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Sommario 

Introduzione. La trombocitemia essenziale (ET) è una malattia mieloproliferativa 

caratterizzata da un aumento significativo del numero di piastrine, associato al rischio 

di complicanze sia emorragiche che trombotiche. I pazienti a rischio trombotico 

vengono trattati con acido acetilsalicilico (ASA) 100 mg al giorno. È stato osservato che 

buona parte dei pazienti con ET mostra una ridotta risposta farmacodinamica (PD) e 

l’aumento della produzione di piastrine viene identificato come possibile causa di 

questa inadeguata risposta perciò una doppia somministrazione giornaliera 

sembrerebbe essere preferibile. Lo scopo di questo studio è stato quello di indagare i 

potenziali meccanismi che causano la minor risposta al farmaco nei pazienti ET.  

Metodi. Sono stati arruolati 17 pazienti ET in trattamento cronico con 100 mg al giorno 

di acido acetilsalicilico gastroresistente (EC)-ASA (formulazione comunemente 

prescritta) e 10 soggetti sani (HS). 7 pazienti ET sono stati identificati come “poor 

responder” (ET-PR) e 10 come “responder” (ET-R), in base ai livelli di TxB2 sierico (valore 

limite = 10 ng / ml). I campioni di sangue sono stati prelevati al mattino, 24 ore dopo 

l’assunzione della compressa del giorno precedente e immediatamente dopo la 

somministrazione giornaliera del farmaco fino a 8 ore. Sono stati misurati i livelli di 

TxB2 (ELISA) sierico, i livelli plasmatici di ASA e acido salicilico (SA) (ID-LC-MS / MS) e 

l’attività enzimatica delle esterasi, enzimi in grado di idrolizzare l’ASA in SA, presenti nel 

sangue e nel plasma. Inoltre è stata valutata la produzione di TxA2 in seguito ad 

aggregazione piastrinica indotta da collageno (5 μg/ml) dopo aggiunta in vitro di ASA 

(10-1000 μM) sul sangue intero di HS e ET-PR. Infine sono state misurate le piastrine 

reticolate in 15 ET (8 R, 7 PR) e 8 HS mediante citofluorimetria. 
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Risultati. Lo studio in vitro sull’inibizione della sintesi di TxA2 dopo incubazione con ASA 

ha mostrato curve dose-risposta comparabili sia nei HS che nei pazienti ET-PR. Non è 

stata osservata alcuna differente attività enzimatica delle esterasi nei tre gruppi 

studiati. La farmacocinetica (PK) dell'EC-ASA ha mostrato un andamento molto variabile 

sia nei pazienti ET che nei HS, mentre le PKs di ASA non rivestita sono risultate più 

uniformi in tutti e tre i gruppi. In tutti i pazienti ET-PR e in 3 ET-R i livelli di TxB2 sierico 

superavano il valore limite (> 10 ng / mL) a 24 ore. In questi pazienti la differenza tra 

TxB2 a 24 ore e il valore minimo di TxB2 correlava (r = 0,6107; p = 0,0020) con il numero 

di piastrine reticolate e livelli di TxB2 sierico venivano inibiti in seguito alla doppia 

somministrazione del farmaco. 

Conclusioni. Le cause di una minor risposta all’ ASA nei pazienti ET possono essere 

correlate da un lato a un ridotto assorbimento della formulazione gastroprotetta, 

dall'altro ad un aumento della produzione piastrinica. 
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Abstract 

Background. Essential thrombocythemia (ET) is characterized by an increased number of 

platelets, associated with risk for both bleeding and thrombotic complications. Prophylaxis 

with 100 mg acetylsalicylic acid (ASA) is indicated in patients at risk. A significant proportion 

of ET patients (ETs) display an inadequate pharmacodynamics (PD) response to ASA. It has 

been suggested that poor responsiveness is due to increased platelet production and a bis in 

die (bid) administration should be preferred. Aim of this study was to investigate further the 

potential mechanism(s) of poor responsiveness to ASA in ETs. 

Methods. We enrolled 17 ETs on 100 mg enteric-coated (EC)-ASA (commonly used) 

treatment and 10 healthy subjects (HS). 7 ETs were identified as poor responders (ET-PR) 

and 10 as responders (ET-R), based on their levels of serum TxB2 (cut-off=10 ng/ml). Blood 

samples were taken in the morning, 24 h after the previous intake, and immediately after 

taking the drug up to 8 h. We measured: serum TxB2 (ELISA) and ASA and salicylic acid (SA) 

(ID-LC-MS/MS); the enzymatic activity in whole blood and plasma of esterase enzymes able 

to hydrolyse ASA to SA. Moreover, collagen (5 µg/ml)-induced platelet aggregation and TxA2 

production were tested by in vitro addition of ASA (10-1000 µM) to whole blood of HS and 

ET-PR. Reticulated platelets were also measured by flow-cytometry in 15 ET (8 R, 7 PR) and 8 

HS. 

Results. The in vitro dose-response curve of ASA for inhibition of TxA2 generation was 

comparable in HS and ET-PR samples. Esterase activities were similar in all groups. The 

pharmacokinetics (PK) of EC-ASA was very variable within both ETs and HS, while PKs of plain 

ASA showed a uniform behaviour. All ET-PR and 3 ET-R showed an impaired TxB2 (>10 

ng/mL) at 24 h. In these ETs the difference between TxB2 at 24 h and the min value of TxB2 
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correlated (r=0.6107; p= 0.0020) with reticulated platelets and bid administration 

suppressed serum TxB2 levels. 

Conclusions. Causes of poor response may be related from one side to reduced absorption 

of EC-ASA, on the other to increased platelet turnover. 
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1 INTRODUCTION 

1.1 Aspirin 

1.1.1 Aspirin story 

Aspirin (ASA, acetylsalicylic acid) (figure 1) story begins in ancient times when the bark 

from the willow tree was used to treat pain and fever. Unknown to the ancient 

Sumerians and Egyptians (as reported in the Edwin Smith Surgical  Papyrus and in the 

Ebers Papyrus) who made use of it, the active agent within willow bark was Salicin 

(figure 1), which would later form the basis of the discovery of ASA. The use of willow 

bark for pain relief continued through ancient Greece, where it  was recommended by 

Hippocrates to relieve the pain of childbirth, through to Roman times, when its use was 

recorded by Pliny the Elder. 

In 1763 Reverend Edward Stone (1702-1768) [1] completed the first study about an 

extract from the bark and in 1828 the active ingredient in willow bark was discovered 

by Johann Buchner (1783–1852) who first refined willow bark into yellow crystals and 

named it Salicin (after Salix, the genus of the willow tree) (figure. 1). Over the years the 

process was further refined and in 1852, the French chemist, Charles Gerhardt (1816–

1856), modified salicylic acid (SA) (figure 1) with the introduction of an acetyl group in 

place of a hydroxyl group, but the compound was not stable. In 1890, the German dye 

manufacturer, Bayer, set up a pharmaceutical division with research facilit ies for 

scientists and in 1897 Felix Hoffmann acetylated a phenol group of SA, producing ASA. 

Acetylation of SA later proved to be the key step in reducing its irritant properties [2]. 
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Figure 1. Molecular structure of salicin, salicylic acid (SA) and acetylsalicylic acid (ASA)  [2]. 

 

1.1.2 Mechanism of action and targets. 

ASA has been used therapeutically for over 100 years. It is a salicylate derivative drug 

and possesses the three properties of non-steroidal anti-inflammatory drugs (NSAIDs): 

analgesic, anti-pyretic and anti-inflammatory actions [3]–[5]. Until 1971 little was 

known about the mechanism of action of ASA and ASA-like drugs. It was Vane [6] to 

discover the mechanism by which ASA exerts its anti-inflammatory, analgesic and 

antipyretic actions. In fact he proved that ASA and other non-steroid anti-inflammatory 

drugs (NSAIDs) inhibit the activity of the enzyme involved in the synthesis of 

prostaglandins (PGs), lipid autacoids which cause inflammation, pain and fever.[7] This 

key enzyme is now called cyclooxygenase (COX), it has two distinct catalytic sites (a 

cyclooxygenase site and a peroxidase site) and catalyzes the conversion of arachidonic 

acid (AA) to prostaglandin H2 (PGH2), which is a precursor of other PGs, thromboxane 

and prostacyclin (figure 2). 

Some PGs mediated pathogenic mechanisms (including inflammatory response) and 

some are involved in homeostatic function: protect the stomach mucosa from damage 

by hydrochloric acid, maintain kidney function and aggregate platelets when required 

[8] (figure 2). 
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Figure 2. Schematic representation of COX-1 and COX-2 pathway. 

By the late 1980s the discovery of a second COX gene clarified that there are two 

isoform of COX enzyme: the constitutive isoform (COX-1) and inducible isoform (COX-

2). With this discovery the double function of PGs was better explained: COX-1 

catalyzes the synthesis of PGs involved in homeostatic function; whereas COX-2 

becomes upregulated by inflammatory mediators and catalyzes the synthesis of PGs 

involved in inflammation, pain and fever [7], [9]–[11]. 

Chandrasekharan et al. [12] describes a third COX (COX-3), which is selectively inhibited 

by paracetamol and also by low concentrations of some NSAIDs including ASA. COX-3 is 

a variant of COX-1 which has retained intron-1 during translation and which is found in 

human tissues in a polyadenylated form. Selective inhibition of COX-3 will discover 

potent and valuable new drugs for controlling pain and fever. 
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As previously mentioned the principal therapeutic effect of ASA is the ability to 

irreversibly inhibit PGs production by acetylating COX enzyme, in particular ASA is able 

to bind Ser-530 in the active site of COX-1 and Ser-516 in the active site of COX-2 

(figure 3, thus preventing AA access to the COX catalytic site [13].  

 

Figure 3. Aspirin mechanism of action. 
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1.2 Clinical use of Aspirin: doses, formulation and pharmacokinetics 

parameter 

1.2.1 Aspirin used for pain fever and inflammation 

At high dose (300-1000 mg) ASA is used to treat fever pain and inflammation. ASA 

inhibits both COX-1 and COX-2 enzymes. As mentioned above COX-1 is the constitutive 

isoform, which is linked to the mechanisms of cellular homeostasis. COX-2 is an 

inducible isoform whose production involves activated inflammatory cells. 

Furthermore, it also improves the synthesis of PGs that play an important role in 

inflammation, fever and pain. Thanks to the inhibitory action of COX-2, ASA makes the 

production of such PGs more difficult (figure 4).  

 

 

Figure 4. Aspirin (ASA) mechanism of action and targets at high dose. 

ASA was synthesized in 1897 and sold for decades as tablet. After oral administration, 

the absorption in the gastrointestinal tract is rapid, complete and follows first order 

kinetics [3]. ASA in vivo acetylates COX enzyme and undergoes spontaneous hydrolyses 
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and enzymatic hydrolyses by esterase. Both way converted ASA into its main 

metabolite: SA. SA is mainly eliminated by metabolism in the liver; the metabolites 

include salicylic acid, salicyl-phenolic glucuronide, salicyl acyl glucuronide, gentisic acid 

and salyciluric acid. SA and its metabolites are excreted mainly through the kidney 

(figure 5) [14], [15]. The maximum plasma levels are reached at 10-20 minutes for ASA 

and at 0.3 to 2 hours for SA after intake. 

 

Figure 5. Aspirin metabolism in vivo[16]. 

Over the year different formulation have been developed for the treatment of fever, 

pain and inflammation in order to enhance pharmacokinetics (PK) and 

pharmacodynamics (PD) action of ASA: plain tablets, chewable tablets, effervescent 

tablets, extended-release tablets, granules and suspensions, fast release/disintegrating 

tablets, powders, creams, lotions, and intravenous solutions. For the treatment of pain 

and fever, these enhancements typically include bioavailability (total exposure of drug 

measured as area under the plasma-concentration time curve (AUC)), reduction in the 

time to reach maximum plasma concentration (tmax), increase in maximum plasma 

concentration (Cmax), and extension of the release profile over time. A recent article [3] 

compares PK parameters of different ASA formulations at dose of 500 mg in healthy 
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subjects (HS). Data are extracted from Bayer’s clinical trial database, grouped by 

formulation and analysed using descriptive and inferential statistics (mean, median and 

95% CI) (figure 6). 

 

Figure 6. Pharmacokinetics parameters (AUC, tmax and Cmax) of acetylsalicylic acid and salicylic acid after 

different Aspirin (500 mg) formulations intake in healthy subjects  [3]. 

As we can see from figure 6 various formulations provide different Cmax and tmax, in 

particular for tablet, chewable tablet and dry granule formulations, Cmax levels are 

lower than Cmax levels of effervescent tablet, granules in suspension and fast release 
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tablet formulation. Effervescent tablet and granules in suspension are highly 

bioavailable due to their liquid nature (before assumption are dissolved in water) and 

have a faster absorption time. The fast-release tablet combines a reduction in particle 

size (thereby increasing the available surface area for absorption) with the addition of 

sodium carbonate (which acts as both a disintegrate and local buffer). On the other 

hand, ASA dry granules, chewable tablets, and plain tablets have firstly to be dissolved 

in solution, after which they can be absorbed systemically, thereby increasing tmax and 

lowering Cmax. 

 

1.2.2 Aspirin used in prophylaxis as antiplatelet agent 

At low-dose (75-100 mg/die) ASA is used as antiplatelet agent for preventing 

cardiovascular and cerebrovascular events. ASA inactivates platelet COX-1 and so 

blocking arachinodate-thromboxane A2 (TxA2) pathway.  

TxA2 is a powerful vasoconstrictor and platelet agonist (figure 7). TxA2 is not stable and 

is immediately converted into thromboxane B2 (TxB2), which is biologically inactive.  

The measurement ex-vivo of serum TxB2 levels obtained after whole blood (WB) 

incubation at 37 °C for 1 hour is commonly used in order to evaluate the 

pharmacodynamic (PD) effect of ASA on platelets COX-1. Healthy subjects, not under 

ASA treatment, have TxB2 between 200-300 ng/mL [17] aspirinated subjects have TxB2 

levels ≤ 10 ng/mL [18]. 
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Figure 7. Mechanism of action of low-dose ASA in platelets. 

Because platelets are anucleate cells (without transcriptional ability) and have a limited 

capacity of new protein synthesis [19] [20], platelets COX-1 inhibition is permanently 

and prolonged for their lifetime [21]. 

The mean life span of human platelets is approximately 8 to 10 days. Therefore, about 

10 to 12% of circulating platelets are replaced every 24 h. ASA also acetylates the 

enzyme in bone marrow megakaryocytes and pro-platelets before new platelets are 

released into the circulation [22], [23]. Dose interval of 24 h is enough for maintaining 

TxA2 levels inhibited because ASA inhibits COX-1 of both platelets and platelets 

progenitors, thus the new platelets progeny have non-functioning enzyme (figure 8) 

[24]. 
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Figure 8. Recovery of serum TxB2 after ASA withdrawal in healthy subjects [24]. 

For patients on chronic treatment (on daily ASA at dose of 75-100 mg) the enteric 

coated formulation (EC-ASA) is commonly prescribed instead of plain ASA for its lower 

side effect, in particular lower incidence of gastrointestinal bleeding or ulcers [25]: 

COX-1 is constitutively expressed in gastrointestinal mucosa where is involved in the 

synthesis of prostaglandin useful for the maintenance of mucosa integrity (for example 

prostacyclin) [26]–[28].  

Plain ASA is rapid absorbed in the stomach and upper intestine and peak plasma levels 

occur between 30 to 40 min after intake, while the enteric-coating of EC-ASA is 

resistant to acid environment, so ASA is not released into the stomach but in the 

alkaline environment of the intestine and plasma peak levels occur between 2-6 h after 

intake. Both formulations have a bioavailability of 40-50%. Plasma concentration of 

ASA decay with an half-life of 15 to 20 min [29]–[31]. 

In literature there are few information published about PK of plain ASA and EC-ASA, at 

low dose, in HS. Nagelschmitz J et al. [32] compared the PK and PD of intravenous  

versus oral tablet formulations at different doses (250-500 mg for iv; 100, 300 and 500 

for po) after single dose administration. Patrignani et al. [33] studied the extent of 
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COX-1 acetylation after the first and the seventh dose of daily 100 mg EC-ASA 

considering PK and PD parameters. Cox et al. [34] evaluated PD effect, before and after 

14 days of treatment with ASA, of five different low-dose formulations: three 75 mg EC 

formulations, one 75 mg dispersible aspirin and asasantin (25-mg standard release 

aspirin plus 200-mg modified-release dipyridamole given twice daily). 
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1.3 Essential thrombocythemia 

Essential thrombocythemia (ET) is a BCR-ABL1-negative myeloproliferative neoplasm 

(MPNs) characterized by an increased number of platelets (450 x 109/L) in the 

circulating blood. Other MPNs are polycythemia vera (PV), which main characteristic is 

increased red cells mass and primary myelofibrosis (PMF), characterized by anemia. ET, 

PV and PMF are hematopoietic disorders characterized by clonal proliferation of 

multilineage bone marrow progenitors.  

No one knows what causes the onset of ET or other MPNs. ET is not a genetically 

inherited disorder, but there may be a familial predisposition to the disease in some 

patients. 

However, researchers have discovered mutations that alter the activity of proteins that 

control signalling pathways (important regulators of cell growth and development) in 

many patients with ET: JAK2 (Janus kinase 2; located on chromosome 9p24), CALR 

(calreticulin; located on chromosome 19p13.2) and MPL (myeloproliferative leukemia 

virus oncogene; located on chromosome 1p34) mutations have a incidence in ET 

patients of 50–60%, 20-25% and 3-4% respectively [35]–[39]. 

Nowadays World Health Organization (WHO) diagnostic criteria for ET are: 

1. platelets count > 450 x 109/L; 

2. bone marrow biopsy showing proliferation mainly of the megakaryocyte lineage 

with increased numbers of enlarged, mature megakaryocytes with 

hyperlobulated nuclei; no significant increase or left-shift in neutrophil 

granulopoiesis or erythropoiesis and very rarely minor (grade 1) increase in 

reticulin fibers; 
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3. not meeting WHO criteria for BCR-ABL1+ chronic myeloid leukemia (CML), PV, 

PMF, myelodysplastic syndromes, or other myeloid neoplasms; 

4. presence of JAK2, CALR, or MPL mutation;  

5. presence of a clonal marker or absence of evidence for reactive thrombocytosis . 

Criteria 1-4 are classified as major, while the fifth is classified as minor criteria. 

Diagnosis requires meeting of all 4 major criteria or the first 3 major criteria and the 

minor criterion [40], [41].  

Its prevalence is calculated to be around 20 per 100000 individuals and ET occurs in 50 

to 60 years old patients and has a longer life expectancy and lower leukemic 

transformation rate as compared to other MPNs. 20% of ET sufferers are under the age 

of 40. Approximately 60% of patients with ET is characterized by a platelets 

proliferation higher than normal (platelet count > 450 X 109/L), with an incidence of 1-2 

cases per 100000 inhabitants, had at least one thrombotic event in their lives, including 

transient ischemic attack, myocardial infarction or stroke. The female to male ratio is 

about 2:1 [42]. 

ET patients may develop both thrombotic and haemorrhagic complication, thus 

treatment is based on risk stratification with the clinical goal to reduce the frequency 

of thrombosis and haemorrhage. The classical factor in the stratification are age>60, 

previous thrombosis and platelet count>1000-1500 X109/L (for bleeding).  

Low-dose ASA (100 mg), commonly the EC-ASA formulation, is usually given (for its 

lower risks of gastrointestinal bleeding) to reduce the risk of blood clotting and can be 

safely used if patients’ platelet counts are < 1500 × 10 9 /L and there is no history of 

haemorrhage. 

Hydroxyurea (HU) or hydroxycarbamide (HC) are often used to treat ET patients at high 

risk for clotting (over 60 years-old or patients with a prior blood clot) in order to reduce 
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platelet count. It is usually considered the first line agent for patients that require 

treatment. Anagrelide is another option for lowering platelet counts. It is frequently 

used after a patient has demonstrated intolerance or experienced complications with 

HU. Interferon (IFN) is sometimes prescribed for ET patients: women of childbearing 

age are often treated with INF because it hasn't been shown to cause birth defects 

[43]–[49]. 
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1.4 Aspirin resistance 

In literature there are different definitions of “ASA resistance”, for simplification it can 

consider “clinical resistance” and “laboratory resistance”. The first one can be 

diagnosed after the occurrence of an atherothrombotic ischaemic event in a patient 

taking a therapeutic dose of ASA [50]. So clinical diagnosis of “ASA resistance” is 

limited because it is retrospective and non-specific. It is more appropriate to classify 

these patients as having a failure of response to therapy, rather than “clinical 

resistance” to therapy. “Laboratory resistance" is referred to the failure of ASA to 

inhibit platelet TxA2 production or the failure to inhibit TxA2-dependent platelet 

function tests. In laboratory “ASA resistance” can be evaluated by measurement of 

platelet TxA2 production. TxA2 is not stable, thus the measurement is determined by 

considering TxB2 levels in serum or and 11-dehydro thromboxane B2 in the urine. 

Because serum TxB2 production is largely dependent on platelet COX-1 (ASA’s 

therapeutic target), it’s commonly used as a measure of the inhibitory effects of low -

dose ASA on platelets [51]. 

Moreover “laboratory resistance” can be evaluated by considering TxA2-dependent 

platelet function [52]–[55], in particular agonist-induced platelet aggregation.  

Tests of platelet function generally used are:  

 light transmission aggregometry (LTA) measures the increase in light 

transmission through platelet rich plasma (PRP) when platelets are aggregated 

by an agonist (for example collagen, TxA2, ADP ecc.); 

 impedance aggregometry measures the change in electrical impedance between 

two electrodes when platelets are aggregated by an agonist. This method can be 

used also in WB; 
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 [PFA]-100 is an artificial vessel consisting of a sample reservoir, a capillarity and 

a biological active membrane with a central aperture, coated with collagen plus 

ADP or epinephrine. The application of a constant negative pressure aspirates 

the anticoagulated blood of the sample from the reservoir through the capillary 

and the aperture, while a platelet clot forms and occludes the aperture. The 

time taken to interrupt blood flow closure time is recorded; 

 Ultegra rapid platelet function assay [RPFA] measures agglutination of 

fibrinogen-coated beads in response to propyl gallate or AA stimulation. If ASA 

produces the expected antiplatelet effect, fibrinogen-coated beads will not 

agglutinate, and light transmission will not increase. The result is expressed as 

ASA reaction units (ARU). 

In figure 9 are reported advantages and limitations of each test.  

 

Figure 9. Advantages and limitations of laboratory tests [56]. 
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Floyd et al [57], Hankey et al[56], Cattaneo [58] illustrated potential mechanisms for 

“ASA resistance” that could be summirize in: 

1) poor adherence: it is probably the most frequent and plausible cause of ASA 

resistance; 

2) decreased bioavailability of ASA. Some studies showed that at equivalent doses 

EC-ASA was less effective than plain ASA to ininhibit TxA2 production [34], [59]–

[61]. Some studies suggested that the standard low doses of daily aspirin (81– 

100 mg) may be inadequate in some subjects to inhibit completely COX-1 

activity [62]–[64]; 

3) drug interaction: competition of ASA with other NSAIDs (for example 

ibuprofene, indometacine) which could block ASA access at binding site (Ser-

530) in COX-1 [65]; 

Proton pump inhibitors (PPIs) are routinely co-prescribed to patients on ASA 

chronic treatment at high risk of bleeding, and act to provide some gastric 

protection by reducing acid production, but the consequences of PPIs co-

administration with ASA are not known; 

4) esterase-mediated metabolism of ASA: in vivo ASA may undergo hydrolysis to 

salicylate by esterases in the gastrointestinal tract prior to absorption [66]. No-

correlation between gastrointestinal esterase activity and ASA bioavailability 

has been studied. In contrast variations in blood-borne esterase activity have 

been documented in HS [67], but attempts to correlate activity with pathological 

states have yielded inconsistent results; 

5) anion efflux pump: the oral bioavailability and intracellular concentration of 

certain drugs are modulated by unidirectional channels which pump them into 
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or out of cells. Massimi et al [68] demonstrated that platelet multidrug 

resistance protein-4 (MRP4) overexpression has a role in reducing ASA action in 

patients after by-pass surgery [69]; 

6) increased production of platelets by the bone marrow may introduce new 

platelets able to synthetized TxA2, because new COX-1 is not inhibited by ASA 

[70]; 

7) circulating, aspirinated platelets may recover their ability to form TxA2 through 

de novo synthesis of COX-1 [20], or through transcellular formation of TxA2 from 

prostaglandin H2 released by other blood cells or vascular cells [70]; 

8) Genetyc polymorfirsm: presence of COX-1 variants that may be less responsive 

to aspirin inhibition [71], [72]; 

9) other sources of TxA2 production: biosynthesis of TxA2 by pathways that are not 

blocked by ASA; 

10) interventions of coronary revascularization with coronary artery bypass surgery 

or coronary angioplasty may induce temporary aspirin resistance [70]; 

11) loss of antiplatelet effect of ASA with prolonged administration: tachyphylaxis. 

 

Considering results published [64], [73]–[76] the incidence of ASA “laboratory 

resistance” ranges from 1% to 61%. 

It depends on the type of laboratory test used to monitor the pharmacological 

response and the cut-off values chosen to identify poor-responders. Nowadays there is 

not a standardized test that could identify “resistant patients” but it’s clear that 

subjects on ASA therapy show a great variability in response to ASA. 

 



26 
 

1.4.1  Aspirin resistance in ET patients. 

As previously reported ET patients at risk of thrombotic complication are treated with 

low-dose ASA (75-100 mg). ASA has been used for years in primary and secondary 

prevention of cardiovascular disease. It was shown that daily low doses of ASA are able 

to reduce the TxA2 production by 97%-99% in HS [77], but some ET patients are less 

responder to ASA.  

Causes of inadequate response to ASA in ET patients are not clear and have been 

investigated. Dragani et al [78] showed that the same ASA regimen is unable to fully 

inhibit platelet TxA2 production in 80% of ET patients. The residual platelet COX activity 

(both COX-1 and COX-2) was fully suppressed to levels comparable to controls by 

adding ASA (50 µM) to WB in vitro. Moreover, they demonstrated that COX-2 

expression was significantly increased in ET patients and correlated with thiazole 

orange (TO) positive platelets (r=0.71, P>0.001).  

Pascale et al. [79] argues that the abnormal megakaryopoiesis that characterizes ET 

patients is responsible for shorter-lasting antiplatelet effects of low-dose ASA through 

faster renewal of platelet COX-1. The increase in platelet turnover in patients with ET 

leads to an increase in the amount of non-inhibited COX-1 levels, more than 10% 

expected in the 24h interval between doses of the drug. This abnormal biochemical and 

functional phenotype can be reverted to a normal pattern of platelet response by 

modulating the ASA dosing interval but not the dose. These results suggested that 

twice daily administration of ASA in ET patients may increase clinical ASA efficacy.  

In a recent study [80] a correlation (r=0.49, P<0.001) was shown between residual AA-

inducible platelet aggregation and the platelet count in patients with MPN (ET, PV or 

PMF). 
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2 AIM OF THE STUDY 
Aim of the study is to elucidate the potential mechanism underlying the altered low-

dose ASA response observed in some ET patients.  

In particular, we explored three hypotheses: 

1) lack PD of ASA  

2) high plasma and/or whole blood esterase activity 

3) low absorption of ASA 

The first hypothesis was investigated by studying the in vitro effects of ASA on TxA2 

after platelet aggregation induced by agonist.  

In order to be able to explore the second and the third hypotheses, it was necessary to 

develop a reliable, sensible, reproducible and accurate analytical method for the 

quantification of ASA and SA (the major ASA metabolite) in plasma samples. To this 

aim, we set up to develop and validate a method based on isotope dilution liquid 

chromatography mass spectrometry (ID-LC-MS/MS) for the simultaneous 

determination of the two analytes using the corresponding deuterated analogues.  

Using this technique, we tested the in vitro activity of plasma and blood esterase as 

function of time and substrate concentrations and we evaluated the in vivo kinetics of 

ASA, SA and TxB2 at different time points after ASA administration in healthy subjects, 

ET patients good ASA responders and ET patients poor ASA responders. We also 

compared the PK and PD of two clinically available ASA formulations: enteric-coated 

ASA and plain ASA. 
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3 MATERIALS AND METHOD 

3.1 Chemicals and Materials 

 ASA, SA, HPLC-grade acetonitrile, formic acid, potassium fluoride, dimethyl 

sulfoxide, indomethacin, thiazole orange (TO) and paraformaldehyde (PFA) were 

purchased from Sigma Aldrich (Milano, Italy).  

 Acetylsalicylic acid-d4 (ASA-d4), salicylic acid-d4 (SA-d4) were purchased from 

Santa Cruz Biotecnology (CA, USA).  

 Horm collagen from Mascia Brunelli (Milano, Italy).  

 Inertsil ODS3, 150 × 3.0 mm i.d., 3 μm (GL Sciences, Tokio, Japan) was used for 

chromatography separation.  

 Ultrapure water was obtained from MilliQ system. 

 Thromboxane B2 EIA kit was purchased from Cayman Chemicals (Ann Arbor, MI, 

USA). 

 CD42b APC antibody was purchased from Beckman (Cassina De’ Pecchi (MI)). 

 EDTA KE/2,7 mL, coagulation 9 NC/3 mL and serum Z/2,7 mL S-Monovette® were 

purchased from Sarstedt (Verona, Italy). 

 Plain Aspirin and Cardioaspirin (enteric coated formulation) tablets at dose of 

100 mg (Bayer, Germany). 

 Revasc (INN-desirudin) injectable solution 15g/0,5 mL (Canyon Pharmaceuticals, 

London, United Kingdom). 
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3.2 Instrumentations 

3.2.1 Liquid chromatography tandem mass spectrometry (LC-MS-MS) 

ASA and SA were quantified from human plasma using HPLC coupled to a tandem mass 

spectrometer. The liquid chromatograph system is a Dionex 3000 UltiMate instrument 

with autosampler, binary pump, and column oven (Thermo Fisher Scientific, Rodano 

(MI), Italy). The tandem mass spectrometer is an AB Sciex 3200 QTRAP LC-MS/MS 

instrument with electrospray ionization (ESI) TurboIonSpray™ source (AB Sciex S.r.l., 

Milano, Italy). The analytical data were processed by Analyst software (version 1.4)  

3.2.2 Other instruments 

 Coulter hematology analyser (Beckman Coulter, Milano, Italy). 

 Platelet Aggregation Profiler-8E (Biodata, Horsham, PA, USA). 

 BD FACSVerse™ flow cytometer (Biosciences, USA). 

 Ensight multimode Reader (Perkin Elmer, Milano, Italy). 

 Multi-Block heater (Thermo-Fisher Scientific, Rodano (MI), Italy). 

 Julabo TW8 water bath (Sigma Aldrich Milano, Italy). 

 Centrifuges 5702R and 5415R (Eppendorf, Amburgo, Germany). 

 Pipettes P10, P20, P200, P1000 (Eppendorf, Amburgo, Germany). 
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3.3 Study population and design 

In a previous study with other aims, conducted in our laboratory, ET patients referring 

to “Divisione di Medicina 2, ASST Santi Paolo e Carlo, Dipartimento di Scienze della 

Salute - Università degli Studi di Milano” were classified considering serum TxB2 levels 

at 24 h and 2 h after EC-ASA intake: as reported in literature [64] non responder 

patients are that with serum TxB2 greater than 10 ng/mL (figure 10). 
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Figure 10. Serum TxB2 levels in ET patients and HS at 24 h and 2 h after EC-ASA intake. 
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For this study ET patients were recalled and 10 ET responders (ET-R), 7 ET poor 

responder (ET-PR) and 10 healthy controls (HS) entered the study. All recruited subjects 

signed written informed consent. Subjects who took NSAIDs in the previous three days 

were excluded. For each enrolled subject a diary containing information about drugs 

assumption, weight, height, breakfast, age, withdrawal times was written off.  
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3.4 Blood collection 

Blood sample were collected in the morning from antecubital vein. 

For reticulated platelets measurement, the first 3 ml were collected into K-EDTA tubes 

and analysed by Coulter hematology analyser. For in vitro studies on TxA2 production, 

20 ml were collected in tubes containing 250 µg/ml of hirudin, gently mixed, left at 

room temperature for 15 min and analysed by Coulter haematology analyser. For 

esterase studies, 3 ml of blood were collected in commercial citrate tubes: blood was 

immediately used and plasma was obtained after centrifugation at 1400 g for 15 

minutes. For PK studies 6 ml of blood were collected in two K-EDTA chilled tubes (3 mL) 

containing 20 μL of potassium fluoride 150 mg/mL (to minimize the hydrolysis of ASA 

to SA in human blood) and 3 ml were collected in tubes without anticoagulant (in order 

to obtain serum) at different time points after EC-ASA or plain ASA administration 

(figure 11). The chilled blood samples were centrifuged immediately at 14000g for 10 

min at 4°C and the plasma samples were frozen at −20°C until LC/MS/MS analysis. Non-

anticoagulated blood was allowed to clot in water bath at 37 °C for 1 hour, and then 

centrifuged at 1400g for 15 minutes and serum samples were frozen at -20 °C until 

ELISA. 
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Figure 11. Blood drawing scheme after EC-ASA (above) and plain ASA (below) intake. 
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3.5 Evaluation of in vitro effects of Aspirin on TxA2 production in whole 

blood and in platelet rich plasma 

ASA activity on TxA2 production was evaluated using Platelet Aggregation Profiler-8E. 

The activity was measured in platelet rich plasma (PRP) and in (WB) diluted 1 to 1 with 

physiological solution. The experiments were carried out using different concentration 

of ASA from 10 µM to 1 mM. 

PRP was obtained by centrifugation of hirudin WB samples at 200g for 15 minutes at 

room temperature, PRP was carefully removed into a stoppered plastic tube and 

platelet concentration was measured by coulter haematology. Platelet poor plasma 

(PPP) was obtained by further centrifugation at 1400g at room temperature for 15 

minutes.  

All tests were performed within 3 hours after blood collection. 300 µL of PRP or diluted 

WB was placed into a test tube containing a stir bar, 6 µL of ASA were added and 

incubated for 5 minutes at room temperature then 10 minutes at 37 °C. Aggregation 

was induced by collagen (5 µg/mL) at 37 °C under stirring (1000 r.p.m.) and recorded 

for 6 minutes. 2 µL of indomethacin 1 mM was used to stop platelet aggregation and 

after centrifugation (14000g, 2 minutes) supernatant was recovered and frozen at -20 

°C until ELISA. 

 

3.5.1 Quantification of Thromboxane B2 

TxB2, the stable metabolite of TxA2, was measured by selective, competitive enzyme 

immunoassay. Frozen samples were thawed at 37 °C and opportunely diluted (between 

1:2 and 1:750) with phosphate buffer and tested in duplicate. Samples were assayed in 

parallel with standard calibration curve (detection limit= 1,6 pg/mL), prepared as 
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outlined in the manufacturer’s instruction. The 96-well plate was red at 450 nm 

wavelength using Ensight multimode Reader. Results were expressed as ng/mL. 
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3.6 Development and validation of LC-MS/MS analytical method for 

ASA and SA determination in human plasma 

 

3.6.1 Mass spectrometry and chromatographic conditions 

The isotope dilution liquid chromatography tandem mass spectrometry ( ID-LC-MS/MS) 

technique in negative multiple reaction monitoring mode (MRM) was developed for 

determination of ASA and SA using the respective deuterated isotopomers (ASA-d4 and 

SA-d4) as internal standards (IS). The mass spectrometry operating conditions were 

optimized for each analyte by infusion of solution (10 µg/mL) into ESI source using the 

built-in syringe pump (rate 10 µL/min). ASA, ASA-d4, SA and SA-d4 were separated on 

reversed-phase column Inertsil ODS3, 150 × 3.0 mm i.d., 3 μm particle size (GL 

Sciences, Tokio, Japan) with an isocratic mobile phase consisting of acetonitrile and 

water containing 0.1% formic acid (80:20, v/v). The mobile phase was delivered at 0.3 

mL/min, the autosampler and the column oven were kept at 5 °C and 20 °C, 

respectively. 

 

3.6.2 Preparation of stocks and standard solutions 

Stock solutions of ASA, ASA-d4, SA and SA-d4 were dissolved in 0.2% formic acid 

acetonitrile. ASA-d4 and SA-d4 standard working solutions were diluted 1 to 250 and 1 

to 100 in order to obtain a final concentration of 4 µg/mL for ASA-d4 and 10 µg/mL for 

SA-d4. ASA and SA standard solutions were diluted with 0.2% formic acid in acetonitrile 

to prepare working solutions for calibration curves. Two independent calibration curves 

for ASA and SA were constructed in human plasma by spiking 250 µL of plasma 

(containing KF 1 mg/mL) with 50 µL of the appropriate working solution giving a final 
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concentration of 20, 50, 100, 200, 500, 1000, 2000 ng/mL for ASA and 20, 50, 100, 200, 

500, 1000, 2000, 5000, 8000 ng/mL for SA. 

Quality control (QC) samples were prepared by spiking control human plasma in bulk 

with ASA and SA at appropriate concentrations in the low, medium and high range: for 

ASA 20, 60, 500 and 1500 ng/mL; for SA 20, 100, 500, 5000 and 8000 ng/mL, then 250 

µL of plasma aliquots were distributed in different tubes and stored at -20°C until 

extraction. 

3.6.3 Sample preparation 

ASA and SA were extracted from human plasma using protein precipitation: to 250 µL 

of human plasma were added 25 µL of ASA-d4 (4 µg/mL), 25 µL of SA-d4 (10 µg/mL) 

and 700 µL of 0.1% formic acid in acetonitrile. Samples were processed in ice-bath in 

order to prevent ASA hydrolysis by esterase. The mix was vortex for 1 minute, then 

centrifuged at 14000 g, 4°C for 10 minutes.  The supernatant was transferred into an 

analytical vial and 10 µL were injected into LC/MS/MS system. 

3.6.4 Method validation 

The developed method was validated according to the US Food and Drug 

Administration guidelines [81] The parameters determined were selectivity, specificity, 

matrix effect, linearity, precision, accuracy, recovery and stability. 

Selectivity and Specificity.  

Selectivity was carried out by analysing six blank plasma samples, obtained from six 

different sources, spiked with analytes and internal standards at the respective LLOQ 

concentration. 
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Lower limit of quantification (LLOQ) 

As reported in FDA guidelines the lowest standard on the calibration curve should be 

accepted as LLOQ if the analyte response is at least 5 times the response compared to 

blank response and analyte peak should be identifiable, discrete and reproducible with 

a precision of ±20% and accuracy of 80-120% [81]. 

Calibration curves 

The linearity of the method was evaluated using analyte spiked plasma samples  using 

the method of the least squares. Each calibration curves consisted of a blank sample, a 

zero sample (blank + ISs) and nonzero concentrations. Based on the concentration and  

peak area ratio two independent linear standard curves (20-2000 ng/mL for ASA and 

20-8000 ng/mL for SA) were constructed and analysed by non-weighting linear 

regression. The calibration curves had to have a correlation coefficient (r2) of 0.998. 

The acceptance criteria for each back-calculated standard concentration were ±15% 

deviation from the nominal value except at LLOQ, which was set at ±20%.  

Accuracy and precision 

Intra-day accuracy and precision were evaluated by analysing five replicates containing 

ASA and SA at different QC levels prepared on the same day. The inter-day accuracy 

and precision were evaluated by analysing QC samples (n=5) in three different days.  

The accuracy was expressed as % bias: (observed concentration)/  (nominal 

concentration) x 100 and precision by coefficient of variation (CV). The acceptable 

criteria of the data included accuracy within ±15% deviation from the nominal value 

and precision within ±15% CV except for LLOQ, which was set at ±20%. 
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Recovery 

The recovery of ASA and SA was determined at three different concentrations (low, 

medium and high) by comparing the analytical results for extracted samples with 

unextracted standards obtained by spiking extracted drug-free plasma samples with 

the same amount of ASA and SA. The unextracted standards represented 100% [81]. 

Stability 

The stability experiments of ASA and SA in plasma samples were carried out by 

analysing QC samples at two different concentrations for ASA (60, 1250 ng/mL) and at 

three different concentrations for SA (60, 200 and 5000 ng/mL), under three different 

condition: after three freeze-thaw cycles (-20°C; 5 °C), after short term storage (6 h) in 

ice-bath, after long-term stability (2 months at -20 °C). Short term stability of post-

extracted plasma was also evaluated in autosampler for 72 h. 
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3.7 Determination of esterase activity 

Esterase activity was studied both as function of time and as function of substrate 

concentration. Plasma esterase activity as function of time was studied in plasma using 

the experimental condition described by Zhou et al. [82] which measure in vitro 

enzyme activity from the rate of SA formation during ASA incubation with plasma: 10 

µL of plasma were added with 40 µL of ASA (4 mM) and incubated at 37 °C for 120, 180 

and 240 minutes, before stopping the reaction with 150 µL of acetonitrile containing 

0.1% of formic acid. Then samples were centrifuged at 14000 g for 10 minutes, diluted 

1 to 10 with 0.1% formic acid in acetonitrile. At 100 µL of diluted samples were added 

50 µL of SA-d4 (5 mM) and 2.5 µL were injected in LC-MS-MS system in order to 

measure the amount of SA formed after incubation (figure 12). Enzyme activity as 

function of substrate concentration was studied in fresh blood and plasma: 10 µL of 

plasma or blood were added with 40 µL of ASA at different concentration (from 0,4 µM 

to 10 mM) and incubated at 37 °C for 2 hours, then the reaction was stopped with 150 

µL of acetonitrile containing 0,1 % of formic acid. Samples were centrifuged at 14000 g 

for 10 minutes and opportunely diluted (between 1:10 and 1:375), at 100 µL of diluted 

samples were added 50 µL of SA-d4 (5 mM) and 2.5 or 5 µL were injected in LC-MS-MS 

system (figure 13). We also evaluated non-enzymatic hydrolysis incubating ASA in 

phosphate buffer instead of plasma. The results were expressed by subtracting the 

unspecific hydrolysis. In order to quantified SA formation a specific SA calibration curve 

was constructed in phosphate buffer between 0.1 µM and 0.2 mM, calibrators were 

processed as described for samples.  
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Figure 12. Experimental scheme of esterase activity as function of time.  

 

Figure 13. Experimental scheme of esterase activity as function of substrate  concentration. 
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3.8 Reticulated platelets 

Blood samples were prepared within one hour after sampling. A stock solution of TO 

was prepared by dissolving 1 mg of TO in 1 ml methanol and stored at -20 °C in the 

dark. TO working solution (0.05 µg/mL) was obtained by a 1 to 20000 dilution (in 

phosphate-buffered saline) immediately prior to use. 5 µl of WB were incubated for 15 

min at room temperature with 2 µl of CD42b-APC (CD42b antibody recognize a platelet 

glycoprotein known as GPIbα) and with 40 µl of TO in the dark. Samples were then 

fixed by adding 1 ml of PFA (1%) and incubated for 30 min at room temperature in the 

dark. FS and SS were set to log-scale for the detection of platelets. An unstained 

sample was used to adjust the FS/SS PMT voltages. Samples were acquired by FACS 

verseTM BD 6 colours flow cytometry and analysed by BD FACSuite™ software. 5000 

events in platelet gate (based on their size, forward-scattered light vs side-scattered 

light (FSC vs SSC)) were acquired with a medium flow rate. CD42b-positive cells were 

gated (SSC vs Allophycocyanin (APC)) to identify platelets and SSC vs TO settings were 

then used to identify TO-positive platelets. 
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3.9 Statistics 

Statistical analyses were performed using GraphPad Prism v. 7 (GraphPad Software Inc, 

CA, USA). Peak integration and analytical method validation was performed using 

ABSciex Multiquant Software Version 2.0.  

Population characteristics were reported as median (CI 25%-75%).  

Results were expressed as mean ±SD or as mean± SEM. To assess significance among 

the three studied groups one-way analysis of variance (ANOVA) or Kruskal-Wallis test 

were performed. Statistical significance was assumed at P<0.05. Correlation was 

assessed by the Spearman rank test. 
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4 RESULTS AND DISCUSSION 

4.1 Study population characteristics 

Population characteristics are reported in tables 1 and 2. For each subject, information 

about weight, height, age and medication was recorded.  

Table 1. Study population characteristics during EC-ASA PK study 
 

 HS (n=10) ET-R (n=10) ET-PR (n=7)    P value*
 

Sex (M/F) 5/5 5/5 4/3 - 

Age (Y)
a
 53 (37-63) 69 (54-72) 52 (47-68) 0.211 

BMI 22.7 (19.4-27.2) 25.3 (21.6-25.0) 26.0 (22.3-27.5) 0.783 

WBC (x 10
9
/L)

a
 6.1 (5.4-6.8) 5.4 (4.4-6.2) 8.2 (6.7-9.6) 0.373 

RBC (x 10
12

/L) 4.8 (4.3-5.0) 3.7 (3.3-4.5) 4.5 (3.4-4.9) 0.061 

Hb (g/dL)
 a

 14.3 (13.4-15.4) 12.5 (12.1-13.7) 13.7 (13.3-15.1) 0.054 

Hematocrit (%)
a
 41.1 (39.2-43.0) 39.6 (38.4-44.1) 38.3 (35.3-40.8) 0.718 

Platelets (x 10
9
/L)

 a
 223 (196-242) 373 (307-408) 583 (425-633) <0.0001 

MPV (fL)
 a

 7.7 (7.4-7.9) 7.4 (7.0-7.7) 7.4 (7.1-8.5) 0.578 

Medications     

Antihypertensive  
agents 

1/9 3/10 -  

Antineoplastic  
agents 

- 9/10 3/7  

alpha1-receptor  
antagonists 

- 1/10 -  

Tapazole - 1/10 -  

PPI 1/9 2/10 -  

Beta-blockers  1/9 2/10 -  

Diuretics 1/9 1/10 -  

Allopurinol - - 1/7  

Oral hypoglycemic  
agents 

1/9 - -  

a
Results are expressed as median (CI 25%-75%); *P<0.05 
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Table 2. Study population characteristics during plain ASA PK study. 

 HS (n=9) ET-R (n=9) ET-PR (n=7) P value* 

Sex (M/F) 7/2 5/4 4/3 - 

Age (Y)
a
 55 (31-66) 70 (52-74) 52 (48-70) 0.090 

BMI 22.8 (22.3-25.4) 24.3 (21.6-25.0) 26.0 (22.3-27.5) 0.730 

WBC (x 10
9
/L)

a
 6.8 (5.3-7.1) 5.6 (5.1-7.6) 9.5 (6.3-11.1) 0.084 

RBC (x 10
12

/L) 5.0 (4.4-5.4) 3.8 (3.5-4.1) 4.4 (3.7-5.0) 0.012 

Hb (g/dL)
 a

 14.9 (13.9-15.4) 12.8 (12.7-13.5) 13.4 (12.8-14.5) 0.003 

Hematocrit (%)
a
 43.5 (39.2-44) 38.3 (35.2-42.3) 37.3 (35.7-38.8) 0.009 

Platelets (x 10
9
/L)

 a
 216 (192-224) 373 (307-408) 603 (344-645) 0.0003 

MPV (fL)
 a

 7.9 (7.7-8.1) 7.4 (6.9-8.2) 7.6 (7.2-8.6) 0.431 

Medications     

Antihypertensive 
agents 

1/9 3/9 1/7  

Antineoplastic 
agents 

- 8/9 3/7  

alpha1-receptor 
antagonists 

- 1/9 -  

Tapazole - 1/9 1/7  

PPI - 4/9 2/7  

Beta-blockers  1/9 4/9 -  

Diuretics 1/9 1/9 -  

Allopurinol - - -  

Oral hypoglycemic 
agents 

1/9 - 1/7  

a
Results are expressed as median (CI 25%-75%); *P<0.05 
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4.2 In vitro effect of ASA in ET-PR patients 

In order to evaluate the PD of ASA, different concentration of ASA were added in vitro 

to hirudin-WB and PRP of ET-PR patients at 24 h after EC-ASA intake and in HS not 

under ASA. The levels of TxB2 (stable metabolite of TxA2) were measured by ELISA in 

the supernatant plasma after collagen (5 µg/mL) stimulation of PRP or WB (figure 14). 
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Serum TxB2 in PRP of ET-PR (n=7)
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Figure 14. Effects of ASA, added in vitro at the indicated concentrations, on collagen (5 µg/mL)-induced 
TxB2 production in hirudin-WB (above)and hirudin-PRP (below) of ET-PR and HS not under ASA. 

 

Concentration-response curves in WB and PRP showed that TxB2 production was 

inhibited when 100 µM of ASA were added both for ET-PR and HS. IC50 was 3.7 µM and 

11 µM in WB of ET-PR and HS respectively. In PRP, IC50 was 4.9 µM for ET-PR and 21 

µM for HS. This suggested that poor response to ASA in ET patients is not  due to 

abnormal PD, because the addition of ASA in vitro inhibited TxB2 production to the 

same extent in ET-PR and HS. 
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Our results are in agreement with those reported in literature: a recent study [78] 

showed that the residual TxB2 production in ET patients was completely suppressed by 

adding ASA (50 µM) to WB in vitro. Another study [83] showed that ASA (100 µM) 

inhibited arachidonic acid (0.5-10 µM)-induced TxB2 production of washed platelets. 
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4.3 Development and validation of LC-MS-MS for ASA and SA 

determination in plasma 

In order to obtain the best analytical conditions for ASA and SA analysis, different 

chromatographic and mass spectrometric conditions were tested. 

4.3.1 Optimization of Mass Spectrometry and liquid chromatography conditions 

In order to optimize ESI conditions for ASA, ASA-d4, SA and SA-d4, quadrupole full 

scans were carried out in negative ion detection mode by infusing each analyte at 

concentration of 10 µg/mL. Carboxylic acid is present in ASA and SA structures, so they 

have a stronger mass response in the negative ionization mode than the positive mode. 

The most abundant precursor/product ions (figure 15) were chosen in the MRM 

acquisition in terms of better sensitivity: for ASA and SA at m/z 179.0 → 137.0 and m/z 

137.0 → 93.0; for ASA-d4 and SA-d4 at m/z 183.0 → 141.0 and m/z 141.0 → 97.0, 

respectively (figure 16). During infusion experiment, source parameters were also 

optimized: temperature 500 °C, ion voltage -4500V, nebulizing gas -30 psi, heater gas -

45 psi, curtain gas -45 psi and collision energy was set at medium. For each analyte and 

IS, compounds parameters, such as declustering potential (DP), collision energy (CE), 

entrance potential (EP), collision cell entrance potential (CEP) and collision cell exit 

potential (CXP) were optimized (table 3). Dwell time was set at 250 msec. 



49 
 

 

 

Figure 15. Fragment ion spectrum of ASA (above) and SA (below). 
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Figure 16 Chemical structure and fragmentation pattern of ASA, ASA-d4, SA and SA-d4 in negative 
MRM. 

 

Table 3. Compounds parameter for each analyte. 

Compound Q1 (m/z) Q3 (m/z) DP (V) EP (V) CEP (V) CE (V) CXP(V) 

ASA 179 137 -10 -10 -10 -14 -2 

SA 137 93 -33 -10 -10 -25 -2 

ASA-d4 183 141 -10 -10 -10 -14 -2 

SA-d4 141 97 -33 -10 -10 -25 -2 

 

It is worthy to note that more than 50% of ASA undergoes source fragmentation and 

forms SA, (this was also confirmed by ASA-d4 that forms SA-d4). Liquid 

chromatography plays an important role in the method development of ASA and SA: in 

fact, in PK studies, chromatographic separation is pivotal to distinguish between the SA 

fragment peak generated into the source, and the SA generated in vivo during ASA 

metabolism. Figure 17 reports an example of chromatogram of all components: 

retention time for ASA and ASA-d4 was 2.6 min; while for SA and SA-d4 was 3.5 min.  
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Figure 17. Above the extracted ion (XIC) chromatograms of: all components. After from top to bottom 
the extracted ion chromatogram of ASA, ASA-d4, SA and SA-d4. Green arrows indicated 
chromatographic peaks of ASA and ASA-d4; blue arrows indicated chromatographic peaks of SA and SA-
d4; red arrows indicated chromatographic peaks of SA generated in source from ASA and ASA-d4. 

 

4.3.2  Method validation 

The developed method was validated according to the US Food and Drug 

Administration guideline [81] and performed using MultiQuantTM software 2.1 and 

GraphPad Prism v. 7 

Selectivity and Specificity. 

Selectivity was carried out by analysing six blank plasma samples, obtained from six 

different sources spiked with analytes at the respective LLOQ concentration (figure 18). 

 

ASA-d4 

SA-d4 

SA 

ASA 
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Figure 18. Chromatogram of ASA and ASA-d4 in human blank plasma(A) and human plasma spiked with 

ASA (20 ng/mL) (C); chromatogram of SA and SA-d4 in human blank plasma (B) and human plasma 

spiked with SA (20 ng/mL) 
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Lower limit of quantification (LLOQ) 

Using this analytical method LLOQ for ASA and SA was 20 ng/mL.  

Calibration curves 

Calibration curves had a reliable reproducibility and linearity over the concentration 

range. The plasma concentration ranges were 20-2000 ng/mL for ASA and 20-8000 

ng/mL for SA. The curves were linear with a mean correlation coefficient r2 of 0,9991 

for ASA and 0,9996 for SA. Each back-calculated standard concentration was ±15% 

deviation from the nominal value except at LLOQ, which was ±20% (figure 19). 
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Figure 19. Calibration curve in human plasma of ASA (above) and SA (below). 
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Accuracy and precision 

Results of intra-day and inter-day accuracy and precision are reported in tables 4 and 5. 

Intra-day and inter-day precision were expressed as % of CV and were within ±15% for 

each QC at low medium and high levels and within ±20% at LLOQ levels.  

The intra-day and inter-day accuracies were all within 100 ±15% of the nominal value 

and were within 100±20% at LLOQ levels. 

 

Table 4. Intra-day precision and accuracy for ASA and SA QCs in human plasma (n=6) . 

a
Values are mean±SD 

 

 

 

 

 

Analyte Nominal 

concentration 

(ng/mL) 

Concentration 

found
a
 (ng/mL) 

Accuracy (%)  Precision (% CV)  

ASA 20 18.76±3.11 93.82 16.59 

60 52.23±3.63 87.04 6.94 

400 432.65±18.08 108.16 4.18 

1250 1230.48±28.63 98.44 2.33 

SA 20 23.80±3.07 118.98 12.90 

60 66.00±4.03 110.01 6.10 

200 225.44±4.09 112.72 1.81 

500 561.14±21.94 112.23 3.91 

5000 5770.20±55.38 115.40 0.96 
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Table 5. Inter-day precision and accuracy for ASA and SA QCs in human plasma (n=6) .
 

a
Values are mean ± SD

 

 

 

 

 

 

 

 

 

 

 

 

Analyte Nominal 

concentration 

(ng/mL) 

Concentration 

founda (ng/mL) 

Accuracy (%) Precision (% CV) 

ASA 20 18.22±2.23 91.12 12.24 

60 52.22±3.75 87.04 7.17 

400 385.23±39.76 96.31 10.32 

1250 1214.62±72.45 97.17 5.96 

SA 20 23.26±2.01 116.28 8.64 

60 67.29±3.62 112.14 5.38 

200 225.28±3.34 112.64 1.48 

500 557.94±15.88 111.59 2.85 

5000 5718.69±80.56 114.37 1.41 



56 
 

Recovery of extraction 

Liquid extraction with acetonitrile containing 0.1% of formic acid resulted to be robust 

and provided cleaned samples. The recoveries of analytes, reported in table 6, were 

good and reproducible.  

Table 6. Extraction recoveries of the analytes in human plasma at different concentrations (n=6)  

 

 

 

a
Values are mean ± SD

 

 

Stability 

The stability data of ASA and SA are reported in tables 7-8. No significant degradation 

of ASA and SA was observed under the conditions studied. Short-term stability of post-

extracted plasma was also evaluated in autosampler for 72 h at 5 °C and no appreciable 

degradation was observed. 

 

 

 

Analyte Concentration 

(ng/mL) 

Recovery
a
 (%) Precision (% CV) 

ASA 20 85.60±4.74 5.60 

100 68.46±0.67 0.98 

500 57.12±4.15 7.20 

2000 56.02±5.05 9.01 

SA 20 72.93±5.04 6.91 

100 70.71±0.80 1.13 

500 77.76±4.16 5.35 

5000 77.85±0.61 0.79 

8000 71.39±2.06 2.88 
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Table 7. Stability samples result for ASA in human plasma (n=6).  

Stability test QC nominal 

concentration 

(ng/mL) 

Concentration 

found
a
 (ng/mL) 

Stability (%) Precision (% CV) 

Autosampler 

stability (at 5°C 

for 72 h) 

60 51.01±2.35 85.02 4.62 

1250 1135.52±60.31 90.84 5.31 

Short-term 

stability (in ice-

bath for 6 h) 

60 53.29±4.79 88.82 8.99 

1250 1247.33±106.80 99.79 8.56 

Long-term 

stability (at -20°C 

for 60 day) 

60 51.69±1.29 86.14 2.49 

1250 1258.46±94.44 100.68 7.50 

Freeze-thaw 

stability (after 3 

cycles) 

60 50.12±0.67 83.53 1.35 

1250 1109.55±97.67 88.76 8.80 

a
Values are mean±SD 
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Table 8. Stability samples result for SA in human plasma (n=6).  

a
Values are mean±SD 

  

Stability test QC nominal 

concentration 

(ng/mL) 

Concentration 

found
a
 (ng/mL) 

Stability (%) Precision (% CV) 

Autosampler 

stability (at 5°C for 

72 h) 

60 68.86±0.05 114.76 0.07 

200 225.23±0.29 112.62 0.13 

5000 5712.59±49.89 114.25 0.87 

Short-term 

stability (in ice-

bath for 6 h) 

60 68.93±1.89 114.89 2.75 

200 198.50±6.95 99.25 3.50 

5000 5058.62±235.59 101.17 4.66 

Long-term stability 

(at -20°C for 60 

day) 

60 68.51±3.16 114.18 4.61 

200 223.23±4.31 111.61 1.93 

5000 5747.83±46.21 114.96 0.80 

Freeze-thaw 

stability (after 3 

cycles) 

60 68.88±2.81 114.81 4.09 

200 225.70±2.91 112.85 1.29 

5000 5743.87±35.66 114.88 0.62 
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4.4 Determination of esterase activity in ET-PR, ET-R and HS  

In order to quantify SA formed after blood or plasma incubation, a specific SA 

calibration curve was constructed in PBS 1x buffer in the range of 0.1 µM-0.2 mM 

(corresponding to 0.004-1.6 nmol). The curve was linear over the concentration range 

of interest (R2= 0.9992). 
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Figure 20. Calibration curve of SA in PBS 1x. 

 

4.4.1 Plasma esterase activity vs time  

Plasma esterase activity as function of time was studied in plasma samples, collected in 

this study and plasma samples collected in a previous study. Then we tested activity in 

12 ET-PR, 29 ET-R and 31 HS. Maximal plasma esterase activity was observed after 120 

min of incubation; the activity remained stable for additional 60 min, then declined.  

The results were expressed by subtracting the non-enzymatic contribution to ASA 

hydrolysis (spontaneous hydrolysis) observed in buffer samples to which the same 

amount of ASA had been added (figure 21). 
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Figure 21. Plasma esterase activity as function of time. 

 

Using one-way analysis of variance, we compared activity among groups at each time 

of incubation. No significant difference was recorded among all groups (table 9). 

 

Table 9. Esterase activity in HS, ET-R and ET-PR 

Enzyme activity (nmol/ mL/ min)
a 

Subjects t= 120 min t= 180 min t= 240 min 

HS (n= 31) 25.04±2.00 23.00±1.66 19.77±1.65 

ET-R (n= 29) 29.57±2.76 27.01±2.00 24.49±2.00 

ET-PR (n= 12) 26.21±3.70 26.20±3.33 22.74±2.75 

P value 0.3987 0.3011 0.1863 

a
Results are expressed as mean ± SEM 
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4.4.2 Esterase activity vs substrate concentration 

Esterase activity as function of substrate concentration was studied both in whole 

blood and in plasma of 5 ET-PR, 6 ET-R and 6 HS. The results were expressed by 

subtracting the spontaneous hydrolysis (figure 22). 

 

 

 

 

 

 

 

 

 

Enzyme activity in blood

0.001 0.01 0.1 1 10 100 1000
0.001

0.01

0.1

1

10

100

HS (n=6)

ET-R (n=6)

ET-PR (n=5)

ASA nmol added/ 10L

 S
A

 n
m

o
l 
fo

rm
e

d
/m

L
 /
m

in

 

Figure 22. Esterase activity as function of substrate concentration in plasma (above) and blood (below). 
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Different substrate (ASA) concentrations (from 0.2 µM to 10 mM) were added (V= 40 

µL) in plasma and in blood corresponding to 0.008 - 400 nmol added. Using Michaelis-

Menten model Vmax and KM were calculated for each groups and means were compared. 

As we can see from tables 10 and 11 enzyme activity was similar in all study groups. 

Then our second hypothesis was rejected: ASA poor responsiveness in ET patients is 

not due to higher plasma and blood esterase activity. 

Table 10. Vmax and KM of plasma esterases. 

Subjects Vmax 
a 

(nmol/ mL/ min) 

KM 
a

 

(nmol/10 µL) 

HS (n= 6) 6.54±1.87 130.5±79.31 

ET-R (n= 7) 6.02±1.39 163.0±108.7 

ET-PR (n= 5) 5.80±2.19 147.5±64.45 

P value 0.9582 0.9695 

a
Results are expressed as mean ±SEM 

 

Table 11. Vmax and KM of whole blood esterases. 

Subjects Vmax 
a 

(nmol/ mL/ min) 

KM 
a

 

(nmol/10 µL) 

HS (n= 6) 108.1±20.78 803.20±170.70 

ET-R (n= 6) 80.88±17.91 620.30±185.10 

ET-PR (n= 5) 76.02±14.05 425.30±141.10 

P value 0.4266 0.3340 

a
Results are expressed as mean ±SEM 
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4.5 In vivo pharmacokinetics and pharmacodynamics of EC-ASA 

In order to study PK and PD of EC–ASA, blood samples were collected in the morning 

after 24 h from the last EC-ASA dose and at 2, 3, 4, 5, 6 and 8 hours after the morning 

dose intake. We measured ASA and SA levels in plasma using the previously described 

validated method. At the same time points we measured serum TxB2 levels (ELISA).  

 

4.5.1 Pharmacokinetics and pharmacodynamics in HS 

As we can see from figure 23, PK in HS showed a great variability. ASA reached maximal 

plasma concentration between 3 and 6 hours after intake with a median Cmax (25%-75% 

CI) of 464.5 (412.1-678.9) ng/mL and a median AUC (25%-75% CI) of 701.8 (604.2-

881.2) ng h/mL. As reported in literature, we found that ASA half-life is between 15-20 

min, in fact ASA is rapidly converted to SA (figure 23). When ASA reaches the plasma 

compartment, the presence of SA is almost simultaneous.  SA median Cmax (25%-75% 

CI) and median AUC (25%-75% CI) were 2903 (1647-4326) ng/mL and 10547 (5410-

14541) ng h/mL respectively. Two healthy subjects did not show any absorption within 

the 8 h observation period: in particular, in one subject (82K) we did not observe 

absorption at all within the 8 h observation period, and in one subject (57K) we 

observed a minimal ASA absorption confirmed by SA trend. PK of 82K subject was 

repeated (82K bis) and did not confirm this behaviour, showing in the second 

administration the appearance of ASA and SA plasma peak. 
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Plasma concentration time-profile of ASA

in HS after EC-ASA
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Plasma concentration time-profile of SA

in HS after EC-ASA
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Figure 23. Plasma concentration time-profiles of ASA (above) and SA (below) after EC-ASA in HS. 

 

Serum TxB2 levels were low in all HS, also in the two subjects who showed impaired 

absorption (figure 24).  
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Serum concentration time-profile of TxB2

in HS after EC-ASA
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Figure 24. Serum concentration time-profiles of TxB2 after EC-ASA in HS. 

 

4.5.2 Pharmacokinetics and pharmacodynamics in ET-R patients 

All ET-R patients absorbed the drug between 2-8 hours after intake with ASA median 

Cmax (25%-75% CI) of 429.2 (369.5-794.8) ng/mL and ASA median AUC of 856.2 (751.3-

1162) ng h/mL. For one patient (3K) we missed the ASA plasma peak, which probably 

occurred at 7 h (time point no collected), but the presence of SA peak confirmed drug 

absorption (figure 25). SA median Cmax (25%-75% CI) and SA median AUC (25%-75% CI) 

were 3472 (2927-3789) ng/mL and 8200 (5184-12544) ng h/mL respectively. 
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Plasma concentration time-profile of ASA
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Plasma concentration time-profile of SA

in ET-R after EC-ASA

0 1 2 3 4 5 6 7 8

0

1000

2000

3000

4000

5000

6000

7000
17K

41K

27K

9K

60K

22K

33K

3K

16K

46K

Time (h)

C
o

n
c

e
n

tr
a

ti
o

n
 (

n
g

/m
L

)

 

Figure 25. Plasma concentration time-profiles of ASA (above) and SA (below) after EC-ASA in ET-R 
patients. 
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Serum TxB2 concentration at 24 h were lower than 10 ng/mL in all subjects but two (9K 

and 17K) (figure 26). 
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Figure 26. Serum concentration time-profiles of TxB2 after EC-ASA in ET-R patients. 

 

4.5.3 Pharmacokinetics and pharmacodynamics in ET-PR patients 

Half of ET-PR patients absorbed between 3-8 hours after intake and half did not show 

any absorption within 8 hours, confirmed also by SA levels. Pharmacokinetics of 58K 

and 54K was repeated and 58K bis confirmed no absorption, while 54k bis showed ASA 

and SA plasma peak (figure 27). ASA median Cmax (CI 25-75%) and ASA median AUC (CI 

25%-75%) were 0 (0-414.3) ng/mL and 0 (0-644.1) ng h/mL; SA median Cmax (CI 25-75%) 

and SA median AUC (CI 25%-75%) were 21.72 (0-2622) ng/mL and 89.56 (27.08-4054) 

ng h/mL.  
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Plasma concentration time-profile of ASA

in ET-PR after EC-ASA
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Figure 27 Plasma concentration time-profiles of ASA (above) and SA (below) after EC-ASA in ET-PR 

patients. 
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At 24 h, serum TxB2 levels were >10 ng/mL in all patients: they declined in patients who 

absorbed ASA, but remained high in those who did not (54K, 58K, 28K, 48K and 58K bis) 

(figure 28). 
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Figure 28. Serum concentration time-profiles of TxB2 after EC-ASA in ET-PR patients. 
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4.6 In vivo pharmacokinetics and pharmacodynamics of plain ASA 

In these same three groups, we studied also PK and PD of plain ASA, a non-gastro 

resistant formulation. In this case, blood samples were collected in the morning at 24h 

after the last plain ASA dose and at 0.5, 1, 1.5, 2, 3, 4, 5 and 6 hours after morning dose 

intake and at each time points we measured plasma levels of ASA and SA and serum 

TxB2 (ELISA). 

4.6.1 Pharmacokinetics and pharmacodynamics in HS 

Drug absorption occurred in all HS (n=9) between 0.5-2 h after intake, also confirmed 

by SA plasma peak (figure 29). ASA median Cmax (CI 25%-75%) and ASA median AUC (CI 

25%-75%) were 575.8 (427.0-1125) ng/mL and 822.9 (635.4-1013) ng h/mL; SA median 

Cmax (CI 25%-75%) and SA median AUC (CI 25%-75%) were 3055 (2074-4806) ng/mL and 

9600 (7987-14808) ng h/mL. Serum TxB2 levels were low in all HS (figure 30). 
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Figure 29. Plasma concentration time-profiles of ASA (above) and SA (below) after plain ASA in HS. 
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Serum concentration time-profile of TxB2

in HS after plain ASA

0 1 2 3 4 5 6

0

10

20

30

40

69KA

49KA

57KA

79KA

86KA

85KA

87KA

66KA

53KA

Time (h)

C
o

n
c

e
n

tr
a

ti
o

n
 (

n
g

/m
L

)

 

Figure 30. Serum concentration time-profiles of TxB2 after plain ASA in HS. 

4.6.2 Pharmacokinetics and pharmacodynamics in ET-R patients  

As we can see from figure 31, drug absorption (tmax= 0.5-2 h) in ET-R patients was 

similar to HS (figure 29). ASA median Cmax (CI 25%-75%) and ASA median AUC (CI 25%-

75%) were 738.7 (598.1-1177) ng/mL and 836.5 (733.6-1292) ng h/mL; SA median Cmax 

(CI 25%-75%) and SA median AUC (CI 25%-75%) were 2881 (2633-3704) ng/mL and 

8903 (8057-12747) ng h/mL. 

Serum TxB2 levels were low in all ET-R patients after drug absorption, but in 4 patients 

(17KA, 41KA, 9KA and 16KA) at 24 h TxB2 increased (figure 32). 
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Plasma concentration time-profile of ASA
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Figure 31. Plasma concentration time-profiles of ASA (above) and SA (below) after plain ASA in ET-R 

patients. 
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Serum concentration time-profile of TxB2

in ET-R after plain ASA
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Figure 32. Serum concentration time-profiles of TxB2 after plain ASA in ET-R. 

 

 

4.6.3 Pharmacokinetics and pharmacodynamics in ET-PR patients 

Also all ET-PR patients showed ASA and SA plasma peaks after plain ASA intake. Drug 

absorption occurred between 0.5 and 2 h after intake except in one subject (6KA) who 

reached plasma concentration peak at 5h (figure 33). ASA median C max (CI 25%-75%) 

and ASA median AUC (CI 25%-75%) were 842.7 (306.4-1021) ng/mL and 872.8 (703.0- 

1103) ng h/mL; SA median Cmax (CI 25%-75%) and SA median AUC (CI 25%-75%) were 

3277 (2485-3626) ng/mL and 9432 (7429-10977) ng h/mL. 

Serum TxB2 levels were low in all ET-PR (n=7) patients after drug absorption, but at 24 h 

concentrations tended to increase in all patients (figure 34). 
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Plasma concentration time-profile of ASA
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Figure 33. Plasma concentration time-profiles of ASA (above) and SA (below) after plain ASA in ET-PR 
patients. 
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Serum concentration time-profile of TxB2

 in ET-PR after plain ASA

0 1 2 3 4 5 6

0

20

40

60

80

100

120

37KA

58KA

28KA

64KA

48KA

54KA

6KA

Time (h)

C
o

n
c

e
n

tr
a

ti
o

n
 (

n
g

/m
L

)

 

Figure 34. Serum concentration time-profiles of TxB2 after plain ASA in ET-PR. 
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4.7 Comparison between EC-ASA and plain ASA 

As reported by the Italian Medicines Agency (AIFA): after oral administration, ASA is 

rapidly and completely absorbed from the gastro-intestinal tract. During and after 

absorption, ASA is converted to its main metabolite: SA. Plain ASA is rapidly absorbed 

in the stomach, while the enteric-coating of EC-ASA is resistant to acid environment, so 

ASA is not released into the stomach but in the alkaline environment of the intestine 

[30]. Observing our results, reported also considering the repeated pharmacokinetics 

(82K bis, 58K bis and 54K bis), it appears clear that in patients on treatment with EC-

ASA, ASA and SA reached maximum plasma concentrations 3-8 hours after intake in all 

groups (figure 35). Plain ASA is rapidly absorbed in all subjects, with tmax between 0.5 

and 2 h and SA tmax between 1 and 3 h after intake (1 ET-PR had ASA tmax at 5 h after 

intake, confirmed by SA trend, figure 33). By comparing ASA and SA Cmax (figure 36), we 

noticed that if the drug is absorbed ASA and SA plasma levels were similar for all 

subjects independently of the drug formulation used. Then EC-ASA absorption 

problems seem to be related to enteric coating which probably didn’t dissolve in the 

basic environment of intestine, consequently the active ingredient may not be 

released. This fact occurred more frequently in ET-PR patients but we observed it also 

in 2 HS. 

In literature a recent study about PK of EC-ASA [33] in healthy subjects (n=24) treated 

for 7 days with 100 mg daily, showed ASA Cmax (mean±SD) of 615±267 and tmax 

(mean±SD) of 4.33±1.23 and SA Cmax (mean±SD) of 4706±2069 and tmax (mean±SD) of 

5.50±1.32. Another study about plain ASA formulation [32] reported PK parameters 

after 100 mg of plain ASA single-dose: ASA Cmax (geometric mean; %CV) of 1.01 (33.2) 
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mg/L (corresponding to 1001 ng/mL) and ASA tmax (median) of 0.5 h. Our results, 

obtained in healthy subjects, are comparable to those reported in literature.   
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Figure 35. tmax of ASA (above) and SA (below) in HS, ET-R and ET-PR after EC-ASA (left) and plain ASA 
(right). 
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Cmax of ASA after EC-ASA
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Figure 36. Cmax of ASA (above) and SA (below) in HS, ET-R and ET-PR after EC-ASA (left) and plain ASA 

(right). 

 

Serum TxB2 at 24 h was higher in ET patients than in HS. As shown in table 12, PK of EC-

ASA was statistically significant different between three groups: in particular, we 

compared mean of ASA AUC, SA AUC and serum TxB2 levels (24h and 6h). Plain ASA 

pharmacokinetic didn’t show any differences among groups (table 13).  
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Table 12. AUC of ASA and SA in human plasma of HS (n=11), ET-R (n=10) and ET-PR (n=9) after EC-ASA 
intake. Serum TxB2 levels at 24 and 6 h after EC-ASA intake. 

Subjects 

AUC (ng h/mL) Serum TxB2 (ng/mL) 

ASA
a 

SA
a 

24 h
a 

6h
a 

HS (n=11) 701.8 

 (604.2-881.2) 

10550  

(5410-14540) 

2.42 

(1.60-6.14) 

1.16 

(0.31-2.93) 

ET-R (n=10) 856.2  

(751.3-1162) 

8200  

(5184-12540) 

9.28 

(7.07-12.14) 

3.73 

(0.75-5.06) 

ET-PR (n=9) 0  

(0-644.1) 

89.56  

(27.08-4054) 

35.29 

(25.52-44.75) 

68.71 

(5.20-87.29) 

P value
* 

0.0146 0.0053 0.0288 0.0048 

a
Results are expressed as median (CI 25-75%); *P<0.05 

 

Table 13. AUC of ASA and SA in human plasma of HS (n=9), ET-R (n=9) and ET-PR (n=7) after plain ASA 
intake. Serum TxB2 levels at 24 and 6 h after plain ASA intake. 

Subjects 
AUC (ng h/mL) Serum TxB2 (ng/mL) 

ASA
a
 SA

a
 24 h

a
 6h

a
 

HS (n=9) 822.9 

(635.4-1013) 

9600 

(7987-14810) 

4.93 

(2.76-9.32) 

1.38 

(0.85-2.37) 

ET-R (n=9) 836.5 

(733.6-1292) 

8903 

(8057-12750) 

8.37 

(5.76-19.32) 

1.84 

(1.04-4.13) 

ET-PR (n=7) 872.8 

(703-1103) 

9432 

(7429-10980) 

20.24 

(16.38-45.11) 

3.54 

(1.75-6.31) 

P value
* 

0.5987 0.6073 0.1239 0.1454 

a
Results are expressed as median (CI 25-75%); *P<0.05 
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4.8  Reticulated platelets 

As mentioned before, TxB2 at 24 h tended to be higher in ET patients even when plain 

ASA was used and drug absorption occurred (figures 32, 34). We hypothesized that this 

is due to the higher number of newly-formed reticulated platelets in ET patients.  Our 

results showed that the percentage of reticulated platelets is similar in all groups while 

reticulated platelet count is higher in ET patients compared to healthy subjects due to 

elevated platelet count in ET patients (table 14). To test our hypothesis, we calculated 

the correlation between the number of reticulated platelets with the difference 

between serum TXB2 at 24h and the lowest serum TxB2 level after the morning dose of 

ASA. Indeed, we found a strong correlation between these two parameters (R= 0.6107; 

P=0.0020) (figure 37).  

Table 14. Percentage of reticulated platelets and reticulated platelets cou nt in HS (n=8), ET-R (n=8) and 

ET-PR (n=7). 

Subjects Percentage of reticulated platelet
a 

(%)
 

Reticulated platelet count
a 

(µL)
 

HS (n=8) 11.15±1.51 21083±1593 

ET-R (n=8) 10.12±1.79 30991±5468 

ET-PR (n=7) 9.32±0.92 47566±8103 

P value
*
 0.8128 0.0105 

a
Mean ±SEM; *P<0,05 
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Correlation of reticulated platelets and TxB2
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Figure 37. Correlation between ΔTxB2 and reticulated platelet count. 
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4.9 Twice daily Aspirin 

As shown before, serum TxB2 level tend to be higher at 24h in ET patients regardless of 

the formulation administered. ET patients with serum TxB2 level at 24h higher than 10 

ng/mL were asked to take for one day a double dose of plain ASA at 12 h distance. 

Blood samples were collected at 12 h after the second dose and serum TxB2 was 

measured as previously described. 

As shown in figure 38, twice daily dose of plain ASA was able to reduced TxB2 levels in 

those patients who showed high TxB2 levels at 24 h. 
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Figure 38. Serum TxB2 levels at 24h after once daily plain ASA and at 12h after twice daily plain ASA in 
ET patients. 
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5 CONCLUSIONS 

This study investigated the potential causes of poor response to ASA in some ET 

patients. First of all it was supposed a lack of PD effect in ET-PR patients previously 

classified on the basis of TxB2 levels > 10 ng/mL [64]. This hypothesis was excluded 

because the in vitro addition of ASA (100 µM) to WB or PRP of ET-PR patients inhibits 

TxB2-production induced by collagen (5 µg/mL) in the same manner as in HS.  

A recent study [78] reported that the residual TxB2 production in ET patients was 

completely suppressed by adding ASA (50 µM) to WB in vitro. Our first conclusion is 

that PD effect of ASA in ET-PR patients is not impaired and is not responsible for the 

lack of ASA activity.  

The second hypothesis was that, in ET-PR patients, the presence of a stronger esterase 

activity could reduce the amount of ASA available to acetylate COX-1. This hypothesis 

was investigated by studying esterase activity as function of time and of substrate. We 

demonstrated that the activity of the enzyme was similar in all groups, thus excluding 

also this cause of poor response to ASA treatment in ET patients. 

Finally, we studied the PK of EC-ASA (commonly prescribed) vs the PK of plain ASA.  

EC-ASA absorption showed high variability in controls and patients. Two HS patients 

displayed no ASA absorption within the observation period, but their serum TxB2 levels 

were low. We supposed a delayed absorption out of the observation period. Fifty 

percent of ET-PR patients displayed no absorption of ASA within 8 hours and their 

serum TxB2 levels were high. This suggest that in these patients the cause of 

inadequate response to ASA treatment is an inadequate intestinal absorption of the 

drug. When plain ASA was given instead of EC-ASA, ASA and SA plasma peaks were 
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detectable and similar in all groups. Serum TxB2 levels after plain ASA were similar in all 

groups but tended to be higher in all ET patients after 24 h from administration, 

irrespective of the ASA formulation used. The differences between TxB2 at 24 h and the 

minimum TxB2 serum concentration (after plain ASA absorption) correlated (R= 0.6107; 

P=0.0020) with reticulated platelets count in HS and ET patients.  Bid administration (100 

x 2 mg) in ET patients suppressed serum TxB2 levels. 

Concluding, ASA poor response in ET was observed only with EC-ASA and is likely 

associated with poor drug absorption. Increased platelet production is likely 

responsible for high TxB2 in ET 24 post-dosing. 
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