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We investigate the mechanical properties of amorphous polymers by means of coarse-grained sim-9

ulations and nonaffine lattice dynamics theory. A small increase of polymer chain bending stiffness10

leads first to softening of the material, while hardening happens only upon further strengthening11

of the backbones. This nonmonotonic variation of the storage modulus G′ with bending stiffness is12

caused by a competition between additional resistance to deformation offered by stiffer backbones13

and decreased density of the material due to a necessary decrease in monomer-monomer coordi-14

nation. This counter-intuitive finding suggests that the strength of polymer glasses may in some15

circumstances be enhanced by softening the bending of constituent chains.16

Introduction The study of polymer dynamics has17

been at the heart of soft matter research for decades,18

yet a comprehensive theoretical basis that links monomer19

chemistry to mechanical properties remains under devel-20

opment [1, 2]. Polymers below their glass transition tem-21

perature, which find application in everyday consumer22

goods and high-technology material applications, pose23

a particular challenge as understanding their properties24

further requires an assimilation of glassy dynamics, itself25

a topic of ongoing debate [3].26

Throughout the historical development of polymer27

physics, it has proven constructive to consider two ide-28

alised linear polymer models: freely-jointed, in which29

chains are assumed to comprise random walks of fixed30

step length with no monomer interactions; and freely-31

rotating, in which the angle formed by three consecutive32

monomers is strictly fixed but the monomers are oth-33

erwise unconstrained. Here we explore the mechanical34

properties of polymer glasses between these limits as the35

monomer motions become increasingly constrained by a36

bending penalty. We further enforce excluded volumes37

around individual monomers.38

It is already established that increasing the number39

of constraints on particles in a many-body system re-40

duces the critical coordination, and hence the critical41

density, at which the system achieves marginal stabil-42

ity [4]. This has been apparent in granular systems43

for some time, when comparing frictionless to frictional44

packings [5]. Indeed, constraint-counting arguments un-45

derpin recent theories for shear thickening in athermal46

suspensions [6]. An analogy between friction in granu-47

lar systems and bending in polymers has been proposed48

theoretically [7] and in experiments on ‘granular poly-49

mers’ [8] and is a promising lead towards unifying the50

understanding of marginal stability across a surprisingly51

broad class of soft matter systems [9, 10].52

The introduction of bending constraints in bead-spring53

polymer chains is expected to reduce the critical coordi-54

nation Zg, i.e. the sum of inter- and intra-chain interac-55

tions at the glass transition, and, therefore, the critical56

density [11]. Such a density reduction is reminiscent of57

the role of plasticising additives [12], designed to reduce58

the mechanical strength of the material by increasing the59

free volume. By contrast, one might expect enhanced60

bending stiffness to increase the strength of the bulk ma-61

terial. The question remains, therefore, what overall ef-62

fect the introduction of such constraints has on the me-63

chanical properties of glassy polymers.64

In this Rapid Communication we show using simula-65

tions and theory that the competing effects of increas-66

ing backbone strength and increasing free volume lead to67

nonmonotonic behaviour of the shear modulus of glassy68

polymers as a function of bending stiffness. This find-69

ing offers a connection between monomer chemistry and70

polymer glass rheology, demonstrating that manipulat-71

ing bending constraints at the monomer level can have72

nontrivial influence on the bulk mechanical properties of73

the material.74

Simulation details A non-overlapping random-walk75

algorithm is used to generate initial loose configurations76

of Np = 104 monomers, in chains of length 102. For77

each monomer in our system we use LAMMPS [14] to78

solve the Langevin equation with coefficient of friction79

1/ξ and random forces fB(t) satisfying 〈fB(t)fB(t′)〉 =80

2mkBTδ(t− t′)/ξ at time t. Monomers of uniform mass81

m interact through potentials U given by the Kremer-82

Grest model [15], comprising a Lennard-Jones potential83

ULJ of depth εLJ and rest length 21/6σ acting between84

monomer pairs within a cut-off range rc = 2.5σ and a85

finitely extensible nonlinear elastic potential UFENE with86

maximal length R0 and emerging rest length ≈ 0.96σ87

acting between sequential monomer pairs along each88

chain [16]. εLJ sets the LJ energy scale and εFENE is89

the bond energy scale where εFENE/εLJ = 30. With ref-90

erence to fundamental units of mass ν, length d, and91

energy ε, we set σ = 1 and m = 1, giving a time unit92

of τ =
√
mσ2/εLJ, and we set ξ = 100τ . We de-93

fine a third energy associated with chain bending given94
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FIG. 1. Entry into the glassy state and its structural properties for θ0 = 109.5◦. (a) Sketch of polymer chain illustrating the

angle θ and rest positions for LJ (21/6σ) and FENE (0.96σ) interactions. (b) Snapshot of glassy polymer in periodic box [13].
(c) The decrease of volume associated with decreasing T ∗ at fixed pressure, for several values of εbend/εLJ. We approximate
the low- and high-temperature dependences as linear, and take their intersection to occur at T ∗ = T ∗g . (d) Variation of glass
transition temperature T ∗g with εbend/εLJ. (e) Variation of Npσ

3/Vg, the density at T ∗g , with εbend/εLJ. (f) Variation of Zg,
the coordination number at T ∗g , with εbend/εLJ. Dashed line in (d)-(f) indicates εbend = 0.
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FIG. 2. Nonmonotonic mechanical response of a polymer glass as a function of chain bending stiffness. (a) Elastic modulus
G′ as a function of εbend/εLJ for three values of εLJ. We used five realisations and found the variation between realisations to
be smaller than the marker size. (b) Elastic modulus G′ as a function of εbend/εLJ for three values of θ0. Inset: decreasing
density with increasing εbend/εLJ. (c) Elastic modulus contributions from LJ, FENE and angular potentials for εLJ = ε and
θ0 = 109.5◦. (d) Lissajous-Bowditch plots showing linear elastic stress contributions [i] the total Σ; [ii] ΣLJ; [iii] ΣFENE; and
[iv] Σbend, each rescaled by their maximal values. Strains are rescaled by the amplitude γ0. (e) Temperature dependence of G′

across a range of bending stiffnesses εbend/εLJ. (f) Contour plot showing G′ as a function of rescaled temperature T ∗/T ∗g and
εbend/εLJ. Dashed black arrows indicate decreasing G′; dotted white lines show region of minimal G′.
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by Ubend(θ) = εbend[1 − cos(θ − θ0)] for energy scale95

εbend and rest angle θ0. The angle θ is formed between96

consecutive monomer triplets along each linear chain,97

Fig 1a. A dissipative timescale emerges as mσ2/ξεLJ,98

and a thermal timescale emerges as mσ2/ξkBT . The99

state of our system, i.e. whether it is in the melt or glassy100

state, is given simply by the ratio of these timescales, as101

T ∗ = kBT/εLJ [17]. A snapshot of the polymer glass is102

given in Fig. 1b.103

Decreasing density with εbend/εLJ Using periodic104

boundaries we equilibrate the system in a melted state105

at T ∗ = 1.2, maintaining zero external pressure using a106

Nose-Hoover barostat. We then cool the system by de-107

creasing T ∗ at rate 1/τc, with τc ∼ O(105)τ . Results108

are presented in Fig. 1 for θ0 = 109.5◦. The system un-109

dergoes a decrease in volume V as it is cooled, with a110

change of slope at T ∗ = T ∗g , Fig. 1c [18]. The coordina-111

tion of the system is quantified by counting all neighbour-112

ing monomers that are within the repulsive part of the113

Lennard-Jones, i.e.: Z =
Npσ

3

V

∫ 21/6σ

0
g(r)4πr2dr where114

g(r) is the monomer-monomer radial distribution func-115

tion. The glass transition occurs at T ∗ = T ∗g , where116

V = Vg and Z = Zg. As expected [19], T ∗g increases117

with εbend, with apparent limiting values occurring for118

εbend/εLJ → 0 and εbend/εLJ > 102 (Fig. 1d), while119

the associated density Npσ
3/Vg (Fig. 1e) and coordina-120

tion Zg (Fig. 1f) decrease. Zg varies from 5.9 to 4.4,121

close to the expected values when transitioning from a122

purely central force network to one bound by bending123

constraints [4, 20]. A value closer to Zg = 4 is expected124

for chain lengths � 102 and for εbend/εLJ → ∞, while125

further constraints such as torsional rigidity are expected126

to lead to further reduction [4]. Thus, adding constraints127

to the monomers reduces the critical coordination and128

density of the system. The trends in Figs. 1e,f remain129

the same at any fixed T ∗ < T ∗g ; the shearing simulations130

described below are run at T ∗ = 10−3 for comparison131

with athermal theory and at higher temperatures to test132

the robustness of the nonmonotonic response near T ∗g .133

Further structural description is given in Fig S1.134

Nonmonotonic dependence of G′ on εbend/εLJ The135

storage modulus G′ is obtained for bending stiffnesses136

in the range εbend/εLJ = 0.01 → 3000 and rest angles137

θ0 = 90◦, 109.5◦ and 180◦ by two means. In the first,138

we use dynamic simulation to apply an oscillatory shear139

deformation to the system at T ∗ = 10−3 and zero exter-140

nal pressure, with strain amplitude γ0 = 1% and period141

200τ . For these parameters the system remains in the lin-142

ear elastic regime. From the potentials ULJ, UFENE and143

Ubend described above, we obtain per-monomer forces144

as, e.g., fLJ = −dULJ/dr and compute shear stresses in145

xy (with velocity x, gradient y, vorticity z) according to146

ΣLJ = 1
V

∑NLJ

n=1 rx,nf
LJ
y,n, where NLJ represents the total147

number of LJ interactions and r is the vector between148

interacting monomers, and similarly for FENE (ΣFENE)149

and bending (Σbend) interactions. We take the total150

Σ and compute G′ from the linear oscillatory stress re-151

sponse in the usual way after O(102) cycles.152

In the second, we use the nonaffine lattice dynam-153

ics formalism [21–23] to theoretically predict the zero-154

temperature elastic response from the amorphous struc-155

ture. The modulus comprises an affine term GA [24]156

and a nonaffine correction that originates in the lack of157

local inversion symmetry of the polymer glass. From158

the interaction potentials and particle coordinates, we159

obtain the affine contribution to the elastic modulus as160

GA = 1
V
∂2U
∂γ2

∣∣∣∣
γ→0

, where U is the overall interaction po-161

tential energy and γ is the strain amplitude. To obtain162

the nonaffine contribution, we first construct the Hessian163

matrix Hij for the system at a given configuration as the164

second derivative of the energy following Ref [21], where165

the entries can in general be written as166

∂2U(z)

∂ran∂r
b
m

=
d2U(z)

dz2︸ ︷︷ ︸
stiffness

∂z

∂ran

∂z

∂rbm
+
dU(z)

dz︸ ︷︷ ︸
tension

∂2z

∂ran∂r
b
m

. (1)167

Here z represents a generic argument that in practice168

is represented by either the monomer-monomer separa-169

tion r or the angle θ; we give a detailed form of the170

corresponding matrix entries in the SI. Hij thus includes171

stiffness and tension contributions from Lennard-Jones,172

FENE and angular potentials [25]. The eigenvalue prob-173

lem ω2
kmeki =

∑
j Hije

k
j is then solved directly, after174

which we compute the storage modulus as175

G′(Ω) = GA − Re

(
1

V

∑
k

Γ(ωk)

mω2
k −mΩ2 − iΩν

)
, (2)176

where Γ(ωk) is the affine force field correlator, eki , ekj are177

eigenvectors and the sum is over the k eigenvalues of the178

system.179

In Fig. 2a we present G′ as a function of bending stiff-180

ness from both simulation and theory, for θ0 = 109.5◦.181

Shown are results for three values of εLJ. We verified182

that our results are valid throughout the linear elas-183

tic regime by repeating the εLJ = ε calculations at184

γ0 = 2%. There is clear nonmonotonic dependence of G′185

on εbend/εLJ in all cases, with a minimum in G′ occurring186

at 2 < εbend/εLJ < 20. The theoretical prediction pro-187

vides a strong qualitative match to the simulation result188

at εLJ = ε, also showing nonomontonic behaviour. In the189

present article, we limit our discussion of the theoretical190

approach to its corroboration of the simulation result.191

Future works will focus on the detailed interpretation of192

the arising features of the density of vibrational states.193

When expressed in units of ε/V (Fig S2), there is a strong194

increase of G′ with εLJ as expected. In units of εLJ/V ,195

though, G′ collapses with a small offset for all εLJ, as ex-196

pected due to the decreasing relative contribution from197

FENE bonds in each case. In Fig. 2b we present G′ at198

three rest angles θ0. Nonmonotonic behaviour is recov-199

ered in each case. For θ0 = 90◦, we observe an enhanced200

minimum, with a substantial reduction in G′ of approx-201

imately 25%, correlated with a consequent decrease in202
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density relative to θ0 = 109.5◦, Fig. 2b Inset. A shallow203

minimum is also observed for θ0 = 180◦, though at larger204

values of εbend/εLJ individual chains become rod-like, at205

which point both the density and G′ of the material have206

anomalous behaviour (Fig S4).207

To eludicate the origin of the minimum in G′, we de-208

compose the contributions ΣLJ, ΣFENE, Σbend from the209

simulation result for θ0 = 109.5◦ and εLJ = ε, Fig. 2c,210

verifying that each remains linearly elastic, Fig. 2d. Con-211

sistent with the decrease of Npσ
3/Vg and Zg with increas-212

ing stiffness (Fig 1e,f), we find a steady decrease in ΣLJ
213

as stiffness is increased. The increasingly rigid built-in214

three body correlations arising from increasing εbend/εLJ215

necessitate a smaller number of pairwise monomer inter-216

actions for marginal stability, which can be achieved at217

a lower density, or equivalently at a higher free volume.218

As such the stress contribution from Lennard-Jones in-219

teractions (which is proportional to the packing density)220

decreases monotonically. Since ΣLJ is the dominant con-221

tribution, this corresponds initially to an overall drop in222

G′. As expected, though, we find a monotonic increase223

in Σbend as stiffness is increased, as deformation requires224

an increasing energy input to move three-body config-225

urations away from their resting positions. There is a226

minor nonmonotonicity observed in the FENE contribu-227

tion to G′, with the minimum being attributable to the228

removal of LJ interactions allowing minor relaxations of229

FENE bonds to their resting positions. This magnitude230

of this effect is, though, largely outweighed by the other231

contributions.232

We next test the robustness of the nonmonotonic be-233

haviour away from the low temperature limit, as the234

glass transition temperature T ∗g is approached from be-235

low. A plot of G′ as a function of temperature is given236

in Fig. 2e. For low temperatures, the shear modulus de-237

creases slowly with increasing temperature, until a criti-238

cal value is reached at which point the mechanical rigidity239

is lost [20]. Rescaling the temperature axis with the ap-240

propriate values of T ∗g (obtained from Fig 1c), Fig 2f, we241

find a good collapse of the loss of rigidity G′ as T ∗ → T ∗g .242

Similarly, we find the minimal G′ occurring in the same243

range of εbend/εLJ as in Fig 2a across temperatures, high-244

lighted by white dotted lines in Fig 2f. The nonmono-245

tonic behaviour of G′ thus remains even very close to the246

glass transition. This raises the question of the mech-247

anism by which marginal stability is achieved in semi-248

flexible polymers at T ∗g , which might extend recent work249

in the T = 0 limit by Ref [11]. The values of T ∗g and250

Zg vary monotonically with chain bending stiffness be-251

tween asymptotic limits (Fig. 1d,f), yet the mechanical252

strength at the glass transition retains a minimum for253

intermediate εbend/εLJ.254

In general, therefore, one might expect that any chemi-255

cal change that decreases the monomer-monomer coordi-256

nation of the system, i.e. adding bending constraints or257

frustrating packing by inclusion of plasticisers, will result258

in a decrease in the contribution to G′ from non-bonding259

interactions (represented here as Lennard-Jones). We260

have demonstrated here with the θ0 = 90◦ case that this261

might be ‘designed for’ in practice by adjusting the rest262

angles of linear chains to enhance this decrease. Con-263

versely, it follows trivially that increasing bending stiff-264

ness of polymer chains will generally increase the G′ con-265

tribution from angular potentials.266

The two contributions to the storage modulus G′ from267

non-bonding and bending interactions thus have opposite268

responses to increases in chain bending stiffness. As a269

result, there is a competition between these contributions270

that leads to an overall nonmonotonic dependence of G′271

on bending stiffness, with there being a minimum in G′ at272

εbend/εLJ = 2 → 20. Parameter exploration in εLJ and273

θ0 demonstrate that both the depth and location of the274

minimum in G′ can be tuned by manipulating monomer275

chemistry, suggesting ways in which one might exploit or276

suppress the nonmonotonicity. Together, these findings277

predict that nonmonotonicity in G′ is a generic feature278

across glassy polymeric materials.279

Given the monomer chemistry of some novel polymeric280

system, one might use ab-initio computations to derive281

coarse-grained forms of the non-bonding and bending in-282

teractions, with energy scales that serve as proxies for283

εLJ and εbend, respectively [26, 27]. Our results here can284

then serve to guide the synthesis of materials by pre-285

dicting whether the mechanical response will be in the286

nonmonotonic region, based on the value of the control287

parameter εbend/εLJ.288

Outlook Nonmonotonic dependence of polymer glass289

mechanical properties results from two contrasting effects290

as polymer chain bending stiffness is increased: decreased291

density (and coordination) as monomer-monomer bend-292

ing constraints are added; and increased mechanical293

rigidity of the chains. Our results strongly support this294

being a general phenomenon, as it is robust all the way up295

to the glass transition temperature and persists for vari-296

ous sets of model parameters. Since bead-spring models297

form the basis of much contemporary theory for poly-298

mer glasses and their material properties, this finding299

has broad consequences across polymer physics. Indeed,300

nonmonotonicity of dynamic quantities with respect to301

chain length and stiffness is emerging as a widespread302

feature of polymeric systems in various contexts [28, 29].303

It is, so far, difficult to isolate bending stiffness experi-304

mentally, since many other factors can influence the me-305

chanical properties. Model systems such as colloidal and306

granular polymers (CGPs) [30] might be good candidates307

for verifying our predicted nonmonotonicity, though, as308

they offer a very high level of control over coarse-grained309

properties.310

The density of vibrational states from which we con-311

structed the theoretical calculation of G′ using nonaffine312

lattice dynamics promises to offer additional insights313

into the structural and dynamic properties of polymer314

glasses in future works, both under shear induced yield-315

ing [31, 32] and approaching T ∗g , and under imposed pres-316

sure [33]. Future work might extend the present finding317

to coarse-grained potentials that represent more specific318
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materials [7, 27, 34]. Moreover, the present result repre-319

sents the limit of long chains, while future work might ex-320

plore the minimum chain length required to observe non-321

monotonicity. This is further relevant to colloidal gels,322

where specific adhesive forces have been shown to lead323

to bending moments among small aggregates [35] that324

could influence the rheological properties [36] in an analo-325

gous way to that discussed here. Indeed, returning to the326

analogy with granular materials, it is not clear whether327

similar nonmonotonicity in G′ might be observed exper-328

imentally for increasing particle-particle friction. Recent329

theory [37] suggests otherwise, as endogenous noise gen-330

erated in such packings is responsible for rapidly opening331

and closing contacts meaning both the friction coefficient332

and Z are rather poorly defined. Understanding the role333

of rigidity in the mechanical properties of polymers will334

be useful in applications as diverse as packing genetic335

material in cells [38], the structure of polyelectrolyte ag-336

gregates [39] and high-rate deformation of advanced ma-337

terials [40].338
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