School children preferences for fish formulations: the impact of child and parental food neophobia

Laureati M. ${ }^{*}$, Cattaneo C., Bergamaschi V., Proserpio C., Pagliarini E.

Department of Food, Environmental and Nutritional Science, University of Milan, Italy.

Abstract

Child food preferences influence food choice and consumption. Thus, understanding the factors leading to the development of food likes and dislikes is important for enhancing nutritional healthy diets. This study was aimed to investigate children's acceptance of, and preferences for, three different trout formulations served at school lunch. Liking and preference were studied in relation to age, gender and neophobic traits. Parental food neophobia, fish-eating habits and frequency of seafood consumption in family life conditions were also investigated. The results indicated that children's liking was strongly dependent on cooking methods, and the proper choice of recipes is likely able to minimize children neophobic attitudes. Parental food neophobia was related to child neophobic behaviour and to how fish is prepared at home, with neophilic parents more prone to cook fish in healthy ways.

Keywords: school menu, preferences, fish, food neophobia, parents

Practical application

Children fish liking is strongly dependent on product preparation and cooking methods, and the proper choice of recipes could minimize neophobic attitudes. Nutritionists, dieticians and product developers should consider the sensory aspects to promote more sustainable and appealing refectory meals in order to increase acceptability and consumption at school and at home.

[^0]
Introduction

Food preferences are recognised to play a central role in food choice and consumption, especially among children (Laureati, Pagliarini, Toschi, \& Monteleone, 2015a). Thus, understanding food preferences and the factors leading to the development of food likes and dislikes is important for enhancing nutritional healthy diets. Moreover, food preferences in childhood can strongly influence eating behaviour in adult life, and early preferences may predict later food consumption (Drewnowski, 1997). On that basis, the need to improve dietary patterns and health status is fundamental for an early age group because younger children appear to be more likely to change their food consumption behaviour than adults (Laureati, Bergamaschi, \& Pagliarini, 2014).

In this context, the nutritional benefits of including fish in an individual's diet have become increasingly clear, and guidelines suggest the consumption of seafood at least twice a week for both children and adults (WHO, 2010). Fish is an important food source of energy, high biological value proteins and significant levels of other potentially protective nutrients (Mozaffarian \& Rimm, 2006). The principal biologically active components of fish are omega- 3 fatty acids, vitamin D , vitamin B 12 , selenium, iodine, choline and taurine (Lund, 2013). The benefits of fish consumption in the adult population have been associated with a reduced risk of developing coronary heart disease (CHD), high blood pressure, stroke, some cancers, rheumatoid arthritis and other inflammatory diseases. Research has demonstrated that specific types of seafood could exert a positive effect on conditions such as dementia (Lim, Gammack, Van Niekerk, \& Dangour, 2006), allergies (Chandra, 2002), being overweight and obese (Trondsen, Braaten, Lund, \& Eggen, 2004). Moreover, convincing evidence of beneficial health outcomes in the development of the brain, nerves and eyes has been reported for infants and young children (Mozaffarian \& Rimm, 2006). Despite these findings, adult intake of fish remains substantially below the dietary recommendation, and fish consumption in children appears to be even lower (WHO, 2010). In a recent survey conducted among Italian children, 6 out of 10 children were found to eat less than 2 servings of fish per week (Censi, D'Addesa, Galeone, Andreozzi, \& Spinelli, 2012).

There are several reasons explaining low fish consumption among children (Altintzoglou et al., 2015). The most important issue is likely to be that fish is not part of a child's regular diet during the development of his/her food preferences. Many prejudices also contribute to low fish liking, including an aversion to the
taste, smell and texture of fish, as well as the fear of ingesting bones (Bi et al., 2011). Furthermore, behavioural factors such as familial preference and neophobia shape the development of fish acceptance and liking. Several studies indicate that parents influence children's eating behaviour in a variety of ways (Birch, Savage, \& Ventura, 2007; McManus, Burns, Howat, Cooper, \& Fielder, 2007). Parents are typically the reference model for dietary choices because children learn about food by observing the eating behaviours of others (Birch et al., 2007; Laureati et al., 2014). Another interesting barrier seems to be the dominance of paternal, rather than maternal, preferences in the meals prepared. Evidence suggests that when the male parent does not eat seafood, then fish is rarely prepared at home (McManus et al., 2007). In addition, fish is an animal-origin food that is reported to elicit high neophobic reactions in both adults and children (Knaapila et al., 2011).

Food neophobia is an adaptive characteristic defined as the rejection of unknown foods that permits the avoidance of potentially toxic compounds (Dovey, Staples, Gibson, \& Halford, 2008; Laureati et al., 2015b). Such behaviour is low at the time of weaning, reaching a peak between 2 and 6 years of age. Because of an association with low liking and reduced consumption of fruits, vegetables (Coulthard \& Blissett, 2009; Laureati et al., 2015c; Maratos \& Staples, 2015) and protein foods (Reverdy, Chesnel, Schlich, Köster, \& Lange, 2008; Siegrist, Hartmann, \& Keller, 2013), food neophobia is associated with a less varied diet (Falciglia, Couch, Gribble, Pabst, \& Frank, 2000). However, the relationship between food neophobia and fish intake has been rarely investigated (Knaapila et al., 2011), and even fewer studies on the topic have focused on children (Mustonen, Oerlemans, \& Tuorila, 2012; Siegrist et al., 2013).

In a study by Bi et al. (2011), seafood lunches were the least appealing serving option for both children and their families. Accordingly, most of the surveys conducted involving Italian children indicated that fish dishes are not liked (Donadini, Spigno, Fumi, \& Vanoni, 2009; Vigliotti, Peris, \& Venturi, 2008). However, Caporale, Policastro, Tuorila, \& Monteleone (2009) reported opposing results, and a more recent study (Donadini, Fumi, \& Porretta, 2013) found that liking varied significantly across fish dish preparations. The improvement of fish recipes served at school lunches could be a viable strategy for increasing fish liking and consumption at home (Birch \& Fischer, 1998; Lowe, Horne, Tapper, Bowdery \& Egerton, 2004; Tuorila, Palmujoki, Kytö, Törnwall, \& Vehkalahti, 2015). The school environment can help children to understand, appreciate and consume healthy food to improve dietary patterns and eating behaviours (Pagliarini,

Gabbiadini, \& Ratti, 2005).
Thus, the aim of this study was to investigate children's acceptance of and preferences for three different formulations of freshwater fish served as school lunches. Liking was studied in relation to specific variables that are known to influence children's food acceptance, including age, gender and neophobic traits. Parental food neophobia, fish eating habits and frequency of seafood consumption in family life conditions were also investigated. We focused our attention on a local freshwater product to support short food supply chains and the sustainable development of the Lombardy region's economy. The future goal is to improve refectory menu quality to promote the use of healthy and tasty recipes.

Materials and methods

Samples

The trout species (sp. Oncorhymchus Mykiss), a freshwater fish commonly bred in Lombardy (Italy), was chosen with the aim of promoting a short supply chain and a more sustainable economy for the region. Trout fillet without bones was used to prepare three fish recipes: 1) trout in breadcrumbs of almonds and sage (T.almonds), 2) trout cooked in orange sauce (T.orange), and 3) trout hamburger with herbs and spices (T.hamburger). Each formulation was prepared in a central kitchen of the school catering company on the same day of the test, one hour before delivery. The formulations were stored in food-grade containers and dispatched via road transport to the school canteen. The dishes were part of the usual daily menu and were served to children as a starter.

Participants

One hundred and four children (48 girls and 56 boys) from a public school in the Milan area were recruited for the experiment. As reported in Table 1, a total of six classes were enrolled: two $2^{\text {nd }}$ grades (7-8 years), two $4^{\text {th }}$ grades ($9-10$ years) and two $5^{\text {th }}$ grades ($10-11$ years). Initially, also children from $3^{\text {rd }}$ grades were invited to take part to the experiment but for practical constraints, they were not able to participate.

One hundred and eight parents received full information about the research study and provided written informed consent for their children's participation. Only 4 children who suffered from food allergies and/or followed specific dietary restrictions were excluded from the study. The teachers were thoroughly informed
about the study, which was approved by the school board. The study was performed in adherence with the principles established by the Declaration of Helsinki. The protocol was approved by the Institutional Ethics Committee at the study site.

Procedure

All of the evaluations were performed at the school on the same day. Food neophobia evaluation was performed in the classrooms during mid-morning break, in the presence of a teacher and an experimenter. During the evaluation, each child was seated at his or her own table and received the food neophobia questionnaire. Before testing, the experimenters explained to the children how to complete the questionnaire. To increase ecological validity, the liking and preference assessments were performed during lunchtime in a familiar environment, i.e. the school canteen. Children of the same class were seated at the same table. Before the tests, the children received a booklet with a brief explanation on how to complete it and on the use of the scales. The three formulations were served simultaneously to each child immediately prior to the meal. A portion of approximately 100 g of each recipe preparation was served to the children in plastic dishes encoded with three-digit numbers. Each of the three formulations was randomly presented to each class. The participants were instructed not to share food with each other, and the experimenters monitored the children to ensure that they did not influence each other.

Food neophobia evaluation

To investigate the children's food neophobia, the participants received the Italian Children Food Neophobia Scale (ICFNS), which was previously validated by Laureati et al. (2015b) with a large sample of school-aged children. The ICFNS is a simplification of the original Food Neophobia Scale (FNS) of Pliner \& Hobden (1992) in that items, vocabulary and response format are modified to be suitable for Italian primary school children. The ICFNS consists of 8 items, 4 related to neophilic and 4 related to neophobic attitudes. The reduction of the items from 10 to 8 relies on the fact that we had concerns that children would not properly understand the term 'ethnic". Thus, the items "Ethnic food looks too weird to eat", "I like trying new ethnic restaurants" and "I like foods from different countries", which were present in the original FNS, were removed and replaced by the item "I like trying new food and tastes from other countries". The number of
response options of the agreement scale was also reduced from 7 to 5 since children may have difficulty discriminating between 7 response options. Additionally, each response on the 5-point scale is represented by a facial expression, in order to help the child to better understand the level of agreement or disagreement for each item (from left to right: "Very false for me", "False for me", "So-so", "True for me", "Very true for me"). This resulted in a food neophobia score ranging from 8 to 40 , which was calculated for each child (neophilic item scores were reversed). Higher scores represent greater food neophobia.

Liking and preferences evaluation

All of the children tasted the three fish formulations. After tasting each formulation, children were asked to perform a hedonic test. A 7-point facial hedonic scale from super good (7) to super bad (1) was chosen to rate liking for the three dishes, as described by Pagliarini, Ratti, Balzaretti, \& Dragoni (2003). With the aim to obtain more differentiating data, a preference test (ranked liking by elimination) was performed immediately after the liking test by asking the children to rank the formulations from the favourite one (score 1) to the least favourite dish (score 3).

Parental questionnaires

The parent questionnaire investigated family and children seafood consumption. The frequency of consumption was investigated through the following questions: "How many times do you eat fish at home?" (Q1), "How many times does your child eat fish at home?" (Q2). The answers ranged from 0 "never" to 4 "every day". Children seafood liking "Does your child like fish?" (Q3), as determined by the parents, was assessed through a 7-point hedonic scale. A 3-point scale ("no", "sometimes", "yes") was used to assess children involvement in meal preparation: "Is your child present during meal preparation?" (Q4) and "Does your child take part in the meal preparation?" (Q5). Fish cooking habit questions were also included: "How do you usually cook fish?" (Q6) (answers: "as ingredient", "with sauce", "oven baked", "fried", "grilled"). Finally, the parents were asked to answer a question about what they perceived as barriers that may lead to low consumption of fish (answers: "convenience", "price", "ethics and cultural reasons", "familial liking") (Q7).

Moreover, parental food neophobia was measured using the Food Neophobia Scale (FNS; Pliner \& Hobden, 1992). The parents completed a 10 -item questionnaire and rated the items on a scale from 1 ("Disagree strongly") to 7 ("Agree Strongly"). A score ranged from 10 to 70 (neophilic items scores were reversed) was calculated for each parent.

Data Analysis

GLM ANOVA was used to analyse the liking data. Children were considered as random factor in the model, whereas Fish formulation, Gender, Age, Food Neophobia (neophobia scores categorized by quartile distribution) and their 2-way interactions were considered as fixed factors. When the ANOVA results indicated a significant effect, the Least Significant Difference (LSD) was applied as post hoc test. The preference data were compared by chi-squared tests. Pearson's correlation coefficient was calculated to investigate the relationship between the liking and preference data as well as between liking and the 9 background variables (including child neophobia, parent neophobia and the 7 parent questionnaire variables). Results were considered statistically significant for $\mathrm{p}<0.05$. Data analysis was performed using the SAS/STAT statistical software package version 9.3.1 (SAS Institute Inc., Cary, USA).

Results

Liking and preference evaluation

Overall, the three formulations were well-accepted, with a mean value of 5.6 across the various formulations. The ANOVA results revealed a significant effect of the main factor Fish formulation ($\mathrm{F}=27.0, \mathrm{p}<0.001$) on the liking scores (Fig. 1). T.almonds ($\mathrm{M}=6.4, \mathrm{SEM}=0.2$) received significantly higher liking scores, followed by T.orange ($\mathrm{M}=5.6, \mathrm{SEM}=0.2$) and then T.hamburger ($\mathrm{M}=4.9$, $\mathrm{SEM}=0.2$), the least liked formulation. An effect of the main factor Age ($\mathrm{F}=15.0 ; \mathrm{p}<0.001$) was found, as the 7 y.o. children ($\mathrm{M}=6.3, \mathrm{SEM}=0.2$) liked the products more than the 9 y.o. $(\mathrm{M}=5.5, \mathrm{SEM}=0.1)$ and 10 y.o. children $(\mathrm{M}=5.1, \mathrm{SEM}=0.2)$, who generated comparable results. The interaction Fish formulation by Age was also significant ($\mathrm{F}=4.6$; $\mathrm{p}<0.001$); the 7 y.o. children liked the three formulations equally, whereas in the older children, the ability to discriminate products according to liking increased (Fig. 2).

No differences were found for the main factor Gender, although the interaction Gender by Fish formulation
was significant $(\mathrm{F}=3.75 ; \mathrm{p}<0.05)$, due to the higher liking for the T.orange formulation by girls, compared to boys.

The preference data evaluated through ranking by elimination of the three formulations were in accordance with the liking results. The three formulations were clearly discriminated ($\chi^{2}=30.7 ; \mathrm{p}<0.001$). The rank sums preference scores of the three different trout formulations indicated that T.almonds was chosen as the preferred formulation by a significantly higher proportion of the children than T.orange, which was in turn selected more often than the T.hamburger dish.

The liking and preference scores were found to be significantly and positively correlated (T.almonds: $\mathrm{r}=0.49$, $\mathrm{p}<0.001$; T.orange: $\mathrm{r}=0.56, \mathrm{p}<0.001$; T.hamburger: $\mathrm{r}=0.52, \mathrm{p}<0.001$).

Child food neophobia evaluation and relationship with liking

Satisfactory internal consistency was observed among the ICFNS items, as calculated through Cronbach's alpha test $(\alpha=0.71)$. The child food neophobia mean value was 18.8.

To investigate the relationship between food neophobia traits and trout formulation liking, the children were divided according to their neophobia scores into 3 groups, after verifying that data were normally distributed (Laureati et al., 2015b): low neophobia (children with scores in the lower 25 th percentile of ICFNS scores, score $\leq 15, \mathrm{n}=25$), medium neophobia (children with scores between the 25 th and 75 th percentiles, $15 \leq$ ICFNS score $\leq 22, \mathrm{n}=56$) and high neophobia (children with scores in the upper 25 th percentile, ICFNS score $\geq 23, n=23$).

The ANOVA results indicated a significant effect of the main factor Food Neophobia (low, medium and high) on the children's trout liking scores ($\mathrm{F}=3.51$; $\mathrm{p}<0.05$). Liking decreased significantly from low ($M=6.0$) to high ($M=5.3$) food neophobia levels, indicating that the children's neophobic attitude influenced their hedonic response.

The interaction Food Neophobia by Fish formulation was also significant ($\mathrm{F}=3.14 ; \mathrm{p}<0.05$). To compare children with very different levels of neophobia scores, only the effect of low and high neophobia levels on the liking of each trout formulation was considered (Fig. 3). No differences were found between the low and high neophobia level groups for the most liked formulation (T.almonds). In contrast, for the other two
formulations (T.orange and T.hamburger), the high neophobic children generated significantly lower liking scores $\left(\mathrm{M}_{\mathrm{T} . \text { orange }}=4.9 ; \mathrm{M}_{\mathrm{t} . \text { hamburger }}=4.5\right)$ than did the low neophobic children $\left(\mathrm{M}_{\mathrm{T} . \text { orange }}=6.3 ; \mathrm{M}_{\mathrm{t} \text {.hamburger }}=5.2\right)$.

Parental questionnaire

Questionnaire answers from 97 parents were collected and reported in Table 2.
A total of 44% of the parents indicated a fish consumption of 2-3 times per week, and 55% reported eating fish 2-3 times per month. Child fish consumption reported by the parents was 2-3 times per week for 42% of the respondents and 2-3 times per month for 50%. Half of the parents declared that their child liked seafood dishes (very good $=9 \%$; good $=41 \%$). Many families (more than 70%) expressed good involvement and participation of their child in meal preparation. The families' cooking habits were mainly characterized by using fish as a principal meal (87%), whereas only the 13% respondents made use of it as an ingredient in the first course. Among the factors perceived as barriers to fish consumption, convenience of preparation and price were indicated as the first and second most common issues, respectively, followed by familial liking. The parents' food neophobia mean score was 26.4.

Overall actual liking of the fish formulations was negatively related to the child food neophobia ($\mathrm{r}=-0.23$, $\mathrm{p}<0.05$) and positively related to the child fish liking reported by the parent ($\mathrm{r}=0.20, \mathrm{p}<0.05$). Child food neophobia was positively related to parental food neophobia ($\mathrm{r}=0.25, \mathrm{p}<0.05$) and consumption of fish as ingredient ($\mathrm{r}=0.30, \mathrm{p}<0.01$), whereas a negative relation was found with the involvement (Q4 and Q5) of the children in meal preparation ($\mathrm{r}=-0.20, \mathrm{p}<0.05 ; \mathrm{r}=-0.28, \mathrm{p}<0.01$, respectively) and the consumption of fish as main dish (cooked with sauce: $\mathrm{r}=-0.24, \mathrm{p}<0.05$; oven-baked: $\mathrm{r}=-0.28, \mathrm{p}<0.01$; grilled: $\mathrm{r}=-0.25, \mathrm{p}<0.05$). Parent food neophobia was positively associated with unhealthy fish preparations (fried: $\mathrm{r}=0.24, \mathrm{p}<0.05$). Familial liking perceived as a barrier (Q7) was negatively related to fish consumption at home ($\mathrm{r}=-0.27$, $\mathrm{p}<0.01$).

Discussion

This study investigated children's liking of and preferences for a freshwater trout from the Lombardy Region, which was prepared using different recipes. The three trout formulations were well-appreciated by the children, as they all obtained hedonic responses well above the middle value of the scale, even in the case
of the least favourite sample. This result agrees with those of Pagliarini et al. (Pagliarini et al., 2005), who reported a good evaluation of different seafood preparations proposed for the school canteen menu. Accordingly, Caporale et al. (2009) reported a high hedonic rating for seafood second courses by preschoolers. Donadini et al., (2013) also found that liking scores were strongly influenced by the fish dish preparation. The high hedonic responses obtained could be partially explained by the presence of the experimenters during the tests, which may have positively influenced the children and their responses.

In the present study, clear hedonic differences between the three formulations were observed. This variability was probably due to the different recipes and cooking methods used. Self-reported comments by the children suggest that T.almonds, which was prepared with a coating of bread and almonds crumbs and cooked in the oven, was the most liked dish because of its crunchiness. This result is consistent with other studies reporting that texture properties are important in children's food acceptance (Zeinstra, Koelen, Kok, \& De Graaf, 2007; Donadini et al., 2013; Werthmann et al., 2015; Alm, Olsen, \& Honkanen, 2015). This hypothesis was further confirmed by the reasons reported by the children for selecting T.hamburger as the least liked formulation. Indeed, this dish was found to be too hard and dry and, thus, was probably too difficult for the children to chew and swallow (Zeinstra et al., 2007).

The dish preferences (ranked liking) were proven to be in accordance with liking (rated liking). This finding is not surprising because food preference and liking evaluation are known to be related (Olsen, Kildegaard, Gabrielsen, Thybo, \& Møller, 2012; Altintzoglou et al., 2015; Bergamaschi et al., 2016). The preference evaluation forces the children to rank the products and not necessarily to provide information about liking (Kildegaard, Tønning, \& Thybo, 2011). In the present study, the ranking method was used as an additional hedonic assessment to obtain more differentiating results, since we hypothesized that the recipes would have been disliked by children, obtaining low ratings on the hedonic scale with consequent reduced discriminability. However, this was not the case as formulations were appreciated and clearly discriminated with both methods.

Age-related differences in fish formulation liking were observed. The ability of younger children (7 y.o.) to discriminate between the products was less pronounced than that of their older counterparts (9 and 10 y.o.). Therefore, children may be assumed to become increasingly critical and conscious in their food choices with age (Pagliarini et al., 2005; Cooke \& Wardle, 2005). This finding was confirmed by Laureati et al. (2014)
and Russell and Worsley (2013) who explained this attitude as a consequence of exposure to a more varied diet with increasing age.

The results of the present study suggest that food neophobia influenced children's preferences and liking (Figure 3). Children with lower food neophobia scores liked the formulations more, compared with their neophilic counterparts. Various studies confirmed these findings (Laureati et al. 2015c; Wardle, Carnell, \& Cooke, 2005; Cooke, 2007; Russell \& Worsley, 2008; Johnson et al., 1991) and reported the direct effect of food neophobia traits on food consumption. In particular, food neophobia exerts a negative effect on pleasantness and the frequency of consumption of certain categories of food, including seafood (Cooke, Wardle, \& Gibson, 2003; Knaapila et al., 2011; Siegrist et al., 2013).

Moreover, in the present experiment, strong neophobic attitudes were associated with low score of liking for the less preferred formulations, whereas for the most appreciated formulation neophobic children were comparable to the neophilic peers. We hypothesize that optimization of fish formulations targeted to children could considerably increase product acceptance, even in more neophobic subjects.

The parents' questionnaire responses indicated family and child fish consumption levels that were in line with international guidelines (WHO, 2010), although the children's fish consumption was slightly lower than the recommended twice weekly servings (Welch, Lund, Amiano, Dorransoro, Brustad, Kumle, et al. 2002; Scientific Advisory Committee on Nutrition, 2004; WHO, 2010).

An encouraging result is that the children were usually involved in meal preparation at home, as meal preparation is recognized to be the starting point for guiding children towards good feelings about food (Kimmel, Sigman-Grant, \& Guinard, 1994).

An interesting finding was the association between parental food neophobia and fish cooking methods at home. The effect of parental influences on food neophobia regarding food modelling and meal structuring has been reported in an earlier research study (Nicklaus et al., 2004). In the present study, fried fish and seafood used as an ingredient in the first course (e.g., pasta with tuna sauce) seemed to be more often used by neophobic subjects, suggesting that neophobic behaviour could lead to less healthy preparations or preparations in which fish is partially visible and the fish flavour is less pronounced. Accordingly, fish presented as a whole fillet (grilled fillet, fillet with sauce, oven-baked fillet) was negatively related to children's food neophobia, indicating that the less neophobic children were more familiar with those
preparations.
Price, convenience and familial liking were perceived as the main drivers of low fish consumption. Price and convenience could be hypothesised to be relevant barriers for parents but not for children, while familial hedonic attitudes are strong predictors of a child's preferences (Bi et al., 2011).

A strength of the present study was the ecological condition, as the experiment was conducted in a school mealtime situation. The naturalistic environment is an important point to consider when studying factors linked to food behaviour, especially with children (Donadini et al., 2013).

One clear limitation is that we did not measure the children's actual consumption; thus, we cannot conclude that the liking of fish translated to an actual higher intake. Another limitation is that the sample was limited in the number of children studied, and all of the children were from a metropolitan area. Whether the results can be generalized to different sample groups is unknown.

In conclusion, the present study focused on the acceptability of, and preferences for, a regional fish with the aim to promote more sustainable and appealing school meals. The formulations proposed were suitably appreciated by the children. Liking was found to be strongly dependent on product preparation and cooking methods, thus the proper choice of recipes could minimize neophobic attitudes. This finding highlights the importance of recipes and cooking methods to increase children fish acceptance and consumption in the school lunch refectory. Finally, further investigations are needed to better understand how parental habits influence child hedonic acceptance and eating behaviour.

Acknowledgements

The study was financially supported by Milano Ristorazione SpA. A special thanks to the Nolli Arquati School in Milan for its voluntary participation and to the students Diana Caroli and Viviana Aspesi for their help in the experimental phases. The authors report no disclosures or conflicts of interest.

References

ALM, S., OLSEN, S.O. and HONKANEN, P. 2015. The role of family communication and parents' feeding practices in children's food preferences. Appetite 89, 112-121.

ALtintzoglou, T., SKULAND, A.V., CARLEHÖG, M., SONE, I., HEIDE, M. and HONKANEN, P. 2015. Providing a food choice option increases children's liking of fish as part of a meal. Food. Qual. Pref. 39, 117-123.

BERGAMASCHI, V., OLSEN, A., LAUREATI, M., ZANGENBERG, S., PAGLIARINI, E. and BREDIE, W. L. P. 2016.Variety in snack servings as determinant for acceptance in school children. Appetite 96, 628-35.

BI, X., HOUSE, L., and MESSINA JR. 2011. Identifying the Attitudes and Preferences of Parents and Children for Seafood: Summary of Focus Groups Results. FAMRC Industry Report 11-1 (pp.20).

BIRCH, L.L., SAVAGE, J.J. and VENTURA, A. 2007. Influences on the Development of Children's Eating Behaviors: From Infancy to Adolescence. Canadian J. Diet Prac.t Res. 68(1).

BIRCH, L.L. and FISHER, J.O. 1998. Development of eating behaviors among children and adolescents. Pediatrics 101(3), 539-49.

CAPORALE, G., POLICASTRO, S., TUORILA, H. and MONTELEONE, E. 2009. Hedonic ratings and consumption of school lunch among preschool children. Food. Qual. Pref. 20(7), 482-489.

CENSI, L., GALEONE, D., ANDREOZZI, S. and SPINELLI, A. 2012. The ZOOM8 study: nutrition and physical activity of primary school children. Istisan, Rapporti ISTISAN (in Italian) 12/42,142. Available online: http://www.iss.it/binary/publ/cont/12_42_web.pdf (accessed May 2016).

CHANDRA, R.K. 2002. Breast feeding, hydrolysate formulas and delayed introduction of selected foods in the prevention of food hypersensitivity and allergic disease. Nutr. Res. 22(1-2), 125-135.

COOKE, L. 2007. The importance of exposure for healthy eating in childhood: A review. J. Hum.. Nutr. 20(4), 294-301.

COOKE, L.J. and WARDLE, J. 2005. Age and gender differences in children's food preferences. J. Hum. Nutr. 93(5), 741-746.

COOKE, L., WARDLE, J. and GIBSON, E.L. 2003. Relationship between parental report of food neophobia and everyday food consumption in 2-6-year-old children. Appetite 41(2), 205-206.

COULTHARD, H. and BLISSETT, J. 2009. Fruit and vegetable consumption in children and their mothers. Moderating effects of child sensory sensitivity. Appetite 52(2), 410-415.

DONADINI, G., SPIGNO, G., FUMI, M.D., and VANONI, L. 2009. Preschool Lunch Preference: A Case Study With Children Aged 2.5 To 5.5. Years. In Delegate Manual 8th Pangborn Sensory Science Symposium, Elsevier, Oxford.

DONADINI, G., FUMI, M.D. and PORRETTA, S. 2013. Hedonic response to fish in preschoolers. J.Sens. Stud. 28(4), 282-296.

DOVEY, T.M., STAPLES, P.A., GIBSON, E.L. and HALFORD, J. C. G. 2008. Food neophobia and 'picky/fussy' eating in children: A review. Appetite 50(2-3), 181-193.

DREWNOWSKI, A. 1997. Taste preferences and food intake. Annu. Rev. Nutr. 17, 237-253
FALCIGLIA, G.A, COUCH, S.C., GRIBBLE, L.S., PABST, S.M. and FRANK, R. 2000. Food neophobia in childhood affects dietary variety. J. Am. Diet. Assoc. 100(12), 1474-81.

JOHNSON, S.L., MCPHEE L. and BIRCH, L.L. (1991). Conditioned preferences: Young children prefer flavors associated with high dietary fat. Physiol Behav, 50 (6), 1245-1251.

KILDEGAARD, H., TØNNING, E. and THYBO, A.K. 2011. Preference, liking and wanting for beverages in children aged 9-14years: Role of sourness perception, chemical composition and background variables. Food. Qual. Pref. 22(7), 620-627.

KIMMEL, S.A., SIGMAN-GRANT, M. and GUINARD, J.-X. 1994. Sensory testing with young children. Food Technol. 48, 92-99.

KNAAPILA, A., SILVENTOINEN, K., BROMS, U., ROSE, R.J., PEROLA, M., KAPRIO, J. and TUORILA, H.M. 2011. Food neophobia in young adults: Genetic architecture and relation to personality, pleasantness and use frequency of foods, and body mass index-A twin study. Behav. Gen. 41(4), 512-521.

LAUREATI, M., BERGAMASCHI, V. and PAGLIARINI, E. 2015b. Assessing childhood food neophobia: Validation of a scale in Italian primary school children. Food. Qual. Pref. 40, 8-15.

LAUREATI, M., BERGAMASCHI, V. and PAGLIARINI, E. 2014. School-based intervention with children. Peer-modeling, reward and repeated exposure reduce food neophobia and increase liking of fruits and vegetables. Appetite 83, 26-32.

LAUREATI, M., BERTOLI, S., BERGAMASCHI, V., LEONE, A., LEWANDOWSKI, L., GIUSSANI, B. and PAGLIARINI, E. 2015c. Food neophobia and liking for fruits and vegetables are not related to Italian children's overweight. Food. Qual. Pref. 40, 125-131.

LAUREATI, M., PAGLIARINI, E., TOSCHI, T. G. and MONTELEONE, E. 2015a. Research challenges and methods to study food preferences in school-aged children: A review of the last $15 y$ years. Food. Qual. Pref. 46, 92-102.

LIM, W.S., GAMMACK, J.K., VAN NIEKERK, J. and DANGOUR, A.D. 2006. Omega 3 fatty acid for the prevention of dementia. Cochrane Database Syst. Rev. (1), CD005379.

LOWE, C.F., HORNE, P.J., TAPPER, K., BOWDERY, M. and EGERTON, C. 2004. Effects of a peer modelling and rewards-based intervention to increase fruit and vegetable consumption in children. Eur. J. of Clin. Nutr. 58, 510-522.

LUND, E.K. 2013. Health benefits of seafood; Is it just the fatty acids? Food Chem. 140(3), 413-420.
MARATOS, F.A. and STAPLES, P. 2015. Attentional biases toward familiar and unfamiliar foods in children: the role of food neophobia. Appetite 91, 220-225.

MCMANUS, A., BURNS, S. K., HOWAT, P. A, COOPER, L. and FIELDER, L. 2007. Factors influencing the consumption of seafood among young children in Perth: a qualitative study. BMC Public Health 7, 119.

MOZAFFARIAN, D., and RIMM, D.B. 2006. Fish intake, contaminants and human health. J. Amer. Med. Assoc. 296(15), 1885-1899.

MUSTONEN, S., OERLEMANS, P. and TUORILA, H. 2012. Familiarity with and affective responses to foods in 8-11-year-old children. The role of food neophobia and parental education. Appetite 58(3), 777-780.

NICKLAUS, S., BOGGIO, V. AND CHABANET, C. 2004. A prospective study of food preference in childhood. Food Qual. Prefer. 15, 805-818.

OLSEN, A., KILDEGAARD, H., GABRIELSEN, G., THYBO, A.K. and MØLLER, P. 2012. Measuring children's food preferences: Using pictures in a computerized conjoint analysis. J. Sens. Stud. 27(4), 264-276.

PAGLIARINI, E., GABBIADINI, N. and RATTI, S. 2005. Consumer testing with children on food combinations for school lunch. Food. Qual. Pref. 16(2), 131-138.

PAGLIARINI, E., RATTI, S., BALZARETTI, C., and DRAGONI, I. 2003. Evaluation of a hedonic scaling method for measuring the acceptability of school lunches by children. Italian Journal of Food Science, 15(2) 215-224.

PLINER, P., and HOBDEN, K. 1992. Development of a scale to measure the trait of food neophobia in humans. Appetite, 19(2), 105-120.

REVERDY, C., CHESNEL, F., SCHLICH, P., KÖSTER, E.P. and LANGE, C. 2008. Effect of sensory education onwillingness to taste novel food in children. Appetite 51(1), 156-165.

RUSSELL, C.G. and WORSLEY, A. 2008. A Population-based Study of Preschoolers' Food Neophobia and Its Associations with Food Preferences. J. Nutr. Educ. Behav. 40(1), 11-19.

RUSSELL, C.G. and WORSLEY, A. 2013. Why don't they like that? And can I do anything about it? The nature and correlates of parents' attributions and self-efficacy beliefs about preschool children's food preferences. Appetite 66(1), 34-43.

SCIENTIFIC ADVISORY COMMITTEE ON NUTRITION. 2004. Advice on fish consumption: Benefits and risks, TSO, London.

SIEGRIST, M., HARTMANN, C. and KELLER, C. 2013. Antecedents of food neophobia and its association with eating behavior and food choices. Food. Qual. Pref. 30(2), 293-298.

TRONDSEN, T., BRAATEN, T., LUND, E. and EGGEN, A.E. 2004. Consumption of seafood - The influence of overweight and health beliefs. Food. Qual. Pref. 15(4), 361-374.

TUORILA, H., PALMUJOKI, I., KYTÖ, E., TÖRNWALL, O., and VEHKALAHTI, K. 2015. School meal acceptance depends on the dish, student, and context. Food. Qual. Pref. 46, 126-136.

WARDLE, J., CARNELL, S. and COOKE, L. 2005. Parental control over feeding and children's fruit and vegetable intake: How are they related? J. Am. Diet. Ass. 105(2), 227-232.

WELCH, A.A., LUND, E.K., AMIANO, P., DORRANSORO, M., BRUSTAD, M., KUMLE, M., RODRIGUEZ, M., LASHERAS, C., JANZON, L., and JANSSON, J. 2002. Variability of fish consumption within the 10 European countries participating in the European investigation into cancer and nutrition (EPIC) study. Public Health Nutr. 5, 1273-1285.

WERTHMANN, J., JANSEN, A., HAVERMANS, R., NEDERKOORN, C., KREMERS, S. and ROEFS, A. 2015. Bits and pieces. Food texture influences food acceptance in young children. Appetite 84, 181-187. WHO, F.A.O. 2010. FAO Fisheries and Aquaculture Report No . 978 Report of the joint FAO / WHO expert consultation on the risks and benefits of fish consumption (Vol. 978).

ZEINSTRA, G.G., KOELEN, M.A., KOK, F.J. and DE GRAAF, C. 2007. Cognitive development and children's perceptions of fruit and vegetables: A qualitative study. Int. J. Behav. Nutr. Phys. Act. 4, 30.

Table 1. Number of participants by gender and grade.

Gender	$2^{\text {nd }}$ graders $(7-8$ years $)$	$4^{\text {th }}$ graders $(9-10$ years $)$	$5^{\text {th }}$ graders $(10-11$ years $)$
F	10	23	15
M	19	18	19
Total	29	41	34

QUESTIONS	ANSWERS
Q1: how many times do you eat fish at home?	Every day: 0\%
	2-3 times per week: 44\%
	2-3 times per month: 55\%
	2-3 times per year: $\mathbf{1 \%}$
	Never: 0\%
Q2: how many times does your child eat fish at home?	Every day: 0\%
	2-3 times per week: $\mathbf{4 2 \%}$
	2-3 times per month: 50\%
	2-3 times per year: 5\%
	Never: 3\%
Q3: does your child like fish?	$\mathrm{He} /$ She thinks fish is very good: $\mathbf{9 \%}$
	$\mathrm{He} /$ She thinks fish is good: $\mathbf{4 1 \%}$
	$\mathrm{He} /$ She thinks fish is not good not bad: $\mathbf{3 2 \%}$
	$\mathrm{He} /$ She thinks fish is bad: $\mathbf{1 4 \%}$
	$\mathrm{He} /$ She thinks fish is very bad: $\mathbf{4 \%}$
Q4: is your child present during meal preparation?	Yes: 25\%
	Sometimes: 59\%
	No: 16\%
Q5: does your child take part in the meal preparation?	Yes: 11\%
	Sometimes: 64\%
	No: 25\%
Q6: how do you usually cook fish?	As an ingredient in the first course: 13\%
	As a principal meal: $\mathbf{8 7 \%}$
	- Fillet with sauce: $\mathbf{2 3 \%}$
	- Oven-baked fillet: 23\%
	- Fried fish fingers: $\mathbf{3 2 \%}$
	- Grilled fillet: 22\%
Q7: which are the barriers that may lead to a low consumption of fish?	Familial liking: 26\%
	Convenience: $\mathbf{3 6 \%}$
	Price: 35\%
	Ethics and cultural reasons: 3\%

Table 2. Parental questionnaire.

Figure 1. Mean liking scores (ranged 1-7) \pm SEM (standard error of the mean) for the three trout formulations (T.hamburger, T.orange, T.almonds) (different letters denote significant differences, $\mathrm{p}<0.05$).

Figure 2. Mean liking scores (ranged 1-7) \pm SEM (standard error of the mean) according to age (7-9-10 years) and trout formulations (T.hamburger, T.orange, T.almonds) (different letters denote significant differences between and within different ages, $\mathrm{p}<0.05$).

Figure 3. Mean liking scores (ranged 1-7) \pm SEM (standard error of the mean) for the trout formulations (T.hamburger, T.orange, T.almonds), according to low and high child neophobia levels (n.s. $=$ non-significant difference; $*=$ significant difference at $\mathrm{p}<0.05$).

[^0]: * Corresponding author: dr. Monica Laureati, tel.: $+39(0) 250319188$, fax: $+39(0) 250319190$, monica.laureati@unimi.it

