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Riassunto 

 

 

Negli ultimi decenni, sono aumentate le preoccupazioni scientifiche, il dibattito 

pubblico e l’attenzione dei media sui possibili effetti deleteri nell’ uomo e nell’ 

ambiente che possono derivare dall’ esposizione ad alcune sostanze in grado di 

interferire con il sistema endocrino. I composti perturbatori, o interferenti, endocrini 

(EDC) comprendono una varietà di classi di sostanze, tra cui ormoni naturali e 

sintetici, costituenti vegetali, pesticidi, sostanze utilizzate nell'industria e nei 

prodotti di consumo, sostanze inquinanti. È ben documentato che i target degli EDC 

sono principalmente i recettori nucleari (NR) come i recettori estrogenici (ER) tipici 

degli ormoni sessuali. Questo recettore ER è coinvolto sia in un ampio spettro di 

processi fisiologici che avvengono in diversi organi sia in diverse malattie, come il 

cancro della mammella e dell'endometrio, l'osteoporosi e l'ipertrofia della prostata, 

le malattie neurodegenerative o l'attivazione del sistema immunitario. Le agenzie 

deputate alla protezione della salute umana e dell’ambiente stanno affrontando la 

necessità di indagare e chiarire le modalità di azione di questi EDC mediante lo 

sviluppo di metodi tossicologici alternativi, come il modello in silico ed i saggi in 

vitro utili col fine di prevedere la tossicità di questi EDC. Il mio progetto di ricerca 

ha avuto l’ambizioso obiettivo di sviluppare una strategia tossicologica integrata 

basata sulla combinazione delle informazioni disponibili sull’ interferenza 

endocrina presenti in letteratura, sui saggi in silico, sulle metodologie di “imaging” 

applicate a sistemi di attivazione recettoriale in vitro, in vivo ed ex vivo con 

l’obiettivo di caratterizzare all’interno di un set di molecole quelle sostanze 

chimiche con attività di interferenza endocrina ma anche capaci di attivare altri 

percorsi tossicologici come l’infiammazione e lo stress ossidativo misurati nell'area 



 
 

genitale maschile ed addominale di topi maschi. Le molecole selezionate variano 

da interferenti endocrini noti (DES) a sospetti (BPA) e comprendono composti sia 

sintetici (DEHP) che naturali (genisteina). 

Il primo approccio utilizzato è stato l'analisi in silico con valutazione del possibile 

legame di queste sostanze al recettore alfa estrogenico per supportare l'ipotesi 

iniziale che l’attività ormonale di queste sostanze avviene attraverso un 

meccanismo recettoriale. Questo approccio è ampiamente utilizzato e fa anche parte 

del primo livello di indagine suggerito dall'EFSA / ECHA nel riconoscimento degli 

interferenti endocrini. La metodologia computazionale ha stimato diversi valori di 

affinità di ciascun ligando con il suo sito di legame nel recettore. L'uso di due diversi 

approcci (XP GLIDE SCORE e MMGBSA dG Bind) ha anche permesso di 

considerare la solvatazione. Ciò significa che il protocollo MMGBSA ha 

considerato l’interazione di alcune molecole di acqua con il sito di legame 

recettoriale ed anche l’interazione solvente-ligando. L'estradiolo ha mostrato i 

migliori valori di affinità in entrambi gli approcci, poiché essendo l'ormone 

endogeno, è stato in grado di contrastare l'effetto di solvatazione. 

I valori della costante di dissociazione (Ki) calcolati a partire da XP GLIDE SCORE 

si sono adattati bene con il saggio di legame determinato sperimentalmente in vitro 

da altri gruppi di ricerca. Pertanto, il Ki calcolato è stato scelto come parametro per 

la predizione della possibile attività di perturbazione (o interferenza) endocrina 

(IE). Tuttavia,  la mancanza di correlazione tra il Ki (calcolato e sperimentale) e 

l'attività IE osservata sperimentalmente in vivo (dati di letteratura) per tutte le 

sostanze chimiche (solo estradiolo e zearalenone hanno affinità simili a ER ed 

evidenze bibliografiche di attività di IE; genisteina ha buoni valori Ki ma non 

attività IE come BPA e metossicloro), non ha consentito la definizione di una 

priorità per l’attività di interferenza endocrina delle sostanze chimiche studiate 

attraverso il calcolo della loro affinità. 

Nel passo successivo per verificare se il legame del recettore fosse ben correlato 

con l'attività ormonale, è stato eseguito il test in vitro di attivazione del recettore 

estrogenico, basato sulla capacità di un composto di stimolare l'attività 

trascrizionale estrogeno-dipendente nelle cellule di mammifero geneticamente 

modificate. Le linee cellulari usate sono cellule MCF-7 che esprimono il recettore 

estrogenico endogeno. Le cellule sono trasformate (transfettate) introducendo 

vettori contenenti sequenze di DNA per il recettore, insieme agli ERE (elementi che 



 
 

rispondono all’estrogeno) legati a un gene “reporter” ed il gene “reporter” stesso. Il 

gene “reporter” utilizzato nelle cellule tumorali umane di solito codifica per 

l’enzima luciferasi (CALUX, espressione della luciferasi chimicamente attivata). 

Nel test di transattivazione gli EDC hanno mostrato la loro potenza estrogenica 

calcolata come EC50, rispetto al controllo positivo, il 17β-estradiolo. Questo 

sistema ci ha permesso di valutare la cinetica e le conseguenze biologiche 

dell’attivazione cellulare nello stesso strato di cellule mediante la cattura di 

immagini di bioluminescenza di emissioni di fotoni dell’attivazione recettoriale a 6 

e 48 ore dai trattamenti iniziali. Da questo saggio in vitro sono stati presi in 

considerazione tre fattori quali potenza, efficacia e tendenza nel tempo. 

L'attivazione dinamica in vitro del recettore estrogenico ha mostrato che per alcune 

sostanze chimiche (genisteina, BPA, metossicloro), la potenza (EC50) e l'efficacia 

(induzione delle pieghe) sono cambiate nel tempo, ma non per altri (estradiolo, 

zearalenone e DES). Considerando che 17β-estradiolo, zearalenone e DES hanno 

certamente un'attività nell'animale e nell'uomo come interferenti endocrini, la 

durata del parametro effetto combinato con la potenza e l'efficacia si è mostrato 

utile nel predire l'attività ormonale. Insieme all'affinità del recettore e alla capacità 

di indurre una risposta biologica, esso è sembrato anche importante determinare 

quanto la risposta potesse essere sostenuta nel tempo. Di conseguenza, la 

combinazione della variazione della potenza e dell'efficacia, "normalizzata" rispetto 

ai valori di efficacia quantificati a 48 ore, è stata utilizzata con successo nella 

discriminazione di composti positivi e negativi per la loro attività di interferente 

endocrino. Per mezzo di questa analisi estradiolo, DES e zearalenone sono stati 

messi in cima alla lista (supportati anche dalla loro nota attività di IE), la genisteina 

è risultata rappresentare una presunta soglia di non-preoccupazione per l'effetto IE, 

in supporto dei dai di letteratura), mentre il metossicloro e il BPA non sono stati 

considerati priorità in termini di attività di IE. Questa classifica in vitro ha mostrato 

una correlazione con i risultati del modello in silico, poiché i composti più forti nel 

legarsi al recettore estrogenico sono stati classificati nelle prime posizioni 

(estradiolo, DES e zearalenone). Inoltre, non è stato possibile calcolare i valori di 

EC50s per il 4-nonilfenolo, DEHP e vinclozolin, di conseguenza non è stato 

possibile classificarli come IE, che totalmente in accordo con i risultati in silico ed 

in linea con i dati di letteratura (vinclozolin è principalmente un’antagonista 

androgenico). Il terzo approccio della nostra procedura è stato condotto per 



 
 

verificare in vivo l'interazione delle sostanze chimiche selezionate con il recettore 

degli estrogeni ma anche l’attivazione di altri percorsi che innescano effetti primari 

nocivi. Abbiamo utilizzato tre topi transgenici progettati per valutare l'effetto dei 

composti nell’attivare il recettore estrogenico e/o causare stress ossidativo ed 

infiammazione. Abbiamo scelto di testare lo zearalenone (noto interferente 

endocrino e chiaramente identificato come tale dal nostro approccio in silico-in 

vitro) e il BPA per il quale esistono dati controversi in letteratura e che il nostro 

approccio ha già classificato come non IE. Nei nostri esperimenti, lo zearalenone 

ha dimostrato di essere attivo sulla via estrogenica nella zona addominale e ha 

attivato in modo significativo la via infiammatoria nei genitali (in questo caso 

specifico nella prostata, risultato di analisi di bioluminescenza ex vivo). Questi 

risultati sono risultati perfettamente in linea con i dati della letteratura, in cui 

l'infiammazione e metaplasia della prostata sono state rilevate sia nei topi che nei 

ratti. Il bisfenolo A non ha prodotto un'attivazione significativa in entrambe le aree 

e nell'analisi ex vivo, sempre in accordo con i nostri risultati in silico / in vitro. 

La mancanza dell'attivazione del recettore estrogenico dell’area genitale da parte 

dell'estradiolo è stata probabilmente dovuta alla somministrazione orale del 

composto tramite l'acqua potabile. Questo composto è noto per esercitare potenti 

effetti avversi negli studi tossicologici quando somministrato per iniezione, ma la 

nostra intenzione è stata quella di indagare gli effetti IE per via orale che è 

considerata rilevante per l'esposizione umana. Quindi abbiamo usato una 

combinazione di approcci innovativi che hanno portato alla conclusione che lo 

screening in silico non può essere usato come procedura autonoma a causa della 

sua intrinseca mancanza di significato biologico, sebbene possa essere usato con 

successo come primo passo per la definizione delle priorità in un approccio di 

livello. Il secondo controllo obbligatorio per i risultati positivi in silico dovrebbe 

essere una procedura di valutazione in vitro, in cui l'affinità dei composti positivi 

viene misurata attraverso un test cellulare di riferimento. I nostri risultati hanno 

mostrato che integrando la variabile temporale nella valutazione della potenza e 

dell’efficacia, i composti testati possono essere classificati come IE o no-IE. Mentre 

l'esperimento in vivo ha evidenziato che un potente composto estrogenico, come lo 

zearalenone, potrebbe anche destare preoccupazione per l'attivazione di altre vie 

tossicologiche come quelle infiammatorie. 



 
 

Siamo consapevoli che questa proposta di procedura debba essere valutata e 

validata su dozzine di molecole la cui attività in vivo è già nota, prima di arrivare 

al suo utilizzo per predire la possibile attività di IE di molecole sconosciute, ma è 

importante che questo approccio meriti di essere implementato. 

 

 

 

Abstract 

 

In the last two decades, there have been growing scientific concern, public debate, 

and media attention over the possible deleterious effects in humans and wildlife that 

may result from exposure to substances that have the potential to interfere with the 

endocrine system. Endocrine disrupting compounds (EDCs) encompass a variety 

of substance classes, including natural and synthetic hormones, plant constituents, 

pesticides, substances used in industry and in consumer products, pollutant. It is 

well documented that EDCs targets are mainly the nuclear receptors (NRs) such as 

the sexual hormones estrogen receptors ERs. ER is involved in a broad spectrum of 

physiological processes in different organs and tissues as well as in several diseases, 

such as breast and endometrial cancer, osteoporosis, and prostate hypertrophy, 

neurodegenerative diseases or in immune system activation. The regulatory 

agencies for the protection of human health and wildlife have been issuing the 

necessity to investigate and clarify the mode of action of these exogenous 

substances by the development of alternative toxicological methods such as in silico 

model and in vitro testing in order to predict the toxicity of these EDCs. This 

research had the ambitious aim to develop an integrated toxicological strategy based 

on the combination of available information of endocrine disrupting activity 

retrieved from the scientific literature, in silico model, imaging methodologies 

applied to reporter systems in vitro and in vivo and ex vivo to predict among a set 

of chemicals those with an endocrine disrupting activity or ability to activate other 

toxicological pathways such as inflammation and oxidative stress measured in the 

male reproductive organs and in the genital and abdominal area of mice. The 



 
 

selected molecules range from known (DES) to suspected (BPA) endocrine 

disruptors and included both synthetic (DEHP) and natural (genistein) compounds. 

The first step used was in silico analysis with evaluation of the possible binding of 

selected substances to the estrogen alpha receptor to support the hypothesis that 

their hormonal activity occurred through a receptorial mechanism. This approach 

is commonly used and is also part of the first level of investigation suggested by 

EFSA/ECHA in the recognition of EDCs. The computational methodology 

estimated different values of affinity of each ligand to hER Ligand Binding Domain 

(LBD). The use of two different approaches (XP GLIDE SCORE and MMGBSA 

dG Bind) also allowed for solvation to be taken into account. That meant that 

MMGBSA protocol considered both the interactions of some water molecules with 

the LBD and the solvent-ligand ones. The estradiol showed the best affinity values 

in both approaches as being the endogenous hormone was able to contrast the 

solvation effect. The dissociation constant (Ki) values calculated from the XP 

GLIDE SCORE fitted well with the Ki experimentally determined in vitro binding 

assay by other research groups. Thus, the computed Ki has been chosen as 

parameter for the prediction of putative endocrine disruptor activity. However, the 

lack of correlation between the (computed and experimental) Ki and in vivo 

experimental observed ED activity (from literature data) for all chemicals (only 

estradiol and zearalenone have similar affinity to ER and literature evidences of ED 

activity; genistein has a good Ki values but not ED activity such as BPA and 

methoxychlor), did not allow a prioritization of the investigated chemicals for ED 

activity through the results of their affinity. In the next step, to check if the receptor 

binding well correlated with the hormonal activity, the ER Reporter gene assay was 

performed, based on the ability of a compound to stimulate ER-dependent 

transcriptional activity in genetically engineered mammalian cells. The cell lines 

are MCF-7 cells which express human endogenous ERα. The cells are transformed 

(transfected) by introducing vectors containing DNA sequences for the receptor, 

along with EREs linked to a reporter gene, and the reporter gene itself. The reporter 

gene used in human cancer cells usually codes for luciferase (CALUX, chemically 

activated luciferase expression). In the transactivation the EDCs show their 

estrogenic potency calculated as EC50, in respect to the positive control, 17β-

estradiol. This system has enabled us to evaluate the kinetic and the biological 

consequences of cellular activation in the same cell monolayer by bioluminescence 



 
 

imaging of photon emissions that were pictures of activated ER status at 6 and 48 

hours after the initial treatments. From this in vitro assay three factors were taken 

into consideration, power, efficacy and trend over time. The in vitro dynamic ER 

activation showed that for some chemicals (genistein, BPA, methoxychlor), the 

potency (EC50) and the efficacy (fold induction) changed over time, but not for 

others (estradiol, zearalenone and DES).  

Considering that estradiol, zearalenone and DES certainly have an activity in the 

animal and in man as endocrine disruptors, the duration of effect parameter 

combined with power and efficacy were likely to be associated in predicting the 

activity. Together with receptor affinity and the ability to induce a biological 

response, it also seemed relevant how long the response was lasting. By 

consequence, the combination of the variation of the potency response and the 

efficacy, “normalized” respect to the efficacy values quantify at 48 hours, was 

successfully used in discriminating positive and negative compounds for their 

endocrine disrupting activity. By means of this analysis 17β-estradiol, DES and 

zearalenone were put at the top of the list (also supported by their known ED 

activity), genistein resulted to represent a putative threshold of no-concern for ED 

effect, in supporting published data, while methoxychlor and BPA were definitely 

not considered a priority in terms of ED activity. This in vitro classification fitted 

well with the in silico outcomes, since the strongest estrogen receptor binders were 

ranked in the first positions (17β-estradiol, DES and zearalenone). Besides, was no 

possible to calculate EC50s for 4-nonylphenol, DEHP and vinclozolin, not making 

possible to classify them as ED, totally in agreement with in silico results and in 

line with literature data (vinclozolin is mainly an androgen antagonist). The third 

step of our stepwise approach was intended to verify in vivo the interaction of 

selected chemicals with the estrogen receptor and in addition the activation of their 

pathways triggering primary harmful effects. We used three reporter mice designed 

in order to evaluate the effect of selected compounds to activate ER and causing 

oxidative stress and inflammation. We have chosen to test zearalenone (well-known 

endocrine disruptor and clearly identified as such by our in silico-in vitro approach), 

and BPA for which there are controversial data in the literature and that our 

approach has negatively classified as ED. In our experiments zearalenone showed 

to be active on ER pathway in the abdominal area and significantly activated the 

inflammatory pathway in the genitals (in this specific case in the prostate, result of 



 
 

ex vivo bioluminescence analysis). These results were perfectly in line with the 

literature reports, in which prostate inflammation and metaphase were detected in 

both mice and rats. Bisphenol A did not produce a significant activation in both the 

areas and in the ex vivo analysis, again in agreement with in silico/in vitro results. 

We used a combination of innovative approaches that led to a conclusion that in 

silico screening cannot be used as a stand-alone procedure due to its intrinsic lack 

of biological meaning, although it can be successfully used as a first prioritizing 

step in a tier approach. The second mandatory check for the in silico positive hits 

should be an in vitro evaluation procedure, in which the affinity of the positive hits 

is measured through a reference cellular assay. Our results showed that integrating 

the time variable in the evaluation of the potency, the tested compounds could be 

classified as ED or no-ED. The in vivo experiment highlighted that a potent 

estrogenic compound, as zearalenone, could also raise concern for the activation of 

other toxicological pathway such as the inflammatory ones. 

We are aware that this indication of procedure must be evaluated and validated on 

dozens of molecules whose in vivo activity is already known before arriving at its 

use to predict the possible activity of ED of unknown molecules, but we think that 

this approach deserves to be implemented. 
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Chapter 1 

1.1 Introduction 

 

In the last two decades, there have been growing scientific concern, public debate, 

and media attention over the possible deleterious effects in humans and wildlife that 

may result from exposure to substances that have the potential to interfere with the 

endocrine system. The endocrine system is a communication system that maintains 

normal physiological balance across multiple organ systems. It accomplishes this 

by modulating or regulating the activity of almost everybody system in reaction to 

variations in body temperature, activity level, stress, and circulating levels of 

nutrients and hormones required for growth, reproduction, and metabolism. 

Substances which interfere with the endocrine system are endocrine modulators or 

endocrine disruptors, depending on the final effect on the whole organism. The 

latter term has been defined in Weybridge in the 1996 and has been slightly 

modified by WHO in the 2002: ‘‘An endocrine disruptor is an exogenous substance 

or mixture that alters function(s) of the endocrine system and consequently causes 

adverse health effects in an intact organism, or its progeny, or (sub)populations’’. 

Endocrine disrupting compounds (EDCs) encompass a variety of substance classes, 

including natural and synthetic hormones, plant constituents, pesticides, substances 

used in industry and in consumer products, and other industrial by-products and 

pollutants [1, 2]. The target of EDCs is mainly the nuclear receptors (NRs) such as 

the sexual hormones receptors (estrogen receptors, ERs and androgen receptors, 

ARs). These are ligand-activated transcriptional factors belonging to the super 

family of nuclear receptors. ERs are present as two receptor subtypes, ERα and ERβ 

[3]. ERs mediate a broad spectrum of physiological processes in different organs 

and tissues as well as a range of diseases, such as breast and endometrial cancer, 

osteoporosis, and prostate hypertrophy. Recently, estrogens and their receptors 

have also been implicated in cardiovascular and central nervous system disorders 

[4] or in immune system activation [5]. The regulatory agencies for the protection 

of human health and wildlife have been issuing the necessity to investigate and 

clarify the mode of action of these exogenous substances by the development of 
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alternative toxicological methods such as in silico model and in vitro testing in order 

to predict the toxicity of these EDCs to human health and wildlife. 

 

 

1.2 Endocrine system: hormones & receptors 

 

The endocrine system represents a complex network system of glands, hormones 

and receptors, which play a critical function by maintaining, for example, the 

normal physiological balance, growth, reproduction, development, metabolism [2]. 

It acts through the actions of molecules called hormones which are produced by 

endocrine glands such as pituitary gland at the base of the brain, the thyroid gland 

in the neck, the adrenal glands in the abdominal next to the kidneys, the gonads and 

certain parts of the pancreas (Figure 1). The hormones are grouped in four structural 

classes (Table 1): protein and peptide hormones such insulin; steroids that derive 

from cholesterol (Figure 2) as estrogen, testosterone, mineralocorticoids, vitamin 

D; tyrosine or tryptophan derivates such catecholamines, thyroid hormones, 

serotonin; eicosanoid as prostaglandins, prostacyclin, thromboxane [6]. 

These hormones (Table 1) are chemical messengers that travel through the 

bloodstream to produce effects on distant cells and tissues. 

For example, reproductive hormones, steroids (estrogens, androgens, progestins) 

and proteins (LH and FSH) control the complex reproduction physiological 

processes, the thyroid hormones (TSH, T3 and T4) are involved in the metabolic 

processes then in the appetite and body weight regulation and brain development. 

In addition to their actions on these physiological processes, all hormone systems 

are governed in such way so that hormone levels are at the appropriate 

concentration in blood to be effective at physiological process [2]. 
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Hormones exert their activities by specific interaction with some proteins called 

receptors which have a widespread expression in all body tissues or outside - inside 

the cells.  

Generally, hormones act at very low concentrations because of its specificity and 

selectivity to bind to receptor while at higher concentration could cause a 

downregulation of receptor number [2; 7]. In addition to this mechanism, higher 

concentration of hormones can cause increased of cytotoxicity of receptor 

expression with the consequence of low hormonal response. For example, the 

MCF7 breast cancer cell lines proliferate in response to estrogen until the high doses 

(10-5 – 10-4 M) produce cytotoxicity. The same toxicity has been observed in a 

Figure 1. Overview of endocrine system and hormones. Figure from the 

report “State of the Science of Endocrine Disrupting Chemicals – 2012” [2] 
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subpopulation of MCF7 cells that no longer express the estrogen receptor, 

suggesting that 17β-estradiol (the natural endogenous estrogen) has not an 

endocrine effect at high doses, but it has a general toxicity [2]. 

Most of these receptors belongs to nuclear receptor family. Nuclear receptors (NRs) 

are members of a large superfamily of evolutionarily related transcription factors 

that control a plethora of biological processes. are modular proteins organized into 

three major functional domains, namely (i) a variable and intrinsically unfolded N-

terminal A/B domain harboring the transcriptional activation function 1 (AF-1), (ii) 

a conserved DNA-binding domain (DBD), and (iii) a C-terminal ligand-binding 

domain (LBD) hosting the activation function 2 (AF-2) (Figure 3) [3; 8]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Pathways for the synthesis of human sex and adrenal steroids under the 

specific enzyme regulation common to both sexes. P450scc = Cholesterol side-chain 

cleavage enzyme; 3-βHSD = 3β-Hydroxysteroid dehydrogenase/Δ5-4 isomerase; 

P45017α = 17 alpha-hydroxylase = 17, 20 lyase; 17- β HSD = 17β-Hydroxysteroid 

dehydrogenases; P450c21 = 21-hydroxylase; P450aldo = aldosterone synthase; P450c11 

= Steroid 11β-hydroxylase; P450arom = aromatase; 5α-reductase. 
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1.3 Estrogen receptor 

 

Estrogens like other steroid hormones, are naturally occurring 

cyclopentanophenanthrene compounds whose synthesis begins with cholesterol. 

The most potent and dominant estrogen in humans is 17β-estradiol (E2), but lower 

levels of the estrogens estrone and estriol are also present. 17β-Estradiol (E2) 

controls many aspects of human physiology, including development, reproduction 

and homeostasis, through regulation of the transcriptional activity of its cognate 

receptors (ERs) [4; 9]. The estrogen receptors exist in two subtypes, ERα and ERβ 

(Figure 4). ERs mediate a broad spectrum of physiological effects in different 

organs and tissues and are involved in a range of diseases, such as breast and 

endometrial cancer, osteoporosis, and prostate hypertrophy. Recently, estrogens 

and their receptors have also been implicated in cardiovascular and central nervous 

system disorders [4] or in immune system activation [5]. The biological cascade of 

events reacted by interaction with a ligand (xenobiotics or endogenous substances) 

causes that NRs undergoes dimerization and translocation to the respective HRE in 

the nucleus. Then transcriptional activity follows, as modulated by co-regulators, 

through recruitment of transcription factors and RNA polymerase to the initiation 

site. Thus, there is the synthesis of mRNA which released into cytoplasm (Figure 

3) [8]. 
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ERα and ERβ synthesis are under the transcriptional activity of two separate genes, 

ESR1 and ESR2, respectively, present on distinct chromosomes: locus 6q25.1 and 

locus 14q23-24.1, respectively (Figure 4). Both receptors have a different 

widespread tissue distribution. ER α is mainly expressed in uterus, ovary, prostate, 

testis (Leydig cells), epididymis, brain, thymus, bladder, kidney, liver. ER β is 

predominantly distributed colon, prostate (epithelium), testis, ovary (granulosa 

cells), bone marrow, salivary gland, vascular endothelium, and certain regions of 

the brain [4; 9; 10].  

The ERα subunit is largely studied as pharmaceutical target [11; 12] and in 

toxicological field to understand the mechanism of action of endocrine disruptor 

compound (EDCs) [2; 10; 13]. 

 

 

 

Figure 3. Depicted schema representing structural domains 

generally harbored by NRs, in addition to their canonical 

downstream functionality. Upon binding to activating ligand, NRs 

undergo dimerization and translocation to the respective HRE in 

the nucleus. Transcriptional activity follows, as modulated by co-

regulators, through recruitment of transcription factors and RNA 

polymerase to the initiation site. CoR, corepressor; Lig, activating 

ligand; RNA pol, RNA polymerase; general regions shared by all 

NRs labeled in parentheses (A–E) within domains (from El 

Hokayem et al., 2017 [8]). 
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1.4 Endocrine disruptors: definition 

 

Interaction of chemicals with endocrine system may lead to changes that are 

transient, where the control mechanisms of endocrine systems will compensate for 

chemically-induced effects; or may cause permanent changes that may then lead to 

adverse effects. In the latter situation, a chemical may be an endocrine disruptor 

(ED). By consequence, substances which interfere with the endocrine system are 

endocrine modulators or endocrine disruptors, depending on the final effect on the 

whole organism. The latter term has been defined in Weybridge in the 1996 [1] and 

has been slightly modified by WHO in the 2002: ‘‘An endocrine disruptor is an 

exogenous substance or mixture that alters function(s) of the endocrine system and 

consequently causes adverse health effects in an intact organism, or its progeny, or 

Figure 4. Genomic format, domain structure, and common splice 

variants of human ERα (A) and ERβ(B). Both ERα and ERβ gene are 

comprised of eight exons interrupted by long introns. The common 

splice variants of both ERa and ERb exhibit in-frame deletion of exon 

3 (R E3), exon 4 (R E4) or both (R E3-4), with an exception of intron 

coding insertion, ERb2, which bears 18 amino acids insertion in the 

LBD compared to full-length ERb (from Ascanzi et al., 2006 [9]). 
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(sub)populations’’ [2]. This definition refers to different group of chemicals such 

as home-made substance, pesticide, synthetic hormones, plant constituents, 

pesticides, pollutants.  

EDCs can affect the endocrine systems and cause adverse effects by several 

mechanisms: 

• by mimicking the biological activity of an endogenous hormone by binding 

to a cellular receptor, leading to an unwanted response by initiating the 

cell’s normal response to the naturally occurring hormone at the wrong time 

or to an excessive extent (agonistic effect); 

• by binding to the receptor without any activation and blocking the binding 

of the natural hormone (antagonistic effect); 

• by binding to transport proteins in the blood, thus altering the amounts of 

natural hormones that are present in the bloodstream; 

• by interfering with the metabolic processes in the body, affecting the 

synthesis or breakdown rates and release of the natural hormones [14]; 

EDCs exert mainly their activity towards the interaction with nuclear 

receptor [2]. 

 

1.5 Biological implication of endocrine disruptor compounds  

 

The EDCs show several characteristics: 

• act at low doses 

• bioaccumulate 

• produce a non-linear dose response curve, high dose effects are not same 

as low dose. 

The effect is always dependent on mechanism of action, the target tissue and the 

specific life - stage of exposure (Figure 5) [2]. 
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Figure 5. Example of EDCs mechanism and exposure window (figure from [2]) 

 

 It is well documented that animals and humans exposed in utero or perinatally to 

the potent synthetic estrogen diethylstilbestrol (DES), developed reproductive 

adversity (e.g., reduced sperm counts, reproductive tract malformations), tumours 

to reproductive tract, and other endocrine-related endpoints [15; 16].  

Chemicals that modulate endocrine signaling pathways are widespread in the 

environment or they occur naturally (e.g., phytoestrogens), and they are 

synthetically produced for a variety of uses, including pesticides in agriculture, 

polymers used in food packaging materials, etc... Despite the evidence of 

correlation between the exposure to pharmacological doses of DES during the 

critical developmental time points and the adverse effects in humans has been 

clearly defined, the evidence between the exposure to low concentration of a weaker 

hormonally active chemical and the toxicity in humans has not been clearly 

documented [17]. 

 

1.6 Regulatory perspective and toxicological 

characterization (in silico, in vitro and in vivo testing) 

 

Regulatory bodies for the protection and safety of consumer health and environment 

such as ECHA, EFSA, EPA etc. have been facing the endocrine disruptor problem 

by issuing severe regulations. Indeed, according to Regulation EC No. 1107/2009 

relative to Plant Protection Product, no PPP could be place on the market if “An 

active substance, safener or synergist shall only be approved if, on the basis of the 

assessment of Community or internationally agreed test guidelines or other 

available data and information, including a review of the scientific literature, 
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reviewed by the Authority, it is not considered to have endocrine disrupting 

properties that may cause adverse effect in humans, unless the exposure of humans 

to that active substance, safener or synergist in a plant protection product, under 

realistic proposed conditions of use, is negligible, that is, the product is used in 

closed systems or in other conditions excluding contact with humans and where 

residues of the active substance, safener or synergist concerned on food and feed 

do not exceed the default value set in accordance with point (b) of Article 18(1) of 

Regulation (EC) No 396/2005”. 

Under the Regulations No 1907/2006 REACH (Registration, Evaluation and 

Authorization of Chemicals) a chemical identified as endocrine disruptor activity is 

ruled out by the article 57 (f) of SVHC. 

To identify this toxicological profile ECHA and EFSA have issued a guidance 

“Guidance for the identification of endocrine disruptors in the context of 

Regulations (EU) No 528/2012 and (EC) No 1107/2009” based also on OECD 

(Organization for Economic Co-operation and Development) framework 

“Guidance Document 150 on Standardized Test Guidelines for Evaluating 

Chemicals for Endocrine Disruption, revised 2018” [18;19] (Table 1). 

 

 

Table 1. Conceptual framework for testing and assessment of endocrine disrupters [19] 

Mammalian and Non-Mammalian Toxicology 

Level 1 

Existing data 

• Physical & chemical properties, e.g., MW reactivity, volatility, biodegradability. 

• All available (eco)toxicological data from standardized or non-standardized tests. 

• Read across, chemical categories, QSARs and other in silico predictions, and ADME model predictions. 

Level 2 

In vitro assays providing data about selected endocrine mechanism(s) / pathways(s) (Mammalian and non-mammalian methods) 

• Estrogen or androgen receptor binding affinity (OECD TG 493). 

• Estrogen receptor transactivation (OECD TG 455 & TG 457). 

• Androgen transactivation assay (OECD TG 458). 

• Steroidogenesis in vitro (OECD TG 456). 

• MCF-7 cell proliferation assays (ER ant/agonist). 

• Other assays as appropriate. 

Mammalian and Non-Mammalian Toxicology Mammalian and Non-Mammalian Toxicology 

Level 3 

http://www.oecd-ilibrary.org/environment/test-no-455-the-stably-transfected-human-estrogen-receptor-alpha-transcriptional-activation-assay-for-detection-of-estrogenic-agonist-activity-of-chemicals_9789264076372-en
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In vivo assays providing data about selected endocrine mechanism(s) / pathway(s) 

• Uterotrophic assay (OECD TG 440). 

• Hershberger assay (OECD TG 441) 
• Xenopus embryo thyroid signaling assay (When/if TG is 

available). 

• Amphibian metamorphosis assay (OECD TG 231). 

• Fish Reproductive Screening Assay (OECD TG 229). 

• Fish Screening Assay (OECD TG 230). 

Androgenized female stickleback screen 

(OECD ). 

Level 4 

In vivo assays providing data on adverse effects on endocrine relevant endpoints 

• Repeated dose 28-day study (OECD TG 407). 

• Repeated dose 90-day study (OECD TG 408). 

• 1-generation reproduction toxicity study (OECD TG 
415). 

• Male pubertal assay (see GD 150, Chapter C4.3). 

• Female pubertal assay (see GD 150, Chapter C4.4). 

• Intact adult male endocrine screening assay (see GD 
150, Chapter Annex 2.5). 

• Prenatal developmental toxicity study (OECD TG 414). 

• Chronic toxicity and carcinogenicity studies (OECD TG 
451-3). 

• Reproductive screening test (OECD TG 421). 

• Combined 28-day/reproductive screening assay 
(OECD TG 422). 

• Developmental neurotoxicity (OECD TG 426). 

• Fish sexual development test (OECD TG 234). 

• Fish Reproduction Partial Lifecycle Test (when/If TG is 
Available). 

• Larval Amphibian Growth & Development Assay (OECD TG 241). 

• Avian Reproduction Assay (OECD TG 206). 

• Mollusc Partial Lifecycle Assays (OECD TG 242 & TG 243). 

• Chironomid Toxicity Test (TG 218 & TG 219). 

• Daphnia Reproduction Test (with male induction) (OECD TG 
211). 

• Earthworm Reproduction Test (OECD TG 222). 

• Enchytraeid Reproduction Test (OECD TG 220). 

• Sediment Water Lumbriculus Toxicity Test Using Spiked 
Sediment (OECD TG 225). 

• Predatory mite reproduction test in soil (OECD TG 226). 

• Collembolan Reproduction Test in Soil (OECD TG 232). 

Level 5 

In vivo assays providing more comprehensive data on adverse effects on endocrine relevant endpoints over more extensive parts of 

the life cycle of the organism 

• Extended one-generation reproductive toxicity study 
(OECD TG 443). 

• 2-Generation reproduction toxicity study (OECD TG 
416). 

• FLCTT (Fish LifeCycle Toxicity Test) (when TG is available). 

• Medaka Extended One Generation Reproduction Toxicity Study 
Test (OECD TG 240). 

• Avian 2 generation reproductive toxicity assay (when TG is 
available). 

• Mysid Life Cycle Toxicity Test (when TG is available). 

• Copepod Reproduction and Development Test (when TG is 
available). 

• Sediment Water Chironomid Life Cycle Toxicity Test (OECD TG 
233); 

• Mollusc Full Lifecycle Assays (when TG is available). 

• Daphnia Multigeneration Assay (if TG is available). 
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1.7 3Rs in hazard assessment 

 

 

Furthermore, Regulatory agencies worldwide and scientific research stakeholders 

as European Union Reference Laboratory for alternatives to animal testing (EURL-

ECVAM) or Interagency Coordinating Committee on the Validation of Alternative 

Methods (ICCVAM) have also supporting the development of new strategies in the 

chemical risk assessment based on alternative toxicological testing methods to 

laboratory animals. According to that it was created the Adverse Outcome 

Pathways (AOP) that is an analytical construct that describes a sequential chain of 

causally linked events at different levels of biological organization that lead to an 

adverse health or ecotoxicological effect (Fig.6). AOPs are the central element of a 

toxicological knowledge framework being built to support chemical risk 

assessment based on mechanistic reasoning [20; 21].

 

Figure 6. Adverse Outcome Pathway conceptual framework [20]. 

 

In addition to have a quickly and reduced testing cost characterization of chemical 

profilers, also for endocrine disruptor toxicity, several computational or in silico 

methods have been developed. Benfenati et al [22] drafted a report where they 

explain what those new approaches are: “In the broad sense of the term, in silico 

models refer to computer tools and models available to scientists to simulate 

biological processes for a range of applications, species and level of biological 

organization (cellular, molecular, species, population, ecosystem, landscape etc.). 

In toxicology and risk assessment, in silico tools often aim to predict toxicity of 

chemicals and cover a wide range of methodologies that would also comprise 

molecular modelling approaches and general computational toxicology tools, 

including theoretical models based on the intrinsic structural and physicochemical 

properties of chemicals and rule-based expert systems. Structure-Activity 
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Relationships (SAR) and Quantitative Structure Activity Relationships (QSAR) 

models are often collectively referred to as (Q)SAR as mathematical models that 

relate the structure of chemicals to their biological activities. The term 

‘quantitative’ refers to the fact that the molecular descriptors are quantifiable on a 

continuous scale and thus provide a quantitative relationship with toxicity (which 

may itself be expressed in quantitative or categorical terms). Molecular descriptors 

of chemicals include their inherent physicochemical properties (i.e. atomic 

composition, structure, sub-structures, hydrophobicity, surface area charge, and 

molecular volume). ….. SAR and QSAR models can provide a fast method for the 

toxicity screening of untested substances, for identifying emerging chemicals in the 

food chain that have not yet been tested for their safety to human health or the 

environment. They are typically used in combination with other non-testing (e.g. 

read-across) and testing (e.g. in vitro) methods in the context of integrated testing 

strategies (ITS) and Weight-of-Evidence assessments (EFSA, 2014). Read-across 

represents ‘a technique for predicting endpoint information for one substance 

(target substance), by using data from the same endpoint from (an)other 

substance(s), (source substance(s)’ as defined by the European Chemical Agency 

(ECHA) (ECHA, 2008). ECHA used two key approaches for read across: 1. 

Analogue approach for which read-across is applied within a group of a very 

limited number of substances e.g. simplest read-across from a single source 

substance to a target substance; 2.Category approach for which compounds can be 

grouped in the case of a high number of substances and comprehensive guidance 

on grouping and read-across has been published by the OECD (OECD, 2007) and 

ECHA (ECHA, 2008). Examples of criteria to group chemicals include physic-

chemical properties, functional/mechanistic/structural alert groups, chemical 

similarity …. The development of QSAR and read-across approaches for predicting 

toxicity of chemicals ideally involves quantitative understanding and data relating 

both toxicokinetic and toxicodynamic processes and some of the underlying 

parameters as predictor variables consider TK (e.g. partitioning coefficients) or 

TD (e.g. electronic properties) in the QSARs modelling. Key databases for QSAR 

and read-across have been described elsewhere (EFSA, 2014) and include: -The 

OECD QSAR Toolbox (http://www.qsartoolbox.org/) as a hazard identification tool 

which contains QSAR relationship methodologies to group chemicals into 

categories sharing the same structural characteristics and/or MoA. -The VEGA 
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platform (www.vega-qsar.eu) includes many models including physicochemical 

properties, ecotoxicological and toxicological properties ….. Key QSAR software 

and models used by international and national organizations including the Toxicity 

Estimation Software Tool (TEST), the OECD QSAR toolbox models and High-

throughput Virtual Molecular Docking (HTVMD), MetaCore, DEMETRA, 

CAESAR, DEREK, METEOR, Multicase, PASS, OASIS Times” [22]. 

In addition to QSAR models, new computational methods have generated to better 

investigate the behaviour of ligand (toxicant or drug) at the target level (e.g. proteins 

or nucleic acids). Then two computational structural biology techniques have 

developed as the molecular docking of ligands (e.g. toxicants) with their biological 

receptors or targets (e.g. proteins or nucleic acids); and the molecular dynamics 

(MD) simulations of ligand–receptor complexes compared with receptors alone. 

Molecular docking tool enable us to determine the best pose, in term of orientation 

and unique conformations, of ligand at the binding site and to assess the value of 

affinity of this specific and unique interaction. The best pose is computed by 

docking algorithms which employ distinct sampling techniques to identify 

energetically favourable ligand poses. The most commonly used sampling 

techniques are genetic algorithms, Monte Carlo techniques, and matching 

algorithms. While the assessment of affinity is generated by application of scoring 

function which comprises mathematical models that approximate the non-covalent 

binding energy of a ligand pose within the binding cavity of the receptor. 

This approach allows us to screen receptor–ligand interactions. These models have 

resulted in some advantages such as they are firstly inexpensive; it is possible to 

high throughput screen wide number of chemicals against a single target receptor 

(classical docking) or multiple target receptors against a single ligand (inverse 

docking); also to rapidly identify new ligand-binding sites within a receptor; the 

identified ligand poses can be scored in vacuo or in implicit solvent to obtain 

theoretical binding affinities; the results can be combined with pharmacophore 

mapping, shape-matching and molecular dynamic simulations to further investigate 

the nature and structural basis for a ligand– receptor interaction. While the possible 

disadvantages are the potential identification of incorrect binding site or target 

especially in the case of novel or previously uncharacterized xenobiotics; unreliable 

or misleading outcome when used with ligands that covalently modify their target 

receptor(s) [23]. 
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The biological mechanisms of EDCs have been broadly characterized by using cell 

culture system. OECD (reported Table 1, Level 2 above) and ICCVAM [13] have 

issued some guidelines for testing in a good reliability way such chemicals for 

endocrine disrupting activity while a large number of works have been showing the 

action of EDCs at cellular level, mainly towards nuclear receptors, estrogen and 

androgen ones [24; 25]. 

Considering the family of estrogen receptor Kuiper and co-workers investigated for 

the first time the ligand binding affinity of ERα and ERβ separately. In their work 

they found it out that for the physiological estrogens, the order of competition was 

17β-estradiol > estrone, 17a-estradiol (ERα) > estriol > catechol estrogens, 17α-

estradiol (ERβ)> estrone-3-sulfate. While different orders of competition were 

found: diethylstilbestrol > hexestrol > dienestrol > (E2) for ERα and dienestrol > 

diethylstilbestrol > hexestrol > (E2) for ERβ. In the same research of Kuiper, it was 

shown that genistein and coumestrol, two plant-derived nonsteroidal compounds, 

had a higher estrogenic affinity to ERβ, previously discovered by Kuiper [26], than 

ERα [10]. 

Different in vitro test have been developed and used to characterize the estrogenic 

like property of chemicals including competitive ER binding assay that measure the 

ability of test compound to compete with radiolabelled 17β-estradiol for binding to 

ER [10]; the E-screen assay that is a cell proliferation assay done with MCF-7 breast 

cancer cell lines, where it is quantified the increased cell number after treatment 

with the chemical [27] but it showed a disadvantage because of its lack of estrogen 

specificity; ER Reporter gene assays which is based on the ability of a compound 

to stimulate ER-dependent transcriptional activity in genetically engineered 

mammalian cells. The cell lines are T47D cells or MCF-7 cells which express 

endogenous ER or yeast cells or HeLa cells which have not endogenous ER. In both 

case the cells are transformed (transfected) by introducing vectors containing DNA 

sequences for the receptor, along with EREs linked to a reporter gene, and the 

reporter gene itself. The reporter gene used in human cancer cells usually codes for 

luciferase (CALUX, chemically activated luciferase expression) and the reporter 

gene used in yeast cells usually codes for β-galactosidase [28]. In the transactivation 

the EDCs show their estrogenic potency calculated as EC50, respect to the positive 

control, 17β-estradiol. Indeed, a water environmental contaminant such a mixture 

of 4n-nonylphenol showed a significant activation of ER in both transfected firefly 
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luciferase reporter cell, MCF-7 and HeLa cell [28]. Another transactivation assay 

using MELN cells (derived from MCF-7) stable transfected with the estrogen 

responsive gene ERE-βGlob-Luc-SVNeo, showed robustness and reproducibility 

in the screening of estrogenic potency of a panel of chemicals selected from a 

European project ReProTect. In this study test compounds ranked from highest to 

lowest of estrogenic potency, then 17α-ethynylestradiol > 17β-estradiol > hexestrol 

> diethylstilbestrol > norethynodrel > nonylphenol > n-butylparaben in the range of 

10-12-10-10 M; three chemicals showed a moderate ER activation with a ranking as 

follow: genistein > equol > o,p_-DDT having EC50-values in a very narrow range 

from 0.99×10−6 to 3.35×10−6 M [29]. However, the in vitro assays have not the 

same sensitivity to detect estrogenic potency. Indeed, Gutendorf and Westendorf 

reported a decrease of EC50 value for 17β-estradiol into different cell assays as 

follows: MVLN-cells=E-Screen > HGELN-cells (HGELN cells (derived from 

HeLa cells) > binding to ER- α binding to ER β. While a good correlation was 

registered for the other tested chemicals such as Bisphenol A but not for genistein 

which its relative potency ranked in the range of 10−4–10−5 M [24]. 

In vivo evidence of estrogenic like behaviour of EDCs has been investigated in 

animal models (mammalian and other species). Nowadays the use of the classical 

toxicological strategy is limited to the case when there is not a strong evidence from 

existing data of the scientific literature or from the in silico and in vitro testing based 

on OECD, ECHA, EFSA requirements, to reduce the number of laboratory animals 

as well as to follow the 3R principles, replacement, reduction and refinement. [30]. 

The reported Table 1, level 3 above shows the state of science to determine the 

biological effects in vivo. 

Several works in the literature made a correlation between in vitro and in vivo 

experiments. Sonneveld et al, established a good correlation between the in vitro 

test ERα-CALUX and the in vivo ovariectomized test in young rats by scoring 

vaginal cornification (Allen-Doisy test) [31]. Nevertheless, the plausibility of the 

in vivo model are still some limitations such as a lack of certainty on the suitability 

of animal species treated and its life stages, a lack of correlation between the 

mechanistic of actions (which are predictive of the endocrine disrupting concern) 

and the apical response observed in vivo, i.e. the adverse outcomes [32]. In the last 

period new in vivo approach based on transgenic mouse model have been generated 
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to measure estrogen receptor (ER) transcriptional activity in living organisms [33] 

(further detail in the vivo paragraph of this thesis). 

 

 

 

 

1.8 Chemicals of interest 

 

I focused on few compounds of industrial and regulatory relevance such as:  

 

 

4,4'-isopropylidenediphenol, Bisphenol A, (BPA) 

(CAS No. 85-05-7) is a synthetic chemical widely 

produced and used in the manufacturing of 

polycarbonate plastics and epoxy resins. This substance is manufactured and/or 

imported in the European Economic Area in 1000000 - 10000000 tons per year 

[34]. This substance has a broadly application in the production of consumer 

products such plastic food containers (e.g. bottles, baby bottles, dishes), food 

packaging (canned food), thermal paper, articles made of PVC, also toys and 

medical equipment’s contain BPA, and others consumer and professional use.  

Migration from those products represents the major routes of human exposure even 

if there are accountable environmental sources such as surface water (during 

swimming) and outdoor air (inhalation of aerosols). In addition, the release of BPA 

from epoxy-based floorings, adhesives, paints, electronic equipment and printed 

circuit boards is reported to be a source of contamination of indoor air (including 

airborne dust) and dust [35]. Indeed it was estimated different BPA concentration 

if food matrices as consequence of a migration process, e.g. in some canned food 

categories have an average (MB) BPA concentration above 30 μg/kg, such as grain 

and grain-based products, legumes, nuts and oilseeds, meat and meat products, fish 

and other seafood; other canned food categories have average BPA concentrations 

(MB) between 2.7 and 23.5 μg/kg, such as vegetables and vegetable products, fruit 

and fruit products, fruit and vegetable juices, milk and dairy products. While from 
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the environmental sources, e.g. at the urban traffic site, the BPA concentrations in 

the particulate phase ranged from 0.06 to 18.6 ng/m3 (average 6.78 ng/m3); at the 

industrial site the BPA concentrations ranged from LOD to 47.3 ng/m3 (average 

13.2 ng/m3). 

The estimated BPA dietary intake was highest in infants and toddlers, up to 0.875 

µg/kg body way (bw) for day. Women of childbearing age had dietary exposures 

comparable to men of the same age (up to 0.388 µg/kg bw day). The highest 

aggregated exposure of 1.449 µg/kg bw day was estimated for adolescents [35]. 

BPA has raised concern for its high production volume and for the evidence of 

toxicity in laboratory animal studies mainly on reproductive and developmental 

systems, liver, kidney some evidence of alteration and cancer in the mammary 

gland [16,36-39]. So according to the strong evidence of animal toxicity, ECHA 

has classified the BPA as toxic for reproduction category 1B (according to art. 57 

of Regulation (EC) No 1272/2008 on the classification, labelling and packaging of 

substances and mixtures (CLP Regulation) [34]. Although on 2015 EFSA has 

issued a scientific opinion that BPA does not pose no health risk to all consumers 

(including infant and pregnant women) because the current exposure to the 

chemical is too low to cause harm. In addiction EFSA has established a temporary 

TDI (tolerable daily intake) of 4 micrograms per kilogram of body weight per day 

based on the toxicological effect on mean relative kidney weight in a mouse study 

[35]. 

 

 

3,4-Bis(4-hydroxyphenyl)-hex-3-ene or 

Diethylstilbestrol, DES, (CAS No. 56-53-1) is a 

synthetic nonsteroidal estrogen. It was widely 

prescribed in the United States from the early 1940s 

until 1971, primarily as a treatment to prevent miscarriages or premature deliveries, 

control of menstrual disorders, relief or prevention of postpartum breast engorge-

ment, palliative therapy for cancer of the prostate in men and breast cancer in 

postmenopausal women, and as a post-coital contraceptive. Diethylstilbestrol has 

also been used in veterinary medicine and as a growth promoter (as a feed 

supplement or subcutaneous implant) in cattle, sheep, and poultry (IARC 1979). Its 

use as a growth promoter was banned in 1979. Its use as human therapy was stopped 



 

19 
 

for the first time in the 1978 when the U.S. Food and Drug Administration (FDA) 

withdrawn the approval of any estrogen-containing drug product (including 

diethylstilbestrol). Then this substance went under evaluation the International 

Agency for Research on Cancer (IARC) that in the 1978 and 1987 confirmed that 

diethylstilbestrol was a human carcinogen (category 1A) based on sufficient 

evidence of carcinogenicity from studies in humans. The evidence of 

carcinogenicity in human has been discovered from epidemiological studies of 

1970 where it was determined the association of women exposed to 

diethylstilbestrol in utero (“diethylstilbestrol daughters”), to clear-cell 

adenocarcinoma of the vagina or cervix. While in another cohort study it has been 

reported an increased risk of testicular cancer among diethylstilbestrol sons. Also, 

the evidence of carcinogenicity has been demonstrated in experimental animals by 

several routes of administration (e.g. oral, subcutaneous implantation). Prenatal 

exposure to diethylstilbestrol caused benign cervical and vaginal tumours 

(epidermoid tumours) in female mice, benign and malignant cervical and vaginal 

tumours (polyps, squamous-cell papilloma, and myosarcoma) in female hamsters, 

and benign and malignant testicular tumours (granuloma, adenoma, and 

leiomyosarcoma) in male hamsters. Also, in adult animal study DES caused 

carcinogenicity [15; 16; 40]. 

 

17β-estradiol (CAS No: 50-28-2) is a potent 

mammalian estrogenic hormone; it is produced in the 

ovary, placenta, testis, adrenal cortex. It is also 

produced by the adipose tissue of men and 

postmenopausal women. Estradiol has been used in estrogenic hormone therapy for 

the treatment of menopausal and postmenopausal symptoms, metastatic prostate 

cancer, & breast cancer [41]. Because of its natural affinity and potency to Estrogen 

receptors [10] 17β-estradiol has been using as positive reference compound in 

toxicological studies such as in the reproductive and developmental testing or in the 

mechanistic studies [13; 31; 42; 43] and pharmacological research [11]. Estradiol 

is to be considered as a carcinogenic chemical in woman in post-menopausal 

estrogen therapy. There is a strong evidence of carcinogenicity in several organs in 

animal studies. Mammary, pituitary, uterine, cervical, vaginal, testicular, lymphoid 
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and bone tumours were observed in mice. Also, β-estradiol induced mammary and/ 

or pituitary tumours in rats. In hamsters and in guinea pigs malignant kidney 

tumours were noted. It was also reported the evidence of genotoxicity of 17β-

estradiol [44]. 

 

Di-2-ethylhexyl phthalate, DEHP, (CAS No: 

117-81-7) is a high production volume chemical 

used as a plasticizer of polyvinyl chloride in the 

manufacture of a wide variety of consumer 

goods, such as building products, car products, clothing, food packaging, children’s 

products, and in medical devices made of polyvinyl chloride [45]. Because of its 

widespread use, it also represents a widely environmental pollutant. DEHP is 

expected to be strongly adsorbed to organic matter. DEHP is therefore expected to 

be found in the solid organic phase in the environment. DEHP has the property to 

bioaccumulate in aquatic organisms [46]. Human can be subjected to combined 

routes of exposure such as ingestion, inhalation and dermal exposure. It is estimated 

that the general population of the United States is exposed to DEHP levels ranging 

from 1 to 30 μg/kg bw day) [45]. Concentrations of DEHP and its metabolites 

detected at levels above the LOD have been characterized in urine samples from of 

mothers and their sons [47]. DEHP has been raising concern for its predominantly 

anti-androgenic activity elicited both in vitro and in vivo studies. While it is 

considered a weaker estrogenic compound [48]. In vitro DEHP caused cytotoxicity 

to MVNL cells line and displayed weak estrogenic potency in the MVLN 

transactivation assays. it decreased testosterone concentration in the H295R 

Steroidogenesis assay [49]. In a reproductive study (in utero and lactational 

exposure), it was reported a reduced daily sperm production and sperm quality and 

tract abnormalities (e.g., cryptorchidism) in adult male offspring. In this study the 

authors established a lowest observed adverse effect levels (LOAELs) for these 

effects were 15 and 5 mg/kg/day, respectively. Therefore, the no observed adverse 

effect level (NOAEL) for this study was set at 1.215 mg/kg/day [50]. 

The EFSA Scientific Panel on Food Additives, Flavourings, Processing Aids and 

Materials in Contact with Food (AFC) in 2005 determined a TDI of 0.05 mg/kg bw 
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day, based on the NOAEL of 5 mg/kg bw day for testicular toxicity observed in a 

feed multigeneration reproductive assessment in rats [51]. 

 

Methoxychlor (CAS No. 72-43-5) is a synthetic 

organochlorine insecticide used in the crop 

protection of ornamentals, livestock against a wide 

range of insects that attack fruits, vegetables, shade trees, home gardens, forage 

crops, and livestock. It is also used for the spray treatment of barns, grain storage 

bins, mushroom houses, dairies [52]. So, the agriculture activities, food and water 

contamination represented the mainly route of exposure to famers or people living 

close to area where methoxychlor was used. 

The toxicity of methoxychlor was clear in the animal rather than human. Exposure 

to high concentrations of methoxychlor caused adverse effects to the animal 

nervous system. Some breakdown products of methoxychlor produced adverse 

effects similar to those produced by estrogen such as alteration in ovaries, uterus, 

and mating cycle in females, and the testes and prostate in males. Also, infertility 

occurred in both female and male animals. Those effects were seen both in adult 

animals and in developing animals exposed prenatally or shortly after birth [53]. In 

another study methoxychlor caused a decrease of weight of testis, prostate, seminal 

vesicles in adult rats feed at 50 and 100mg/kg bw day [54]. 

 

  

4-nonylphenol (CAS No. 104-40-5) is an 

environmental pollutant arising from the 

degradation of non-ionic surfactants in 

sewage, Nonoxynol-9, one of the APEs (alkylphenol polyethoxylates), used as a 

surfactant in cleaning, in cosmetic products, as a spermicide in contraceptives. 

Nonylphenol is an organic compound which belongs to the wide family of 

alkylphenols. It is a product of industrial synthesis formed during the alkylation 

process of phenols, particularly in the synthesis of polyethoxylate detergents. 

Because of their man-made origins, nonylphenols are classified as xenobiotics [55]. 

This alkylphenol raised concern for its ability to affect the reproductive organs in 

female and male laboratory animals. Most alkylphenols showed an affinity to the 
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estrogen receptors in a concentration-dependent manner and thus potentially act as 

activators (agonists) or inhibitors (antagonists) of cellular responses mediated 

through the estrogen receptor. The binding activity of alkylphenols is associated 

with the presence of substituted alkyl group [56]. Law and co-workers found it out 

the 4-nonylphenol induced a significant increase in uterine weight in the prepubertal 

rats after oral administration. Also, the age of vaginal opening was advanced 

following oral exposure from postnatal days 21–35 [57].  

 

 

Vinclozolin (CAS No. 50471-44-8) was previously used 

as a fungicide on some fruits, nuts, vines, vegetables, 

ornamentals and wood preservative in the US. After 2004, 

its use in the US was restricted to only include use on 

canola and on turf used on golf courses and industrial 

sites. The only food import allowed following use of vinclozolin is wine grapes. 

Some other countries continue to use this fungicide [58]. Human data are very 

limited. It has low toxicity following single exposures via the oral, inhalation, or 

dermal route. The most sensitive targets to the toxicity of vinclozolin are the male 

reproductive organs. At low dose levels (>3 mg/kg/day), vinclozolin produced a 

decrease of prostate weight, reduction of nipple/areolas development, and decrease 

of ano-genital distance in male rats. At higher dose levels, the reduction of weight 

of male sexes organs is exacerbated, and sex organ malformations are seen, such as 

reduced penis size, ectopic testes, vaginal pouches, hypospadias, and additional 

ambiguities of the urogenital system [59]. This anti-androgenic activity is due to 

the binding to androgen receptor (AR) [60] or to other receptors such as the 

progesterone (PR), glucocorticoid (GR), mineralocorticoid (MR) or estrogen 

receptors (ERα and ERβ) [61]. 

 

 

Zearalenone (CAS No. 17924-92-4) is a 

phenolic resorcyclic acid lactone mycotoxin 

produced by several Fusarium species. It is 

commonly found in maize, but it can be found also in other crops such as wheat, 

barley, sorghum and rye. People are exposed mainly through the diet based on the 
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consumption of a breakfast cereal. It is estimated a chronic dietary exposure in the 

range concentration from 2.4 ng/kg bw day to 54 ng/kg bw for high consumers. 

Infant and toddler are the most exposed consumer. 

EFSA Contam Panel has derived a TDI of 0.25 μg/kg bw day based on the NOEL 

(no observed effect level) of 10 μg/kg bw. per day derived from a reproductive and 

development toxicity study in immature female pigs, considered as the most 

sensitive species to the estrogenic action of the zearalenone and its metabolites such 

as α-zearalenol. The estrogenic effects associate to this mycotoxin were the 

alterations of the oestrous cycle, ovulation, conception and implantation, embryonic 

death, reduced fetal weight, reduced litter size and impaired neonatal survival. 

The toxicity of the zearalenone was considered relevant for the human health 

because the reproductive tract of female pigs was like the woman ones [62]. After 

the ingestion, zearalenone is metabolized to a secondary product with a higher 

estrogenic activity than the parent compound, by the CYP450 or other enzymes as 

3α- and 3β-hydroxysteroid dehydrogenases (HSDs) family. Among these 

metabolites, α-zearalenol was linked to an alteration of steroidogenesis production 

as the parent compound does, in Leydig cells of mice [63] and in the H295R 

steroidogenesis assay where increased the production of progesterone, estradiol, 

testosterone and cortisol hormones [65]. Oral administration of zearalenone to adult 

male mice produced only adverse effects on the sperm parameters such as the 

decrease of sperm concentration and the increase of morphologically abnormal 

spermatozoa [65]. In the subchronic and chronic toxicity studies of NTP (technical 

report 235, 1982) [66] zearalenone caused atrophy of testis and seminal vesicles in 

both male rats F344/N and mice B6C3F1. These effects were observed also in the 

90 days toxicity studies in rats at 27 – 270 mg/kg bw per day while in the 104 weeks 

toxicity study only the testes were sensitive to low doses (1.25-2.5 mg/kg per day). 

In the subchronic and carcinogenicity studies, male mice B6C3F1 treated at 

different doses, 9 and 150 and 450 mg/kg bw per day, developed a testicular 

atrophy. In NTP studies also the prostate was altered. Indeed, the rats developed a 

hyperplasia at 27 mg/kg bw per day in the subchronic study, while in 

carcinogenicity study was observed an increase of inflammation at both doses tested 

(1 and 2 mg/kg bw per day). In mice there was an incidence of squamous metaplasia 

at 450 mg/kg bw per day in the 13 weeks exposure study, while no adverse effect 

was detected in the carcinogenicity test. 
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Zearalenone was also defined as ER agonist [13]; it was determined a high value of 

half maximal inhibitory concentration (IC50) in estrogen receptor competitive 

binding assay [67], while different transactivation assays (as in Hela cells) 

determined that zearalenone was a potent activator of estrogen receptor [68; 69]. 

 

 

Genistein, is an isoflavone that occurs in soy 

products. Human exposure to genistein comes is 

predominantly through the consumption of soy 

products, including soy-based infant formula and 

dietary supplements. The consumption of soy and thus of genistein, has been 

associated with a variety of beneficial effects in animals and humans. Nevertheless, 

some concerns have also been raised regarding the putative toxicity of genistein, 

particularly regarding on the reproductive system or the induction or potentiation 

of carcinogenesis, due to its weak estrogenic activity [70]. Indeed, in in vitro ER 

binding assay genistein showed a lower relative binding affinity towards ERα as 

reported by Kuiper [10] and by Gutendorf et al. [24]. 

In addition, the estrogenic potency of genistein was assessed to be several orders of 

magnitude lower than 17β-estradiol one in different in vitro assays [24]. In the 

animal testing, this isoflavone was linked to an alteration of both female and male 

reproductive organs. In a subchronic study where adult female rats were exposed to 

high concentration (500 mg/kg bw per day) of genistein, was observed an increase 

of ovarian and uterine weights, while in a carcinogenicity assay there was an 

increase of metaplasia and squamous metaplasia of uterine cervix, increase of 

uterine weight, uterine horn dilation at the same dose [71]. Also, male species were 

affected by the exposure to genistein mainly during the most sensible window as in 

utero exposure. In the multigenerational study done by NTP the male rats exposed 

during all pregnancy till to the adult age had significant increased weight of prostate 

[72].  

However, even there is some evidence of toxicity of genistein from animal studies, 

maybe through the ER activation, EFSA opinion stated the safety of isoflavone 

consumption from soy-products [73]. 
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1.9 Aim 

 

The general aim of the project was to develop an integrated strategy of testing based 

on the combination of scientific literature review of in vivo data, in silico method, 

cellular and animal bioluminescence imaging methodologies to predict among a set 

of chemicals those with an endocrine disrupting activity or ability to activate other 

toxicological pathways such as inflammation and oxidative stress measured in the 

male reproductive organs and in the genital and abdominal area of mice. The 

selected molecules range from known (DES), to suspected (BPA), endocrine 

disruptors and included both synthetic (DEHP) and natural (genistein) compounds. 

Therefore, the assessment of ED activity/mechanism and the activation of 

inflammatory and oxidative stress pathways (as indirect toxicological mechanisms) 

of selected chemicals is based on the final observation of the correlation between 

the computed binding affinity values (binding free energies of chemicals towards 

human estrogen receptor, see Material and Methods), the following determinations 

of the dynamic ER activations quantified by in vitro and in vivo bioluminescence 

imaging methodologies and the available toxicological information from the 

literature.  

The in vitro testing is a ERE-Luc reporter system where that is the cell transfection 

assay in ERE-Luc B17 cells, a clone of the breast cancer cell line MCF-7 stably 

transfected with a luciferase reporter system of estrogenic activity. The in vivo 

imaging was conducted in 3 different male transgenic mice carrying a firefly 

luciferase reporter system: one type under the control of estrogen-responsive 

promoter (ERE-Luc), ones under the control of inflammation pathway (NFkB-

Luc), and the last was responsive to oxidative stress signaling (ARE-Luc).  

Because of the nature of endocrine disruptors to alter the reproductive tract we have 

restricted our investigation on the ability of specific compound to activate the 

luciferase systems (ERE-Luc, NFkB-Luc and ARE-Luc) in the genital area of the 

transgenic mice. The abdominal area and intestine were integrated into the analysis 

as controls because of the high expression of the estrogen receptor.  

The activities have been scheduled as reported below: 
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1° 
year 

Literature search to retrieve toxicological data inherent to the 

reproductive alterations of our selected set of chemicals. 

Application of in silico model to human ERα to prioritize the chemicals 

based on their different ability to bind the receptor 

2° 
year 

Gathering of information on available in vitro systems that elucidate the 

mechanism of action of estrogen like compound. Then focus on reporter 

cells system such as that used in this project activity ERE-Luc B17 cells, 

a clone of the breast cancer cell line MCF-7. Imaging of ER activity in 

the reporter ERE-Luc cell to measure the EC50 of the compounds to be 

prioritized for the in vivo assay. 

3° 
year 

In vivo imaging of ER activity in reporter mice of compounds which 

were prioritized in the in vitro assay. Integration of all results in a 

rationale flow to be use in the toxicological risk assessment.  

 

 

 

 

Chapter 2 
 

2.1 Materials and Methods 

 

2.2 Chemicals used in the luciferase reporter systems 

 

Reagents: 17β-estradiol (CAS Number 50-28-2, purity 100%), Diethylstilbestrol 

(CAS Number 56-53-1, purity≥ 99%), Zearalenone (CAS Number 17924-92-4, 

purity ≥ 99%, stored condition at -20 °C), Bisphenol A (CAS Number 80-05-7, 

purity ≥ 99%), Genistein (CAS Number 446-72-0, purity ≥ 98%), Methoxychlor 

(CAS Number 72-43-5, purity ≤ 100%), Vinclozolin (CAS Number 50471-44-8, 

purity ≤ 100%), Bis(2-ethylhexyl) phthalate (CAS Number 117-81-7, purity ≤ 

100%), 4-nonylphenol (CAS Number 104-40-5, purity ≤ 100%), Dimethyl 
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sulfoxide DMSO (CAS Number 67-68-5), were purchased form Sigma Aldrich 

S.r.l. The cell culture media RMPI 1640 supplemented was from LIFE 

Technologies Europe BV. 

 

2.3 Literature search of endocrine disruptor endpoints 

 

 The existing toxicological data on the substances tested in the project, where 

collected from available research works where the apical effects on endocrine 

system ware investigated after oral (diet > drinking water > gavage) administration 

of the compounds. Only the toxicological data from rodent species (both sexes of 

mice and rats) were collected, except a study showing adverse effects of 

zearalenone on the reproductive system of female pig. The endpoints of interest 

were based on the ECHA and EFSA “Guidance for the identification of endocrine 

disruptors in the context of Regulations (EU) No 528/2012 and (EC) No 

1107/2009” and on the OECD (Organization for Economic Co-operation and 

Development) framework “Guidance Document 150 on Standardized Test 

Guidelines for Evaluating Chemicals for Endocrine Disruption, revised 2018” [18] 

(Table 1, previously reported). The checked database were first that of National 

Toxicological Programs Database where the studies reports are considered of high 

quality and reliability, then the others were: Toxnet, eChemPortal by the OECD 

which allows simultaneous searching of reports/datasets through the chemical name 

and number, the chemical properties and it also provides a direct link to collections 

of use, exposure, hazard and risk information from government chemical review 

programs at national, regional and international levels; Chembase, ChemIDplus, 

ChemSpider, Carcinogenic Potency Database, DSSTox, European chemical 

Substances Information System, PubChem BioAssay Database that contains 

bioactivity screens of chemical substances described in PubChem Substance. It 

provides searchable descriptions of each bioassay, including descriptions of the 

conditions and readouts specific to that screening procedure. 
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2.4 In silico methodology 

 

All the computational procedures were carried out by the Schrödinger Small-

Molecule Drug Discovery Suite 2018-32. The crystallographic structure of the 

ligand binding domain of human estrogen alpha bound to estradiol was downloaded 

from the RCSB PDB (code: 3UUD, chain A) [74]. The Schrödinger Protein 

Preparation Wizard was used for locating and fixing structural defects or missing 

information in ERα structure and preparing it for use with Schrödinger Glide for 

molecular docking. Tested ligands were built by the Schrödinger Maestro Build 

Toolbar and prepared for docking by the Schrödinger Ligand Preparation. The 

molecular docking procedure was carried out by the Schrödinger Glide Docking in 

“extra precision, XP” mode, which is an estimation of the binding free energy, in 

order to evaluate the ability of the tested ligand to bind the ERα ligand binding 

domain.  

The top-scoring solution for each ligand was submitted to Schrödinger Prime MM-

GBSA, which integrates molecular mechanics energies combined with the 

generalized Born and surface area continuum solvation [75] in order to calculate 

ligand binding and ligand strain energies for a set of ligands and a single receptor. 

The dissociation constant (Ki) was computed starting from empirical binding free 

energy values, according to the following equation: 

 iKRTG ln  

where R represents the gas constant and T the temperature. Ki was computed 

starting from the binding free energy values at a fixed temperature (300 K) 

 

 

2.5 In vitro bioluminescence imaging assay 

 

The ability of the compounds to transcriptionally activate ERα was tested in ERE-

Luc B17 cells, a clone of the breast cancer cell line MCF-7 stably transfected with 

a reporter constituted by the luciferase gene driven by an estrogen-regulated 

synthetic promoter previously generated and tested in laboratory of Professor Ciana 

[76] and already successfully used in other researches [77; 78].  
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Cells were grown in RPMI 1640 supplemented with 10% fetal bovine serum (FBS) 

(Euroclone, UK), 50 U/mL penicillin G, 50 μg/mL streptomycin sulfate, 2 g/L 

sodium carbonate, and 0.11 g/L sodium pyruvate at 37 °C at 99% humidity and 5% 

CO2. Cells were split twice a week by seeding 2 × 106 cells in 100 mm diameter 

Petri (Corning, MA) dishes. For transactivation studies, 105 cells/well were seeded 

in 96 well plate in phenol red-free RPMI 1640 medium (Sigma-Aldrich, MO) 

supplemented with 10% dextran-coated charcoal stripped FBS, 1% essential amino 

acid, 1% vitamin mixture, 50 U/mL penicillin G, 50 μg/mL streptomycin sulfate, 2 

g/L sodium carbonate, and 0.11 g/L sodium pyruvate and kept at 37 °C in a 

humidified incubator for 24 h.  

Next, culture medium was replaced with RPMI 1640 with 1% stripped FBS, and 

cells were incubated for a minimum of 4 h before adding 17β-estradiol or selected 

EDCs at increasing concentrations (6-10 depending on the in vitro toxicity) of each 

compound. 

After 6h and 48h of incubation the treated cells were rinsed once with PBS before 

preparing the bioluminescence detection by CCD camera in presence of luciferin 

substrate. Then the bioluminescence imaging sessions were carried out on the same 

treated cells after 6h and 48h of treatments. As a control, all compounds were run 

in parallel with 17β-estradiol. The in vitro assay was repeated two times, with three 

replicates at each tested concentration (see Figure 7 as an example). 

With this system the activity of ER following activation can be easily directly 

detected by a bioluminescence imaging simply after adding the substrate luciferin 

to the culture medium of the reporter cells. The ER activations are then quantified 

by the bioluminescence imaging of photon emissions from the treated cells (with 

different concentrations of tested chemicals (in the range of micromolar to 

picomolar) by using a CCD camera, also used in approach routinely applied for in 

vivo imaging experiment [11; 12], which takes a picture of photon emission at 6 

and 48 hours of incubation (Figure 7). 
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2.6 In vivo bioluminescence imaging experiments 

 

In the in vivo bioluminescence imaging, the selected compounds plus a positive 

control and the vehicle were orally administered to three different reporter mice. 

The ERE-Luc mouse model is a transgenic mouse previously generated by prof. 

Ciana [76] to measure the ER activity in the mouse tissues. Briefly, the construct 

used for transgenesis consisted of the reporter gene (firefly luciferase) driven by a 

dimerized ERE and a minimal promoter. Insulator sequences, the matrix attachment 

region from chicken lysozyme, were used to flank the reporter system in the 

transgenesis construct to achieve a generalized, hormone-responsive reporter 

expression [12]. This model was already successfully and routinely used in other 

works, demonstrating that in this animal model luciferase activity is strictly related 

with the state of ER transcriptional activity [11; 12; 33; 79; 80]. 

The insulator technology was successfully applied to the generation of the other 

model of reporter mice used in this step of the project. The transgenic mice were 

transfected with a reporter system for the inflammatory (NFkB-Luc) and oxidative 

stress (ARE-Luc) pathways. 

The in vivo bioluminescence imaging represents a newly non-invasive procedure 

to quantify the interactions of the xenobiotics, in this case estrogen like compounds, 

Figure 7. Example of bioluminescence imaging o of photon emission after 

 treatment with different concentrations (three replicates at each tested 

concentrations) of Bisphenol A at 6h and 48h. 
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with the reporter luciferase constructs expressed in transgenic mouse, by the 

charge-couple device (CCD) camera detection which takes a “picture” of the photon 

emissions arising from the mouse tissues as a consequence of ER activation [11; 

12; 33; 79; 80] or inflammation or oxidative stress pathways stimulations. 

Also, this non-invasive approach allowed us to quantify by bioluminescence 

imaging the biological events (e.g. the activations of mentioned pathways) 

occurring in the same mouse during the entire time of experiment. Thus, the mouse 

has become itself both its “control group” for the quantification of the baseline 

bioluminescence values (background noise) and the “experimental group” during 

the quantifications of the bioluminescence in response to the treatments. So, any 

biological variation observed are normalized on the basic (baseline 

bioluminescence) values of the same individual, reducing the component of 

variability of the measurements among different individuals. 

At least this methodology allows also to reduce the number of experimental groups 

thanks to a limited variability of less than 10% of the standard deviation. Our 

knowledge of the imaging models used in the project on which preliminary 

observations were made allowed us to make a hypothetical estimation of the noise, 

the signal (effect size) and the signal to noise ratio (S / N). Thanks to this estimate, 

we were able to determine the number of animals per experimental group to be used 

in our study based on the following parameters: 

• significance level of 5% 

• power equal to 80% 

• signal / noise ratio of 1.2 

Based on these parameters and referring to what was suggested on the website 

http://www.3rs-reduction.co.uk, we have therefore established the number of our 

samples as N=4 mice for each treatment as also reported in previously works using 

this non-invasive methodology both in male and female transgenic mice [81]. The 

following protocol used in my research describes how to run an in vivo imaging 

experiment: 

4 heterozygous young male mice C57BL/6 were enrolled for each treatment. Before 

the beginning of the experimental study, the baseline luciferase activity was 

measured in all animals by in vivo imaging (D0 or baseline). The anaesthetized 

untreated mice were doped with substrate and the introduced inside the CCD 

camera for 5 minutes to get the baseline luciferase activity. The day after the 
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compounds Bisphenol A (10 and 100 mg/kg/day, BPA10 and BPA100), 

Zearalenone (10 and 150 mg/kg/day, ZEA10 and ZEA150), 17β-estradiol, positive 

control, (10 and 100 μg/kg/day, E10 and E100) and vehicle (2-hydroxypropyl-β-

cyclodextrin) were daily administered by drinking water for 21 days to transgenic 

mice. 

The bioluminescence imaging session was done every morning at 10:00. The 

animals were injected i.p. with 80 mg/kg of luciferin (Beetle Luciferin Potassium 

Salt; Promega, Madison, WI, USA) 15 minutes prior bioluminescence 

quantification, to obtain a uniform biodistribution of the substrate. For the imaging, 

mice were anaesthetized using isoflurane (Isoflurane-Vet; Merial, Lyon, France) 

and kept under anaesthesia during the 5 minutes of the session carried out with a 

CCD camera which took a picture of bioluminescence emissions. Photon emission 

in selected body areas was measured using the Living Image Software (Caliper, 

PerkinElmer company). The analysis was done in ventral view: whole body, head, 

thymus, chest, abdominal, genital area, tail, paw and expressed as 

photon/second/cm2/sr radiant (p/s/cm2/sr). At the end of treatment On day 21, 

terminal study, , the animals were sacrificed by the intraperitoneal injection of lethal 

mixtures (ketamine >280.8 and xylazine >21.6 mg/Kg), then the selected organs 

were excised and placed into the CCD camera for the ex vivo bioluminescence 

imaging procedure in order to directly quantify the photon emissions of our 

pathways of interest (hormonal, inflammation and oxidative stress) from localized 

tissue such as intestine, testis, seminal vesicles and prostate. 

The measurements of photon emissions could be quantitatively analysed from the 

selected and specific body areas are by called regions of interest (ROIs) which can 

be also manually selected. The software of CCD camera takes the image of the 

whole animal body and thus we can modify and select the area, the size of ROI 

(highlighted in red borders) (Figure 8). 
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2.7 Statistical analysis 

 

The in vitro bioluminescence imaging assay was carried out in triplicates at each 

concentration tested (figure 7). The analysis of transactivation data and calculation 

of EC50 values were performed by means of sigmoidal dose-response (variable 

slope) using GraphPad Prism v. 7 software (GraphPad Software Inc.).  

In vivo bioluminescence imaging experiment with reporter mice allowed us to 

quantify by bioluminescence imaging the biological events (e.g. the activations of 

mentioned pathways) occurring in the same mouse during the entire time of 

experiment. Thus, the mouse has become itself both its “control group” for the 

quantification of the baseline bioluminescence values  (background noise) and the 

“experimental group” during the quantifications of the bioluminescence as response 

to the treatments. So, any biological variation observed are normalized on the basic 

(baseline bioluminescence) values of the same individual, reducing the component 

of variability of the measurements among different individuals. 

Figure 8: selection of regions of 

interest (ROI) on the 

bioluminescence image taken by 

CCD camera, for whole body, 

genital area, head, chest, 

abdominal, paw, tail. 
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Imaging allows to reduce the number of experimental groups thanks to a limited 

variability of less than 10% of the standard deviation. Our knowledge of the 

imaging models used in the project on which preliminary observations were made 

allowed us to make a hypothetical estimation of the noise, the signal (effect size) 

and the signal to noise ratio (S / N). Thanks to this estimate, we were able to 

determine the number of animals per experimental group to be used in our study 

based on the following parameters: 

• significance level of 5% 

• power equal to 80% 

• signal / noise ratio of 1.2 

Based on these parameters and referring to what was suggested on the website 

http://www.3rs-reduction.co.uk, we have therefore established the number of our 

samples as N=4 mice for each treatment. 

The analysis of statistical significance was done by Ordinary one-way ANOVA plus 

Bonferroni's multiple comparisons test with p < 0.05 versus control.  
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Chapter 3 

 

3.1 Results 

 

3.2 Literature search of endocrine disruptor endpoints 

 

Before the programming of experimental part of the project, an extensive 

bibliographic analysis of the available toxicological data was carried out. Those 

data related to a possible endocrine disrupting activity of the selected molecules 

described in the paragraph 1.7. The endpoints of interest focused on the parameters 

described in the “Guidance for the identification of endocrine disruptors in the 

context of Regulations (EU) No 528/2012 and (EC) No 1107/2009” based also on 

OECD (Organization for Economic Co-operation and Development) framework 

“Guidance Document 150 on Standardized Test Guidelines for Evaluating 

Chemicals for Endocrine Disruption, revised 2018” [18; 19]. The aim was to obtain 

any information on the active dose ranges and the potency of each molecule with 

the regard to specific effects in organs targets which are representatives of a 

hormonal activity. The analysis was not able to show any particular correlations 

because of many experiments with different protocols, except few cases, using 

different species, strains, sex, treatment duration, doses etc. Then the attention was 

exclusively focused on data obtained from reliable toxicological studies carried out 

by NTP, except few cases. Thus, the data were restricted to the effects observed in 

the male reproductive organs. An extract of these data is reported in the following 

table 2. 
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Table 2. Extract of data from literature: adverse effects of interest for endocrine disrupting activity on testis, 

seminal vesicles, prostate and liver of male rodent species  

 

• Testis 

 

COMPOUND SPECIES STRAINS ROUTE PROTOCOL 
TREATMENT 

(DAYS) 

DOSE  

(mg/kg bw day) 
EFFECT REFERENCE 

17β-estradiol  Rats 
Crl:CD 

BR  
diet Subchronic toxicity 90 

0.003; 0.139 - 

0.173; 0.5 - 0.7; 

3 - 4 

↓ weight, size, 

Degeneration/atrophy, 

seminiferous tubule 

(0.5, 3) 

Biegel et al., 

1998 [42] 

17β-estradiol Rats 
Crl:CD 

BR  
diet 

Extended One-

Generation 

Reproductive 

Toxicity Study 

in utero + 

lactation + 

77 days 

(Post 

weaning - 

77) 

0.004 - 0.005; 

0.225 - 0.273 
↓ weight (0.225) 

Biegel et al., 

1998 [42] 

Zearalenone  Rats  F344/N  diet Subchronic toxicity 90 
0; 2.7; 9; 27; 90; 

270 
↑Atrophy (27; 90; 270) 

NTP tr 235, 

1982 [66]  

Zearalenone  Rats  F344/N  diet Carcinogenicity 728 1.25; 2.5 ↑Atrophy (1.25>2.5) 
NTP tr 235, 

1982 [66] 

Zearalenone Mice  B6C3F1  diet Subchronic toxicity 90 
0; 4.5; 15; 45; 

150; 450 
↑Atrophy (150; 450) 

NTP tr 235, 

1982 [66] 

Zearalenone Mice  B6C3F2 diet Carcinogenicity 728 
m: 7; 14; f: 10; 

20 
↑Atrophy (9> 17) 

NTP tr 235, 

1982 [66] 

Zearalenone Mice  CD1 
drinking 

water 

One-Generation 

Reproduction 

Toxicity Study  

90 (GD1-

PND70, only 

male pups)  

0.000025; 0.025 no effect 

Zatecka et 

al., 2014] 

[65] 

Genistein Rats SD diet 

Extended One-

Generation 

Reproductive 

Toxicity Study 

64 (GD7-

PND49) 

(only pups 

examination

) 

 

0.3; 1.7; 6.4; 16; 

38; 72  

Pregnant dams 

(GD7- 

parturition) 

 

0.6; 3.5; 14; 37; 

84; 167 

  

Lactating dams 

(Pup PND 1 - 

PND 14)  

 

0.6; 3; 11; 29; 69 

; 166  

F1 male ; 

PND21-PND50 

 

0.6; 3; 12; 31; 

73; 166 

F1 female, PND 

21 - PND 50 

no effect  
NTP tr 79, 

2007 [82] 
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Genistein Rats  SD diet 

Multigeneration 

reproductive 

toxicology 

 

F0: From 

PND 42 to 

PND 140 (98 

days) 

 

F1: From 

conception 

to PND 140 

(161 days) 

F2: From 

conception 

to PND 140 

(161 days) 

F3: From 

conception 

to PND 21, 

fed control 

feed from 

PND 21 to 

PND 140 

(161 days 

total; 42 

days on 

dosed feed) 

 

F4: No 

exposure; 

control feed 

from 

conception 

to PND 140 

(161 days 

total; no 

dosed feed) 

 

F5: No 

exposure; 

control feed 

from 

conception 

to PND 21 

(42 days 

total; no 

dosed feed) 

m: 0; 0.03; 7; 35 

f: 0.5; 10; 50 

↑ weight (abs, rel.) 

(F0, 35); ↑ age at 

testicular descent (F3, 

trend to 35) 

NTP tr 539, 

2008 [83] 

Genistein Rats  SD diet Carcinogenicity 

F0: From 

PND 42 until 

F1 weaning 

(77 days) 

F1 (F1C): 

From 

conception 

to 2 years 

(756 days) 

F1 (F1T140): 

From 

conception 

to PND 140 

(161 days), 

then fed 

control diet 

to 2 years 

F3 (F3T21): 

From 

conception 

to PND 21 

pregnant dams: 

0; 0.5; 9; 45; 

lacting dams: 

0.7; 15; 75;  

period prior to 

PND 140; f: 0.4; 

8; 44; 

m: 0.4; 7; 37; 

period between 

PND 140 and the 

end; f: 0.3; 5; 29; 

m: 0.2; 4; 20 

no effect 
NTP tr 545, 

2007 [70] 
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(42 days); 

then fed 

control diet 

to 2 years 

Genistein Rats  
Long 

Evans 
diet 

One-Generation 

Reproduction 

Toxicity Study  

35 (GD1-

PND21) 

Prenatal: 0.1-

0.2; 6.4-9.1; 

Postnatal: 0.2-

0.4; 12-23  

↓ size (PND40, 0.4;23) 

Wisniewski 

et al., 2003 

[84] 

Genistein Rats  SD diet 

Reproductive and 

development 

toxicity 

14 (PND21-

35) 
22; 90 no effect  

Fritz et al., 

2003 [85] 

Genistein Rats Wistar diet Subchronic toxicity 28 0.5; 5; 50; 500  no effect  

Mc Clain et 

al.; 2006 

[71] 

Genistein Rats Wistar diet Subchronic toxicity 90 

5; 50; 500 ↑ rel. weigh (500); 

↑tubular 

degeneration/atrophy 

(500, reversible after 4 

weeks) 

Mc Clain et 

al., 2006 

[71] 

Genistein Rats Wistar diet Chronic toxicity 364 

5; 50; 500 

↑ rel. weigh (500) 

Mc Clain et 

al., 2006 

[71] 

Bisphenol A Rats SD gavage 
Prenatal and 

Chronic toxicity 

In utero + 

PND1-21 (no 

dosing to 

365) 

0; 0.0025; 0.025; 

0.25; 2.5; 27 
no effect  

NTP RR 09; 

sept [86] 

Bisphenol A Rats SD gavage 
Prenatal and 

Chronic toxicity 

In utero + 

PND1-365 

0; 0.0025; 0.025; 

0.25; 2.5; 25 
no effect  

NTP RR 09; 

sept. 2018 

[86] 

Bisphenol A Rats SD gavage 
Prenatal and 

Chronic toxicity 

In utero + 

PND1-21 (no 

dosing to 

730) 

0; 0.0025; 0.025; 

0.25; 2.5; 28 

↑testes polyarteritis 

(2.5) 

NTP RR 09; 

sept. 2018 

[86] 

Bisphenol A Rats SD gavage 
Prenatal and 

Chronic toxicity 

In utero + 

PND1-730 

0; 0.0025; 0.025; 

0.25; 2.5; 26 
no effect  

NTP RR 09; 

sept. 2018 

[86] 

Bisphenol A Rats F344 diet Carcinogenicity 730 50; 100 
↑ interstitial-cell 

tumours (50; 100) 

NTP tr 215, 

1982 [66] 
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Bisphenol A Mice  B6C3F1 diet Carcinogenicity 730 750; 1500 no effect  
NTP tr 215, 

1982 [66] 

Bisphenol A Rats Wistar gavage 

Reproductive and 

development 

toxicity 

GD7-PND22 

(30) 
 0.025; 0.250; 5 no effect  

Christiansen 

et al., 2014 

[87] 

Bisphenol A Rats SD gavage 

One-Generation 

Reproduction 

Toxicity Study  

GD6-PND90  

0.0025; 0.008; 

0.025; 0.08; 

0.26; 0.840; 2.7; 

100; 300 

↓ size (PND90; F1, 

0.26; 300) 

Delclos et 

al., 2016 

[39] 

Bisphenol A Rats SD diet 

Multigenerational  

reproductive 

toxicology 

130 (F0 

through F3) 

0.0007– 0.003; 

0.015– 0.062; 

0.22– 0.73; 4.1–

15.4; 37.6 –

167.2; 

434 –1823  

no effect  
Tyl et al., 

2002 [36] 

Bisphenol A Mice CD-1 diet 

Multigeneratio  

reproductive 

toxicology 

112 
0.003; 0.03; 0.3; 

5; 50; 600 

↑ testes weights (F1; 

F2; 600); ↑ increased 

incidence of 

minimal to mild 

hypoplasia of the 

seminiferous tubule 

(F1; F2; 600) 

Tyl et al., 

2008 [37] 

 

 

• Seminal vesicles 

 

COMPOUND SPECIES STRAINS ROUTE PROTOCOL 
TREATMENT 

(DAYS) 

DOSE 

 (mg/kg bw day) 
EFFECT REFERENCE 

17β-estradiol Rats  SD gavage 

Reproductive and 

development 

toxicity 

38 (GD6-

PND20) 
0.01 ↓weight (0.01) 

Kang et al., 

2002 [88] 

17β-estradiol Rats 
Crl:CD 

BR  
diet Subchronic toxicity 90 

0.003; 0.139 - 

0.173; 0.5 - 0.7; 

3 - 4 

↓weight, ↑ atrophy 

(0.5, 3) 

Biegel et al., 

1998 [42] 

17β-estradiol Rats 
Crl:CD 

BR  
diet 

One-Generation 

Reproduction 

Toxicity Study  

in utero + 

lactation + 

77 days 

(Post 

weaning - 

77) 

0.004 - 0.005; 

0.225 - 0.273 
↓weight (0.225) 

Biegel et al., 

1998 [42] 

Zearalenone  Rats  F344/N  diet Subchronic toxicity 90 
0; 2.7; 9; 27; 90; 

270 

↑Atrophy (9; 27; 90; 

270) 

NTP tr 235, 

1982 [66] 

Zearalenone  Rats  F344/N  diet Carcinogenicity 728 1; 2 no effect 
NTP tr 235, 

1982 [66] 

Zearalenone Mice  B6C3F1  diet Subchronic toxicity 90 
0; 4.5; 15; 45; 

150; 450 
↑Atrophy (150; 450) 

NTP tr 235, 

1982 [66] 

Zearalenone Mice  B6C3F2 diet Carcinogenicity 728 9; 17; f: 10; 20 no effect 
NTP tr 235, 

1982 [66] 
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Zearalenone Mice  CD1 
drinking 

water 

One-Generation 

Reproduction 

Toxicity Study  

90 (GD1-

PND70, only 

male pups)  

0.000025; 0.025 no effect 

Zatecka et 

al., 2014 

[65] 

Genistein Rats SD diet 

One-Generation 

Reproduction 

Toxicity Study  

64 (GD7-

PND49) 

(only pups 

examination

) 

 

0.3;1.7; 6.4; 16; 

38; 72  

Pregnant dams 

(GD7- 

parturition) 

 

0.6; 3.5; 14; 37; 

84; 167 

  

Lactating dams 

(Pup PND 1 - 

PND 14)  

 

0.6; 3; 11; 29; 

69; 166  

F1 male; PND21-

PND50 

no effect 
NTP tr 79, 

2007 [82] 

Genistein Rats  SD diet 

Multigeneration 

reproductive 

toxicology 

 

F0: From 

PND 42 to 

PND 140 (98 

days) 

 

F1: From 

conception 

to PND 140 

(161 days) 

F2: From 

conception 

to PND 140 

(161 days) 

F3: From 

conception 

to PND 21, 

fed control 

feed from 

PND 21 to 

PND 140 

(161 days 

total, 42 

days on 

dosed feed) 

 

F4: No 

exposure; 

control feed 

from 

conception 

to PND 140 

(161 days 

total, no 

dosed feed) 

 

F5: No 

exposure; 

control feed 

from 

conception 

to PND 21 

(42 days 

0; 0.03; 5; 25 f: 

0.5; 10; 50 
no effect 

NTP tr 539, 

2008 [83] 
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total; no 

dosed feed) 

Genistein Rats  SD diet Carcinogenicity 

F0: From 

PND 42 until 

F1 weaning 

(77 days) 

F1 (F1C): 

From 

conception 

to 2 years 

(756 days) 

F1 (F1T140): 

From 

conception 

to PND 140 

(161 days), 

then fed 

control diet 

to 2 years 

F3 (F3T21): 

From 

conception 

to PND 21 

(42 days), 

then fed 

control diet 

to 2 years 

pregnant dams: 

0; 0.5; 9; 45; 

lacting dams: 

0.7; 15; 75; 

period prior to 

PND 140: 0.4; 7; 

37; period 

between PND 

140 and the end: 

0.2; 4; 20 

no effect 
NTP tr 545, 

2007 [70] 

Genistein Rats  
Long 

Evans 
diet 

One-Generation 

Reproduction 

Toxicity Study  

35 (GD1-

PND21) 

Prenatal: 0.1-

0.2; 6.4-9.1; 

Postnatal: 0.2-

0.4; 12-23  

no effect 

Wisniewski 

et al., 2003 

[84] 

Genistein Rats Wistar diet Subchronic toxicity 28 0.5; 5; 50; 500  ↓size (500) 

Mc Clain et 

al., 2006 

[71] 

Genistein Rats Wistar diet Subchronic toxicity 90 

5; 50; 500 
congestion, ↓ colloide 

(500) 

Mc Clain et 

al., 2006 

[71] 

Genistein Rats Wistar diet Chronic toxicity 182 - 364 5; 50; 500 no effect 

Mc Clain et 

al., 2006 

[71] 

Bisphenol A Rats SD gavage 
Perinatal and 

Chronic toxicity 

In utero + 

PND1-21 (no 

dosing to 

365) 

0; 0.0025; 0.025; 

0.25; 2.5; 25 
no effect 

NTP RR 09; 

sept. 2018 

[86] 

Bisphenol A Rats SD gavage 
Perinatal and 

Chronic toxicity 

In utero + 

PND1-365 

0; 0.0025; 0.025; 

0.25; 2.5; 25 
no effect 

NTP RR 09; 

sept. 2018 

[86] 
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Bisphenol A Rats SD gavage 
Perinatal and 

Chronic toxicity 

In utero + 

PND1-21 (no 

dosing to 

730) 

0; 0.0025; 0.025; 

0.25; 2.5; 25 
no effect 

NTP RR 09; 

sept. 2018 

[86] 

Bisphenol A Rats SD gavage 
Perinatal and 

Chronic toxicity 

In utero + 

PND1-730 

0; 0.0025; 0.025; 

0.25; 2.5; 25 
no effect  

NTP RR 09; 

sept. 2018 

[86] 

Bisphenol A Rats F344 diet Carcinogenicity 730 50; 100 no effect 
NTP tr 215, 

1982 [66] 

Bisphenol A Mice B6C3F1 diet Carcinogenicity 730 750; 1500 no effect 
NTP tr 215, 

1982 [66] 

Bisphenol A Rats Wistar gavage 

Reproductive and 

development 

toxicity 

GD7-PND22 

(30) 
 0.025; 0.250; 5 no effect 

Christiansen 

et al., 2014 

[87] 

Bisphenol A Rats SD gavage 

One-Generation 

Reproduction 

Toxicity Study  

GD6-PND90  

0.0025; 0.008; 

0.025; 0.08; 

0.26; 0.840; 2.7; 

100; 300 

no effect 

Delclos et 

al., 2016 

[39] 

 

 

 

• Prostate 

 

COMPOUND SPECIES STRAINS ROUTE PROTOCOL 
TREATMENT 

(DAYS) 
DOSE 

 (mg/kg bw day) 
EFFECT REFERENCE 

17β-estradiol Rats  SD gavage 

Reproductive and 

development 

toxicity 

38 (GD6-

PND20) 
0.01 no effect  

Kang et al., 

2002 [88] 

17β-estradiol Rats 
Crl:CD 

BR  
diet Subchronic toxicity 90 

0.003; 0.139 - 

0.173; 0.5 - 0.7; 

3 - 4 

↓weight, ↑ atrophy 

(0.5, 3) 

Biegel et al., 

1998 [42] 

17β-estradiol Rats 
Crl:CD 

BR  
diet 

One-Generation 

Reproduction 

Toxicity Study  

in utero + 

lactation + 

77 days 

(Post 

weaning - 

77) 

0.004 - 0.005; 

0.225 - 0.273 
↓weight (0.225) 

Biegel et al., 

1998 [42] 

Zearalenone  Rats  F344/N  diet Subchronic toxicity 90 
0; 2.7; 9; 27; 90; 

270 

↑ Hyperplasia (27; 90; 

270)  

NTP tr 235, 

1982 [66] 

Zearalenone  Rats  F344/N  diet Carcinogenicity 728 1; 2 ↑ inflammation (1;2)  
NTP tr 235, 

1982 [66] 

Zearalenone Mice B6C3F1  diet Subchronic toxicity 90 
0; 4.5; 15; 45; 

150; 450 

↑ squamous 

metaplasia (450>150)  

NTP tr 235, 

1982 [66] 

Zearalenone mice B6C3F2 diet Carcinogenicity 728 
m: 9; 17; f: 10; 

20 
no effect  

NTP tr 235, 

1982 [66] 
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Zearalenone mice CD1 
drinking 

water 

One-Generation 

Reproduction 

Toxicity Study  

90 (GD1-

PND70, only 

male pups)  

0.000025; 0.025 no effect 

Zatecka et 

al., 2014 

[65] 

Genistein Rats SD diet 

One-Generation 

Reproduction 

Toxicity Study  

64 (GD7-

PND49) 

(only pups 

examination

) 

 

0.3; 1.7; 6.4; 16; 

38; 72  

Pregnant dams 

(GD7- 

parturition) 

 

0.6; 3.5; 14; 37; 

84; 167 

  

Lactating dams 

(Pup PND 1 - 

PND 14)  

 

0.6; 3; 11; 29; 

69; 166  

F1 male; PND21-

PND50 

↓ ventral prostate 

weight (F1; 166); ↑ 

Dorsolateral Prostate 

Gland Inflammation 

Ventral Depletion of 

Secretory Fluids (F1; 

166) 

NTP tr 79, 

2007 [82] 

Genistein Rats  SD diet 

Multigeneration 

reproductive 

toxicology 

 

F0: From 

PND 42 to 

PND 140 (98 

days) 

 

F1: From 

conception 

to PND 140 

(161 days) 

F2: From 

conception 

to PND 140 

(161 days) 

F3: From 

conception 

to PND 21, 

fed control 

feed from 

PND 21 to 

PND 140 

(161 days 

total, 42 

days on 

dosed feed) 

 

F4: No 

exposure; 

control feed 

from 

conception 

to PND 140 

(161 days 

total, no 

dosed feed) 

 

F5: No 

exposure; 

control feed 

from 

conception 

to PND 21 

(42 days 

m: 0; 0.03; 5; 25  no effect  
NTP tr 539, 

2008 [83] 
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total, no 

dosed feed) 

Genistein Rats  SD diet Carcinogenicity 

F0: From 

PND 42 until 

F1 weaning 

(77 days) 

F1 (F1C): 

From 

conception 

to 2 years 

(756 days) 

F1 (F1T140): 

From 

conception 

to PND 140 

(161 days), 

then fed 

control diet 

to 2 years 

F3 (F3T21): 

From 

conception 

to PND 21 

(42 days), 

then fed 

control diet 

to 2 years 

pregnant dams: 

0; 0.5; 9; 45; 

lacting dams: 

0.7; 15; 75; 

period prior to 

PND 140: 0.4; 7; 

37; period 

between PND 

140 and the end: 

0.2; 4; 20 

↑ lateral- dorsal 

prostate gland weight 

(F1C; 20 - 37) 

NTP tr 545, 

2007 [70] 

 

Genistein Rats  
Long 

Evans 
diet 

One-Generation 

Reproduction 

Toxicity Study  

35 (GD1-

PND21) 

Prenatal: 0.1-

0.2; 6.4-9.1; 

Postnatal: 0.2-

0.4; 12-23  

↓ size (PND70, 23) 

Wisniewski 

et al., 2003 

[84] 

Genistein Rats  SD gavage 

Reproductive and 

development 

toxicity 

5 (PND1-5) 12.5; 25; 50; 100 no effect  
Nagao et al., 

2001 [89] 

Genistein Rats Wistar diet Subchronic toxicity 28 

0.5; 5; 50; 500  

no effect  

Mc Clain et 

al., 2006 

[71] 

Genistein Rats Wistar diet Subchronic toxicity 90 

5; 50; 500  

↑ inflammation (500) 

Mc Clain et 

al., 2006 

[71] 

Genistein Rats Wistar diet Chronic toxicity 182 - 364 5; 50; 500 
↑ weight (500); ↑ 

inflammation (50; 500) 

Mc Clain et 

al., 2006 

[71] 

Bisphenol A Rats SD gavage 
Perinatal and 

Chronic toxicity 

In utero + 

PND1-21 (no 

dosing to 

365) 

0; 0.0025; 0.025; 

0.25; 2.5; 27 
no effect  

NTP RR 09; 

sept. 2018 

[86] 

Bisphenol A Rats SD gavage 
Perinatal and 

Chronic toxicity 

In utero + 

PND1-365 

0; 0.0025; 0.025; 

0.25; 2.5; 25 

↑dorsal/lateral 

prostate lobes 

inflammation (0.0025) 

NTP RR 09; 

sept. 2018 

[86] 

Bisphenol A Rats SD gavage 
Perinatal and 

Chronic toxicity 

In utero + 

PND1-21 (no 

dosing to 

730) 

0; 0.0025; 0.025; 

0.25; 2.5; 25 

↑ventral 

prostate lobes 

adenocarcinoma 

(0.025) 

NTP RR 09; 

sept. 2018 

[86] 
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Bisphenol A Rats SD gavage 
Perinatal and 

Chronic toxicity 

In utero + 

PND1-730 

0; 0.0025; 0.025; 

0.25; 2.5; 25 

↑dorsal/lateral 

prostate lobes 

inflammation (0.0025); 

ventral lobe prostate 

epithelium hyperplasia 

(0.25); ↑ventral 

prostate lobes 

adenoma (25) 

NTP RR 09; 

sept. 2018 

[86] 

Bisphenol A Rats F344 diet Carcinogenicity 730 50; 100 no effect  
NTP tr 215, 

1982 [66] 

Bisphenol A Mice  B6C3F1 diet Carcinogenicity 730 750; 1500 no effect  
NTP tr 215, 

1982 [66] 

Bisphenol A Rats Wistar gavage 

Reproductive and 

development 

toxicity 

GD7-PND22 

(30) 
 0.025; 0.250; 5 no effect  

Christiansen 

et al., 2014 

[87] 

Bisphenol A Rats SD gavage 

One-Generation 

Reproduction 

Toxicity Study  

GD6-PND90  

0.0025; 0.008; 

0.025; 0.08; 

0.26; 0.840; 2.7; 

100; 300 

no effect  

Delclos et 

al., 2016 

[39] 

Bisphenol A Rats SD diet 

Multigeneration 

reproductive 

toxicology 

130 (F0 

through F3) 

0.0007– 0.003; 

0.015– 0.062; 

0.22– 0.73; 4.1–

15.4; 37.6 –

167.2; 

434 –1823  

↓weight (434) 
Tyl et al., 

2002 [36] 

Bisphenol A Mice CD-1 diet 

Multigeneration 

reproductive 

toxicology 

112 
0.003; 0.03; 0.3; 

5; 50; 600 
no effect  

Tyl et al., 

2008 [37] 

 

 

• Liver  

 

COMPOUND SPECIES STRAINS ROUTE PROTOCOL 
TREATMENT 

(DAYS) 

DOSE 

 (mg/kg bw day) 
EFFECT REFERENCE 

17β-estradiol Rats 
Crl:CD 

BR  
diet Subchronic toxicity 90 

0.003; 0.139 - 

0.173; 0.5 - 0.7; 

3 - 4 

↑ relative weight; ↑ 

slight to mild 

centrilobular 

hepatocellular 

hypertrophy (F0, ♂, 

0.5) 

Biegel et al., 

1998 [42] 

Zearalenone  Rats  F344/N  diet Subchronic toxicity 90 
0; 2.7; 9; 27; 90; 

270 
no effect 

NTP tr 235, 

1982 [66] 

Zearalenone  Rats  F344/N  diet Carcinogenicity 728 1.25; 2.5 

↑ Cytoplasmic 

vacuolization (♂, 1.25; 

2.5) 

NTP tr 235, 

1982 [66] 

Zearalenone mice B6C3F1  diet Subchronic toxicity 90 
0; 4.5; 15; 45; 

150; 450 
no effect 

NTP tr 235, 

1982 [66] 
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Genistein Rats SD diet 

One-Generation 

Reproduction 

Toxicity Study   

64 (GD7-

PND49) 

(only pups 

examination

) 

 

0.3; 1.7; 6.4; 16; 

38; 72  

Pregnant dams 

(GD7- 

parturition) 

 

0.6; 3.5; 14; 37; 

84; 167 

  

Lactating dams 

(Pup PND 1 - 

PND 14)  

 

0.6; 3; 11; 29; 69; 

166  

F1 male; PND21-

PND50 

↑ weight (F1♂, 29) 
NTP tr 79, 

2007 [82] 

Genistein Rats   SD diet 

Multigenerational 

reproductive 

toxicology 

 

F0: From 

PND 42 to 

PND 140 (98 

days) 

 

F1: From 

conception 

to PND 140 

(161 days) 

F2: From 

conception 

to PND 140 

(161 days)                                                                       

F3: From 

conception 

to PND 21, 

fed control 

feed from 

PND 21 to 

PND 140 

(161 days 

total, 42 

days on 

dosed feed) 

 

F4: No 

exposure; 

control feed 

from 

conception 

to PND 140 

(161 days 

total, no 

dosed feed) 

 

F5: No 

exposure; 

control feed 

from 

conception 

to PND 21 

(42 days 

total, no 

dosed feed) 

m: 0; 0.03; 5; 25  
↓weight (F4♂, from 

parent exposed to 25-

50);  

NTP tr 539, 

2008 [83] 
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Genistein Rats   SD diet Carcinogenicity 

F0: From 

PND 42 until 

F1 weaning 

(77 days) 

F1 (F1C): 

From 

conception 

to 2 years 

(756 days) 

F1 (F1T140): 

From 

conception 

to PND 140 

(161 days), 

then fed 

control diet 

to 2 years 

F3 (F3T21): 

From 

conception 

to PND 21 

(42 days), 

then fed 

control diet 

to 2 years 

pregnant dams: 

0; 0.5; 9; 45; 

lacting dams: 

0.7; 15; 75; 

period prior to 

PND 140: 0.4;7; 

37; period 

between PND 

140 and the end: 

0.2; 4; 20 

↑ rel. Weight (F1C♂, 

20-37): ↑weight 

(F3T21♂, 45-75); ↓ rel. 

Weight (F3T21♂, 9-15) 

NTP tr 545, 

2007 [70] 

Genistein Rats Wistar diet Chronic toxicity 364 

5; 50; 500  
↓ rel weight (♂, 500 at 

132 and 364) 

Mc Clain et 

al., 2006 

[71] 

Bisphenol A Rats SD gavage 
Perinatal and 

Chronic toxicity 

In utero + 

PND1-21 (no 

dosing to 

365) 

0; 0.0025; 0.025; 

0.25; 2.5; 27 

↑ liver mononuclear 

cell infiltration (F1♀, 

0.0025; 25) 

 NTP RR 09; 

sept. 2018 

[86] 

Bisphenol A Rats SD gavage 
Perinatal and 

Chronic toxicity 

In utero + 

PND1-365 

0; 0.0025; 0.025; 

0.25; 2.5; 25 

↑liver hepato-

diaphragmatic nodule 

(F1♂,2.5); ↑ liver 

mononuclear cell 

infiltration (F1♂ 0.25; 

2.5) 

 NTP RR 09; 

sept. 2018 

[86] 

Bisphenol A Rats SD gavage 
Perinatal and 

Chronic toxicity 

In utero + 

PND1-21 (no 

dosing to 

730) 

0; 0.0025; 0.025; 

0.25; 2.5; 28 
no effect 

 NTP RR 09; 

sept. 2018 

[86] 

Bisphenol A Rats SD gavage 
Perinatal and 

Chronic toxicity 

In utero + 

PND1-730 

0; 0.0025; 0.025; 

0.25; 2.5; 26 

↑liver angiectasia 

(F1♂; 0.025) 

 NTP RR 09; 

sept. 2018 

[86] 

Bisphenol A Mice B6C3F1 diet Carcinogenicity 730 500; 750 

↑multinucleated giant 

hepatocytes (F♂, 500; 

750) 

NTP tr 215, 

1982 [66] 

Bisphenol A Rats SD gavage 

One-Generation 

Reproduction 

Toxicity Study   

GD6-PND90  

0.0025; 0.008; 

0.025; 0.08; 

0.26; 0.840; 2.7; 

100; 300 

↑ weigh (F1 ♀, 300, 

PND90); ↓ abs weight 

(F1♂ 

Delclos et 

al., 2016 

[39] 

Bisphenol A Mice CD-1 diet 

Multigeneration 

reproductive 

toxicology 

112 
0.003; 0.03; 0.3; 

5; 50; 600 

↑liver centrilobular 

hepatocyte 

hypertrophy; abs 

weight (F0♂, 50; 600) 

Tyl et al., 

2008 [37]  
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3.3 Results of in silico methodology 

 

From molecular docking to ERα, the molecular poses, the binding free energies of 

each compound and the MMGBSA values were obtained. These energies ranged 

from -11.3 to -7.2 kcal/mol and are listed in Table 3. The docking data showed that 

all tested compounds were able to bind the ligand binding domain (LBD) of ERα. 

17β-estradiol, the natural hormone, is the top scoring compound for both bind free 

energy and MMGBSA binding values. Zearalenone and Diethylstilbestrol can be 

classified as very competitive ligands with respect to 17β-estradiol, while the other 

chemicals can be classified as good binders (Genistein, Bisphenol A, DEHP and 

Methoxychlor) or weak binders (Vinclozolin and 4-nonylphenol). 

 

Table 3. Computed binding free energies of each ligand with hERα 

Ligand  XP GScore* MMGBSA dG Bind# Ki (M)° 

17β –estradiol -11.3 -78.6 4.6E-09 

Zearalenone -11.3 -57.2 4.8E-09 

Diethylstilbestrol -11.0 -59.1 8.4E-09 

Genistein -9.9 -48.4 4.9E-08 

Bisphenol A -9.7 -47.0 7.6E-08 

DEHP -9.4 -2 1.2E-07 

Methoxychlor -9.0 -37.8 2.5E-07 

Vinclozolin -8.3 -43.4 8.1E-07 

4-nonylphenol -7.2 -46.3 5.4E-06 

 

 

* Extra Precision Glide score: approximates a very close and entire systematic search for the conformational, 
orientational and positional space of the docked ligand. Glide utilizes a series of hierarchical filters to search for possible 
locations of the ligand in the active-site region of the receptor. 
# MM-GBSA, molecular mechanics-generalized Born surface area: calculates binding free energies for molecules by 
combining molecular mechanics calculations and continuum (implicit) solvation models (Implicit solvent models are 
often used to estimate free energies of solute‐solvent interactions and significantly improve the computational speed 
and reduce errors in statistical averaging that arise from incomplete sampling of solvent conformations. 
° Dissociation constant computed starting from empirical binding free energy values (XP GScore). The smallest value 
means that the compound has a larger affinity at lower concentration. 
Affinity is inversely proportional to the binding free energy. Smaller is the binding free energy value (the most negative), 
higher is the affinity. 
The dissociation constant (Ki) was computed starting from empirical binding free energy values (XP GScore), according 

to the following equation: ,  
where R represents the gas constant and T the temperature. Ki was computed starting from the binding free energy 
values at a fixed temperature (300 K). The smallest value means that the compound has a larger affinity at lower 
concentration. 
 
 

 

 iKRTG ln
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A carefully inspection of the Table 3 has highlighted some interesting differences 

in the affinity calculated by XP GScore and MMGBSA dG Bind , respectively. 

These differences in the affinities values between these two docking protocols were 

due to that MMGBSA docking protocol take into account also the solvation effect 

of the solvent (water molecules) towards the ligands, computing both the 

solvent/LBD and ligand/solvent interactions. In our results (Table 3), 17β-estradiol, 

as expected, showed the highest affinity values in both approaches as, being the 

physiological hormone was able to contrast the solvation effect. The other ligands 

had greater values of MMGBSA scores because they, in the modelling conditions 

set, were not able to displace the water molecules into the LBD. Indeed, the binding 

free energy of DEHP (as XP GLIDE SCORE) was in the same range of BPA and 

Genistein while MMGBSA dG values of DEHP had the highest value ( -2 

kcal/mol). Thus, DEHP seems to remain in a soluble condition and it is not able to 

displace the water molecules into the LBD. There is a concordance between in silico 

results and literature data, where DEHP showed a high affinity to androgen receptor 

[see paragraph 1.7]. Zearalenone showed a binding free energy similar to that of the 

17- β-estradiol but the MMGBSA score was less negative than the endogenous 

hormones because of the solvation effect. 

The dissociation constant (Ki) was computed starting from empirical binding free 

energy values (XP GScore), according to the following equation:  

 

where R represents the gas constant and T the temperature. Ki was computed 

starting from the binding free energy values at a fixed temperature (300 K). The 

smallest value means that the compound has a larger affinity at lower concentration. 

Then I retrieved from the literature the Ki values experimentally determined in vitro 

binding assay by other research groups (Table 4). These were compared with the 

computed Ki values to make a validation of the in silico molecular modelling 

approach. 

 

 

 

 

 

 

 iKRTG ln
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Table 4. in silico calculated Ki and experimental Ki from literature*  

Ligand Calculated Ki (M)# In vitro experimental Ki (M)#* 

17β –estradiol 4.6E-09 1.3E-10 

Zearalenone 4.8E-09 8.0E-10 

Diethylstilbestrol 8.4E-09 4..0E-11 

Genistein 4.9E-08 2..6E-9 

Bisphenol A 7.6E-08 1..95E-07 

Methoxychlor 2.5E-07 1.174E-06 

# The smallest value means that the compound has a larger affinity at lower concentration. 

*Kuiper et al., 1996, [10] 

 

 

From these comparisons, it could be noted that there is a good concordance between 

predicted and experimental values. Thus, the in silico Ki seems reliable and could 

be used as a parameter for the prediction of putative endocrine disruptor activity. 

17β-estradiol showed a very small Ki value in both experimental assays (data from 

literature), as well as in the in silico molecular docking. It is also known that 17β-

estradiol is a potent endocrine disruptor that causes several toxic effects such as the 

decreasing of weight of seminal vesicles at very low concentration (see table 2 of 

apical target of EDCs). For this reason, 17β-estradiol is used a positive control in 

toxicology. Experimental Ki of genistein was smaller than the computed ones but 

very close to the experimental Ki value of endogenous hormone, whereas it is 

similar to the computed Ki of estradiol. Based on this observation, genistein should 

decrease the weight of seminal vesicles as the 17β-estradiol does. However, from 

the well conducted and highly reliable NTP studies (reported in table 2 above), 

genistein does not display any effect on seminal vesicles; thus, even if genistein has 

a low Ki (computed and experimental) with a potential ED activity, it cannot be 

considered as 17β-estradiol in term of ED activity, but simply a good binder to ERα. 

The same observation could be done also for Bisphenol A, whereas the computed 

Ki is smaller than its experimentally calculated value and it is 1 order of magnitude 

greater of the computed Ki of estradiol. From the carcinogenesis NTP study of 2 

years treatment (see table 2, seminal vesicles) BPA does not alter the physiology of 

seminal vesicles as estradiol, although that study mice were treated with high doses 
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up to 25 mg/kg bw day. Thus, even if BPA binds with a good affinity to ERα, it has 

not the toxicant effects on the seminal vesicles observed with 17β-estradiol. 

On the contrary with what found with BPA, methoxychlor has the highest value of 

both Ki (calculated in silico and in vitro), thus it is a very weak binder. Nevertheless, 

Chapin et al., 1997 [54] found out that methoxychlor administered at 50 and 100 

mg/kg bw day from GD14 to PND 42 caused a decrease of testis, seminal vesicles 

and prostate weight leading to conclude that methoxychlor could affect the 

endocrine organs only at higher concentration compared to Estradiol [54]. 

Zearalenone is known to be an ED, and its Ki (both experimental and computed) 

are in the same range of 17β-estradiol. Zearalenone was not able to affect the weight 

of seminal vesicles but caused other alterations possibly ER-mediated. 

The data are indicating that both computed and experimental Ki could be properly 

used as a parameter to classify the chemicals according to their binding ability to 

ERα; however, in the light of the evidences regarding the lack of correlation 

between the binding ability (computed or experimental) and the ED effects 

observed in vivo, it can be concluded that the Ki parameters do not have a predictive 

value of the ED activity of the compounds. 

 

 

 

 

3.4 Results of in vitro bioluminescence imaging assay 

 

The ability of the selected compounds to transcriptionally activate ERα was tested 

in ERE-Luc B17 cells, a sub-clone of the breast cancer cell line MCF-7, stably 

transfected with a luciferase reporter system under control of an estrogen-regulated 

synthetic promoter [76]. Photon emissions were recorded and quantified by a CCD 

camera upon adding to the medium the substrate luciferin as described in material 

and methods. B17 cells were treated with increasing concentrations (6-10 

depending on the in vitro toxicity) of each compound. Photon emission values were 

acquired before treatment and at 6 and 48 hours; values were normalized on the 

photon emissions measured before treatment (set as 1). The EC50 values of ERα 

activation were calculated using GraphPad Prism v.7 program and are reported in 

Figure 9 and summarized in Table 5. 
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Figure 9. Graphical representation of fold induction (curve dose-response) and potency (EC50) calculated at 6 

and 48 hours after treatment with tested compounds.  
 

 

Compound Time Dose-response EC50(M) 
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Each data represents the bioluminescence of each doses tested, bars represent the average ± SEM. GraphPad 

Prism v. 7 was used. 

 
Then the chemicals were ranked for their estrogenic potency at 6 and 48 h treatment. 

At 6 h the results were as follows: 17β-estradiol > DES > zearalenone > genistein 

> bisphenol A > methoxychlor (Figure 10a and b). 4-nonylphenol concentrations 

were cytotoxic at both time of exposure. DEHP and vinclozolin did not activate the 

ERα (EC50 not detectable at both time of exposure). At 48 hours after treatment 

the potency rank did not change. The potency data revealed that the estrogenic 

potencies of 17β-estradiol, diethylstilbestrol, zearalenone did not significantly 

change in the time course from 6 to 48 hours, while the potency of genistein and 

bisphenol A decreased of one order of magnitude. EC50 of Methoxychlor, at 

micromolar concentrations, appeared to be stable at 6 hours and 48 hours. DEHP, 

Vinclozolin and 4-nonylphenol did not induce any activation of estrogen receptor 

(Figure 9; Table 5). These last findings are in line with the literature, where it is 

reported a preferential action on the androgen receptor (AR) signaling by DEHP 

and Vinclozolin [57-60], and the lack of estrogenic activity, in general, of 

alkylphenols [61]. 
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Figure 10 a. Ranking of EC50s values at 6 hours after treatment in B17 clone MCF-7 cell lines 

of selected compounds. 17β-estradiol (most potent) > DES > zearalenone > genistein > 

bisphenol A > methoxychlor. DEHP, Vinclozolin and 4-nonylphenol were not ranked because 

of the missing of estrogen receptor activation or cytotoxicity. 

 

 
 

Figure 10 b. Ranking of EC50s values at 48 hours after treatment in B17 clone MCF-7 cell 

lines with increasing concentrations of selected compounds. 17β-estradiol (most potent) > DES 

> zearalenone > genistein > bisphenol A > methoxychlor DEHP, Vinclozolin and 4-

nonylphenol were not ranked because of the missing of estrogen receptor activation or 

cytotoxicity. 
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Table 5) Potency and efficacy values of the selected compounds to 

activate the ERE-Luc system in B17 MCF-7 cell lines. The values 

of fold induction represent the maximum activation of our cellular 

reporter system. 17β-estradiol is the reference positive control.  

  POTENCY EFFICACY 

COMPOUND EC50 6h EC50 48h F.I. 6h F.I. 48h 

17ß - ESTRADIOL 3.50E-12 6.90E-12 2.80 4.60 

     

DIETHYLSTILBESTROL 3.40E-10 2.30E-10 5.40 5.70 

ZEARALENONE 4.00E-10 4.50E-10 3.42 5.30 

  

    
GENISTEIN 1.10E-09 4.70E-08 6.60 6.20 

BISPHENOL A 4.80E-08 3.20E-07 3.66 1.94 

METHOXYCHLOR 4.60E-06 4.90E-06 3.00 2.12 

  

    
BIS-(2-ETHYLHEXYL) PHTHALATE n. d n. d n.d n.d. 

4-NONYLPHENOL  n.d n. d n.d n.d. 

VINCLOZOLIN n.d n. d n.d. n. d 

EC50 6h = concentration of the chemical that gives half-maximal response 

detected at 6 hours of treatment; EC50 48h = concentration of the chemical that 

gives half-maximal response detected at 48 hours of treatment; F.I. 6h = fold 

induction (maximal luciferase activity) detected at 6 hours of treatment; F.I. 48h 

= fold induction (maximal luciferase activity) detected at 48 hours of treatment. 

 

 

This work for the first time analysed the ER activity in time; the results indicated 

that while the rank of the potency did not change, the potency itself for some 

compound decreased during time suggesting a depotentiation mechanism is 

operating for some but not all the compound tested. Initially, it was hypothesized 

that this observation could be due to the compound metabolism that could be 

different among the compounds. To test the hypothesis, a LC-MS analysis was 

performed by the Laboratory of Mass-Spectrometry of Prof.ssa Donatella Caruso. 

Analysis were done on the medium and on the cellular total extracts of MCF7-B17 

treated with Bisphenol A, Zearalenone and Genistein at 6 and 48 hours. 

Qualification and quantification of the parental compounds by specific analytical 

condition set up in LC-MS technique (these data are shown in APPENDICES 

section to this thesis). These analytical data completely ruled out the possibility that 

the depotentiation mechanism was due to breakdown of the molecules, while it 

appears that was more likely due to changes at transcriptional level occurring on 

the receptor in time. 
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In all previous experiments, the ability of a compound to activate or inhibit ER was 

considered at a single time point. Taking into account this static observation, the 

rank of the potency at 6 or at 48 hours (Figure 10 a and b) compared with the ED 

effects observed in vivo (Table 2) of the different compounds gave similar non-

predictive results for ED activity as those obtained with the calculated (and 

experimental) Ki parameter (see paragraph 3.2). For example, considering the 

potency of genistein and zearalenone at 6 hours, they are potent ER activators while 

only zearalenone displays a potent ED effects (Table 2). 

The dynamic analysis of ER activation allows to define novel parameters for the 

compound action through the receptor taking into account the change in potency 

and efficacy in time. By analysing the single parameter in time (potency or efficacy) 

and ranking the substances based on the magnitude of decrease observed can 

already discriminate from active EDs like 17β-estradiol, diethylstilbestrol and 

zearalenone from those that display weak or none ED effect genistein, bisphenol A 

and methoxychlor (Table 6a). While the efficacy table (Table 6b) is less prompt to 

highlight the differences observed as ED effects between genistein and the other 

disruptors. By combining the dynamic of potency and efficacy parameters these 

differences were magnified (Table 7) and ranking the compounds with a parameter 

which take into account the variation of potency and efficacy as well as the absolute 

value of efficacy after 48 h, it is possible to observe a clear classification of active 

ED compounds with those that does not have effect (genistein) or have effects only 

at very high doses (e.g. methoxychlor). 
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Table 6a. Ranking of selected chemicals based on the magnitude of the potencies (EC50s) 

variations. The right column reported the magnitude of the potencies variations during the time 

course from 6 to 48 hours. The colours represent the relationship between the ability to activate 

the estrogen receptor and the endocrine disrupting activity (ED) observed in vivo on male 

reproductive organs. Red = very high ED; Orange = high ED; Green = no-ED 

COMPOUND -log potency 6h -log potency 48h 

potency 

decreasing/increasing 

DIETHYLSTILBESTROL 9.47 9.64 0.17 ↑ 

ZEARALENONE 9.40 9.35 -0.05 ↓ 

   

 

17ß-ESTRADIOL 11.46 11.16 -0.29↓ 

   

 

GENISTEIN 8.96 7.33 -1.63↓↓ 

BISPHENOL A 7.32 6.49 -0.82↓ 

METHOXYCHLOR 5.34 5.31 -0.03 

 

 

Table 6b. Ranking of selected chemicals based on the magnitude of the efficacy variation. The 

right column reported the quantification of the efficacy variations during the time course from 6 

to 48 hours.  

The colours represent the relationship between the ability to activate the estrogen receptor and 

the endocrine disrupting activity (ED) observed in vivo on male reproductive organs. Red = ED; 

Green = no - ED 

COMPOUND efficacy 6h efficacy 48h 

Efficacy 

decreasing/increasing 

   

 

ZEARALENONE 3.42 5.30 1.88 ↑ 

17ß-ESTRADIOL 2.80 4.60 1.80↑ 

DIETHYLSTILBESTROL 5.40 5.70 0.30 ↑ 

   

 

GENISTEIN 6.60 6.20 -0.4 

BISPHENOL A 3.66 1.94 -1.72↓ 

METHOXYCHLOR 3.00 2.12 -0.88↓ 

 

 

 

 

 



 

60 
 

Table 7. Classification of ED compounds based on the combination of the variation of potency and efficacy in 

the time course with the absolute value of efficacy after 48h. The colours represent the relationship with the 

endocrine disrupting activity (ED) observed in vivo on male reproductive organs. Red = ED; Green = no-ED. 

 

COMPOUND 

RATIO POTENCY 

48/6 

RATIO EFFICACY 

48/6 

RATIO POTENCY*RATIO 

EFFICACY 

RATIO POTENCY*RATIO 

EFFICACY*EFFICACY AT 48H 

ZEARALENONE 0.99 1.55 1.54 8.17 

     

17-ß ESTRADIOL 0.97 1.64 1.6 7.36 

     

DIETHYLSTILBESTR

OL 
1.02 1.06 

1.07 
6.12 

     

GENISTEIN 0.82 0.94 0.77 4.76 

     

METHOXICHLOR 0.99 0.71 0.7 1.49 

BISPHENOL A 0.89 0.53 0.47 0.91 

 

 

Thus, the combination of the variation of the potency and the efficacy “normalized” 

respect to the efficacy values at 48h was successfully used in discriminating 

positive and negative compounds for their endocrine disrupting activity as showed 

in table 7. It must be noted that compounds with no ED effect in vivo such as BPA 

or with a putative ED effect only at high level of exposure (not relevant for the 

humans), such as methoxychlor, have a very low score (right column) when 

compared to chemicals with known ED effect in vivo (estradiol, DES, zearalenone). 

Thus, these chemicals occupied the lowest position in table 7 (green lanes), and by 

this classification, resulted very interesting the score of genistein. It follows the 

score of DES, but it is higher than methoxychlor and BPA. Genistein has not any 

ED effect in vivo even if it is a good binder of ER. So, the position of this 

phytoestrogen could represent a putative threshold of non- concern for ED effect. 

Over this threshold there is ED effect. On the contrary below this threshold the 

chemical could not have any ED effect. 

This in vitro classification fitted well with the in silico outcome where the strongest 

binders where ranked in the first position. 
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From these data, we may conclude that the novel dynamic ER transactivation assay 

is best marker of an ED activity than the classical transactivation or binding 

(computational or in silico) assays. 

 

 

3.5 Results of in vivo bioluminescence imaging 

experiments 

 

In transgenic reporter mice [76] already described in material and methods section, 

similar reporter-based biosensors like the one described in the transactivation assay 

were inserted in the genome of the mouse. In these reporter mice the luciferase 

expression is proportional to the activity of ER (ERE-Luc), NFkB (NFkB-Luc) rand 

Nrf2 (ARE-Luc), thus reporting the modulation of estrogen receptor, inflammation 

and oxidative stress pathway in any mouse tissue. To test the effects of Zearalenone, 

Bisphenol A, 17β-estradiol on these signals 4 reporter mice/experimental group 

were treated daily with two dosages of each substance administered in the drinking 

water for 21days. The compounds and their doses were chosen combining data 

obtained from the literature with in vitro results (see also Table 2). Since testing 

many doses was not possible for budget reason, we decided to choose a threshold 

dose, more realistic in term of human exposure, and a high dose, to force the system 

and see an effect, in case there was a low sensitivity. Zearalenone was both a strong 

binder (Ki was 4.8E-09 M) and activator of ER (EC50s were 4.00E-10 M and 4.50E-

10 M at 6 and 48 hours, respectively), similarly to endogenous hormone values. 

This mycotoxin is known to be an endocrine disruptor because of the adverse effect 

on female reproductive tract of immature pigs, thus it was interesting to investigate 

if it could be a putative ED on male reproductive organs. The doses of zearalenone 

were obtained considering to cover a low range of active concentrations retrieved 

in the literature (see table 2). Bisphenol A was a good binder in silico model (Ki 

was 7,6E-08 M) and moderate activator of ER in vitro assay (EC50s were 4.80E-08 

M and 3.20E-07 M at 6 and 48 hours, respectively). BPA was selected instead of 

Genistein, which showed good results from the previously approaches, because of 

this phytoestrogen is considered to have no ED effect or toxicity to human 

according to EFSA’s opinion [73], even if it has an interesting action on ER such 
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as demonstrated in our in silico and in vitro experiments. The BPA doses were 

selected to cover a low dose range of putative active concentrations retrieved in the 

literature (see also table 2). 

The activation of these pathways was measured daily in each single mouse by 

bioluminescence in vivo imaging (see material and methods) for the 21 days of the 

experiment. After 21 days the animals were sacrificed, and organs were taken for 

ex vivo bioluminescence imaging analysis of the photon emission. Photon emission 

from the mouse body was quantified from the genital and abdominal areas in vivo 

and from prostate, testis, seminal vesicles and intestine ex vivo. Photon emission 

levels in time were normalized on the value measured before treatment (set to 1) in 

each animal. I have considered as parameters of activation: I) the acute effects 

observed after 24 hours, ii) the AUC over the 21 days, iii) the emission of the final 

day (day 21) and iv) the ex vivo photon emission measured from the explanted 

organs.  

In the genital area the bioluminescence activity of estrogen receptor ERE-Luc at 

day 1 (acute activation), showed the presence of a trend of BPA10, BPA100; 

ZEA150, E10 and E100. Instead, in the abdominal area the ZEA150 showed a 

marked induction.  

The ER signaling was clearly activated after 24 hours in the abdominal area by high 

doses of ZEA and E2 given per os, while no activation was visible by any treatment 

in the genital area of the mouse (Figure 11). Similar data were obtained analysing 

the AUC of the activation over the 21 days-acquisitions (Figure 12). The acquisition 

at day 21 (Figure 13) was demonstrating a persistent effect of ZEA and E2 on the 

abdominal area and a non-significant trend of increase the activity in the genital 

area for some treatment.  
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Figure 11. Quantification of bioluminescence of hormonal ERE-Luc pathway in genital area (left panel) and 

abdominal area (right panel) on day 1 as acute activation. 
GENITAL AREA ABDOMINAL AREA 

ACTIVITY OF ESTROGEN RECEPTOR ERE-Luc 

ACTIVATION ON DAY 1 (ACUTE ACTIVATION) 
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V = vehicle; BPA10 = bisphenol A 10 mg/Kg/day; BPA100 = bisphenol A 100 mg/Kg/day; ZEA10 = zearalenone 10 

mg/Kg/day; ZEA150 = zearalenone 150 mg/Kg/day; E10 = 17β-estradiol 10 μg/Kg/day; E100 = 17β-estradiol 100 

μg/Kg/day. The values represent the means of photon emissions  SEM calculated with GraphPad Prism v.7. *p<0.05 

vs vehicle applying Ordinary one-way ANOVA plus Bonferroni's multiple comparisons test. 

 

 

 

 

In the chronic activation phase (Figure 12), the values of interactions with the 

reporter system are expressed as Area Under the Curve (AUC) calculated by the 

program GraphPad Prism v.7. In the genital area there was not a significant activity 

even if ZEA150 seemed to maintain its activation as on day 1. In the ERE-Luc of 

abdominal area E100 finally produced an important statistically significant 

induction of ER versus the vehicle (p< 0.05). On the contrary to day 1, ZEA150 

showed a good activation. The other doses did not produce any induction. 
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Figure 12. Quantification of bioluminescence of hormonal ERE-Luc pathway in genital area (left panel) and 

abdominal area (right panel) over 21 days of treatment as chronic activation. 
GENITAL AREA ABDOMINAL AREA 

ACTIVITY OF ESTROGEN RECEPTOR ERE-Luc 

CHRONIC ACTIVATION (AUC) 

v

B
P
A
10

0

ZE
A
10

ZE
A
15

0

E
10

0

0

10

20

30

40

c
ts

/c
m

2
s

/s
r

 

v

B
PA

 1
00

 

ZEA
10

 

ZEA
15

0 

E10
 

E10
0 

0

20

40

60

80

c
ts

/c
m

2
s

/s
r

*

 
V = vehicle; BPA100 = bisphenol A 100 mg/Kg/day; ZEA10 = zearalenone 10 mg/Kg/day; ZEA150 = zearalenone 

150 mg/Kg/day; E10 = 17β-estradiol 10 μg/Kg/day; E100 = 17β-estradiol 100 μg/Kg/day. 

The values represent the means of photon emissions ± SEM calculated with GraphPad Prism v.7. *p< 0.05 vs 

vehicle calculated applying Ordinary one-way ANOVA plus Bonferroni's multiple comparisons test. 

 

In the analysis of terminal day 21 (Figure 13), only in the abdominal area the 

treatment E100 prolonged its activity, while the other treatments decreased the 

potency till control baseline in both observed area 

 

 

Figure13. Quantification of bioluminescence of hormonal ERE-Luc pathway in genital area (left panel) and 

abdominal area (right panel) on day 21 as terminal activation. 
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 V = vehicle; BPA100 = bisphenol A 100 mg/Kg/day; ZEA10 = zearalenone 10 mg/Kg/day; ZEA150 = zearalenone 

150 mg/Kg/day; E10 = 17β-estradiol 10 μg/Kg/day; E100 = 17β-estradiol 100 μg/Kg/day. The values represent 

the means of photon emissions ± SEM calculated with GraphPad Prism v.7. *p< 0.05 vs. the vehicle calculated 

applying Ordinary one-way ANOVA plus Bonferroni's multiple comparisons test.  
 

 

The analysis of each single organ ex vivo demonstrated a weak trend of receptor 

activation in testis (Figure 14) and prostate (Figure 15). ZEA150 had a good but no 
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statistically significant activation in seminal vesicles (Figure 15). No interesting 

signaling were detected in the seminal vesicles by other treatments (Figure 15).  

 

Figure 14. Quantification of bioluminescence of hormonal ERE-Luc 

pathway in testis by ex vivo analysis as local activation. 
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Figure 15. Quantification of bioluminescence of hormonal ERE-Luc pathway in seminal vesicles (left panel) and 

prostate (right panel) by ex vivo experiment as local activation. 
GENITAL AREA 

ACTIVITY OF ESTROGEN RECEPTOR ERE-Luc 
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V = vehicle; BPA100 = bisphenol A 100 mg/Kg/day; ZEA10 = zearalenone 10 mg/Kg/day; ZEA150 = zearalenone 150 

mg/Kg/day; E10 = 17β-estradiol 10 μg/Kg/day; E100 = 17β-estradiol 100 μg/Kg/day. 

The values represent the means of photon emissions ± SEM and analysed by Ordinary one-way ANOVA plus 

Bonferroni's multiple comparisons test. 

 

 

 

V = vehicle; BPA100 = bisphenol A 100 mg/Kg/day; ZEA10 = 

zearalenone 10 mg/Kg/day; ZEA150 = zearalenone 150 

mg/Kg/day; E100 = 17β-estradiol 100 μg/Kg/day. The values 

represent the means of photon emissions ± SEM calculated 

with GraphPad Prism v.7 and analysed by Ordinary one-way 

ANOVA plus Bonferroni's multiple comparisons test.  
 
 
 
 
 
The values represent the means of photon emissions ± SEM and 
analyzed by Ordinary one-way ANOVA pus Bonferroni's multiple 
comparisons test. 
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In the intestine, BPA100 and E10 showed an receptorial ER activation but as the 

other doses, they did not produce a significant ER signaling (Figure 16). The 

activation observed by in vivo imaging analysis of E2 and ZEA150 in the 

abdominal area were not due to the intestine but possibly are mediated by other 

organs, e.g. kidney, live or spleen which express also the estrogen receptors. 

 

Figure 16. Quantification of bioluminescence of hormonal ERE-Luc pathway in 

intestine tract by ex vivo experiment as local activation. 
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No significant activation of the inflammatory (NFkB) pathway was observed after 

acute administration of the compounds in both genital and abdominal areas even if 

E10 seemed to produce an interesting signaling (Figure 17).  

 

 

V = vehicle; BPA100 = bisphenol A 100 mg/Kg/day; ZEA10 = zearalenone 10 

mg/Kg/day; ZEA150 = zearalenone 150 mg/Kg/day; E10 = 17β-estradiol 10 

μg/Kg/day; E100 = 17β-estradiol 100 μg/Kg/day. 

The values represent the means of photon emissions ± SEM and analyzed by 

Ordinary one-way ANOVA plus Bonferroni's multiple comparisons test. 
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Figure 17. Quantification of bioluminescence of inflammatory (NFkB) pathway in genital area (left panel) 

and abdominal area (right panel) on day 1 as acute activation.  
GENITAL AREA ABDOMINAL AREA 
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V = vehicle; BPA100 = bisphenol A 100 mg/Kg/day; ZEA10 = zearalenone 10 mg/Kg/day; ZEA150 = 

zearalenone 150 mg/Kg/day; E10 = 17β-estradiol 10 μg/Kg/day; E100 = 17β-estradiol 100 μg/Kg/day. 

The value represents the means of photon emissions ± SEM and analyzed by Ordinary one-way ANOVA plus 

Bonferroni's multiple comparisons test. 

 

The AUC analysis, which represents the whole activation of reporter system over 

the 21 days of repeated treatments, showed a clear activation of the inflammatory 

(NFkB) pathway upon administration of the highest dose of zearalenone, but only 

in the genital area (Figure 18).  

 

Figure 18. Quantification of bioluminescence of inflammatory (NFkB) pathway in genital area (left panel) and abdominal 

area (right panel over 21 days of treatment as chronic activation. 
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V = vehicle; BPA100 = bisphenol A 100 mg/Kg/day; ZEA10 = zearalenone 10 mg/Kg/day; ZEA150 = zearalenone 150 

mg/Kg/day; E10 = 17β-estradiol 10 μg/Kg/day; E100 = 17β-estradiol 100 μg/Kg/day. 

The values represent the means of photon emissions ± SEM and analyzed by Ordinary one-way ANOVA plus 

Bonferroni's multiple comparisons test. 
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Interestingly, at day 21 the NFkB pathway was found significantly active in the 

genital and abdominal area of the highest dose of the zearalenone group and on the 

low-dose group in the abdominal area. No other significant activation could be 

detected with the other treatment (Figure 19).  

 
Figure 19. Quantification of bioluminescence of inflammatory (NFkB) pathway in genital area (left panel) and 

abdominal area (right panel) on day 21 as terminal activation. 
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The ex vivo bioluminescence imaging analysis of inflammatory pathway 

demonstrated that the significant activations produced by ZEA150 in the genital 

area were likely due to the NFkB signalling in the prostate (Figure 20). The other 

treatments did not produce any significant activation. 

  

 

 

 

 

 

 

 

 

 V = vehicle; BPA100 = bisphenol A 100 mg/Kg/day; ZEA10 = zearalenone 10 mg/Kg/day; ZEA150 = zearalenone 

150 mg/Kg/day; E10 = 17β-estradiol 10 μg/Kg/day; E100 = 17β-estradiol 100 μg/Kg/day. The values represent the 

means of photon emissions ± SEM and analyzed by Ordinary one-way ANOVA plus Bonferroni's multiple 

comparisons test (*p < 0.05 vs vehicle and abdominal area *p< 0.05 vs. vehicle). 
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Figure 20. Quantification of bioluminescence of inflammatory (NFkB) pathway in testis, seminal vesicles and prostate by 

ex vivo experiment as local activation. 
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V = vehicle; BPA100 = bisphenol A 100 mg/Kg/day; ZEA10 = zearalenone 10 mg/Kg/day; ZEA150 = zearalenone 150 

mg/Kg/day; E10 = 17β-estradiol 10 μg/Kg/day; E100 = 17β-estradiol 100 μg/Kg/day. 
The values represent the means of photon emissions ± SEM and analysed by Ordinary one-way ANOVA plus 

Bonferroni's multiple comparisons test. Testis: *p < 0.051 vs. vehicle; prostate *p < 0.05 vs. vehicle. 

 

 

 

The findings that ZEA150 was able to activate the inflammatory pathway in the 

genital area with a specific local effect in the prostate was very particular. Since no 

activity of the ER signaling was detected in the prostate by both doses of ZEA150, 

we may conclude that the strong NFkB activity elicited over the 21 days-treatment 

was due to the activation of other receptors (e.g. androgen receptor).  

 

 

In the ex vivo NFkB analysis of intestine no significant signal was detected. This 

result explains that highest activation of ZEA150 at day 21 maybe was due to other 

organs in abdominal area (e.g. kidney, spleen, liver). 
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Figure 21. Quantification of bioluminescence of inflammatory (NFkB) pathway 

in intestine tract by ex vivo experiment as local activation. 
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About the quantification of bioluminescence in the ARE-Luc reporter mice for the 

investigation of the activation of oxidative stress pathway, no significant signaling 

of the ARE-Luc pathway were observed after acute or chronic administration of the 

compounds (Figures 22-24, 26). Although an interesting activation in the ARE-Luc 

reporter mouse model was observed in the prostate upon treatment with zearalenone 

but it was not supported by statistical analysis (Figure 25).  

Those data are suggesting that this oxidative stress pathway is not involved in the 

toxicity as reported for these compounds in previous in vivo experiments. 

 

 

 

 

 

V = vehicle; BPA100 = bisphenol A 100 mg/Kg/day; ZEA10 = zearalenone 10 

mg/Kg/day; ZEA150 = zearalenone 150 mg/Kg/day; E10 = 17β-estradiol 10 

μg/Kg/day; E100 = 17β-estradiol 100 μg/Kg/day. The values represent the means of 

photon emissions ± SEM and analyzed by Ordinary one-way ANOVA plus 

Bonferroni's multiple comparisons test. 
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Figure 22. Quantification of bioluminescence of oxidative stress (ARE-Luc) pathway in genital area (left panel) 

and abdominal area (right panel) on day 1 as acute activation.  
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V = vehicle; BPA10 = 10 mg/Kg/day; BPA100 = bisphenol A 100 mg/Kg/day; ZEA10 = zearalenone 10 mg/Kg/day; 

ZEA150 = zearalenone 150 mg/Kg/day; E10 = 17β-estradiol 10 μg/Kg/day; E100 = 17β-estradiol 100 μg/Kg/day. 

The values represent the means of photon emissions ± SEM and analyzed by Ordinary one-way ANOVA plus 

Bonferroni's multiple comparisons test. 

 

Figure 23. Quantification of bioluminescence of oxidative stress (ARE-Luc) pathway in genital area (left panel) and 

abdominal area (right panel over 21 days of treatment as chronic activation. 
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V = vehicle; BPA10 = 10 mg/Kg/day; BPA100 = bisphenol A 100 mg/Kg/day; ZEA10 = zearalenone 10 mg/Kg/day; 

ZEA150 = zearalenone 150 mg/Kg/day; E10 = 17β-estradiol 10 μg/Kg/day; E100 = 17β-estradiol 100 μg/Kg/day. The 

values represent the means of photon emissions ± SEM and analyzed by Ordinary one-way ANOVA plus 

Bonferroni's multiple comparisons test. 
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Figure 24. Quantification of bioluminescence of oxidative stress (ARE-Luc) pathway in genital area (left panel) and 

abdominal area (right panel) on day 21 as terminal activation. 
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V = vehicle; BPA10 = 10 mg/Kg/day; BPA100 = bisphenol A 100 mg/Kg/day; ZEA10 = zearalenone 10 mg/Kg/day; 

ZEA150 = zearalenone 150 mg/Kg/day; E10 = 17β-estradiol 10 μg/Kg/day; E100 = 17β-estradiol 100 μg/Kg/day. The 

values represent the means of photon emissions ± SEM and analyzed by Ordinary one-way ANOVA plus Bonferroni's 

multiple comparisons test. 

 

Figure 25. Quantification of bioluminescence of oxidative stress (ARE-Luc) pathway in testis, seminal vesicles, prostate 

from ex vivo experiment as local activation in local activation. 
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V = vehicle; BPA10 = 10 mg/Kg/day; BPA100 = bisphenol A 100 mg/Kg/day; ZEA10 = zearalenone 10 mg/Kg/day; 

ZEA150 = zearalenone 150 mg/Kg/day; E10 = 17β-estradiol 10 μg/Kg/day; E100 = 17β-estradiol 100 μg/Kg/day. 

The Value are means ± SEM and analyzed by Ordinary one-way ANOVA plus Bonferroni's multiple comparisons 

test. 
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Figure 26. Quantification of bioluminescence of oxidative stress (ARE-

Luc) pathway in intestine tract from ex vivo experiment as local 

activation in local activation. 
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V = vehicle; BPA100 = bisphenol A 100 mg/Kg/day; ZEA10 = zearalenone 
10 mg/Kg/day; ZEA150 = zearalenone 150 mg/Kg/day; E10 = 17β-
estradiol 10 μg/Kg/day; E100 = 17β-estradiol 100 μg/Kg/day. The values 
represent the means of photon emissions ± SEM and analyzed by 
Ordinary one-way ANOVA plus Bonferroni's multiple comparisons test. 

 

 

 

 

These findings indicate some remarkable correlation with the literature. Indeed, the 

weak evidences of ARE-Luc activation and significant activation of the NFkB-Luc 

pathways in the genital area with a specific focus on the prostate by the highest dose 

of zearalenone (150 mg/kg /day), match with the toxicological findings reported in 

the NTP study (NTP tr 235) (Table 2). In that study, mice and rats were fed for 90 

day or 2 years with a wide range of concentrations (1 to 450 mg/kg bw day) of 

zearalenone. ZEA elicited adverse effects, such as an increase of incidence of 

squamous metaplasia in the prostate of B6C3F1 mice at 150 mg/kg bw day; 

inflammation in the prostate of F344/N rats at 1 mg/kg bw day and hyperplasia at 

27-290 mg/kg bw day and an increase of atrophy in seminal vesicles and testis in 

both species, at low and at a higher dose (1-150 mg/kg bw day). Some evidence of 

cytoplasmic vacuolization increase (1.25; 2.5 mg/kg bw day) occurred in rats in the 

carcinogenicity study (Table 2). 

The NFkB-Luc reporter mice seemed to be predictive of the indirect toxicological 

mechanisms of zearalenone, through the inflammatory pathway in the genital area.  
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In addition, zearalenone confirmed to be an ER activator only in the abdominal area 

of ERE-Luc mice (no activation in the genital area). This finding was not observed 

locally in the intestine, so other organs were involved in the estrogenic activation. 

These organs could be the liver or the kidney. Indeed, in the above mentioned NTP 

study [66], zearalenone was found to cause some toxicity to that organs. 

Bisphenol A, for which there are controversial data in the literature, did not produce 

a significant activation in both the areas and in the ex vivo analysis, again in 

agreement with in silico/in vitro results. 

The lack of ER activation of estradiol in the genital area was possibly due to oral 

administration of the compound in drinking water. This compound exerts a potent 

adverse effect in toxicological studies when administered by injection. 
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Discussion and Conclusive remarks  
 

The extreme attention to the health of citizens and consumers to the involuntary 

exposure (through food, water, air) to endocrine disruptor, i.e. those substances 

capable of causing damage to any component of the endocrine system, has led to 

an increasingly stringent regulatory pressure in Europe. 

Since the endocrine system responds physiologically with homeostatic mechanisms 

in response to external stimuli, it becomes important to identify and distinguish 

between substances able to cause a damage a harm and substances that interact with 

the body in a transitory manner causing an adaptive response without toxic 

consequences. 

Being unlikely to solve the hormonal activity adaptation/ disruption issue with just 

experimental assay, we have tried to address the hazard characterization of 

substances with hormonal activity by the development of an integrated strategy of 

testing based on the combination of results of a hierarchy of different 

methodologies such as in silico models, in vitro and in vivo bioluminescence 

imaging assays.  

The selected molecules ranged from known (DES) to suspected (BPA) endocrine 

disruptors and included both synthetic (DEHP) and natural (genistein) substances. 

As positive control 17β-estradiol has been used. 

The first step used was in silico analysis with evaluation of the possible binding of 

selected substances to the estrogen alpha receptor to support the hypothesis that 

their hormonal activity occurred through a receptorial mechanism. 

This approach is commonly used and is also part of the first level of investigation 

suggested by EFSA / ECHA in the recognition of EDCs.  

Interest in computer-aided methods for investigations in the biological field has 

increased significantly in recent years. Despite their apparent simplicity, the results 

that derive from this approach must be carefully weighted and provide an indication 

of how to proceed further in the investigation rather than a definitive indication of 

a biological effect. 

The computational methodology estimated different values of affinity of each 

ligand to hER Ligand Binding Domain (LBD). The value of using two different 
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approaches (XP Glide Score and MMGBSA) allowed to be taken into account 

solvation. That has meant that the MMGBSA docking protocol the solvation effect 

of the solvent (water molecules) towards the ligands, computing both the 

solvent/LBD and ligand/solvent interactions. The estradiol showed the best affinity 

values in both approaches as, being the endogenous hormone, is able to contrast the 

solvation effect. 

The other ligands had greater values of MMGBSA scores because they, in the 

modelling conditions set, were not able to displace the water molecules into the 

LBD. Indeed, the binding free energy of DEHP (as XP GLIDE SCORE) was in the 

same range of BPA and Genistein while MMGBSA dG values of DEHP had the 

highest value ( -2 kcal/mol). Thus, DEHP seems to remain in a soluble condition 

and it is not able to displace the water molecules into the LBD. There is a 

concordance between in silico results and literature data, where DEHP showed a 

high affinity to androgen receptor [see paragraph 1.7]. Zearalenone showed a 

binding free energy similar to that of the 17- β-estradiol but the MMGBSA score 

was less negative than the endogenous hormones because of the solvation effect. 

The dissociation constant (Ki) values calculated from the XP GLIDE SCORE fits 

well with the Ki experimentally determined in vitro binding assay by other research 

groups. Thus, the computed Ki has been chosen as parameter for the prediction of 

putative endocrine disrupting activity (ED) taking into account the ED activity data 

in literature. However, the lack of correlation between the computed and 

experimental Ki and experimental ED activity retrieved in literature for all 

chemicals (only estradiol and zearalenone have similar affinity to ER and literature 

evidences of ED activity; genistein has a good Ki values but not ED activity such 

as BPA and methoxychlor), did not allow a prioritization of the investigated 

chemicals for ED activity through the results of their affinity. 

In the next step, to check if the receptor binding was well correlated with the 

hormonal activity, the ER Reporter gene assay was performed, based on the ability 

of a compound to stimulate ER-dependent transcriptional activity in genetically 

engineered mammalian cells. The cell lines are MCF-7 cells which express human 

endogenous ERα. The cells are transformed (transfected) by introducing vectors 

containing DNA sequences for the receptor, along with EREs linked to a reporter 

gene, and the reporter gene itself. The reporter gene used in human cancer cells 

usually codes for luciferase (CALUX, chemically activated luciferase expression). 
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In the transactivation the EDCs show the estrogenic potency calculated as EC50, in 

respect to the positive control, 17β-estradiol. This system has enabled us to evaluate 

the kinetic and the biological consequences of cellular activation in the same cell 

monolayer, also taking into account the potential metabolism of the compounds or 

their possible degradation. In fact, a modification of the cellular response could also 

be attributed to the appearance of +/- active metabolites or to the degradation of the 

parent compounds. As mentioned in the results section, all compounds were stable 

and not significantly metabolized during the cell incubation period. 

Three factors were taken into consideration, power, efficacy and trend over time. 

The in vitro dynamic ER activation showed that for some chemicals (genistein, 

BPA, methoxychlor), the potency (EC50) and the efficacy (fold induction) changed 

over time, but not for estradiol, zearalenone and DES. 

Considering that estradiol, zearalenone and DES certainly have an activity in the 

animal and in man as endocrine disruptors, the duration of effect parameter 

combined with power and efficacy are likely to be associated in predicting the 

hormonal activity. Together with receptor affinity and the ability to induce a 

biological response, it also seems relevant how long the response is lasting. By 

consequence, the combination of the variation of the potency response and the 

efficacy, “normalized” for the efficacy at 48h, was successfully used in 

discriminating positive and negative compounds for their endocrine disrupting 

activity. 17β-estradiol, DES and zearalenone were put at the top of the list because 

of their ED effect observed in vivo, genistein resulted to represent a putative 

threshold of no-concern for ED activity, in supporting published data, while 

methoxychlor and BPA are definitely not considered a priority in terms of ED 

activity. This in vitro classification fitted well with the in silico outcome, since the 

strongest estrogen receptor binders where ranked in the first position. Besides, was 

no possible to calculate EC50s for 4-nonylphenol, DEHP and vinclozolin, not 

making possible to classify them as ED, totally in agreement with in silico results 

and in line with literature data (vinclozolin is mainly an androgen antagonist). 

The third step of our stepwise approach was intended to verify in vivo the 

interaction of selected chemicals with the estrogen receptor and in addition the 

activation of other pathways triggering primary harmful effects. 

We used three reporter mice designed in order to evaluate the response of some 

compounds to activate ER and causing oxidative stress and inflammation. The aim 



 

78 
 

of this phase was to investigate whether oxidative stress and inflammation could be 

correlated, and at which extent, with a ED response by analysing the activity of the 

compounds in a spatio-temporally manner (the bioluminescence image represents 

a picture of how far the receptor activation as photon emissions in the specific area 

(tissue), is extended at that precise time of observation.  

We choose to test zearalenone (well-known endocrine disruptor and clearly 

identified as such by our in silico-in vitro approach), and BPA for which there are 

controversial data in the literature and that our approach has negatively classified 

as an ED. 

Briefly, zearalenone disrupts oestrous cycle, ovulation, conception and 

implantation, cause embryonic death, reduce fetal weight and litter size and to 

impair neonatal survival on female pigs [24; 25]. BPA, at high doses, has raised 

concern for its high production volume and for the evidence of toxicity in animal 

studies mainly on reproductive and developmental systems, liver, kidney and some 

evidence in mammary gland [16,36-39]. 

Our data shows that zearalenone has been active on ER pathway in the abdominal 

area and significantly activated the inflammatory pathway in the genitals (in this 

specific case in the prostate, result of ex vivo bioluminescence analysis). These 

results are perfectly in line with the literature reports, in which prostate 

inflammation and metaplasia were detected in both mice and rats. 

Bisphenol A did not produce a significant activation in both the areas and in the ex 

vivo analysis, again in agreement with in silico/in vitro results. 

The lack of ER activation of estradiol in the genital area was possibly due to oral 

administration of the compound in drinking water. This compound exerts a potent 

adverse effect in toxicological studies when administered by injection. 

Several works in the literature made a correlation between in vitro and in vivo 

experiments. Sonneveld et al., established a good correlation between in vitro ERα-

CALUX and in ovariectomized test in young rats by scoring the vaginal 

cornification (Allen-Doisy test) [31]. Nevertheless, the plausibility of the in vivo 

model, has some limitations including a lack of certainty regarding the adequacy of 

animal species to the treatments (its sensitivity to the treatments), the life stages of 

animals; a lack of correlation between the mechanistic of action, that are diagnostic 

or predictive of endocrine disrupting activity, and apical response observed in vivo, 

that is the adverse outcomes [32]. In the last period new in vivo approach based on 
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transgenic mouse model have been generated to measure estrogen receptor (ER) 

transcriptional activity in living organisms [33]. 

From our results, in silico approach emerges as a computational methodology for 

the evaluation of the ER affinity (prioritization of assessment) of a large number of 

molecules. During a safety evaluation process, the molecules that show the lowest 

affinities should in principle be disregarded and the attention should be focused on 

the molecules that show the highest affinities. 

While the in silico screening based on the calculation of Ki cannot be used as a 

stand-alone procedure due to its intrinsic lack of biological meaning, it can be 

successfully used as a first prioritizing step in a tier approach. The second 

mandatory check for the in silico positive hits should be an in vitro evaluation 

procedure, in which the affinity of the positive hits is measured through a reference 

cellular assay. Then integrating the time variable in the evaluation of the potency 

and efficacy the tested compounds could be classified as ED or no-ED as obtained 

in our experiment. While the in vivo experiment highlighted that potent estrogenic 

compound, as zearalenone, could also raise concern for the activation of other 

toxicological pathway such as the inflammatory ones. 

We are aware that this indication of procedure must be evaluated on dozens of 

molecules whose in vivo activity is already known before arriving at its use to 

predict the possible activity of ED of unknown molecules, but we think that this 

approach deserves to be implemented. 
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Table 8. Summary of results relevant for estrogen receptor. The table shows the result of each chemical along the 

three different methodologies, where the chemical was able to interact within each system. Estradiol, as expected, 

ZEA were the strongest estrogen like compound in all assays (symbol X) except the boxes containing the symbol 

“- “. BPA showed positive results in silico and in vitro, while not statistical significant or controversial results were 

in the animal assays (“- “or +/-). 

Summary of results relevant for estrogen receptor 

Compound In silico 

model 

in vitro 

bioluminescence 

imaging 

In vivo bioluminescence imaging 

Genital area Abdominal area 

 hERα ERα ERE-Luc NFKB-Luc ARE-

Luc 

ERE-Luc NFKB-

Luc 

ARE-

Luc 

E2 X X +/- - +/- X - - 

ZEA X X +/- X 

(prostate) 

+/- X X - 

BPA X X +/- +/- 

(testis) 

+/- - - - 

DES X X 

GEN X X 

4-NP X - 

MXC X X 

VCZ X - 

DEPH X - 

 

E2 = 17β-estradiol; ZEA = zearalenone; BPA = bisphenol A; DES= diethylstilbestrol; GEN = 

genistein; 4-NP = 4-Nonylphenol; VCZ = vinclozolin; MXC = Methoxychlor; DEHP = Bis(2-

ethylhexyl) phthalate; X = interaction with receptor (p < 0.05); - =, no interaction or p > 0.05; 

Trend = +/- not statistically significant 
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APPENDIX A 

 

 

 

Figures and table of LC-MS analysis of samples from in vitro experiment. 

Figure 1A, 1B, 1C represent the chromatograms of determination of analytes 

(bisphenol A, zearalenone, genistein) from the medium. 

 

 

 

 

 

  

 

 

 

Figure 1A. example of LC-MS / MS trace of BPA extracted from the ID1sample. 

A: presence of the analyte (405 pg./µl, or 10-6M) (indicated with red arrow); B 

and C: absence of analyte (indicated with blue arrow); D: internal standard 
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Figure 1B example of LC-MS / MS trace of Genistein extracted from the ID2 

sample. B: presence of the analyte (130 pg./µl or 10-6M) (indicated with red 

arrow); A and C: absence of analyte (indicated with blue arrow); D: internal 

standard 

 

Figure 1C.  example of LC-MS / MS trace of Zearalenone extracted from the ID3 

sample. C: presence of the analyte (488 pg./µl or 10-6M) (indicated with red 

arrow); A and B: absence of analyte (indicated with blue arrow); D: internal 

standard 
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Summary of quantification of Bisphenol A, Zearalenone and Genistein n characterized 

in the cleaned medium(control) and in medium cell conditioning 

 

Table A) characterization of BPA in sample extracted from the medium and medium cell conditioning at 6 

hours  

 

 

samples 6 hours  

     

 

sample  treatment- 20.6.2018 pg/µl mean  DV STD t-test 6hours  t-test 6hours-

48hours only 

MEDIUM 

BPA  

31 only MEDIUM 1a 103 

93 6 

  

33 only MEDIUM 2a 90   

0.000 
35 only MEDIUM 3a 92   

37 only MEDIUM 4a 88   

39 only MEDIUM 5a 89   

71  MEDIUM COND 1a 127 

124 5 

  t-test 6hours-

48hours MEDIUM 

cond  73  MEDIUM COND 2a 127   

75  MEDIUM COND 3a 125   

0.164 77  MEDIUM COND 4a 126   

79  MEDIUM COND 5a 116 0.000019 

 

 

Table B) characterization of BPA in sample extracted from the medium and medium cell conditioning at 

48 hours 

 

 

samples 48 hours 

    

 

sample treatment- 22.6.2018 pg/µl mean DV STD t test 48 hours 

BPA 

131 only MEDIUM 1a 155 

134 13 

 
133 only MEDIUM 2a 123 

 
135 only MEDIUM 3a 123 

 
137 only MEDIUM 4a 131 

 
139 only MEDIUM 5a 138 

 
171 MEDIUM COND 1a 108 

159 51 

 
173 MEDIUM COND 2a 192 

 
175 MEDIUM COND 3a 218 

 
177 MEDIUM COND 4a 104 

 
179 MEDIUM COND 5a 174 0.313 
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Table C) characterization of genistein in sample extracted from the medium and medium cell 

conditioning at 6 hours 

 

 

samples 6 hours  

     

 

sample  treatment- 20.6.2018 pg/µl mean  DV STD t-test 6 hours  t-test 6hours-

48hours only 

MEDIUM 

GENI 

21 only MEDIUM 1a 210 

205 18 

  

23 only MEDIUM 2a 198   

0.413 
25 only MEDIUM 3a 177   

27 only MEDIUM 4a 219   

29 only MEDIUM 5a 221   

61  MEDIUM COND 1a 220 

216 12 

  T test 6hours-

48hours MEDIUM 

cond  63  MEDIUM COND 2a 219   

65  MEDIUM COND 3a 233   

0.286 67  MEDIUM COND 4a 206   

69  MEDIUM COND 5a 202 0.293318 

 

 

Table D) characterization of genistein in sample extracted from the medium and medium cell 

conditioning at 48 hours  

 

 

samples 48 hours  

    

 

sample  treatment- 22.6.2018 pg/µl mean  DV STD t test 48 hours  

GENI 

121 only MEDIUM 1a 196 

193 26 

  

123 only MEDIUM 2a 213   

125 only MEDIUM 3a 153   

127 only MEDIUM 4a 217   

129 only MEDIUM 5a 186   

161  MEDIUM COND 1a 220 

243 51 

  

163  MEDIUM COND 2a 281   

165  MEDIUM COND 3a 309   

167  MEDIUM COND 4a 228   

169  MEDIUM COND 5a 179 0.086 
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Table E) characterization of zearalenone in sample extracted from the medium and medium cell 

conditioning at 6 hours  

 

 

samples 6 hours  

     

 

sample  treatment- 20.6.2018 pg/µl mean  DV STD t-test 6hours   t-test 6hours-

48hours only 

MEDIUM 

ZEA 

11 only MEDIUM 1a 212 

226 89 

  

13 only MEDIUM 2a 247   

0.095 
15 only MEDIUM 3a 159   

17 only MEDIUM 4a 367   

19 only MEDIUM 5a 147   

51  MEDIUM  COND 1a 133 

126 13 

  t-test 6hours-

48hours MEDIUM 

cond  53  MEDIUM  COND 2a 135   

55  MEDIUM  COND 3a 109   

0.036 57  MEDIUM  COND 4a 117   

59  MEDIUM  COND 5a 137 0.037 

 

 

 

Table F) characterization of zearalenone in sample extracted from the medium and medium cell 

conditioning at 48 hours   

 

samples 48 hours  

    

 

sample  treatment- 22.6.2018 pg/µl mean  DV STD  t-test 48 hours  

ZEA 

111 only MEDIUM 1a 187 

149 22 

  

113 only MEDIUM 2a 133   

115 only MEDIUM 3a 133   

117 only MEDIUM 4a 141   

119 only MEDIUM 5a 153   

151  MEDIUM  COND 1a 93 

99 21 

  

153  MEDIUM  COND 2a 128   

155  MEDIUM  COND 3a 104   

157  MEDIUM  COND 4a 98   

159  MEDIUM  COND 5a 69 0.006 
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Summary of quantification of Bisphenol A, Zearalenone  and 

Genistein in cells extracts of MCF7 subclone B17  

 

Table F) characterization of BPA in sample extracted from MCF7 pellet 

 

samples 6 hours  

treatment 20.6.18  

ng/camp mean  DV STD 

t-test  

6hours-

48hours  

BPA  

96 MCF7 pellet  1 BPA 6h   0.51 

0.46 0.09 

  

97 MCF7 pellet  2 BPA 6h   0.36   

98 MCF7 pellet  3 BPA 6h   0.57   

99 MCF7 pellet  4 BPA 6h  0.39   

100 MCF7 pellet  5 BPA 6h   0.45   

 

samples 48 hours  treatment 22.6.18  ng/camp mean  DV STD   

BPA  

196 MCF7 pellet  1 BPA 48h  0.21 

0.47 0.16 

  

197 MCF7 pellet  2 BPA 48h  0.50   

198 MCF7 pellet  3 BPA 48h  0.55   

199 MCF7 pellet  4 BPA 48h   0.65   

200 MCF7 pellet  5 BPA 48h   0.47 0.864 

 

Table G) characterization of genistein in sample extracted from MCF7 pellet 

         

 

samples 6 hours  

treatment 20.6.18  

ng/camp mean  DV STD 

t-test 

 6hours-

48hours  

GENI 

91 MCF7 pellet  1 GENI 6h 2.50 

3.04 0.55 

  

92 MCF7 pellet  2 GENI 6h  3.44   

93 MCF7 pellet  3 GENI 6h  2.72   

94 MCF7 pellet  4 GENI 6h  3.79   

95 MCF7 pellet  5 GENI 6h  2.76   

 samples 48 hours  treatment 22.6.18  ng/camp mean  DV STD   

GENI 

191 MCF7 pellet 1 GENI 48h  4.91 

4.76 0.59 

  

192 MCF7 pellet  2 GENI 48h  4.19   

193 MCF7 pellet  3 GENI 48h  4.43   

194 MCF7 pellet  4 GENI 48h   5.71   

195 MCF7 pellet  5 GENI 48h   4.55 0.001 
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Table H) characterization of zearalenone in sample extracted from MCF7 pellet   

 

 

 

samples 6 hours  

treatment 20.6.18  

ng/camp mean  DV STD 

t-test 

6hours-

48hours  

ZEA 

86 MCF7 pellet  1 ZEA 6h   1.78 

1.74 0.49 

  

87 MCF7 pellet  2 ZEA 6h   1.18   

88 MCF7 pellet  3 ZEA 6h   2.52   

89 MCF7 pellet  4 ZEA 6h  1.68   

90 MCF7 pellet  5 ZEA 6h   1.54   

 samples 48 hours  treatment 22.6.18 ng/camp mean  DV STD   

ZEA 

186 MCF7 pellet  1 ZEA 48h  2.20 

2.45 0.59 

  

187 MCF7 pellet  2 ZEA 48h  2.17   

188 MCF7 pellet  3 ZEA 48h  3.43   

189 MCF7 pellet  4 ZEA 48h   1.92   

190 MCF7 pellet  5 ZEA 48h   2.51 0.073 

 


