [Co6(CO)16]

 0
(a) Co6(CO)16 → [Co6(CO)16]

 0
(b) 

      (P) 26.9 103.7 113.4 

      (As) 24.3 111.9 116.7 
 

 

The deformation necessary to reach conformation a is less energy demanding than for b. In the 

phosphide isomers, this difference is even larger because of the smaller (Pauli) repulsion occurring 

in a (see Figure 3.2.8). The ionic radius of As
-1

 is so large that the energy required to form either a- 

or b-shape metal cages differs by less than 5 kcal/mol.  

In Table 3.2.8, we compare the “classical” partitions for EDA and IQA, reporting the terms 

from equation (1.28) and (2.6), respectively. For the fragment partition, and in particular for the 

reference fragments, the very same scheme used for the calculation of       in EDA was used for 

IQA, i.e., the semi-interstitial atom in the electronic state 
1
X

-1
 as one fragment and the cage 

[Co6(CO)16]
0
 presenting the same geometry in the final molecule as second fragment. Moreover, we 

carried out a so called “Energy Terms Partition”, (see Chapter 2) which in the case of EDA it is 

automatically done during the bond energy decomposition by ADF; for IQA, we adopted the 

formalism presented in the introduction (equation (17)).  

      and      , both stabilizing, are larger for isomers a, particularly X = P. The         term 

addresses isomers phosphide isomers as less stable and conformer a as less stable than b. 

According to Hopffgarten and Frenking
46

,       could be used to estimate the degree of 

electrostatic character of a bond (which not necessarily coincides with the ionicity), whereas       

would represent the covalent character. The electrostatic term slightly overwhelms the orbitalic one 

(55%:45% for the arsenides, 53%:47% for the phosphides). For a deeper understanding of the 

X−cage bond, in Table 3.2.9 an analysis is reported of the main contribution to the orbital 

interaction provided by the valence orbitals of the semi-interstitial atom.  
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Table 3.2.8. EDA/IQA Classical and Energetic Components Partition [kcal/mol] of 
 1

X
-1

 + 

[Co6(CO)16]
0
  

EDA 

 

IQA 

 
1a 1b 2a 2b 

 
 

1a 1b 2a 2b 

Classical Partition 

        1313.2 1219.8 1415.5 1317.4 

 

          
  329.0 245.6 311.0 336.4 

      -882.3 -835.4 -915.2 -872 

 

     
   

 -607.5 -531.6 -611.3 -647.5 

         430.8 384.4 500.2 445.4 

 

      
   

 -278.5 -285.9 -300.3 -311.1 

      -716.3 -676.5 -804.4 -761.1 

 

     

      -285.5 -292.2 -304.2 -315.7 

 
     

%      55.2 55.3 53.2 53.4 

 
     

%      44.8 44.7 46.8 46.6 

 
     

Energy Terms Partition 

Classic -569.1 -566.4 -599.4 -593.4 

 

Classic -452.6 -476.7 -611.9 -622 

Electrostatic -882.3 -835.4 -915.2 -872 

 

     

Coulomb 313.2 269 315.9 278.6 

 

     

XC -385.3 -355.1 -404.7 -373 

 

XC -331.5 -302.8 -334.4 -302.7 

Kinetic 668.9 629.4 700 650.6 

 

Kinetic 505.6 493.6 646.1 613.5 

%Classic 59.6 61.5 59.7 61.4 

 

%Classic 57.7 61.2 64.7 67.3 

%XC 40.4 38.5 40.3 38.6 

 

%XC 42.3 38.8 35.3 32.7 

 

 

Table 3.2.9. ΔEMO [kcal/mol] stabilization of 
1
X

-1
 p-valence orbitals in the MO  

I.R.
a
 1a 1b 2a 2b 

B 

-165.4 
(4px: 28.0%; 5px: 4.1%; 

 4s: 0.0%)b 

-166.2 
(4px: 29.0%; 5px: 2.7%; 

 4s: 0.0%) b 

-172.4 
(3px: 23.2%; 4px: 7.8%; 

 3s: 0.0%) b 

-172.9 
(3px: 25.8%; 4px: 6.1%;  

3s: 0.0%) b 

A 

-176.7 
(4pz: 29.1%; 5pz: 3.9%;  

4s: 2.2%) b 

-173.7 
(4pz: 27.0%; 5pz: 3.5%; 

 4s: 2.1%) b 

-182.3 
(3pz: 23.2%; 4pz: 7.3%;  

3s: 1.5%) b 

-178.7 
(3pz: 21.7%; 4pz: 6.8%;  

3s: 1.6%) b 

B 

-191.4 
(4py: 25.7%; 5py: 8.0%;  

4s: 0.0%) b 

 

-191.8 
(4py: 25.5%; 5py: 7.9%; 

 4s: 0.0%) b 

 

-199.3 
(3py: 15.4%; 4py: 14.6%;  

3s: 0.0%) b 

 

-199.5 
(3py: 15.0%; 4py: 15.0%; 

 3s: 0.0%) b 

 
 

a
 Irreducible Representation;

 b 
The py orbital points towards Co5 and Co6, pz is coaxial with C2 

axis; E4p orbital(
1
As

-1
) = 30.3 kcal/mol, E3p orbital(

1
P

-1
) = 30.7 kcal/mol. 
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  is positive and describes the energetic deformation of a fragment upon the molecular 

formation
71

. The stabilizing contribution      
   

, on the other hand, is indicative of the constructive 

interaction between the fragments 
1
X

-1
 and [Co6(CO)16]

0
.           

  follows the same trend of 

        and          for the isomers 1a and 1b, meanwhile for 2a and 2b it produces very similar 

values, slightly more destabilizing for the open isomer. The same behavior is seen again for      
   

 

i.e., 1a is more stabilized than 1b, and the opposite for the phosphides isomers.       and       
   

, 

on the other hand, are very well in agreement, with a difference of just few kcal/mol, this result tells 

us that both the partition methods and bonding analysis produce the same total bonding energy for 

interacting fragments. Moreover, now the trends are in perfect agreement, producing higher (more 

stabilizing) bonding energy for open isomers b, in favor of X=P. Energy terms partition produced 

interesting results. By isolating the Classic, Kinetic and XC term from both       and       
   

 it 

emerges that proportions and trends are the very same.  

Quantitatively, EDA produces higher absolute values compared to IQA. However, the ratio 

between Classic and XC energies of the two decomposition methods are very similar. The Classic 

term clearly overwhelms the XC (ca. 60% vs. 40%), in particular for b isomers. In EDA, no 

difference appears on moving from As to P, whereas in IQA the Classic term is clearly larger, in 

percentage, for P isomers. This may strongly depend on the definition of the atomic charges, and 

the fact that in IQA they are not predetermined.  

According to the above bonding analysis, we can confirm that, even if the individual X-Co 

interaction is mainly covalent, the energy that keeps together the metal-carbonyl cage with 

pnictogen semi-interstitial atoms (P,As) has a more electrostatic nature. In other words, the 

interaction between the carbonyls and the interstitial atoms plays an important role, although 

invisible in the charge density. 

In Figure 3.2.8, we report the        and       terms of the energy decomposition for the 

fragments 
1
X

-1
 and [Co6(CO)16]

0
 (see also Table 3.2.7 and 3.2.8) and the total bonding energy ΔE 

(see also Table 3.2.10. The trend followed by ΔE is the same of      , confirming that the most 

stabilized species are the b isomers and that P has the strongest binding. Even if isomers a produce 

the most stabilizing contributions of       and      , the higher destabilization of the Pauli term 

inverts this trend, and b results as the most stable conformation (in isolation). 

For the phosphides the effect of the cage’s conformation is much more relevant that for the 

arsenides (Figure 3.2.8), because of both the destabilizing (      ) and stabilizing (     ) 

contribution. All these mechanisms are anyhow “hidden” in the final energy difference (E), due 
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to mutual cancellation. ΔΔE results to be the very same for 1 and 2, meaning that even if there is an 

energy difference between isomers of the same chemical nature (same semi-interstitial atom)
41

, the 

preparation energy has the effect of cancelling this discrepancy. If this is correct, the hypothesis of 

the existence of 2b, at least in solution, is reinforced, although its isolation may not be possible and 

so far, despite our repeated attempts, has always failed. 

 

  

Figure 3.2.8.       ,       (left), the total bonding energy E (right); 1a= Blue; 1b=Red; 

2a=Cyan; 2b= Black. E are the total bonding energy differences. 

 

Table 3.2.10. Total Bonding Energies [kcal/mol] (1) and their difference (2)
a 

 
1a 1b 2a 2b 

ΔE -149.27 -151.22 -173.50 -175.45 
 

 
(1a – 1b) (2a – 2b) 

ΔΔE 1.95 1.95 
 

1 2 

a 
Difference of the electronic energy obtained from the geometry optimization with ADF, with the 

level of theory B3LYP/TZ2P. 

 

 

 

 

 

E = 1.95 

E = 1.95 
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3.2.4 Conclusions 

In this chapter, we have analyzed the chemical bonding in high nuclearity transition metal 

carbonyl clusters with semi-interstitial main group atoms, focusing on the species [Co6X(CO)16]
-
. 

The study involved both charge density and energy partitioning, adopted to characterize the 

ratios between covalent and electrostatic terms of the interactions, the hybridization and oxidation 

states of the main group atoms and the behavior of two semi-interstitial atoms of the same group 

(namely P and As). The stereochemistry of the clusters under investigation is quite peculiar, 

because of the two possible conformers that differ mainly in the distortion of the metal cages (and 

corresponding conformation of CO ligands). The charge density analysis revealed the larger atomic 

charge of the phosphide compared to the arsenide, anyway smaller than the formal oxidation state 

of -1. The stronger electrostatic interactions of the phosphide derivative does not hamper a larger 

covalency of the P-Co interactions, compared to the As-Co ones, which is addressed both by charge 

and energy partition methods. The hybridization of the semi-interstitial atom remains sp
3
-like in the 

phosphide and in the arsenide. Co-Co interactions are globally quite weak, even if the electronic 

exchange and the energy stabilization in Co1-Co3 (= Co2-Co4) interactions is enough to produce a 

bond critical point of the theoretical electron density distribution of 1b, the overall structure is 

supported mainly by the more robust X-Co bonds, which according to IQA partition have quite 

larger interaction energies and bond orders. 

EDA and IQA agree in finding the interaction between the semi-interstitial atoms and the 

overall cages mainly electrostatic, although Co-X interactions, alone, are mainly shared 

interactions. 

For one of the species, [Co6P(CO)16]
-
[PPh4]

+
 -2a, the accurate low temperature X-ray 

diffraction was measured on different crystal samples, in order to obtain an experimental charge 

density to be compared with the theoretical ones, calculated for all the four [Co6X(CO)16]
-
 

(X=As,P) isomers. This study is the first comprehensive analysis of chemical bonding in these 

species, merging the complementary viewpoints of energy and charge density partitioning in order 

to gain insight into the stereochemistry of these clusters. This enabled to pinpoint the role and the 

stereochemistry of the main group semi-interstitial atoms.  
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3.2.6 Supporting information 

Table S3.1. Bond lengths [Å] for 2a_1 and 2a_2 with and without anharmonic model. 

 

 

2a_1 
harmonic 

2a_1 
anharmonic 

2a_2 
harmonic 

2a_2 
anharmonic 

CO(1)-P(1)   2.2526(3)   2.245(3)   2.2521(2)  2.2646(14)  

CO(1)-C(1)   1.7643(13)  1.772(3)   1.7673(9)  1.7673(16)  

CO(1)-C(2)   1.7684(14)  1.775(3)   1.7701(8)  1.7571(17)  

CO(1)-C(15)  1.9148(13)  1.907(4)   1.9161(8)    1.9089(17) 

CO(2)-P(1)   2.2649(4)   2.252(3)   2.2656(2)   2.2652(16) 

CO(2)-C(3)   1.7755(14)  1.773(4)   1.7747(10)  1.7742(18) 

CO(2)-C(4)   1.7618(15)  1.779(4)   1.7607(10)  1.7604(17) 

CO(2)-C(16)  1.9248(13)  1.938(3)   1.9276(8)    1.9318(17) 

CO(3)-P(1)   2.2670(4)   2.258(3)   2.2674(2)   2.2636(15) 

CO(3)-C(5)   1.8037(15)  1.811(4)   1.8057(9)   1.8062(17) 

CO(3)-C(6)   1.7939(15)  1.797(4)   1.7978(10)  1.8045(17) 

CO(3)-C(16)  1.9071(13)   1.912(3)  1.9071(9)    1.9094(17) 

CO(4)-P(1)   2.2734(4)   2.284(3)   2.2738(2)   2.2811(15) 

CO(4)-C(7)   1.7952(14)  1.786(3)   1.7956(9)   1.7882(17) 

CO(4)-C(8)   1.7878(14)  1.784(3)   1.7907(9)   1.7866(17) 

CO(4)-C(15)  1.8976(12)   1.902(3)  1.8991(8)    1.9031(15) 

CO(5)-P(1)   2.1667(4)   2.162(3)   2.1676(2)   2.1465(16) 

CO(5)-C(9)   1.8087(13)  1.815(3)   1.8094(8)   1.8269(17) 

CO(5)-C(10)  1.7927(14)   1.793(3)  1.7970(9)   1.7959(17) 

CO(5)-C(11)  1.7952(14)   1.792(3)  1.7965(10)  1.8021(17) 

CO(6)-P(1)   2.1791(4)   2.196(3)   2.1796(2)   2.1900(15) 

CO(6)-C(12)  1.8186(17)   1.798(4)  1.8156(10)  1.8070(19) 

CO(6)-C(13)  1.8192(15)   1.842(4)  1.8202(10)  1.8185(19) 

CO(6)-C(14)  1.7924(16)   1.772(4)  1.7917(12)  1.791(2)   

P(2)-C(51)   1.7978(12)   1.7977(13) 1.7965(7)   1.7966(7)  

P(2)-C(21)   1.7898(11)   1.7896(12) 1.7900(7)   1.7902(7)  

P(2)-C(31)   1.7943(11)   1.7941(12) 1.7951(7)   1.7952(8)  

P(2)-C(41)   1.7908(12)   1.7907(13) 1.7903(7)   1.7903(7)  

O(1)-C(1)    1.153(2)     1.153(2)  1.1488(14)  1.1487(14) 

O(2)-C(2)    1.148(3)     1.148(2)  1.1499(12)  1.1503(12) 

O(3)-C(3)    1.149(2)     1.149(2)  1.1477(16)  1.1478(16) 

O(4)-C(4)    1.149(3)     1.150(3)  1.1464(15)  1.1474(15) 

O(5)-C(5)    1.144(3)     1.144(3)  1.1413(14)  1.1417(14) 

O(6)-C(6)    1.144(3)     1.144(3)  1.1393(16)  1.1397(15) 

O(7)-C(7)    1.150(3)     1.150(3)  1.1487(13)  1.1487(13) 

O(8)-C(8)    1.149(2)     1.149(2)  1.1442(14)  1.1443(14) 

O(9)-C(9)    1.146(2)     1.146(2)  1.1452(12)  1.1451(12) 

O(10)-C(10)  1.145(3)    1.145(3)   1.1427(14)  1.1426(13) 

O(11)-C(11)  1.144(3)    1.144(3)   1.1462(15)  1.1467(15) 

O(12)-C(12)  1.142(3)    1.143(3)   1.1442(16)  1.1440(16) 
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O(13)-C(13)  1.144(3)    1.145(3)   1.1417(14)  1.1417(14) 

O(14)-C(14)  1.141(3)    1.141(3)   1.1438(18)  1.1439(18) 

O(15)-C(15)  1.181(2)    1.181(2)   1.1785(13)  1.1785(13) 

O(16)-C(16)  1.177(2)    1.177(2)   1.1775(13)  1.1779(13) 

C(51)-C(52)  1.4016(17)  1.4009(18) 1.4022(10)  1.4018(10) 

C(51)-C(56)  1.3965(17)  1.3958(18) 1.3992(10)  1.3993(11) 

C(52)-C(53)  1.3910(19)  1.390(2)   1.3915(12)  1.3914(12) 

C(53)-C(54)  1.397(3)    1.398(3)   1.3940(19)  1.3941(19) 

C(54)-C(55)  1.391(3)    1.392(3)   1.3928(19)  1.3927(19) 

C(55)-C(56)  1.3933(19)  1.392(2)   1.3919(12)  1.3913(12) 

C(21)-C(22)  1.3986(15)  1.3978(16) 1.3979(10)  1.3977(10) 

C(21)-C(26)  1.4037(16)  1.4034(17) 1.4037(10)  1.4036(10) 

C(22)-C(23)  1.3899(16)  1.3883(17) 1.3917(11)  1.3913(11) 

C(23)-C(24)  1.389(2)    1.390(2)   1.3925(14)  1.3925(14) 

C(24)-C(25)  1.397(2)    1.396(2)   1.3971(14)  1.3971(14) 

C(25)-C(26)  1.3912(15)  1.3900(16) 1.3906(10)  1.3904(10) 

C(31)-C(32)  1.3958(16)  1.3956(17) 1.3949(9)   1.3946(9)  

C(31)-C(36)  1.3967(15)  1.3957(16) 1.3963(10)  1.3961(10) 

C(32)-C(33)  1.3958(16)  1.3949(17) 1.3961(12)  1.3961(12) 

C(33)-C(34)  1.391(2)    1.391(2)   1.3896(14)  1.3894(15) 

C(34)-C(35)  1.392(2)    1.393(2)   1.3942(15)  1.3944(16) 

C(35)-C(36)  1.3879(18)  1.3865(19) 1.3832(13)  1.3828(14) 

C(41)-C(42)  1.3965(16)  1.3958(17) 1.3982(10)  1.3980(10) 

C(41)-C(46)  1.3997(15)  1.3986(16) 1.4003(10)  1.4001(10) 

C(42)-C(43)  1.3924(19)  1.392(2)   1.3953(12)  1.3952(12) 

C(43)-C(44)  1.397(2)    1.396(2)   1.3880(13)  1.3879(14) 

C(44)-C(45)  1.3887(19)  1.389(2)   1.3899(12)  1.3900(12) 

C(45)-C(46)  1.3893(17)  1.3891(18) 1.3892(10)  1.3893(10) 
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Table S3.2. Refined Gram-Charlier parameters.  

2a_1 Co1 Co2 Co3 Co4 Co5 Co6 P1 

C111  0.000034 -0.000267 -0.000006 0.000300 -0.000044 0.000033 -0.000058 

C222  -0.000030 -0.000171 -0.000085 -0.000040 0.000012 -0.000260 0.000005 

C333  0.000050 -0.000044 0.000007 0.000058 0.000018 0.000045 -0.000015 

C112  -0.000073 -0.000074 -0.000075 -0.000084 -0.000057 -0.000194 0.000006 

C122  0.000035 -0.000042 -0.000018 0.000019 -0.000007 0.000058 -0.000012 

C113  0.000207 -0.000077 -0.000022 0.000076 0.000150 0.000065 0.000002 

C133  0.000014 -0.000060 -0.000049 -0.000036 0.000024 0.000013 0.000001 

C223  0.000007 -0.000055 0.000019 0.000013 0.000007 0.000101 -0.000008 

C233  -0.000011 -0.000050 -0.000005 -0.000019 -0.000001 -0.000069 -0.000001 

C123  -0.000025 -0.000029 -0.000034 0.000023 -0.000015 -0.000032 0.000010 

D1111 0.001449 -0.000029 -0.000256 0.000156 0.001450 -0.000003 0.000209 

D2222 0.000002 0.000078 0.000134 -0.000012 -0.000005 0.000067 0.000015 

D3333 -0.000009 -0.000007 -0.000002 0.000065 -0.000006 -0.000007 0.000020 

D1112 -0.000333 0.000027 -0.000006 0.000023 -0.000299 -0.000054 -0.000015 

D1222 -0.000039 0.000006 0.000012 -0.000004 -0.000028 -0.000021 -0.000004 

D1113 -0.000011 -0.000012 -0.000021 -0.000211 0.000208 0.000044 0.000014 

D1333 0.000003 0.000001 -0.000006 -0.000075 0.000016 0.000003 0.000002 

D2223 -0.000001 0.000049 0.000004 0.000000 0.000000 -0.000033 -0.000001 

D2333 -0.000002 0.000021 0.000003 -0.000007 -0.000003 -0.000016 -0.000001 

D1122 0.000077 0.000011 -0.000016 -0.000014 0.000050 0.000019 0.000021 

D1133 0.000009 0.000003 -0.000024 0.000097 0.000041 0.000007 0.000022 

D2233 -0.000002 0.000020 0.000006 0.000003 -0.000002 0.000017 0.000004 

D1123 -0.000014 0.000023 0.000009 -0.000002 -0.000031 -0.000033 -0.000007 

D1223 0.000006 0.000003 -0.000005 -0.000014 0.000006 0.000014 -0.000001 

D1233 -0.000009 0.000004 0.000001 0.000002 -0.000008 -0.000011 -0.000002 

2a_2 Co1 Co2 Co3 Co4 Co5 Co6 P1 

C111  0.000017 -0.000003 0.000028 0.000075 0.000478 -0.000142 0.000014 

C222  -0.000081 -0.000032 -0.000023 -0.000035 -0.000029 -0.000011 -0.000005 

C333  -0.000041 0.000018 -0.000021 0.000044 0.000110 0.000074 0.000001 

C112  -0.000027 -0.000015 -0.000085 -0.000044 -0.000084 -0.000017 0.000003 

C122  0.000014 -0.000014 0.000010 0.000010 0.000042 0.000033 -0.000002 

C113  -0.000067 0.000017 -0.000037 0.000014 0.000210 0.000087 -0.000018 

C133  0.000002 0.000001 -0.000023 0.000011 0.000154 0.000059 -0.000001 

C223  -0.000057 -0.000002 -0.000003 0.000031 0.000026 0.000017 -0.000001 

C233  -0.000047 -0.000004 -0.000021 -0.000034 -0.000033 -0.000008 -0.000002 

C123  0.000003 -0.000003 -0.000018 -0.000012 -0.000043 -0.000003 0.000007 

D1111 -0.000242 -0.000070 0.000233 -0.000207 -0.000084 -0.000090 0.000168 

D2222 0.000031 0.000017 -0.000009 0.000007 -0.000004 -0.000008 0.000003 

D3333 0.000009 0.000005 0.000031 0.000040 0.000039 0.000043 0.000001 

D1112 -0.000026 0.000077 0.000046 -0.000014 -0.000027 -0.000045 -0.000001 

D1222 -0.000008 0.000034 0.000003 0.000001 -0.000002 -0.000006 0.000002 

D1113 0.000000 0.000062 0.000235 0.000030 0.000121 0.000123 -0.000019 

D1333 0.000011 0.000031 0.000072 0.000019 0.000058 0.000065 0.000001 

D2223 0.000025 0.000019 0.000000 -0.000023 -0.000006 -0.000003 0.000000 
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D2333 0.000019 0.000015 0.000000 -0.000032 -0.000009 -0.000011 0.000000 

D1122 0.000018 0.000039 0.000008 0.000002 0.000008 0.000003 -0.000004 

D1133 -0.000006 0.000022 0.000091 0.000004 0.000047 0.000070 0.000006 

D2233 0.000016 0.000014 0.000003 0.000021 0.000007 0.000007 0.000001 

D1123 0.000014 0.000035 0.000009 -0.000020 -0.000012 -0.000021 0.000002 

D1223 0.000002 0.000021 0.000009 0.000006 0.000013 0.000013 -0.000002 

D1233 0.000003 0.000020 0.000005 -0.000008 -0.000009 -0.000012 0.000001 
 

The Kuhs’s rule implies 
iii

a resolution of 1.1 Å
-1

 for third order coefficients and 1.3 Å
-1

 for fourth order coefficients. 

Despite the data do not reach 1.3 Å
-1

, the refinement of fourth order coefficients bring to an undoubted improvement of 

the residual density (Figure 3.2.3). The nuclear probability functions for 2a_2 display less than 5% negative volumes 

(thus at the precision limit) for all atoms but Co1, which has a negative probability of ca. 10%. In 2a_1, the negative 

probability volumes are ca. 10% for all Co atoms. In both experiments, the probability function of P(1) is almost 

everywhere positive.  

                                                 

 

iii
 Kuhs, W. F. Generalized atomic displacements in crystallographic structure analysis. Acta Cryst., 

1992, A48, 80-98. 
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Table S3.3. Absolute difference of Mean-Squares Displacement Amplitudes (DMSDA, 10
-3

 Å
2
) 

along interatomic vectors of bonded atoms. Noteworthy, as it is usual for bonds to transition metals, 

metal-ligand bonds exceed the typical Hirshfeld limit of 1.0 10
-3

 Å
2
 expected for covalent bonds of 

main group atoms. 

 2a_1 2a_2 

Co1-P1 1.2 2.7 

Co1-C1 3.4 7.4 

Co1-C2 6.3 7.5 

Co1-C15 9.4 0.1 

Co2-P1 1.3 4.4 

Co2-C3 2.6 7.0 

Co2-C4 8.2 8.3 

Co2-C16 2.8 2.4 

Co3-P1 8.0 3.0 

Co3-C5 3.5 0.9 

Co3-C6 0.4 7.4 

Co3-C16 8.1 8.6 

Co4-P1 7.1 2.6 

Co4-C7 7.7 4.9 

Co4-C8 5.2 3.0 

Co4-C15 14.1 0.5 

Co5-P1 7.8 12.4 

Co5-C9 4.4 7.3 

Co5-C10 8.2 5.0 

Co5-C11 2.8 7.0 

Co6-P1 0.9 10.4 

Co6-C12 3.8 11.7 

Co6-C13 0.2 5.2 

Co6-C14 2.3 6.6 

P2-C21 0.0 0.6 

P2-C31 0.1 0.7 

P2-C41 0.4 0.7 

P2-C51 0.4 0.5 

O1-C1 2.3 0.7 

O2-C2 0.8 1.0 

O3-C3 2.2 0.1 

O4-C4 2.4 0.9 

O5-C5 1.8 1.2 

O6-C6 2.8 1.9 

O7-C7 1.3 0.3 

O8-C8 1.9 0.3 

O9-C9 3.5 1.1 

O10-C10 0.3 1.2 

O11-C11 1.2 1.6 

O12-C12 1.9 0.3 

O13-C13 1.9 1.6 

O14-C14 2.8 1.6 

O15-C15 3.0 0.4 

O16-C16 2.3 0.9 

C21-C22 1.4 0.1 

C21-C26 1.7 0.2 

C22-C23 0.0 0.0 

C23-C24 1.0 0.0 

C24-C25 0.6 0.3 

C25-C26 0.3 0.6 

C31-C32 0.5 0.1 

C31-C36 0.3 0.3 

C32-C33 0.1 0.4 

C33-C34 1.2 0.2 

C34-C35 1.5 0.1 

C35-C36 1.6 0.2 

C41-C42 0.1 0.4 

C41-C46 0.3 0.1 

C42-C43 0.4 0.0 

C43-C44 1.3 0.5 

C44-C45 1.3 0.1 

C45-C46 0.3 0.3 

C51-C52 0.9 0.2 

C51-C56 0.3 0.4 

C52-C53 0.3 0.6 

C53-C54 0.2 0.5 

C54-C55 0.6 0.0 

C55-C56 0.1 0.2 
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Figure 3.2.9. Simulated IR spectrum of 1a, 1b, 2a and 2b, level of theory B3LYP/cc-PVTZ, 

Gaussian09. 
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Chapter 4 

 

Metallophilic Interactions 

The concept of metallophilicity, first introduced by Pyykkö in 1994, was used to denote the 

specific attraction between two group 11 closed-shell metal ions.
1
 Initially, this concept was applied 

to the Au(I)---Au(I) interactions, called Aurophilic
2
, then extended to the others coinage metals.

3,4,5
 

However, Cu(I)---Cu(I) and Ag(I)---Ag(I) interactions were already identified by Hoffmann
6
 

and Jansen
7
. Metallophilicity indicates a type of chemical bonding between metal ions having d

10
 

electronic configuration.
8
 At the beginning, this interaction was attributed to mixing between (n+1)s 

and nd orbitals,
6,9

 then, it was concluded that metallophilicity was primarily due to electron-

correlation and dispersion contributions,
2,10

 but many factors affect the occurrence and the strength 

of this interaction. It is a weak interaction, with a range of energy of the order of weak hydrogen 

bonds. Even though many studies have been dedicated to explain this interaction during the last 

decades, it is still considered elusive and unclear. As observed by Mehrotra and Hoffmann, 

referring to the Cuprophilic interaction:”It will be difficult to distinguish the effect of direct Cu-Cu 

interaction and the stereochemical demands of the ligand set around the copper atoms”.
6
 Indeed, 

inter-metallic distance is not a straightforward parameter to denote the presence or not of the 

methallophilic interaction.
11

 The strength of metallophilicity increases on descending group 11, in 

fact, many systems with Aurophilic interaction were reported in the literature, 
10,12,13

 whereas 

Cuprophilic interaction is more elusive.
11,14

 Recently, the concept of metallophilicity have been 

expanded also to other closed-shell ions, like Pt
0
, Hg

2+
, Tl

+
, Pb

2+
 and Bi

3+
.
15

 

In the following, an experimental/theoretical work is reported on two isostructural coordination 

polymers differing only in the coinage metal(I) cations which were compressed with the purpose of 

testing secondary interactions between polymeric chains, that may trigger metallophilic interactions 

or otherwise expand the metal coordination. DFT calculations and X-ray diffraction studies at high 

pressure reveal an extraordinary difference between Ag(I) and Cu(I) in homologous compounds. 

Argentophilic interactions are induced just by a mild compression and, at P = 7.94 GPa, Ag---

Ag distance matches the value in metallic silver. On the contrary, no cuprophilic interaction is 

activated even by compression up to 8 GPa. The Cu---Cu distances remain ca. 0.5 Å longer than the 

sum of van der Waals radii. 



 

108 

 

4.1 Introduction 

Aurophilic
16

, argentophilic
17

 and cuprophilic
18

 interactions have always attracted the curiosity 

of scientists for both the intriguing nature of this bonding and the high frequency of their occurrence 

in the solid state, with M(I)---M(I) distances shorter than the sum of the van der Waals radii. 

Moreover, recent studies demonstrated that this interaction plays a major role for properties like 

luminescence
19,20

, and in fields like catalysis
21

 and life science
22

.  

The attraction between two cations is of course counterintuitive, especially when the two atoms 

involved are formally closed-shell and, in principle, cannot share d-electrons and form a covalent 

bond. However, close-shell d
10

---d
10

 interaction energies are calculated to be stabilizing (7-11 

kcal/mol), depending anyhow on the nature of the metals and their ligand environment.
4,8

 It is 

nowadays established that this stabilization arises from a combination of electron correlation
4
, 

relativistic contraction
23

 and other secondary contributions like charge transfer
10

. These effects are 

not always stabilizing a geometry with shorter metal-metal distance, for example relativistic effect 

could also weaken it
24

. When compounds featuring metallophilic interactions at ambient conditions 

were brought to extreme conditions of pressure and temperature, rare mechanical phenomena 

occurred, such as negative linear compressibility in Ag3[Co(CN)6],
25

 KMn[Ag(CN)2]3,
26

 negative 

area compressibility in gold diethyldithiocarbamate
27

 and negative thermal expansion in 

In[Ag(CN)2]3·xH2O.
28

 However, to the best of our knowledge, no formation of metallophilic 

interaction upon compression has ever been reported. 

The study here presented was undertaken because the packing of two unprecedented metal(I) 5-

(2-fluoro-4-pyridyl)tetrazolate 2D coordination polymers, that we report here for the first time, is 

such that an interaction between M(I) ions may potentially arise upon compression. Moreover, the 

isostructural relation between the silver (I) and copper (I) polymers (AgFPT, CuFPT, respectively), 

may be used to single out the different metallophilic attitude of the two metals (Table 4.1 and 4.2).  

The application of pressure is a way to probe the forces acting on atoms, within a crystal: the 

compression paths reveal either the softness of each bond (intermolecular interactions are typically 

softer than intra-molecular ones) and ‘hidden’ attractions (of electronic nature) that may favor one 

compression path over another. 
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4.2 Experimental section and computational details 

4.2.1 Synthesis of CuFPT and AgFPT 

To a 25-mL teflon-lined stainless steel vessel was added 0.5 mmol of the metal salt (CuI for 

CuFPT and AgNO3 for AgFPT, respectively); 1.25 mmol of 4-cyano-2-fluoropyridine and 0.5 

mmol of NaN3 in a CH3OH/H2O mixture (5:2, 10 mL). The mixture was than heated at 120 °C for 

72 h and cooled to room temperature with cooling ramp of 5 °C/h. The product was filtered and 

washed thoroughly with CH3OH (3 * 10 mL).  

 

4.2.1.1 AgFPT 

Anal. Calc. for C6H3N5AgF (fw = 271.98 gmol
–1

): C, 26.50; H, 1.11; N, 25.75, %. Found: C, 

26.48; H, 1.52; N, 26.09, %. IR (ATR) Figure 4.1. 

 

4.2.1.2 CuFPT 

Anal. Calc. for C6H3N5CuF (fw = 227.66 gmol
-1

): C, 31.65; H, 1.33; N, 30.76, %. Found: C, 

31.20; H, 1.45; N, 31.09, %. IR (ATR) Figure 4.1. 

 

Figure 4.1. ATR spectra of  AgFPT (red) and CuFPT (blue) in ambient conditions. 
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4.2.2 Single crystal X-ray diffraction and high-pressure  

Single crystals of AgFPT (Figure 4.2a) and CuFPT (Figure 4.2b) were isothermally compressed 

in a diamond-anvil cell (DAC)
29

 up to 6.15 GPa and 8 GPa, respectively. Additionally, AgFPT was 

remeasured with synchrotron radiation (λ  .5637 ) up to 7.94 GPa. Methanol:ethanol:water 

mixture (volume ratio 16:3:1) was used as a hydrostatic medium
30

 and a ruby sphere to calibrate 

pressure inside a cell.
31,32

 Single-crystal X-ray diffraction data were collected on a Supernova 

micro-source diffractometer with Mo anode and a CCD detector. Data were collected and reduced 

using CrysAlis software.
33

 Structures were solved and refined using ShelXT and ShelXL,
34

 

respectively in Olex2 interface.
35

 All hydrogen atoms were located from molecular geometry.  

 

 

Figure 4.2. Single crystals of (a) AgFPT and (b) CuFPT compressed in a DAC, a ruby sphere is 

visible by the gasket edge. 
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4.2.3 Computational details 

Optimizations of both atomic coordinates and lattice parameters were calculated with 

CRYSTAL14
36
, at density functional level of theory, using Becke’s 3 parameter exchange and the 

Lee-Yang-Parr non-local correlation functionals
37,38

 combined with semi-empirical dispersion 

correction with a scaling factor s6 equal to 0.6
39

. The copper [6s5p2d] and the silver [4s2p2d] basis 

set proposed by Doll and Harrison were used
40,41

, combined with relativistic pseudo-potential for 

Ag atom
42

. Double-zeta polarized Gaussian-type functions were used for the non-metallic atoms. 

Topological analysis was computed with TOPOND package implemented in CRYSTAL14
43

. 

Calculations in vacuo of selected crystal fragments were carried out with Gaussian16
44

, using the 

same exchange-correlation functional and dispersion correction, for sake of consistency with solid-

state computations. A 6-311G(d,p) basis-set was applied for every kind of atom but Ag, for which 

the def2TZVP was selected. AIMALL package (version 17.01.25)
45

 was used for the topological 

analysis of in vacuo electron densities. The coordinates of the fragments used for calculation in 

vacuo correspond to the geometries optimized in solid state. The terminations of peripheral ligands 

were capped with H atoms to reproduce electroneutrality. 

 

4.3 Results and discussions 

We synthetized AgFPT and CuFPT in solvothermal conditions, exploiting the in situ generation 

of the tetrazolate ligand.
46

 Indeed, they precipitate as single crystals from a water/methanol solvent 

mixture, starting from the 4-cyano-2-fluoropyridine and sodium azide, in the presence of the 

corresponding Ag(I) or Cu(I) salts. Both coordination polymers crystallize in the monoclinic P21/n 

space group, with two independent cations in the asymmetric unit (Figure 4.3): both are three 

coordinated to tetrazolate rings but differ in their relation with a fourth nitrogen atom. M(1) being 

close, but not jet σ-bound, to the π-system of a side-on tetrazolate (N(9)), while M(2) is bound, 

hence tetra-coordinated, to fluoropyridine (N(1)), both of adjacent ribbons. Actually, forgetting 

‘bond’ distances, the two metals share the very same trigonal pyramidal stereochemistry. 
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Figure 4.3. Asymmetric part of unit cells of AgFPT and CuFPT (left); relative change of the unit 

cell parameter (right), filled symbol: experimental value, empty symbol: theoretical value.  
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Table 4.1. Full crystallographic and experimental data of AgFPT at various temperature, pressure and radiation. 
Compound AgFPT AgFPT AgFPT AgFPT AgFPT AgFPT AgFPT 

Formula C12H6F2N10Ag2 C12H6F2N10Ag2 C12H6F2N10Ag2 C12H6F2N10Ag2 C12H6F2N10Ag2 C12H6F2N10Ag2 C12H6F2N10Ag2 

Formula weight 544.01 544.01 544.01 544.01 544.01 544.01 544.01 

Pressure (GPa) 0.0001 0.0001 1.0 2.0 3.15 5.0 6.15 

Temperature (K) 293 110 293 293 293 293 293 

Crystal system monoclinic monoclinic monoclinic monoclinic monoclinic monoclinic monoclinic 

Space group P21/n P21/n P21/n P21/n P21/n P21/n P21/n 

a (Å) 6.2014(14) 5.780(2) 6.1733(9) 6.1291(4) 6.0860(8) 6.0588(5) 6.0170(7) 

b (Å) 19.2121(14) 18.847(7) 19.074(4) 18.9185(17) 18.811(2) 18.7747(13) 18.668(2) 

c (Å) 12.844(5) 13.045(5) 12.325(14) 11.618(9) 11.228(10) 10.813(6) 10.643(11) 

β (°) 93.65(4) 93.725(5) 95.34(3) 96.52(2) 96.76(3) 97.066(18) 97.35(3) 

Volume (Å3) 1527.2(6) 1418.2(9) 1444.9(17) 1338.4(11) 1276.5(11) 1220.7(7) 1185.6(12) 

 / ’ 4/1 4/1 4/1 4/1 4/1 4/1 4/1 

Calculated density (g·cm-3) 2.366 2.548 2.501 2.700 2.831 2.960 3.048 

Absorption coefficient (mm-1) 2.609 2.809 2.758 2.977 3.121 3.264 3.361 

F(000) 1040 1040 1040 1040 1040 1040 1040 

Crystal size (max, mid, min) 0.1x0.05x0.02 0.1x0.05x0.02 0.1x0.05x0.02 0.1x0.05x0.02 0.1x0.05x0.02 0.1x0.05x0.02 0.1x0.05x0.02 

Radiation (Å) 0.71073 0.71073 0.71073 0.71073 0.71073 0.71073 0.71073 

2θ-range for data collection (°) 3.82 – 56.888 3.808 – 55.98 4.27 – 52.77  4.306 – 52.282 4.33 – 56.922 4.338 – 57.084 4.364 – 56.99 

Min/max indices: h,k,l -8/8, -25/25, -17/16 -8/8, -24/24, -17/16 -7/4, -22/14, -4/7 -4/7, -17,13, -5/3 -7/7, -25/25, -5/5 -7/7, -25/25, -4/5 -6/7, -25/25, -4/4 

Reflections collected/unique 15585/3829 14405/3426 2757/836 2643/625 6946/1001 6803/950 6555/864 

Rint 0.0431 0.0398 0.2826 0.1370 0.1859 0.1222 0.1478 

Completeness (%) 99.51 99.94 28.27 23.36 31.14 30.57 28.84 

Data/parameters/restrains 3829/0/235 3426/0/235 836/161/97 625/160/85 1001/160/43 950/160/85 864/160/85 

GooF on F2 1.015 1.022 1.080 1.066 1.128 1.098 1.125 

Final   /w   (I> σ(I)) 0.0415, 0.0729 0.0390, 0.0759 0.1457, 0.3142 0.0872, 0.1857 0.1208, 0.2835 0.1179, 0.2581 0.1067, 0.2476 

Final R1/wR2 (all data) 0.0754, 0.0820 0.0675, 0.0822 0.2992, 0.4039 0.1694, 0.2386 0.3017, 0.3933 0.2201, 0.3852 0.2489, 0.3688 

Weighting parameters w1, w2 0.027, 4.18 0.033, 3.12 0.165, 0.0 0.062, 1,01 0.2, 0.0 0.2, 0.0 0.2, 0.0 

Largest diff. peak/hole (eÅ-3) 2.31, -1.62 2.39, -1.56 1.15, -1.22 1.19, -1.05 1.59/-1.59 2.83/-1.53 2.15, -1.75 
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Compound AgFPT AgFPT AgFPT AgFPT AgFPT AgFPT 

Formula C12H6F2N10Ag2 C12H6F2N10Ag2 C12H6F2N10Ag2 C12H6F2N10Ag2 C12H6F2N10Ag2 C12H6F2N10Ag2 

Formula weight 544.01 544.01 544.01 544.01 544.01 544.01 

Pressure (GPa) 1.06 1.83 3.05 4.55 6.28 7.94 

Temperature (K) 293 293 293 293 293 293 

Crystal system monoclinic monoclinic monoclinic monoclinic monoclinic monoclinic 

Space group P21/n P21/n P21/n P21/n P21/n P21/n 

a (Å) 6.1859(4) 6.1394(6) 6.1177(5) 6.0604(5) 6.0237(6) 6.0049(5) 

b (Å) 19.1704(19) 19.0012(18) 18.9548(18) 18.8292(17) 18.7574(19) 18.7256(17) 

c (Å) 12.190(10) 11.694(6) 11.281(5) 10.894(6) 10.613(5) 10.474(7) 

β (°) 95.718(18) 96.788(19) 97.145(18) 97.335(6) 97.81(2) 98.12(2) 

Volume (Å3) 1438.3(11) 1354.6(7) 1298.0(6) 1232.9(6) 1188.0(6) 1166.0(8) 

 / ’ 4/1 4/1 4/1 4/1 4/1 4/1 

Calculated density (g·cm-3) 2.512 2.667 2.784 2.931 3.042 3.099 

Absorption coefficient (mm-1) 1.470 1.561 1.629 1.715 1.780 1.813 

F(000) 1040 1040 1040 1040 1040 1040 

Crystal size (max, mid, min) 0.1x0.1x0.15 0.1x0.1x0.15 0.1x0.1x0.15 0.1x0.1x0.15 0.1x0.1x0.15 0.1x0.1x0.15 

Radiation (Å) 0.56371 0.56371 0.56371 0.56371 0.56371 0.56371 

2θ-range for data collection (°) 5.716 – 49.77 4.394 – 50.296 3.408 – 50.5 3.432 – 49.998 3.444 – 49.58 3.45 – 50.31 

Min/max indices: h,k,l -8/8, -28/27, -6/6 -8/7, -26/26, -8/7 -8/8, -26/26, -7/8 -8/8, -25/25, -7/7 -8/8, -26/26, -7/7 -8/8, -27/27, -6/6 

Reflections collected/unique 2613/1415 2473/1509 2335/1459 2255/1394 2155/1355 2114/1202 

Rint 0.0522 0.0481 0.0425 0.0409 0.0399 0.0349 

Completeness (%) 42.31 47.98 48.49 48.67 49.19 45.15 

Data/parameters/restrains 2613/1415 1509/0/127 1459/0/188 1394/0/127 1355/0/116 1202/0/127 

GooF on F2 0.968 1.228 1.056 1.054 1.007 1.105 

Final   /w   (I> σ(I)) 0.0673, 0.1822 0.0994, 0.2858 0.0709, 0.1991 0.0851, 0.2347 0.0747, 0.2017 0.0698, 0.1954 

Final R1/wR2 (all data) 0.1237, 0.2220 0.1305, 0.3301 0.1038, 0.2291 0.1191, 0.2637 0.1109, 0.2437 0.0935, 0.2246 

Weighting parameters w1, w2 0.139, 0 0.2, 0 0.152, 0 0.175, 0 0.168, 0 0.149, 0 

Largest diff. peak/hole (eÅ-3) 0.87/-1.41 1.11/-2.09 0.74/-1.44 0.90/-1.79 0.75/-1.88 0.79/-1.49 
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Table 4.2. Full crystallographic and experimental data of CuFPT at various temperature and pressure. 
Compound CuFPT CuFPT CuFPT CuFPT CuFPT CuFPT CuFPT 

Formula C12H6F2N10Cu2 C12H6F2N10Cu2 C12H6F2N10Cu 2 C12H6F2N10Cu 2 C12H6F2N10Cu 2 C12H6F2N10Cu 2 C12H6F2N10Cu 2 

Formula weight 455.35 455.35 455.35 455.35 455.35 455.35 455.35 

Pressure (GPa) 0.0001 0.0001 1 2.5 4.15 6 8 

Temperature (K) 293 110 293 293 293 293 293 

Crystal system monoclinic monoclinic monoclinic monoclinic monoclinic monoclinic monoclinic 

Space group P21/n P21/n P21/n P21/n P21/n P21/n P21/n 

a (Å) 5.7705(4) 5.7723(2) 5.7470(2) 5.7227(2) 5.7026(2) 5.6901(3) 5.6617(5) 

b (Å) 18.8183(12) 18.761(3) 18.582(2) 18.3687(16) 18.2211(16) 18.095(2) 17.920(4) 

c (Å) 13.0141(8) 12.7976(18) 12.413(3) 11.847(2) 11.508(2) 11.230(3) 10.970(4) 

β (°) 93.668(1) 94.238(2) 95.296(7) 96.869(7) 97.741(7) 98.434(10) 98.857(17) 

Volume (Å
3
) 1410.32(6) 1382.1(3) 1320.0(3) 1236.4(3) 1184.9(2) 1143.8(3) 1099.8(5) 

 / ’ 4/1 4/1 4/1 4/1 4/1 4/1 4/1 

Calculated density (g·cm
-3

) 2.145 2.188 2.291 2.446 2.553 2.644 2.75 

Absorption coefficient (mm
-1

) 3.063 3.126 3.273 3.494 3.646 3.777 3.928 

F(000) 896 896 896 896 896 896 896 

Crystal size (max, mid, min) 0.15x0.08x0.03 0.15x0.08x0.03 0.15x0.08x0.03 0.15x0.08x0.03 0.15x0.08x0.03 0.15x0.08x0.03 0.15x0.08x0.03 

Radiation (Å) 0.71073 0.71073 0.71073 0.71073 0.71073 0.71073 0.71073 

 θ-range for data collection (°) 3.81 – 60.50 3.802 – 63.1 3.958 – 52.988 4.112 – 52.642 4.214 – 52.402 4.302 – 52.374 4.392 – 51.062 

Min/max indices: h,k,l -8/8, -26/26, -18/18 -8/8, -25/26, -18/18 -6/3, -11/13, -6/7 -6/3, -11/13, -6/7 -6/3, -11/13, -6/7 -6/3, -11/13, -5/6 -6/3, -11/14, -5/6 

Reflections collected/unique 20834/4191 15458/4089 2513/682 2363/641 2263/618 2186, 592 2078, 568 

Rint 0.0391 0.0312 0.0462 0.0453 0.0476 0.0473 0.0488 

Completeness (%) 99.53 99.15 24.88 25.51 25.99 25.89 27.75 

Data/parameters/restrains 4191/0/235 4089/0/235 682/0/85 641/0/85 618/0/85 592/0/85 568/0/85 

GooF on F2 1.037 1.049 1.063 1.11 1.107 1.097 1.089 

Final   /w   (I> σ(I)) 0.0556, 0.1102 0.0383, 0.0795 0.0674, 0.1499 0.0628, 0.1374 0.0564, 0.1230 0.0547, 0.1190 0.0532, 0.1262 

Final R1/wR2 (all data) 0.0770, 0.1163 0.0486, 0.0821 0.0874, 0.1642 0.0797, 0.1465 0.0735, 0.1332 0.0689, 0.1268 0.0709, 0.1363 

Weighting parameters w1, w2 0.041, 5.23 0.03, 3.51 0.059, 28.878 0.049, 22.283 0.043, 17.964 0.049, 13.223 0.074, 5.183 

Largest diff. peak/hole (eÅ
-3

) 2.07, -2.37 1.67, -1.28 0.6, -0.72 0.51, -0.53 0.46, -0.49 0.56, -0.38 0.59,-0.46 
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Figure 4.4. Compressibility of unit-cell parameters and volume of (a) AgFPT and (b) CuFPT. 

 

 

 

Figure 4.5. Crystal structures of (a) AgFPT and (b) CuFPT projected along [100] at ambient and 

high pressure. Red zig-zags show ribbons of molecules which approach to form Ag---Ag and Ag---

N for AgFPT and Cu---N for CuFPT, respectively. Yellow spheres are voids in structures calculated 

in Mercury (probe radius 0.2 Å, grid spacing 0.1 Å). 
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The hydrostatic compression of both species results in a significant contraction along the axis c, 

whereas the other crystallographic directions remain almost unaffected (Figure 4.3 and 4.4). This 

contraction is slightly more pronounced in AgFPT (18.5% at 7.94 GPa) than in CuFPT (16% at 8 

GPa). This response entails a considerably approach of adjacent zig-zag chains inherent to the 

shortening of inter-ribbon M(2)---M(2) distances (Figure 4.5). Noteworthy, the Ag(2)---Ag(2) 

distance becomes shorter than the sum of van der Waals radii already at 3.25 GPa
47

 eventually, at 

7.94 GPa, upon a 29% shortening, reach 2.986(6) Å, being only 0.05 Å longer than in metallic 

silver
17

. At variance, Cu(2)---Cu(2) contacts shorten by only 13% at 8 GPa, remaining well above 

the van der Waals limit. The inter-ribbon M(1)---N(9) contacts are also sensitive to compression 

(Figure 4.6), their shortening occurs simultaneously to that of M(2)---M(2), but competing with it 

(Figure 4.7), and is definitely stronger in CuFPT than in AgFPT. This is related to a different 

hardness of unit-cell parameters: b is twice softer than a in CuFPT, while equally compressible in 

AgFPT (Figure 4.4). Accordingly, the structural response to compression in the two coordination 

polymers, while consisting in a substantial ribbons approaching, see a different role of these two 

contacts: in the Cu derivatives prevails the shortening of M(1)---N(9) while in the Ag one prevails 

that of  M(2)---M(2).  

 

 

 

 

 

 

 

 

 



 

118 

 

 

 

 

Figure 4.6. Significant experimental (bold symbol) and theoretical (empty symbol) inter-atomic 

distances. Estimated standard uncertainties are shown. 
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Figure 4.7. Compressibility of (a) Ag---Ag and (b) Cu---Cu interactions in a function of 

temperature (left) and pressure (right). 

 

Table 4.3. Percentage difference of computed cell parameters. 

 

Pressure (GPa) a b c  Volume

AgFPT 

1 -0.7 0.1 -4.5 1 -5.3 

2 -1.3 0.3 -7.8 1.6 -9 

3.15 -1.6 -0.9 -9.5 1.3 -12 

5 -2.7 -1.1 -12.2 2.7 -15.9 

6.15 -3.3 -1.3 -13.5 3 -17.8 

8 -4.5 -1.9 -14.3 3.8 -20.3 

       

CuFPT 

1 -0.3 0.2 -4.3 1.7 -4.7 

2.5 -0.8 -1 -6.7 2.5 -8.8 

4.15 -1.2 -1.4 -9.4 3.4 -12.3 

6 -1.7 -1.8 -11.6 3.9 -15.3 

8 -1.8 -2.1 -14.2 3.8 -18.1 
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There are two kind of M(1)---M(2) contacts: the inter-ribbons, which, upon compression, 

become more and more bridged by the tetrazolate nitrogen atom N(9), and the intra-ribbons which 

are η
2
-bridged to two tetrazolate ligands in a flat six-membered ring. Both undergo significant 

variation upon compression due to conformational modifications inherent to approaching ribbons 

and not interpretable as incipient metallophilic interactions. Hence, instead of cuprophilic 

interactions, M(1) centers show a much stronger affinity for tetrazolate rings (Figure 4.6, Table 4.4 

and 4.5).  

Plausible metallophilic interactions solely occur between ribbons, involving two M(2) cations. 

Despite a somewhat low quality of the diffraction, especially that of AgFTP at high pressures, the 

overall experimental picture is coherent with our periodic DFT calculations (Figure 4.3, 4.6 and 

Table 4.3). The main discrepancy concerns the Cu(1)-N(9) distances, which are predicted much 

shorter than experimentally measured, especially at ambient pressure. This is in part due to the 

temperature, which that softens even more the weaker interactions whereas it is not included in the 

model. Moreover, Cu atoms are associated with large atomic displacement parameters, prolated 

perpendicularly to the layers, speaking for a dynamical disorder. On increasing pressure, however, 

the atomic displacement of Cu atoms decreases, as it is expected by the tighter packing.  

DFT calculations enable a detailed analysis of the chemical bonding through the topological 

analysis of the electron density distribution
48

. In the optimized structures, both M(1) and M(2) form 

four bond paths. While this is obvious for M(2), it is not surprising for the substantially trigonal 

M(1) (see Figure 4.3) since also weak intermolecular contacts can afford bond paths. Indeed, M(1)--

-N(9) is much longer and associated with much smaller electron density at the bond critical point 

(bcp) and smaller electron delocalization. The ambiguous stereochemistry of M(1) emerges more 

clearly from the calculated atomic graphs (Figure 4.8) which indicate three valence charge 

concentrations
49

 (CCs) for M(1) (like a trigonal metal) and four ligand opposed concentrations for 

M(2), in keeping with a distorted trigonal pyramid. The tetrazole nitrogen atom N(9) orients one of 

its three charge concentrations mainly toward M(2), though slightly shifted in direction of M(1) 

(Figure 4.8).  
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Figure 4.8. Atomic graph of M(1), N(9) and M(2) at ambient and high pressure, green points = 

critical points in the Laplacian representing positions of charge concentration; the angle M(1)-N(9)-

CC, for M=Ag equals to 66.7 ° at 0 GPa and 65.7 ° at 8 GPa, for M=Cu equals to 68.7 ° at 0 GPa 

and 73.2 ° at 8 GPa.  

This behavior is characteristic of semi-bridging atoms,
50

 at variance from symmetric bridges, 

that feature a bisecting CC, or from genuinely bidentate atoms, that form two distinct CCs. The 

Ag(1)-N(9)-CC angle slightly decreases with pressure whereas Cu(1)-N(9)-CC increases (Figure 

4.8). The most interesting analysis concerns the electron density along M(2)---M(2) (Figure 4.9a). 

Once again, the two compounds differ: AgFPT features a bcp, whereas CuFPT displays only a 

ring critical point (rcp) and much lower electron density. The compression induces in AgFPT an 

even larger electron density at the bcp. At 8 GPa (with a predicted Ag(2)---Ag(2) distance of 3.06 

Å), (rbcp) = 0.14 eÅ
-3

, a value very close to typical electron density associated with covalent M-M 

(ca. 0.2-0.3 eÅ
-3

)
50,51,52

. On the other hand, Cu(2)---Cu(2) remains longer (3.51 Å at 8 GPa) and the 

intermediate point remains a rcp with (rrcp) << 0.1 eÅ
-3

 (see Figure 4.9a and Table 4.5).  

The Laplacian of the electron density,  
2
 

53,54
, does not show enormous difference between the 

two coinage metals upon compression (see Figure 4.10). On the other hand, the delocalization 

indexes δ(X,Y)
55

 clearly address the Ag(2)---Ag(2) bond formation, associated with the share of 0.1 

electron pairs at 8 GPa (Figure 4.9b, 4.10), one order of magnitude larger than Cu(2)---Cu(2) or 

Cu(1)---Cu(2).  

Out of the five different M---N contacts the three within the trigonal plane are harder than the 

two out of that plane both considering distances and delocalization indexes  variations (Table 4.6).  

The intra-ribbon Ag(2)---N(1) and, to a lesser extent, Cu(2)---N(1) the distances significantly 

shorten upon compression. While the three M---N in the trigonal plane are far less affected by 

compression. However, these variations are due to conformational modifications inherent to the 

approaching ribbons but not interpretable as significant changes in the nature of the pertinent bonds. 
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The inter-ribbons M(1)---N(9) is significantly strengthened for M=Cu (Figure 4.9b), 

confirming the affinity of this metal with nitrogen atoms. On the other hand, the electron 

delocalization of Ag(1)---N(9) is just slightly increased.  

Notably, even if the rotation of the CC (Figure 4.8) could suggest that M(1)---N(9) interaction 

becomes stronger for Ag than for Cu, the delocalization indices behave oppositely. Indeed, such 

rotation correlates with (is induced by) the formation of the metallophilic interaction. 

 

 

 

Figure 4.9. Theoretical electron density (a) in significant critical points and delocalization indexes 

(b) at different pressure; intra= intra-layer, inter=inter-layer. 
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Table 4.4. Theoretical topological analysis of AgFPT. 

Pressure (GPa) CP type   (e Å
-3

)  
2
  (e Å

-5
)   dX-Y (Å) dX-bcp (Å) dY-bcp (Å) 

0 

Ag(2)-Ag(2) (3,-1) 0.028 0.27 243
a 

3.942 1.971 1.971 

Ag(2)-Npy (3,-1) 0.24 3.24 0.07 2.544 1.306 1.238 

Ag(1)-N(9)tz (3,-1) 0.16 2 0.12 2.718 1.419 1.3 

Ag(2)-N(9)tz (3,-1) 0.37 5.73 0.02 2.327 1.195 1.132 

         

1 

Ag(2)-Ag(2) (3,-1) 0.04 0.41 1.46 3.671 1.836 1.836 

Ag(2)-Npy (3,-1) 0.24 3.18 0.07 2.549 1.31 1.238 

Ag(1)-N(9)tz (3,-1) 0.17 2.14 0.12 2.69 1.406 1.284 

Ag(2)-N(9)tz (3,-1) 0.38 5.93 0.03 2.315 1.189 1.126 

         

2 

Ag(2)-Ag(2) (3,-1) 0.06 0.53 0.71 3.517 1.758 1.758 

Ag(2)-Npy (3,-1) 0.25 3.28 0.07 2.535 1.305 1.23 

Ag(1)-N(9)tz (3,-1) 0.18 2.25 0.12 2.67 1.397 1.274 

Ag(2)-N(9)tz (3,-1) 0.38 6.07 0.03 2.307 1.185 1.122 

         

3.15 

Ag(2)-Ag(2) (3,-1) 0.08 0.69 0.57 3.376 1.688 1.688 

Ag(2)-Npy (3,-1) 0.26 3.45 0.06 2.512 1.296 1.216 

Ag(1)-N(9)tz (3,-1) 0.19 2.35 0.12 2.652 1.388 1.264 

Ag(2)-N(9)tz (3,-1) 0.39 6.24 0.04 2.296 1.18 1.116 

         

5 

Ag(2)-Ag(2) (3,-1) 0.1 0.88 0.29 3.24 1.62 1.62 

Ag(2)-Npy (3,-1) 0.27 3.6 0.06 2.494 1.289 1.205 

Ag(1)-N(9)tz (3,-1) 0.19 2.4 0.13 2.645 1.385 1.26 

Ag(2)-N(9)tz (3,-1) 0.4 6.46 0.04 2.283 1.175 1.108 

         

6.15 

Ag(2)-Ag(2) (3,-1) 0.11 1.04 0.21 3.15 1.575 1.575 

Ag(2)-Npy (3,-1) 0.27 3.69 0.06 2.483 1.284 1.199 

Ag(1)-N(9)tz (3,-1) 0.19 2.44 0.13 2.64 1.383 1.257 

Ag(2)-N(9)tz (3,-1) 0.41 6.58 0.05 2.276 1.172 1.104 

         

8 

Ag(2)-Ag(2) (3,-1) 0.14 1.24 0.14 3.056 1.528 1.528 

Ag(2)-Npy (3,-1) 0.28 3.84 0.06 2.467 1.277 1.189 

Ag(1)-N(9)tz (3,-1) 0.2 2.51 0.13 2.63 1.378 1.252 

Ag(2)-N(9)tz (3,-1) 0.41 6.71 0.05 2.268 1.169 1.099 
a Not reasonable value, probably due to the weakness of the Ag-Ag interaction at ambient condition.  
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Table 4.5. Theoretical topological analysis of CuFPT. 

Pressure (GPa) CP type   (e Å
-3

)  
2
  (e Å

-5
)   dX-Y (Å) dX-bcp (Å) dY-bcp (Å) 

0 

Cu(2)-Cu(2) (3,+1) 0.01 0.2 
 

4.2 2.1 2.1 

Cu(2)-Npy (3,-1) 0.34 5.14 0.07 2.236 1.069 1.167 

Cu(1)-N(9)tz (3,-1) 0.18 1.67 0.11 2.552 1.258 1.294 

Cu(2)-N(9)tz (3,-1) 0.45 8.05 0.02 2.094 1.008 1.086 

         

1 

Cu(2)-Cu(2) (3,+1) 0.01 0.23 
 

4.094 2.047 2.047 

Cu(2)-Npy (3,-1) 0.35 5.37 0.07 2.221 1.063 1.158 

Cu(1)-N(9)tz (3,-1) 0.2 1.91 0.11 2.503 1.23 1.272 

Cu(2)-N(9)tz (3,-1) 0.45 8.16 0.02 2.09 1.007 1.084 

         

2.5 

Cu(2)-Cu(2) (3,+1) 0.02 0.29 
 

3.959 1.98 1.98 

Cu(2)-Npy (3,-1) 0.36 5.53 0.07 2.21 1.06 1.151 

Cu(1)-N(9)tz (3,-1) 0.22 2.32 0.1 2.435 1.193 1.242 

Cu(2)-N(9)tz (3,-1) 0.47 8.51 0.02 2.077 1.001 1.076 

         

4.15 

Cu(2)-Cu(2) (3,+1) 0.02 0.35 
 

3.825 1.913 1.913 

Cu(2)-Npy (3,-1) 0.36 5.58 0.06 2.205 1.059 1.146 

Cu(1)-N(9)tz (3,-1) 0.24 2.62 0.1 2.396 1.173 1.223 

Cu(2)-N(9)tz (3,-1) 0.48 8.86 0.02 2.064 0.996 1.068 

         

6 

Cu(2)-Cu(2) (3,+1) 0.03 0.43 
 

3.679 1.84 1.84 

Cu(2)-Npy (3,-1) 0.37 5.59 0.06 2.202 1.059 1.143 

Cu(1)-N(9)tz (3,-1) 0.25 2.88 0.1 2.367 1.159 1.208 

Cu(2)-N(9)tz (3,-1) 0.49 9.25 0.02 2.051 0.99 1.06 

         

8 

Cu(2)-Cu(2) (3,+1) 0.04 0.54 
 

3.511 1.756 1.756 

Cu(2)-Npy (3,-1) 0.37 5.59 0.06 2.2 1.059 1.14 

Cu(1)-N(9)tz (3,-1) 0.27 3.09 0.1 2.344 1.149 1.195 

Cu(2)-N(9)tz (3,-1) 0.5 9.56 0.03 2.041 0.986 1.055 
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Table 4.6. Theoretical delocalization indexes and atomic charges of AgFPT and CuFPT. 

δ(X,Y) Ag 
 

Cu 

Pressure (GPa) 0 2 6.15 8 
 

0 2.5 6 8 

M(2)-M(2) 0.017 0.047 0.101 0.122 
 

0.001 0.003 0.006 0.01 

M(1)-M(2) interlayer 0.048 0.045 0.039 0.038 
 

0.019 0.023 0.024 0.022 

M(1)-M(2) intralayer 0.013 0.014 0.013 0.014 
 

0.005 0.005 0.005 0.006 

M(1)-N(9) interlayer 0.148 0.153 0.152 0.152 
 

0.139 0.172 0.189 0.193 

M(2)-N(9) interlayer 0.358 0.364 0.373 0.373 
 

0.4 0.406 0.418 0.422 

          
Q Ag 

 
Cu 

Pressure (GPa) 0 2 6.15 8 
 

0 2.5 6 8 

M(1) 0.614 0.618 0.629 0.633 
 

0.766 0.769 0.774 0.776 

M(2) 0.638 0.638 0.638 0.64 
 

0.799 0.797 0.795 0.793 

N(9) -0.129 -0.127 -0.127 -0.126 
 

-0.172 -0.176 -0.177 -0.177 
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0 GPa 

 

8 GPa 

 

0 GPa 

 

8 GPa 

 

Figure 4.10. Maps of the theoretically calculated Laplacian of the electron density in the plane 

M(2)-M(1)-M(2) and delocalization indexes for M---M interactions; δ M(2)---M(2) is highlighted in 

red. Contours value of the Laplacian (in a.u.) are reported in blue. 
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4.4 Conclusions
 

In this chapter, we reported the first example of a metallophilic interaction induced by 

compression and we discuss on the difference between two Cu(I) and Ag(I) isomers, which in spite 

of forming isostructural polymers at ambient conditions behave differently at high pressure. In 

keeping with previous studies,
56,57,58

 a pressure in the range 0-10 GPa is an extraordinary tool to 

learn more on the nature of some elusive bonding, like the metallophilic one. 

In AgFTP, we observe both the establishing of a metallophilic interaction and the strengthening 

of the weakest Ag---N coordination (thus expanding the coordination at the metals), whereas in 

CuFTP only the latter occurs. This trend reveals not only a lower repulsion between Ag(I) cations, 

compared to Cu(I), but also a favorable repolarization of Ag(I), which enables larger electron 

sharing with another Ag(I).  

Upon all the topological descriptor of the electron density, the delocalization index δ(X,Y) was 

crucial to reveal this elusive interaction. The analysis of    and  
2
  showed a notable difference 

between the two coinage metals, particularly the M(2)---M(2) are topologically different. 

Nevertheless, δ(X,Y) address and quantify the notable increment in the electron sharing 

between two Ag(2) atoms. Moreover, the delocalization index could be calculated also for other 

metal pairs, even if not connected by bcp, and used to reveal their metallophilic attitude. 
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Chapter 5 

 

Metal-Organic Frameworks as Low Dielectric Constant 

Materials  

 

5.1 Introduction 

5.1.1 Low dielectric Constant Materials 

The constant miniaturization of microelectronic devices towards smaller and smaller scale 

requires low dielectric constant materials to guarantee performance and reduce unwanted processes. 

Increment of transistor density augmented the operating speed and computing performance. 

However, cross-talk and noise are becoming more and more important issues in transistor 

technology. The impact of delay is indeed inherently correlated to the miniaturization into 

nanometer regimes. In this context, the usage of low dielectric constant materials as interlayer 

materials can reduce the noise.
1
 Moreover, interwire dielectrics materials are also crucial in the 

dynamics of power dissipation.
2,3

 The impact of dielectrics on the performance of microelectronics 

devices is evident and the research in this field is vital.  

The dielectric constant or relative permittivity, r (or k depending on the convention) is a 

dimensionless quantity describing the behavior of a material exposed to an external electric field, in 

particular its polarization. In the following work, we will refer to the relative permittivity of a film, 

or better, of a disk-shaped pellet, which is expressed as follows: 

 

 r  
Cd

  A
                   (5.1) 

 

Where d is the thickness of the film, C is the capacitance, A is the area of the electrode and 0 is 

the dielectric permittivity in vacuum.  
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The static dielectric constant is related to the polarizability () by the equation 

 

    
(   )

 
                  (5.2) 

 

Where V is the considered volume. The polarizability of a molecular system describes the 

deformability of its electron distribution.  

From equation (5.2), it emerges that the higher the polarizability, the higher the dielectric 

constant. Consequently, an efficient insulator must be poorly polarizable. Because the polarizability 

of a material roughly depends on the amount of electrons, porous dielectric materials
2
 are good 

candidates for low-dielectric constant materials. 

Indeed, a correlation exist between degree of porosity and dielectric constant
2,4

 (Figure 5.1). 

Nevertheless, characterization and evaluation of porosity is not always easy and simplified 

assumptions have to be introduced.
5
  

 

Figure 5.1. Dielectric constant versus total porosity for different SiOCH materials (reference 2). 

Silica based systems have been the most used and efficient low dielectric constant materials so 

far. SiO2 is chemically and thermally stable, but all kinds of silica feature a quite dense structure. 

Indeed, the dielectric constant of quartz is ca. 4. On the other hand, amorphous silicas are much 

less dense (2.1 – 2.3 g/cm
3
) therefore their dielectric constant is spread in a range between 4 and 

2.15.  
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The quite high value of quartz and silica is strictly related to the notable polarizability of Si-O. 

To overcome this problem and lower the dielectric constant, oxygen have been substitute with 

fluorine in the so called F doped silica glassed (FSG).
6
 The Si-F bond is indeed less polarizable. 

Another solution is doping with carbon, introducing for example CH3 group.
7
 Then, the 

evolution of insulators in microprocessors moved toward organosilicate porous materials SiCOH, 

having a dielectric constant range of 2.2 – 2.7.
8–10

  

Porosity in this class of insulators is anyhow difficult to control and characterize, moreover, 

porosity weakens mechanical stability.
11,12

   

In this context, metal-organic frameworks (MOFs) have been recently proposed as solution in 

the research of new low dielectric constant materials.
13

 Their notable mechanical and thermal 

stability are fundamental requirements for applications in microelectronic devices.
14

 Moreover, the 

high and uniform porosity, which characterize this class of (crystalline) materials, makes them 

particularly promising as next generation insulators.
15

 

 

5.1.2 Metal-Organic Frameworks  

Metal-organic frameworks (MOFs) are a class of Porous Coordination Polymer (PCP) 

with permanent and uniform porosity
16

, widely studied during last decades.
17

 They are 

mainly crystalline materials, hence easily characterizable through single crystal/powder x-

ray diffraction. A material in crystal form is normally preferable for a more efficient control 

of the properties.  

MOFs are synthetized by self-assembling of metal ions or clusters (nodes) with organic 

ligands (linkers). The combination of metallic nodes and organic linkers induced the 

definition of hybrid inorganic-organic material. The nature of the node is crucial for the 

dimensionality of the network. Linkers connect at least two nodes, allowing the formation of 

polymeric structures.
18,19

 An important part of the linker is the spacer¸ which determines the 

size and the rigidity of the frame (Figure 5.2).  

An important concept in the chemistry of MOFs is the one of the secondary building units 

(SBUs).
20

 Here is reported the definition given by Eddoudi et al.: ”Molecular complexes and 

clusters entities in which ligand coordination modes and metal coordination environments 

can be utilized in the transformation of these fragments into extended porous networks using 

polytopic linkers”.
21
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Figure 5.2. Left side, schematic representation of nodes, spacers and linkers; right side, the 

same representation using balls-and-sticks.  

 

 

Figure 5.3. Combination of SBUs with linkers.  
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Three generations of MOFs can be identified based on their behavior upon 

absorption/desorption of guest molecules.
22

 The first generation has cavities, filled with 

solvent molecules or ions, which collapse when guests are removed. Second generation, 

combining rigid secondary building units and organic linkers, possesses frameworks able to 

maintain the porosity even in the absence of guests. In this way, it is possible to design and 

predict the reticular structure by selecting the appropriate molecular building blocks (Figure 

5.3).
23

 For example, the combination of the cluster Zn4O(CO2)6, which is a SBU with 

octahedral connection, was used by Eddaodi et al. in combination with carboxylate based 

linkers to synthetize a wide number of isoreticular 3D MOFs (IRMOFs).
24

 In Figure 5.4, 

MOF-5, IRMOF-6 and IRMOF-8 are shown. Guest molecules play as well an important 

templating role in the building of the network.
25

 

Finally, third generation, also known as breathing MOFs, has flexible structures with 

guest dependent pore sizes.
26

   

Moreover, four classes of porosity can be identified: 0D or cavities, 1D or channels, 2D 

or Layers and 3D or intersecting channels (Figure 5.5).
27

  

Guests can be evacuated from the framework, in a process called activation. MOFs can 

lose guest molecules without degradation of the frame in some cases.
28

 The activation is 

usually carried out heating the sample and/or applying vacuum. An activated MOF may be 

ready to host new (perhaps different) molecules. For this reason, MOFs have been 

extensively studied for applications in fields like gas storage
29

, catalysis
30,31

, sensing
32,33

, 

biomedicine
34

, electronic/opto-electronic
35

 and others.
36–39

  

Properties like high stability, uniform porosity, extended surface area and low density are 

central in electronic device’s applications. Indeed, many predictions and theoretical studies 

support the idea of using metal-organic porous materials as insultors
40–42

, but from the 

experimental point of view only few progresses occurred.
43–45

 

The use-oriented research for their application as ultra-low dielectric constant materials is 

indeed still in its infancy. 
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Figure 5.4. Pores size of (A) MOF-5, (B) IRMOF-6 and (C) IRMOF-8. 

 

 

Figure 5.5. Representation of the different dimensionality (0D, 1D, 2D and 3D) of porosity.  

 

5.1.3 Azolate based MOFs 

Among the virtually infinite number of MOFs, Metal-Azolate Frameworks (MAFs) are 

remarkable for their high thermal and chemical stability
46–48

, and so, suitable in the microelectronic 

field of application. In MAFs, the linker is an organic molecule with an azole group, used for the 

coordination to a metal center. An Azole is a five-member unsaturated N-heterocycle, with up to 

four nitrogen atoms. In Figure 5.6 are reported azole/azolate rings with increasing number of 

nitrogen atoms all sharing the sp
2
 hybridization.  
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The more are the nitrogen atoms, the higher is the polytopic character of the linker and the lower 

its basicity. In particular, tetrazolate ring display a large number of coordination opportunities 

(figure 5.7). The deprotonation of the ring has the effect of both making one N atom available, thus 

enhancing the topicity of the ligand, and increasing its basicity, strengthening the coordination with 

metal ions. Basicity and high number of donor atoms make azolate rings exceptional linkers for 

coordination polymers and porous materials.
47,49

 The acidity of tetrazole is comparable with that of 

carboxylic acids, so the deprotonation is easily induced. In MAFs, the metal centers are normally 

saturated by the interactions with the azolate ligands, thus providing exceptional chemical 

stabilities.
47

 This is at variance from carboxylate-based MOFs, where guest molecules often interact 

with the unsaturated metal center.
50

 Moreover, MAFs have usually a weak absorption affinity, due 

to a notable hydrophobicity of the azolate ligands.
51

  

ZIFs (zeolitic imidazolate frameworks) are probably the most famous class of azolate 

frameworks.
46

 The extended surface area (1.810 m
2
/g) and notable thermal stability (up to 550 °C) 

of ZIF-8, combined to its chemical resistance, promoted the investigation of this material for 

application in microelectronics devices.
45

  

Tetrazolate ligands have recently attracted attention in the field of porous coordination polymers 

because of their coordination behavior and their easy and environment friendly synthesis from 

nitrile derivates.
46,49

 This synthesis allows one to obtain many poly-tetrazolate ligands with different 

spacers having different stereochemical flexibilities and properties.
53

 For example, Long and co-

workers obtained several highly porous and stable MOFs based on 1,4-benzeneditetrazolate with 

interesting hydrogen storage properties.
54

 Tetrazolates have flexible and unique coordination 

modes, which are promising for stable, highly porous materials. In fact, MOFs based on tetrazolate 

ligands have been recently studied for their luminescence
55–58

 and magnetic
59

 properties and for 

application in CO2 absorption
60

, gas separation
61

 and catalysis
62

.  
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Figure 5.6. Imidazole, pyrazole, 1,2,4-triazole, 1,2,3-triazole, tetrazole and the corresponding 

deprotonated anion (azolates or azolides). 

 

 

 

Figure 5.7. Possible coordinative modes of the tetrazolate ring. 
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5.2 2D network Metal Azolate-Frameworks, a novel low dielectric constant 

materials 

 

In order to verify and quantify the performances of azolate based MOFs as low 

dielectric constant materials, we selected a bi-dimensional MOF based on the linker L=5-(4-

pyridyl)tetrazolate and solvated with ethanol, Cu(L)·2EtOH (1).
55

 It presents a network of 

two-dimensional layers stacked through π-π interactions. Copper atoms are planar-

coordinated with three different rings: one pyridine and two tetrazolate. The linkers are 

planar, which favor the stacking of the layers. One-dimensional pores, filled by ethanol 

molecules, extend perpendicularly with respect to the layers. Two different kinds ethanol 

molecules are present: one is hydrogen-bond coordinated to the tetrazolate ring, specifically 

with the lateral nitrogen not coordinated to a metal center, whereas the second one interacts 

with the first molecule of ethanol through the hydroxyl group. The interlayer distance is of 

3.14 Å (at 100 °K).
56

  

The effects of the activation of the MOF on the electronic properties and the nature of 

the interatomic interactions were investigated both via high resolution x-ray diffraction 

experiments and theoretical computations. The evaluation of the dielectric constant was 

carried out through impedance spectroscopy. 

 

5.2.1 Synthesis of 1 

1 was synthesized according to an improved procedure with respect to that reported by 

Wang et al.
55

: in a 23-mL Teflon-lined autoclave, a mixture of CuI (0.5 mmol, 0.095 g), HL 

(1 mmol, 0.147 mg), EtOH (10 ml) and NH3·H2O (25%, 2 ml) was stirred for about 10 min 

in air, closed, heated at 120 °C for 72 h and cooled to RT in about 20 h (5 °C/h). With this 

procedure, we were able to enhance the purity of the product, containing mostly yellow 

crystals, used for single crystal X-ray diffraction. The elemental analysis (H, C, N) for 1 

(C28H28N20O2Cu4, Mw = 930.86 g/mol), was carried out: Anal. Calc. (%) H: 3.03; C: 36.16, 

N: 30.09. Found (%) H: 2.77, C: 35.69, N: 29.94. All the solvents and the reagents were 

obtained from commercial suppliers and used as received. Elemental analyses were obtained 

with a Perkin Elmer CHN Analyzer 2400 Series II. 
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a b 

  

c d 

Figure 5.8 a=single layer, b=packing motif along the a cell parameter, c=labels of the upper 

layer, d=labels of the lower layer. 

 

5.2.2 Thermogravimetric analysis 

The thermogravimetric (TG) analysis on single crystals on 1 (Figure 5.9) showed that 

the guest molecules of ethanol are released between 50 °K and 280 °K, corresponding to a 

weight loss of 8.98% (whereas the theoretical value is 9.90%, assuming a site-occupation of 

100%). The decomposition started at 280 °C and finished at 340 °C.  
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A plateau was visible in the range of temperature between 255-280 °C. 

Thermogravimetric analysis was performed with a TGA/SDTA 851e instrument under N2, 

from 30 °C up to 650 °C, increasing the temperature with a rate of 5 °C min
-1

. 

 

 

Figure 5.9 TGA of single crystals of 1. 

 

   

Figure 5.10 From the left, 1, 2a and 2b. 
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The desolvation of the single crystals of 1 was carried out following two strategies: a) 

the sample was kept in a Büchi for    h at the temperature of     °C and pressure of     
-2

 

mbar and then 4 h at 230 °C at the same pressure; b) the sample was kept for 1 h at 150 °C 

and then 1.5 h at 265 °C, at the pressure     
-2

 mbar. Schlenck were open under inert 

atmosphere of N2 and the samples were immediately immersed in Parabar 10312 to protect 

them from refilling of particles present in the atmosphere. After the desolvation, crystals of 

both samples turned to a darker color, which may depend on the degree of desolvation 

(Figure 5.10). The crystallinity was retained and the products (hereinafter named 2) were 

then characterized via single-crystal x-ray diffraction.  

 

5.2.3 Powder X-ray diffraction 

Powder diffraction experiments were performed, using Cu-Kα radiation (λ    .54 8 Å) 

on a vertical-scan Bruker AXS D8 Advance diffractometer in θ:θ mode, equipped with a 

Goebel Mirror and a linear Position Sensitive Detector (PSD), with the following optics: 

primary and secondary Soller slits, 2.3° and 2.5°, respectively; divergence slit, 0.1°; 

receiving slit, 2.82°. Generator setting: 40 kV, 40 mA. The nominal resolution for the 

present set-up is 0.08° 2θ (FWHM of the α  component) for the LaB6 peak at about 21.3° 

(2θ).  

A pellet of diameter of 25 mm was prepared from grinded single crystals of 1 and 

pressed of applying a force of     
5
 N. The diffraction patterns at RT of the pellet of 1 were 

acquired in the 5-90° 2θ range, with Δ θ = 0.02° and exposure time 2 s/step. Le Bail 

refinements on the collected data have been performed with the aim of monitoring the 

intensity of the (2,-2,-2) hkl reflection at 27.8 2θ, in order to evaluate possible preferred 

orientation phenomena. The preferential orientation was indeed confirmed, and the intensity 

of (2,-2,-2) could be model only assuming the preferential orientation along this plane, and 

the refinement produced a parameter of 0.27. 

 

5.2.4 Single crystal X-ray diffraction 

X-ray diffraction data were collected on an Agilent SuperNova diffractometer, equipped 

with a MoK microsouce (50 kV and 0.8 mA), Al-filtered
63

. Data were collected at T = 223 

K and 173 K respectively for 2a and 2b using an Oxford cryosystem 700, with -scans of 
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1.0° were adopted. A total of 3066 frames with exposure times of 10, 30 and 60 seconds 

were collected for 2a, 1810 frames for 5, 10, 17.5 and 25 seconds for 2b. CrysAlisPro 

software, Version 1.171.37.35g
64

, was used to perform the data collection and reduction, 

then data were corrected for absorption (analytically) and diffraction anisotropies using 

ABSPACK
64

 routine of Crysalis.  

The structure refinement was performed using ShelX package
65

 and results are reported 

in Table 5.1. Some residual electron density was find in the pores of the solved structure, 

due to an incomplete activation of the MOF. Nevertheless, it was not possible to remove 

these residuals by modeling solvent molecules in their sites. Therefore, the data were treated 

with SQUEEZE method
66

. The electron count and the potential solvent accessible void 

volume were equal to 116 / 817 Å
3
 and 85/815 Å

3
 respectively for 2a and 2b. It was 

observed that the degree of desolvation was much more affected by the temperature rather 

than the time of treatment. Moreover, a potential correlation between color of the crystal and 

degree of desolvation is visible, probably due to a change of the refractive index. 

Conventional and multipolar refinement are reported in Table 5.1. During the experiments 

we observed that on lowering temperature, many peaks became notably broadened. This 

phenomenon appeared at different temperature for 2a and 2b, but it was reversible, as peaks 

narrowed upon temperature increase. Because of that, it was not possible to carry out single 

crystal x-ray diffraction experiments below 223 K for 2a and 173 K for 2b, without 

compromising the quality of the data.  

Very few reflections below resolution of 0.7 Å were measured, probably due to a loss of 

crystallinity during the thermal treatment. ShelX
67

 and XD
68

 programs were used 

respectively to generate the spherical and aspherical models. Moreover, because of the 

notable improvement of residual distribution, aspherical refinement was carried out on 

structure factors after the treatment with SQUEEZE.
66

 This choice was also motivated by the 

fact that most of the residual density from the retained solvent molecules was spread in the 

channels, and not localized near to the tetrazolate rings. SQUEEZE
66

 modifies the observed 

structure factors by removing the contribution of unmodeled solvent molecules. The 

program defines a solvent accessible volume in the unit cell using a probe sphere of fixed 

radius (usually 1.2 Å). Then decomposes the calculated structure factors in two parts one 

computed from the main structural model the other computed by considering as many 

fractional electrons as necessary in the solvent region iteratively extracted from difference-

electron density maps. Upon convergence, the electron density of the disordered solvent is 
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evaluated. This enables to obtain new structure factors free from the solvent contribution. Of 

course, this correction strongly depends on the way in which the solvent accessible region is 

estimated. For routine structure determination, this procedure works quite well and it offers 

in general a more reliable structural model. However, for accurate charge density modeling 

it can be risky, because some electron density belonging to the atoms close to the solvent 

region could be truncated, thus affecting the proper refinement of radial functions of the 

multipolar model. 
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Table 5.1.  Crystal data and structure refinement for 2a and 2b after the treatment with SQUEEZE. 

 
2a 2b 

Empirical formula C12 H8 Cu2 N1 C12 H8 Cu2 N1 

Formula weight 419.36 419.36 

Temperature 223.0(1) K 173.0(1) K 

Wavelength 0.71073 Å 0.71073 Å 

Crystal system Monoclinic Monoclinic 

Space group I 2/a I 2/a 

Unit cell dimensions a = 7.17560(10) Å a = 7.1420(2) Å 

 
b = 23.1347(2) Å b = 23.1389(2) Å 

 
c = 20.8684(3) Å c = 20.8843(3) Å 

 
= 99.324(2)°. = 99.328(2)°. 

Volume 3418.50(8) Å
3
 3406.53(12) Å

3
 

Z 8 8 

Density (calculated) 1.630 Mg/m
3
 1.635 Mg/m

3
 

Absorption coefficient 2.504 mm
-1

 2.513 mm-1 

Crystal size 0.303 x 0.178 x 0.066 mm
3
 0.369 x 0.154 x 0.147 mm3 

Reflections collected/ unique 116537 / 14414 72333 / 14311 

Data / restraints / parameters 14414 / 0 / 221 14311 / 0 / 221 

Goodness-of-fit on (F
2
) 1.047 0.978 

R1, wR2 [I >  σ(I)] 0.0407, 0.0987 0.0403, 0.0932 

R indices (all data) 0.0907, 0.11131 0.0947, 0.1089 

   

Multipolar Refinement   

Data / restraints / parameters 7059 / 0 / 644 6787 / 0 / 644 

Goodness-of-fit (F
2
) 1.7875 1.5081 

R1, wR2 [I > 3σ(I)] 0.0221, 0.0434 0.0279, 0.0442 

R1 (all data) 0.0292 0.0373 
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5.2.4.1 Multipolar expansion 

The multipolar refinement was carried out according to the Hansen and Coppens 

formalism (see Chapter 1) using data with I > 3(I). The Volkov and Macchi atomic 

functions
69

 were employed to describe the radial densities of all atoms. 

The electronic configuration of Cu in isolation (i.e. 4s
1
3d

10
) was used for its scattering 

factor. The population of 4s was frozen in the multipolar expansion model, whereas d-

electron population was enabled to change.  

Positions and anisotropic thermal parameters were refined for all the non-hydrogen 

atoms. Whereas, positions of H atoms were kept fixed at a C-H distance equal to 1.089 Å, 

according to the average neutron diffraction data for pyridine. Their anisotropic thermal 

motion were then calculated using SHADE3 from the asymmetric unit.
70

 

The multipolar expansion of Cu atoms were treated up to the hexadecapole level (l=4), 

for N and C up to the octupole level (l=3), whereas for H only the monopole (l=0) and the 

dipole (l=1) along C-H directions were refined. Two different κ sets were assigned to 

nitrogen atoms, in order to distinguish pyridine (Py) and tetrazolate (tz) rings. Spherical 

kappa parameters where refined for each atom species but hydrogen, which was kept equal 

to  . . κ' parameters were not refined and fixed to  .  for the non-hydrogen atoms and to 1.2 

for H atoms. Multipolar treatment is summarized in Table 5.2. Additional information are 

reported in Figure 5.11.  

 

Table 5.2. Multipolar and κ refinement. 

Element Refinement 

Cu Hexadecapole; κ 

N Octupole; two different kappas: κ(Py), κ(t ) 

C Octupole; κ 

H Dipole (along C-H); κ fixed to 1.2 
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Figure 5.11 a= fragment of 2; b,c,d= fractal, normal and statistical histogram residual distribution 

of 2a before squeeze; b’,c’,d’= fractal, normal and statistical histogram residual distribution of 2a 

after squeeze; e,f,g= fractal, normal and statistical histogram residual distribution of 2b before 

squeeze; e’,f’,g’= fractal, normal and statistical histogram residual distribution of 2b after squeeze. 

 

The residual density distributions
71

 in Figure 5.11 show some important difference between the 

two models. In both case there is more positive residual density, revealed by the shift of the 

Gaussian distribution in d/g and d’/g’ plots. However, SQUEEZE improved the residual density 

distributions, removing the positive non-modeled electron density in the pores. Fractal (b’,e’) linear 

(c’,f’) and Henn–Meindl (d’,g’) plots highlight the better quality of the model in 2a data, even if 

collected at higher temperature compared to 2b. Indeed, because 2a and 2b shares the same 

multipolar model, it appears that the second data set is more affected by systematic errors. 
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5.2.5 Impedance spectroscopy 

The frequency dependence of the dielectric constant of 1, r() was obtained via 

impedance spectroscopy measurement
45

 on pellets of diameter of 25 mm prepared grinding 

crystals and applying a force of     
5
 N. The measured thickness was of 0.393 mm. 

Impedance spectroscopy measurement was carried out using ModuLab
®

 XM MTS 

system combined with the 12962A sample holder (electrode diameter 20 mm) in alternate 

current at room temperature in inert atmosphere of N2. The frequency range was 1MHz-

10mHz with a voltage capacitor range of 0-100 mV. The same pellet was then desolvated at 

a temperature of  65 °C and pressure of     
-2

 mbar per 15 h. Color changed to dark 

brown/black during the thermal treatment, as observed for single crystals (Figure 5.10). A 

second measurement of the activated pellet, corresponding to the specie 2, was carried out in 

the same conditions. 

 

5.2.6 Computational details 

Solid state calculations have been carried out using Crystal14 code
72

. Full optimizations 

of cell parameters and atom positions were computed with B3LYP hybrid-GGA 

functional
73,74

, Grimme’s dispersion corrections parameters (scaled to 0.6) were added
75

. 

This level of theory gave better results compared with other GGA and meta-GGA 

exchange-correlation functionals (Figure 5.12). Cu [6s5p2d] basis set proposed by Doll and 

Harrison was used
76,77

, whereas for non-metallic atoms a triple-zeta polarized functions were 

chosen. The static dielectric constant and the eigenvalues of the dielectric tensor, were 

obtained from Couple-Perturbed Kohn-Sham (CPKS) calculations
78

.  

Gaussian09 package
79

 was used for gas-phase calculations. In order to compare as much 

as possible the solid-state and gas-phase results, the B3LYP/6-311G** level of theory 

corrected with Grimme semi-empirical dispersion terms was used.  

ADF2014 code
80,81

 was used for energy decomposition analysis according to the 

Morokuma, Kitaura, Ziegler and Rauk procedure from gas-phase calculation. As for the 

other computations, a B3LYP-D functional with semi-empirical corrections for dispersion, 

combined with a Triple-Zeta Valence Polarized (TZVP) Slater-type Orbital (STO) basis-set, 

was used. 
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Figure 5.12 Percentage difference  between computed and experimental unit cell parameters and 

inter atomic distances for several functionals. 
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5.3 Results and discussion 

5.3.1 Crystal structure 

Due to the evacuation of the pores, it was revealed by single-crystal x-ray diffraction 

experiment a change in the symmetry of the system: indeed 1, which is triclinic P-1 and 

systematically affected by twinning, became monoclinic I2/a and single crystal.  

Diffraction at low temperature revealed almost no effect on the cell parameter 

decreasing from 223 K to 173 K, except a slight contraction for a parameter. 

The Cu(1)-Cu(3) interlayer distance (Figure 5.8) is equal to 3.140 Å at 223 K (2a) and 

3.123 Å at 173 K (2b) (multipolar models), both still longer than the sum of the Van der 

Waals radii. The same inter-metallic distances in 1 measured by Wen et al
56

 , were equal to 

3.205 and 3.137 Å respectively at RT and 100 °K. The Cu-Cu distance measured in 1 is very 

similar to those measured in 2a and 2b. The shrinking due to the effect of the temperature is 

in the range of 0.060.08 Å and we observe no effect on the interlayer Cu-Cu distance due 

to the presence of guest molecules. The stacking of the layers results unchanged as well, 

moreover no differences are observed also in the Cu-N distances. The only significant 

variations concern the stereochemistry of the Cu atoms which in 2 is very close to the ideal 

trigonal planar one, whereas in 1, due to the presence of ethanol molecules, angles are quite 

dissimilar (116 vs. 127 °).  

 

5.3.2 Interlayer interactions 

The interlayer interaction energy was computed in gas-phase with Gaussian09. Four 

fragments were generated from the single-crystal structure of 2b: a) the single layer, as 

reference; b) two paired layers; c) three paired layer; d) four paired layer (Figure 5.13). Each 

fragment is built by circumscribing the shape of the mono-dimensional pore. The 

electroneutrality of the systems was preserved capping the edging carbon atoms with 

protons.  

The total energy EL of the fragment is normalized dividing by the number of the 

constituent layers L (L=4, 3, 2, 1). When L=1, the mono-layer fragment is considered. 

Moreover, the interlayers interaction energy E and the relative dispersion energy 

contribution EDisp were computed as (EL/L – E1), and then divided by the number of atoms 
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composing one layer (136 atoms). This value should estimate the atom-contribution to the 

total pairing stabilization. Results are reported in Figure 5.13.  

The interlayer stabilization E reaches the value of 0.80 kcal/atom for L=4, whereas 

EDisp the value of 0.83 kcal/atom. Notably, E is stabilizing only if dispersion corrections 

Grimme-like are taken into account, revealing no significant interlayer stabilization induced 

by electrostatic or polarization effects. Indeed, the forces involved in the stability of this 2D 

material are quite weak. Noteworthy, with these calculations the dispersion contributions are 

not properly accounted for, given the level of theory B3LYP-D/6-311G** that necessarily 

has to be adopted. 

 

 

 

 

Figure 5.13. Stabilization energy produced by the interlayers interaction, L=number of 

layers. 

 

5.3.3 Experimental and theoretical topological analysis 

The topological analysis (see Chapter 1 for the theoretical background) was carried out 

on both experimental and theoretical electron densities. For the former, multipolar models of 

2a and 2b were analyzed using XDPROP module in XD2016, whereas for the latter the 

TOPOND package
82

 implemented in Crystal14 was used.  

Attention was focused mainly on the intralayer Cu-N interactions, distinguishing those 

concerning the tetrazolate (tz) and pyridine (Py) ring and on interlayer’s connections Cu( )-

Cu(3) and Cu(2)-N(7) (Figure 5.14). 
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 alues of  (r),  
2
 (r), energy densities at the bond critical points, as well as Cu atomic 

charges and Lagrangian function integrated within their basins, are reported in Table 5.3. 

For simplicity, the mean values between 2a and 2b are shown in Figure 5.14. Concerning 

intralayer interactions, both solid-state computations and experimental refinement indicate 

that Cu-N(tz) and Cu-N(Py) bonds have similar strength, showing almost no difference 

between the formally neutral pyridine (Py) and the charged tetrazolate ring (tz). Both are 

involved in a donor-acceptor interaction with copper atoms, indeed according to the ratio 

       , both Cu-N bonds are not purely covalent. 
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Figure 5.14. Experimental / theoretical values of the topological descriptors. 

Table 5.3. Theoretical and experimental topological analysis. 

 
 (r) [e Å

-3
]  

2
 (r) [e Å

-5
] 

BCP T
a
 2_a 2_b T 2_a 2_b 

Cu( )─ (2)tz 0.55 0.74 0.73 11.09 9.53 9.15 

Cu( )─ (11)Py 0.56 0.68 0.70 10.86 9.02 8.01 

Cu( )─ (1)tz 0.55 0.72 0.75 11.27 9.66 8.91 

Cu( )─ (10)Py 0.55 0.69 0.72 10.84 8.71 8.81 

Cu(3)─ (6)tz 0.55 0.69 0.69 11.15 8.51 8.58 

Cu(3)─ (8)tz 0.56 0.72 0.67 11.23 8.95 8.75 

Cu(3)─ (5)Py 0.56 0.72 0.65 10.82 9.47 7.91 

Cu( )─Cu(3) 0.10 0.09 0.09 0.65 0.57 0.62 

Cu( )─ (7)tz 0.08 0.07 0.08 0.79 0.56 0.62 

 

 
Cu(1) Cu(2) Cu(3) 

 T 2a 2b T 2a 2b T 2a 2b 

Q 0.66 1.06 0.99 0.69 1.07 0.93 0.68 0.96 1.03 

L 1.47E-01 2.51E-01 1.24E-01 1.47E-01 2.35E-02 1.16E-01 1.47E-01 1.22E+00 7.81E-02 

a 
T= theoretical. 
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About interlayer interactions, two bond critical points were found: one between metal 

atoms Cu(1) and Cu(3), and one between Cu(2) with the uncoordinated tetrazolic nitrogen 

atom  (7).  (r),  
2
 (r) and         at the Cu(1)-Cu(3) bcp are comparable with theoretical 

values computed by Dinda
83

 in dinuclear Cu
I
 complexes and other works

84
. Both from the 

experimental and theoretical point of view, the Cu-Cu interaction is confirmed to be 

extremely weak. However, the presence of a cuprophilic interaction is plausible, but not 

undisputed. Similar values of  (r),  
2
 (r) are found also in the Cu(2)-N(7) bond, but with an 

energy density ratio much closer to that of a ionic interaction. Both interlayer contacts, i.e. 

Cu(1)-Cu(3) and Cu(2)- (7), are weak, but in the range of strength of π-π stacking 

interactions.
85,86

  

 alues of  (r) and  
2
 (r) from calculations and multipolar model are quite well in 

agreement, but small systematic differences are present possibly due to underestimation in 

the computation (given the small basis-set adopted) and/or to experimental overestimation 

(given the incompleteness of the multipolar model). The same considerations hold for the 

comparison of copper charges, +0.7 (computed) vs. +1.0/+1.1 (experimental). 

 

To clarify the equivalence between the interactions Cu-N(tz) and Cu-N(Py), we 

additionally computed in gas-phase the Bader’s charges of nitrogen atoms for the molecules 

pyridin-tetrazolate Pytz
-
, pyridine Py and tetrazolate tz

-
 (Figure 5. 5). Bader’s analysis was 

carried out using AIMALL package.
87

 The tetrazolate ring has the negative charge not 

uniformly delocalized, indeed it appears quite concentrated on the lateral nitrogen atoms (-

0.71) instead of the terminals (-0.20). On the other hand, in the neutral pyridine ring, the 

nitrogen atom, due to its higher electronegativity, bears a notable negative charge (-1.10). 

Concerning the molecule Pytz
-
, the negative charged of the tetrazolate is partially 

delocalized also on the pyridine ring, increasing its basicity. The flow of electrons from the 

tetrazolate ring to the pyridine one is responsible of their equivalence of the interactions with 

copper atoms. 
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Figure 5.15. Molecular graphs of Pytz
-
, Py and tz

-
 with relative nitrogen’s charges. 

We want to underline that due to the notable size of the system under investigation and 

to the complexity of the interlayer interactions, it was not possible to evaluate the non-

covalent interactions (NCIs).
88

 

 

5.3.4 Bonding partition 

To further investigate the nature of the interaction in the azolate based MOFs, an energy 

decomposition analysis (EDA) was carried out.
89

 The theory of the energy decomposition 

analysis (EDA) is treated and explained in Chapter 1.  

The energy decomposition analysis was carried out on the fragments Cu2
2+

---Py2tz2
2-

 

(Cu2Py2tz2), Cu
+
---Py (Cu1Py1) and Cu

+
---tz

-
 (Cu1tz1), where Cu2

2+
 is the Cu(I) dimer, Py is

 

pyridine, tz
-
 is tetrazolate ring and Py2tz2

2-
 is the ligand fragment around the copper dimer, 

as reported in Figure 5.16. The D2h point group was used in the optimization of Cu2Py2tz2, 

C2v for Cu1Py1 and Cs for Cu1tz1.  

The molecule Cu2Py2tz2 coincides with the one used by Hao et al. for their TDDFT 

calculations
90

. Molecules were fully optimized and the nature of the minimum of energy was 

confirmed by frequencies calculations.  

Moreover, to better understand the nature of the interactions between copper atoms and 

ligands, the interaction energy was further fragmented on its irreducible representation 

contributions. Those were then divided in three main groups, as suggested by Frenking et 
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al.: σ, π|| and π⊥.
91

 The first two contribute to the global σ character of the interaction, 

whereas only the last one describes the π-back-donation. The ratio electrostatic/orbitalic was 

used to evaluate the ionic/covalent character of the bond.
92

 Results of the energy 

decomposition analysis are reported in Table 5.4.  

For Cu2Py2tz2, electrostatic is the leading term, being almost the 77% of the total 

interaction energy. This result is in agreement with previous works for similar systems
91

 and 

is mainly due to the charged nature of the interacting fragments. Further, σ donation appears 

to give the main contribution in Cu-  bond, whereas the π-back-donation is just 28% of the 

global interaction. Comparing those results with the interactions between Cu
+ 

and Py or tz
-
, 

the nature of Cu-  doesn’t change, indeed in both case σ character is dominant. On the other 

hand, some difference is found in the ratio electrostatic/orbitalic between Cu1tz1 and Cu1Py1. 

The first one has higher electrostatic character, again, due to the interaction between 

opposite charged fragments (Cu
+ 

and tz
-
). Indeed, EEls term in Cu1tz1 is 114 kcal/mol more 

stabilizing than in Cu1Py1. EOrb is found as well higher (more negative) in the interaction 

with the tetrazolate ring, revealing a better orbitalic overlap. EPrep of Py, tz
-
 and Cu

+
 are 

quite small, on the other hand, the preparation energy needed in the Cu2Py2tz2 molecule is 

notably higher. Most of the energy is required for the formation of the dimer Cu2
2+

, which 

equals to 93.1 kcal/mol, whereas the preparation of the ligand fragment Py2tz2
2-

 is of 75.6 

kcal/mol. Nevertheless, EInt is always the dominant term, and so, all interactions produce a 

stable adduct.  

However, a difference of almost 101 kcal/mol is observed in E comparing Cu1tz1 with 

Cu1Py1. Finally, we report the energy level diagram from HOMO to HOMO-9 in Figure 

5.16.  

This diagram pinpoints that the main contribution to the valence molecular orbitals 

come from the copper atoms. The energy levels B3u and B1u, coinciding to HOMO-5 and 

HOMO-6, are very close in energy, but obviously not degenerate. In agreement with Hao et 

al., LUMO level was found to be localized one the ligand. 
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Table 5.4. EDA terms for the interactions of Cu
+
 with different ligand’s fragments. 

 Cu2Py2tz2 Cu1Py1 Cu1tz1 

EPrep 168.7  

93.1 (Cu2
2+

) 

75.6 (Py2tz2
2-

)
 

0.3 1.9 

EInt -648.7 -72.2 -172.9 

E -480.0 -71.9 -171.0 

EPauli 326.0 81.4 100.3 

EEls -736.8 -101.4 -215.3 

EOrb -224.9 -49.6 -56.2 

EDisp -12.9 -2.6 -1.7 

%Els 76.6 67.1 79.3 

%Orb 23.4 32.9 20.7 

%σ 72.1 73.8 75.9 

%π 27.9 26.1 24.1 

D h: σ B1u, Ag; π||=B3g, B2u; π⊥=B1g, B2g, Au, B3u; C2v: σ A1; π||=B2; π⊥=A2, B1; Cs: 

σ A’; π|| A’; π⊥ A’’. 
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Figure 5.16. Molecular orbitals, view perpendicular to xy plane, iso-value 0.4 

 

 5.3.5 Dielectric properties 

To extract the static dielectric constant and investigate the ionic and dipolar relaxation 

phenomena affecting this property, experiments usually focus on the range of frequencies 

between     
5
÷    

6
 Hz, which is the most interesting for the application in electronics.

45
 At 

lower and higher frequencies other relaxations take place, like atomic and electronic 

resonance. Indeed, each relaxation mechanism has its own characteristic frequency (Figure 

5. 7). Electronic resonance is induced at high frequencies (≈    
15

 Hz), atomic resonance 

occurs in the region of Infrared ≈    
12

 Hz, due to the stretching of ions opposite charged 

induced by the electric field. At lower frequencies, ca.     
6
÷    

9
, dipolar relaxation 

phenomena take place. It corresponds to the alignment of the randomly oriented molecular 

B3u (π⊥), B1u (σ) 

B1u (σ) 

B3g (π||) 

B2u (π||) 

 

Ag (σ) 

B1g (π⊥) 

Ag (σ) 

B2g (π⊥) 

Au (π⊥) 
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and atomic dipole moments with the applied electric field, inducing a permanent dipole 

moment. At lower frequencies, slower mechanisms contribute to the dielectric constant.
93

  

 

 

Figure 5.17. Resonance mechanisms and characteristic frequencies; ’r (real) and ’’r 

(imaginary) parts of the relative permittivity. 

  

The frequency dependence of the relative permittivity r was measured at room 

temperature for 1 and 2 (Figure 5.18). At     
5
 Hz this value is equal 2.31 for 1, and after 

the evacuation of ethanol, it decreases to 1.90. The linear trend of the signal of 1 till     
-1

 

Hz indicates that the mobility of the dipole of the guest molecules is quenched, probably due 

to the constrained interaction with the framework and the absence of free space in the pores. 

In 2, the behavior is different. Already at     
2
 Hz an enhancement of r is visible due to 

dipole relaxation of the few molecules of ethanol in the channels. Indeed, this is an 

additional proof of the not complete desolvation of 1, consistent with the electron density 

removed with SQUEEZE from x-ray experiment. The few molecules retained in the 

structure have much higher degree of freedom, and so, relaxation phenomena are easier (see 

low frequencies in Figure 5.18). The static dielectric constant was then computationally 

evaluated through the Couple-Perturbed Kohn-Sham approach implemented in Crystal14. In 

order to evaluate the solvent’s effect on the dielectric properties of the MOF, the same 

calculation was carried for 1, and 2. The three components of the diagonalized tensor (i) 

and their averaged value, corresponding to the static dielectric constant for the material, are 

reported in Table 5.5. 
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Figure 5.18. Frequency dependent dielectric constant. 

 

Table 5.5. Eigenvalues of the dielectric tensor. 

System 1 2 3 r 

1 1.960 3.019 3.211 2.730 

2 1.745 2.830 2.839 2.471 

 

Surprisingly, the computed values of r were much higher than the measured ones 

(Table 5.5). However, one of the three components of the tensor, i.e. 1, had an eigenvalue 

notably smaller than the other two, and much closer to the experimental one. A 

representative ellipsoid generated using the eigenvalues i is reported together with the 

atomic coordinated of 1 and 2 in Figure 5.19. This addresses a strong anisotropy of the 

material’s susceptibility. The two ellipsoids have both oblate shape, but differently oriented. 

Indeed, in 2 the axis of lowest is orthogonal to the layers, corresponding to the crystal’s 

planes (2,-2,-2) of 1 or (2,0,2) of 2, the one where preferential orientation was measured 

with XRPD experiment. Indeed, the preferential orientation induced during the preparation 

of the pellet used for the impedance measurement influenced the observed dielectric 

behavior. The preferential orientation is parallel to direction of lower dielectric constant, so 

its component weighted more in the measurement and this explained the apparently smaller 
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value. The synergic combination of preferential orientation with the anisotropy of the 

dielectric tensor promoted the insulator character of this material a prepared in the pellet. In 

2, the presence of the solvent molecules strongly affects the dielectric property, producing 

both a reorientation of the minor axis of the tensor away from the normal to the layers, and 

an increment of the eigenvalues themselves. The loss of solvent reduces in modules  i, with 

a consequent improving of dielectric behavior of the system. To understand the effect of the 

solvent on the susceptibility of the frame, an investigation of the atomic polarizabilities is 

necessary.  

 

 

 

 

Figure 5.19. Ellipsoid of the dielectric tensor in 1 and 2, calculated at the level of theory 

B3LYP-D/6-311G**; copper=orange, oxygen=red, nitrogen=blue, carbon grey, 

hydrogen=white. 

 

5.3.6 Atomic and molecular polarizabilities 

The evaluation of the atomic polarizabilities and the quantification of the contribution to 

the total susceptibility of the system from different part of the framework, i.e. metal, ligand 

and solvent, is possible by using Polaber program
94

. This software allows to compute the 

tensor components of atomic polarizability     from each dipolar moment with respect to the 

applied electric filed ( ): 

 

     
   

   
                (5.3) 
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Wave-functions were calculated in gas-phase at zero electric field and under a field of 

0.001 a.u. along the six directions X, Y and Z, as proposed by Krawczuk
95

. The same 

type of molecular fragments used for the energy decomposition analysis were generated 

from the optimized geometry of 1 and 2 in solid state, preserving the electroneutrality by 

capping the edging carbon atoms, as described above. The molecular fragments keep the 

name of the original periodic structures, i.e. 1 and 2. In 1 a molecule of ethanol is present, 

having the same coordinates as in the solid state optimized structure. Wave-function were 

computed without relaxation of the geometry. Atomic partition and evaluation of dipole 

moments were carried out with AIMALL package.
87

 The computed atomic polarization 

tensors represented as atomic ellipsoids are reported in Figure 5.20. Shape and size of the 

ellipsoids reflect the atomic polarizability behavior. 

 

 
 

 

Figure 5.20 Atomic polarizabilities in molecular fragments of 1 and 2, calculated at the 

level of theory B3LYP-D/6-311G**. 

 

The preferential atomic polarization along the directions parallel to the layer is 

confirmed. In order to quantify the contribution to the total polarizability from the different 

part of the molecular system, fragments 1 and 2 were further partitioned into four sub-

fragments: the copper atom Cu, the tetrazolate ring named tz, the pyridine ring named Py 

and the ethanol molecule EtOH. The six components of the symmetric polarizability tensor 

    (i,j=1,2,3), the sub-fragment charges Q, the fragment polarization iso corresponding to 

the mean value of the three components of the diagonalized tensor and the polarizability 

density
96

 iso/V, were computed and reported in Table 5.6. The volume V used for the 

evaluation of the polarizability density was obtained summing each atomic volumes. In 
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Figure 5.21 the values of iso/V for the copper atoms and tetrazolate group are plotted, 

distinguishing them between near and distant to the solvent molecule in the case of 1. 

Pyridine fragments were omitted, because their polarizabilities were not much affected 

by the presence of the guest (Table 5.6).  

The presence of the ethanol molecule in 1 has a double effect on the polarizability iso 

and the polarizability density iso/V of the closer sub-fragment: a decreasing for metal atoms 

Cu(1), and an increasing for the tetrazolate ring tz(1).  

However, the ethanol molecule does not affect much the global polarization of the 

molecular fragment (blue stars Figure 5.21), indeed it has almost the same value in 1 and 2, 

meanwhile its individual components, i.e. Cu and tz, react differently (triangles and circles 

in Figure 5.21).  

The increasing of the polarization of the tetrazolate ring closer to the EtOH is reasonably 

due to the instauration of the hydrogen bond interaction.  

Moreover, both the tetrazolate rings in 1 shows a decrease of the total charge (more 

positive) compared to 2, more pronounced in tz(1). However, no obvious correlation 

between sub-fragment’s charges a polarizations appears (Table 5.6).  

Indeed, even if copper atom is positively charged, and so “harder” compared with the 

tetrazolate ring, it has a higher polarizability density, at least in 2, which decreases only for 

the metal atom closer to the guest molecule.  

Further, in 1, the solvent molecule is slightly negative charged (-0.055) leading to a 

framework positive charged.  

In conclusion, iso/V value of the framework, referred only to the metal and ligand 

components, does not change in the presence of the solvent molecule. By extrapolating this 

finding to a periodic object, we can suppose that the decreasing of dielectric constant in the 

evacuated systems is due mainly to an increasing of the vacuum in the channels and not to a 

reorganization of the electron density of the framework. 
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Figure 5.21. iso/V values for 1 and 2; ●  Cu,▲ Tetra olate ring, bold-symbol= atom/group 

distant from the solvent molecule, empty-symbol= atom/group near the solvent molecule; star = 

framework without solvent. 

 

Table 5.6. Polarizabilities (a.u.) from single-point, level of theory B3LYP-D2/6-311G**. 

1 Q 11 22 33 12 13 23 iso iso /V 

Cu(1)
a 

0.730 6.0 10.4 11.7 2.4 5.1 0.9 9.4 0.085 

Cu(2) 0.728 5.8 11.0 13.5 3.4 5.7 2.0 10.1 0.092 

tz(1) -0.761 22.2 55.3 50.0 7.8 11.3 -0.1 42.5 0.087 

tz(2) -0.785 25.9 48.5 46.2 7.4 13.3 -6.7 40.2 0.080 

Py(1) 0.073 42.2 70.3 71.2 13.7 22.7 3.9 61.3 0.086 

Py(2) 0.070 38.5 74.8 71.9 15.5 21.8 9.4 61.7 0.085 

EtOH -0.055 29.0 33.8 30.7 -3.5 -0.1 5.6 31.2 0.061 

 

2 Q 11 22 33 12 13 23 iso iso /V 

Cu 0.727 5.7 9.9 14.2 0.0 -6.5 0.0 9.9 0.092 

tz -0.793 24.7 54.1 43.4 0.0 -14.6 0.0 40.7 0.081 

Py 0.066 38.9 65.4 82.0 0.0 -27.0 0.0 62.1 0.086 

a
Cu(1), tz(1), Py(1): closer to the solvent molecule; CuPT - Solvent. 
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5.4 Conclusions 

The azolate-based Metal-Organic Framework (MOF) 1 was studied to understand the 

potential of this material as ultra-low dielectric constant material. The crystallinity of the 

solvated phase was retained after its activation and the structure of the unknown desolvated 

phase 2 was solved. Computations highlight the importance of dispersion corrections for a 

correct evaluation of the interlayer interactions. Indeed, no relevant stabilization comes from 

electrostatic and polarization effects. 

Impedance spectroscopy analysis demonstrated that both 1 and 2 have very low 

dielectric constant values, in particular 2, which, to the best of our knowledge, has the 

lowest value of static dielectric constant ever measured for this class of materials, equal to 

1.90 at     
5 

Hz.  

Theoretical calculation revealed the anisotropy of the dielectric properties while 

experiments showed the presence of a significant preferred orientation (due to platelet 

morphology). Indeed, only the combination of these two aspects allows such high dielectric 

performance. We showed that the guest molecules have a little effect on the overall 

polarizability of the framework since their effect on nearby tetrazolates is counterbalanced 

by that on nearby copper atoms. Thus, the lowering of the dielectric constant is mainly due 

the significant residual ‘empty’ spaces left by the evacuation of the solvent and not by the 

lack of solvent contributions to susceptibility. 

Noteworthy, the investigated metal-azolate framework showed a remarkable mechanical 

strength upon desolvation despite its 2D nature. Accordingly, it would be worth to further 

investigate similar systems, particularly because of the synergic cooperation of anisotropic 

properties and the possibility to induce preferential orientation.  
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Co clus o s a d outloo  

In this thesis we focused on the theoretical and experimental characterization of chemical 

bonds in metal organic materials and investigated their correlation with material functionalities.  

First, we developed a procedure based on reference states, which enables the comparison of 

two energy decomposition methods, such as the EDA
1–3

 and the IQA
4
. We tested the feasibility of 

this protocol and proved that the two approaches converge towards the very same picture. 

Noteworthy, this procedure is unprecedented, and it brings new insight. 

We investigated several science cases, encompassing metal organic clusters and polymers.  

We started with a peculiar case of conformational polymorphism of semi-interstitial metal carbonyl 

clusters.
5,6

 Combination of computations and high resolution X-ray diffraction experiments 

provided a straightforward understanding of M-M and M-X interactions in these compounds and 

allowed to rationalize the observed polymorphism as due to the tradeoff between packing and 

molecular energies.  

The combination of X-ray diffraction experiment at high-pressure together with topological 

analysis of the electron density on two iso-structural coordination polymers, CuFPT and AgFPT, 

revealed fundamental differences between Cu
I
 and Ag

I
 cations. Indeed, while potentially allowed in 

both derivatives compression induced true metallophilic interactions only in latter. Shading light on 

the differences between Cu
I
 and Ag

I
 cations, this work affords a better understanding of 

metallophilic interactions which are attracting more and more curiosity in different area. 

The comprehension of materials properties through electron density analysis was the main goal 

of this thesis, and it fostered the study of dielectric properties of crystalline porous material (like 

MOFs) for their potential applications in microelectronics.
7
 We proved the notable insulating 

behavior of a copper-tetrazolate MOF, giving a straightforward explanation of its dielectric 

performances. Moreover, we pinpointed that specific orientation enhances the performances of this 

2D material, and potentially of many similar species. 

The synergy between theoretical and experimental approaches is vital for the analysis of 

chemical bonds and correlation with materials functionalities. The new procedures and approaches 

we proposed in this thesis may be adopted within the relatively new field of Quantum 

Crystallography 
8,9

 where quantum mechanics and crystallography merge.  
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