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Abstract—The production of renewable energy is increasing

worldwide. To integrate renewable sources in electrical smart

grids able to adapt to changes in power usage in heterogeneous

local zones, it is necessary to accurately predict the power

production that can be achieved from renewable energy sources.

By using such predictions, it is possible to plan the power pro-

duction from non-renewable energy plants to properly allocate

the produced power and compensate possible unbalances. In

particular, it is important to predict the unbalance between

the power produced and the actual power intake at a local

level (zones). In this paper, we propose a novel method for

predicting the sign of the unbalance between the power produced

by renewable sources and the power intake at the local level,

considering zones composed of multiple power plants and with

heterogeneous characteristics. The method uses a set of historical

features and is based on Computational Intelligence techniques

able to learn the relationship between historical data and the

power unbalance in heterogeneous geographical regions. As a

case study, we evaluated the proposed method using data collected

by a player in the energy market over a period of seven months.

In this preliminary study, we evaluated different configurations of

the proposed method, achieving results considered as satisfactory

by a player in the energy market.

I. INTRODUCTION

Green technologies and power production based on renew-

able sources have been constantly gaining attention in recent

years [1], especially to develop electrical smart grids with

optimized power production and distribution [2]. To increase

the adoption of electrical power produced using renewable en-

ergy, the research community is studying innovative methods

to predict the electrical load [3], estimate the energy cost [4],

increase the energy efficiency of buildings [5], and optimize

the energy consumption of production processes [6], [7].

The most important sources of renewable energy are repre-

sented by the wind and solar activity. Recent market analyses

indicate that the wind power accounts for 5% of the global

electricity consumption and is growing at 16.1% per year [8],

[9], while predicting that in the year 2050 solar energy will

account for 27% of the global consumption [10].

With the increasing adoption of renewable energy sources to

generate electrical power, it is becoming more and more nec-

essary to accurately predict the power produced by renewable

energy plants to plan the production of non-renewable energy

[11]. In fact, while storing the produced electrical power could

represent a solution to the unbalance problem, such storage is

usually not efficient nor environmentally sustainable [12].

Predicting the unbalance between the power produced using

renewable sources and the power intake is also important
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Fig. 1. Example of a smart grid composed by four local zones (A-D) and five
external zones (1-5) that can receive or supply power in the case of power
unbalances.

for players in the energy market, since the market applies

penalties when the produced power differs from the actual

intake [13]. For this reasons, the companies need accurate

power predictions and decision support tools [5], [14], [15]. It

is especially important to predict at a local level (zone) when

the sign of the unbalance between the produced power and

the actual power intake is positive (more power produced than

necessary) or negative (less power produced than necessary).

Fig. 1 shows an example of a smart grid composed by

four local zones for which the power unbalance needs to be

predicted. The local zones include different numbers of power

plants with heterogeneous production characteristics.

In this paper, we propose a preliminary study on a novel

method to predict the sign of the power unbalance in local

zones of smart grids integrating plants for the production

of renewable and non-renewable energy. Our method uses a

set of historical features to output whether the unbalance in

each zone will be positive or negative. We use Computational

Intelligence (CI) techniques to learn the relationship between

historical data and the power unbalance in different conditions

of the territory and periods of the year.

To the best of our knowledge, the proposed method is the

first one using CI techniques to predict the sign of the power

unbalance of renewable energy in smart grids.

We evaluated the proposed method on a case study con-

sisting of data collected in local zones by a player in the
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energy market for the duration of seven months. We considered

the day-after market, in which it is necessary to perform the

predictions 24 hours ahead [13], but the method is general

and can be applied to different geographical areas, periods,

and markets. We tested different configurations of the method

and different training strategies, achieving satisfactory results.

The paper is structured as follows. Section II presents a lit-

erature review on the prediction of the power unbalance using

renewable energies. Section III describes the proposed method

for predicting the sign of the power unbalance. Section IV

discusses the experimental results obtained by evaluating the

method on the considered case study. Finally, Section V

concludes this work.

II. LITERATURE REVIEW

In the field of environmental monitoring, CI techniques

often achieve state-of-the-art results thanks to their ability to

learn by examples the complex relations between geographical

and weather information and the phenomenon of interest, as

well as their capability to cope with noisy or incomplete data

[16], [17], [18], [19], [20]. Applications of CI for environ-

mental monitoring include the prediction of adverse conditions

[21], time series forecasting [22], [23], and the prediction of

power produced from renewable energy sources [8], [24], [25],

[26].

Most studies in the literature focus on predicting the power

production from wind and solar activity using different CI

techniques, such as support vector machines [26], [27], arti-

ficial neural networks [28], [29], fuzzy rules [30], [31], and

deep learning [32], [33]. In the field of wind and solar en-

ergy prediction, CI exhibited superior performance over auto-

regressive models when large numbers of training samples are

available [34]. However, the accuracy of prediction methods

is affected by different aspects, such as the training procedure,

spatial and temporal resolution of historical data, and the time

in advance for which the prediction is needed [35].

To the best of our knowledge, the work in [12] is the

only method in the literature that predicts the sign of the

power unbalance. However, it considers only statistical auto-

regressive models.

III. PROPOSED METHOD

We propose a method for the day-ahead prediction of the

sign of the power unbalance in local zones of smart grids

integrating renewable and non-renewable energy plants. The

method uses CI techniques based on Feed-Forward Neural

Networks (FFNNs) to perform the hourly predictions with a

time horizon of one day.

We consider ti, with 0 < i < N , as the times for

which historical data is present. For the case study considered,

our method uses data available every hour and performs the

prediction for the next day (i.e., tj = ti + 24).

To perform the prediction for each instant of time tj and

each local zone, we use all the available features for every

local zone at time ti, obtaining the feature set F (ti). Input data

include the date, historical time series of power intake, power

TABLE I
SUMMARY OF THE FEATURE SET F (ti) USED FOR THE PREDICTION OF

THE SIGN OF THE POWER UNBALANCE, CONTAINING HISTORICAL DATA

AVAILABLE AT EACH TIME INSTANT ti

N. Description

1-2 Date (day (1 to 31), month (1 to 12))
3 Day of the week (1 to 7)
4 Hour (0 to 23)
5 Festive (1 = working day; 2 = pre-holiday; 3 =

holiday)
6 Modality (boolean)
7 Hourly price range (1 to 3)

8–11 Forecasted power load for Zones A to D
12–15 Forecasted wind power produced for Zones A to D
16–19 Forecasted solar power produced for Zones A to D
20–21 Foreign power import limits (applicable only to

Zones A and D for geographical reasons)
23–37 Local power import limits between local sub-regions
38–41 Total energy sold 2 days before (ti − 48) for Zones

A to D
42–45 Total energy bought 2 days before (ti−48) for Zones

A to D
46–49 Total energy sold 7 days before (ti−168) for Zones

A to D
50–53 Total energy bought 7 days before (ti − 168) for

Zones A to D
54–57 Renewable energy produced 1 day before (ti − 24)

for Zones A to D
58–61 Non-renewable energy produced 1 day before (ti −

24) for Zones A to D
62–65 Renewable energy produced 7 days before (ti−168)

for Zones A to D
66–69 Non-renewable energy produced 7 days before (ti −

168) for Zones A to D
70–73 Unavailabilities for Zones A to D (e.g., due to

malfunction or maintenance)
74–77 Forecasted temperature (in ◦C)

produced using wind activity, power obtained using solar

photovoltaic cells, market information for the previous days,

and the limits of power exchanges between local zones. We

experimentally observed that using all the available features

for every local zone improves the prediction accuracy with

respect of using data related only to a single local zone,

probably because FFNNs can learn more information on

energy exchanges between the regions (see Fig. 1). Table I

summarizes the feature set F (ti).

We apply a CI-based method, trained using the procedure

described in Section IV, on the feature set F (ti) to predict the

sign of the power unbalance ŝ at time tj = ti+24, as follows:

ŝ(tj) = PRED(F (ti)), (1)

where PRED is the trained CI-based predictor. Specifically,

PRED is a binary classifier with output defined as follows:

PRED(F (ti)) =

{

+1 if the energy unbalance ≥ 0,
−1 otherwise.

(2)

In this preliminary study, PRED is a FFNN. The network is

composed of a single hidden layer consisting of tan-sigmoidal

nodes and an output layer consisting of a single linear node.



IV. EXPERIMENTAL RESULTS

In this section, we introduce the proposed case study, we

describe the experimental protocol, we present the figures of

merit used to evaluate the performance of our method, and we

evaluate the accuracy of our method for the considered case

study.

A. Case Study

As a case study, we considered the data collected by a player

in the energy market during a time span of 7 months, ranging

from September 1, 2012, to March 31, 2013. We considered

four local zones in a scenario in which the possible energy

exchanges are defined by the structure of the electrical grid,

summarized by the schema shown in Fig. 1. The total number

of samples is N = 5088, corresponding to the predictions

performed every hour for the considered time span.

B. Experimental Protocol

To evaluate the performance of prediction methods, we

used a k-fold cross validation strategy without performing any

random permutation of the samples (kF-NO-RP). This strategy

divides the dataset into k partitions of samples contiguous in

time. kF-NO-RP iteratively uses k − 1 partitions to train a

classifier and the remaining partition to evaluate the predic-

tion accuracy. As shown in the literature [8], this validation

strategy is particularly suitable to evaluate the performance of

prediction methods. In fact, prediction methods can achieve

too optimistic performance if evaluated using traditional k-fold

cross validation strategies performing random permutations of

the samples (kF-RP) since they do not consider the temporal

evolution or possible dependencies in the data [36]. To simu-

late real application conditions, it would be necessary to divide

the dataset in a training set composed of samples acquired

before a defined instant of time and a test set composed of

the remaining samples. However, such procedure does not

consider all data available for evaluation. Differently, kF-NO-

RP achieves results similar to real application conditions while

using all the available data [36]. In this paper, we used k = 10.

C. Figures of Merit

We evaluated the performance of our method using fig-

ures of merit typically adopted for classification problems.

Considering an error vector E, consisting of a binary vector

representing the inequalities between the predicted and target

classes, we evaluated the total classification error mean(E),
the standard deviation std(E), and the confusion matrix [37],

analyzing the percentages of True Positives (TP), True Nega-

tives (TN), False Positives (TP), and False Negatives (FN).

D. Accuracy Evaluation

We evaluated the performance of our proposed predictor

based on FFNN by varying the number of nodes nh in the

hidden layer in the range nh ∈ {1, . . . , 50}. The selected

learning technique is based on the Levenberg-Marquardt train-

ing algorithm [38].

We compared the performance of our method with that

of other well-known techniques in the literature. The first

technique is based on the persistence of the output in previous

instants of time and is commonly used as a reference for

comparing novel models of prediction. The main idea behind

this method is to exploit the repetitiveness of the phenomenon

at known intervals of time. It is defined as: ŝ(tj) = s(tj−∆),
where s(tj−∆) is the sign of the production unbalance mea-

sured at time tj−∆ and ∆ is a constant of time expressed

in hours. We also compared the performance of our method

with that of kNN classifiers considering numbers of nearest

neighbors knn in the range knn ∈ {1, . . . , 11}.

Table II summarizes the results achieved by the compared

predictors validated using kF-NO-RP with k = 10, reporting

the results of the best configurations of kNN and FFNN

classifiers. The table shows that FFNN classifiers achieved

the best performance for all the 4 zones. Differently, methods

based on the persistence and on kNNs achieved unsatisfactory

results, proving the complexity of the classification problem.

A player in the energy market considered the results achieved

using FFNNs as positive and a starting point for designing a

decision support tool.

Table III reports the confusion matrices of the best con-

figurations of the neural predictors for every considered local

zone, showing that the error is balanced in terms of FP and

FN. Furthermore, this table shows that FFNN predictors can

be effectively applied in heterogeneous conditions since the

numbers of TP and TN present strong differences among the

considered zones.

We also evaluated a feature reduction strategy based on the

principal component analysis and forward feature selection

methods [39], without obtaining performance improvements.

V. CONCLUSION AND FUTURE WORK

This paper presented a preliminary study on a novel method

for the day-ahead prediction of the sign of the power unbalance

in local zones of smart grids integrating power produced using

renewable and non-renewable energies.

Our proposed method is general and applicable to different

geographic areas, markets, and different prediction intervals.

The method processes historical time series and predicts the

sign of the power unbalance in local zones of the grid, to

learn different operational and environmental conditions and

cope with noisy data.

We evaluated the proposed method on data collected in

local zones by a player in the energy market for a period of

seven months, using different predictors and CI techniques.

The results show the validity of the proposed method in

predicting the sign of the power unbalances when dealing

with the variability of power produced using non-renewable

energies.

To further improve the achieved accuracy, future studies

should consider bigger training datasets spanning multiple

years, which were not available during the activities described

in the paper. Future works should also consider other CI



TABLE II
ACCURACY OF DIFFERENT CLASSIFIERS VALIDATED USING KF-NO-RP WITH K = 10

Predictor Zone A Zone B Zone C Zone D

PRED Parameters mean(E) std(E) Parameters mean(E) std(E) Parameters mean(E) std(E) Parameters mean(E) std(E)

Persistence ∆ = 48 0.574 0.495 ∆ = 48 0.653 0.476 ∆ = 48 0.744 0.437 ∆ = 48 0.610 0.488
Persistence ∆ = 168 0.592 0.492 ∆ = 168 0.643 0.479 ∆ = 168 0.712 0.453 ∆ = 168 0.612 0.487
kNN knn = 1 0.413 0.492 knn = 1 0.360 0.480 knn = 1 0.365 0.481 knn = 1 0.376 0.484
kNN knn = 11 0.354 0.478 knn = 11 0.270 0.444 knn = 9 0.336 0.472 knn = 11 0.329 0.470
FFNN nh = 35 0.131 0.337 nh = 30 0.100 0.300 nh = 30 0.072 0.259 nh = 40 0.111 0.315

Notes: mean(E) = total classification error, corresponding to the mean of the error vector E; std(E) = standard deviation of the error vector E; ∆ = number
of hours before the prediction instant tj ; knn = number of nearest neighbors considered by a kNN; FFNN = feedforward neural network; nh number of
nodes in the hidden layer of a FFNN.

TABLE III
CONFUSION MATRIX OF THE PROPOSED METHOD IN ITS BEST

CONFIGURATION

TP FP FN TN

Zone A 0.273 0.080 0.051 0.597
Zone B 0.727 0.074 0.027 0.173
Zone C 0.634 0.032 0.040 0.294
Zone D 0.221 0.033 0.078 0.668

Notes: TP = True positives; FP = False Positives; FN = False Negatives; TN
= True Negatives.

approaches based on convolutional neural networks and deep

learning techniques.
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