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1. Introduction

It’s been 10 years since Chris Anderson, then the chief editor of the influent

technology magazine Wired, published an article entitled “The End of The-

ory: The Data Deluge Makes the Scientific Method Obsolete” [1]. Although

it does not contain the expression big data, which entered common use only

a few years later, Anderson’s article has quickly become an ideological man-

ifesto of datacentric enthusiasm, articulated along two social and scientific

key points.

First: trust me, it’s convenient. Google has taught us that it is not impor-

tant to understand why a web page is “better” than another – we just need

to pick from the ordering produced by the PageRank algorithm. The con-

venience of receiving a very simple answer to a potentially very complicated

question – a conscious comparison of an unimaginable quantity of alterna-

tives – has soon become the key to Google’s success. And this probably had

a decisive and now consolidated impact in the way we consider rankings and

reviews across a variety of contexts, from the choice of a restaurant to the

evaluation of the quality of scientific research.

Second: scientific models are obsolete. The unprecedented availability of

data produced more or less knowingly by all of us, ranging from the great

international scientific collaborations, to booking medical appointments on-

line, allows us to rethink radically the relationship between data and the

mechanisms generating them. According to Anderson, instead of proceed-

ing by “conjectures and refutations” when explaining observations, the data

deluge allows us to give up the laborious task of constructing models for the

phenomena of interest, in favour of the much easier task of analysing the

correlations identified by sophisticated machine learning algorithms. This

change in perspective is voiced by Anderson (and his followers) with the

tone of someone who finally has had the courage to get rid of an old plati-

tude: since “all models are wrong”, by giving up models we just get rid of
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obsolete methods, and make room for the full exploitation of cutting edge

technologies.

Perhaps it is not surprising that the manifesto of the datacentric enthusiasm,

in multiple but analogous forms, has been quickly posted in the offices of

many technology start-ups around the world, and has consequently spread

throughout various industries. Similarly, it is not surprising that the sirens

of simplification and efficiency have quickly seduced a good part of poli-

tics and public administration, including public bodies in charge of research

policies and funding. What is surprising though, is the persistence – in sci-

entific circles – of the idea that petabytes of data can be self-sufficient, that

all it takes to explain and predict the phenomena of interest in science and

applications is the analysis of the correlations in large enough raw data sets.

It is surprising because the symmetry of the notion of correlation is an ele-

mentary probabilistic fact, as it is the asymmetry of the notion of causation.

It is surprising because spurious correlations are pervasive, unless of course

you consider as significant a correlation coefficient of 99.26% between the

trend of divorces in Maine and the per capita consumption of margarine in

the United States (2000–2009).1 It is surprising because the very idea of

“raw data” is at best problematic, since data, or better still, the observa-

tions that generate data, are made, not just found. From John Graunt’s

life table to the monitoring of air quality, the decision of recording, with

a given frequency, the values taken by certain random variables inevitably

precedes their collection and construction. In this sense, it is very difficult

to think about data without them responding to a modelling hypothesis,

regardless of the motivation for this hypothesis, be it analogy with other

observations, curiosity, or mathematical intuition. What instead seems to

animate datacentric enthusiasm, especially in socio-economic areas, is this

line of reasoning: vast amounts of digital traces left behind by billions of

people can be obtained and analysed: this “data” must be useful to some-

thing! And of course it is, especially in generating revenue for those who

sell it. But in general, in absence of a hypothesis that gives meaning to its

collection, those traces are not data.

It must be noted, and this is our main concern here, that Anderson-like

datacentric enthusiasm is not confined to economic institutions2. We find

significant traces of it in very prestigious scientific publications. In a work

1See http://www.tylervigen.com/spurious-correlations for sources, as well as [3].
2See for instance the World Economic Forum article “A brief history of

big data everyone should read”, https://www.weforum.org/agenda/2015/02/

a-brief-history-of-big-data-everyone-should-read/. For a critical point of

view, see instead the book by Viktor Mayer-Schönberger and Thomas Ramge [20].

http://www.tylervigen.com/spurious-correlations
https://www.weforum.org/agenda/2015/02/a-brief-history-of-big-data-everyone-should-read/
https://www.weforum.org/agenda/2015/02/a-brief-history-of-big-data-everyone-should-read/
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that appeared in PNAS in 2015 the group of the ecologist George Sugihara

announced an “Equation-free mechanistic ecosystem forecasting using em-

pirical dynamic modeling” [27]. The starting point of this work is the widely

shared observation according to which complex natural systems resist the

usual mathematical modelling analysis. The proposed solution is, as the ti-

tle says, the draconian, or better Andersonian: to get rid of equations. This

passes a clear and explicit message to the effect that in describing dynam-

ical systems theories and models no longer play the fundamental role they

have played for more than three centuries. The equations that describe the

dynamics of the system, in Sugihara and his group’s work, are replaced by

the method called empirical dynamical modeling (EDM), which would make

it possible to identify the relevant variables of the ecological model being

studied by analysing time series rather than by making scientific hypothe-

ses. Commenting on this article on Quanta Magazine, the scientific journal-

ist Gabriel Popkin reports an interview in which Sugihara states that the

group’s future projects include the application of the “equation-free” EDM

method to a very wide variety of domains, from finance to neuroscience and

genetics [22].

But is it really possible to do methodologically sound scientific research

starting from “raw data”, without constructing modelling hypotheses and,

therefore, without theory? We think not. Through a brief analysis of the

first quantitative model of an ecological system – the Lotka-Volterra model

– and in particular recalling the way in which it was motivated, constructed

and then generalised, the reasons for a deep skepticism with respect to dat-

acentric positions such as Sugihara’s will clearly emerge: (i) to construct

useful models from data the relevant variables must be chosen accurately

and (ii) even when it is theoretically possible to infer the relevant variables

from data, the known methods to do so are hindered by severe practical

limitations. This leaves us with the conclusion that data science performs

at its best when it goes hand in hand with the subtle art of constructing

models.

2. The subtle art of constructing models

Some general considerations on mathematical models and their relationship

with the phenomena they intend to describe will provide useful preliminaries.

To this end, we borrow from “A dialogue on the application of mathematics”

written in 1965 by Alfréd Rényi (1921–1970) [23, pp. 29–48].
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The protagonists are King Hieron and Archimedes whose burning mirrors

allowed the Syracusans to sink half of the Roman fleet effortlessly. The dia-

logue begins with Hieron eager to thank Archimedes for this extraordinary

military application of mathematics, an eagerness clearly not reciprocated.

Quickly the dialogue moves on to the applications of mathematics to con-

crete problems, and it is here that Archimedes illustrates to his king the

central role of models, and the thoughtfulness necessary to master the art

of constructing them.

First of all, one can construct many mathematical models

for the same practical situation, and one has to choose the

most appropriate, that which fits the situation as closely as

practical aims require (it can never fit completely). At the

same time, it must not be too complicated, but still must

be mathematically feasible. These are, of course, conflicting

requirements and a delicate balancing of the two is usually

necessary. You have to approximate closely the real situa-

tion in every respect important for your purposes, but lay

aside everything which is of no importance for your actual

aims. A model need not to be similar to the modeled reality

in every respect, only in those which really count. On the

other hand, the same mathematical model can be used to fit

quite different practical situations. . . . In trying to describe

such a complicated situation, even a very rough model may

be useful because it gives at least qualitatively correct re-

sults, and these may be of even greater practical importance

than quantitative results. My experience has taught me that

even a crude mathematical model can help us to understand

a practical situation better, because in trying to set up a

mathematical model we are forced to think over all logical

possibilities, to define all notions unambiguously, and to dis-

tinguish between important and secondary factors. Even if

a mathematical model leads to results which are not in ac-

cordance with the facts, it may be useful because the failure

of one model can help us find a better one [23, pp. 38–9].

Hieron proves to be quick in grasping the lesson and comments that as in

applied mathematics, so in warfare, defeats are fundamental to the under-

standing of our mistakes.

Turning from one analogy to another, we can say that giving up models could

mean giving up the possibility of identifying errors, and therefore correcting
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them. In this sense, it is no exaggeration to say that models are inevitable

in scientific practice and that methodologically sound science is impossible

without a model. Even those very complete and elegant descriptions that

we call theories, such as classical mechanics or electrodynamics, are, in fact,

models.

It is precisely classical physics that offers us the simplest situations to anal-

yse. Here, in fact, there is a fairly clear procedure: once you understand the

forces involved, you can write differential equations that may be difficult to

solve, but that always allow us to obtain some reliable and useful result, for

instance with a qualitative analysis or with a numerical investigation. The

task of someone wanting to construct a model for biological phenomena, or

for medicine, is decidedly more difficult, not to mention social sciences. In

these areas there is nothing like Newton’s or Maxwell’s laws, and therefore

constructing a model can only derive from some often profound intuition,

perhaps suggested by analogies or empirical observations.

As Rényi’s Archimedes says straightaway, there are many models for the

same phenomenon, but there are also many different types of models, con-

structed with various motivations and that have proved useful to understand

various problems. Even though in what follows we shall only cover in some

detail models of time evolution, such as differential equations, it is useful

to have an overview, certainly not exhaustive, of the main types in which

models can be classified:

I - Very simplified models that give correct answers to some aspects of the

problem considered;

II - Models by analogy;

III - Large-scale models;

IV - Models from data.

An important example of class I is Lorenz’s model, which emerges from a

brutal simplification of fluid dynamics equations, and which made it possible

to understand that irregular motion can be due to chaos, which is also

present in low-dimensional systems, as Appendix 1 will show.

In class II we find the model of Lotka-Volterra, which we will cover in next

section.

In the models of class III we find the effective equations used in meteorology

and engineering, in which only the relevant variables of the problem are

considered, and to which Appendix 2 is dedicated.

Class IV contains perhaps the most interesting and certainly difficult prob-

lems, in which we have to construct equations from data without having a
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theoretical frame of reference. These are the kind of intriguing and topical

problems exemplified by Sugihara and his group’s research project men-

tioned at the beginning.

Let us start then by comparing this point of view with one of the models of

population dynamics of great historical and methodological interest.

3. The Lotka-Volterra model

At the beginning of the 20th century, Alfred Lotka (1880–1949) observed

experimentally some patterns in certain chemical reactions, but these pat-

terns turned out to be non-periodic. This led him to conjecture that in

the field of chemistry and in the wider one of biology it is “unlikely” that

periodic regularities may occur, in the absence of “structural causes”. The

basis of the conjecture is mathematical: in the solution he suggested for the

problem of defining the laws that govern those regularities imaginary expo-

nents appear, and this implies that the parameters with which the evolution

of the system is described satisfy suitable geometric properties. In nature,

instead, according to Lotka, it is very likely that these parameters are not

constrained by any specific structural condition. In light of this, the obser-

vation of the special cases of periodic regularity remains to be explained.

His 1920 work “Analytical note on certain rhythmic relations in organic sys-

tems” [17] answers this question by postulating equations (1) that we will

discuss in a moment, and showing that under the hypothesis that these de-

scribe the population dynamics of a system with two competing biological

species (plants and herbivores), the population of the two species could have

oscillated periodically.

Vito Volterra (1860–1940) came into contact with the analysis of some data

from fishing for the period 1903–1923 performed by his future son-in-law

Umberto D’Ancona. In particular, the data concerned the presence of carti-

laginous fish in the catch of three Adriatic ports: Trieste, Venice and Fiume

(now Rijeka, then in Italian territory). D’Ancona observed a clear growth

in the proportion of these species during the First World War, a period of

very little fishing. Since cartilaginous fish feed on smaller fish, the conjec-

ture is that the suspension of fishing would favour predators. Unaware of

Lotka’s work, Volterra reasoned by analogy with the kinetic theory: the big

fish “collide” with the small fish and with a certain probability the former

eats the latter, and thus came to identify again the equations (1) as a model

capable of accounting for D’Ancona’s observations.3

3This is the motivation given by Volterra for his study [24]:
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The equations that govern the dynamics of the two populations are as fol-

lows:

(1)
dx

dt
= ax− bxy , dy

dt
= −cx+ dxy,

where x and y are, respectively, the numbers of prey and predator individ-

uals, and the constants a, b, c and d are positive. The linear terms do not

need many explanations: assuming unlimited food resources, the absence

of predators leads to an exponential proliferation of the prey; analogously,

in the absence of prey, predators become extinct. In the fish-related case

that aroused Volterra’s interest, the non-linear terms have instead the fol-

lowing interpretation: when both cartilaginous fish and their prey increase,

the population transfer from prey to predators also increases.

The Lotka-Volterra equations allow us to identify two equilibrium states

between populations. The first is the one in which both populations are

extinct, and therefore x = y = 0. The second one is that in which the two

populations coexist:

x = c/d, y = a/b.

Despite the simplicity of the model, for which in a sense Volterra himself

apologises in the introduction to his 1927 work, it is possible to derive a

theoretical prediction that is anything but trivial, and in particular the

mathematical explanation of zoological observations. Suppose the two fish

populations are not in equilibrium. Then the abundance of small fish leads

to an increase in the population of cartilaginous fish. These, in feeding, will

quickly cause a decrease in the population of the other species, until some

cartilaginous fish will starve, allowing the repopulation of small fish. And

so on, periodically.

Perhaps some readers will have noticed in equation (1) the (bilinear) struc-

ture similar to that of Boltzmann equation. This is not a coincidence: the

nonlinear terms were introduced by Volterra noting the analogy between the

prey/predator interaction and the impact of two atoms in the kinetic theory

while, as we have seen above, Lotka had chemical reactions in mind – in

fact, it is the same mechanism.

Dr. Umberto D’Ancona had repeatedly discussed with me statistics he

was collecting about fishing during the war and in the periods before and

after it, asking me if it were possible to give a mathematical explanation

of the results he was obtaining on the percentages of the various species

in these different periods. This request led me to pose the problem as

I do in these pages and to solve it by establishing various laws whose

statement can be found here.
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Once the model based on the equations (1) has been constructed, we can

reason about it in a purely mathematical way, asking ourselves if it is possible

to extend the expressivity and therefore the predictive ability of the model

itself. For instance, it is natural to wonder if the model only “works” with

algebraic nonlinearities, or if we can consider the case with N different

species x1, . . . , xN . It is worth mentioning that in ecology there is nothing

similar to Newton’s mechanics, and therefore such generalisations cannot

be sought by relying on first principles. However, the analogy with the

Lotka-Volterra model and the consistency with the relevant ecological facts

emerge as very natural constraints. Thus, Andrey N. Kolmogorov (1903–

1987) introduced a generalisation of the Lotka-Volterra equations for the

N = 2 case of the form

(2)
dx

dt
= xF (x, y) ,

dy

dt
= yG(x, y),

Smale considered the case with N ≥ 3 for a class of possible equations

(3)
dxn
dt

= xnMn(x1, . . . , xN ).

For the properties of the functions F , G and {Mn} we cannot appeal to

some general theory; however, if we want the model to have only positive

solutions (if they are at the initial time), resources to be limited and other

conditions that reasonably exist in the ecological sphere to hold, then there

are constraints that restrict the class of acceptable models.

Limiting ourselves to nonlinearities of algebraic type, the obvious generali-

sation of the Lotka-Volterra model is

(4)
dxn
dt

= anxn(1−
N∑
j=1

bn,jxj),

where an is positive for prey (herbivores) and negative for predators; the

diagonal terms describe the competition between individuals of the same

species, the non-diagonal ones specify the type of interactions between the

various species, for instance of parasitic, symbiotic or prey/predator type.

Summarising: data, or rather observations, were fundamental for both Lotka

and Volterra, but the brief accounts of their motivations and their arguments

for choosing equations (1) suggest a predominantly heuristic role. Analogy,

mathematical intuition and deduction are the main components in the justi-

fication of the equations of the model, which both make an effort to show to

be consistent with fundamental ecological facts. This provides the theoreti-

cal basis to derive, this time from the model and therefore mathematically,

new conjectures to be submitted to experimental observation. Lotka, for

instance, ended the aforementioned work by showing analytically how his
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model predicts that the amplitude of the oscillation between the two species

cannot, in the absence of other factors, determine the extinction of both

prey and predator. At the same time, we have briefly mentioned some gen-

eralisations of the equations (1), which illustrate better than anything the

essence of the last piece of advice given by Rényi’s Archimedes to Hieron:

every model is first and foremost a starting point for better models.

4. How do we construct a model?

Unfortunately, however, not all of us have the abstraction skills or the math-

ematical intuition of Lotka, Volterra or Kolmogorov. Thus, it would be

desirable to identify a general method that allows us to determine the equa-

tions that govern the phenomenon we are interested in. In this sense, the

search for algorithmic methods to generate “theories” starting from data is

perfectly understandable, if only it were possible.

The generalization of Lotka-Volterra model based on the (4) is relatively

simple, since we know (or rather, it is not unreasonable to assume that

we know) the “right variables” X = (x1, x2, . . . , xN ) given by the ecological

problem we want to tackle, as well as the structure of the equations, taken in

analogy with the original model. What remains to be solved, then, is “only”

the problem of determining the coefficients {an} and {bi,j}, something that

is not trivial but that does not seem impossible to do, in particular when

good experimental data is available.

In general, that is, if we do not have a reference model from which to start,

and we do not have a theoretical hypothesis that constraints the choice of the

parameters of the model we want to construct, things are far more difficult.

In a first approximation, we can distinguish two situations, in increasing

order of difficulty:

(1) we know the “right variables” X, but not the structure of the equa-

tions, and we only have one (long) time series {X1,X2, . . . ,XT }
available (for the sake of simplicity, we limit ourselves to the dis-

crete time case);

(2) we do not know the “right variables” and only have time series of

some variable {u1, u2, . . . , uT }.

Let us start by discussing the simplest case, in which we know the right

variables X and we also have access to the past, that is, we have a time

series

{X1,X2, . . . ,XT }.
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A natural way to infer the future XT+n with n = 1, 2, . . . is to look for

an analogue in the past, that is, a Xt such that |Xt − XT | < ε (where ε

depends on the desired accuracy). In this case we can “predict the future”

using the obvious recipe XT+n ' Xt+n. Of course, if the system is chaotic,

the uncertainty about XT+n increases exponentially with n.

If we can find the desired analogues, then it is possible with some optimisa-

tion procedure to construct a model of the form

Xt+1 = G(Xt).

Now, since the existence of an analogue is assured by the Poincaré recurrence

theorem, it would seem that for the deterministic models of type 1 it is

possible to identify a method – the one just outlined – to construct models

enabling us to infer the future state of a system starting from a sufficiently

long time series. However, appearance is deceiving, since the method of

analogy has considerable practical limits. It follows in fact from the Kac

lemma [12] that, in order to find an analogue within a precision ε, the

time series must have length at least O(ε−D), where D is the dimension

of the system. To be clear: if we want a precision of 1%, then the length

of the series must be at least O(102D). Clearly, this method allows us to

actually make predictions only if D is not too large, as evidenced by the

case of Edward Lorenz (1917–2008) [15], who in the 1960s tried to apply the

analogue method to forecast the weather in North America. His conclusion

was:

In practice, this procedure may be expected to fail, because

of the high probability that no truly good analogues will

be found within the recorded history of the atmosphere [16,

p. 347].

The (practical) impossibility of finding an analogue in a series of a few

decades is obviously due to the huge value of D in the problem considered

by Lorenz.

Let us now move on to the second situation, the most complicated, even

though it is very common, that in which we do not know the right variables

X, but we only have a time series of some observable

{u1, u2, . . . , uT }.

We are facing the problem of the phase-space reconstruction, that is, of

determining the variables that describe the phenomenon in which we are

interested. The problem was successfully addressed by the Dutch math-

ematician Floris Takens (1940–2010). He identified the conditions under
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which, for systems of dimension D, the variables obtained with the method

known as embedding,

Y
(m)
t = (ut, ut−1, . . . , ut−m+1)

for m > 2[D]+1, can provide a complete description of the system. D is not

known a priori and the embedding procedure must be performed by trial and

error, that is, by increasing m and hoping for a convergence; unfortunately,

if D is too large, it is practically impossible to have a convergence.

In other words, Takens’s results identify the conditions below which the

situations we have labeled as type 2 can be reduced to those of type 1. This

obviously does not allow us to circumvent the practical limitations due to

the Kac lemma: the method can only work in low dimension.

It is interesting to recall the approach used today to formulate weather fore-

casts, which are very accurate up to a few days. The method was proposed

in the 1920s by Lewis Fry Richardson (1881–1953) – who had understood

that the approach in terms of analogues had no hope of success – and is

essentially the following: the atmosphere evolves in accordance with the

equations of hydrodynamics and thermodynamics, so from the present state

of the atmosphere, solving (obviously numerically) a system of partial dif-

ferential equations, it is possible to make a weather forecast. Richardson’s

visionary project was carried out starting only in the 1950s, with the devel-

opment of three completely non-trivial ingredients:

a) the development of effective equations;

b) fast numerical algorithms;

c) computers for numerical calculations.

Point a) is obviously, from a conceptual viewpoint, the most important as-

pect. Necessary for meteorology was the fundamental contribution of Char-

ney and von Neumann, who understood that the equations originally pro-

posed by Richardson, though correct, were not suitable for forecasts. The

apparently paradoxical reason is that they were too accurate, so much so

that they also described high frequency waves that are irrelevant in the me-

teorological field. Richardson’s vision, therefore, became feasible not only

as a result of technological progresses in the field of computers, but also

following the selection of the variables that are relevant to the construction

of effective equations, in which, for instance, fast variables do not appear

(See Appendix 2).

If we try to generalise and systematise Richardson’s intuition, we face pre-

dictable and probably insurmountable problems. It is difficult to think of

a general method for choosing the “right” variables. This is an aspect that
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is too often overlooked, even though it is certainly one of the most delicate

problems. For instance, Onsager and Machlup are explicit in raising the

question:

How do you know you have enough variables, for [the system]

to be Markovian? [21, p. 1509].

Similarly, Shang-Keng Ma expresses a caveat of central importance:

The hidden worry of thermodynamics is: we do not know

how many coordinates or forces are necessary to completely

specify an equilibrium state [19, p. 29].

There are no automatic protocols for this choice, and typically to obtain

good results it is necessary to possess the expertise of which Archimedes

spoke to Hieron. Further, it is even more difficult to assume that there are

protocols capable of generating this choice from petabytes of “raw data”.

Time series, indeed, are such to the extent that one decides to observe them.

This brings us back to where we started.

5. So, can we “throw away equations”?

The preceding discussion allows us to justify a deep skepticism about the

position of those who claim that we are facing a new scientific revolution,

the datacentric one. The possibility of extracting knowledge through the

algorithmic analysis of large amounts of data would have, according to this

position, created a fourth paradigm, a new scientific methodology to be

added to the three already existing: the experimental method, the mathe-

matical approach and the computational one of numerical simulations.

There are even some who, like the computer science guru Chris Anderson

we have recalled at the beginning, have gone as far as to claim that

faced with massive data, this approach to science – hypoth-

esize, model, test – is becoming obsolete . . . Petabytes allow

us to say: “Correlation is enough.” We can stop looking for

models [1].

As we have mentioned, it is a short step from these hyperbolic slogans to

the widespread diffusion of the idea that it is no longer necessary to study

general theories, but that it is sufficient to collect data from the Internet

of Things, as they call it, cook them with our computer, obviously with

software downloaded from the ’net, and thus get everything we need. This
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idea is widespread but, as we have argued, unsustainable in its deepest

aspects.

We have seen that analysing specific problems (such as weather forecasting)

with a suitable critical spirit allows us to understand that the recent collec-

tion and algorithmic analysis techniques of a great variety and quantity of

data, while constituting an interesting scientific challenge, of potential high

impact at all levels of society, are not a panacea.

It is necessary to guard against easy enthusiasm, and especially against the

temptation of thinking that the solution to all problems, from large scientific

projects to medical diagnosis, depends on the development of this interesting

and sophisticated technology.

For further reading about “big data”, see [10], [11], [13]; about the history

and pioneers of models and their theory, see [2], [6], [7], [8], [9], [25]; about

the feasibility of predictions and forecasting, see [4], [5], [18], [26].

Appendix 1. Lorenz’s model

A rather common problem in many applications is the following: given a

nonlinear partial differential equation

(5) ∂tψ(x, t) = L[ψ(x, t),∇ψ(x, t),∆ψ(x, t)]

where ψ is a vector field, we want to find a set of differential equations

that approximate (5). As an example, we may consider the Navier-Stokes

equations with ψ = (u, ρ, p, T ), where u, ρ, p and T denote, respectively,

the velocity field, density, pressure and temperature.

A widely used procedure (the so-called Galerkin method) consists in approx-

imating ψ(x, t) in the form

(6) ψ(x, t) =
∑
n<N

an(t)φn(x),

where {φn} are suitable orthonormal, complete functions. Substituting (6)

in (5), we obtain a set of differential equations for {an}:

(7)
dan
dt

= Fn(a1, a2, .., aN ) , n = 1, 2, ..., N.

Of course, if we want a good quantitative agreement, then N has to be very

large, so that the set of differential equations (7) is a good approximation

of (5). This is what is done in meteorology or engineering, where the value

of N easily reaches 109 and even more.
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In his famous 1963 paper [14], Lorenz, studying the problem of convection

in a fluid heated from below, used for N the smallest value that could give

non-periodic behaviours, that is N = 3: in particular, 2 harmonics for speed

and 1 for temperature. Here is his famous model, apparently innocuous:

(8)
dx

dt
= −σx+ σy,

dy

dt
= −xz + rx− y, dz

dt
= xy − bz,

where (x, y, z) are proportional to (a1, a2, a3), and σ, b and r are constants

related to the properties of the fluid; in particular, r is proportional to the

Rayleigh number.

It is important to emphasise the fact that these equations were not invented,

but were obtained, even if with a very brutal truncation, from the equations

of fluid dynamics. Of course, the value of N = 3 does not allow a quantita-

tive agreement with the original equations.

The importance of Lorenz’s model lies in having shown that it is possible to

obtain a chaotic behaviour even in low-dimension systems: the complexity

of the temporal evolution that occurs in turbulent fluids is not necessarily a

mere superposition of many elementary events (say, many Fourier harmon-

ics), but comes from the nonlinear structure of the equations.

Appendix 2. The role of theory and of right variables in

weather forecasting

In the 1950s, Charney and von Neumann, in the context of the Meteoro-

logical Project at the Institute for Advanced Study in Princeton, noticed

that the equations originally proposed by Richardson, even though correct,

are not suitable for weather forecasting. The apparently paradoxical reason

is that they are too accurate, as mentioned above. It was thus necessary

to construct effective equations that eliminated the fast variables. The in-

troduction of the filtering procedure, which separates the meteorologically

relevant part from the irrelevant one, has a clear practical advantage: numer-

ical instabilities are less severe and therefore a relatively large ∆t integration

step can be used, which allows more efficient numerical calculations.

Besides the computational aspect, it is important to note that with effective

equations for the slow dynamics it is possible to identify the most important

ingredients, which instead remain hidden in the detailed description in the

system given by the original equations. The equations used are called quasi-

geostrophic; the simplest case is the barotropic one, in which the pressure

depends only on the horizontal coordinates.
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To give an idea of the construction of effective equations for slow variables,

consider a (rather academic) case in which the status of the system X con-

sists of slow variables XS , with a characteristic time O(1), and fast variables

Xf with a characteristic time O(ε)� 1, which evolve with a set of differen-

tial equations

dXs

dt
= F(Xs,Xf ) ,

dXf

dt
=

1

ε
G(Xs,Xf ). (A1)

Note that even a numerical study of this problem is not simple: it would

require the use of an extremely small ∆t integration step, that is, much

smaller than ε.

On the other hand, if we are only interested in slow variables, it is sufficient

to write an equation for the Xs:

dXs

dt
= Feff (Xs),

which takes into account the effect of fast variables on slow ones; this way,

we could use a ∆t that is not too small.

Unfortunately, there are no systematic procedures to find effective equations,

and not even the separation of the variables into slow and fast ones is easy.

Finally, in the case studied by Charney and von Neumann, things are even

more difficult since we have partial differential equations.

Perhaps the most famous example of eliminating fast variables is given by

the Langevin equation, which describes the motion of a colloidal particle in

a liquid. These particles are much larger than the liquid molecules, their

dimensions being in the order of microns, and much slower; the effect of

the molecules translates into a friction force and a fluctuating force (white

noise).
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