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Disc-satellite interaction in
astronomy

“...Ground Control to Major Tom
Take your protein pills and put your helmet on...”

David Bowie, Space Oddity

Systems where a binary, that is two gravitationally bound objects (with massM1

and M2, respectively) orbiting their centre of mass, interacts with the surrounding
gas or dust are extremely common in the Universe and involve a wide variety of
different astrophysical objects (star + star, black hole + black hole, star + planet,
or planet + moon1). Among them, protoplanetary systems and black hole binaries
(BHBs) are currently capturing the attention of the scientific community.

These two types of systems are extremely different in their nature and relevant
parameters. On the one hand, protoplanetary systems consist of one, or more,
planets (mass ratio M2/M1 ∼ 10−6 − 10−2), or a secondary protostellar compan-
ion (M2/M1 ≈ 1), orbiting a protostar (M1 ≈ 1 M�) in a binary configuration
embedded in a relatively thick accretion disc (with aspect ratio H/R ≈ 0.1).
Such discs form during the process of star formation, due to angular momentum
conservation, and they are thought to be the site of planet formation.

On the other hand, black hole binary systems consist of two gravitationally
bound black holes surrounded by a relatively thin accretion disc H/R ≈ 10−3.
They can be found both in the supermassive (SMBHBs: M1 ∼ M2 ≈ 108 M�)
and in the stellar (SBHBs: M1 ∼ M2 ≈ 10 M�) mass regime. Supermassive
black hole binaries are expected to be hosted in the gas rich central regions of
galaxies as a consequence of galaxy mergers (Begelman et al. 1980). Stellar mass
black hole binaries are instead the endpoint of the evolution of massive stellar
binaries. Also in this case, a significant amount of gas can be still present in the

1Such as Saturn, its moons and the system of rings surrounding it, see Fig. 1.
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surroundings of such binaries: as a consequence of outflows during the life of the
stellar progenitors (de Mink & King 2017; Martin et al. 2018) but also because
stellar black hole binaries can form in gas rich discs powering active galactic nuclei
(AGN) (Stone et al. 2017), or be dragged into them (Bartos et al. 2017). BHBs are
expected to merge as a consequence of the dissipation of their mechanical energy
through the emission of gravitational waves.

The heating mechanisms and thus the disc electromagnetic emission (EM) of
these systems depend on very different physical phenomena. Young stars are
typically surrounded by relatively cold (T ∼ 10 – 1000 K) passive discs (viscous
dissipation does not dominate the heating of the disc). The EM emission comes
mainly from optically thick gas emission lines (like rotational and roto-vibrational
lines of CO isotopologues and of other molecular species) and from the dust com-
ponent of the disc: in particular, large dust grains (mm-sized) are heated by the
central protostar and provide a thermal emission in the radio band, while small
grains (µm-sized) scatter the infrared light from the protostar. Black hole binaries
are instead surrounded by very hot (up to T ∼ 104 – 107 K), ionized, active discs
(viscous dissipation is the heating source of the disc). The emission mechanism
associated with it is thermal optically thick emission (black body) from the gas
component, implying that the accretion dynamics modulates the EM luminosity
of these sources.

Despite their very different nature and EM appearance, the dynamics of both
protoplanetary discs and BHBs systems is very similar and can be described in
one unique theoretical framework: the disc-satellite interaction theory.

This project is meant to deepen our knowledge of the theory of circumbinary
discs, approaching it in a multidisciplinary way from both the protoplanetary and
the BHBs perspective.

Motivation: protoplanetary discs and BH binaries, dif-
ferent manifestations of the same dynamics

We are currently living a golden age for protoplanetary physics and gravitational
wave astronomy. The imaging of protoplanetary discs with unprecedented detail,
allowed by the advent of the Atacama Large Millimeter Array (ALMA) and of
the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) instru-
ment mounted on the Very Large Telescope (VLT), revealed a large sample of
very peculiar structures: such as gaps, cavities, shadows, spirals and other non-
axisymmetric features). This represents one of the biggest achievements in obser-
vational astronomy of the last decades, offering the opportunity to compare the
theoretical models with multi-wavelength observations, and thus sampling differ-
ent components of the surrounding material: small dust, large dust, gas.

At the opposite side of the mass spectrum, stellar and supermassive black hole
binaries instead are still very elusive from an observational point of view. Apart
from a number of candidates inferred from periodic luminosity variations (Catalina
Real-time Transient Survey, CRTS, Drake et al. 2009; Graham et al. 2015 and Palo-
mar Transient Factory PTF, Rau et al. 2009; Charisi et al. 2016) or kinematical
signatures in AGNs (Bogdanović 2015; D’Orazio et al. 2015; Wang et al. 2017),
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no robust electromagnetic (EM) detection has occurred so far. Nevertheless, the
advent of gravitational wave (GW) astronomy has provided a direct confirma-
tion of the existence of stellar black hole binaries (Abbott et al. 2016c). The gas
ejected as an outflow during the lifetime of the stellar progenitors of the black
holes hopefully provides a possible EM signature of the merger (de Mink & King
2017). The recent first detection of a GW signal (Abbott et al. 2017c) associated
with an EM counterpart (Savchenko et al. 2017b) constitutes a milestone, showing
for the first time that we have the technology to associate GW events with their
EM counterparts. The presence of gas surrounding the BHB is more established
in the supermassive case, for which the detection of GW signals is expected to
occur with the launch of the LISA mission (Laser Interferometer Space Antenna)
in 2034.

In all such contexts, the disc-satellite interaction on the one hand determines
the disc appearance: detectable in the morphology of protostellar discs and in
the EM counterpart to GW emission, respectively; while on the other hand it can
change the orbital properties of the binary: in terms of migration, eccentricity
evolution, spin alignment; properties that can be detected both for planets, via
planet detection surveys, and BHs based on the shape of the GW signal.

While the thermal properties and emission features may differ for protoplan-
etary and BHB systems, the dynamics is well captured within the disc-satellite
interaction theory in both cases (Lin & Papaloizou 1979; Goldreich & Tremaine
1980). A secondary object (M2) orbiting a primary (M1) produces a non-vanishing
time-dependent quadrupole moment that perturbs the axial symmetry of the grav-
itational potential that would be produced by the primary alone. This produces
a torque, exerted by the satellite on the disc, that promotes the exchange of both
energy and angular momentum between the binary and the disc.

The disc-satellite interaction occurs at specific disc locations, called “resonances”.
This mechanism is referred to as “tidal torque” and mediates the disc-satellite “res-
onant interaction” (Goldreich & Tremaine 1980). The tidal torque acts against the
viscous torque, that induces disc spreading and accretion on to the primary/binary.
As a consequence, the satellite might carve a gap or a cavity in the disc, but it also
produces spiral structures, it promotes the development of eccentric fluid trajec-
tories and the formation of non-axisymmetric features in the disc2. Furthermore,
as a consequence of Newton’s third law, the disc exerts a back reaction torque on
the satellite that causes it to migrate (evolution of the semi-major axis) and to
modify its orbital eccentricity. The spectacular image in Fig. 1 shows an example
of this mechanism in action in Saturn’s rings.

Besides the resonant mechanism, but less discussed and studied, secular interac-
tion (Teyssandier & Ogilvie 2016) affects the evolution of the system at very long
timescales (103–105 orbits). It involves the interaction of the satellite with the disc
as a whole (contrary to resonant interaction that takes place only at resonant lo-
cations), providing an exchange of angular momentum, but not of energy, between
the disc and the satellite. This produces periodic oscillations of the eccentricity
and the precession of the pericentres of both binary and disc orbits (Miranda et al.

2We refer to Fig. 1.3 in Chap. 1 for some examples of non-axisymmetric structures detected
by ALMA and SPHERE
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Figure 1: Two pictures of Saturn’s rings taken by the Cassini probe. Left Panel: The
moon Daphni carving a gap structure at the outer edges of Saturn’s rings (image
credit:NASA/JPL-Caltech/Space Science Institute). Right Panel: density perturba-
tions in Saturn’s rings density known as “Janus 2:1 spiral density wave” produced by
the moon Janus in Saturn’s B ring (image credit:NASA/JPL-Caltech/Space Science
Institute).

2017; Thun et al. 2017; Ragusa et al. 2018). The basic principle of its action is
analogous to that producing periodic eccentricity oscillations in multiple-planet
systems in the context of celestial mechanics. This type of interaction received
less attention than it deserves, but it appears to have a strong impact on the long
timescale eccentricity evolution of both satellites and discs.

The entire analytical treatment in the disc-satellite interaction theory relies
mainly on the perturbation analysis of the effects produced by the addition of a
small binary perturber in a Keplerian potential. As soon as this assumption is
not satisfied, the analytical theory fails to give quantitative predictions. For this
reason, still much work is required in order to better constrain how the system
parameters affect the dynamics using all the approaches at our disposal: analytical,
numerical and observational.

Aim and outline of the thesis

In this thesis I aim to investigate and discuss three relevant problems in the context
of disc-satellite interaction, namely: the suppression of accretion rate in binary
systems, the mutual evolution of satellite/disc eccentricity and the formation of
disc non-axisymmetric structures. As mentioned before, these specific problems
are relevant in very different contexts of astronomy, from black hole binaries to
planetary systems, but they all share the same physical processes in action.

With this in mind, all these subjects will be contextualized and discussed with
explicit reference to the problems they are relevant for. Due to its interdisciplinar-
ity, the thesis is divided in 3 parts as follows:

https://photojournal.jpl.nasa.gov/catalog/PIA21627
https://photojournal.jpl.nasa.gov/catalog/PIA21056
https://photojournal.jpl.nasa.gov/catalog/PIA21056
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• Part I provides a broad introduction about relevant concepts that will be
useful throughout the thesis, regarding both black holes and planetary sys-
tems. Chap. 1 introduces the two body problem and the process of formation
of both black holes and planets. Chap. 2 introduces the formalism of accre-
tion disc physics. Chap. 3 provides a thorough discussion of disc-satellite
interaction theory leading to the derivation of the analytical expression of
the tidal torque exerted by the satellite on the disc (and vice versa). Fi-
nally, Chap. 4 provides a brief review of the effects of the tidal torque on
the disc structure (gap formation), satellite migration and evolution of its
eccentricity.

• Part II is dedicated to the disc-satellite interaction in black hole binary
systems. The final goal of this part is to discuss the accretion rate in these
systems: the presence of the satellite produces dynamical effects that alter
the accretion mechanism with respect to the predictions of classic disc ac-
cretion theory. In particular, depending on the disc thermal and viscous
properties, the tidal torque produced by the satellite acts as a dam against
the inward motion of the gas, possibly producing a reduction of the accretion
rate on to the binary. A number of numerical simulations have shown that
the accretion rate does not change in binary systems. However, mainly for
computational reasons, the dam effect of the tidal torque in thin discs have
never been investigated.

This problem is particularly relevant for black hole binary systems: since
they are surrounded by very thin discs, the accretion rate on to them might
be strongly reduced, with important consequences for their detectability and
dynamical evolution.

To this end, Chap. 5 introduces black hole binaries, their formation models,
the relevance of accretion rate in determining the electromagnetic output
of black hole binaries, and the dynamical evolution of their characteristic
parameters. Chap. 6 presents the results we published in the paper by
Ragusa et al. (2016) obtained in this context. In particular, we find that in
thin discs the secondary acts as a dam for the material that is not allowed
to accrete on to the black holes. This implies that the electromagnetic
luminosity of these systems is likely to be strongly suppressed.

• Part III is dedicated to the disc-satellite interaction in young stellar objects.
This part focuses on the mutual evolution of the satellite and disc orbital
properties. The torque exerted by a satellite on to the disc has been observed
to trigger the formation of non-axisymmetric structures into it. At the same
time, as a consequence of Newton’s third law, the back reaction torque
causes the evolution of the eccentricity and semi-major axis (migration)
of the satellite. These aspects of the dynamics of disc-satellite systems are
particularly relevant in young stellar objects. On the one hand, these studies
might help us to better understand the mechanisms originating the peculiar
features, such as horseshoes, spirals, gaps that have been broadly observed
in young protoplanetary discs after the advent of ALMA and SPHERE. On
the other, the migration and eccentricity evolution of planets, caused by
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their interaction with the accretion disc where they formed, might be one of
physical processes shaping the architecture of solar systems.

In Chap. 7 we discuss the results we obtained in Ragusa et al. (2018) about
the mutual evolution of satellite and disc eccentricity, emphasizing the role
of secular disc-satellite interaction and contextualizing the results in the
field of planet formation and evolution. In particular, we investigate the
possibility that disc-planet interaction constitutes the mechanism able to
excite the observed high orbital eccentricity of some young hot-Jupiters, i.e.
massive giant planets orbiting their host star on short period orbits (∼ 10
d). We find a counterintuitive relation between the evolution of the planet
eccentricity and the disc mass. In particular, less massive discs appear to
be able to excite higher level of eccentricity of the planet at late times, in
contrast with previous results in the literature.

Chap. 8 discusses observations and theoretical interpretations of transition
discs, i.e. systems where large dust cavities in the central region of the disc
are present, where (sub)mm observations have revealed the presence of non-
axysimmetric overdense lumps of material. Chap. 9 presents the results we
published in Ragusa et al. (2017) about this subject. In that paper, we found
that non-axisymmetric features might form as consequence of the interaction
of the disc with an object with a mass greater than & 50 MJ, i.e. a brown
dwarf. Less massive objects are more consistent with ring structures rather
than asymmetries with our choice of disc parameters. This constitutes an
alternative scenario to the most frequently invoked Rossby wave instability
model (RWI), that involves the formation of a vortex induced by a Jovian
planet. The massive companion scenario discussed in Ragusa et al. (2017)
allows us to obtain analogous results relaxing some assumptions on the disc
“viscosity” (that depends on how turbulent the disc is), about which still
much debate is ongoing.
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Chapter

1

Basic concepts

“Hey oh, let’s go!”

Ramones, Blitzkrieg bop

1.1 Binary systems in celestial mechanics: relevant
quantities for the two-body problem

The two body problem is the most fundamental problem of celestial mechanics.
It consists in the study of the motion of two point-like bodies with masses M1

and M2 mutually exerting on each other an attractive force F that follows the
universal law of gravitation, i.e.:

|F | = GM1M2

R2
, (1.1)

where R = R2 − R1 and R = |R| represents the distance between M1 and M2

(R1 and R2 represent the vector position of the two masses), and G = 6.67259×
10−8 g−1 cm3 s−2 is the gravitation constant. As a consequence, the equations of
motion for the two masses read:

F1 =
GM1M2

R3
R = mR̈1, (1.2)

F2 = −F1 = −GM1M2

R3
R = mR̈2, (1.3)

where the double dot notation R̈ represent the second time derivative of the
position vector R.

3
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It can be shown that since no external forces are acting on the system, and since
the gravitational force is conservative, the total energy is a constant of motion and
is equal to the sum of the kinetic and potential energy:

Etot =
1

2
M1v

2
1 +

1

2
M2v

2
2 −

GM1M2

R
, (1.4)

where v1 and v2 are the velocity vectors with respect to the centre of mass of the
system of M1 and M2, respectively. Analogously, since no external torques are
acting on the system, also the angular momentum is conserved; in particular, it
reads:

Ltot = R1 ×M1v1 + R1 ×M2v2. (1.5)

Eq. (1.2) and (1.3) can be manipulated in order to obtain two new equations
(see chapter 2 in the textbook Murray & Dermott 1999): one describing the motion
of the centre of mass of the system (since no external forces are present it moves
with constant velocity), the other describing the relative motion of the two bodies,
using R = R2−R1 and v = v2−v1 . It can be shown that the two body problem
in the centre of mass frame reduces to a new problem (the “reduced two body
problem”) of a particle of mass µ = M1M2/(M1 +M2), called reduced mass, with
velocity v, moving in the gravitational potential Vred = −G(M1 +M2)/R around
a fixed “focus” located at R = 0. Using this notation Etot reads1

Etot =
1

2
µv2 − Gµ(M1 +M2)

R
, (1.6)

while Ltot becomes
Ltot = R× µv. (1.7)

We introduce here for future reference also the angular momentum per unit mass
in the reduced problem h that satisfies

|Ltot| = µh. (1.8)

The orbit of such a particle lies on the plane perpendicular to Ltot, its shape can
be obtained by noticing that a third constant of motion can be identified, the Lenz
vector A:

A = µv ×Ltot − µ
GM1M2

R
R. (1.9)

One can easily verify that Ltot · A = 0, so that A lies in the orbital plane;
furthermore, dA/dt = 0, so that A is in fact constant. Finally, defining

e =
A

Gµ(M1M2)
, (1.10)

and taking e ·R, one gets the following relationship between R and the angle θ
between the directions of e and R:

R =
L2

tot

1 + |e| cos θ
[Gµ(M1M2)]−1. (1.11)

1Note that µ(M1 +M2) = M1M2 and that in the centre of mass frame M1v1 +M2v2 = 0.
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Eq. (1.11) represent a conic equation: the centre of mass is fixed in one of the
foci, the type of the conic section depends on whether the value of |e| T 1.

Further manipulating Eq. (1.11), it can be shown that the type of orbit depends
on the value of the total energy Etot, in particular:

1. |e| < 1 elliptical orbits (closed bound orbits Etot < 0).

2. |e| = 1 parabolic orbits (marginally bound orbits Etot = 0).

3. |e| > 1 hyperbolic orbits (open unbound orbits Etot > 0).

In this thesis we will deal exclusively with elliptical closed orbits that characterize
any kind of binary system (star + star, BH + BH, planet + moon, etc.). We
report here few other properties of these orbits that can be obtained by further
developing the equations presented throughout this section, but whose derivation
goes beyond the scope of the thesis.

• The total energy of an orbit intrinsically sets its semi-major axis a as follows:

a = −GM1M2

2Etot
. (1.12)

• The direction of e indicates the direction of the pericentre of the orbit. Since
the Lenz vector is a constant of motion in the two body problem, its direction
does not change throughout the evolution of the system.

• For bound orbits the quantity L2
tot[Gµ(M1M2)]−1 in Eq. (1.11) can be writ-

ten as
L2

tot

Gµ(M1M2)
= a(1− e2). (1.13)

Substituting Eq. (1.8) in Eq. (1.13), the eccentricity (i.e. e = |e|) of the
orbit can be computed as

e2 = 1− h2

G(M1 +M2)a
. (1.14)

Note that h =
√
G(M1 +M2)a is the total angular momentum per unit of

reduced mass of circular orbits (see Eq. 1.8), since from its substitution in
Eq. (1.14) one gets e = 0. From Eq. (1.14), it directly follows that the total
angular momentum of the system for a given eccentricity e and semi-major
axis a reads

Ltot = µ
√
G(M1 +M2)a(1− e2). (1.15)

• Finally, the orbital frequency Ω, i.e. the mean angular velocity along the
orbit, depends exclusively on the masses and semi-major axis of the binary,
it reads:

Ωbin =

√
G(M1 +M2)

a3
. (1.16)
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We note in conclusion that when M2 � M1 one gets µ → M2, so that, for
small satellites, the approximation where the first object is fixed in the focus of
the ellipse is generally reliable. Under this assumption, the orbital frequency of
M2 can be approximated as

ΩK =

√
GM1

a3
, (1.17)

we will refer to ΩK as the Keplerian frequency.

1.2 Accretion as a source of energy

Let assume that a particle of mass m is on a circular orbit around central body
of mass M?. The energy and angular momentum of the system are

E = −1

2

GM?m

a
, (1.18)

L = m
√
GM?a n̂, (1.19)

where a is the semi-major axis and n̂ is the unit vector normal to the orbital plane.
As we discussed in Sec. 1.1, these two quantities are conserved along the orbit if
no other forces are acting. Suppose that we have some forces acting on the mass
m which remove the angular momentum and dissipate the energy accordingly in
order to maintain it on a circular orbit. The particle moves inward at a rate

ȧ =
2Ėa2

GMm
, (1.20)

where Ė is the power of the force acting on the mass m. In order to bring the mass
m to the central object from infinity, the total energy that needs to be dissipated
is

∆Ediss = −1

2

GM?m

Rin
(1.21)

where Rin is the radius of the innermost orbit where the centrifugal balance is
established.

In an accretion disc, the material accretes on to the central object at a rate Ṁ ,
so that the power of the dissipative forces in order to enable such an accretion
rate has to be

∆Ediss =
1

2

GM?Ṁ

Rin
. (1.22)

For protoplanetary discs, Rin represents the location of the boundary layer be-
tween the disc and the star2. For accretion discs surrounding black holes, when
the material reaches the innermost stable circular orbit (ISCO) Rin = RISCO cen-
trifugal balance cannot be sustained, and the material spirals into the black hole.

2In this case, the material will dissipate its remaining kinetic energy in the boundary layer
before being accreted (see Sec. 2.2.4).
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1.3 What are black holes?

In the context of general relativity, matter and energy bend the space-time, char-
acterizing the trajectories of the bodies in the surroundings. The bending of the
space time acts on bodies as a gravitational field in the context of Newtonian
gravity, with the difference that also massless bodies, such as photons, have their
motion affected by the distribution of matter. Objects producing a gravitational
field or, from the general relativistic perspective, a bending of the space time, so
strong that even photons remain trapped in closed orbits around them are called
black holes.

Even though black holes were predicted for the first time as singularities of the
solutions of the Einstein field equation for a spherical distribution of mass in the
mid 1910s (Schwarzschild 1916, a translation from German of the original paper
can be found in Schwarzschild 1999), they were not referred with this name until
the late 1960s3 when the extremely intense extra-galactic radio-sources from star-
like objects (QSOs, Quasi Stellar Objects detected in the early 1960s by Schmidt
1963), were proposed to be powered (see Sec. 1.2) by the accretion of material
on to extremely massive black holes hosted in the nuclei4 of high redshift galaxies
(Lynden-Bell 1969).

Even though their name refers specifically to the fact that black holes are not
expected to be sources of electromagnetic radiation, as will be better discussed in
Sec. 1.2, the accretion of material on to black holes is second only to the direct
annihilation of matter-antimatter in terms of efficiency to convert mass into energy,
making accreting black holes among the most powerful sources of electromagnetic
radiation in our Universe.

Nowadays, it is well established that black holes can be divided in two well
separated mass regimes: stellar mass black holes (masses M• ∼ 3–102 M�) and
supermassive black holes (106M� .M• . 1010M�).

• The first have been associated with the powerful radiation (bolometric lu-
minosity L ∼ 1038 erg s−1 ≈ 105 L�, where L� = 4 × 1033 erg s−1 is the
bolometric luminosity of the Sun) coming from X-ray binaries: interpreted
as close binaries composed by a massive star and a compact object (black
holes or in some cases also neutron stars), accreting material from the com-
panion star.

• Concerning the second, as previously mentioned, the accretion of material
on to a very massive compact object, is the most reliable explanation for
the very localized emission of large amount of radiation (L ∼ 1045 erg s−1)
and the launch of relativistic jets of material (see Fig. 1.1) from the central
region of a large number of galaxies (active galactic nuclei, AGN). Further
evidence of massive objects at the center of galaxies relies mainly on the
direct observation of stars or material in Keplerian motion at sub-parsec

3The first usage “black holes” to refer to these mathematical oddities is attributed to John
Archibald Wheeler in 1967.

4Even though strong electromagnetic emissions from the nuclei of some spiral galaxies had
already been observed in the early ’40s (Seyfert galaxies, Seyfert 1943).
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Figure 1.1: The galaxy Cygnus A observed by the Very Large Array (VLA) at radio
wavelength λ = 6 cm. One can clearly distinguish the nucleus of the galaxy (the
central dot), where a supermassive black hole of M• = 2.5±0.7×109M� is expected
to reside (Graham 2008), from which two jets are emitted toward the plasma radio
lobes. Original image from Perley et al. (1984).

scales consistent with very large masses: this is the case for example of the
Keplerian motion of material consistent with a central mass of 3.6× 107M�
in NGC4258 (Miyoshi et al. 1995); or also the tracking of the orbits of a
large number of stars in the center of the Milky Way (Gravity Collaboration
et al. 2018, for the latest results on the topic), that host a quiescent (SgtA?,
L ∼ 1034 erg s−1) supermassive black hole having a mass M• = 4× 106M�.

In the following sections we will discuss the main parameters characterizing
black holes and the main properties of these two categories. However, we note for
completeness that the existence of a third intermediate mass regime 103 – 105M�
(Taniguchi et al. 2000), possibly hosted in globular clusters, is currently under
debate.

1.3.1 Formalism and relevant quantities

Black holes are fully characterized by two5 main parameters: their mass M• and
spin S (i.e. the intrinsic angular momentum of the black hole).

Solving the Einstein field equation assuming spherical symmetry, provides the
metric of the space-time around non-spinning black-holes (Schwarzschild 1916):

ds2 = −
(

1− 2GM•
c2R

)
dt2 +

(
1− 2GM•

c2R

)−1

dR2 +R2(dθ2 + sin2 θdφ2), (1.23)

where (R, θ, φ) are the ordinary spherical coordinates, while c is the speed of light.

5The no-hair conjecture (known also as “no hair theorem”) for black holes does not prevent
black holes to have an electric charge Q, however if that was the case they would be rapidly
neutralized attracting opposite charged particles in the surrounding material (Narayan 2005).
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The Schwarzschild metric in Eq. 1.23 has two singularities: one for R = 0, the
other for R = 2GM/c2. The first singularity (R = 0) is a singularity of the-space
time itself, where the curvature in infinite. The second is a singularity of the
metric and can be eliminated providing a change of coordinates (Kruskal 1960),
implying that also geodesics crossing this singularity can be studied. This radius
defines a spherical surface that characterize the event horizon of a non-rotating
black hole:

Rsch ≡
2GM

c2
∼ 3

(
M•
M�

)
km ∼ 2

(
M•

108 ·M�

)
au. (1.24)

representing in fact the “size” of the black hole.
Solving Einstein field equation with axial symmetry provides instead the space-

time around rotating black holes (Kerr 1963). The event horizon for this type of
black holes is located at the Kerr radius(Teukolsky 2015):

Rkerr ≡
1

2

(
Rsch +

√
R2

sch − χ2
sR

2
sch

)
. (1.25)

where 0 ≤ χs ≤ 1 is the dimensionless spin of the black hole, which relates to the
black hole spin S as

S = χs
GM2

•
c

s. (1.26)

Note that the requirement χs ≤ 1 sets a limit for the maximum spin a black
hole can have. This enforces the principle of causality at the event horizon of a
maximally spinning black hole (χs ≤ 1→ vrot,BH = |S|/(M•Rkerr) ≤ c).

Finally, we note that the notion of “gravitational radius”

Rg =
GM•
c2

(1.27)

is widely used as a characteristic length scale in the context of black hole physics,
regardless of the black hole spin (note however that value of Rg is in fact the Kerr
radius Rkerr = Rsch/2 of a maximally spinning χs = 1 black hole).

From the celestial mechanics point of view, as long as the semi-major axis of the
orbit is a� Rg, black holes behave as pointlike masses in the context of Newtonian
gravity for the material in orbital motion around them. When a . 102 – 103Rg

relativistic correction cannot be neglected and processes such as the emission of
gravitational waves and frame dragging need to be taken into account in order to
properly describe orbital motion of particles around black holes.

An important concept that has to be introduced is that of “innermost stable
circular orbit” (ISCO). It represents the ultimate orbit, in terms of separation
from the black hole, at which circular orbits are stable. Below that separation no
stable orbits are allowed and the material gets “swallowed” by the black hole as
soon as it moves from its circular motion. The distance from the black hole at
which this orbit is located is generally referred to as RISCO.

It can be shown that if the motion of the material is prograde with respect to
the spin of the black hole Rg . RISCO . 6Rg; in particular RISCO = 6Rg when
χs = 0 and RISCO = Rg when χs = 1. If the material is on a retrograde orbit with
respect to the spin of the black hole RISCO can grow up to RISCO = 9Rg.
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For practical purposes, it is useful to write RISCO as

RISCO = k(χs)Rg (1.28)

where k(χs) is a proportionality factor that depends on the dimensionless spin.

1.3.1.1 Energetics of accreting black holes

Using the dissipation rate for accreting objects we derived in Eq. (1.22), substi-
tuting Rin = RISCO we obtain the power released by a black hole accreting at a
rate Ṁ

Ėdiss,• =
1

2

GM•Ṁ

k(χs)Rg
=

1

2

Ṁc2

k(χs)
. (1.29)

It is interesting to note that the process of accretion on to black holes is second
only to the direct annihilation matter-antimatter as the most efficient mechanism
to convert mass into energy. The maximum efficiency is reached for maximally
spinning black holes where Ė ∼ Ṁc2/2.

In general, the amount of energy dissipated contributes to the heating balance of
the disc. However, determining the thermal structure of the disc needs necessarily
to account for the optical properties of the material, in order to determine whether
the energy is retained in the disc or rapidly radiated away.

An important consequence of this is that since a fraction ε of mass is converted
in energy during the process of accretion, only a fraction 1 − ε of the total gas
inflow Ṁ contributes to the mass growth of the black hole, i.e. the mass growth
rate of the black hole Ṁ• is given by (see also Eq. 1.35)

Ṁ• = (1− ε)Ṁ. (1.30)

The quantity ε is generally referred to as radiation efficiency. Although Eq. (1.29)
suggests that ε = [k(χs)]

−1, the real value of ε is actually only ε . [k(χs)]
−1.

Indeed, the full general relativistic treatment of the problem provides some small
deviations from this first order estimate, due to the fact that the classical expres-
sion of the binding energy of the material (used in the derivation) is not a reliable
approximation at such close distances from the black hole (Bardeen 1970, or see
the textbook Frank et al. 2002 for a simpler discussion).

1.3.1.2 Limiting the accretion rate: the Eddington luminosity

The large amount of energy produced during the process of accretion of material
on to the black holes (see Eq. 1.29) provides a radiation pressure that quenches
the infall of the material. This sets a limit on the luminosity of an object, that
depends exclusively on its mass, in order to allow the material to be accreted. This
limit can be computed balancing the force exerted by a photon on to a nucleus of
the infalling gas with the gravitational pull it undergoes.

We compute the luminosity limit for the case of spherical accretion, we will
discuss its applicability to the disc case below.

We use the following assumptions: the infall of the material is spherical; the
interaction between the radiation and the gas occurs through Thomson scattering;
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the material is fully ionized hydrogen. This last assumption is perfectly reasonable
since radiation pressure becomes dominant with respect to thermal pressure much
above T > 104 K. However, such an assumption is necessary since the momentum
transported by photons needs to be transfered to protons, although photons only
interact with the electrons: the overall charge conservation of the plasma of a
neutral plasma implies that electrons drag with them also protons.

We balance the force exerted by the radiation on a proton with the gravitational
force

LEdd

c

σT

4πR2
=
GM•
R2

mp (1.31)

where LEdd is the Eddington luminosity, c is the speed of light, σT is the Thomson
scattering cross section and mp = 1.6726217 × 10−24 g is the proton mass. We
recast this last equation in order to obtain

LEdd ≡
4πGM•mpc

σT
' 1.2 · 1038

(
M•
M�

)
erg · s−1. (1.32)

Assuming that the luminosity produced is given by LEdd = εṀEddc
2 we get

ṀEdd ≡
LEdd

εc2
∼ 2.1× 10−4

(
M•
M�

)( ε

0.1

)−1
M� yr−1. (1.33)

It is important here to remark some important aspects of these results. Firstly,
the Eddington limit is on the luminosity: as a consequence the accretion limit is
inferred only after the assumption that L = εṀc2, i.e. an extremely high effi-
ciency in converting mass into energy, which is obviously not the case for systems
not involving black holes. Secondly, the assumption of spherical symmetry is a
strong assumption, therefore the real accretion limit for discs might be significantly
different from the nominal Eddington accretion rate.

1.3.2 Stellar black holes

Stellar mass black holes are a class of black holes with masses 3M� . M• .
102M� and are considered the end point of the life of massive stars. Stars with
masses6 M? & 9 M� end their life when their cycle of nuclear reactions produces an
iron 56Fe core that cannot produce energy by igniting nuclear fusion into heavier
elements. The lack of production of energy in the core of the star prevents the
maintenance of the hydrostatic equilibrium and the star rapidly collapse. This
triggers a complex sequence of physical processes whose outcome is the explosion
of the star in a type II supernova event and the formation of a compact object
with a radius of a few kilometers: a neutron star or, if originally the star was
sufficiently massive, a black hole. Determining what is the initial mass of a star in
order to form a black hole depends mainly on two issues: what is the maximum
mass for which hydrostatic equilibrium in a neutron star can be achieved, and how
much mass the star loses throughout its life.

6Stars below this threshold do not produce massive enough cores to collapse, and end their
lives as white dwarfs (Heger et al. 2003).
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The maximum mass for which pressure balances the self-gravity in a neutron
star can be computed using the general relativistic equation for hydrostatic equi-
librium (Tolman 1939; Oppenheimer & Volkoff 1939) coupled with a prescription
for the equation of state (i.e. a prescription for how pressure depends on the local
properties within the neutron star), that however it has not been unambigously
determined yet. Currently, different equations of state predicts this limit to be
2 M� .MNS,max . 2.5 M� (Özel & Freire 2016).

Concerning the second issue, the mass loss throughout the life of a star depends
on its initial mass M? and its metallicity Z.

Finally, it is very important to note that, for stars with initial masses 135 M� .
M? . 260 M� and sufficiently low metallicities Z, no remnants form at all; these
stars undergo the so called “pair-instability” (Heger et al. 2003; Woosley et al.
2007). If the star is sufficiently massive, the γ photons produced in the star core
are sufficiently energetic to produce couples e+– e− when interacting with the
nuclei. This lowers the thermal pressure (since part of the energy of the photon
is temporarily transformed into electron and positron mass), the core shrinks
while its temperature and nuclear density grow, further increasing the efficiency in
the production of couples e+– e−. This process triggers an uncontrolled increase
of the core temperature associated to the ignition of a runaway thermonuclear
process that leads to the explosion of the star without leaving remnants. As
consequence, a hole in the black hole mass distribution is expected for masses
ranging 52 M� .M• . 133 M� (Woosley 2017).

1.3.3 Supermassive black holes

Supermassive black holes are a class of black holes with masses ranging 106M� .
M• . 1010M�. These compact massive objects have now been long recognized to
power the intense electromagnetic emission (LAGN & 1045 erg s−1 ≈ 1012 L�) from
the central regions of many galaxies (Active Galactic Nuclei, AGN) (Lynden-Bell
1969).

The origin of supermassive black holes is still a highly debated topic. The
main problem with their formation mechanism is that it has to account for the
observation of extremely bright sources, that are consistent to be powered by black
holes M• & 109 M�, beyond redshift z = 7 (e.g., Mortlock et al. 2011; Bañados
et al. 2018), i.e. when the Universe was younger than 1 Gyr old (Volonteri 2012).
A model able to create such massive compact objects within timescales as short
as 1 Gyr, is challenged by the large amount of energy that must be irradiated in
order to allow the accretion of material on to the black hole (see Sec. 1.2). Indeed,
there exists a limit value for the accretion rate (ṀEdd ∝ M• Eddington limit for
the accretion, see Sec. 1.3.1.2) that represents the maximum accretion rate before
the outward moving photons produce a radiation pressure that quenches the infall
of the material on to the black hole. Given the linear dependence of the Eddington
limit on the black hole mass, the evolution of the black hole mass with time M•(t)
can be written as

M•(t) = M0 exp

(
1− ε
ε

fEdd
t

0.45 Gyr

)
(1.34)
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where M0 is the initial mass of the black hole seed, ε is the radiation efficiency,
i.e. the fraction mass that is radiated away as photons energy (see the end of
Sec. 1.2 for further details), fEdd = Ṁ•/ṀEdd is the Eddington fraction (fEdd = 1
indicates accretion at the Eddington limit, see Sec. 1.3.1.2). This equation can
be recast as

t = 0.45 Gyr× ε

1− εf
−1
Edd ln

(
M•
M0

)
(1.35)

From Eq. (1.35) we see that three parameters rule the mass growth timescale of
black holes: the accretion rate fEdd, the seed mass M0 and the radiation efficiency
ε. In order to reach M• ≈ 109 M� in 1 Gyr it is necessary to require high fEdd ∼ 1,
high seed masses and low radiation efficiencies ε.

On the one hand, it can be shown that the lower is the spin of the black hole,
the lower the radiation efficiency is: in particular, Schwarzschild black holes have
ε = 0.06 growing to ε ≈ 0.4 for maximally spinning Kerr black holes. This implies
that if the spin of the black hole is low enough, its mass growth rate might be
sufficient to form massive black holes in less than 1 Gyr, if the accretion rate is
always close to Eddington.

However, even starting with a non-spinning black hole, if the black hole is fed by
an accretion disc, when the material is accreted, the spin of the black hole grows
by the same amount as the angular momentum of the material at the ISCO. This
implies that, as the mass of the black hole increases, also its radiation efficiency
does, slowing down its mass growth rate. A possible solution to prevent this
process is that the accretion of material on to the black hole occurs through a
series of randomly oriented accretion events, this would prevent the black hole
spin and radiation efficiency to grow (chaotic accretion, King & Pringle 2006).

In this respect we also note that some works have shown that, although the
luminosity cannot be super-Eddington (the validity of this limit has been put into
question by Sakurai et al. 2016,), very high accretion rates (Ṁ & 1000LEdd/c

2)
can be achieved whenever photons are dragged/advected into the black hole by the
inflow of material (Begelman 1979). This mechanism is called “hyperaccretion”
and in fact it translates in very low values of ε allowing very high accretion rates
but maintaining relatively low luminosities (some examples of recent works on the
subject are Park & Ricotti 2011, 2012; Inayoshi et al. 2016; Sakurai et al. 2016;
Begelman & Volonteri 2017; Jiang et al. 2017).

On the other hand, the production of massive seeds M0 relies on two main
mechanisms (see Sesana 2012; Volonteri 2012 for a review):

• Primordial massive stars: Population III (PopIII) stars (Madau & Rees
2001), are stars formed in the the primordial, metal poor, environment.
In such a metal poor environment, cooling and fragmentation are very inef-
ficient, resulting in the formation of massive stars M? & 260 M�.

PopIII stars were expected to leave at the end of their evolution black holes as
massive as M• ∼ 100 M� that can act as seeds M0 for the further accretion.
However, more recent work found that during the process of Pop III stars
fragmentation is more efficient than before believed implying that the masses
of PopIII remnant black holes are actually much lower (Greif et al. 2011),
making in fact this mechanism not effective in order to form massive seeds.
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Runaway mergers of PopIII stars have been shown to possibly solve the
problem, forming black hole seeds with masses M0 ≈ 103 – 105 M� (Omukai
et al. 2008; Devecchi & Volonteri 2009; Davies et al. 2011; Katz et al. 2015).

• Global instabilities: under this category goes a large number of different
models able to bring a very large amount of gas toward the centre of primor-
dial dark matter halos (Oh & Haiman 2002; Bromm & Loeb 2003; Begelman
et al. 2006; Lodato & Natarajan 2006; Begelman 2010; Latif et al. 2013).

These models essentially differ among them for the physical processes in-
volved to provide the infall of material: pre-galactic discs that become glob-
ally gravitationally unstable might collapse without fragmenting, producing
supermassive stars with masses up to 105 M� provided that the accretion
rate is Ṁ & 0.1 M�yr−1 (Hosokawa et al. 2013; Haemmerlé et al. 2018)
that become general relativistic unstable (Chandrasekhar 1964) when their
masses reach M ≈ 105 M�. In other cases, at the end of the hydrogen burn-
ing, super-massive star cores can collapse forming black holes that accrete
material from their envelopes at a super Eddington rate (quasistar, stars
with a black hole core sustained against collapse by the radiation pressure
produced by the accretion on its black hole core, Begelman et al. 2006; Begel-
man 2010). Analogously, a large amount of material might be driven toward
the centre of pre-galactic discs when they become gravitationally unstable:
gravitational instability promotes the redistribution of the gas angular mo-
mentum allowing fast formation of dense black hole seeds M0 ≈ 105 M�
(Lodato & Natarajan 2006), provided that the disc does not fragment halt-
ing the gas inward motion. The key assumption for these mechanisms to
be effective is that the cooling mechanisms of the gas are inefficient; this
requirement is satisfied in the metal poor young Universe where a strong
UV background (Lyman-Wener background), produced by young stars, pre-
vents the formation of molecular hydrogen H2 (Haiman et al. 1997). Galaxy
mergers might promote high inflow rates of gas toward the central regions
of merger remnants, possibly triggering the formation of super-massive stars
also in galaxies with solar metallicities (Mayer & Bonoli 2019).

The amount of material “feeding” the black hole is balanced by the radiation
produced during the process of accretion, that acts as a “feedback” mechanism
(see Wise 2018 for a recent review). This implies that the accretion rate on to
the first black holes might be significantly reduced with respect to fEdd ≈ 1 (e.g.,
(Pezzulli et al. 2017)). Investigating the feeding-feedback cycle can be done using
numerical simulations that include all the physical processes that are relevant to
this aim, in order to understand how the mass growth of black holes self-regulates
(e.g., Sijacki et al. 2007; Cielo et al. 2018).

Finally, the growth of the supermassive black hole mass has been suggested to
stop when its mass reaches M• ≈ 5 × 1010–2.7 × 1011 M� since its event horizon
reaches the fragmentation radius of the accretion disc that is feeding it (King 2016;
Inayoshi & Haiman 2016). Indeed, beyond this radius, the disc surrounding the
black hole is expected to be gravitationally unstable, to clump and form stars,
halting the accretion on the black hole.
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1.4 What are protoplanetary discs?

Giant molecular clouds, as the name suggests, are large agglomerates (size ∼
50 – 100 pc and mass 104 – 106 M�) of gas (mainly hydrogen in molecular form
H2) and dust with a typical dust mass fraction of Mdust ∼ 10−2Mgas (dust-to-gas
ratio in the interstellar medium, ISM). The hydrostatic equilibrium of a molecular
cloud depends on the balance between its pressure and its self-gravity. For a fixed
temperature T , assuming a constant density ρ throughout the cloud, perturbations
of the gas density are unstable with respect to gravitational collapse when the
length-scale of the perturbation exceeds the Jeans length

λJeans =
2πcs√
4πGρ

, (1.36)

where cs =
√
kBT/µmp is the sound speed in the cloud (assuming an isothermal

equation of state), kB = 1.3806488×10−16 erg K−1 is the Boltzmann constant, mp

is the proton mass and µ is the mean molecular weight. Typical clouds have a min-
imum temperature of T ∼ 10 K, mean molecular density µ = 2.3, providing sound-
speeds of the order of cs ∼ 2× 104 cm s−1, and densities ρ ∼ 10−17 – 10−19 g cm−3

(Lodato 2008). This implies a typical Jeans length of the order of λJeans ∼
0.1 – 1pc, implying a mass of the unstable core Mcore ≈ ρλ3

Jeans ∼ 0.1 – 1 M�.
This qualitatively tells us that a giant cloud will fragment in individual small
collapsing cores, each having a mass of ∼ 1M�. The fragmentation of a giant
molecular clouds, and the collapse of cloud cores constitute the very beginning of
the process of star formation.

It is important to remember that despite our previous simplifying assumption
of constant density throughout the cloud, giant molecular clouds are far from
being homogeneous objects (McKee & Ostriker 2007). In particular, the den-
sity and the velocity field span a very broad range of values, showing a char-
acteristic Kolmogorov (1941)-like turbulent energy cascade at different scales.
For this reason, cloud cores always have a certain amount of intrinsic rotation
Ωcore ∼ 10−14 – 10−13 s−1. This provides an initial angular momentum per unit
mass h ≈ Ωcoreλ

2
Jeans ∼ 1021 – 1022 cm2 s−1. The conservation of the total angular

momentum of the cloud core causes the growth of the rotational velocity, until the
collapse is stopped as the centrifugal balance is achieved. The geometry of this
new stable configuration is a disc-like distribution of gas and dust in Keplerian
motion around a central protostar, a circumstellar disc (see Fig. 1.3). Equating
the angular momentum per unit mass expected for Keplerian orbits (see the end
of Sec. 1.1) to the initial total angular momentum of the cloud core allows us to
determine the typical length-scale Rcirc (called “circularization radius”) at which
the collapse stops:

Rcirc =
h2

GM?
∼ 102 – 104 au, (1.37)

where M? is the mass of the central mass; the reference values refer to M? = 1 M�
as a mass of the central star. This result is consistent with the observation of
gas accretion discs extending up to 103 au surrounding typical stars with masses
≈ 1M� in region of star formation.
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Turbulence, sustained by some form of instability (Balbus & Hawley 1998),
provides an effective mechanism to transport outward the angular momentum
and dissipate the kinetic energy sustaining the centrifugal balance in the disc (see
Sec. 2.3), enabling the accretion of material on to the central star.

In general, in these early stage of star formation these systems are often re-
ferred in the literature as “young stellar objects” (YSO); However, within the
aforementioned discs, the formation of planets is expected to take place, and for
this reason circumstellar discs are often referred to as “protoplanetary discs”. As
a consequence, in order to emphasise the process of planet formation, another
common denomination for YSOs presenting discs is “protoplanetary systems”.

1.4.1 Classes of young stellar objects

Young stellar objects are divided in four main classes (André et al. 2000) based
on their spectral energy distribution (SED), that provides important information
about the temperature and mass displacement. Each class is believed represent a
different stage of the evolution of young stellar object (from early to late). The
parameter used for the classification is the so called IR slope:

αIR =

(
dλFλ
dλ

)
λNIR/MIR

(1.38)

that represents the slope of the SED at wavelengths λNIR/MIR = 2.4 – 25µm. The
classification is as follows (see also Fig. 1.2, and the textbook Armitage 2010 for
a deeper discussion):

• Class 0: This class represents very young, collapsing cloud cores enveloping
a very faint protostar. These sources do not show any emission at µm
wavelengths, but are instead characterized by an optically thick black body
emission from the cold outer layers of the envelope at (sub)mm wavelengths.
This class can be considered the time t = 0 of evolution.

• Class I: These sources are characterized by a positive IR slope αIR & 0.
The radiation coming from the central star heats up the dust component of
the collapsing cloud core that re-emits it at lower wavelengths. The star is
still partially embedded in the collapsing cloud. This phase lasts for the first
t ≈ 105 yr of life of the system.

• Class II: When most of the gas + dust envelope has been accreted, the
radiation of the protostar becomes visible at optical wavelengths, while at
longer wavelengths the electromagnetic emission is largely dominated by
the IR and (sub)mm emission from the disc. This provides the so called
IR excess that characterizes protostars surrounded by protoplanetary discs.
Objects in Class II show a typical −4/3 . αIR . 0. Class II objects often
show an ultraviolet (UV) excess, with respect to the pure emission of the
star photosphere, associated with the accretion of material on to the star.
T-Tauri stars and protoplanetary systems, are typical objects to be part of
this class. This evolutionary stage lasts up to 10 Myr.
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Figure 1.2: Sketch of the geometry of the system associated with the corresponding SED
in the four different YSO classes. Adapted from the original picture in Armitage
(2010).

• Class III: As the time passes the disc is progressively dispersed or accreted.
A very small amount of material is left surrounding the protostar. Some sys-
tems show in their SEDs the signatures of small dust rings at large distance
from the star (“debris discs”). In this class the IR slope steepens to values
αIR . −4/3 typical of pre-main sequence stars and the object lies above
the main sequence when located in the Hertzprung-Russell color-magnitude
diagram.

This SED based classification is not absolute, the geometry or the inclination
of the system might in principle alter the optical depth between the observer and
the star causing very inclined Class II objects to be mistaken for a Class I or vice
versa (McKee & Ostriker 2007).

We finally report that a number of systems have been observed to show the
typical Class II excess at long wavelenghts but characterized by a flux reduction
at near-mid-infrared wavelengths (NIR/MIR, λ ≈ 1 – 20µm) Strom et al. (1989);
Skrutskie et al. (1990). These systems have been interpreted to be discs hosting a
hole in the distribution of µm sized dust grains and have been suggested to be a
population of sources in transition from Class II to Class III (transition discs, see
Chap. 8 for a more thorough discussion). More generally, Class II objects have
recently attracted a lot of attention from the scientific community thank to the
advent of new observational facilities and instruments, such as the Atacama Large
Millimetre Array (ALMA) and the Spectro-Polarimetric High-contrast Exoplanet
REsearch (SPHERE) instrument mounted on the Very Large Telescope (VLT).
The high resolution images these facilities have provided, have shown a large
variety of structures (see Fig. 1.3) that have been mainly associated with planet
formation, in fact setting the beginning of a new era for astronomy in which the
process of planet formation can be directly probed through observations.

1.4.2 Planet formation in protoplanetary discs

In this section we briefly review the current theory of planet formation. Two main
mechanisms are generally invoked: gravitational instability and core accretion (see
the textbook Armitage 2010 or Armitage 2018 for a recent review). In the first,
the dust component of the disc plays just a marginal role while the dynamics of
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Figure 1.3: Gap, cavities, spirals, shadows, and other non axisymmetric features ob-
served in protoplanetary discs at different wavelengths. Top row, SPHERE NIR
resolved images of some protoplanetary discs, obtained using polarimetric differ-
ential imaging technique (PDI). From left to right: HD 142527 (SPHERE, Very
Broad Band ∼ 600-900nm, original image from: Avenhaus et al. 2017); HD 135344B
(SPHERE, band Ks, original image from: Garufi et al. 2013); HD 100453 (SPHERE,
band I’, original image from Benisty et al. 2017). Bottom row, ALMA resolved im-
ages in the (sub-)mm waveband of some protoplanetary discs. From left to right: HL
Tauri (ALMA, band 6, original image from: ALMA Partnership et al. 2015); MWC
758 (ALMA, band 7, original image from: Dong et al. 2018); Elias 2-27 (ALMA,
Band 6, original image: B. Saxton (NRAO/AUI/NSF), Pérez et al. 2016).

https://www.eso.org/public/images/potw1640a/
https://www.eso.org/public/images/potw1640a/
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gas drives the entire process; in contrast, the second strongly relies on the complex
dynamics of dust and its aerodynamical coupling with the gas.

1.4.2.1 Gravitational instability

The gravitational instability scenario for planet formation prescribes that planet
formation is a consequence of disc fragmentation when the gaseous disc is massive
enough to become gravitationally unstable. The local instability criterion for a
disc requires that the Q-parameter is lower than unity7:

Q =
csκ

πGΣ
. 1, (1.39)

where cs is the local sound speed, G is the constant of gravitation, Σ is the local
disc surface density and κ is the epicyclic frequency of the gas, that is defined as
follows

κ2(R) =
1

R3

∂

∂R
[R2Ω(R)]2, (1.40)

where Ω(R) is the rotation frequency profile of the disc8. It can be shown that
Eq. (1.39) implies that a disc is locally unstable if

Md

M?
&
H

R
, (1.41)

where Md is the disc mass, M? is the star mass and H/R is the disc thickness-
radius aspect-ratio.

Besides the stability criterion, an appropriate description of the gas cooling
mechanism needs to be provided in order to study the progression of the gravi-
tational instability: if the gas is not allowed to cool, when it contracts under the
effect of self-gravity, the material increases its temperature improving the stability
of the system. Furthermore, the onset of the gravitational instability excites spiral
density waves that steepens into shocks providing a source of heating and, again,
causing the system to stabilize. In this context, the parameter

β = tcoolΩ(R) (1.42)

is introduced with the aim to provide a simple toy model for the cooling, where
tcool sets the timescale for one e-fold reduction of the internal energy of the gas
(Gammie 2001).

Fragmentation is expected to occur when the criterion in Eq. (1.39) is largely
satisfied (Q << 1). However, if the cooling timescale is sufficiently long (β � 20),
the system self-regulates at values Q ≈ 1, promoting the formation of a large scale
spiral density structure but preventing the disc fragmentation.

A large number of numerical simulations (see Kratter & Lodato 2016 for a recent
review) have shown that values β ∼ 10 – 20 provide the threshold for fragmenta-
tion. An estimate of the typical mass of the fragments can be given by noticing

7This result can be obtained from Eq. (B.4.1), which describes the dispersion relation of
density waves in discs.

8Note that for Keplerian discs κ = ΩK where ΩK is the Keplerian frequency in Eq. (1.17).
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that the most unstable wavelength when Q = 1 is λ = 2πH, where H is the disc
thickness. Then the fragments mass Mfrag can be readily obtained by

Mfrag = πΣλ2 = 4π

(
H

R

)2

Md. (1.43)

which, requiring that the disc is gravitationally unstable, leads to

Mfrag = 4π

(
H

R

)3

M? ≈ 10 MJ. (1.44)

Even though Eq. (1.44) represents just a crude estimate of the order of magnitude
of fragment masses, we can conclude that the gravitational instability can explain
mainly the formation of massive planets. However, it should be noted that the
core of objects with masses & 13 MJ is sufficiently hot to ignite the nuclear fusion
of deuterium making them in fact brown dwarfs. Given the relatively high mass
of the fragments, it is still debated whether the onset of gravitational instability is
more likely to be responsible for the formation of massive planets (Durisen et al.
2007) or to origin low mass star companions of the central proto-star (Zhu et al.
2012a).

1.4.2.2 Core accretion

The mechanism of core accretion models the formation of planets as a four step
process:

1. Dust Growth: µm-sized dust grains undergo multiple collisions within the
disc. Van der Waals or electrostatic forces allow the grains to stick together
forming larger grains during this process dust grains grow from ∼ µm to
mm in size. This process, often referred to as “collisional coagulation”,
can be indirectly probed by observations: the emission at long wavelengths
((sub)mm-radio) from protoplanetary systems is optically thin; since the
opacity is sensitive to the size distribution of dust grains, by measuring the
slope of the SED at those wavelengths it is possible to collect information
about the dust population.

2. Formation of “planetesimals”: The mechanisms leading from millimetric
grains to the formation of planetesimals (bodies of ∼ 1 km in radius) are still
poorly understood (see Youdin 2010, for a review). The progress of dust
growth through collisional coagulation from mm to km sized solids is far
from being straightforward. The ability of two particles to “stick” together
depends on the electrostatic binding energy and on the kinetic energy of the
collision. It has been shown that electrostatic forces cannot stick effectively
particles with sizes ≈ mm for collisions at velocities & 1 m s−1 (Blum &
Wurm 2008); considering the gravitational forces, bodies with size ∼ 1 m, the
binding energy is not sufficient to stick particles even for collision velocities
≈ 1 mm s−1, in contrast with typical collision velocities of 10 m s−1 (Youdin
2010). Furthermore, the migration of meter sized bodies has been shown
to occur on timescales of the order of ∼ 100 yr (Weidenschilling 1977),
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so even in the case of effective collisional coagulation of dust grains the
formation of planetesimals must be extremely fast, in contrast with the very
long timescales required for the coagulation of dust grains (this issue is often
referred to as the “meter size problem”).

A possible solution to this issue is the onset of drag instabilities, such as the
Goldreich & Ward (1973) or the streaming instability (Youdin & Goodman
2005; Jacquet et al. 2011). These promotes the formation of dust clumps in
turbulent flows, possibly leading to the rapid gravitational collapse of clumps
into planetesimals.

3. Formation of rocky cores: This phase consists in the further growth of
the size of planetesimals up to reach the size of terrestrial planets ∼ 1 M⊕,
or of giant planet cores (where M⊕ = 5.9722 × 1027 g is the Earth mass).
The growth in this phase is driven by the gravitational attraction and colli-
sion of dust grains on to already existing planetesimals. During this phase,
smaller bodies that orbit at sub-Keplerian velocities, due to their aerody-
namical coupling with the gas, collide with the surface of the planetesimal.
The gravity of the planetesimal focuses the trajectories of dust grains, in-
creasing its effective cross section (gravitational focusing). Drag effects on
to marginally coupled dust grains, called “pebbles” (size ∼ 1 cm), further
increase the accretion of material on to the planetesimal since, as they gain
velocity toward the planetesimal, the drag force dissipate their kinetic en-
ergy increasing the chances they become gravitationally bound to it (“pebble
accretion”, see Ormel 2017 for a review).

4. Core accretion: At the onset of this phase, the body has become a planet;
the aerodynamical coupling with the environment becomes negligible and
the disc-planet interaction mainly occurs through gravitational forces. In
this phase, if the core becomes massive enough from phase 3., its gravita-
tional field becomes sufficiently strong to retain an atmosphere, i.e. a core
envelope in hydrostatic equilibrium. As the core mass grows through fur-
ther collision with smaller planetesimals and a critical mass is reached of
≈ 10 M⊕, the planet enters a phase of runaway accretion which is modu-
lated by a circumplanetary disc. The accretion on to the planet is halted
only when the planet carves a sufficiently deep gap in the gas (see Chap.
4.1) or as a consequence of the disc dispersal.





Chapter

2

Accretion disc physics

Boards of Canada, Dawn Chorus

Free falling material (mostly hydrogen gas with a small fraction of dust and
other molecules or chemical elements) on to a point-like source of gravity, like a
star or a black hole, always has an initial amount of angular momentum. During
the free fall, the conservation of angular momentum increases the spinning motion
of the material. When the centrifugal balance is reached the free fall is halted.
When this condition is met, the geometry of the system consists of a central body
and a disc of material orbiting around it.

Once such a configuration is reached, no further infall motion of the material
would be in principle allowed unless some physical processes are able to dissipate
the gravitational energy and transport outward the angular momentum. The
turbulent motion of the gas has been suggested to drive the transport of angular
momentum toward the outer radii enabling the further infall of the material. For
this reason, these systems are called “accretion discs”. The disc structure strongly
depends on the type of central object around which the disc orbits due to the
different nature of the physical processes taking place in it.

In this Chapter we discuss the disc structure under a number of simplifying
assumptions, constituting the so called “classic accretion disc theory”. A number
of textbooks fully cover the topic (Frank et al. 2002; Pringle & King 2007; Armitage
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2010; Clarke & Carswell 2014). Here we will limit to present the main results and
concepts that will be useful throughout this manuscript.

2.1 Basic equations

We describe the gas as a continuous fluid. As a consequence, governed by fluid
dynamics equations1

∂ρ

∂t
+ (v · ∇)ρ = −ρ∇ · v, (2.1)

ρ

[
∂v

∂t
+ (v · ∇)v

]
= −∇p− ρ∇Φtot +∇ · S, (2.2)

ρ

[
∂u

∂t
+ (v · ∇)u

]
= p∇ · v + ρL, (2.3)

where ρ is the fluid density, v is the fluid velocity, u is the internal energy per unit
mass, p is the fluid pressure and L is the term accounting for heating or cooling
of the fluid per unit mass. The term ∇Φtot accounts for the acceleration due to
gravity, where Φtot is the gravitational potential.

In this and in the following sections Φtot = Φ? + Φsg has two contributions:
point-like objects, such as stars, planets or black holes, Φ?, and the self-gravity of
the fluid Φsg; the potential Φsg is computed solving the Poisson’s equation:

∇2Φsg = 4πGρ, (2.4)

where G is the universal constant of gravitation. Finally, S is the viscous stress
tensor, it reads:

Sij = η

[
∇jvi +∇ivj − 2

3
δij∇kvk

]
+ ζδij∇kvk; (2.5)

where η and ζ are the shear and bulk viscosity parameters, respectively. The
component Sij represent the flux of the j-th component of the momentum per
unit mass in the i-th direction, so that ∇jSij = aivisc is the acceleration in the i
direction due to the viscous forces.

It is useful for some purposes to define an additional quantity. Assuming a
barotropic equation of state (i.e., p(ρ)), we define the enthalpy h

h ≡
∫
dp

ρ
→ ∇h =

1

ρ
∇p, (2.6)

so that Eq. (2.2) can be written as

∂v

∂t
+ (v · ∇)v = −∇(h+ Φtot) +

1

ρ
∇ · S. (2.7)

1Note that for some purposes it is useful to state Eq. (2.2) in tensor notation as follows

∂vi

∂t
+ (vj∇j)vi = −1

ρ
∇j(pδij − Sij + Φtotδ

ij),

where δij is the Kroenecker delta.
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It is useful to note that a small variation of the enthalpy dh, relates with the
density as follows:

dh = c2
s

dρ

ρ
, (2.8)

where cs is the sound speed of the fluid defined as

dp

dρ
= c2

s . (2.9)

2.2 Classic accretion disc theory: the thin disc approx-
imation

The equations presented in the previous section can be simplified for our purposes
under a few assumptions:

• Axial symmetry: therefore, all the azimuthal gradients vanish in Eq. (2.1),
(2.2) and (2.3).

• The disc is thin: i.e., the disc height-to-radius aspect ratio H/R� 1.

• The disc self-gravity is negligible: the gravitational potential terms satisfy
Φ? � Φsg so that Φtot in Eq. 2.2 becomes Φtot ≈ Φ? ≡ Φ. It can be shown
that self-gravity can be neglected if the following relationship (equivalent
to require Q � 1 in Eq. 1.39) between the disc thickness and disc mass is
satisfied

Mdisc

M?
� H

R
. (2.10)

• The temperature profile of the disc is known: we can thus completely neglect
Eq. (2.3) prescribing a radial power law profile for the sound speed (cs ∝
R−q, i.e., T ∝ R−2q), and setting an equation of state for pressure p.

• Viscosity provides the angular momentum transport required to drive the ac-
cretion of material on to the central star: since only shear-forces are required
for this purpose (see textbooks Frank et al. 2002; Clarke & Carswell 2014)
and since molecular viscosity is negligible, bulk viscosity can be neglected,
i.e. ζ = 0 in Eq. (2.5). Under these assumptions, the only non-vanishing
term of the stress tensor is SRϕ. It is important to note that in real discs
the angular momentum transport appears to be driven by turbulence (see
Sec. 2.3).

Under these assumptions we can recast the Eq. (2.1) and (2.2) in order to
study the structure and evolution of the disc. Given the geometry of the system,
the best coordinate system to treat the problem is the cylindrical one (radius,
azimuthal angle and distance from the midplane, [R,ϕ, z]), setting the central
body in (R = 0, z = 0).
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2.2.1 Dynamics in 2D discs

We can assume that a thin disc behaves dynamically like a 2D system. This
assumption is reasonable as long as we can neglect the vertical motion of the gas
and the variation of vR and vϕ along the vertical direction. As a consequence,
adding the assumption that the viscous transport of angular momentum is a slow
process, the gas velocities satisfy the following scale relations

vz � vR � cs � vϕ. (2.11)

By vertically integrating the continuity equation (2.1) and Navier-Stokes equa-
tion (2.2), and applying the previous considerations, the dynamics of a thin ax-
isymmetric disc is fully described by the following set of simplified equations:

∂Σ

∂t
= − 1

R

∂

∂R
(RΣvR), (2.12)

Σ

[
∂vR
∂t
−
v2
ϕ

R

]
= −∂P

∂R
− Σ

∂Φ

∂R
, (2.13)

Σ

[
∂vϕ
∂t

+ vR
∂vϕ
∂R

+
vRvϕ
R

]
=

1

R2

∂

∂R
R2TRϕ, (2.14)

where Σ, P and Tij are the results of the operation of vertical integration of ρ,
p and σij , respectively2. The quantity ν = Σ−1

∫
z η dz is referred to as viscous

parameter and it quantifies the intensity of the viscous forces in the disc (see Sec.
2.3.1 for a deeper discussion).

2.2.2 Vertical and radial equilibrium

We discuss the vertical structure by imposing the vertical hydrostatic equilibrium
in Eq. (2.2), i.e. vertical pressure and gravity forces balance as follows

1

ρ

∂p

∂z
= −∂Φ

∂z
. (2.15)

Under the assumption of z � R, and using the definition of sound speed cs in Eq.
(2.9) the solution to the previous equation is

ρ(z) = ρ0 exp

(
−1

2

z2

H2

)
, (2.16)

where H = cs/ΩK and ρ0 is the density value at the midplane. This allows us to
define the disc aspect ratio as follows

H

R
=

cs

vϕ,K
, (2.17)

2We note that in this context it is straightforward to re-define the sound speed as cS = ∂P/∂Σ
instead of using the definition of the sound speed cs in Eq. (2.9). Throughout this thesis we will
keep referring to cS as cs.
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where vϕ,K = ΩKR is the Keplerian azimuthal velocity. The reader should note
that the disc aspect ratio is the inverse of the Mach number of the gas. Therefore,
requiring the disc to be be thin H/R � 1 implies also that the gas azimuthal
motion is highly supersonic.

Concerning the radial equilibrium, using Eq. (2.13) we can now study the
disc centrifugal balance. We require stationarity by setting the time derivative
∂tvR = 0. We obtain the following condition

v2
ϕ

R
=

1

Σ

∂P

∂R
+
∂Φ

∂R
. (2.18)

Using a globally isothermal equation of state, the definition of Keplerian velocity
vϕ,K and Eq. (2.17), Eq. (2.18) can be restated as follows

v2
ϕ = v2

ϕ,K

[
1 +

∂ ln Σ

∂ lnR

(
H

R

)2
]
. (2.19)

The result in Eq. (2.19) allows us to conclude that in accretion discs pres-
sure gradients alter the centrifugal Keplerian balance that would be expected for
pressureless material. In particular, under our assumptions, a negative pressure
gradient (i.e. ∂RΣ < 0, that is generally the case for unperturbed discs) provides
some additional support against the gravitational attraction toward the central
object, implying that the material have stable circular orbits with sub-Keplerian
velocity. In contrast, a positive pressure gradient requires a super-Keplerian ve-
locity for the material for establishing the centrifugal balance.

2.2.3 Angular momentum conservation and density evolution

In this section we discuss the conservation of angular momentum across the disc.
Combining equation (2.14) with (2.12), after a little algebra one gets

∂

∂t
(ΣRvϕ) +

1

R

∂

∂R
(RvRΣRvϕ) =

1

R

∂

∂R
(ΣνR3Ω′). (2.20)

This equation expresses the conservation of angular momentum: its time derivative
can be easily recognized in the first term in the l.h.s; the second term in the l.h.s.
constitutes the radial advection of angular momentum; finally, the term in the
r.h.s. is the flux of angular momentum produced by the disc viscosity.

2.2.4 Steady state solution

We now study the structure of a stationary disc. To do so, we neglect time
derivatives in Eq. (2.12) and (2.20). We then integrate them over the azimuthal
domain (given axial symmetry this is equivalent to multiplying the equation by
2π)

1

R

∂

∂R
(2πvRΣR) = 0, (2.21)

1

R

∂

∂R
(R2πvRΣR2Ω) =

1

R

∂

∂R
(2πνΣR3Ω′). (2.22)
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Given the steady nature of the system, these equations naturally prescribe the
introduction of two constants: the accretion rate Ṁ and the angular momentum
flux J̇ . The equations can be closed using the so called “no torque” boundary
condition J̇ = 2πvRΣR3

inΩ(Rin), where R = Rin is the location where Ω′ and, as a
consequence, the viscous torque vanish. Under these assumptions, it can be easily
shown that the profile of νΣ required in order to have steady accretion reads

νΣ =
Ṁ

3π

(
1−

√
Rin

R

)−1

. (2.23)

We note that Eq. (2.23) provides a very useful scale relation that relate the
disc properties with the accretion rate. In particular, at large radii (R � Rin),
the accretion rate Ṁ reads

Ṁ = 3πνΣ. (2.24)

2.2.5 Density evolution

Substituting Eq. (2.12) into Eq. (2.20), and using vϕ = ΩR we find that vR reads

vR =
1

RΣ(R2Ω)′
∂

∂R

(
ΣνR3Ω′

)
. (2.25)

Substituting back Eq. (2.25) into Eq. (2.12), one gets3

∂Σ

∂t
= − 1

R

∂

∂R

[
1

(R2Ω)′
∂

∂R
(ΣνR3Ω′)

]
, (2.27)

where (R2Ω)′ = d(R2Ω)/dR. Two things should be noted in Eq. (2.27). Firstly,
the density evolution of a viscous disc satisfies a diffusion equation. Secondly, a
necessary condition for the evolution of the disc is that ν 6= 0. This is kind of
obvious, since in absence of a mechanism able to transport the angular momentum
such as viscosity, each fluid element would remain unperturbed on its initial orbit.

A dimensional analysis of Eq. (2.27), allows us to introduce the typical timescale
for the disc viscous evolution

tν =
R2

ν
, (2.28)

that is generally referred to as “viscous time”.
For future reference, we introduce here the Reynolds number Re, that quantifies

the intensity of viscous forces (acting on a timescale tν) against inertial ones (acting
on a timescale tdyn = Ω−1)

Re =
tν
tdyn

=
ΩR2

ν
. (2.29)

The Reynolds number provides information about the level of turbulence in the
fluid: in particular, fluids with high Reynolds numbers Re & 105 are expected to
be turbulent.

3It is usual to see Eq. (2.27) recasted under the assumption that the disc is Keplerian, i.e.
Ω = ΩK (see Eq. 1.17)

∂Σ

∂t
=

3

R

∂

∂R

[
R1/2 ∂

∂R
(ΣνR1/2)

]
. (2.26)
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2.3 Turbulent angular momentum transport

In this section we discuss the physical mechanisms responsible for the disc evo-
lution. So far we used a viscous prescription to model the angular momentum
transfer, which is necessary for the accretion of material to occur on to the central
object. However, accretion discs are not viscous at all, and the concept of viscosity
here has nothing in common with that characterizing viscous fluids we are familiar
with on Earth.

The gas in accretion discs has a very low density. Computing the Reynolds
number (Eq. 2.29) using the viscous parameter ν = νmol of molecular viscosity4

of the gas we obtain, for typical disc parameters, that it easily exceed Re & 1014

(Frank et al. 2002).
Such a large value implies that disc viscous evolution driven by molecular vis-

cosity alone would take place on a timescale much longer than the age of the
Universe. Furthermore, from laboratory experiments we also know that fluids
with large Reynolds numbers are prone to become turbulent, i.e. characterized by
strong fluctuations in the velocity field.

Balbus & Hawley (1998) showed how the turbulent motion of the gas might be
able to promote the evolution of accretion discs. We summarize here the main
results of their model. We use the following velocity perturbations,

vϕ = vϕ,0 + uϕ, vR = vR,0 + uR, (2.30)

where we assume that the unperturbed velocity field in the disc has vR,0 = 0
and vϕ,0 = RΩ. Since we have shown that molecular viscosity has a negligible
contribution to the angular momentum transport, we assume that the disc is
completely inviscid (TRϕ = 0) and plug the perturbed velocity in Eq. (2.20). It
can be shown that the perturbed equation for angular momentum conservation
reads

∂

∂t
(ΣRvϕ) +

1

R

∂

∂R
[RuRΣRvϕ,0] = − 1

R

∂

∂R
[ΣR2〈uϕuR〉ϕ], (2.31)

where 〈·〉ϕ represents an azimuthal average. The previous equation clearly shows
that even without explicitly including any form of viscous transport of angular mo-
mentum, if a positive correlation between uϕ and uR is present (as a consequence
of turbulence), the term

WRϕ
Re = −Σ〈uϕuR〉ϕ, (2.32)

called “Reynolds Stress”, acts as the viscous stress tensor TRϕ.
However, having an high Reynolds number is only a necessary condition for the

onset of turbulence. A mechanism able to constantly inject energy in the fluid
in order to sustain the turbulent motion is required. If this was not the case,
turbulence would progressively decay as a consequence of dissipative effects.

Instabilities, such as the magneto rotational instability (MRI) or gravitational
instability (GI), the Rayleigh-Taylor (RTI) instability induced in magnetically

4νmol = λmfpv̄, i.e. the product between the average velocity v̄ of particles and their mean
free path to interact λmfp.
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arrested discs (MAD, Narayan et al. 2003; Marshall et al. 2018) and other mech-
anisms5 able to produce a non vanishing 〈uϕuR〉ϕ are possible candidates to be
the physical mechanisms responsible for the angular momentum transport and
evolution of astrophysical discs. In particular, in a magnetized fully ionized disc
the magnetic field B leads to the “Maxwell tensor”

WRφ
M = Σ〈uAφuAR〉z,φ, uA =

B√
4πρ

, (2.33)

where uA is called Alfven velocity. Analogously in presence of a perturbation of
the gravitational potential g, the stress tensor associated becomes

WRφ
g = −Σ〈ugφu

g
R〉z,φ, ug =

g√
4πGρ

, (2.34)

2.3.1 Turbulence as a form of viscosity: the α prescription

The discussion in the previous section necessarily triggers the following question:
is the usage of a viscous prescription (WRϕ → TRϕ) for the angular momentum
transport a reliable approximation of the real physical mechanisms behind it?

Since the viscous prescription provides a local energy dissipation, the energy
dissipation of the real physical mechanism must occur locally as well. This has
been shown to be true for MRI but not for GI, where the formation of spiral
structures produce a non-local dissipation mechanism (Balbus & Papaloizou 1999).

However, also for GI non-local effects are sometimes negligible (Cossins et al.
2009): spiral density waves produced in GI become supersonic when |Ω−Ωp|R ≈
cs. As soon as the waves become supersonic, they shock and dissipate the energy
they are carrying. This occurs close to the excitation region if the disc sound speed
is small. With simple calculations, it can be shown that the fraction of energy
deposited in the disc due to non-local effects is Enon−loc ≈ (Md/M?)Eloc, in discs
that are marginally stable (Q ≈ 1, see Eq. 1.39).

We conclude that in most cases disc turbulence can be treated as a local mecha-
nism, and for this reason using a viscous stress tensor is a reliable approximation,
whose magnitude is dictated by the only free parameter of TRϕ, i.e. ν.

In order to provide a natural scaling with the disc properties of ν, Shakura &
Sunyaev (1973) suggested the following parametrization

ν = αcsH, (2.35)

where α < 1 is required. Th̀ıs parametrization of ν is mostly known as the
“Shakura & Sunyaev (1973) prescription”. It straightforwardly follows from the
modeling of the “virtual” viscosity associated with turbulent flows6; in this situa-
tion ν depends on the size of the largest eddies (that cannot exceed H) and on the
velocity of the fluid in them (that cannot exceed cs, since supersonic turbulence
would be rapidly dissipated by shocks). Thus, csH represents the highest level of

5Among them, also the presence of a secondary object orbiting the primary produces velocity
field perturbations able to transport angular momentum.

6The turbulent motion accelerates the transport processes that would occur by mere diffusion
if the flow was laminar, requiring the addition of a “virtual” term.
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viscosity that can be sustained in the disc providing a scale relation for ν. Then
α < 1 is introduced as a free parameter to properly tune its magnitude.

The value of α varies significantly depending on the source. In fully ionized discs
α has been estimated to range between α ∼ 0.1–0.4 (King et al. 2007). In contrast,
partially ionized discs, such as those in protoplanetary systems, are more consistent
with α ≈ 0.001–0.01 (Andrews & Williams 2007). These estimates assume a
viscous Shakura & Sunyaev (1973) prescription, and infer α from measuring the
properties of outbursts and disc sizes comparing them with evolutionary models
with reliable disc parameters.

However, although MRI induced turbulence has been considered for more than
two decades the main physical mechanism responsible for the transport of angular
momentum through the disc, recent studies in the context of protoplanetary discs
have revealed that non ideal MHD effects, coupled with the low level of ionization,
suppresses the instability in regions 1 – 10 au.

Furthermore, the advent of the Atacama Large Millimetre Array (ALMA) have
allowed to directly put upper limits on the level of turbulence in protolanetary
discs, using the properties of molecular lines. Recently, using this technique, the
systems HD 163296 and TW Hya showed turbulent velocities lower than those
expected for MRI induced turbulence (Flaherty et al. 2015, 2018), putting an
upper limit of α . 0.007. It must be reported though that direct evidence of non-
thermal motion associated with turbulence have instead been detected at radii
R < 1 au and R > 40 au (see Najita & Bergin 2018 and references therein).

Magnetothermal winds have been suggested as a possible alternative mechanism
able to remove angular momentum also in laminar discs (see Turner et al. 2014
for a review). This last mechanism would cause the discs not to spread to large
radii, as would instead occur in the turbulent transport scenario. However, the
disc sizes inferred from observations still do not allow to discern whether one, the
other, or a combination of the two mechanisms are in action (Najita & Bergin
2018).

On the other hand, recently Lodato et al. (2017) showed that the correlation be-
tween mass accretion rate and disc mass in the Lupus star forming region (Manara
et al. 2016) can be reproduced with a simple viscous disc evolution model.

2.4 Active discs: gas temperature profile

As we discussed in Sec. 1.2, the material, in order to reach the central object,
dissipates its gravitational energy producing heat. In this section we derive the
temperature profile for a steady state disc where the heating mechanism is mainly
provided by the dissipative processes that allow the accretion (see the textbook
Frank et al. 2002 for a deeper discussion). These discs are said to be “active”,
since their heating comes directly from the physical processes taking place inside
them.

It can be shown that, assuming that the disc is Keplerian, the rate of dissipation
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per unit surface7 D is given by

D(R) =
9

4
νΣΩ2. (2.36)

It is easy to note that integrating Eq. (2.36) across the disc domain, and assuming
that the disc is in steady state (i.e. νΣ is set by Eq. 2.23) one gets

Ldisc =

∫ Rout

Rin

D(R)2πRdR =

∫ Rout

Rin

3

2

GM

R2
Ṁ

(
1−

√
Rin

R

)
dR =

1

2

GM

Rin
Ṁ.

(2.37)
That is perfectly consistent with the considerations about the accretion luminosity
discussed in Sec. 1.2

We equate (2.36) to the bolometric emission of a black body, we get the following
result:

2σSBT
4
s =

3

4π

GM

R3
Ṁ

(
1−

√
Rin

R

)
, (2.38)

where Ts is the surface temperature of the disc, σSB is the Stefan-Boltzmann
constant, and the factor 2 on the l.h.s. comes from the fact that the disc emits
radiation from two surfaces (both disc sides). Rearranging Eq. (2.38) one gets

Ts =

[
3

8πσSB

GM

R3
Ṁ

(
1−

√
Rin

R

)]1/4

, (2.39)

i.e. for R� Rin the radial dependence of Ts reads

Ts ' T0

(
R

R0

)−3/4

. (2.40)

If the disc is optically thick it is reasonable to assume that the production
of energy takes place in the midplane, where the disc is denser, and then it is
transported to the surface. It can be shown that the temperature in the midplane
relates with the surface one as

T 4
c '

3

4
τT 4

s , (2.41)

where τ is the mean optical depth (i.e. averaged on frequencies) computed using
the Rosseland mean opacity.

2.5 Passive discs: dust temperature profile

In some discs the accretion mechanisms produce an amount of energy that is too
small to represent the heating source. Such discs are said to be “passive”, since

7We note that this result can be obtained both from the relation Ė = TΩ, where T is the
torque exerted by viscous forces and Ω the gas orbital frequency, both writing the equations
ruling the evolution of kinetic energy 1/2ρv2 and noticing that the sink term Ėk,diss = σik∇kvi
appears.
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their heating is mainly provided by external processes like the presence of an ex-
ternal source of electromagnetic radiation (e.g. a star) or cosmic rays. In general,
properly estimating the temperature profile of a passive disc is a very complicated
task and has to rely on numerical radiative transfer simulations. Further details
about the discussion in this section can be found in Kenyon & Hartmann (1987)
and Chiang & Goldreich (1997) (we follow here the approach given in the textbook
by Armitage 2010).

Protoplanetary discs are typically passive discs. The main source of external
heating is the central star: the disc is generally flared, i.e. H/R grows with R, so
that the disc surface is directly exposed to the light irradiated by the star.

To first order, we assume that the disc is in LTE. To fulfill this requirement, we
assume that the radiation is absorbed by the dust and re-emitted at a different
wavelength with the same rate. We also assume that the optical depth is the same
for both the absorption and emission, and consider disc regions that are far enough
from the central star (R� R?), in order to neglect the effects of the finite size of
the star. Under these assuptions, we balance the energy absorbed and re-emitted
by a disc element of area ∆A

2

(
L?

4πR2

)
α∆A = 2σSBT

4
s ∆A, (2.42)

where the l.h.s. is the disc absorption rate of the star radiation, while the r.h.s. is
the luminosity of the radiation re-irradiated by the disc; Ts is the surface tempera-
ture of the disc, α is the flaring angle of the disc: the light of the star intercepts the
disc with an angle θ = π/2−α with respect to its normal direction, implying that
the effective absorbing surface ∆A is reduced by a factor cos(θ) → sin(α) ≈ α,
valid if α is small. The factor two on the l.h.s. and r.h.s. of Eq. (2.42) is due to
the fact that the disc absorbs and emits radiation on both sides. Assuming that
L? = 4πR2

?σSBT
4
? , Eq. 2.42 can be recast as

T 4
s = α1/4

(
R?
R

)1/2

T?. (2.43)

However, determining the temperature profile for passive discs is more compli-
cated than this simple analysis. In the derivation we just provided, the problem
was strongly simplified by the assumption that the disc is optically thick. In this
case the absorption and emission properties of the disc are exactly the same.

In passive protoplanetary discs, for a fixed size of the dust grains, the dust
absorbs more efficiently the radiation with frequencies around the peak of the
star SED than those at the lower peak frequency of the dust thermal re-emission.
This implies that the stellar radiation penetrates a thin surface layer of the disc
(τν? ≈ 1). However, the same layer is optically thinner at the peak frequencies at
which the disc thermally re-emit the radiation (τν,dst � 1). Therefore, the stellar
radiation heats up only the surface layer of the disc, but the emission from the
same hot layer is much less efficient. Furthermore, this implies also that the inner
layers (i.e. those that are not directly heated up by the star) contribute to the
radiation that emerge from the disc surface, further complicating the problem.

We can improve our estimate of the temperature profile, implementing the dif-
ferent emission efficiency between absorption and emission for dust grains. In this
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case, by comparing the absorption opacity with the emission one, it can be shown
that the temperature profile becomes

Ts =

(
R?
2R

)2/5

T?, (2.44)

where the factor 2 at the denominator of the r.h.s. comes from the fact that
dust grains absorb the radiation over an effective surface πa2

dst and emit from a
surface 4πa2

dst. The reader should keep in mind that this approximation neglects
the emission from the inner layers. An analytical estimate considering also that
contribution can be found in Chiang & Goldreich (1997) but it is beyond the scope
this thesis.

2.6 Multicolor black body spectrum

In the regime of optically thick emission, we can derive the electromagnetic spec-
trum of any source for any temperature profile of the disc assuming that the total
flux is composed by the summation of weighted black bodies at a certain temper-
ature. To do so, we integrate the black body brightness function across the disc
domain

Fν =

∫
Ω
Bν(T )dΩ, (2.45)

where Ω is the solid angle domain subtended by the source.

In most sources, it is reliable to assume that the disc temperature profile is a
radial power law

Ts ' T0

(
R

R0

)−q
, (2.46)

where T0 is the temperature at the reference radius R0. The flux Fν from such a
source thus gets the following scaling with the frequency:

Fν ≡
∫
Iν cos θ

RdRdϕ

D2
= 2π cos θ

2hν3

c2D2

∫ Rout

Rin

1

ehν/kBTs − 1
RdR ∝ ν3−2/q,

(2.47)
where we used that the solid angle subtended by an annulus of material is dΩ =
2π cos θRdR/D2, where D is the distance of the source and θ the disc inclination
(θ = 0 being a face on disc) and Ω is the solid angle. We note here that the
spectral energy distribution νFν (SED) is usually used instead of the mere flux
Fν , with the aim to have a direct measure of the relative amount of energy carried
at each wavelength. It follows straightforwardly that νFν ∝ ν4−2/q.

2.6.1 Thermal emission from optically thin discs

Suppose for simplicity that the disc is an isothermal slab of material at temper-
ature T . The properties of its surface emission at a given frequency ν will be
characterized by the following surface brightness function Iobs

ν

Iobs
ν = (1− e−τν )Bν(T ), (2.48)
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where Bν is the thermal black body emission function; τν = κνΣ is the “optical
depth”, where κν and Σ are the opacity and surface density, respectively.

From Eq. (2.48) one can clearly see that when the disc is optically thick (τν � 1)
the emission spectrum can be safely assumed to be that of a black body Iobs

ν = Bν .
In contrast, when the disc has τν � 1, the emission is said to be optically thin

and the surface brightness becomes8 Iobs
ν ≈ κνΣBν(T ). This has the important

consequence that the opacity κν and Σ shape the intensity of the electromagnetic
output at different frequencies. We also note that the requirement τν � 1 causes
the brightness from the disc surface to be always smaller than the black body case
(optically thick case).

The footprint of the opacity κν and surface density Σ in the emission makes the
optically thin emission a very powerful observational probe of the disc properties.
For example, making a reasonable assumption about the opacity function, it is
possible to infer the dust mass of the source from the intensity of the observed
flux. Analogously, from the dependence on ν of the observed flux it is possible to
infer κν .

A practical example of the application of this last property can be found in
protoplanetary systems, where the dust emission at radio wavelenghts, i.e. in the
Rayleigh-Jeans regime of the thermal dust emission (Bν ∝ ν2), carries information
about the dependence on ν of the opacity (κν ∝ νβ). In particular, observing a
slope Iobs

ν ∝ νξ provides the following relation with β (Testi et al. 2014)

β = ξ − 2. (2.49)

This is extremely useful, since it can be shown that β is strongly dependent on
the size distribution of dust grains, providing information about their growth and
population.

2.7 Dust dynamics

As previously mentioned, the material present in the interstellar medium is com-
posed by gas (mainly hydrogen, and other elements or molecules in a small frac-
tion) and dust (mainly composed by silicates, i.e. sand), typically representing
the 1% of the total mass of the material. Dust particles can be found in a very
large variety of sizes adst and shapes (see Testi et al. 2014 for a review about dust
properties).

Dust particles can be modeled as a pressureless and viscousless fluid. Their
dynamics is different from that of the gas, implying that we need to provide an
additional set of equations in order to account for the dynamics of a second fluid
species.

Gas and dust interact through the aerodynamical drag the gas exerts on dust
grains and vice versa, so that their evolution is not independent. The drag force
per unit volume reads

fD ≡ ρd
∆v

ts
, (2.50)

8Some frequencies might be optically thinner, while others optically thicker (e.g. this is the
typical situation of absorption/emission lines).
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where ∆v = vd − vg is the velocity difference between dust grains and the gas,
the subscripts g and d refer to gas and dust quantities, respectively; the variable
ts in Eq. (2.50) is the stopping time. This variable quantifies the intensity of
aerodynamical coupling between the gas and the dust; it represents the time it
takes for a particle moving with a velocity vd in a still fluid (vg = 0) to stop under
the action of the drag force fD: if ts is small the dust-gas coupling is strong.

The equations ruling the dynamical evolution of the dust density ρd and velocity
vd are

∂ρd

∂t
+ (vd · ∇)ρd = −ρd∇vd, (2.51)

ρd

[
∂vd

∂t
+ (vd · ∇)vd

]
= fD −∇Φtot, (2.52)

Since the aerodynamical drag depends on the relative motion of the gas with
respect to dust grains, one needs to add the term fD changed in sign in the gas
momentum conservation equation (2.2). Then Eq. (2.1), (2.2), (2.51) and (2.52)
have to be solved simultaneously as a system of equations.

Given the strong disproportion between the mass of the dust and that of the gas,
it is usually assumed that, to first order, the dynamics of the dust is altered by the
gas but not vice versa9. As a consequence, a question spontaneously arises: if the
dust is not expected to affect much the dynamics of the gas, which represents the
most abundant disc component, why are we interested in studying its dynamics?

For accretion discs surrounding black holes, in fact, the region that produces
the electromagnetic emission is so hot that dust grains are not allowed to remain
solid. As a consequence, the dynamics and electromagnetic emission of the system
can be fully described by one single gaseous component.

However, in protoplanetary systems, although the regions closer to the star are
hot enough to cause the dust sublimation (Rsubl . 0.2 au, e.g. Eisner et al. 2005),
at larger radii, the dust thermal emission of (sub)mm grains at radio wavelengths
and the forward scattering on µm grains of IR photons from the central star are the
main targets of the latest observational campaigns of close star forming regions.
The appropriate modeling of the dust dynamics is thus of paramount importance
for properly understanding the physical processes that are taking place at this
stage of the evolution of the system.

Below, we rapidly review the main results in the context of dust dynamics which
are relevant for this thesis.

2.7.1 Stopping time

Let us now briefly discuss the stopping time ts appearing in Eq. (2.50). Two main
regimes of drag can be identified depending on the the properties of dust particles
and of the environment in which they move: the Epstein and Stokes regimes.

9However, the reader should bear in mind that properly accounting for the backreaction of
the dust on the gas naturally leads to a large variety of phenomena, such as: the streaming
instability (Youdin & Goodman 2005; Jacquet et al. 2011), the destruction of vortices (Fu et al.
2014b) and in general alters the dynamics of the gas with respect to its pure viscous evolution
(Kanagawa et al. 2017; Dipierro et al. 2018b)
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The Epstein regime (Epstein 1924) is effective when the mean free path λ̄mfp of
gas molecules is larger than ∼ 0.5 times the size of the particle (λ̄mfp > 4/9adst).
In this regime the dust particles move in a very sparse medium with respect to
their size. The collisions with gas molecules or atoms occur from all the directions
with a net transfer of kinetic energy that depends on the temperature of the gas.

In contrast, the Stokes regime (Stepinski & Valageas 1996) is effective when
λ̄mfp < 4/9adst. In this case, gas particles behave as a fluid and the transfer
of kinetic energy to a dust particle occurs trough viscous friction rather than
through random individual encounters as in the Epstein regime. Within this
second regime, three additional sub-regimes can be found: Stokes I, Stokes II and
Stokes III depending on the Reynolds number of the flow around the grains Red

Red =
2adst|∆v|

νm
, (2.53)

where νm is the molecular viscosity coefficient. The stopping time in the four
regimes for one grain of mass mgr and density ρgr reads:

ts ≡
ρgr|∆v|
fD

=



adstρgr

csρg

√
πγ

8
Epstein

1

9

ρgradst

ρg|∆v|Red Stokes I Red < 1

1

9

ρgradst

ρg|∆v|Red
0.6 Stokes II 1 . Red . 800

2.3× 8

3

ρgradst

ρg|∆v| Stokes II Red > 800

, (2.54)

where γ is the adiabatic index.

The reader should note that the typical value of λ̄mfp in protoplanetary systems
is λ̄ ≈ 10 m × (10−13g cm−3/ρg) (Laibe et al. 2012). This implies that in most
situation the drag force is effective in the Epstein regime.

A useful dimensionless parameter for quantifying the intensity of the drag force
with respect to the dynamical forces in action is the so called “Stokes” number

St = tsΩ, (2.55)

where Ω is the Keplerian frequency. Stokes numbers St � 1 imply that the dust
is strongly coupled to the gas; in this case, the dynamics of dust particles is
indistinguishable from that of the gas. In contrast, in a dust-gas mixture with
St � 1, the coupling between gas and the dust is extremely weak, implying that
the two fluids evolve separately, without influencing each other. The regime of St ≈
1 is the so called “marginally coupled” regime, where the effects of the coupling
between dust and gas are expected to alter most significantly the dynamics of the
two fluids.

In the Epstein regime, using the relation csρg = ΣgΩ in Eq. (2.54) we can easily
notice that for typical protoplanetary discs with Σg = 1 g cm−2, grains with sizes
adst ∼ 1 mm have St ∼ 1.
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2.7.2 Dust trapping in pressure maxima and radial drift

It can be shown that the evolution of the difference ∆v between the velocity of
dust vd and the gas vg can be effectively rewritten as follows (Youdin & Goodman
2005; Laibe & Price 2014a)

∂∆v

∂t
+ (v · ∇)∆v = −∆v

ts
+
∇p
ρg
− (∆v · ∇)v +

1

2
∇
(
ρg − ρd

ρg + ρd
∆v2

)
. (2.56)

where v here is the so called “barycentric” velocity

v =
ρgvg + ρdvd

ρg + ρd
. (2.57)

It can be shown (e.g., see Laibe & Price 2014a) that assuming St � 1, i.e. dust
and gas are strongly coupled, Eq. (2.56) reduces to

∆v =
∇p
ρg
ts. (2.58)

This equation goes under the name of “terminal velocity limit”. It represents a
sort of stationary condition where the net acceleration ad − ag acting to increase
the velocity difference between dust and gas particles is rapidly balanced by the
drag (d∆v/dt = 0); in this situation, ∆v = ts(ad − ag) does not change in time
and dust particles move at constant velocity with respect to the gas, directed as
the pressure gradient in the gas. This has an extremely important consequence:
taking the divergence of Eq. 2.58, provides the following result (Youdin 2010)

∇ ·∆v = ∇ ·
(∇p
ρg
ts

)
, (2.59)

Assuming ρg = const (i.e. also ts = const) and ∇ · vg = 0, one gets

∇ · vd = ts
∇2p

ρg
. (2.60)

This tells us that even when the gas density is constant and the gas velocity field
solenoidal, dust particles tend to accumulate in pressure maxima (∇2p < 0), while
they are repelled away from pressure minima. This phenomenon goes under the
name of “dust trapping”.

Furthermore, Eq. (2.58) also shows that, in general, dust particles drift in the
direction of growing pressure. In protoplanetary discs, where a negative pressure
gradient in the radial direction is generally present, this causes the dust to drift
inward. The drift speed depends on the intensity of the aerodynamical coupling.
Relaxing the strong coupling assumption we made for Eq. (2.58), it can be shown
that for ρd/ρg � 1 the following general result holds

vR,d =
|∆v|

St + St−1 +
vν

1 + St2 , (2.61)

where vν represent the viscous radial velocity of the unperturbed gas (Eq. 2.25).
One can clearly see that when St ≈ 1 the velocity of the dust radial drift is
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maximum. The rapid inward drift of marginally coupled dust grains constitutes a
problem in the context of planet formation: if the dust drifts inward too fast, there
is no time to form planets. Possible solutions to the problem invoke the presence
of pressure traps in the disc, or a peculiar density and temperature structure able
to slow down or even to halt the radial drift.





Chapter

3
Tidal torque produced by

a satellite

“...I’ve been around for a long, long year
Stole many a man’s soul to waste...”

The Rolling Stones, Sympathy for the Devil

In this chapter we discuss the formalism developed starting from the late 1970s
to account for the presence of a secondary point-like mass (i.e. a satellite) em-
bedded in the accretion disc orbiting a primary central object. This theory was
originally developed to model the tidal interaction taking place between Saturn’s
moons and its rings. It later found many applications both in the field of proto-
planetary discs and in that of supermassive black hole binaries.

A satellite embedded in the disc perturbs the gravitational potential of the
primary. This induces a “tidal torque” that the satellite exerts on the accretion
disc, and vice versa. On the one hand, this torque promotes the transfer of angular
momentum from the satellite to the disc, inducing perturbations in the disc density
structure. On the other hand, as a consequence of Newton’s third law, the disc
exerts a back reaction torque on the satellite, causing the evolution of its orbital
parameters (semimajor axis as and eccentricity e of its orbit).

This chapter is dedicated to the formalism that leads to the expression of the
formulae ruling the intensity of this tidal torque. Satellite migration will be dis-
cussed in the following chapters.

We start providing a simplified derivation of the tidal torque, in the so called
“impulse approximation” (Sec. 3.1, Lin & Papaloizou 1979). We will then dis-
cuss a more thorough derivation of the tidal torque (Goldreich & Tremaine 1979,
1980; Ward 1986; Meyer-Vernet & Sicardy 1987;Artymowicz 1993a; Tanaka et al.
2002; Baruteau & Masset 2008), stating the equations ruling the evolution of lin-
ear perturbations (Sec. 3.2) and further developing them for the special case of

41
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bar-like perturbing gravitational potential (Sec. 3.3). This special case is partic-
ularly relevant: the gravitational potential of any satellite can be decomposed in
a summation of bar-like perturbing potentials (Sec. 3.4); given the linear nature
of the perturbations, the solution for the more general case where the perturbing
potential is that of a satellite can be written by summing the contributions of
individual bar-like modes.

The equations ruling the evolution of the perturbations are singular at some
specific locations in the disc, called “resonances”. Resonances can be found where
the disc orbital period is an integer multiple or fraction of that of the satellite
(Sec. 3.5). The perturbations are excited at resonant locations and they propagate
throughout the disc as waves, carrying angular momentum that is progressively
deposited in the disc as they are damped (by viscosity or by shock steepening).

We derive the expression of the tidal torque for bar-like potentials (Sec. 3.6)
and finally discuss how the individual bar-like perturbations can be assembled to
provide the expression of the tidal torque produced by a satellite on a circular orbit
(Sec. 3.7). In Appendix B, some further mathematical details of the derivation
presented in this chapter can be found.

Useful reviews of the topic can be found in Papaloizou et al. (2007) Masset
(2008), Hahn (2009), Kley & Nelson (2012) Baruteau & Masset (2013), Baruteau
et al. (2014), Paardekooper & Johansen (2018).

3.1 Impulse approximation

The analytical expression of the tidal torque exerted by a satellite on a gaseous
disc can be obtained using the “impulse approximation” model (Lin & Papaloizou
1979; Armitage 2010). This model describes the exchange of angular momentum
between the satellite and one individual “fluid” element during a close encounter,
as sketched in Fig. 3.1. The total angular momentum exchange with the entire
disc is then inferred starting from the results for the fluid element.

In this section we will firstly introduce the assumptions behind this approxima-
tion; then we will discuss the problem more quantitatively, deriving an expression
for the tidal torque.

In the frame of reference comoving with the satellite, a fluid element approaches
the satellite on a straight trajectory and velocity ∆v. The satellite has a mass
Ms and orbits at a distance as a central primary object with mass M?. The
trajectory of the fluid element is characterized by an impact parameter b � as

with respect to the satellite (as sketched in Fig. 3.1). After the encounter with the
satellite, the fluid element gains a perpendicular velocity δv⊥; then, assuming the
conservation of energy during the interaction, we can compute the variation of the
parallel velocity δv|| with the associated angular momentum variation. Assuming
that this change in the angular momentum of the fluid element occurs once every
complete orbit allows us to derive the expression of the torque exerted by the
satellite on the fluid element during the interaction.

This model relies on five main assumptions:

1. The viscosity is able to dissipate the perpendicular component of the velocity
before the next encounter. In fact, this requirement is equivalent to assume
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that the fluid element moves on circular orbits before and after the encounter.

2. The motion and the interaction of the fluid element with the perturbing
satellite neglect all hydrodynamical effects. The only fluid behaviour that is
considered here are the viscous effects mentioned in assumption 1.

3. The mass of the satellite is much smaller than the mass of the central object
Ms �M?.

4. The interaction is impulsive: the effects of the interaction modify the tra-
jectory of the fluid element all at once when its distance from the satellite is
the closest1; i.e. an imaginary line divides the space in two distinct regions:
before and after interaction.

5. During the interaction the fluid element does not change significantly the
direction of its initial trajectory (δv⊥ � ∆v).

Here below we discuss more quantitatively the impulsive approach we just de-
scribed.

During the encounter with the satellite, the fluid element moves from x = −∞
to x =∞ gaining a perpendicular velocity δv⊥ given by

δv⊥ =

∫ ∞
−∞

F⊥
m

dx

∆v
=

2GMs

b∆v
. (3.1)

The fluid element conserves its initial energy after the encounter, so that

∆v2 = δv⊥ + (∆v − δv||)2. (3.2)

Using assumption 5., we obtain

δv|| ≈
1

2∆v

(
2GMs

b∆v

)2

. (3.3)

We note that the variation in the parallel velocity occurs always in the opposite
direction with respect to that of ∆v. This implies that during the interaction
a fluid element on an inner orbit loses angular momentum while a fluid element
on an outer orbit gains it. In order to obtain the correct sign in the angular
momentum change it is thus sufficient to choose ∆v → −∆v consistently. This
change in the parallel velocity produces a variation of the angular momentum per
unit mass ∆j of the fluid element given by

∆j = δv||(as + b) ≈ −2G2M2
s as

b2∆v3
. (3.4)

The angular momentum change of the fluid element occurs once per encounter,
thus, assuming the Keplerian motion of the satellite and of the fluid element, we
compute the time lag between two encounters as follows:

∆t =
2π

|Ω− Ωs|
≈ 4π

3

as

|b|Ω
−1
s , (3.5)

1This assumption justifies considering a straight trajectory for the fluid element, since we are
here considering a short section of a long circular orbit
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Before interaction After interaction

  

Figure 3.1: Top panel: Sketch of the physical interpretation of the impulse approxima-
tion. δv|| is the velocity component parallel to the initial velocity ∆v, that is the
velocity difference between the fluid element and the satellite, v⊥ is the perpendicular
component of the velocity that the fluid element develops after the close encounter. b
is the impact parameter. Bottom panel: Sketch showing the direction of the variation
of the parallel velocity δv|| for fluid elements on inner and outer orbits with respect
to that of the satellite. Both top and bottom panel refer to the frame co-rotating
with the satellite anticlockwise.
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where Ω(R) =
√
GM?/R3 and Ωs = Ω(as) are the angular frequencies of the

fluid element and of the satellite, respectively. In our notation, R is the radial
coordinate of the fluid element, R = as + b; we note that our sign convention
prescribes b > 0 for fluid elements on outer orbits, b < 0 for inner orbits. Using
again the assumption of Keplerian motion, we compute ∆v as

∆v = [Ω(R)− Ωs](as + b) ≈ −3

2
Ωs

b

as
R. (3.6)

Substituting Eq. (3.6) in Eq. (3.4), dividing it by Eq. 3.5 we obtain the torque
exerted by the satellite (torque per unit mass) on the fluid element:

dTs

dm
= sgn(R− as)

4

9π
q2Ω2(R)a2

s

a4
s

b4
(3.7)

where q = Ms/M? and sgn(b) is the sign function of the impact parameter, that
is positive for the outer orbits and negative for the inner ones.

Equation (3.7) gives the torque per unit mass exerted on a fluid element. We
can now derive the torque density exerted by the satellite on the whole disc. The
mass of the fluid element is given by:

dm = ΣRdRdϕ, (3.8)

where Σ is the gas surface density and ϕ the azimuthal cylindrical coordinate.
Assuming axial symmetry for the gas surface density, the torque density on the

disc is
1

R

dTs

dR
= sgn (R− as)

8

9
q2Ω2(R)a2

s Σ
a4

s

(R− as)4
. (3.9)

As a consequence of Newton’s third law, the satellite is subject to a back reaction
torque exerted by the disc that has the same intensity as the one the satellite exerts
on the disc but with opposite sign.

We compute the total torque the disc exerts on the satellite changing the sign
and integrating Eq. (3.9); we denote this quantity with the letter Γ (also in the
following chapters the letter T indicates the torque exerted by the satellite on the
disc and Γ vice versa)

Γs = −8

9
q2a2

s

∫ ∞
R0

sgn (R− as)Ω
2(R)Σ(R)

a4
s

(R− as)4
RdR. (3.10)

Assuming a disc density profile Σ(R) = Σ0(R/as)
−1, and assuming R0 & as the

expression for the torque exerted by an outer disc on the satellite Γs is approxi-
mately

Γs ≈ q2Ω2
sa

4
s Σ0

a3
s

(R0 − as)3
. (3.11)

Despite the simplicity of this analysis, we will see that the results obtained in this
section are in very good agreement with the predictions based on a more thorough
derivation that we will discuss in the next sections.

In particular, we will see that the intensity of the tidal torque exerted by the
satellite on the disc, and vice versa, depends on the square of the mass ratio q
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between secondary and primary object. Furthermore, the intensity of this torque
decreases steeply with the distance from the satellite. Finally, the overall con-
tribution of the outer disc exerts a negative torque on the satellite, causing the
satellite to migrate inward. Conversely, the inner disc exerts a positive torque on
the satellite, causing the satellite to migrate outward.

3.2 Disc response to a perturbing potential

In this section we discuss the perturbations induced in a gaseous disc by the
presence of a satellite embedded in it. From the mathematical point of view, this
consists in studying how the properties of the disc are altered when the second
point mass perturbs the gravitational potential Φ? in Eq. (2.2). We assume
small perturbations X1 such that the generic disc quantity X is described by
X = X0 + X1, where X0 represents the unperturbed disc and satisfies the radial
equilibrium conditions discussed in Sec. 2.2. To this aim, we consider only the
first order perturbed quantities (linear approximation), and thus assume that the
perturbation is small with respect to the unperturbed state X1 � X0.

The first order response of a gaseous disc to the presence of a generic perturbing
potential Φ1 is described by the following set of equations (Goldreich & Tremaine
1979; Meyer-Vernet & Sicardy 1987)

∂Σ1

∂t
+∇ · (Σ0v1) +∇ · (Σ1v0) = 0, (3.12)

∂v1

∂t
+ (v0 · ∇)v1 + (v1 · ∇)v0 = −∇(Φ1 + ΦΣ1 + h1), (3.13)

where the term ΦΣ1 accounts for the additional gravitational force produced by
the perturbation of the disc density Σ1. It satisfies Poisson’s equation

∇2ΦΣ1 =
1

R

∂

∂R

(
R
∂ΦΣ1

∂R

)
+

1

R2

∂2ΦΣ1

∂ϕ2
+
∂2ΦΣ1

∂z2
= 4πGΣ1δ(z). (3.14)

The term ΦΣ1 can be set to zero if the disc self-gravity is assumed to be negligible.
The quantity h1 is the perturbed enthalpy:

h1 = c2
s,0

(
Σ1

Σ0

)
, (3.15)

where dP/dΣ = c2
s,0 is the unperturbed sound speed, using a generic barotropic

equation of state of the type
P = Kργ (3.16)

The vectorial form of Eq. (3.13) can be written explicitly for each component2 in
the following way:(

∂

∂t
+ Ω(R)

∂

∂ϕ

)
vR,1 − 2Ω(R)vϕ,1 = − ∂

∂R
(Φ1 + ΦΣ1 + h1), (3.17)(

∂

∂t
+ Ω(R)

∂

∂ϕ

)
vϕ,1 + 2B(R)vR,1 = − 1

R

∂

∂ϕ
(Φ1 + ΦΣ1 + h1). (3.18)

2v1 = vR,1êR + vϕ,1êϕ, where eR and eϕ are the radial and azimuthal unit vectors, respec-
tively.
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where B(R) is the Oort parameter

B(R) = Ω(R) +
R

2

d

dR
Ω(R) (3.19)

that relates with the epicyclic frequency κ (see Eq. 1.40) as follows3

κ2(R) = 4B(R)Ω(R). (3.20)

Finally, the continuity equation (3.12) can be rewritten as(
∂

∂t
+ Ω(R)

∂

∂ϕ

)
Σ1 = − 1

R

∂

∂R
(RΣ0vR,1)− 1

R

∂

∂ϕ
(Σ0vϕ,1). (3.21)

3.3 Equations for a “bar-like” perturbing potential

We study the response of the disc to a “bar-like” gravitational potential. We set
Φ1 = Φm

1 , with
Φm

1 = ψ(R)ei(mϕ−ωt). (3.22)

The function ψ(R) is purely real, and the term ei(mϕ−ωt) is a complex phase. This
choice is motivated by the fact that, as we will see in Sec. (3.4), the satellite
perturbing potential can be decomposed in a summation over m of Φm

1 potentials.
The complex notation is extremely helpful to describe periodic oscillations.

However, the physical evolution of any perturbed quantity is given by its real
part only, so that the physical potential is actually given by

Re[Φm
1 ] = ψ(R) cos(mϕ− ωt), (3.23)

where Re[z] indicates the real part of z ∈ C. Hereafter we will drop the Re
notation, unless differently prescribed.

The form of ei(mϕ−ωt) can be thought as a m-armed bar wave; the wave prop-
agates in the disc with pattern frequency Ωp = ω/m, that represents the angular
velocity at which the arms of the perturbation span the disc. The parameter m
relates with the azimuthal wave number of the wave as kϕ = m/R.

We assume that the response of the disc is stationary, i.e. the satellite has
existed for a sufficiently long time to enable the perturbed quantities to have an
analogous azimuthal wave-like dependence (Meyer-Vernet & Sicardy 1987) and in
particular, for the perturbed density, velocity and self-gravity we define

Σ1 = σ1(R)ei(mϕ−ωt), (3.24)

vR,1 = vR,1(R)ei(mϕ−ωt), (3.25)

vϕ,1 = vϕ,1(R)ei(mϕ−ωt), (3.26)

ΦΣ1 = φΣ1(R)ei(mϕ−ωt). (3.27)

It is important to note that while ψ(R) of the bar potential is a real function, no
assumption has been done so far on σ1(R), vR,1(R), vϕ,1(R) and φΣ1(R), so that

3Note that since for Keplerian discs κ(R) = ΩK(R), it follows that B(R) = ΩK(R)/4.
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they can be complex functions. As a consequence, an additional complex phase
lag can actually “wind” the bar transforming it into a spiral.

Under these assumptions the equations describing the perturbation of velocities
are

i[mΩ(R)− ω]vR,1 − 2Ω(R)vϕ,1 = − ∂

∂R
(Φm

1 + ΦΣ1 + h1), (3.28)

2B(R)vR,1 + i[mΩ(R)− ω]vϕ,1 = − im
R

(Φm
1 + ΦΣ1 + h1), (3.29)

while Eq. (3.21) becomes

i[mΩ(R)− ω]Σ1 = − 1

R

∂

∂R
(RΣ0vR,1)− im

R
Σ0vϕ,1. (3.30)

After a little algebra, equations (3.28,3.29) can be rewritten as

vR,1 = − i

D(R)

{
[mΩ(R)− ω]

∂

∂R
+

2mΩ(R)

R

}
(Φm

1 + ΦΣ1 + h1), (3.31)

vϕ,1 =
1

D(R)

{
2B(R)

∂

∂R
+
m

R
[mΩ(R)− ω]

}
(Φm

1 + ΦΣ1 + h1), (3.32)

where D(R) is given by

D(R) = κ2(R)− [mΩ(R)− ω]2. (3.33)

The equation for Σ1 finally reads

Σ1 =
i

[mΩ(R)− ω]

[
1

R

∂

∂R
(RΣ0vR,1) + i

m

R
vϕ,1Σ0

]
. (3.34)

Eq.s (3.31), (3.32) and (3.34) present singularities where D(R) = 0 and when
mΩ(R)−ω = 0. Locations where D(R) = 0 are called Lindblad resonances, while
locations where mΩ(R)−ω = 0 is satisfied are called “corotation” resonances; we
postpone a more detailed discussion about these locations to Sec. 3.5.

Finally, the dependence of ΦΣ1 on Σ1 can be obtained by solving Eq. (3.14).
Equations (3.31), (3.32), (3.34) with the addition of Eq.s (3.15) and (3.14) consti-
tute the closed set of equations ruling the evolution of perturbations of the fluid
quantities due to the presence of an m-barred potential Goldreich & Tremaine
(1979).

In order to improve the readability of this chapter, further details and develop-
ments of the equations presented in this section, including the formal solution un-
der some simplifying assumptions to the density wave equation, have been moved
to Appendix B.

3.4 Harmonic decomposition of the satellite potential
in bar-like potentials

The gravitational potential Φs of a point-like mass (i.e. the satellite) located at
rs(t), computed at the position r at time t is

Φs(r, t) = − GMs

|rs(t)− r| . (3.35)



3.5 Lindblad and corotation resonances for a perturbing satellite 49

Assuming that the satellite orbits with Keplerian motion (epicyclic frequency κs =
Ωs) a central star M?, where we set the centre of our coordinates, with an orbital
frequency Ωs, we can decompose Φs in a summation of rotating “bar”-potentials
Φlm

1 as follows (Goldreich & Tremaine 1980; Artymowicz & Lubow 1994)

Φs(R,ϕ, t) =
∑
l

∑
m

ψlm1 (R) Re
[
ei(mϕ−lΩst)

]
︸ ︷︷ ︸

Φlm1 (R)

l,m ∈ N, (3.36)

where ψlm(R) is a purely real function of the radius.
Eq. (3.36) tells us that we can decompose the potential of a satellite in a

summation of “bar”-like potentials Φm
1 , for which we have studied the disc response

in the previous section. This has a very important implication for our analysis:
given the linear nature of our perturbation analysis, we can study the response
of the disc to the individual “bar” modes of the potential, and then find the final
solution summing their individual contributions.

It is easy to recognize here that the frequency ω, i.e. the frequency at which the
perturbation span the azimuthal domain, for the different modes of the potential
is set by ω = lΩs, implying a pattern frequency

Ωlm
p =

l

m
Ωs. (3.37)

The magnitude of ψlm1 (R) represents the “intensity” of the mode (l,m) of the
potential and it scales as e2|l−m|, where e is the satellite eccentricity. In Fig. 3.2
the location and relative intensity of a set of resonances are shown (Artymowicz &
Lubow 1994). The expression ψlm1 (R) has the following analytical form (Goldreich
& Tremaine 1980)

ψlm1 (R) =
1

π2

∫ 2π

0
d(Ωst)

∫ 2π

0
Φs(R,ϕ, t) cos(mϕ− lΩst) dϕ (3.38)

If the satellite has a circular orbit, i.e. e = 0, only the modes m = l contribute
to the summation. In particular, for a satellite on circular orbit, ψmm for m ≥ 2
reads

ψmm1 (R) = −GMs

as
b
(m)
1/2 (α) , (3.39)

where as is the semi-major axis of the satellite orbit, α = R/as, and b
(m)
1/2 (α) is the

m-th Laplace coefficient of order 1/2

b
(m)
1/2 (α) =

1

π

∫ 2π

0

cos(mθ)

(1− 2α+ α2)1/2
dθ. (3.40)

3.5 Lindblad and corotation resonances for a perturb-
ing satellite

We showed in Sec. 3.3 that if Φ1 is a generic bar-like perturbation of the type Φm
1

(Eq. 3.22) with frequency ω and pattern frequency Ωp, Eq.s (3.31,3.32) and Eq.
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(3.34) present singularities when mΩ(R) − ω = 0 and when D(R) = 0. In any
shearing disc, these relations are satisfied at specific locations called resonances.

In this section, we require that Φ1 is produced by a satellite (i.e. Φ1 = Φs,
Eq. 3.36) orbiting with Keplerian motion the primary object. We discuss the
location of resonances for a generic shearing gaseous disc, then we will discuss the
Keplerian disc case. The frequency of the perturbations ω is ω = mΩlm

p , with the

pattern frequency Ωlm
p defined in Eq. (3.37).

The condition mΩ(R) − ω = 0 is satisfied at “corotation” resonances (usually
abbreviated “CR”), located where the orbital frequency of the disc Ω(R) equals
the pattern frequency of the bar-like perturbation, i.e. at R = Rc

Ω(Rc) = Ωlm
p . (3.41)

The condition D(R) = 0 is satisfied instead at “Lindblad” resonances, located
where the Doppler shifted frequency of the material in the disc with respect to the
pattern frequency Ωp equals the epicyclic frequency κ(R), i.e. those radii R = RL
where

Ω(RL)− Ωlm
p = ε

κ(RL)

m
, (3.42)

where ε = sgn[Ω(R)−Ωlm
p ]. In discs where the angular frequency Ω(R) decreases

with the radius (such as Keplerian discs Ω(R) ∝ R−3/2), Lindblad resonant loca-
tions with the ε = +1 on the r.h.s. are called inner Lindblad resonances (ILRs),
since they fall inside the corotation radius Rc in the inner part of the disc; while
those characterized by the ε = −1 sign outer Lindblad resonances (OLRs).

We note that for modes l = m, the corotation radius coincide with the semi-
major axis of the satellite so that Ωmm

p = Ωs. In contrast, modes with l 6= m,
arising when the satellite has an eccentric orbit, provide a series of additional
corotation resonances where Ω(R) matches the condition in Eq. (3.41). Each
l 6= m corotation resonance has its own ILRs and OLRs. Some of these may
overlap with satellite orbit, since they have a different corotation radius; when
this situation occurs, they are referred to as co-orbital Lindblad resonances.

Assuming Keplerian rotation of the disc, i.e. κ(R) = Ω(R) and Ω(R) = ΩK,
Lindblad resonances satisfy

Ω(RL) =
m

m− εΩlm
p , (3.43)

This implies that at Lindblad resonances the material in the disc makes m − ε
orbits every m orbits of the perturbing potential.

The radii where corotation and Lindblad resonances are located are

Rc =
(m
l

)2/3
as, (3.44)

RL =

(
m− ε
l

)2/3

as. (3.45)

We also note that, for Keplerian discs, ILRs with (l,m) = (l, 1) fall into the
origin for any choice of l; this implies that Keplerian ILRs always have m ≥ 2.
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Figure 3.2: Plot of location and intensity of (l,m) resonances, as a function of m+ l
10 and

l+ m
10 (so that integer part is m while decimal part is l, and vice versa) for outer (left)

and and inner (right) discs (R ≷ as, respectively). The size of the symbols indicates
the relative intensity of each potential mode (l,m) for various |m− l| < 5, that scales
as ε2|m−l|. Most intense resonances are of the type (m,m) (largest symbols). It can
be clearly seen that, for growing m, the strongest resonances tend to R = a. The
ILR for the mode (1, 1) gives a resonance in R = 0 and for this reason is not present.
These plots do not show co-orbital Lindblad resonances. Original images adapted
from Artymowicz & Lubow (1994).

Furthermore, it is useful to note that for m = l and m � 1 Eq. (3.45) can be
approximated as

RL = as

(
1− 2ε

3m

)
. (3.46)

Finally, in the following sections we will need to approximate the value of D(R)
at Lindblad resonant locations. To this aim, we introduce here the quantity D

D ≡ RL
∣∣∣∣ ∂∂RD(RL)

∣∣∣∣ , (3.47)

so that in the region of Lindblad resonances R = RL we can write

D(R) ≡ εD (R−RL)

RL
= (R−RL)

∂

∂R
D(RL) (3.48)

3.5.1 Physical interpretation of resonant locations

From the physical point of view (see Masset 2008 for a detailed discussion), it is
straightforward to verify that Lindblad resonances are regions where the epicyclic
motion is strongly excited in the gas. Indeed, assuming Keplerian motion of the
gas (we recall that for Keplerian discs B(R) = Ω(R)/4), Eq.s 3.31 and 3.32 at
R = RL can be rewritten as

lim
R→RL

vR,1 = − i

D(R)

{
εΩ(R)

∂

∂R
+

2mΩ(R)

R

}
(Φm

1 + ΦΣ1 + h1), (3.49)

lim
R→RL

vϕ,1 =
1

D(R)

{
ε
Ω(R)

2

∂

∂R
+
mΩ(R)

R

}
(Φm

1 + ΦΣ1 + h1). (3.50)
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So that we can write:

lim
R→RL

vϕ,1 = − i
2
vR,1. (3.51)

Eq. (3.51) implies that vR,1 and vϕ,1 have a constant phase difference of π/2
and amplitude differing by a factor of 2, as one would expect for the epicyclic
Keplerian motion. Such a configuration of the perturbed velocities is associated
with an advective flux of angular momentum (see the Reynolds stress in Eq. 2.32
and Eq. B.6.2 in the Appendix), i.e. at these locations the exchange of angular
momentum between the disc and the satellite is maximum.

Conversely, the interpretation of corotation resonances from a physical point
of view is more subtle. In an m-barred potential, the streamlines around the
corotation region are divided in two categories: streamlines where the material
is in “libration” and those where the material is in “circulation”. The left panel
of Fig. 3.3 shows the geometry of the streamlines in the corotation region. The
type of streamlines depends on the distance from the corotation resonance: in
particular, librating streamlines are close to the corotation region, circulating ones
can be found farther from it.

The first are characterized by m eye-shaped regions where the gas co-rotate on
closed orbits around m driving centres (equally spaced on the azimuthal coordi-
nate) located at the corotation radius; librating material never completes an entire
orbit [0, 2π] in the co-moving reference frame. The second are open streamlines
characterized by radial oscillations that span the entire azimuthal domain in the
comoving frame.

In the libration region, each fluid element orbits along its driving centre on a
timescale that is much longer than the orbital period of the bar-like potential. For
this reason, in an inertial reference frame, fluid elements on librating streamlines
move approximately following the unperturbed circular Keplerian flow of the gas
but they progressively change the radius of their orbit. Since the disc is Keplerian,
in order to slowly modify their orbit to complete a libration cycle, fluid elements
have to exchange angular momentum with the perturbing potential. This constant
exchange of angular momentum between the perturbing potential and the material
makes the corotation resonance a region where the coupling between the disc and
the potential is strong.

3.5.2 Pressure shift of resonant locations

From Eq. (3.46) we note that Lindblad resonances accumulate at the corotation
resonance for large values of m. However, Artymowicz (1993a) showed that Lind-
blad resonances with large m values are actually shifted from their nominal radius,
due to pressure effects. In particular, the effective location of Lindblad resonances
with m� 1 is given by (see right panel of Fig. 3.3)

RL,eff = Rc − ε
2H

3ξ

√
1 + ξ2 (3.52)

where H is the disc thickness, and ξ reads

ξ = m(H/R)RL . (3.53)
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Figure 3.3: Left panel: streamlines in the plane (ϕ,R) in presence of an m-bar perturb-
ing potential; the gray shaded area represents the libration islands, the white ones
the “circulation” regions. Original figure in Masset (2008). Right panel: Plot of
effective location of Lindblad resonances RL,eff (Eq. (3.52, y-axis) vs ξ (Eq. 3.53,
x-axis). Where r is the distance from the primary object, a is the semi-major axis of
the satellite separation and hd is the thickness of the disc. Resonances accumulates
at RILRs = a − (2/3)H and ROLRs = a + (2/3)H due to pressure effects. Original
figure in the right panel from Artymowicz (1993a)

It is easy to see that for m→∞ one gets RL,eff = Rc− ε2H/3. From the physical
point of view, this effect can be explained by noting that at a distance 2/3H the
gas motion in the reference frame corotating at R = Rc becomes supersonic, so
that only beyond that location density waves can be excited (Rafikov 2002). This
causes a shift of the location where density waves are effectively excited.

3.6 Tidal torque

The total torque exerted by the generic perturbing potential Φ1 on the disc can
be computed applying the standard definition of torque, using the gravitational
force it produces Fg,1 = −∇Φ1:

T ≡ −
∫ 2π

0

∫ ∞
0

êz {RêR × Re[∇Φ1]}Re[Σ1]RdRdϕ (3.54)

= −
∫ 2π

0

∫ ∞
0

[
1

R
Re

(
∂Φ1

∂ϕ

)]
Re[Σ1]RdRdϕ. (3.55)

It should be noted here that, given the azimuthal symmetry of the potential
Φ1, the contribution from Σ0 would average to zero when integrated across the
azimuthal domain. Furthermore, in order to have a non vanishing torque, the
density perturbation needs to be phase shifted with respect to Φ1, that is the
case when solving the perturbed equations to obtain σ1(R). Indeed, if the two
perturbations perfectly overlap, no torque can be exerted for reasons of symmetry
(Meyer-Vernet & Sicardy 1987). We remind the reader that σ1(R) is the complex
function containing the radial dependence of Σ1 (see Eq. 3.24), it contains the
complex phase that makes the bar-like perturbation a spiral (see Appendix B).
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In the following subsections we discuss the expression of the torque exerted by
a generic m-barred potential with generic pattern frequency Ωp = ω/m. Then, in
Sec. 3.7, we will present how individual m-modes contribute to provide together
the total torque exerted by a satellite.

3.6.1 Torque of individual modes at Lindblad resonances

Using Φ1 = Φm
1 , after a little algebra, and integrating Eq. (3.55) over ϕ, it is

straightforward to obtain4

Tm = −mπ
∫ ∞

0
|Φm

1 | Im[σ1(R)]RdR. (3.58)

A detailed solution of the previous integral at Lindblad resonances can be found
in the appendix of Goldreich & Tremaine (1979) and in Meyer-Vernet & Sicardy
(1987). Using the assumption of tight wound perturbations (the length scale of
the radial perturbations is much shorter than the azimuthal one, see Appendix
B.1), the tidal torque at Lindblad resonances reads

TmL = −π
2mΣ0

εD |Ψm(RL)|2, (3.59)

where Ψm is defined as (see also Eq. B.3.2)

Ψm(R) ≡ R∂Φm
1 (R)

∂R
+

2mΩ

mΩ(R)− ωΦm
1 (R), (3.60)

Eq. (3.59) can be also obtained by explicitly solving the solution for Σ1 and com-
puting the angular momentum transported by such a density wave (see Appendix
B.6).

3.6.2 Pressure corrections

As a consequence of the application of the tight-winding approximation, the ex-
pression of the torque in Eq. (3.59) is not valid for m� (H/R)−1, where H/R is
the disc aspect ratio (see Appendix B.1). Relaxing this assumption when deriving
the tidal torque for m-barred potentials, Artymowicz (1993a) obtained the follow-
ing corrections. Firstly, high m resonances do not accumulate at the corotation
resonance but at RCR ± 2H/3, as we previously discussed in Sec. (3.5.2).

Secondly, assuming ψm1 (R) = const (constant bar potential), the expression of
TmL in Eq. 3.59 is corrected as follows

TmL,corr =

√
1 + ξ2

1 + 4ξ2
TmL |RL,eff

, (3.61)

4One needs to keep in mind that, since ψ(R) is by definition a real quantity,

Re(∂ϕΦm1 ) = imψ(R)
[
ei(mϕ−ωt) − e−i(mϕ−ωt)

] 1

2
, (3.56)

while σ1(R) has a complex part so that

Re(Σ1) =
1

2

[
σ1(R)ei(mϕ−ωt) + σ?1(R)e−i(mϕ−ωt)

]
. (3.57)
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where ξ was defined in Eq. (3.53) and TmL has to be computed at the effective

resonant location RL,eff (see Eq. 3.52). The prefactor
√

1 + ξ2/(1+4ξ2) introduces
what Artymowicz (1993a) defined a “mild” reduction of the torque intensity for
high m values, compared with the non corrected formula in Eq. (3.59).

We will show that for the ψm1 (R) produced by a satellite the resonance shift
causes the term TmL |RL,eff

to have an exponential decay for large values of m
(torque cut-off, see also Sec. 3.7.1, and Fig. 3.5 for a more detailed discussion).

3.6.3 Further considerations about the Lindblad tidal torque

The torque derived in Eq. (3.59) represents the so called “excitation” torque,
which only represents the angular momentum transfered at resonances, and thus
the torque that the disc overall exerts on the satellite changed in sign. The sign
of the torque is negative at ILRs (ε = 1), i.e. it removes angular momentum from
the gas, and positive at OLRs (ε = −1)

It is interesting to note that the flux transported by a density wave at Lindblad
resonances (Eq.s B.6.5 and B.6.7) has the same magnitude as the torque in Eq.
(3.59), confirming the expectation that all the angular momentum the satellite
exchanges with the disc is transported away by waves.

The angular momentum flux actually does not provide any information about
the effective torque the satellite exerts on the disc. Indeed, in a purely non-
dissipative disc the angular momentum is transported away by the waves without
being effectively deposited in the gas. The angular momentum carried by the
wave is effectively transfered to the disc as a consequence of viscous damping or
as a consequence of shock dissipation (Goodman & Rafikov 2001; Rafikov 2002;
Crida et al. 2006; Duffell 2015). This causes the action of the torque on the
disc to be non-local: indeed, the “excitation” torque may differ significantly from
the “deposition” torque, with important consequences on how the presence of a
perturbing satellite alters the structure of the disc in which it is embedded.

For completeness, we mention that the inclusion in the linear perturbation the-
ory of a toroidal magnetic field (Terquem 2003; Fromang et al. 2005), causes the
perturbed equations to be singular also at a new set of locations, introducing a new
family of resonances: “magnetic resonances”. These resonances fall both in the
inner (IMRs) and in the outer disc (OMRs). Such resonances are associated with
the excitation of MHD waves that carry angular momentum analogously to what
occurs at Lindblad resonances. Also in this case, the excitation of these waves
is thus associated with a net transfer of angular momentum from the satellite to
the material. In this framework, the satellite exerts at IMRs and OMRs a torque
that has the same sign as that exerted ILRs and OLRs, respectively. However,
in some circumstances the contribution from the inner magnetic resonances might
overcome significantly the contribution from the outer ones.

3.6.4 Tidal torque at corotation resonances

Using the same approach used in the previous section to derive the tidal torque at
Lindblad resonances, Goldreich & Tremaine (1979) computed the torque exerted
at corotation by a m-bar potential. In a thin isothermal disc the expression for the
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corotation torque exerted by the planet on the disc at the corotation resonance
reads

Tmc =
mπ2

2
|Φm

1 (R)|2
[(

dΩ

dR

)−1 ∂

∂R

(
Σ0

B

)]
R=Rc

(3.62)

The corotation torque depends on the radial gradient of the quantity Σ0/B, called
vortensity. In a Keplerian disc, this implies that the corotation torque vanishes if
Σ0 ∝ R−3/2.

Baruteau & Masset (2008) pointed out that the corotation torque depends also
on the radial gradient of specific entropy. In particular in a thin disc with an
adiabatic equation of state, i.e. P = S(R)Σγ , where S(R) is the radial profile of
the gas entropy, corresponding to a radiatively inefficient disc, the contribution to
the corotation torque due to the entropy gradient is

Tmc,S = 2mπ2Σ0γ
−1|Φm

1 (R)|2
[

Ω

κ

d lnS(R)

d lnR

]
. (3.63)

In the presence of an entropy gradient, the advection of entropy in the corotation
region produces a change of the density that increases the vortensity gradient,
resulting in an additional corotation torque (Baruteau & Masset 2008; Baruteau
et al. 2014).

The physical interpretation of these two contributions can be qualitatively un-
derstood by noticing that the material, during the libration motion described in
Sec. 3.5 crosses the corotation radius twice per libration cycle moving through
regions characterized by different unperturbed vortensity and/or entropy. The
conservation of vortensity and entropy along the streamlines in barotropic and/or
adiabatic fluids forces the density to change as the streamlines span a domain of
different radii. This creates an asymmetric angular momentum exchange during
the two crossings that result in a net torque exerted by the disc on the potential
and vice versa (Baruteau & Masset 2008; Baruteau et al. 2014).

It should be noticed that density waves are not excited in the corotation region.
As a consequence, the angular momentum transfered to the disc cannot be carried
away outside the libration islands. In this way, libration islands are isolated from
the rest of the disc. If the advection of entropy and vorticity from outside this
region is not fast enough (i.e. if the viscous and thermal timescales are much longer
than the libration timescale), the two gradients become progressively shallower
(Ogilvie & Lubow 2003). When this condition occurs, the corotation torque is
said to be “saturated” and vanishes over a few libration timescales.

We mention here that corotation torques, should not be confused with the co-
orbital torque or horseshoe drag (Ward 1991). The term co-orbital torque usually
refers to the the torque exerted by a satellite perturber on the material librating
in the co-orbital region of the satellite. This torque still depends on the radial
gradient of the vortensity, but it arises when a non-linear perturbations are consid-
ered. For sufficiently low levels of viscosity (Paardekooper & Papaloizou 2009a),
co-orbital torque has been evaluated to be much stronger than the contribution
of the co-rotation resonances falling at the orbit of a satellite perturber (m = l
harmonics in the expansion in Eq. 3.36).



3.7 Tidal torque exerted by a satellite on a circular orbit 57

3.7 Tidal torque exerted by a satellite on a circular
orbit

In Sec. 3.4 we have decomposed the potential of a satellite into a summation
of (l,m)-barred potentials. Each of these individual potential has its intrinsic
intensity set by the value of ψlm1 (R) and pattern frequency Ωlm

p . In the previous
sections we have discussed the torque exerted by the generic m-barred mode of
the potential. We now have all the ingredients to derive the tidal torque a satellite
exerts on the disc. Since the following relation holds5

∫ 2π

0
Re

∑
l,m

∂Φlm
1

∂ϕ

Re

∑
l,m

Σlm
1

 dϕ = −mπ
∑
l,m

|Φlm
1 | Im[σlm1 (R)],

the total torque exerted by the satellite on the disc can be computed by considering
the individual contributions computed in the previous sections as

Ttot =
∑
l,m

T lm. (3.64)

In the next sections we discuss the cumulative action of all the resonances under
the simplifying assumption that the satellite has a circular orbit (only l = m
modes are present).

3.7.1 The contribution of Lindblad resonances

We provide the analytical estimate of the tidal torque exerted on the disc by a
circular satellite. This assumption allows us to impose m = l, so that we can
consider one single pattern frequency Ωmm

p = Ωs. For this reason, here and in the
following sections we will refer to quantities Xmm as Xm.

Eq.s (3.59) and (3.62) provide the intensity of the torque produced by one single
mode m of the perturbing potential Φm

1 . Each mode exerts a certain amount of
torque at a given resonant location. To do so, we start distinguishing between
isolated (small m values) and overlapping (large m values) resonances.

Lindblad resonances associated with small m values are far from each other,
in this condition resonances are called “isolated”. The radial dependence of the
tidal torque at those locations is given by Eq.s (3.59) and (3.62) smoothed out
across the resonance width. This generates a localized peak in the torque intensity
located at the resonance radius.

“Overlapping” resonances (large m values), as the name suggests, are much
closer to each other. This causes the tidal torque intensity to grow smoothly as
the distance from the satellite decreases. For large m values, it can be shown
that ψm1 (R) and ∂Rψ1(R) entering in the Ψm(R) term in Eq. (3.59) can be ap-
proximated6 using the modified Bessel functions K0 and K1 of order 0 and 1. In

5This result can be derived using the Parseval’s theorem.
6This is a consequence of the properties for large m values of the term b

(m)

1/2 (α), appearing in
the intrinsic strength of the modes discussed in Sec. 3.4.
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particular, it can be shown that

ψm1 (RL) ≈ 2

π

GMs

as
K0

(
m

∣∣∣∣RL − as

as

∣∣∣∣) , (3.65)

dψm1
dR

(RL) ≈ ε2m

π

GMs

as
K1

(
m

∣∣∣∣RL − as

as

∣∣∣∣) . (3.66)

From Eq. 3.46 we know that |RL − as|/as = 2/(3m). The intensity of the tidal
torque at the m-th Lindblad resonance reads (Goldreich & Tremaine 1980; Meyer-
Vernet & Sicardy 1987):

TmL = −εm2Σ0a
4
s Ω2

sq
2 4

3

[
2K0

(
2

3

)
+K1

(
2

3

)]2

. (3.67)

Furthermore, using Eq. (3.46), one can define a continuous distribution of m
resonances m(R)

m(R) = ε
2

3

as

R− as
, (3.68)

describing how m varies as a function of the radius. Substituting m(R) into Eq.
(3.67), we get an expression of the intensity of overlapping resonances that only
depends on the radius. Then, the differential torque can be defined as follows
(Goldreich & Tremaine 1980, 1982; Meyer-Vernet & Sicardy 1987; Ward 1997):

dT

dR
≡ TmL

∣∣∣∣dmdR
∣∣∣∣ = −εΣ0a

3
s Ω2

sq
2

(
as

R− as

)4 32

81

[
2K0

(
2

3

)
+K1

(
2

3

)]2

. (3.69)

The left panel of Fig. 3.4 sketches the position and intensity of individual Lindblad
resonances, showing how together they contribute to the differential torque derived
in Eq. (3.69).

It is interesting to notice how well the result in Eq. (3.9), obtained in the frame-
work of the impulse approximation (Sec. 3.1), matches the result in Eq. (3.69),
obtained instead from the detailed study of the disc response to the perturbing
potential. Equations (3.9) and (3.69), share the same radial scaling (R − as)

−4,
but they differ by a factor 4/3[2K0(2/3) +K1(2/3)] ≈ 8.5 and for the presence of
Ωs instead of Ω(R) in Eq. (3.9).

In this framework, it is easy to understand the torque cut-off for large m values,
mentioned in Sec. 3.6 (Artymowicz 1993a): since the effective location of Lindblad
resonances is shifted by pressure effects (Eq. 3.52), for large m values the distance
of resonances from the satellite becomes |RL − as|/as ≈ 2H/(3as) ≡ 2ξ/(3m)
(see Eq. 3.53 for the definition of ξ). This implies that the terms K0(2/3) and
K1(2/3) in Eq. (3.67) become K0(2ξ/3) and K1(2ξ/3); it can be shown that
Kn(u) for large u scales as Kn(u) ∝ ue−u, so that K0,1(2/3ξ) ∝ ξe−2ξ/3. This
introduces an exponential decrease of the tidal torque for 2ξ/3 > 1, i.e. m >
(2H/3R)−1, as shown in Fig. 3.5 (Papaloizou et al. 2007). Furthermore, the shift
of resonances causes the torque to vanish in the region 2H/3 < |R − as|, since
resonances accumulate at R = as(1±2H/3) (see discussion in Sec. 3.5.2 and right
panel of Fig. 3.3).

Although the torque density in Eq. (3.69) can be defined only in regions where
overlapping resonances are present, sometimes it can be effectively used as a simple
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analytic approximation of the torque density throughout the entire disc. In those
cases also a cut-off at the location of the innermost/outermost Lindblad resonance
(IMLR/OMLR) has to be applied, since no additional resonances can be found
beyond those radii.

Due to the previous considerations, the torque density does not vanish in the
radial domain where R satisfies

2H

3
< |R− as| < |Rcut − as|, (3.70)

where Rcut is the IMLR or OMLR location.
Finally, as we did for Eq. (3.11) we can integrate the differential torque in Eq.

(3.69) changing its sign in order to obtain the back reaction torque ΓL the disc
exerts on the satellite due to Lindblad resonances . However, the dependence on
the disc parameters cannot be easily captured within the analytical framework.
For this reason, the total Lindblad torque has been extensively investigated nu-
merically for both 3D and 2D discs7(Tanaka et al. 2002; D’Angelo & Lubow 2010;
Paardekooper et al. 2010). Assuming a surface density profile Σ ∝ R−p, a tem-
perature profile T ∝ R−2q, and using an adiabatic equation of state, the Lindblad
torque obtained from numerical calculations in a 2D disc reads (Paardekooper
et al. 2010)

ΓL,s = (−2.5− 3.4q + 0.1p)Γ0γ
−1, (3.71)

where γ is the adiabatic index, and Γ0 is defined as

Γ0 = q2Σasa
4
s Ω2

s

(
H

R

)−2

. (3.72)

3.7.2 The contribution of corotation resonances

It is not straightforward to define the differential torque produced by the corotation
resonances. Corotation resonances for m = l are all located at R = as, making
in fact impossible to sum the contributions from individual modes and derive a
torque density8, as we did for Lindblad resonances.

However, the overall contribution of circular corotation resonances to the back
reaction torque the disc exerts on the satellite has been computed numerically as
a function of the disc parameters by Paardekooper et al. (2010). They provided
the following scaling of the total corotation torque

Γc,s =

[
0.7

(
3

2
− p
)

+ 2.2
ξ

γ

]
Γ0γ

−1, (3.73)

where ξ = 2q − (γ − 1)p, assuming again a surface density profile Σ ∝ R−p, a
temperature profile T ∝ R−2q, and using an adiabatic equation of state. The
variable ξ represents the power of the radial profile of the entropy changed in sign,
under the previous assumptions.

7The number of dimensions of the simulation affect the result as well as the gravitational
softening length required in 2D simulations (Paardekooper et al. 2010).

8However it is possible in principle to do it summing the contributions T lmc with m 6= l
(Goldreich & Tremaine 1980), since for them Rc 6= as, see Eq. (3.44).
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Figure 3.4: Left panel: sketch of the positions and intensity (length of vertical arrows)
of the individual Lindblad resonances in the disc, compared with the torque density
computed by equation (3.69). Right panel: Horseshoe orbits in presence of the a
satellite perturbing potential; the gray shaded area represents the libration region,
the white one circulation region. Original figure in Masset (2008).

However, the presence of a satellite in a disc modifies the shape of the gas
orbits in the co-orbital region into horseshoe orbits (see right panel in Fig. 3.4,
in contrast with the m-eye shaped orbits for individual corotation resonances in
Fig. 3.3 ). The material on these orbits librates in a horseshoe-shaped region (half
width xHS ≈ 1.3as

√
q(H/R)−1, Paardekooper & Papaloizou 2009b) characterized

by two U-turns in the immediate vicinity of the satellite. At each U-turn, that
occurs every tlibr = 2π/|Ω(R) − Ωs|, the interaction with the satellite moves the
material from an inner orbit (w.r.t the satellite location) to an outer one, or vice
versa. In order to complete the U-turn, the material needs to exchange angular
momentum with the satellite. Analogously to the angular momentum exchange
taking place in libration island responsible for the corotation torque (see Sec.
3.6.4), the conservation along the horseshoe streamlines of the fluid vortensity in
barotropic fluids, and entropy in an adiabatic ones, causes the exchange of angular
momentum to be asymmetric between the two U-turns. This provides a net torque
on the satellite called “horseshoe drag” (Ward 1991).

The change in shape of the streamlines from libration islands for barred po-
tential to horseshoes is not predicted within the linear theory we have discussed.
This implies in fact that, in order to appropriately describe the torque in the
co-orbital region, the co-rotation torque (Sec. 3.6.4) has to be replaced with the
horseshoe drag, as soon as horseshoe U-turns appear (i.e. for sufficiently low levels
of viscosity Paardekooper & Papaloizou 2009a).

The intensity of the horseshoe drag has been quantified for 2D adiabatic9 (i.e.

9The expression of the horseshoe torque for an isothermal disc has been studied in Casoli
& Masset (2009). Discs that are locally isothermal introduce an additional term, called “non-
isothermal excess” that depends on the temperature gradient (similarly to the entropy gradient
for adiabatic discs). This is due to the fact that vortensity is not anymore conserved along the
streamlines since the equation of state is not anymore purely barotropic.
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Figure 3.5: Left panel: Normalized intensity of tidal torque exerted by the m-th circular
mode of the perturbing potential, showing the cut-off for m & (H/R)−1. The dashed
curve represent H/R = 0.07, the solid one H/R = 0.03. Triangles represent ILRs,
squares OLRs. It is clearly visible that the cut-off occurs for larger m values if H/R
is smaller. Original figure in Papaloizou et al. (2007). Right Panel: Plot showing the
Γtot = ΓL,s + ΓHS,s exerted by the disc on the satellite as a function of Shakura &
Sunyaev (1973) viscous parameter αss. For low levels of viscosity ΓHS,s is saturated
and Γtot is dominated by the cumulative effects of Lindblad resonances, i.e. OLRs
overcome the effect of ILRs and Γtot < 0; for growing viscosity the corotation torque
gets desaturated and Γtot > 0. Original figure from Kley & Nelson (2012).

radiatively inefficient discs) discs as (Paardekooper et al. 2010)

ΓHS,s =

[
1.1

(
3

2
− p
)

+ 7.9
ξ

γ

]
Γ0γ

−1. (3.74)

However, the horseshoe drag is prone to saturation exactly as the corotation torque
(Kley & Nelson 2012). In particular, the level of saturation of the co-orbital torque
might even affect the sign of the overall torque exerted by the disc on the satellite,
determining whether it will undergo inward or outward migration. The right panel
of Fig. 3.5 shows the dependence of the total torque on the turbulent viscous
parameter α: high level of viscosity are expected to de-saturate the horseshoe
drag, which might even provide the reversal of the total torque exerted on the
satellite. In this context, MRI turbulence have been suggested to play a role
in desaturating the corotation torque providing a positive torque and outward
migration of the satellite (Baruteau et al. 2011). Furthermore, the reader should
keep in mind that these results apply for strictly circular orbits of the satellite:
even small eccentricities e & 0.03 might attenuate significantly the value of this
torque, leaving active the contribution coming only from the Lindblad resonances
(Bitsch & Kley 2010; Fendyke & Nelson 2014).
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Chapter

4
Disc-satellite mutual evo-

lution

“...You’d better close your eyes
Ooohhhh bow your head
Wait for the ricochet...”

Deep Purple, Child in Time

As discussed in the previous chapter, the tidal interaction promotes the mutual
exchange of energy and angular momentum between the satellite and the gaseous
disc.

In this chapter we discuss the role of the satellite in perturbing the density struc-
ture of the disc and, conversely, how the disc back-reaction affects the migration
and eccentricity evolution of the satellite.

4.1 Gap formation

The ability of a satellite to open a gap in the density distribution depends on two
competing effects. On the one hand, since the torque exerted on the disc by the
satellite is positive in the outer disc and negative in the inner one (see Eq. 3.69),
the satellite pushes away the material from the co-orbital region. On the other
hand, the viscous spreading of the disc and pressure effects tend to replenish the
depleted region. If the satellite is massive enough, so that the tidal torque is not
counterbalanced by viscous or pressure effects, a gap or even a cavity can form in
the disc. In Fig. 4.1 we show the results of two numerical simulations where a
satellite has carved a gap (left panel) or a cavity (right panel) in the disc.

A number of criteria for gap opening involving pressure, viscosity and the mass
of the satellite have been proposed (Lin & Papaloizou 1979, 1993; Bryden et al.
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Figure 4.1: Gas density colour plot in the x-y plane for two binary systems with different
mass ratios. The left panel shows a gap in the density profile produced by a satellite
with a mass ratio q = 0.01. The right panel shows a cavity produced by a satellite
with mass ratio q = 1. The colour-bar is logarithmic in code units. The white
dots represent the locations of the primary and secondary objects. Simulations were
performed using the 3D SPH code phantom (Price et al. 2018a).

1999; Goodman & Rafikov 2001; Crida et al. 2006; Duffell & MacFadyen 2013;
Duffell & Dong 2015), we summarize here the main ones.

In order to find a criterion to open a gap, we can imagine that a gap of width
∆ has already been carved and ask under which conditions the gap remains open.
To this aim, we compare the tidal torque acting to keep the gap open and the
viscous torque closing it.

The tidal torque at the gap edge scales as (see Eq. 3.10, or integrating 3.69 up
to the gap edge) (Duffell & MacFadyen 2013):

Ttot,∆ ≈ q2Ω2
sa

4
s Σ0

a3
s

∆3
. (4.1)

The viscous torque, assuming the Shakura & Sunyaev (1973) prescription for
viscosity ν = αH2Ω, can be approximated as:

Tvisc,∆ ≈ νΣR2Ω(R)|as = αH2
s Ω2

s Σ0a
2
s . (4.2)

In order to open a gap, one must have Ttot,∆ & Tvisc,∆. This leads to the follow-
ing condition on the secondary-to-primary mass ratio q, called “viscous criterion”:

q2 & q2
ν = α

(
H

R

)2

as

(
∆

as

)3

. (4.3)

The gap size ∆ cannot be smaller than two threshold characteristic lengthscales:
the disc scale height at the satellite location Hs and the Hill’s radius

RH =
(q

3

)1/3
as, (4.4)
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that defines a region where the material is gravitationally bound to the satellite.
The first threshold, Hs, is set by the fact that pressure gradients are not stable
across length scales shorter than the vertical displacement of the disc: a gap width
smaller than this value would not be stable and would simply collapse on a sound-
crossing timescale. The second, RH, can be understood by noting that the material
in the co-orbital region of the satellite remains trapped within its Hill’s sphere, the
gap then must be larger than that. However, besides this heuristic explanation,
we note that the condition RH > Hs is related to the onset of non-linearity of the
perturbations (Korycansky & Papaloizou 1996).

Using ∆ = max(Hs, RH) in Eq. 4.3 provides two “viscous criteria”. For small
satellite-to-primary mass ratios, the width must satisfy ∆ > Hs. Substituting
∆ = Hs into Eq. (4.3) the condition for gap opening reads (Armitage 2010;
Duffell & MacFadyen 2013):

q & qν,1 =
√
α

(
H

R

)5/2

as

, (4.5)

where the subscript as indicates that the value is computed at the satellite location.
For massive satellites the gap size must satisfy ∆ > RH (Lin & Papaloizou

1993). Substituting ∆ = RH into Eq. (4.3), we obtain the following condition for
gap opening (Lin & Papaloizou 1979, 1993; Bryden et al. 1999)1

q & qν,2 =
α

3

(
H

R

)2

as

. (4.6)

An additional criterion can be defined starting from the condition RH > Hs,
from which it follows (Lin & Papaloizou 1993)

q & qth = 3

(
H

R

)3

as

. (4.7)

This criterion goes under the name of “thermal criterion” since it sets a condition
on the temperature of the disc for the satellite to be able to carve a gap.

It should be noted that this criterion does not depend on viscosity. It has
been shown that as the density waves propagate away from Lindblad resonances
their amplitude grows until they become non linear and shock at a distance lth
from the excitation region (Goodman & Rafikov 2001). This provides an effective
mechanism for the deposition of the angular momentum they carry. When q > qth,
the density waves steepen and shock as soon as they are excited, implying that the
deposition of the angular momentum occurs very close to excitation region. Every
time the material crosses one of the shocks, it receives a kick of angular momentum
that changes its orbit. This mechanism ends up clearing the co-orbital region. For
this reason the criterion in Eq. 4.7 is sometimes also referred to as “strong shock”
limit.

1Note that this criterion is mostly known as qν,2 & 40νs/(Ωsa
2
s ), where the prefactor 40,

comes from different numerical prefactors in Eq. 4.1 and 4.2.
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Crida et al. (2006) provided a unified criterion for gap opening involving both
the viscous and the thermal criterion, which reads

3

4

(
H

R

)
as

(q
3

)−1/3
+

50νs

Ωsa2
s

q−1 . 1. (4.8)

This criterion represents the condition the parameters have to satisfy so that the
satellite carves a gap that reduces the density in the co-orbital region to the 10%
of its unperturbed value.

We note that in our derivation of Eq. (4.3) we neglected some numerical coef-
ficients that change the criteria by a numerical factor. The numerical coefficients
can be adjusted properly accounting for the constants in the derivation or deduc-
ing them from numerical simulations. Typical values of q, satisfying the criterion
for typical disc properties in astronomy, range from q ∼ 10−4 – 10−3 for protoplan-
etary discs to q ∼ 10−3 – 10−2 for discs surrounding black holes.

Finally, as we will see in the following sections, the back reaction the disc exerts
on the satellite might cause it to migrate from its original position. This process
is called migration. In order to be able to carve a gap, the satellite migration
timescale must be longer than the gap opening one. This provides the so called
“inertial” criterion, for fast migrating satellites which reads (Ward & Hourigan
1989)

q & qIn =
Σ0a

2
s

M?

(
H

R

)3

as

. (4.9)

4.1.1 Gap shape

What is the density profile of the gap? The problem of determining the gap shape,
in particular, its width and depth (i.e. what is the minimum density reached into
the gap), has been widely investigated in the literature. The typical approach
consists in balancing the local expression of the tidal torque exerted by the satellite
on the disc with the local viscous torque. The main problem that arises in this
procedure is the modeling of the physical mechanism through which waves are
damped and, in particular, how much distance they travel before all the angular
momentum they transport is transfered to the disc.

The simplest approach consists in assuming that the excitation torque, i.e. the
torque exciting the density waves, corresponds to the effective rate of angular
momentum transfer from the satellite to the disc (Varnière et al. 2004). This is
completely equivalent to assuming that the wave damping is a local process, so
that waves transfer all the angular momentum at the same location where they
are excited.

Relaxing the local wave damping assumption implies that the excitation torque
and the “deposition torque” (also referred to as “pressure torque”, Crida et al.
2006) are not the same. In particular, waves are able to travel some distance from
their excitation location before being damped. The deposition torque has been
computed both numerically (Crida et al. 2006) and analytically (Duffell 2015)2

2They assumed as deposition mechanism the theory of density waves steepening and shocking,
developed by Goodman & Rafikov (2001) and Rafikov (2002).
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The full analytical derivation of the gap density profile Σ(R) using this approach
can be found (Duffell 2015, see their Eq. 12).

More generally, we state here two effective formulae to estimate the gap depth
and width. The depth of the gap, expressed as the minimum of the density profile
Σmin, can be effectively estimated as (Kanagawa et al. 2018)

Σmin =
1

1 + 0.04K
Σ0, (4.10)

where Σ0 is the unperturbed surface density, and K is

K = q2α−1

(
H

R

)−5

as

. (4.11)

It should be noted that the gap opening criterion in Eq. (4.5) can be restated
as K & 1. A width estimate instead can be obtained from Eq. (4.3) as (Lin &
Papaloizou 1979)

∆ ≈
[(

Ms

M?

)2 Ωsa
2
s

νs

]1/3

as. (4.12)

4.2 Energy and angular momentum exchange during
disc-satellite interaction

We consider a satellite with mass Ms moving on an elliptic orbit around the mass
M? that is located in one of the foci3.

Elliptical orbits can be characterized using two parameters: the semi-major axis
of the orbit as and its eccentricity e. These quantities depend exclusively on the
energy Es and the angular momentum Ls of the satellite, that are conserved along
the entire orbit. The orbital energy of the system is

Es = −GM?Ms

2as
(4.13)

the angular momentum is then given by

Ls = Ms

√
GM?as(1− e2). (4.14)

To each elliptical orbit characterized by couple (Ls, Es) corresponds only one
couple (e, as). As a consequence, the evolution of the orbital properties of both
the satellite and the disc depends on the rate at which the two exchange energy
and angular momentum.

In this context, it is very important to understand how the torque arising from
different individual (l,m) modes of the potential decomposition (Eq. 3.36) affects
the evolution of the semi-major axis and eccentricity of the satellite.

3Setting a fixed central mass M? in the origin of an inertial reference frame is reliable as long
as the mass of the satellite Ms �M?, see Sec. 1.1).
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By definition, the flux of angular momentum injected in a wavelike disturbance
with pattern frequency4 Ωlm

p gives:

L̇s = −T lm, (4.15)

where L̇s represent time derivative of the angular momentum of the satellite
and T lm is the torque injected in the disc by the satellite. The flux of energy
F lmE = −Ės transported by the perturbations can be obtained by imposing the
conservation of the Jacobi’s constant J̇ lm = F lmE − Ωlm

p T lm = 0 (since each bar-

potential is constant in the frame rotating with the pattern frequency Ωlm
p , Gol-

dreich & Sari 2003), it reads5:

Ės = −F lmE = −Ωlm
p T lm. (4.16)

4.3 Eccentricity evolution

We assume that the satellite, that orbits the central object with a frequency Ωs,
interacts with the disc at a specific resonance, exciting only one perturbation with
pattern frequency Ωp and exerting a torque T lm at that location. We restate L̇s

in Eq. (4.15) as function of ȧs and ė

L̇s =
Ms

2

√
GM?(1− e2)

as
ȧs −

ΩsMsea
2
s√

1− e2
ė = −T lm. (4.17)

The rate of change of the satellite semi-major axis (migration rate) and the energy
are related by the following equation

Ės =
GM?Ms

2a2
s

ȧs = −Ωlm
p T lm. (4.18)

which also provides

ȧs = −2
Ωlm

p

Ωs

T lm

MsΩsa2
s

as (4.19)

Substituting Eq. (4.18) in (4.17), after some simple algebra we get (Masset 2008):

Ms

2

Ωsa
2
s√

1− e2

de2

dt
=

(
1−

Ωlm
p

Ωs

√
1− e2

)
T lm. (4.20)

The sign of ė and ȧs thus depends on the sign of the angular momentum injected
into the perturbation (T lm) and the ratio between the pattern frequencies Ωp of
the density perturbations and the orbital frequency of the satellite Ωs. Substi-
tuting the values for individual resonances, it is possible to collect the following
information about the effect of individual resonances on the evolution of as and e
(Goldreich & Sari 2003; Masset 2008), a summary of the following considerations
can be found in Tab. 4.1:

4We remind that the expression of Ωlmp as a function of the satellite orbital frequency, can be
found in Eq. (3.37).

5We remark that T lm is defined as the torque the satellite exerts on the disc. This sets the
sign in the r.h.s. in Eq. (4.16): a positive torque will cause the energy of the satellite to decrease.
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potential pattern speed Torque – T lm Keplerian position effects
Ωl,m name sgn as e

ψm,m Circular Ωp Tm,mOLR + as(1 + 2/3m) ⇓ ↑
Tm,mCR ? as ? ?
Tm,mILR − as(1− 2/3m) ⇑ ↓

ψm−1,m Slow First Order Ωp − κp/m Tm−1,m
OLR + as(1 + 4/3m) ↓ ⇑
Tm−1,m

CR (−) as(1 + 2/3m) (↑) (⇓)

Tm−1,m
ILR − as ↑ ↓

ψm+1,m Fast First Order Ωp + κp/m Tm+1,m
OLR + as ↓ ↓
Tm+1,m

CR (+) as(1− 2/3m) (↓) (⇓)

Tm+1,m
ILR − as(1− 4/3m) ↑ ⇑

Table 4.1: Resonances for a set of (l,m) pairs. For each one, the pattern frequency, sign
and location of Lindblad and corotation torques T lm that excites the perturbation
are reported. The last two columns represent the effect of the perturbation on the
evolution of as and e. Double arrows represent the leading effect under the assumption
of a well carved gap. Parentheses indicate that the sign of the torque is computed
assuming that the vortensity decreases approaching the planet, situation that typically
occurs when a deep gap is carved. (Adapted from the original table in Goldreich &
Sari 2003).

1. Circular resonances: the effect of circular resonances (Ωp = Ωs, i.e. m = l)
on the evolution of e and as can be obtained expanding Eq. (4.20) for small
values of e as follows:

ė

e
=

Tmm

2MsΩsa2
s

= −1

4

ȧ

a
. (4.21)

This equation depends exclusively on the sign of Tmm that is the torque
exerted satellite on the disc, it is thus straightforward to determine the
signs of ė and ȧs.

1.1 Circular Lindblad resonances: OLRs, that are characterized by TmmOLR >
0, are expected to excite eccentricity (ė > 0) and to provide an inward
migration of the satellite (ȧs < 0); in contrast, ILRs, characterized
by TmmILR < 0, damp the eccentricity down and provide an outward
migration of the satellite.

1.2 Circular corotation resonances: The sign of ȧs and ė due to the action
of circular corotation resonances (co-orbital resonances) cannot be de-
termined a priori since TmmCR depends on the vortensity gradient in the
libration region, as discussed in Sec. 3.6.4; in particular, eccentricity
grows only if the density profile Σ ∝ R−p has p > 3/2, it will decrease
otherwise.

2. First order resonances: since the intensity of the (m, l) mode of the potential
scales as e2|l−m|, for eccentric satellites, the strongest contribution in the
Fourier expansion in Eq. (3.36) after circular m = l resonances is given by
those terms with l = m±1. For these resonances the pattern frequency Ωlm

p
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(see Eq. 3.37) reads

Ωm±1,m
p =

(
1± 1

m

)
Ωs. (4.22)

Those pattern frequencies characterized by the + sign have their corotation
radius located inside the co-orbital radius and are called “fast first order
resonances”; in contrast, those with the − sign have their corotation ra-
dius located outside the co-orbital radius and are called “slow first order
resonances”.

2.1 First order Lindblad resonances: for these pattern frequencies, slow
ILRs and fast OLRs are located where the condition Ω(R) = Ωs is met,
i.e. at R = as. For this reason, they are called “co-orbital Lindblad
resonances”. Using Eq. (4.20), it can be shown that co-orbital Lindblad
resonances are expected to damp the eccentricity down. In contrast,
following the same approach, it can be shown that fast ILRs and slow
OLRs are expected to excite the satellite eccentricity. The sign of ȧ
and ė for each first order Lindblad resonance can be found in Tab. 4.1.

2.2 First order corotation resonances: As for circular corotation resonances,
the effect of first order corotation resonances on the evolution of e and
as depends on the vortensity gradient, and cannot be determined a
priori. Anyway, if the satellite succeed in opening a gap in the disc,
a very steep grandient in the vortensity is produced at its edges. The
sign of this vortensity gradient is consistent with a steep decrease in
density radial profile in the direction approaching the satellite. We can
thus safely assume, that the sign of Tm+1,m

CR > 0 for fast first order

resonances and that Tm−1,m
CR < 0 for slow ones. The sign of ȧs and ė

for each first order corotation resonance can be found in Tab. 4.1

From these considerations it becomes clear that the overall evolution of the
system depends on how the disc and the satellite mutually affect each other: on
the one hand, the orbital properties of the satellite determine where are resonant
locations and their intrinsic intensity, carving the disc structure; on the other, the
the disc structure shapes the relative intensity of resonances that determine the
evolution of the orbital properties of the satellite. This mutual evolution of disc
and satellite makes hard to predict general results within the framework of the
linear theory presented here.

To conclude this section, in Fig. 4.2 we show the outcome of two long timescales
simulations (simulations from (Ragusa et al. 2018), see Chap. 7). This figure
shows two cases of inward migration in the (Ls, as) plane; in one the eccentricity is
growing (left panel), in the other the eccentricity is descreasing (right panel). With
these plots we want to highlight how different the evolution of the satellite orbital
parameters can be when the disc properties change. Furthermore, these plots
show clearly some periodic oscillations that cannot be captured by the resonant
torque analysis we provided so far. Such oscillations are likely related to the modes
m = 0 of the potential (see Sec. 7.4.1), which are expected to drive the secular
disc-satellite interaction. We refer to Chap. 7 for a deeper discussion about these
themes and about the disc-satellite mutual evolution at long timescales.
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Figure 4.2: Outcome of two numerical simulations of migrating satellites interacting
with their accretion discs for two different disc masses (1/5 of the satellite mass,
left panel, and 3/5 of the satellite mass). The solid lines represent the path of the
two satellites in the angular momentum vs. semi-major axis (Ls, as) plane as the
simulations evolve. The colour-plot shows the corresponding satellite eccentricity.
The left panel shows a satellite whose eccentricity is progressively growing as it
migrates inward. The right panel shows a satellite whose eccentricity grows very fast
in the initial stages and then decreases at later times. Some periodic oscillations of
the eccentricity are clearly visible in both plots. Such oscillations will be discussed
in more detail in Chap. 7.

4.4 Type I migration

Satellites that are not able to carve a gap in the disc structure are subject to the
so called Type I migration. In this migration regime, the satellite is completely
embedded in the gaseous disc. The torque exerted by the disc on the satellite
is given by the sum of the torques exerted at each resonant location. It can
be shown that the eccentricity damping action of Lindblad co-orbital resonces is
stronger than that provided by any of the other resonances (Ward 1988; Artymow-
icz 1993b; Tanaka & Ward 2004). Furthermore, the eccentricity damping time is
much shorter than the migration time (Artymowicz 1993b). These facts imply
that it is reasonable to assume that type I migration occurs on circular orbits.
Under this assumption the satellite and the disc exchange angular momentum
only at circular resonant locations. The total torque exerted by the disc on the
sattelite is thus given by

Γtot = −
( ∞∑
m=2

TmmL,ILR +
∞∑
m=1

TmmL,OLR +
∞∑
m=1

TmmCR

)
. (4.23)

The torque exerted on the satellite by OLRs and ILRs, has opposite sign. In
particular: ILRs resonances exert a positive torque on the satellite increasing its
angular momentum and causing an outward migration; on the other hand, OLRs
exert a negative torque on the satellite causing an inward migration. In general,
the contribution of the OLRs is stronger than that provided by ILRs, overall
causing the satellite to migrate inward. However, as discussed in Sec. 3.7.2, the
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sign of CR torque and its level of saturation play a fundamental role in determining
the direction of satellite migration.

Assuming that the total contribution for the corotation torque TmCR is given by
the horseshoe drag, a numerical estimate of Eq. (4.23) is given by Paardekooper
et al. (2010)6

Γadia
tot,2D =

[
−2.5− 3.4q + 0.1p+ 1.1

(
3

2
− p
)

+ 7.9
ξ

γ

]
Γ0γ

−1, (4.24)

where, as in Sec. 3.7.1 and 3.7.1 ξ = 2q − (γ − 1)p, p is the power of the surface
density profile (Σ ∝ R−p), q relates with the temperature profile as T ∝ R−2q,
and using an adiabatic equation of state. The variable ξ represents the power of
the radial profile of the entropy changed in sign. Γ0 (see Eq. 3.72) sets the order
of magnitude of the total torque.

In recent years, predictions about the migration rate have been widely discussed
in the context of planet formation. For a reasonable choice of the disc parame-
ters, in particular for parameters of the MMSN (mininum mass solar nebula,
Weidenschilling 1977,Hayashi 1981) the migration of the satellite occurs inward
(Paardekooper et al. 2010).

Knowing that for a satellite on a circular orbit Ls = MsΩsa
2
s , and assuming

L̇s = Γ0 we can make a qualitative estimate of the migration rate ȧs that takes
the form:

ȧtypeI
s =

2Γ0

Ls
as. (4.25)

Computing the typical timescale for type I migration, we get the following result

τtypeI ≡
as

|ȧtypeI
s |

≈ Ls

|Γ0|
= q−1 M?

Σasa
2
s

(
H

R

)2

Ω−1
s . (4.26)

Substituting in the previous equation the values predicted for the MMSN Σas =
1700 × (as/1au)−3/2 g cm−2, and assuming the disc thickness H/R = 0.05, an
earth-like mass planet (i.e. Ms = M⊕ → q ≈ 3 × 10−6) located at as = 1 au,
one obtains τtypeI < 1 Myr, i.e. lower than the typical lifetime of accretion discs
surrounding a forming star, which is expected to be ≈ 1 – 10 Myr.

Based on this result, a large variety of studies have been conducted in order
to find possible further physical mechanisms able to slow down the migration, so
that planets can form and survive across the entire lifetime of the disc.

Magnetic effects (as mentioned in Sec. 3.6.1) might provide a reversal of the mi-
gration rate (Terquem 2003; Fromang et al. 2005). Migration have been observed
to reverse for moderate values of eccentricity of the planet e > H/R Papaloizou
(2002).

Abandoning the assumption of isothermal discs, the dependence of the horseshoe
drag on a non vanishing entropy or temperature gradient (see Sec. 3.6.4 and 3.7.2)
provides in fact a possible mechanism to slow down, or even reverse the migration:
as previously observed in the simulations by Paardekooper & Mellema (2006) when

6The same result has been discussed for 3D locally isothermal discs by D’Angelo & Lubow
(2010), see their Eq. (9).
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Figure 4.3: Colour plot of the torque values in the (Ms, as) parameter space for a disc
with radiative cooling, stellar irradiation and viscous heating. Solid lines enclose the
parameter regions where outward migration appears to occur. The satellite mass
plays a role mainly in setting the degree of saturation of the corotation torque.
Original figure Bitsch et al. (2013a).

considering non isothermal disc, (see also Baruteau & Masset 2008, Paardekooper
& Papaloizou 2008, Casoli & Masset 2009, Paardekooper et al. 2011).

Bitsch et al. (2013a) performed a set of numerical simulations with a realistic
modelling of the disc thermodynamics including viscous heating, radiative cooling
and stellar irradiation, in order to define the regions in the (Ms, as) parameter
space in which inward and outward migration take place. Figure 4.3 shows the
torque values they find in the (Ms, as) parameter space.

Radiative effects or the heating due to the accretion of material on to the planet
might stop the inward migration of small mass planets (Lega et al. 2014; Beńıtez-
Llambay et al. 2015).

Finally 3D simulations performed by Fung et al. (2015) showed that the mod-
ification of the morphology of streamlines in the satellite surroundings gives rise
to an additional torque that slows down the inward migration rate.

4.5 Type II migration

When the satellite satisfies the criteria presented in Sec. 4.1, it carves a stationary
gap in the disc. The gas depletion in the co-orbital region makes the contribution
of co-orbital resonances negligible in the computation of the total torque. This
fact, in addition to the reduction of the number of Lindblad resonances involved
in the disc-satellite interaction, results in a slowing down of the satellite migration
rate.

In order to qualitatively understand this migration regime, we can assume that
the satellite is locked inside the gap and that the torque it exerts on the disc
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bridges the two sides of the disc. For this reason, the satellite location constitutes
a sort of boundary condition for the equations ruling the disc evolution. Starting
from Eq. (2.20), in order to conserve the angular momentum, the satellite has to
satisfy the following equation (Ivanov et al. 1999, Eq. 42):

1

2
MsΩsasȧs + 2πa2

s

[
3

2
νΣ0Ωs + Σ0Ωsasȧs

]
= 0, (4.27)

where Σ0 is the unperturbed surface density in the gap; all the quantities showing
an “s” subscript are computed at the satellite location. The assumption for the gas
drift velocity vR ≈ ȧs has also been used, implying that in this model the satellite
constitutes an insurmountable barrier for the gas. Equation (4.27) represents in
fact the balance between the angular momentum loss rate of the satellite and the
angular momentum the satellite need to constantly inject into the disc in order to
maintain the cavity depleted.

Rearranging equation (4.27) we obtain the following migration rate:

ȧtypeII
s =

4πa2
s Σ

Ms + 4πa2
s Σ0

3

2

ν

a2
s

as =
Md

Ms +Md

as

tν(as)
. (4.28)

where Md = 4πΣ0a
2
s qualitatively quantifies the mass of the inner disc, and tν(as)

is the viscous timescale (Eq. 2.28)

ttypeII =
as

|ȧs|
=
Ms + 4πa2

s Σ0

4πa2
s Σ0

2

3

a2
s

ν
=
Ms +Md

Md
tν(as), (4.29)

From Eq.s (4.28) and (4.29) it becomes clear that in this migration regime two
main cases can be identified. First, the satellite mass satisfies Ms . Md: the
inertia of the satellite is smaller or at most comparable to that of the disc. The
satellite result thus to be locked into the gap it has carved and the migration rate
ȧs,typeII occurs at the nominal radial gas drift velocity of the gas due to the disc
viscous evolution (Lin & Papaloizou 1986):

ȧtypeII
s = − as

tν(as)
, (4.30)

so that the typical timescale type II migration for Ms �Md is:

ttypeII =
as

|ȧtypeII
s |

= tν(as). (4.31)

Armitage (2010) proposes a simple analogy in order to understand this case of
type II migration: the satellite is surrounded by “brick walls” at the inner and
outer edges of the cavity; at the inner edge, the tidal torques remove the exact
amount of angular momentum needed to prevent the gas to cross the wall due
to viscous diffusion, the same mechanism is reproduced at the outer edge where
instead the angular momentum is removed from the satellite and transfered to the
gas.

Second, the satellite mass satisfies Ms � Md: in this case the inertia of the
satellite is much larger than that of the disc and the migration rate is much
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slower; this implies that the timescale for this case of type II migration becomes
(Ivanov et al. 1999; Armitage 2007):

τtypeII =
Ms

Md
τν . (4.32)

Some recent numerical simulations have questioned the validity of the timescales
in Eq. (4.29) and (4.31). Edgar (2007), Duffell et al. (2014) and Dürmann & Kley
(2015) have shown that for small satellites (Ms < Md) carving gaps might undergo
migration on timescales shorter than the viscous time. This result is likely due to
the fact that some material crosses the gap in 2D and 3D simulations, in contrast
with the assumption under which the analytical model was developed (i.e. that
the inward velocity of the gas vR is equal to the velocity of the satellite ȧs = vR).
Anyway, in the massive satellite regime (Ms > Md) 2D simulations in Ragusa
et al. (2018) have shown good agreement with the theoretical model.

Recently Kanagawa et al. (2018) showed that the migration rate in type II
regime is inversely proportional to the minimum density value in the gap Σmin as
soon as the transition from type I migration to type II occurs. In this paper the
authors found

ȧtypeII
s = −150

Γ0

ΩsasMs

1

K
(4.33)

where K have been previously defined in Eq. 4.11 and can be used to quantify the
gap depth. This expression appears to be consistent with the migration timescales
obtained by Duffell et al. (2014) and Dürmann & Kley (2015) for small satellites,
but also with Eq. (4.29) for more massive satellites.

Finally, it is worth to mention that, performing a large number of numerical
simulations, Kanagawa et al. (2018) were able to infer a single general expression
of the migration timescale that can be used both for type I and type II migrating
satellites as an only function of K (see their Eq. 29). We report in Fig. 4.4 the
summarizing plot from Kanagawa et al. (2018), where the migration timescales
from numerical simulations are compared with their theoretical predictions.
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Figure 4.4: Plot of the general expression valid for both type I and type II migration
timescales by Kanagawa et al. (2018) as a function of K (see Eq. 4.11); Γ0 is given
in Eq. (3.72) and τ0 = (MsΩsas)/(2Γ0). Solid and dashed curve represent two
possible ways to prescribe the corotation torque cut-off due to the gap depletion.
The points in the plot represent the outcome of their simulations; different colours
and shapes represent different parameters in the simulations, in particular: α is
the Shakura & Sunyaev (1973) viscous parameter, f is the flaring index of the disc
(H(R)/R = H0(R/R0)f ) and H0 is the disc aspect ratio.
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Chapter

5

Black hole binaries

“...C’è chi si mette degli occhiali da sole
Per avere più carisma e sintomatico mistero...”

Franco Battiato, Bandiera Bianca

In this Chapter we review the formation mechanisms of both stellar and super-
massive black hole binaries (Sec. 5.1 and 5.2).

We introduce some other relevant concepts in the context of black hole binary
mergers. In particular, in Sec. 5.3 we discuss how the emission of gravitational
waves modifies the semi-major axis and eccentricity of the binary, while in Sec.
5.4 we present the concept of “kick velocity” of the merger remnant.

In Sec. 5.5, we will also emphasise the relevance of the accretion rate on the
binary for determining the electromagnetic and gravitational wave emission prop-
erties, and how the tidal torque the binary exerts on the disc can reduce the
accretion rate in these systems.

5.1 Stellar mass black hole binaries

As discussed in Sec. 1.3.2, stellar mass black holes form as endpoints of the life of
massive stars. In this context, stellar mass black hole binaries have been proposed
to form following two main scenarios. On the one hand, they might have formed
as massive binary stars (Postnov & Yungelson 2014), becoming a black hole binary
at the end of their lives; on the other hand, they formed by gravitational capture
in dense stellar clusters (Benacquista & Downing 2013).

In the first case, often referred to as the “field formation” scenario, main se-
quence isolated binary stars are the starting point. One of the two stars becomes a
black hole following a supernova event or, if the star is sufficiently massive, direct
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collapse into a black hole. Then, as a consequence of Roche lobe overflow of the
second star, a phase of common envelope takes place that shrinks the separation
of the binary. This stage is critical in the framework of the merger of stellar mass
black hole binaries: the emission of gravitational waves is not sufficient to provide
a merger timescale shorter than the Hubble time if the black hole binary is not
close enough. Finally, the second object becomes a black hole and the emission of
gravitational waves reduces the separation until merger occurs (Belczynski et al.
2016). It must be mentioned that in this context the natal kick of the black holes,
i.e. the initial velocity of the black hole following an asymmetric supernova event,
is extremely relevant to determine the survival of the binary.

In the second case, often referred to as the “dynamical formation” scenario,
the black holes originate from a dense stellar cluster. Most massive objects sink
toward the center of the cluster due to dynamical friction with the other stars.
In this dense environment, the black holes that are present in the field undergo
a large set of possible three body interactions leading to the formation of binary
black holes1 (Rodriguez et al. 2016).

However, it must be said that in dense environments black holes might undergo
second generation mergers with the remnants of first generation ones (Gerosa
& Berti 2017), further complicating the formation scenario of stellar black hole
binaries.

Binary black holes are currently receiving great attention from the scientific
community due to the detection of gravitational waves signals from compact ob-
jects mergers (Abbott et al. 2016a,b,d, 2017a,d,b,c) after advanced LIGO and
Virgo became operative. Besides the large number of tests for general relativity
these events provide, they can also be exploited as an observational tool to probe
the origin and evolution of these systems (Gerosa 2018; Belczynski et al. 2017),
since at the moment of the merger their orbital properties carry the memory of
their past evolution. Currently, out of a total of 7 gravitational wave merger events,
one was a NS-NS merger (GW170817, Abbott et al. 2017c), one LVT151012 had
13% probability to be noise (Abbott et al. 2016a), 5 were confirmed stellar black
hole binary mergers.

5.1.1 Determining the formation mechanism from gravitational
wave detections

Constraints about the formation mechanism of the binary can be inferred from the
gravitational wave detections. The mass distribution of merging black holes can
provide some insights about the evolutionary path of the black holes, nevertheless
a large number of detections is required in order to put some constraints using
mass measurements only.

Three of the events involved black holes with masses relatively large with respect
to those observed in X-ray binaries. See Fig. 5.1 for a graphic comparison be-
tween the masses of the gravitational wave events and the those of X-ray binaries.
The large masses of these merging black holes (M• & 25M�) suggest that their
progenitors were low metallicity stars, thus characterized by weak winds (Heger

1See the video https://www.youtube.com/watch?v=chD3_G9sXy0 by Aaron Geller for an ex-
ample of the dynamics of a three body encounter in a dense stellar cluster.

https://www.youtube.com/watch?v=chD3_G9sXy0
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et al. 2003; Kowalska-Leszczynska et al. 2015; Giacobbo et al. 2018). Such progen-
itors could be well represented by those formed in low mass galaxies (Lamberts
et al. 2018) undergoing a prompt merger, or by population III stars with strongly
delayed mergers (Kinugawa et al. 2014; Abbott et al. 2016e).

On the other hand, as discussed in Sec. 1.3.2, observing black hole progenitors
with masses 52 M� .M• . 133 M� would suggest that the origin of the black hole
binary must be dynamical, involving necessarily second generation black holes,
due to the pair-instability in supernova events that completely evaporate the pro-
genitor without leaving any remnant. However, a statistical based analysis on
detection rates performed by Fishbach & Holz (2017) claimed that the lack of de-
tections of stellar black holes in the pair-instability mass regime among the events
we already have implies that such black holes likely do not exist, i.e. confirming
the gap in black hole mass distribution.

Relative spin orientation is expected to give a cleaner indication of the formation
scenario (Farr et al. 2017; Gerosa 2018; Belczynski et al. 2017). One of the spin-
related quantities to which the gravitational waveforms are most sensitive is the
effective spin2, which reads

χeff =
c

G(M1 +M2)

(
S1

M1
+

S2

M2

)
· L|L| (5.1)

where S1,2 are the spins of the individual black holes (Eq. 1.26) and L/|L| is
the unit vector pointing in the direction of the binary orbital angular momentum.
This scalar quantity is a mass-weighted average of the aligned component of the
individual spins.

The effective spin is a constant of motion in post-Newtonian dynamics and can
be inferred from the gravitational wave pattern. This quantity provides a direct
measure of the alignment of the spins of the black holes before the merger with
the orbital angular momentum. However, the information provided by χeff about
the total angular momentum budget of the binary is limited: the inclination of
the spins and their intrinsic magnitude are degenerate. Measures of the preces-
sion rate of the orbital angular momentum vector are needed in order to break
the degeneracy and to better constrain the individual quantities L, S1, S2; nev-
ertheless, in order to measure the precession, long waveforms are needed, since
the precession rate is much longer than the orbital period. Furthermore, in order
to resolve the signal modulation produced by the precession, a precise measure of
the wave amplitude is required as well, but it is not easy to achieve given the very
low signal-to-noise ratio of the detections.

The gravitational wave events detected so far have been associated to low values
of effective spin. The statistical distribution of the values of χeff can help in
identifying the formation mechanism of these objects. However, for statistical
reasons, a relatively large number of events is required in order to discriminate
between the field or the dynamical scenario.

On the one hand, in the field formation scenario, the progenitors of the binary
black holes have spent all their life together in a binary system. This implies that

2The main effect of χeff on the waveform can be understood by noting that the spin-orbit
alignment affect the radius of the ISCO (see Sec. 1.3.2), i.e. the frequency of the wave when the
merger takes place.
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the relative orientation of the spins with respect to the orbital plane of the binary
is affected by mechanisms able to align (tidal interaction) or misalign (natal kicks,
O’Shaughnessy et al. 2017 and Wysocki et al. 2018) the spins, that leave their
peculiar footprint in the spin orientation. The effective spin distribution expected
for a sample of black holes formed through the field scenario is peaked at high
values of χeff , assuming spin magnitudes as high as those estimated in several X-ray
binaries (Fragos & McClintock 2015). However, the magnitude of the spin when a
black hole forms is thought to depend on the mass of its progenitor. In particular,
Belczynski et al. (2017) showed that low native spins are perfectly consistent with
high-mass progenitors. As a consequence, within the field scenario, the effective
spin distribution is expected to be peaked at low values if the binary components
have massive star progenitors.

On the other hand, binary black holes that form through the dynamical scenario
are expected to show random isotropic spin orientation. Therefore, the associated
χeff value distribution, in a sample of gravitational wave events of binaries formed
through the dynamical scenario, is expected to be uniform. This implies that a
significant fraction of the gravitational wave events detected from such a sample
will be characterized by low effective spin values, analogously to what expected
for the field formation scenario of black hole binaries with massive progenitors.

In conclusion, in light of these considerations, the measurement of small values
of χeff , as those of all the gravitational wave events detected so far, does not allow
us to discriminate between the two formation scenarios, since the effective spin
distributions in both cases are characterized by a large fraction of events with
low effective spin. A larger number of detections is required in order to better
constrain the origin of the binary progenitor.

However, we note that Gerosa & Berti (2017) safely excluded (evidence of 2σ)
the hypothesis that the gravitational wave events detected so far involved binaries
composed by two second generation black holes. Indeed, at the merger, the resid-
ual angular momentum of the binary is converted into spin of the remnant black
hole. It can be shown that the remnant spin is almost completely independent
from the initial spin of the merging black holes; in particular, after the merger, the
remnant black hole always has an intrinsic spin χs ≈ 0.7, which is not consistent
with any of the χeff measured in the observed events.

5.2 Supermassive black hole binaries

The ΛCDM cosmological model predicts the ubiquitous formation of supermas-
sive black hole binary systems. According to this model, galaxies in the near
universe were assembled via the hierarchical merger of smaller structures at high
redshift (see Fig. 5.2for two examples of merging galaxies). Since we know that
most galaxies host in their central regions a supermassive black hole (Kormendy
& Ho 2013), it is absolutely natural to assume that after a galaxy merger two
supermassive black holes coexist in the same galaxy.

Few observation of dual AGNs with separations of the order of 1 – 10 kpc (Com-
erford et al. 2015, and references therein) appears to support this hypothesis. At
shorter separations, apart from the detection of two dual AGN sources with a
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Figure 5.1: Masses of the progenitors and remnants of the first 5.87 LIGO/Virgo black
hole merger detections (large blue circles, the dashed one had 13% probability of be-
ing consistent with noise fluctuation), compared to the masses of the observed X-ray
binaries (violet circles). Edit of the original images by LSC/LIGO/Caltech/Sonoma
State (Aurore Simonnet).

Figure 5.2: Left panel: Arp 273, an example of two interacting galaxies (UGC1810 above
and UGC1813 below) located at 350 million ly in the Andromeda constellation,
showing prominent spiral features, typically observed in tidally interacting objects.
Right panel: Antennae galaxies, two merging galaxies located at 65 million ly in the
Corvus constellation. Images credit: NASA/ESA Hubble Space Telescope.
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projected separation of 7.3 pc (B2 0402+379, Rodriguez et al. 2006) using the
Very Large Baseline Array (VLBA), and one with a projected separation of 0.35
pc (NGC 7674, Kharb et al. 2017) using the Very Long Baseline Interferome-
try (VLBI), no other direct observations of black hole pairs at separations below
1 kpc have been provided so far; in this respect, D’Orazio & Loeb (2018b) recently
claimed that using the Very Large Baseline Interferometry (VLBI) it should be
possible to resolve a number of periodic sources in the close universe (z . 0.5).

A few possible candidates of sub-parsec black hole binaries have been inferred
with indirect observations. Such candidates were obtained using two main tech-
niques: firstly, using measurements of offset broad emission-lines, that are ex-
pected to be emitted from the gas orbiting the individual black holes, carrying
information about the orbital motion of the binary (Bogdanović 2015; D’Orazio
et al. 2015; Wang et al. 2017); secondly, using photometric measurements of quasi-
periodic sources: the expectations of periodic gas accretion in these system (see
the next chapter) implies that periodic electromagnetic emission in AGNs repre-
sents the possible signature of black hole binaries (e.g. the quasar OJ287 show
a qausi-periodic light curve with a periodicity of 12 years, which appears to be
perfectly consistent with a model SMBHB+accretion disc Valtonen et al. 2008).

Regarding this second technique, a number of possible candidates of unresolved
black hole binaries with sub-pc separations have been suggested in recent years
thanks to two large surveys that searched for stationary optical transients in the
sky for the past nine years. Firstly, the Catalina Real-time Transient Survey
(CRTS, Drake et al. 2009): its data were used to identify a total of 111 candidates
of supermassive black hole binaries (Graham et al. 2015) in ∼ 250 × 103 quasars
covered by the survey; secondly, the Palomar Transient Factory (PTF, Rau et al.
2009): it identified 33 candidates supermassive black hole binaries in 35.5 × 103

observed quasar Charisi et al. (2016).

Recently, Krause et al. (2018) suggested that the presence of a supermassive
binary black hole might cause the precession of radio jets with a characteristic
frequency (driven by the orbital motion and geodetic precession of the binary),
from which the orbital period of the binary can be inferred. In particular, using
the VLA radio maps of the object Cygnus A, they found evidence of the precession
of the radio-jet with a timescale of 0.5 – 3 Myr, which appears to be consistent with
the presence of a sub-parsec supermassive black hole binary with an orbital period
of 18 yr.

As a general result, the paucity of binary systems at sub-pc separations suggests
a rapid orbital decay of the binary, until the supermassive black holes coalesce
on a reasonably short time-scale (Begelman et al. 1980). This explanation has
been recently strengthened by the constraints placed on the GWB (gravitational
wave background) through the PTA (Pulsar Timing Array) technique (Shannon
et al. 2015; Lentati et al. 2015; Arzoumanian et al. 2016), suggesting that the
binary shrinking could be even faster than so far predicted. Furthermore, it should
be kept in mind that the GWB (Gravitational Wave Background) implied by
the CRTS and PTF is in tension with the upper limits constrained by the PTA
(Pulsar Timing Array) data. In particular, the hypothesis that the candidate from
these surveys are false positives is preferred over supermassive black hole binary
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hypothesis with an evidence & 2.3σ (Sesana et al. 2018). Recently Kelley et al.
(2018) provided new estimates for the detection rates in the CRTS and in the
forthcoming Large Synoptic Survey Telescope (LSST) of variable AGN sources.
The new estimates predict that only ∼ 5 supermassive black hole binaries can be
detected in the CRTS as variable sources (consistently with the limits on the GWB
put by the PTA data). In the LSST the number of massive black hole binaries
detectable as variable sources is expected to grow to ∼ 100 sources, thanks to the
increase in the sensitivity and coverage of the survey.

5.2.1 Binary hardening in supermassive black hole binaries

A number of physical processes cause black hole pairs (the black holes are not
gravitationally bound yet) to sink toward the centre of the newly formed galaxy
(see Dotti et al. 2012; Colpi & Sesana 2017; Celoria et al. 2018 for comprehensive
reviews). In particular, four main mechanisms have been suggested to drive the
inward motion of the black holes (Begelman et al. 1980): the dynamical friction
(active at separations a spanning 10 pc . a . 10 kpc), the interaction with the
gas (1 pc . a . 100 pc), the interaction with individual stars (1 pc . a . 10 pc),
the gravitational waves emission (a . 10−2 pc).

The interaction of the black holes with stars in the newly formed galactic core
provides the dynamical friction (Chandrasekhar 1943) on each black hole necessary
to drive the inspiral motion on a time scale given by (Yu 2002):

tdf,i ∼
4 · 106

logNc

( σc

200 km s−1

)( rc

100 pc

)2(108M�
M•,i

)
yr, (5.2)

where σc is the stars dispersion velocity, rc is the radius of the core, Nc the
number of stars hosted in the core and M•,i is the mass of the i-th black hole.
With the increase of the black holes velocities, the dynamical friction becomes
progressively ineffective in driving the inspiral motion; the two black holes become
gravitationally bound in a “soft” binary configuration, i.e. the kinetic energy of
the binary becomes comparable to that of the surrounding stars; this occurs at
separations asoft of the order of

asoft ≈
G(M•,1 +M•,2)

σ2
c

∼ 11.2

(
M•,1 +M•,2

108M�

)(
200 km s−1

σc

)2

pc; (5.3)

at this separation, the interaction with individual stars as three-body encounters
becomes the dominant mechanism providing the inward motion of the black holes.

When the binary finally becomes “hard” (ahard ≈ asoft/4), the stars responsible
for the loss of energy and angular momentum are very close to the binary orbit,
and are part of the set of stars called “loss-cone”.

At the same time, for separations a . 100 pc, if the parent galaxies were origi-
nally gas rich, the interaction of the two black holes with the surrounding gaseous
environment3 concurs to reduce their separation and the eccentricity of the black
holes by gas friction (Escala et al. 2005; Dotti et al. 2006; Mayer et al. 2007; Dotti

3A gaseous disc forms in the centre of the new galaxy as a consequence of angular momentum
conservation (Barnes 2002), if the parent galaxies are gas rich (wet merger).
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et al. 2007, 2009), even though the role of gas friction during this phase has been
recently put into question (Pfister et al. 2017). This mechanism is conceptually
similar to type I migration (see Sec. 4.4) since the black holes are completely
embedded in the gaseous disc but no resonances can be found in the disc (at these
distances the binary is not bound yet). Gas friction also provides the circulariza-
tion of the orbits of the two black holes. When the binary becomes hard, the gap
opening criterion is always satisfied4 and the binary is expected to further evolve
via type II migration (Haiman et al. 2009b).

Finally, at separations a . 10−2 – 10−3 pc, the emission of gravitational waves
becomes the dominant migration mechanism (see next section). The emission
of gravitational waves further shrinks the separation of the binary and drives it
towards the coalescence. For gaseous rich galaxies, the separation at which this
occurs is generally referred to as “decoupling radius”: the disc keeps evolving on
the viscous timescale, while the evolution of the binary separation evolves at a
faster rate ȧgw (see next section).

5.2.2 The final parsec problem

As soon as the binary has ejected all the stars involved in the interaction (“loss-
cone depletion”, which typically occurs at separations ≈ 1 pc for M• ≈ 108M�)
the binary stalls (Quinlan 1996). Furthermore, the gaseous driven type II mi-
gration is expected to sensibly slow down for sufficiently high secondary-to-disc
mass ratios (see Eq. 4.29). If this was the case, most galaxies in the Universe
should host in their central regions a stalled supermassive black hole binary whose
merging timescale is larger than the Hubble time. This has constituted over the
past years the so called “final parsec problem”.

It is reasonable to believe that in a relatively short timescale some new mech-
anism sets in, allowing the further shrinkage until the binary reaches the final
gravitational wave driven migration toward the coalescence.

One possible solution that has been suggested is that the refill of the loss-
cone occurs in much shorter timescales in triaxial cores (Merritt & Poon 2004;
Vasiliev et al. 2015; Khan et al. 2016) than in spherical ones (Milosavljević &
Merritt 2001, 2003; Makino & Funato 2004), implying that in some galaxies the
interaction with stars might actually be effective in bringing the binary also at
sub-parsec separations. Massive perturbers such as giant molecular clouds or
clusters are also expected to accelerate the replenishment of the loss-cone (Perets
& Alexander 2008), preventing the stall of the binary.

Another possibility that has been suggested is that a new galaxy merger while
the two black holes are stalled at separations ≈ 1 pc might lead to the formation
of black hole triplets (Bonetti et al. 2018a,b; Ryu et al. 2018) allowing the binary
to further reduce its separation.

The interaction of the binary with the environment gas has been also proposed
to play a role here (see Mayer 2013 for a review). Mechanisms such as those
predicted for planetary migration in young solar systems (Armitage & Natarajan
2002; MacFadyen & Milosavljević 2008; Cuadra et al. 2009; Roedig et al. 2012;

4Apart from extreme mass ratio inspirals (EMRI).
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Figure 5.3: On the y-axis the binary distance in pc, on the x-axis time in years. The plot
shows the inspiral motion for a q = 0.02 super-massive black hole binary embedded
in a gaseous disc, with primary mass M1 = 108 M�. Long dashed, short dashed,
thick lines are curves respectively for the accretion rates {10−2; 10−1; 1}M� yr−1. It
can be clearly seen that, after a gaseous-torques driven migration, for a < 0.01 pc,
the gravitational waves emission becomes the dominant mechanism, shortening dras-
tically the migration time-scale. Original figure from Armitage & Natarajan (2002).

Tang et al. 2017a, see also Sec. 4.5 of this manuscript), “faster” type II migration
(Duffell et al. 2014), retrograde discs with respect to the binary orbital motion
(Nixon et al. 2011) or the interaction with gaseous clumps (Goicovic et al. 2016)
have been shown to be successful in driving the binary to sub-parsec separations.

However, in this context, the possible fragmentation of the disc, that occurs at
large radii where the disc is gravitationally unstable, might slow down or even
stop the migration much before the gravitational wave emission phase (Lodato
et al. 2009). AGN feedback may also remove the gas from the binary surround-
ing stalling the binary evolution (del Valle & Volonteri 2018). We also report
that Muñoz et al. (2018) recently claimed that circum-individual discs are able
to produce a positive torque on the binary producing an outward migration, thus
preventing the merger of the two black holes. This result is in contrast with what
found by Tang et al. (2017a). The treatment of the accretion prescription onto
the sinks appears to be a key ingredient to properly describe the evolution of the
system; however, the origin of the discrepancy between the two papers deserves
further investigations.

5.3 Gravitational wave driven inspiral

Black hole binaries are powerful sources of gravitational waves. Since gravitational
waves carry energy and momentum along their path, enforcing the conservation
of the total energy and momentum of the system during their emission causes the
binary to lose some orbital energy and orbital angular momentum. This results in
an effective negative torque that shrinks the binary up to the coalescence at the
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following rate ȧgw and ėgw (Peters 1964):
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where q is the binary mass ratio, M•,bin is the total mass of the binary, c is the
speed of light, e is the binary eccentricity and G is the gravitational constant. It
should be noted that during the gravitational wave inspiral, the orbit of the binary
tends to circularise

de

da
≈ 19

12

e

a
→ e ∼ a19/12. (5.6)

For mergers taking place in environments rich of gas, the binary undergoes type
II migration over a timescale that is typically longer than the viscous time tν (see
Eq. 4.29). As a consequence, the material in the circumbinary disc accumulates
beyond the orbit of the secondary black hole and spreads inward at the same rate
of the binary. When the gravitational wave emission starts providing a migration
rate of the binary that is faster than the viscous spreading of the disc, the evolution
of the binary decouples from that of the disc: the disc is left “behind”, while the
binary approaches the coalescence. The binary separation at which this occurs is
referred to as “decoupling radius” adec.

By equating the viscous migration rate vvisc
R = −a/tν with ȧgw in Eq. (5.4) we

get the following estimate5 of adec (Armitage & Natarajan 2002)

adec ≈ 2300Rg

(
H/R

10−3

)−4/5 ( α

0.1

)−2/5 q2/5

(1 + q)4/5

(1− e2)7/2

1 + 73
24e

2 + 37
96e

4
, (5.7)

where we recall that Rg = GM•,bin/c
2 is the gravitational radius (Eq. 1.27).

The decoupling radius sets the reference separation for the beginning of the
gravitational wave inspiral. Figure 5.3 shows an example of the rapid time evolu-
tion of the semi-major axis of the binary after the binary crosses the decoupling
radius.

5.4 Kick velocity

Depending on the properties of the black hole binary, the emission of gravitational
waves might have a complex multipole structure that result in an anisotropic
momentum flux. Such a flux of momentum imprints a recoil velocity to the merger
remnant, also known as “kick velocity”. A semi-analytical expression for the recoil
velocity vkick, based on fully non-linear numerical relativity simulations and post
Newtonian analysis of the problem (Fitchett 1983; Kidder 1995), was provided by
Campanelli et al. (2007) (see also Lousto & Zlochower 2008 and Rezzolla 2009),

5See also Milosavljević & Phinney (2005) and Gold et al. (2014)
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which reads

vkick(q,S1,S2) = vm ê1 + v⊥(cos ξê1 + sin ξê2) + v‖
L

|L| (5.8)

vm = A
q2(1− q)
(1 + q)5

(
1 +B

q

(1 + q)2

)
, (5.9)

v⊥ = H
q2

(1 + q)5

(
as

2,‖ − qas
1,‖

)
, (5.10)

v‖ = K cos(Θ−Θ0)
q2

(1 + q)5

(
as

2,⊥ − qas
1,⊥
)
, (5.11)

where A = 1.2 × 104 Km s−1, B = −0.93, H = 6.9 × 103 Km s−1, K = 6 ×
104 Km s−1, are numerical parameters; ê1 and ê1 are orthogonal vectors lying in
the orbital plane of the binary; S1,2 are the spin vectors of the two black holes; as

1,2

are the dimensionless spin parameters (Eq. 1.26) of the primary and secondary
black holes; the subscripts ‖ and ⊥ refer to the spin projection on the orbital
angular momentum vector L.

The velocity vm is the component of the recoil velocity that arises when the
two black holes have different masses, v⊥ accounts for the recoil velocity due to
asymmetries in the spins of the black holes, v‖ is the component of vkick parallel
to the vector of the binary orbital angular momentum.

The dimensionless parameter ξ is the angle between the direction of the con-
tribution to vkick given by vm and the one of v⊥, it depends on the configuration
of the system. Lousto & Zlochower (2008) report that ξ ≈ 145◦ for a large set
of quasi-circular configurations. The quantity Θ − Θ0 is the angle between the
in-plane component of the spins S⊥2 + S⊥1 and the infall direction at merger (the
direction along which the black holes approach each other).

Eq. (5.8–5.11) tell us that the recoil velocity depends on the degree of asym-
metry between masses and spins of the two black holes. Configurations with
non spinning black holes (χs,1 = χs,2 = 0) can lead to maximum recoil velocity
|vkick| ≈ 175 Km s−1 for mass ratios q ≈ 0.36. However, for spinning black holes
the recoil velocities might become as big as |vkick| ≈ 4000 Km s−1 in the so called
“super-kick” configuration6, where the black holes are maximally spinning and
have their spin anti-aligned, lying in the orbital plane (χ⊥s,1 = −χ⊥s,2 = ±1).

High recoil velocities after the merger might cause the newly formed black hole
to be ejected from the sites where the merger occurred. Typically this happens for
kick velocities |vkick| ≈ 50 Km s−1 for mergers from stellar black holes progenitors
inhabiting star clusters and |vkick| ≈ 800 Km s−1 for supermassive black holes
progenitors inhabiting galactic nuclei (Komossa 2012; Colpi & Sesana 2017). If
the recoil velocity is not sufficient to escape the gravitational potential of the
parent stellar cluster or galaxy, the remnant is expected to slowly fall back after
it has dissipated the kinetic energy imparted during the merger. In the case
supermassive black hole binaries, the long timescales required for the remnant to

6Note that Lousto & Zlochower (2011) found even faster kick velocities |vkick| ≈ 5000 Km s−1,
in the so called “hangup” configuration with spin partially misaligned with respect to the orbital
plane.
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return back to its original location will likely produce supermassive black holes
appearing displaced with respect to the centre of the host galaxy.

5.5 The relevance of the accretion rate for black hole
binaries

The peculiar dynamics of the gas around the two black holes is of fundamental
importance in the observational characterization of these sources.

Predictions regarding their luminosity and in general their electromagnetic out-
puts need necessarily to rely on the accretion rate of gas on to the two black
holes (Perna et al. 2016; de Mink & King 2017; Farris et al. 2015a; Tang et al.
2018). Furthermore, the relativistic motion of the material in the system shapes
the peculiar Doppler-shifted nature of line emission of their electromagnetic signals
(D’Orazio et al. 2015; Tang et al. 2018).

Finally, the accretion rate influences the black hole spin alignment process (Bog-
danović et al. 2007; Miller & Krolik 2013; Lodato & Gerosa 2013; Gerosa et al.
2015). As a consequence, it determines the gravitational wave frequency pattern
and the recoil velocity of the black hole remnant after the coalescence, with impor-
tant consequences for the detection of offset AGN emission produced by kicked
supermassive black holes (Blecha et al. 2016) or, more generically, the peculiar
delayed electromagnetic emission after the merger (Rossi et al. 2010).

An accurate determination of the accretion rate on to black hole binaries is
thus required in order to understand their dynamical evolution and define the
signatures of their presence in galactic nuclei.

5.5.1 EM emission from stellar black hole binaries

The only evidence that we have of the existence of stellar black hole binaries are
the few gravitational wave events detected to date. Gamma ray bursts are ex-
pected to be associated with the merger of binaries of compact objects. However,
a large fraction of the scientific community agrees that, in order to have an elec-
tromagnetic counterpart to gravitational wave events, at least one of the elements
of the binary must be a neutron star. This requirement is dictated by the need
of filling the environment with some material responsible for the electromagnetic
emission (Giacomazzo et al. 2013). This prediction was confirmed by the recent
spectacular detection of a gamma ray burst (Fermi-GBM, Goldstein et al. 2017;
INTEGRAL, Savchenko et al. 2017b; AGILE, (Verrecchia et al. 2017b)) associ-
ated with the detection of the gravitational wave event GW170817, interpreted as
a merger of two neutron stars (Abbott et al. 2017c).

To date, only two gravitational wave detections from black hole binary mergers
have been reported to show an electromagnetic counterpart (GW150914 Abbott
et al. 2016b by Fermi GBM Connaughton et al. 2016, and GW170104 Abbott
et al. 2017a by AGILE Verrecchia et al. 2017b, see below in this section for further
details). Suggesting the idea that stellar black hole binary mergers might occur
in gas poor environments and, for this reason, not to show an electromagnetic
signature.
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However, this issue is far from being assessed. Neither clear evidence of the
presence of gas in the environment nor a reliable model of the mechanism pro-
ducing a prompt signal during mergers of stellar black hole binaries are available
yet.

On the one hand, the lack of electromagnetic counterparts from black hole
mergers might imply that stellar black hole mergers are typically “dry”, and that
no material is present around the binary at the time of the merger. On the other,
all the gravitational wave events so far detected were extra-galactic, so that the
emission might be too faint to be detected by the current observational facilities.

Anisotropic electromagnetic emission have also been suggested as a possible
explanation of the lack of electromagnetic counterparts. A statistical analysis
based on the properties of the black hole binary population from the isolated binary
formation channel might suggest that the lack of electromagnetic counterparts of
the events so far detected is consistent with a beamed emission within an angle
. 50◦ (Perna et al. 2018), using as a reference electromagnetic luminosity the
one associated with GW150914 detected by the Fermi GBM (Connaughton et al.
2016).

However, we report that the claimed7 detection by the Fermi Gamma Ray
Monitor (GBM) of a short gamma ray signal (Connaughton et al. 2016) associ-
ated with the gravitational wave event GW150914 (Abbott et al. 2016b), and by
AGILE (Verrecchia et al. 2017a) for GW170104, has triggered a lot of effort in
the scientific community to speculate about possible scenarios producing prompt
electromagnetic emission also in black hole binary mergers.

In this context, besides the need to explain the origin of the gas surrounding
the binary, which is not obvious, a mechanism promptly activating the emission is
required. Indeed, the accretion of material in a “stationary” regime is not sufficient
for the detection of electromagnetic radiation.

The main argument regarding the presence of environmental gas in these sys-
tems comes from their progenitors. Assuming the field scenario as responsible
for the formation of the black hole binary (the dynamical one does not allow the
survival of a circumbinary disc, de Mink & King 2017), the stellar progenitors
of the black holes are supposed to shed in the surroundings a fraction of their
mass with many possible mechanisms, among them: mass loss through the outer
Lagrange points, stellar winds, common envelope ejection, Roche lobe overflow (a
circumbinary disc forms, de Mink & King 2017 and references therein), supernova
fallback (a circum-secondary/primary disc forms around the individual black holes
Perna et al. 2016; Murase et al. 2016; Kimura et al. 2017; Perna et al. 2018 and
references therein).

In the case of a circumbinary disc, the binary is initially starved (as we will

7After a re-analysis of the data collected by Fermi-GBM telescope with an alternative tech-
nique, Greiner et al. (2016) concluded that the transient, associated with an electromagnetic
counterpart of GW150914, was consistent with a background fluctuation. However, Connaughton
et al. (2018), reported some inconsistencies in the analysis performed by Greiner et al. (2016).
They re-applied the analysis used by Greiner et al. (2016) and found that the false alarm hypoth-
esis associated with the transient can be excluded within ∼ 3σ, in fact confirming the reliability of
their previous result. Analogously, the detection of an electromagnetic signal possibly associated
with the event GW170104 by AGILE (Verrecchia et al. 2017a), has been put in question due to
the non-detection by Fermi GBM and INTEGRAL Savchenko et al. (2017a).
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discuss in the next chapter, see also the recent paper by Martin et al. 2018) and
the accretion rate on to the black holes is very low. As the merger takes place,
the prompt mass loss of the binary due to the emission of gravitational waves
causes the material to move on eccentric orbits around the remnant (Lippai et al.
2008): since the disc is cold, the reduction of the central mass alters the centrifugal
balance causing the gas orbits to become eccentric; the intersection of elliptical
orbits produces hypersonic shocks that rapidly heat up the disc, being responsible
for the prompt emission (Rosotti et al. 2012; de Mink & King 2017). Furthermore,
the recoiling black hole remnant is expected to strip a portion of the circumbinary
disc. The motion of the gas around the remnant is turbulent and chaotic, providing
typical delayed electromagnetic emission (Rossi et al. 2010).

A second possible scenario consists of the formation of a circum-primary/secondary
disc following a supernova fallback. The material falls back on one of the two black
holes forming a cold (Menou et al. 2001) quiescent disc. As the black holes ap-
proach the merger, tidal effects start heating up the disc, triggering the prompt
emission. Just prior8 to the merger, the remnant of the accretion disc is squeezed
between the two black holes producing a rapid increase in the accretion rate and
a bright peak in the electromagnetic luminosity of the system (Chang et al. 2010;
Tazzari & Lodato 2015; Cerioli et al. 2016; Perna et al. 2016; Murase et al. 2016).
We report that this effect has been put into question (Baruteau et al. 2012; Fonte-
cilla et al. 2017).

For completeness we mention that, right after the detection of the gamma ray
burst (Connaughton et al. 2016) associated with the gravitational wave event
GW150914 (Abbott et al. 2016b), a possible scenario where a binary black hole
forms directly in the centre of a massive star was suggested (Loeb 2016; D’Orazio
& Loeb 2018a). In this scenario, as a consequence of core fragmentation, the intra-
star formation of the binary promote a high accretion rate and electromagnetic
luminosity. However, this scenario has received strong criticism by Woosley (2016)
since it is based on the not documented assumption that the progenitor star has
a rapidly rotating He core.

5.5.2 EM emission from supermassive black hole binaries

As discussed in Sec. 5.2, no direct evidence of the existence of supermassive
black hole binaries have been provided so far, even though some indirect hints
and cosmological considerations point in that direction. The currently operating
gravitational wave detectors are not sensitive to the typical frequencies of grav-
itational wave inspirals of supermassive black holes: they are much lower than
those of stellar black holes and thus require much larger interferometers to be
detected, such as the Laser Interferometer Space Antenna (LISA, planned launch
date 2034). However, in contrast with stellar black hole binaries, supermassive
black holes are known to be the engines that make active galactic nuclei (AGN)
very bright sources of electromagnetic radiation, so that their electromagnetic
signature might be detected well before the merger.

8Conversely, Kimura et al. (2017) claims instead that the circum-individual disc becomes
bright much before the merger.
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The characterization of the electromagnetic signature of supermassive black hole
binaries is thus of fundamental importance in order to identify possible candidates
among AGN sources.

The electromagnetic emission in supermassive black hole binaries is produced by
the same mechanisms taking place in AGN accretion discs, with the main difference
that the perturbation of the axial symmetry of the system can introduce peculiar
features in the light-curve and in the SED of the source.

The presence of a binary object interacting with a gaseous disc is expected to
modulate the accretion rate, introducing a periodic variability of the luminosity
with a frequency comparable to that of the binary ω ≈ Ωbin, where Ωbin was
defined in Eq. (1.16) (D’Orazio et al. 2013; Farris et al. 2014; Ragusa et al. 2016;
Miranda et al. 2017). Furthermore, as we will discuss in the next chapter, the
formation of circum-individual discs can also act as a buffer for the accretion,
smoothing out the variability and introducing an additional modulation of the
emission with a lower frequency ω ≈ Ωbin/7 (Farris et al. 2014; Ragusa et al.
2016).

The relativistic motion of the black holes is expected to provide a characteris-
tic, frequency dependent, Doppler-shift of the emission coming from the circum-
secondary disc if the source is sufficiently inclined with respect to the line of sight
(D’Orazio et al. 2015; Tang et al. 2018). The presence of dense circum-primary
and circum-secondary discs has also been found to provide a characteristic increase
in the luminosity in the high energy end of the SED (Farris et al. 2015a).

As discussed in Sec. 5.3, during the gravitational wave inspiral phase, the binary
decouples from its gaseous circum-binary disc. Numerical simulations (Farris et al.
2015b; Tang et al. 2018) have shown that the electromagnetic emission from the
system remains bright also after the decoupling, as the binary approaches the
merger: the typical light-curves expected are characterized by a small reduction
of the accretion rate (following the decoupling); then, a normal accretion rate is
recovered right after the merger, as soon as the disc viscously spreads and reaches
the black hole remnant.

Finally, large recoil velocities both parallel and perpendicular to the disc plane
might result in the excitation of strong shock fronts producing some post-merger
luminosity (Lippai et al. 2008; Haiman et al. 2009a; Rossi et al. 2010).

As we will discuss in the next chapter, a reduction of the accretion rate due to
the dam effect provided by the tidal torque exerted by the binary might change
our perspective of detecting signals from these systems. Indeed if only a small
amount of material is allowed to leak through the disc cavity, the AGN activity
around the individual black holes is not fueled, resulting in a reduction of the
luminosity.

5.5.3 Setting the direction of the spins

As mentioned in Sec. 5.4, the spins of the black holes at merger are expected to
play a fundamental role in determining whether large kick velocities are imparted
to the remnant. Furthermore, the frequency pattern of gravitational waves is
affected by the spin dynamics, so that indirect information about the processes in
action can be obtained by the analysis of the wave-forms.
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The interaction of the black holes with some surrounding gas on their way to the
merger might significantly affect the spin orientation. Indeed, if the gaseous disc
forming around individual black holes is not aligned with their equatorial plane,
it is expected to change their spin orientation. In general, if this mechanism is
effective on a relatively short timescale, the spins are expected to align with the
orbital angular momentum vector of the binary (i.e. with its orbital plane) before
the merger takes place. The physical mechanism responsible for the spin alignment
is the (Bardeen & Petterson 1975) effect, which acts over a timescale (Gerosa et al.
2015)

tal,i ' 3.4
M•,i

Ṁi

α

(
χs,i

α2

H

R

)2/3

, (5.12)

where M•,i is the mass of i-th black hole, Ṁi is the accretion rate on to it, α is
the Shakura & Sunyaev (1973) viscous parameter, χs,i is the dimensionless spin
(Eq. 1.26) and α2 is the so called “vertical viscosity”, that is related to the α-
prescription by:
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1

2α

4(1 + 7α2)

4 + α2
. (5.13)

It becomes clear from Eq. (5.12) that small accretion rates on the black holes
lead to long timescales for spin alignment and thus larger recoil velocities of the
remnant. As a consequence, small accretion rates (or strong asymmetry between
the accretion rates on individual black holes) increase the likelihood of ejection of
the remnant from the galaxy or star cluster. Furthermore, if the two black holes
accrete material at different rates (differential accretion Farris et al. 2014; Young
et al. 2015; Young & Clarke 2015), one of the spins does align with the angular
momentum vector of the binary while the other does not.

Much debate is still ongoing regarding the alignment timescale of the black hole
spins. In particular, two main lines of thought can be identified: the timescale
for spin alignment is short, implying mergers with aligned spins and small recoil
velocities of the remnant in gas rich galaxy mergers (Bogdanović et al. 2007;
Dotti et al. 2010; Miller & Krolik 2013); in contrast, other authors claim that
the timescale for spin alignment is long and depends on the accretion rate on to
individual black holes, implying mergers with misaligned spins and high recoil
velocities of the remnant (Lodato & Gerosa 2013; Gerosa et al. 2015).



Chapter

6
On the suppression of the

accretion in black hole bi-
nary systems

Based on the paper by Enrico Ragusa, Giuseppe Lodato & Daniel J. Price
(2016) “Suppression of the accretion rate in thin discs around binary black

holes”, Monthly Notices of the Royal Astronomical Society, 460, 1243

“...And if the dam breaks open many years too soon
And if there is no room upon the hill

And if your head explodes with dark forbodings too
I’ll see you on the dark side of the moon...”

Pink Floyd, Brain Damage

The issue of the mass flow within the cavity formed by a binary in its sur-
rounding disc has been mostly studied in the protostellar case (e.g. Artymowicz
& Lubow 1994, 1996) where the disc aspect ratio H/R is relatively large. In recent
years, the interest has moved to the supermassive black hole binary case. However,
mostly for numerical reasons, simulations of these systems have used H/R ∼ 0.1,
appropriate for protostellar binaries, but two orders of magnitude larger than the
values expected for a disc surrounding a supermassive black hole binary. These
studies all conclude that the binary potential does not prevent the gas from flowing
within the cavity so that the accretion rate on to the binary, Ṁbin, is comparable
to the equivalent rate for a single object, Ṁ0 (Roedig et al. 2012; Shi et al. 2012;
D’Orazio et al. 2013; Farris et al. 2014; Shi & Krolik 2015). Here we investigate
how this conclusion is modified when one adopts more realistic values for the disc
temperature and aspect ratio.

This chapter is organized as follows: in Section 6.1 we summarize the known
results for the accretion dynamics of gas orbiting a binary system. Section 6.2
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describes the numerical method used in our simulations and the initial conditions.
In Section 6.3 we first reproduce the results of earlier works using a large H/R
and then show how the results change when reducing H/R. We discuss our results
and draw conclusions in Section 6.4.

6.1 Accretion dynamics in binary systems

Adapting classical accretion disc theory, developed for a single central massive
object, to binary systems is far from trivial. The tidal torques produced by the
disc-satellite interaction (Lin & Papaloizou 1979; Goldreich & Tremaine 1980),
strongly perturb the disc structure (Artymowicz & Lubow 1994) repelling the gas
from the corotation region and clearing an annular gap across the orbit of the
secondary object.

For sufficiently high mass ratios, the gap becomes so wide that the binary resides
in a depleted cavity surrounded by a circumbinary disc. The effects of these strong
tidal forces on the accretion are uncertain. Do they act as a dam or is the gas
able to leak into the cavity from the circumbinary disc?

An analytical treatment of the gas dynamics in binary systems has been at-
tempted (Pringle 1991; Liu & Shapiro 2010), predicting a suppression of the ac-
cretion rate for high values of the binary mass ratio q = M2/M1 > 0.01, where
M1 and M2 are the primary and the secondary mass, respectively. However these
models assume, being 1D, axial symmetry, which is not the case for a rotating
binary potential.

Starting from the mid 1990s, the problem of accretion in binary systems has
been treated numerically for both binary-star/planet-star systems (Artymowicz &
Lubow 1996; Bate & Bonnell 1997; Günther & Kley 2002; Ochi et al. 2005; Hanawa
et al. 2010; de Val-Borro et al. 2011; Dunhill et al. 2015) and supermassive black
hole binaries (Hayasaki et al. 2007; MacFadyen & Milosavljević 2008; Cuadra et al.
2009; Roedig et al. 2012; Shi et al. 2012; D’Orazio et al. 2013; Farris et al. 2014;
Shi & Krolik 2015).

These simulations showed that for aspect ratios H/R ∼ 0.1 one or two streams
of material — the number depending on the mass ratio q — flow through the edge
of the cavity. These streams connect the binary with the edge of the cavity; their
formation is periodic with characteristic frequencies, ωstream/Ωbin ' 1− 2, where
Ωbin is the binary frequency.

Various authors (MacFadyen & Milosavljević 2008; D’Orazio et al. 2013; Farris
et al. 2014) noted the development of an eccentric cavity associated with an over-
dense lump of material at the edge of the cavity (see also Chapter 9). This lump
orbits around the binary on an elliptic Keplerian orbit. When it reaches the peri-
centre of its orbit it causes a boost in the accretion, therefore adding also a lower
characteristic frequency ωlump/Ωbin = 2/9. Recently Farris et al. (2014) showed
that the accumulation of gas around each object in circum-individual “mini-discs”
acts as a buffer for accretion, smoothing the faster periodicity and increasing the
power of the ωlump/Ωbin = 2/9 one, with important consequences for observations.

The accretion rate on to the binary Ṁbin has been found to be comparable
to that predicted by classic disc accretion theory Ṁ0 in absence of the binary
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companion (Shi et al. 2012; Roedig et al. 2012; D’Orazio et al. 2013; Farris et al.
2014; Shi & Krolik 2015), giving a normalized accretion rate 1 < Ṁbin/Ṁ0 . 1.6,
implying, de facto, that no significant suppression of the accretion occurs due
to the presence of the binary. However, as we discuss, it is not surprising that
lower values of Ṁbin/Ṁ0 are associated with lower viscous torques (MacFadyen &
Milosavljević 2008; D’Orazio et al. 2013), or in general with less effective angular
momentum transfer mechanisms in the disc.

Shi et al. (2012) and Shi & Krolik (2015) investigated this issue, trying to con-
strain the uncertainty on the viscous α-parameter (that in the literature typically
spans the values 0.01 ≤ α ≤ 0.1) by performing MHD simulations, in order to
provide a self-consistent physical mechanism for the angular momentum transport
through the disc. They found that the angular momentum transport operated by
the turbulent motion of the gas fed by MRI, is consistent with a corresponding
viscous α = 0.1 for an equal mass, circular binary system and a globally isothermal
disc with cs = 0.1Ωbina, where a is the binary separation.

Regarding the differential accretion rate, i.e. how much material is accreted by
each object, recent results claim that, for a fixed mass ratio q ranging between
0.1 ≤ q < 1, the ratio Ṁ2/(Ṁ1 + Ṁ2) gets higher as the disc gets colder (Young &
Clarke 2015; Young et al. 2015), where Ṁ1 and Ṁ2 are the accretion rate on the
primary and secondary object, respectively. Indeed, accretion occurs mostly on
the secondary object since it is closer to the cavity wall than the primary, but for
high gas temperatures pressure allows the material to cross the L1 Lagrange point,
thus accreting on the primary and reducing differential accretion1. For q < 0.1
the accretion returns progressively to occur mostly on the primary object (Farris
et al. 2014). Anyway, the amount of material being accreted by the secondary is
expected to alter the normal replenishment of the inner regions of the disc causing
a reduction of the density inside the planet orbit with respect to the unperturbed
state (Lubow & D’Angelo 2006).

We consider in this chapter coplanar prograde discs. Misaligned or even retro-
grade discs (Nixon et al. 2013; Roedig & Sesana 2014; Lubow et al. 2015; Dunhill
et al. 2014; Aly et al. 2015; Nixon & Lubow 2015; Goicovic et al. 2016) have also
been considered, demonstrating the importance of disc tearing and retrograde
accretion in the evolution of such systems.

6.1.1 The problem of the accretion in black hole binary systems

Analytical models of binary systems with discs assume that the presence of a
binary companion gives rise to tidal torques acting on the disc. Using the impulse
approximation (Lin & Papaloizou 1979), developed under the assumption q � 1,
the tidal torque density exerted by a satellite on the circumbinary disc may be
approximated by (see also Eq. 3.9)

∂Ttid

∂R
= 2πfq2Ω2a3Σ

( a
∆

)4
, (6.1)

1This result resolved a long standing issue regarding the discrepancies in the literature be-
tween some works (Bate & Bonnell 1997; Ochi et al. 2005; Hanawa et al. 2010), attributing the
qualitative and quantitative differences in the results to the different gas temperatures used in
the simulations.
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where Ω is the binary orbital frequency, a is the binary separation, R is the
cylindrical radius, Σ the surface density, f is a dimensionless normalization factor
and ∆ = max[R − a,H,RHill], where H is the disc height and RH is the Hill’s
radius (Syer & Clarke 1995).

The viscous torque density, responsible for disc accretion, is given by (see r.h.s.
of Eq. 2.20)

∂Tvis

∂R
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∂R

(
2πνR3Σ

∂Ω

∂R

)
, (6.2)

where ν is the viscous shear parameter. The direction of Ttid and Tvis is opposite,
with the balance between the two responsible for the opening of a gap or even a
cavity in the disc.

Even though equations (6.1) and (6.2) were developed for q � 1, this approx-
imation can provide insights on scaling laws also for higher mass ratios (q ∼ 1).
Assuming an α-prescription by Shakura & Sunyaev (1973) for the viscous shear
parameter ν = αcsH, where α is a dimensionless scale parameter, cs is the sound
speed and H the disc vertical displacement, we notice that both these torque
terms scale with the disc aspect-ratio H/R: in particular, integrating equations
(6.1) and (6.2) over the disc, one obtains Ttid ∝ (H/R)−3 and Tvis ∝ (H/R)2.

Although 1D models predict that no material can cross the gap/cavity edge
(Liu & Shapiro 2010), 2D and 3D numerical simulations showed that material is
able to stream inside the cavity with accretion rates comparable or even higher
to those predicted for single objects even in presence of equal mass binaries, that
should provide the most intense tidal torques.

However, even though it is widely believed that the accretion rate in binary
systems is not affected much by the presence of tidal torques, a suppression similar
to that predicted by 1D models may occur when the viscous torque weakens for
example when the disc becomes thinner. The disc internal angular momentum
transport mechanisms are more effective for hot/thick discs than for thin/cold
ones, both in simple α-models (Shakura & Sunyaev 1973) and in physically based
mechanisms, such as MRI and gravitational instability.

It is important to mention that the formation of streams of material has been
credited to pressure effects (Lubow & Artymowicz 1997), since pressure can be
thought as an alteration to the effective gravitational potential, allowing the mass
to overcome the tidal barrier as a consequence of the conservation of the Bernoulli
constant along the streamlines. This pressure effect has been recently confirmed
by D’Orazio et al. (2016), even though it becomes relevant only for H/R & 0.1 in
equal mass ratio binary systems.

6.2 Numerical Simulations

We performed a set of 3D SPH (Smoothed Particle Hydrodynamics) simulations
using phantom (Lodato & Price 2010; Price & Federrath 2010; Price 2012; Price
et al. 2018a), varying the disc thickness. We simulated both the binary case and
the single central object case, in order to provide a consistent reference for the
accretion rate.
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6.2.1 Initial conditions

Our initial conditions consist of two binary sink particles (able to accrete gas
particles), and a finite circumbinary disc of Npart = 2× 106 gas particles in most
cases. Besides the fluid dynamical forces produced by viscosity and pressure, for
which we refer to Lodato & Price (2010), the gas particles feel the acceleration
produced by the sinks (e.g. Nixon et al. 2013). Each sink exerts on the i-th
particle the acceleration fi,pot

fi,pot =
GMn(rn − ri)

|rn − ri|3
, (6.3)

where n = 1, 2 indicates quantities related to the primary or the secondary object
respectively, G is the universal constant of gravitation while r1 and r2 are the
positions of the two sink particles of mass M1 and M2 respectively. No smoothing
to the potential has been applied as particles are considered accreted when the
condition |r1,2−ra| < rsink is satisfied, where the parameter rsink is the sink radius,
and their kinetic energy is not sufficient to escape the potential well (Bate et al.
1995). Note that, contrary to previous investigations, we do not prescribe the sink
particles on fixed orbits: their motion is determined by the gravitational potential
that one exerts on the other and by the back-reaction they receive from the in-
teraction with the gas particles. We neglect the gas-gas gravitational interaction,
i.e. no disc self-gravity.

We choose an equal mass (q = 1), circular (eccentricity e = 0) binary system
in order to simplify the comparison with the literature. We use code units such
that the binary orbital frequency Ωbin = 1 (see Appendix D.4). The masses of the
black holes in code units are thus M1 = M2 = 0.5, the binary separation is a = 1
and we set the initial velocities of the sinks to obtain circular Keplerian orbits, we
use rsink = 0.05.

The gas disc is set up by placing particles between an inner radius Rin = 2.6a
and an outer radius Rout = 5a, where a is the binary separation, in order to obtain
an initial surface density distribution of the type Σ = Σ0R

−p, where p = 2 and Σ0

is chosen in order to have a disc mass Mdisc = 0.005, using an initial Monte Carlo
particle placement. The initial vertical position of each particle is chosen from a
gaussian distribution with standard deviation H = cs/Ω, where cs is the sound
speed (see the next Section) and Ω the Keplerian frequency for a central mass
Mtot. The velocity of each particle is Keplerian corrected to account for pressure,
given by

v2
i =

GMtot

Ri
− c2

s,i

(
p+

3

2
+ `

)
, (6.4)

where Ri is the distance of the i-th particle from the centre of mass of the system,
cs,i is the sound speed for the i-th particle and ` = 1/2 is the power law index for
the sound speed.
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6.2.2 Equation of state and temperature profile

We to prescribe a locally isothermal equation of state, in order to keep the disc
temperature constant in time through the entire length of the simulation

P =
kBT

µmp
ρ = c2

sρ, (6.5)

where c2
s is the squared sound speed of the gas. The temperature of the gas is

then prescribed through the gas sound speed, for which we use the formulation
(Farris et al. 2014)

cs =
H

R

(
GM1

R1
+
GM2

R2

)`
, (6.6)

that implies a constant H/R throughout the disc. This prescription has the nice
property of becoming a radial power law around each sink, since equation (6.6)
reduces to

cs =



H

R
v1,K, for R1 � R2,

H

R
v2,K, for R2 � R1,

H

R
vK, for R1 ∼ R2 � a,

(6.7)

where a is binary separation while v1,K, v2,K, vK are the Keplerian velocity around
the primary, the secondary and the binary objects respectively.

To compare different disc temperatures we perform simulations using seven
different values of H/R = {0.13; 0.12; 0.1; 0.08; 0.06; 0.04; 0.02}. As mentioned
above, the case H/R = 0.1 is the most used in recent literature (MacFadyen &
Milosavljević 2008; D’Orazio et al. 2013; Farris et al. 2014; Shi & Krolik 2015)
and will be useful for a comparison with previous results.

6.2.3 Viscosity

SPH employs an artificial viscosity term, in order to resolve shocks. This term
acts as a source of viscous diffusion and therefore can be used to model the an-
gular momentum transport in the disc (Lodato & Price 2010). However, some
preliminary tests using artificial viscosity to model the disc viscosity showed an
unwanted increase in the accretion rate on to the sinks. This occurs because the
artificial shear viscosity νAV is dependent on the density ρ of the fluid such that
νAV ∝ h/H ∝ ρ−1/3, where h is the SPH smoothing length. This implies that if
the disc is characterized by strong density gradients, the viscous effects are sub-
ject to strong changes throughout the disc, affecting the reliability of the accretion
rate. We therefore decide to introduce just the bare minimum amount of artifi-
cial viscosity, using the Morris & Monaghan (1997) switch with αAV,min = 0.1,
αAV,max = 0.5 and βAV = 2 everywhere to prevent particle interpenetration.

To compute the “physical” viscosity we use the implementation of Navier-Stokes
viscosity similar to that given by Flebbe et al. (1994), as described in Lodato &
Price (2010) (see their section 3.2.4). We set the bulk viscosity ζ = 0, while
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ν is computed using an α-prescription that reduces to the standard Shakura &
Sunyaev (1973) prescription around each sink:

ν = αSScs
H

R
f, (6.8)

f = min (R1, R2) , (6.9)

where cs is given by equation (6.6), R1 and R2 are the distances from M1 and
M2 respectively; we set αSS = 0.1. Our choice of αSS is equal to Farris et al.
(2014) and is consistent with the equivalent value extrapolated from MHD sim-
ulations by Shi et al. (2012); Shi & Krolik (2015), although this result needs to
be validated for thinner discs. Note that the main angular momentum transport
process at ≈ 0.1 pc separation in an AGN disc might be associated with gravi-
tational instabilities (Goodman 2003; Lodato 2012). For the thin discs in AGN,
self-gravitating angular momentum transport is local and is expected to provide
equivalent α ≈ 0.1− 0.3, consistent with our choice (Cuadra et al. 2009).

Parameters employed for all the simulations in this study are listed in Table 6.1.

6.2.4 Resolution

Besides the simulations discussed in the next Sections (those denoted by S in
Table 6.1), we performed a set of simulations (denoted by Reso in Table 6.1)
varying Npart as a convergence test. The results for Npart = 1.0 × 106 converge
to the higher resolution simulations. The scale height is well resolved throughout
the disc for every H/R (see Table 6.1). However, the cavity region is obviously
poorly resolved due to its low density. While in most cases the disc thickness is
resolved even in the cavity, for H/R = {0.04; 0.02} h/H can be much above unity
(h/H ∼ {6; 8}, respectively). This results in an increase of the artificial viscosity
inside the cavity for H/R = {0.04; 0.02}.

We estimate this excess in the cavity region by computing the value of αSS,AV

corresponding to the artificial viscosity using (Lodato & Price 2010)

αSS,AV =
1

10
αAV,max

h

H
, (6.10)

through which we are able compare the magnitude of the artificial viscosity with
respect to the “physical” one. The values of αphys,AV in the cavity region for the
cases H/R = {0.04; 0.02} are αSS,AV ∼ 0.3 and αSS,AV ∼ 0.4, respectively, to be
compared to the value of αSS = 0.1 that we prescribed for the physical viscosity.
Thus, for the two thinnest cases the evolution of the gas within the cavity is
dominated by numerical effects.

6.3 Results

The finite size of our discs causes spreading to larger radii as time passes, causing
the accretion rate to vary. The evolution time-scale for accretion discs is given by
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H/R Npart α ν tν/tbin 〈h/H〉 SO

S1 0.13 2.0× 106 0.10 1.7× 10−3 701 0.09 yes
S2 0.12 2.0× 106 0.10 1.4× 10−3 823 0.09 yes
S3 0.10 2.0× 106 0.10 1.0× 10−3 1185 0.11 yes
S4 0.08 2.0× 106 0.157 1.0× 10−3 1185 0.13 no
S5 0.08 2.0× 106 0.10 6.4× 10−4 1851 0.13 yes
S6 0.06 2.0× 106 0.177 6.4× 10−4 1851 0.15 no
S7 0.06 2.0× 106 0.10 3.6× 10−4 3291 0.15 yes
S8 0.04 2.0× 106 0.10 1.6× 10−4 7406 0.20 yes
S9 0.02 2.0× 106 0.10 4.0× 10−5 29625 0.32 yes

Reso1 0.10 1.5× 106 0.10 1.0× 10−3 1185 0.12 no
Reso2 0.10 1.0× 106 0.10 1.0× 10−3 1185 0.14 no
Reso3 0.10 5.0× 105 0.10 1.0× 10−3 1185 0.17 no
Reso4 0.08 1.0× 106 0.10 6.4× 10−4 1851 0.16 no
Reso5 0.06 1.0× 106 0.10 3.6× 10−4 3291 0.19 no
Reso6 0.04 1.0× 106 0.10 1.6× 10−4 7406 0.25 no
Reso7 0.02 1.0× 106 0.10 4.0× 10−5 29625 0.40 no
Reso8 0.02 5.0× 105 0.10 4.0× 10−5 29625 0.51 no

Table 6.1: Summary of the simulations. For each simulation we give the aspect ratio
H/R, the number of particles Npart, the α viscous parameter, the shear parameter
ν, the viscous time tν/tbin (equation 6.12) expressed in binary orbital periods units
and the initial smoothing-length normalized to the disc thickness (disc average). The
column SO is to indicate if the corresponding single object simulation has been per-
formed. Notice that the value reported for ν is computed at R1 = R2 = a. For
completeness, the parameters in each simulations are: inner disc radius Rin = 2.6,
outer disc radius Rout = 5, total binary mass Mtot = 1, disc mass Mdisc = 0.005,
density power law index p = 2, sound speed power law index ` = 0.5, binary mass
ratio q = 1, and binary orbital eccentricity e = 0.
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the viscous time tν

tν =
2

3

R2
out

ν(Rout)
=

53/2

3πα

(
H

R

)−2

tbin (6.11)

≈ 11.85 ·
(
H

R

)−2

tbin, (6.12)

where tbin is the binary orbital period

tbin =
2π

Ωbin
= 2π

[
G(M1 +M2)

a3

]−1/2

. (6.13)

Any comparison between different regimes of disc thickness needs therefore to be
done at the same t/tν . The time for the comparison has to be chosen to be long
enough to allow the achievement of quasi-stationarity, but much smaller than tν
in order to prevent excessive relaxation of the initial conditions. Indeed, as will
be seen below, circumbinary disc properties and structure evolve differently as the
time passes and a comparison at later times would not be reliable anymore.

We compare our simulations at times which are sufficiently long to overcome
the initial transient and computationally tractable for the cases we simulated.
However, where possible we let the discs evolve up t ∼ 0.2 tν .

Due to its long viscous time, the H/R = 0.02 calculation reached just t =
0.07 tν ∼ 2000 tbin; however we believe that the results for this case provide a
valid estimate for the accretion rate and for this reason should not be discarded.

6.3.1 Single object simulations

In addition to the simulations of binary systems, we have also performed seven
reference simulations around a single object (marked by SO = yes in Table 6.1),
one for each value of H/R used in the binary simulations.

We use the reference simulations to evaluate the accretion on the single central
object Ṁ0 and thus renormalize the results obtained for the binary case. The
initial setup of the disc of each reference run is the same as that described for the
binary case in Section 6.2.1. The only differences are the presence of a Keplerian
potential produced by a mass M = M1 +M2 in the centre of mass of the system
and a sink radius Rsink,SO = 1. The number of particles used was N = 2× 106.

In the upper panel of Figure 6.1 the results for the accretion rate on to the single
central object Ṁ0 (in code units) as a function of t/tν are plotted: the evolution
of the time-varying accretion rate occurs on a viscous time tν . In the lower panel
of Figure 6.1, the accretion rate is renormalized to Ṁscale given by

Ṁscale = 3πν(Rout)Σ(Rout) ∝ (H/R)2, (6.14)

which gives an analytical estimate of the order of magnitude of the accretion
rate. The accretion rate is obtained computing how many particles are accreted
at Rsink,SO.

The accretion rates plotted in Figure 6.1 are characterized by an initial tran-
sient at the time t ≈ 0.025 tν for each H/R. After that, the disc reaches quasi-
stationarity and the accretion rate lowers as the time passes due to the spread of
the disc toward larger radii.
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Figure 6.1: Left panel: absolute accretion rate Ṁ0 around a single object in code
units, averaged over 10 tdyn, at the sink radius R = Rsink = 1, as a func-
tion of t/tν . The different colours represents the seven cases of H/R =
{0.13; 0.12; 0.10; 0.08; 0.06; 0.04; 0.02} (black, red, green, blue, grey, purple, cyan
lines, respectively) we studied. Right panel: Ṁ0/Ṁscale, where Ṁscale normalization
constant given by equation (6.14), again as a function of t/tν . It should be noticed
that the absolute value of the accretion rate decreases, for lowering thicknesses, as
(H/R)2. In particular, from the top panel it can be easily noticed a difference of a
factor ∼ 25, going from H/R = 0.1→ 0.02.

The lower panel of Figure 6.1 shows that the accretion rates from our simulations
scale as predicted by theory. The only exception is our thinnest case with H/R =
0.02 that overestimates the accretion rate with respect to Ṁscale. Due to the higher
value of 〈h/H〉 throughout the disc, the artificial viscosity gives a non-negligible
contribution with respect to the physical one resulting in a slight overestimate of
the accretion rate in this case. This effect is less visible but already present in
the other regimes. It should be noticed that the lowest curve is the thickest case
H/R = 0.13 (that shows the lowest 〈h/H〉), while Ṁ0/Ṁscale progressively grows
as 〈h/H〉 increases for thinner regimes.

The lower panel in Figure 6.1 confirms that the outcome of the simulations
for Ṁ0 are consistent with the analytical predictions both for the scaling, i.e.
Ṁ0 ∝ (H/R)2, and for the magnitude

Ṁ0,theor ≈ 3πνΣ. (6.15)

6.3.2 Binary simulations

Figure 6.2 shows column density in our binary systems after t ∼ 0.2tν for H/R =
{0.12; 0.1; 0.08; 0.06; 0.04} and at time t ∼ 0.07tν for the case H/R = 0.02. We
observe the formation of circumprimary and circumsecondary discs around each
sink for the cases H/R = {0.12; 0.1; 0.08; 0.06} but not for the cases H/R =
{0.04; 0.02}. This is probably a numerical effect related to the previously discussed
increase of the ratio h/H inside the cavity, which results in an unwanted excess
of the artificial viscosity in the two thinnest cases.

The size of the cavity is larger for low H/R. This is expected. The criteria for
gap opening state that, for lower H/R, the gap can be opened by progressively
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Figure 6.2: Colour plots of the column density normalized to Σ0 of our simulations
(logarithmic scale). From left on the top row H/R = 0.12; 0.1; 0.08, bottom row
H/R = 0.06; 0.04; 0.02. Snapshots were taken at times t ∼ 0.2tν in any case, except
H/R = 0.02 which was taken at time t ∼ 0.07tν .

less massive binary companions (Lin & Papaloizou 1993; Crida et al. 2006). This
occurs because the viscous torques, that are responsible for driving the gas inward,
scale as Tvisc ∝ ν ∝ (H/R)2, while the tidal torques, responsible for the “dam”
effect at the edge of the cavity, scale as Ttid ∝ (H/R)−3. The radius at which the
two contrasting torque contributions are equal approximately gives the truncation
radius of the disc (for a more accurate discussion see Artymowicz & Lubow 1994).

Figure 6.2 also shows that each simulation has developed an eccentric cavity,
characterized by an overdense lump of material at its edge. This effect has been
widely observed in the literature (Papaloizou et al. 2001; D’Angelo et al. 2006;
Kley & Dirksen 2006; MacFadyen & Milosavljević 2008; D’Orazio et al. 2013;
Farris et al. 2014; Dunhill et al. 2015), interpreted as being due to the unstable
growth of spontaneous deviations of the gas from circular motion, starting from
super-hump theory (Lubow 1991a,b). This interpretation relates to the size of
the cavity and, more specifically, to whether the resonances believed to damp
this instability fall in the disc region or not, as suggested by Papaloizou et al.
(2001). However, we caution that even though this interpretation applies to low
mass ratios (10−3 ≤ q ≤ 3 · 10−2 Papaloizou et al. 2001; D’Angelo et al. 2006;
Kley & Dirksen 2006), the extension of the model to higher companion masses is
not straightforward and still needs further investigation. D’Orazio et al. (2016)
pointed out that a transition between circular and lopsided discs occurs for mass
ratios q > 0.04 as a consequence of the loss of stable orbits across the corotation
region in the restricted three body problem (orbits around L4 and L5 Lagrangian
points) in that range of masses, and other viscous effects.

It can be also noticed that the prominence of the lump appears to be influenced



106 6. On the suppression of the accretion in black hole binary systems

0 0.05 0.1 0.15 0.2
0

1×10-6

2×10-6
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Figure 6.3: Left panel: y-axis accretion rate in code units, each point in the plot obtained
averaging Ṁbin over 10tbin, as a function of t/tbin. Right panel: Ṁbin/Ṁ0 as a
function of t/tbin. Different colours refers to different H/R regimes, in particular
H/R = {0.13; 0.12; 0.1; 0.08; 0.06; 0.04; 0.02} black, red, green, blue, grey, purple,
cyan lines respectiely.

by the disc thickness, in particular the overdensity is more marked when the disc
is thinner.

6.3.3 Suppression of accretion for thin discs

Figure 6.3 shows the accretion rate across the cavity edge Ṁbin for our binary
simulations compared to the corresponding value obtained in Section 6.3.1 for
a single black hole. The left panel shows Ṁbin versus t/tν for the various disc
thicknesses. As H/R is reduced, Ṁbin drops significantly. A reduction in Ṁ with
thickness is expected independently of the presence of the binary (upper panel of
Figure 6.1). However for our α-model, we expect that Ṁ ∝ (H/R)2. The right
panel of Figure 6.3 shows that the suppression of the mass accretion rate is much
stronger than this. The right panel of Figure 6.3 shows the ratio Ṁbin/Ṁ0, and we
recall that we have demonstrated (lower panel of Figure 6.1) that Ṁ0 ∝ (H/R)2.
This represents the fraction of the unperturbed gas flow that makes it into the
cavity. While for H/R ∼ 0.1 we recover the known result that Ṁbin ∼ Ṁ0,
implying that the binary does not prevent matter from accreting, the situation
changes drastically for lower H/R. For H/R = 0.02, for example, only ∼ 15 per
cent of the unperturbed mass makes it into the cavity. We thus conclude that

Ṁbin = ξ(H/R)Ṁ0, (6.16)

where ξ is a function of H/R. For the thicker cases the value of ξ(H/R) appears
to saturate at ∼ 1 for growing H/R. This is in contrast with the results obtained
by Farris et al. (2014) and Shi & Krolik (2015) that found values of ξ above unity
(ξ ∼ 1.6 Farris et al. 2014, ξ ∼ 1.4 Shi & Krolik 2015) for a unitary mass ratio
binary system with H/R = 0.1, but in agreement with D’Orazio et al. (2013) that
found ξ = 1.015 for the case of interest.

While for large H/R the value of Ṁbin/Ṁ0 appears to reach a well defined
asymptote, for lower H/R it increases with time. This deserves a brief discussion.
In our thinnest cases, the binary accretes much less than the corresponding q = 0



6.3 Results 107

H/R 0.13 0.12 0.10 0.08 0.06 0.04 0.02

ξ(H/R) 0.97 0.99 0.95 0.82 0.70 0.47 0.18

Table 6.2: Values of ξ(H/R) taken averaging ξ(H/R) between 0.07 tν < t < 0.15 tν
(H/R = {0.13; 0.12; 0.10; 0.08; 0.06; 0.04}). The value of ξ for the case H/R = 0.02 is
obtained instead averaging between 0.05 tν < t < 0.07 tν .
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1

Figure 6.4: Plot of ξ(H/R) as a function of H/R, with the values in Table 6.2. The error
bars represent the square root of the mean quadratic error of the values assumed by
ξ(H/R) for times between 0.07 tν < t < 0.15 tν (for the case H/R = 0.02, 0.05 tν <
t < 0.07 tν). The black line plots an interpolating function such as equation (6.17).

discs, accumulating some material at the edge of the cavity. This translates into
a slower time evolution of the accretion rate which remains almost constant after
the peak (see purple and cyan lines in the left panel of Figure 6.3), while the value
of Ṁ0 keeps decreasing; as a consequence, the ratio Ṁbin/Ṁ0 increases with time.
For this reason the value of Ṁbin/Ṁ0 is most reliable when the discs have evolved
for enough time to overcome the initial transient, but not so much that the viscous
evolution of the system modifies the disc structure2.

The left panel of Figure 6.3 highlights another important feature. The thick-
est cases (H/R = {0.13; 0.12; 0.10}) show a time-shift in the initial peak. This
feature is likely related to our initial conditions for the velocity field of the gas,
equation (6.4). In the presence of a binary potential our choice underestimates
the equilibrium velocity of the gas. The thickest regimes, in which viscous forces
are stronger, result then in a less steep initial transient, that reaches a lower
maximum. However, this shift does not affect the evolution at later times.

Table 6.2 shows the time average of ξ for each value of the disc thickness,
where the average has been taken after the initial transient but before viscous

2Recall that our discs do not reach a steady-state since they have a finite mass and radius.



108 6. On the suppression of the accretion in black hole binary systems

evolution has significantly affected our results. In particular, we generally average
between 0.07tν and 0.15tν , except for H/R = 0.02, for which we average between
0.05− 0.07tν .

Figure 6.4 shows the average ξ as a function of H/R, where the error bars are
the square root of the mean quadratic error in the average procedure. It appears
that ξ increases linearly with H/R for H/R < 0.1, saturating at around unity for
H/R > 0.1. We thus write

ξ(H/R) ≈
{

10 ·H/R, for H/R ≤ 0.1

1, for H/R > 0.1
. (6.17)

The black line in Figure 6.4 shows an interpolating function with a linear behaviour
for H/R < 0.1 and constant ξ = 1 for H/R > 0.1.

The typical values of H/R in AGN discs are believed to span H/R ∼ 10−2−10−3

(Shakura & Sunyaev 1973; Collin-Souffrin & Dumont 1990; Natarajan & Pringle
1998; Goodman 2003; Lodato 2012; Gerosa et al. 2015) depending on the region
of the disc examined and on the degree of self-gravity in the disc (Haiman et al.
2009b). If the law in equation (6.17) keeps holding also for these physical values
of H/R, we expect to have ξ ∼ 0.1 − 0.01, implying that the accretion rate is
suppressed up to a factor 102 with respect to the normal AGN activity.

A similar effect has been recently found during the last phases of supermassive
black hole binary mergers (Cerioli et al. 2016). In that case tidal torques acts as
barriers for the gas during the late gravitational inspiral phase before the black
hole merger: the binary companion squeezes the gas of the thin circumprimary
disc toward the primary object during its orbital decay, causing an enhancement
in the accretion rate and thus predicting a flare in the luminosity of the system
just before the binary merger (in contrast, Baruteau et al. 2012 found that this
effect does not occur for thicker discs).

6.3.4 Accretion Variability as a function of the disc temperature

In this Section we analyze the fast variability of the mass flow across the cavity
edge, Ṁbin, and the accretion rate as computed directly from accretion on to the
binary, Ṁsink.

Figure 6.5 shows Ṁsink (red line) and Ṁbin (black line). Starting from the
top left panel in Figure 6.5 (H/R = 0.1), we notice that the values of Ṁsink are
much smoother than those obtained for Ṁbin: the formation of circumprimary and
circumsecondary discs (see Fig. 6.2) acts as a buffer for the accretion mechanism,
accumulating material and accreting it progressively, smoothing the variability
observed instead for the mass flux at R = a. This buffering effect was observed
by Farris et al. (2014), who studied the accretion rate in binary systems as a
function of the binary mass ratio; we notice also that the qualitative behaviour of
the variability of our H/R = 0.1 case is in very good agreement with their case
q = 1, H/R = 0.1 (top panel of their Figure 10).

From the other panels in Figure 6.5 it can be noticed that the buffering effect
progressively disappears as H/R is reduced: in the case H/R = 0.04 (bottom right
panel in Figure 6.5) no circumprimary and circumsecondary discs form, and Ṁsink

follows the variability of Ṁbin.
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Figure 6.5: From top-left to bottom right: H/R = {0.1; 0.08; 0.06; 0.04} respectively.
Black line: Time variability of the mass flux across the radius R = a, Ṁbin/M0

(normalized to the corresponding averaged Ṁ0), and red line: accretion rate on to
the binary Ṁsink/Ṁ0. The panels show the various regimes at t ∼ 0.2tν .
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Figure 6.6: From top-left to bottom right: periodograms of the accretion rates for the
cases H/R = {0.1; 0.08; 0.06; 0.04}, respectively, relative to the time intervals plotted
in fig. 6.5. As in Figure 6.5, black line refer to Ṁbin/Ṁ0; red line instead is Ṁsink/Ṁ0.
The frequencies reported are expressed in ω/Ωbin with ω = 2πt−1 and Ωbin = 2πt−1

bin.
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Figure 6.6 shows the frequency analysis of the accretion rates for each H/R
plotted in Figure 6.5. Red and black lines show, as previously, Ṁsink and Ṁbin,
respectively. These periodograms were obtained using Lomb-Scargle analysis on
the time interval considered in Figure 6.5. Periodograms of Ṁsink and Ṁbin show
that, in thick discs, even though the mass flow Ṁbin is dominated by the frequency
2Ωbin, the accretion on to the black holes Ṁsink occurs with lower periodicity,
because of the accumulation of the gas into the discs.

Lowering H/R, the absence of the circumprimary and circumsecondary discs
causes the power of Ṁsink and Ṁbin to progressively equalize at each frequency,
since all the mass that enters in the cavity is accreted by the black holes faster
than they are fed from the edge of the cavity. The fundamental frequency of the
accretion rate returns to be ω = 2Ωbin in thin discs.

It should be finally noticed that the lowest frequency of the periodogram dimin-
ishes for low H/R: this frequency represents the orbital frequency of the density
lump one can observe in Figure 6.2 at the edge of the cavity; the passage of this
lump at the pericentre of its orbit generates a boost in the accretion with the same
periodicity of the edge of the cavity ωlump ∼ (GMtot/R

3
lump)−1/2 where Rlump is

the semi-major axis of the cavity, that results in a peak in the periodogram. Since
the cavity becomes larger for low H/R, we observe a shift of this peak to lower
frequencies for decreasing H/R.

Caution is required in interpreting these results. The variability of the H/R =
0.04 case is likely affected by the low resolution in the cavity, and the lack of
circumprimary and circumsecondary discs may be attributed to the enhanced
artificial viscosity in this region. However, some physical considerations also apply.
Due to the low accretion rate from the edge of the cavity, circumprimary and
circumsecondary discs are expected to become sparser and characterized by lower
accretion rates when reducing the disc thickness, implying circumprimary and
circumsecondary discs to be fainter than predicted using thicker discs (Farris et al.
2015a) and thus lower luminosities at short wavelengths.

6.3.5 The dependence of ξ on viscosity

Both viscosity and disc temperature are functions of the disc thickness. Performing
simulations exclusively for different H/R does not let us disentangle whether the
observed suppression of the accretion rate is due to viscous or pressure effects. For
this reason we performed two additional simulations, S4 and S6 (in Table 6.1),
with H/R = {0.08; 0.06} and values of α set in order to obtain the same value of
ν achieved in S3 and S5 with α = 0.1 and H/R = {0.1; 0.08}, respectively.

The accretion rates of S4 and S6 are consistent with those obtained for S3 and
S5, respectively, showing that the accretion rate does not change for the same
ν despite a change in the value of H/R. Since α is independent of H/R, this
suggests that the reduction of the accretion rate for low disc aspect-ratios is due
to the reduction of the effective disc viscosity rather than to a variation of the gas
pressure. This is consistent with the prediction of D’Orazio et al. (2016) regard-
ing the modifications induced by pressure to the effective gravitational potential:
pressure effects allow the gas to overcome gravitationally prohibited regions only
for H/R & 0.1.
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However, the effects of the gas pressure are important for the gas inside the
cavity, e.g. for the differential accretion rate (Young & Clarke 2015; Young et al.
2015).

6.4 Summary and conclusions

We performed a set of SPH simulations with a circumbinary disc around an equal
mass circular binary, varying the disc aspect ratio H/R, in order to investigate
the dependence of the accretion rate on the disc thickness.

We compared our simulations to a set of reference simulations with a single
central object. We computed the accretion rate at the edge of the cavity Ṁbin in
the binary case and compared it to the reference one, Ṁ0, from the single central
object simulations. Our results for our H/R = 0.1 case agree with recent litera-
ture, in particular they are consistent with D’Orazio et al. (2013), who obtained
Ṁbin/Ṁ0 ∼ 1; we also verified the results of Farris et al. (2014) regarding accre-
tion variability and periodicity inside the cavity (although their value Ṁbin/Ṁ0 is
slightly larger than ours).

While for H/R & 0.1 the accretion rate in a circular equal mass binary system is
Ṁbin/Ṁ0 ∼ 1, for H/R < 0.1 a linear reduction Ṁbin/Ṁ0 ∼ 10H/R was observed.
These results are summarized in Table 6.2 and Figure 6.4, reporting the values of
ξ(H/R) = Ṁbin/Ṁ0.

These results have consequences for both the detection and evolution of su-
permassive black hole binary systems. If the relationship for the reduction in
accretion rate as a function of disc thickness in equation (6.17) holds also for the
thin discs expected to surround supermassive black holes (H/R = 10−2 − 10−3),
the accretion rate in supermassive black hole binaries Ṁbin would be reduced of
up to a factor 102 with respect to the equivalent rate on a single object. The low
accretion rate implies that these systems are much fainter than normal AGN.

While our simulations do not resolve the individual circumprimary and circum-
secondary discs for H/R = {0.02; 0.04}, we do expect that a reduction in Ṁbin

implies the formation of lower mass, lower density and lower luminosity mini-
discs. This is expected to affect the spectral energy distribution from this kind
of systems, since the hottest gas regions may be fainter than so far predicted; in
particular reducing the short-wavelength contribution to the continuum spectrum.

Our findings also have important consequences for black hole spin alignment
during the merger of a binary black hole system. Firstly, the model of Gerosa
et al. (2015) implies that as the accretion rate into the cavity is suppressed, the
alignment process of each black hole with its disc is slowed down accordingly. Sec-
ondly, with low accretion rates on to the binary the equalization timescale (that
is, the timescale required for the two black holes to equalize their mass) is conse-
quently increased, thus justifying a posteriori the assumption of q = const, made
by Gerosa et al. (2015). We thus predict that the efficiency of spin alignment
during merger is significantly reduced, which will affect the wave form of gravita-
tional waves emitted during the last phases of the merging process and cause a
high recoil velocity of the black hole formed after coalescence.

Low accretion rates on to the black hole binary appear to be important to
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guarantee the secondary black hole reaches the binary separation at which gravi-
tational waves emissions become dominant for the migration toward the the binary
merger (Young & Clarke 2015). High accretion rates with a finite mass supply
might cause the mass reservoir in the circumbinary disc to be exhausted before
the binary reaches the gravitational wave inspiral phase, preventing further an-
gular momentum extraction from the binary and thus implying the stall of the
migration process. In this context the pileup of material at the cavity edge due
to the suppression of accretion provides a stronger binary-disc coupling and, as a
consequence, a more effective delivery of angular momentum to the gaseous disc
(Rafikov 2013), shortening the migration time.

We emphasize that our results are essentially scale-free and can thus be extended
to all black hole binary systems, providing predictions of accretion-dynamics in
any mass regime. Equal mass, circular binaries with stellar mass black holes (such
as those simulated here) are of particular interest due to the recent discovery of
the gravitational wave source GW150914 (Abbott et al. 2016b). Some suggestion,
although uncertain, for the occurrence of an electromagnetic counterpart to the
gravitational wave emission in this particular source has also been made (e.g.,
Connaughton et al. 2016). Such electromagnetic counterparts are most naturally
determined by gas accretion prior to, during and after the merger. Our results
emphasize the important role that the disc thickness has in determining the tidal
torques ability to act as a dam for the gas, which on the one hand might prevent gas
flow from the circumbinary disc on to the binary, as discussed here, while on the
other hand it might prevent gas flow from the individual disc to the circumbinary
environment, as the gas is squeezed during the gravitational wave driven inspiral
(Cerioli et al. 2016).

We finally note that in our simulations we do not inject material steadily at large
radii as instead D’Orazio et al. (2013) and Farris et al. (2014) did. A constant
inflow of material from large radii at a rate faster than the binary accretion rate
would cause the progressive accumulation of material at the edge of the cavity.
As a consequence, the viscous torque is expected to grow, possibly causing the
material to overcome more easily the tidal “dam” effect provided by the binary.

Possible improvements to this work consist primarily of extending the param-
eter space under investigation, in particular considering the case of binary with
eccentric orbits and exploring non-unitary mass ratios. Different mass ratios would
provide new data for the differential accretion rates of the individual black hole,
on which the model for spin alignment of Gerosa et al. (2015) is based.

Secondly, a broader range of H/R values should be explored. However, while
exploring the H/R > 0.13 regimes would be straightforward, studying aspect
ratios H/R < 0.02 would be more challenging since both spatial and accretion
resolution were not well achieved already in our H/R = 0.02 case. A possible
solution could be to restrict the area of the study to the region of the cavity
providing a constant mass flux from outer radii as done for differential accretion
rate studies Bate & Bonnell (1997); Ochi et al. (2005); Hanawa et al. (2010);
Young et al. (2015). Finally, while here we discuss only the case of discs that are
aligned with the orbital plane of the binary, it would also be interesting to study
the problem of misaligned circumbinary discs (Lubow et al. 2015).
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Chapter

7
Secular eccentricity evolu-

tion during disc-planet in-
teraction

Based on the paper by Enrico Ragusa, Giovanni Rosotti, Jean Teyssandier,
Richard Booth, Cathie J. Clarke, & Giuseppe Lodato (2018), “Eccentricity

evolution during planet-disc interaction”, Monthly Notices of the Royal
Astronomical Society, 474, 4460

῎Ανδρα μοι ἔννεπε, Μοũσα, πολύτροπον, ὅς μάλα πολλὰ
πλάγχθη, ἐπεὶ Τροίης ἱερὸν πτολίεθρον ἕπερσε...

Homer, Odissey Proemium

7.1 Evolution of planetary and disc eccentricity

The discovery of a large number of extrasolar planets has shown that the average
orbital eccentricity of planets in the Galaxy is higher than that observed in our so-
lar system (Butler et al. 2006). Two possible scenarios have been proposed during
the past three decades in order to understand the origin of the orbital eccentrici-
ties observed in exoplanets. The first involves the interaction with other massive
bodies in the system after the disc dispersal, in fact in a gas poor environment: for
example the action of the Kozai-Lidov mechanism in the presence of massive plan-
etary companions or a binary star companion (Naoz 2016 and references therein)
or planet-planet scattering (Rasio & Ford 1996; Papaloizou & Terquem 2001; Ford
& Rasio 2008; Jurić & Tremaine 2008; Mustill et al. 2017). The second involves
the interaction of the planet at resonant locations with the protoplanetary disc in
which it has formed (see Kley & Nelson 2012 for a review).
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In this second scenario, Lindblad resonances pump the planet eccentricity, while
eccentric co-rotation resonances and co-orbital Lindblad ones damp it (Goldreich
& Tremaine 1980; Goldreich & Sari 2003). For a planet embedded in the disc
the effectiveness of co-orbital Lindblad resonances in damping the eccentricity
exceeds the pumping action of Lindblad resonances, implying that the disc-planet
interaction tends to circularize the planet orbits (Cresswell et al. 2007; Bitsch &
Kley 2010).

Nevertheless, gas depletion in the corotation region produced by a sufficiently
massive planet (typically Mp > MJ) might lead to the growth of the eccentric-
ity. Indeed, if the planet carve a gap which is deep enough to ensure that the
disc torque on the planet is dominated by the contribution of the outer Lindblad
resonance 1:3 the planet eccentricity is expected to grow Artymowicz et al. (1991).

Planets with masses as small as Mp & 1 MJ have been found to be able to
produce a saturation of co-orbital and corotation torque allowing the growth of
the planet eccentricity provided the initial eccentricity ep,0 > 0.01 (D’Angelo et al.
2006; Duffell & Chiang 2015). These findings are in line with the theoretical
production of Ogilvie & Lubow (2003) and Goldreich & Sari (2003). However,
numerical simulations with massive planets (Mp & 5− 10 MJ) have been observed
to develop large eccentricity values also with initially circular orbits (Papaloizou
et al. 2001; Dunhill et al. 2013).

The excitation mechanisms apparently stop when the planet eccentricity reaches
values comparable to the disc aspect-ratio (e ∼ H/R) for two main reasons (Duf-
fell & Chiang 2015): first, because the epicyclic motion becomes increasingly
supersonic for growing eccentricity, implying a weakening of Lindblad resonances
responsible for the eccentricity pumping (Papaloizou & Larwood 2000); second,
because if the eccentricity is sufficiently high, the planet hits the cavity walls
rapidly damping the eccentricity. The mass of the disc and the density profile
have also been shown to play a role in determining whether the planet eccentricity
will grow. In particular, Dunhill et al. (2013) found that, for sufficiently massive
companions (Mp = 25MJ), the eccentricity grows when the mass ratio between
the companion and the disc is above a certain threshold and the density profile is
such that the 1:3 Lindblad resonance dominates the overall torque exerted by the
disc on the companion.

The general conclusion of most of these works is that the disc-planet interac-
tion is not able to provide planet eccentricity growth above the value ep & 0.15
(D’Angelo et al. 2006; Müller & Kley 2013; Duffell & Chiang 2015; Thun et al.
2017). However, Papaloizou et al. (2001) found for masses Mp & 20MJ that the
companion eccentricity might reach values of up to ep ≈ 0.25.

The exchange of angular momentum between the disc and the planet causes
a growth also in the disc eccentricity (Goldreich & Tremaine 1981), even when
the planet has a circular orbit (Papaloizou et al. 2001;Kley & Dirksen 2006;
Teyssandier & Ogilvie 2016; Teyssandier & Ogilvie 2017). The disc reacts to
the presence of a planet producing an eccentricity profile decreasing with radius.
We report that the growth of the disc eccentricity has been proposed as a pos-
sible explanation of non-axisymmetric features (Ataiee et al. 2013; Ragusa et al.
2017) observed in a large number of transition discs (Casassus 2016, for a review)
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as an alternative scenario to the widely invoked vortex hypothesis (Regály et al.
2012; Ataiee et al. 2013; Lyra & Lin 2013). For completeness, numerical simula-
tions in the context of binary black hole mergers have also revealed the formation
of eccentric cavities with higher secondary-to-primary mass ratios (Armitage &
Natarajan 2005; Shi et al. 2012; D’Orazio et al. 2013; Farris et al. 2014; D’Orazio
et al. 2016; Ragusa et al. 2016), with important consequences for the modulation
of the accretion rate.

Teyssandier & Ogilvie (2016) studied the normal modes solutions to the analyt-
ical equations ruling the eccentricity evolution in discs, thus making predictions
about the disc eccentricity radial profiles in the presence of a planet.

It is important to notice that, mostly on account of the high computational cost
of these simulations, in the aforementioned works the evolution of the eccentricity
has never been explored beyond t & 2× 104 planet orbits (Thun et al. 2017).

Motivated by the recent observation of CI Tau by Johns-Krull et al. (2016),
Rosotti et al. (2017) performed long timescales calculations (∼ 105 orbits) in order
to study the role of disc-planet interaction in exciting hot-Jupiters’ eccentricity.
Their simulations showed very prominent secular oscillations of the eccentricity
with periodicities & 104 orbits, superimposed on a roughly linear growth starting
at a time of ∼ 4 × 104 orbits (doubling the eccentricity from ∼ 0.04 over ∼ 105

orbits) after an apparent stalling of the eccentricity evolution. Similar oscillations
have also been observed in other works (Duffell & Chiang 2015; Müller & Kley
2013; Bitsch et al. 2013b; Dunhill et al. 2013; Miranda et al. 2017; Thun et al.
2017).

Even though the results in Rosotti et al. (2017) were not able to prove that disc-
planet interaction might provide an effective mechanism to excite the eccentricities
observed in hot-Jupiters, they showed clearly that the fate of the planetary eccen-
tricity at late times cannot be determined a priori without performing simulations
that cover significant fraction of the entire life time of the system.

In this chapter we present two long term numerical simulations of the disc-
planet evolution for two different disc masses. The lower mass simulation is the
same presented in Rosotti et al. (2017) but integrated three times longer (∼ 3 ×
105 orbits); the other has a disc mass that is a factor of three higher and is
integrated for a similarly long time. We show that the initial behaviour of the
planet eccentricity can be completely reversed at late times. Then we will give a
physical interpretation of the peculiar evolution using a simplified toy model.

This chapter is structured as follows. In section 7.2 we present the numerical
setup we used for our simulations. In section 7.3 we present the results of our
simulations. In section 7.4 we discuss the results and introduce a simplified toy
model to describe the evolution of the eccentricity. Section 7.5 provides an inter-
pretation of the results in terms of the simplified toy model. In section 7.6 we
draw our conclusions.

7.2 Numerical simulations

We perform two long timescale (t ∼ 3×105 orbits) 2D hydrodynamical simulations
of a planet embedded in a gaseous disc orbiting a central star using fargo3d
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(Beńıtez-Llambay & Masset 2016) for two different disc masses. The simulations
were run on GPUs (Nvidia Tesla K20), for a total wall clock time exceeding 6
months. We use open boundary conditions at the inner edge of the computational
domain and closed at the outer one. We use a polar grid composed by nr = 430
radial cells between Rin = 0.2 and Rout = 15 with logarithmic spacing, and nφ =
580 azimuthal cells. The outer radius Rout of the domain has been chosen to be
sufficiently large to prevent the boundary conditions from affecting the dynamics;
the propagation of eccentric perturbations does not reach radii R & 10 (this can
be noticed in Fig. 7.4, which will be discussed in the following sections). We use
units in which ap,0 = 1, where ap,0 is the initial semi-major axis of the planet,
and GM∗ = 1, where M? is the mass of the star and G the gravitational constant.
The simulations cover a time of t = 3× 105torb, where torb = 2πΩ−1

p is the initial
planet orbital period (Ωp Keplerian orbital frequency).

We vary the disc mass while keeping fixed the other simulation parameters.
One simulation uses a disc-to-planet mass ratio q = Md/Mp = 0.2 while the other
q = 0.65, where Mp/M? = 0.013 is the planet mass and Md is the total disc
mass. We will refer henceforth to the case q = 0.2 as the “light” case and the
case q = 0.65 as the “massive” case. To satisfy these conditions, the initial surface
density distribution is a radial power-law of the type Σ = Σ0R

−p with p = 0.3
with the addition of an exponential taper at R = 5; Σ0,l = 4.8× 10−5 for the light
case and Σ0,m = 15× 10−5 for the massive case.

The choice of the parameters for these simulations follows that used in Rosotti
et al. (2017) and is based on the best fit model of the disc surrounding the star
CI Tau, where an eccentric 13MJ hot-Jupiter has been found (Johns-Krull et al.
2016).

We use a locally isothermal equation of state imposing a power-law radial tem-
perature profile which provides a disc aspect-ratio of the type h = H/R = 0.036R`

with ` = 0.215. We use a Shakura & Sunyaev (1973) prescription for viscosity (ν)
with α = 10−3R−0.63, its radial depenence is set in order to obtain a stationary
accretion profile throughout the disc (νΣ = const).

The planet is initially absent and its mass is progressively increased during the
first 50 orbits. During this period of time the planet is kept on a circular Keplerian
orbit at ap = 1, then its orbital parameters are left free to evolve under the action
of the disc torque in order to allow the planet migration and eccentricity growth.

7.3 Results

In Fig. 7.1 two colour maps of the disc surface density at t = 3 × 104 torb are
shown, both for the light and the massive disc case. The presence of an eccentric
cavity and of a crescent shaped overdense feature at the apocentre of the cavity
can be clearly noticed, consistent with the density perturbation expected for an
eccentric disc (Teyssandier & Ogilvie 2016, see their eq. A31). We also report that
this type of features, induced by the presence of a planet or stellar companion, has
been previously discussed in the literature (Ataiee et al. 2013; Ragusa et al. 2017)
to describe possible mechanisms producing the non-axisymmetric structures found
in some transition discs in high resolution observations provided in the radio and
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Figure 7.1: Density colour-plot for light (left panel) and massive (right panel) case at
t = 3 × 104 torb. The numbers indicate different radii. Note the formation of an
eccentric cavity characterized by a horseshoe feature at its apocentre, consistent
with the theoretical predictions about the density structure in eccentric discs.

Figure 7.2: Density radial profiles Σ/Σ0, obtained through azimuthal average, for light
(left panel) and massive (right panel) case as a function of radius (x-axis) and time
(y-axis), different colours represent different values of density.
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NIR (Casassus 2016). In Fig. 7.2 the time evolution of the disc density radial
profile is shown.

We used a Jacobi set of coordinates: thus the quantities related to the planet
are computed in the reference frame of the star; while the quantities related to
the disc are computed in the frame of the centre of mass (hereafter CM) of the
system M? +Mp. This peculiar set of coordinates is required since the disc orbits
around the CM of the system. If computed in the star frame as the planet-related
quantities, the disc eccentricity would be non-vanishing at large radii.

As noted by Ogilvie (2001), the eccentricity vector provides a useful tool to
describe the values of eccentricity and pericentre phase of both the planet and the
disc presented in this work (see also Eq. 1.10). In our 2D case this reads

e = − j

GM
ûz × v − ûR, (7.1)

where j is the modulus of the z-component of the the angular momentum vector
per unit mass, v is the velocity vector of the planet (or of the disc fluid element
considered when computing the disc eccentricity), ûz and ûR are unit vectors
pointing in the vertical and radial direction, respectively, and M = M? + Mp. It
can be shown that the modulus of e is the canonical expression for the orbital
eccentricity e

e =

√
1− j2

GMa
, (7.2)

where a is the planet (or disc fluid element) semimajor-axis, and points in the
pericentre direction.

The disc eccentricity is computed for each fluid element of the grid using Eq.
7.1. The scalar eccentricity e radial profile is then obtained through an azimuthal
average of grid cells at each radius.

Besides the direct computation of the orbital eccentricity of the disc fluid ele-
ments, we can quantify the global amount of disc eccentricity using the angular
momentum deficit (AMD), that is defined as follows

Ad =

∫
Σ(R,φ)

[√
GMa(R,φ)− vφ(R,φ)R

]
RdRdφ, (7.3)

where Σ(R,φ) is the disc surface density and vφ(R,φ) the azimuthal velocity and
a(R,φ)

a(R,φ) = −1

2

GM

E(R,φ)
, (7.4)

where E(R,φ) is the mechanical energy per unit mass

E(R,φ) = −GM
R

+
1

2
v2(R,φ), (7.5)

where v(R,φ) is the gas velocity map.
The AMD is the amount of angular momentum the disc is lacking in comparison

with a situation where the gas orbits the CM of the system on circular orbits. The
same quantity is defined for the planet as follows

Ap = Jcirc,p − Jp, (7.6)
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Figure 7.3: Planet migration: ap as a function of time for light (blue curve) and massive
(green curve) case. The dashed lines are two lines with slope ȧp = (100 tν)−1 for the
light case and ȧp = (35 tν)−1 for the massive one, which represents the theoretical
migration rate predicted by Eq. (7.9) for the two cases.

where Jcirc,p = Mp

√
GM?ap is the angular momentum that the planet would have

on a circular orbit with radius ap, Jp = Mpvφ,pRp is the planet angular momentum
where vφ,p is the planet instantaneous azimuthal velocity and Rp is its separation
from the central star. It can be shown that, for small eccentricities, Eq. 7.6 can
be approximated by

Ap ≈
1

2
e2

pJcirc,p. (7.7)

7.3.1 Planet migration

The disc-planet interaction also drives the migration of the planet, see Fig. 7.3.
This is actually a consequence of the conservation of the total angular momentum.
Indeed the total AMD Atot = Ap +Ad can be written as

Atot = Jcirc,p + Jcirc,d − Jtot (7.8)

where Jcirc,d is the angular momentum of the disc if it was circular and Jtot is
the total angular momentum of the system. It follows straightforwardly that, in
order to conserve the total angular momentum, any change in Atot (which depends
on the eccentricity of both the planet and the disc) in the simulations has to be
accompanied by corresponding changes in Jcirc,d + Jcirc,p, i.e. varying the semi-
major axis of the orbits both in the planet and in the gas.

We can compare the migration timescale tmig = ap/ȧp we observe in our simu-
lation with the standard type II migration rate1 (Syer & Clarke 1995; Ivanov et al.

1It should be noticed that when the planet is left free to evolve it is completely embedded in
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1999, see Eq. 4.29 for its derivation)

ttypeII =
M local

d +Mp

M local
d

tν (7.9)

where M local
d = 4πΣ(ap)a2

p is approximately the unperturbed amount of disc ma-
terial contained inside the orbit of the planet; tν is the viscous timescale (Eq.
2.28)

tν = (αh2Ωp)−1, (7.10)

where h = H/R is the disc aspect ratio, α is the Shakura & Sunyaev (1973) viscous
parameter. Substituting the values from our simulations one gets tν ∼ 1.2×105torb

for both our setups, which is perfectly consistent with the damping timescale for
the semi-major axis. The timescales we obtain for type II migration from our
simulations are tlight

typeII ∼ 100 tν and tmassive
typeII ∼ 35 tν , plotted as dashed lines in

Fig. 7.3. We find that the ratio tlight
typeII/t

massive
typeII ∼ 2.85 is perfectly consistent with

the ratio one would expect from Eq. 7.9 when comparing the migration rate of
a planet embedded in two discs differing by factor 3 in the disc mass. The result
is thus consistent with the classical Type II migration rate predicted by Syer &
Clarke (1995) and Ivanov et al. (1999), contrary to what have been found in the
studies of Dürmann & Kley (2015) and Duffell et al. (2014).

It should be noticed that the migration of the planet apparently stops at t ∼
2×105 orbits in the massive case. As we will see, this can be reasonably attributed
to the rapid broadening of the cavity that can be noticed in Fig. 7.2. A larger cav-
ity implies a clearing of material from the region where resonances mediate energy
exchange between disc and planet. These structural changes also correspond to
changes in the eccentricity evolution. Interestingly, a similar behaviour has been
previously observed in Papaloizou et al. (2001) in which they observed a change of
migration rate (and even direction) as a consequence of the disc structure evolu-
tion. In contrast, in the light case the migration accelerates at late times. In the
latter case the migration rate indeed appears to increase starting from 1.5 × 105

orbits , which (from Fig. 7.2) can be seen to coincide with the disc’s inner edge
moving slightly inwards.

7.3.2 Eccentricity and pericentre phase evolution

In this section we will limit our discussion to the qualitative behaviour of the
eccentricity evolution in the simulations; We postpone a possible modelling and
interpretation of the results to the following sections.

The colour plots in Fig. 7.4 and 7.5 show the scalar eccentricity (azimuthal
average) and pericentre phase, respectively at different times (y-axis) and radii
(x-axis) both for the light and massive disc case.

It is interesting to note from these plots that the disc eccentricity evolution
can be considered “rigid”: in Fig. 7.4, for any fixed time, an increase in the
eccentricity at small radii is reflected in an increase also at larger radii. The disc

the disc, and it spends the first ≈ 103 orbits undergoing type I migration, migrating at a much
faster rate. This produces the impression in Fig. 7.3 that the initial ap,0 < 1. As soon as the
cavity is cleared, it starts migrating at the slower type II rate.
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Figure 7.4: Colour plots of the scalar eccentricity (azimuthal average) as a function of
time (y-axis) and radius (x-axis) for light (left panel) and massive (right panel) case.

Figure 7.5: Pericentre phase colour-plot as a function of time (y-axis) and radius (x-axis)
for light (left panel) and massive (right panel. ) case.

Figure 7.6: Eccentricity e as a function of time for light (left panel) and massive (right
panel) case. The blue curve shows the planet eccentricity, the green curve the disc
eccentricity at R = 4.7 in the light case and at R = 5 (azimuthal averages) in the
massive one, while the red curve is a global measurement of the disc eccentricity
starting from the AMD (see Sec. 7.3.2). The choice to use two different reference
radii for the disc eccentricity is due to the slightly different size of the cavity in the
two cases.
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Figure 7.7: Pericentre phase as a function of time for light (left panel) and massive
(right panel) case (we remind that the value of the pericentre phase is constant
throughout the entire disc domain). The cyan and violet curve represent planet and
disc pericentre phase. During the first ≈ 4 × 104 orbits both simulations show an
anti-aligned precession (|Φp − Φd| ≈ 180◦). After ≈ 4 × 104 orbits in the light case
the planet precession decouples from that of the disc, becoming much slower than
the disc one. At very late times (t & 2 × 105 orbits) also the disc precession rate
slows down, and precesses with the planet in a pericentre aligned configuration. The
massive case remains in the anti-aligned configuration for much longer, even though
also in this case a transition toward the slowly precessing aligned configuration takes
place after t ≈ 2 × 105 orbits. In the massive case, the transition appears to be
accompanied by a reversal of the precession rate, which becomes retrograde

“rigid” behaviour is even more evident looking at Fig. 7.5, at fixed time, the
pericentre phase is the same at all radii throughout the entire disc2. Furthermore
the radial profiles of the eccentricity and pericentre phase in Fig. 7.4 and 7.5
imply that the gas orbits are a set of nested, pericentre aligned eccentric orbits
with an eccentricity profile decreasing with radius.

Fig. 7.6 and 7.7 show the evolution of planet and disc eccentricity and their
pericentre phases, respectively. The red and green curves in Fig. 7.6 represent
two different ways to estimate the disc eccentricity: the red curve (ed,AMD) is
computed inverting the approximate relationship between eccentricity and AMD
given in the case of the planet in Eq. (7.7) and which yields

ed,AMD =

√
2Ad

Jd,circ
, (7.11)

where Jd,circ is given by

Jd,circ =

∫
Σ(R,φ)

√
GMa(R,φ)RdRdφ; (7.12)

this approach allows us to give an estimate of the disc eccentricity relying on global
disc quantities, in fact treating it as if it was a second planet. We then notice that

2For R > 8 the eccentricity is almost negligible. The algorithm we used to compute the
pericentre phase tends to attribute Φd = 180◦ when e ≈ 0 since it is not possible to attribute a
pericentre in a circular orbit.
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the density peak in the two simulations is located at R ≈ 4.7 in the light case
and at R ≈ 5 in the massive one; the green curve represents the values of the
eccentricity evolution at these radii. The good agreement of the two curves tells
us that the global behaviour of the disc is dominated by the values the eccentricity
has at these radii, the discrepancy in the massive case between the red and green
curve after ≈ 1.7×105 orbits suggest that the reference radius for the eccentricity
has migrated outward (consistently with the broadening of the cavity, Fig. 7.2).

Both simulations show that the planet and the disc exchange eccentricity through
slow periodic (period ∆t & 104 orbits) anti-phased oscillations (a maximum in the
planet curve correspond to a minimum in the disc one) superimposed on a series
of roughly linearly growing and decreasing trends. It should be noted that the
frequency of the oscillation is not constant throughout the entire length of the
simulation, we will discuss more in detail this feature in Sec. 7.5.3.

Both the light and the massive case show a rapid exponential growth of the disc
eccentricity (Fig. 7.6) during the first stages of evolution (t . 1.5 × 104 orbits)
up to values ed ∼ 0.11, then a slower decrease at later times. Interestingly, the
maximum level of disc eccentricity achieved is the same for both simulations. This
might suggest that some non-linear effects prevent the disc eccentricity to grow
further. The planet eccentricity in the massive case has a similar behaviour: it
grows fast in the beginning, attains a value ep = 0.14 and starts decreasing at
the same time as the disc eccentricity. The planet eccentricity in the light disc
case in contrast has a completely different behaviour: its growth oscillates around
ep = 0.025 for t . 4× 104 orbits, but then at later times starts growing again at
constant rate; at very late times (t & 2×105 orbits) the planet eccentricity growth
rate appears to slow down.

The precession of the pericentre phase (Fig. 7.7) presents some very interesting
features as well. Both the massive and the light disc cases show in the initial stages
(t . 4× 104 orbits) of the simulation an anti-phased precession of the disc-planet
pericentre: the planet and disc pericentre precess at the same rate maintaining a
phase difference |Φp − Φd| ≈ 180◦.

In the light case, after ≈ 4 × 104 orbits, in correspondence with the beginning
of the growing trend of the planet eccentricity, the planet pericentre phase starts
to precess much more slowly than the disc one. After t & 1.5 × 105 orbits also
the disc transitions to a slower precession rate. When this condition is reached,
the planet and the disc pericentre phases are aligned, precessing at the same slow
rate. Some oscillations at a faster frequency in the disc pericentre phase can be
noticed in this slow configuration.

In the massive case, the anti-aligned configuration (present in the light case just
for t . 4 × 104 orbits) lasts for much longer: only at t & 2 × 105 the transition
toward the slower aligned precession rate appears to take place. However, in this
case the transition appears to be accompanied by a reversal of the precession rate
(which becomes retrograde), a significant slow down of the oscillation frequency
of the eccentricities and also by a variation in the disc eccentricity radial profile
(see the right panel of Fig. 7.4).

Another interesting quantity that is useful for the interpretation of the results
presented here is the AMD (equations (7.3) and (7.6), Fig. 7.8). The evolution of
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Figure 7.8: AMD Ap, Ad, Atot as a function of time for light (left panel) and massive
(right panel) case.

the AMD reflects the evolution of the eccentricity since A ∝ e2 in the limit of low
eccentricity (Eq. (7.7)). The total AMD Atot = Ap + Ad in the light case starts
growing when the system evolves to the aligned configuration, while in the massive
case it decreases up to the end of the simulation. However the most interesting
feature of the oscillations observed in the eccentricity is that their amplitude is
AMD conserving (see Fig. 7.8): the overall amount of AMD changes both in the
planet and in the disc, but the amplitude of the oscillations is such that the Atot

is conserved during one oscillation. The implication of this is that the periodic
oscillations only exchange angular momentum between the planet and the disc: for
a given amount of angular momentum exchanged the amplitude of the fluctuations
is fixed by the orbital properties of the planet and the disc.

As we will see, most of the features that we observed in these simulations (rapid
initial exponential growth of eccentricity, long-term periodic oscillations, rigid pre-
cession of the pericentre phase, linear growth or decrease of the eccentricity at late
times) can be interpreted in terms of either a classical linear theory of a 2-planet
system (Murray & Dermott 1999), or its extension to disc-planet interactions
(Teyssandier & Ogilvie 2016).

We devote section 7.4 and 7.5 to this interpretation.

7.4 Interpretation of the results

Before trying to interpret the complex evolution revealed by the hydrodynamical
simulations, it is instructive to build up a qualitative picture of the evolution of
dynamically coupled eccentric planet/disc systems.

The structure of an eccentric disc-planet system can in principle be described as
a superposition of rigidly precessing normal modes, each of which is characterised
by its disc eccentricity profile e(R) (normalised to planet eccentricity), growth rate
γ, precession rate ω and angular offset ∆Φ between the line of apses of the disc
and planet (Teyssandier & Ogilvie 2016).

The rate of precession ω is set by many different contributions. Among them,
purely secular gravitational disc-planet interaction is expected to cause the pro-
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grade precession of the pericentre phase of both planet and disc, while pressure
effects in discs with standard pressure profiles (dP/dR < 0, where P is the pres-
sure radial profile) are expected to cause the retrograde precession of the pericentre
phase (it can be shown that the precession rate observed in Fig. 7.7 are consistent
with that predicted by Teyssandier & Ogilvie 2016).

Mode growth is generically driven by resonances. With standard disc parame-
ters, eccentric Lindblad resonances allow the disc and planet eccentricity to grow,
while eccentric corotation resonances cause the eccentricity to decrease (Goldreich
& Tremaine 1980; Goldreich & Sari 2003; Ogilvie & Lubow 2003). The growth
or damping of the planet eccentricity thus depends on the balance between these
two opposite effects. Goldreich & Tremaine (1980) showed that if the planet does
not perturb significantly the surface density of the disc, the corotation torque
slightly exceeds the Lindblad one, damping the planet eccentricity toward circular
orbits. In contrast, if the planet carves a sufficiently deep cavity or gap around
the planet (at least a factor ∼ 10−3, Duffell & Chiang 2015), and if no material
replenishes the corotation region, the corotation torque saturates (Goldreich &
Sari 2003; Ogilvie & Lubow 2003) so that dominance of the Lindblad resonances
causes the eccentricity to grow. In addition to the effect of eccentric co-rotation
resonances, the disc viscosity is also expected to circularize the gas orbits in the
disc. Putting all this together implies that the disc eccentricity evolution can be
expected to depend on the planet-star mass ratio, planet eccentricity, pressure and
disc viscosity (Artymowicz & Lubow 1994; Crida et al. 2006).

Each of the aforementioned effects have been included in the derivation by
Teyssandier & Ogilvie (2016) of the eigenmodes of an eccentric fluid disc, both
with and without the inclusion of a planet. In this formalism, the real part of the
eigen-values associated with each eigen-mode corresponds to the precession rate.

7.4.1 Case of no mode damping or driving

We first consider the case where mode damping and pumping can be neglected.
This implies the absence of resonant interactions and viscous effects and therefore
means that the gravitational influence of the planet on the disc is mediated by the
secular interaction, i.e. the response of the disc to the zero frequency (Ωm = 0)
component of the Fourier decomposition of the acceleration induced by the planet.

The secular interaction can be visualised as being the response of the disc to
an elliptical ring of material representing the time average of the planet’s mass
distribution around its orbit. If the system is in a single mode the amplitude of
disc and planet eccentricity is constant in time and the entire system undergoes
rigid precession at a constant rate.

If however the system exists in a superposition of modes, each with characteris-
tic eccentricity profile and precession rate, the net eccentricity of both the planet
and the disc undergoes cyclical variations, that correspond to the beats of the fun-
damental modes, depending on the instantaneous phase relationship of the various
modes. The varying eccentricity of both planet and disc result in an exchange of
angular momentum between the two components. Since for Fourier mode with
frequency Ωm the relationship between energy exchange and angular momentum
exchange is given by ∆E = Ωm∆L, it follows that the secular interaction involves
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zero energy exchange between planet and disc (recalling that Ωm = 0 for secular
interaction). It is therefore convenient to consider the interaction in terms of the
angular momentum deficit (AMD) defined in Eq. (7.3) and (7.6).

The differential precession of an ensemble of modes results in a variation of the
AMD of disc and planet at constant energy. Total angular momentum conservation
requires that the total AMD of the planet plus disc is constant.

We have seen that the eccentricity and AMD variations of the simulated disc-
planet system can indeed be described in terms of such fluctuations on which
slower long term trends in mode amplitude resulting from net pumping/damping
are superposed.

The fact that the oscillatory behaviour is close to being sinusoidal suggests
that the evolution can be understood in terms of the superposition of two dom-
inant modes. We will find that we can gain significant qualitative insight into
the behaviour of the system by considering the analogue problem of the secular
interaction between two point masses for which (given the number of degrees of
freedom in the system) there are just two modes (as known from textbook studies
of celestial mechanics Murray & Dermott 1999). We however emphasise that we
do not necessarily expect the mode structure to be the same in the case of the
fluid disc and will indeed find that - whereas the modes in the two-planet case
both undergo prograde precession - the role of pressure within the disc can in-
duce retrograde precession in one of the modes. Nevertheless, we will find that a
heuristic understanding of the nature of the two modes in the point mass case will
be extremely useful in guiding our interpretation of the simulations.

7.4.2 Case of secular interaction between two point masses

In this section we describe a toy model accounting only for secular contributions to
the eccentricity equations. We aim to give a simplified description of the coupled
evolution of planet and disc in order to interpret some features of the planet and
disc eccentricity and pericentre phase evolution discussed in Sec. 7.3.

Teyssandier & Ogilvie (2017) predict a “rigid” evolution of the eigenmodes,
leading us to expect that in general the eccentricity radial profile evolves rigidly
as ed(t, R) = e0(R)h(t), where h(t) is a generic function of the time only, and that
the pericentre longitude does not depend on the radius Φd(R, t) ≡ Φd(t). We thus
expect that a simplified description of the evolution of the system can be obtained
by replacing the disc with a virtual planet, adding some terms to account for
the disc eccentricity pumping and damping effects. In fact this approach consists
in modelling the disc-planet interaction as a planet-planet interaction where the
outer planet is a virtual mass with disc averaged orbital characteristics: semi-
major axis ad, longitude of pericentre Φd, mass Md and eccentricity ed. We will
use ap, Φp, Mp and ep to refer to the actual planet instead.

It is important to bear in mind that such a description will not be quantitatively
correct for two main reasons:

a) This approach intrinsically neglects pressure (which we have seen in the
previous section to have a role in determining the precession rate).

b) The approximation of a disc of nested ellipses by an equivalent point mass
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particle forces us to reduce local quantities such as the density or the disc
eccentricity to equivalent global quantities without a well defined prescrip-
tion.

Moreover such an approach does not of course include the additional effects of
viscous damping and driving of eccentricity at resonances, which would need to
be added ad hoc.

In the following equations we will use the following notation

Ej = |Ej |eiΦj , j = {p, d}, (7.13)

where |Ej | = ej is the “physical” eccentricity and Φj is its pericentre phase, the
subscripts p and d refer to the planet and disc-“virtual” planet. This formalism
allows us to write one single set of equations for both eccentricity and pericentre
phase.

We follow the Hamiltonian approach given by Zhang et al. (2013), in which
the gravitational potential produced by the two components (in our case the real
planet and the disc virtual planet) of the system is expanded up to the second
order in ep and ed. The equations ruling the evolution of the complex eccentricities
Ep and Ed have the form (

Ėp

Ėd

)
= M ·

(
Ep

Ed

)
, (7.14)

where the notation Ėi indicates the time derivative, while the complex matrix M
reads

M = iΩsec

 q −qβ

−√αβ √
α

 , (7.15)

where α = ap/ad, q = Md/Mp, β = b
(2)
3/2(α)/b

(1)
3/2(α), where b

(n)
3/2(α) is the n-th

Laplace coefficient (see also Eq. 3.40)

b
(n)
3/2(α) =

1

π

∫ 2π

0

cos(nθ)

(1− 2α cos(θ) + α2)3/2
dθ. (7.16)

For α � 1, β ≈ 5α/4 since b
(1)
3/2(α) ≈ 3α and b

(2)
3/2(α) ≈ 15α2/4 (Murray &

Dermott 1999). The matrix M in Eq. (7.15) is purely imaginary and accounts for
the secular, non-dissipative disc-planet interaction. Ωsec is a real scaling parameter
for the matrix and has the dimension of a frequency:

Ωsec =
1

4
Ωp

Mp

M?
α2b

(1)
3/2(α). (7.17)

The solutions to equation (7.14) is(
Ep(t)
Ed(t)

)
= C1

(
ηs

1

)
eiωst + C2

(
ηf

1

)
eiωf t, (7.18)

where C1 and C2 are constants that depend on the initial conditions, ωs,f and
(ηs,f , 1) are the complex eigen-values and complex eigen-vectors of M, respectively.
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Figure 7.9: Eigenvalues as a function of q for fixed α−1 = 4.5. The blue curve represents
ωf while the red one ωs. The eigenvalues are expressed in units of the planet orbital
frequency Ωp, and represent the precession rate of the pericentre phase.

Figure 7.10: |ηs,f | = ep/ed (left panel) and ∆φ = arg(ηf,s) (right panel) of eigenvectors
as a function of q/

√
α. The blue curve refers to the fast mode the red curve refers

to the slow one. It should be remembered that eiπ = −1. ηs,f represent the ratio
between the planet and the disc eccentricity if just one mode is present. While ∆Φ
represents the pericentre phase difference between the planet and the disc if just
one mode is present.
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With reference to Eq. (7.18), the eigen-values ωs,f of the matrix M in Eq. 7.15
are

ωs,f =
1

2
Ωsec

(
q +
√
α
)
∓ 1

2
Ωsec

√(√
α− q

)
2 + 4q

√
αβ2 (7.19)

The eigen-frequency ω in units of Ωp, plotted for varying q and fixed α in Fig.
7.9, gives us information on the precession rate of the pericentre phase. From
Eq. (7.19) we can clearly see that ωs < ωf ; for this reason we will refer to the s
mode as the “slow mode” and to the f mode as the “fast mode”. It is notable
that Ωsec sets the timescale of the oscillations, it is independent of q and scales
as α3 for α << 1 (equation (7.17)). The individual precession frequencies and
hence the beat frequency ∆ω = ωf − ωs do however depend on q; in particular,
the dependence on q mostly affects the beat frequency ∆ω = ωf − ωs, which has
a minimum when q =

√
α (see Fig. 7.9).

The components of the eigen-vectors of the matrix M instead are

ηs,f =
1

2
√
αβ

(
√
α− q)± 1

2
√
αβ

√(√
α− q

)
2 + 4q

√
αβ2. (7.20)

According to Eq. (7.18), the ratio of planet to disc eccentricity when only one of
the modes is present is given by |η| = ep/ed.

It should be noticed that ηf < 0 for any parameter choice, while in contrast
ηs > 0. This implies that the fast mode involves misalignment by π between the
pericentre phases of the planet and virtual planet (i.e. disc) while the two orbits
are aligned in the case of the slow mode. This is illustrated in the right hand
panel of Fig. 7.10. It should be also noticed that for q/

√
α < 1 one has |ηs| > 1

and |ηf | < 1 (left panel of Fig. 7.10), while for q/
√
α > 1 one gets |ηs| < 1 and

|ηf | > 1. The condition q =
√
α marks the condition that the two components

have equal angular momentum if on a circular orbit3.
The above inequalities imply that the component (i.e. planet or virtual planet)

with the higher circular angular momentum will have the greater amplitude when
the system is entirely in the slow mode (C2 = 0), while the component with
lower circular angular momentum will have greater amplitude when the system
is entirely in the fast mode (C1 = 0). In the limit that the circular angular
momenta of the two components is very different (i.e.: q → 0), the fast mode
becomes overwhelmingly dominated by the component with the smaller angular
momentum and in this limit can be envisaged as the precession of a test particle
in the combined potential of the central object and the potential generated by
a circular ring of material at the location of the other ‘planet’. In this limit
the slow mode is non precessing and has finite eccentricity contributions in both
components. As q tends to

√
α the modes become increasingly entwined in the

sense that both modes contain comparable contributions in both components. We
will discuss in the following sections how the evolution of the two simulations
described here can be understood in terms of the different ratios of q/

√
α in the

two cases, and thus3 of Jd,circ/Jp,circ.

3It should be noticed that the ratio q/
√
α is equivalent to the ratio Jd,circ/Jp,circ =

(Md

√
GM∗ad)/(Mp

√
GM∗ap), and provides thus a measure of the relative contribution of the

disc and the planet to the total amount of angular momentum of the system.
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Given the large number of simulations with fixed binaries in the literature
(D’Angelo et al. 2006; Müller & Kley 2013; Duffell & Chiang 2015; Miranda et al.
2017; Thun et al. 2017), we believe it is very interesting to notice that the case
q = 0 is the reference case for those simulations of a circumbinary disc surrounding
a binary system (of any mass ratio) with fixed orbital parameters. A discussion
of the instructive case q = 0 can be found in Appendix C.1.

7.4.3 Phenomenological implementation of pumping and damp-
ing terms

The mere gravitational interaction we discussed in the previous section does not
provide any mode evolution since it describes stationary modes. Nevertheless,
we clearly observe instead in our simulations the growth and the decrease of the
eccentricity at different stages of the simulations. This clearly implies that some
modelling of this behaviour needs to be included in our simplified description.

Zhang et al. (2013) treated the damped three body problem in order to show
that the damping of the eccentricity of a hot-Jupiter operated by the tidal effects
of the central-star can be slowed down if a second planet orbiting on an outer orbit
is present. To do so, they added some real terms in the matrix M in Eq. (7.14).
The introduction of these terms introduces a complex component of the eigen-
values which is responsible for the exponential damping (or pumping depending
on the sign) of the mode.

In our simulations, the resonances are initially very strong due to the presence of
a large amount of material in the cavity region during the initial phases. For this
reason the planet eccentricity in the massive case and the disc one in both cases
grows very fast for t . 104 orbits following an exponential trend. However, after
this initial transient, the gas depletion in the cavity region leads to the saturation
of the pumping mechanism, which is also associated with the attainment of a
maximum value of the disc eccentricity. At later times the pumping/damping
mechanisms are such to cause a linear increase/decrease of the eccentricity with
time, in contrast with the exponential trend predicted by Zhang et al. (2013)
modelling to include resonant and viscous effects.

As described at the beginning of Sec. 7.4, the physical scaling of pumping and
damping needs to account for viscous effects and the contribution of each single
resonance. The work by Teyssandier & Ogilvie (2016) includes a detailed for-
mulation to deal with pumping and damping effects. The viscous effects depend
on the disc eccentricity radial gradient and on the viscosity prescription adopted;
it provides damping of eccentricity for standard disc parameters. For the reso-
nant interaction, each individual resonance depends differently on several factors
including: the disc density profile, the planet eccentricity and pressure effects,
which vary significantly throughout the simulation.

In the light of these considerations, we conclude that our ability to model the
eccentricity pumping/damping in the framework of the toy model is very limited.
The main difficulty resides in identifying the dependence of the pumping/damping
on global planet and disc properties. We decide for this reason to include these
effects in our model by prescribing a linear time evolution of the C1 and C2 pa-
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rameters in Eq. (7.18), which becomes(
Ep(t)
Ed(t)

)
= C1(t)

(
ηs

1

)
eiωst + C2(t)

(
ηf

1

)
eiωf t. (7.21)

We prescribe the time dependence of C1(t) and C2(t) to be in the form

C1(t) = max(C0
1 + γst, 0.01) (7.22)

C2(t) = max(C0
2 + γft, 0.01) (7.23)

where γs > 0 and γf < 0 are pumping and damping rates with the dimension
of frequencies. We keep a minimum value of C1,2 = 0.01 to prevent C1,2 from
becoming negative, since in both cases oscillations are present up to the end of
the simulations (indicating that both the modes maintain an amplitude 6= 0). The
sign of γs,f is chosen on the basis of what we observe in our simulations, i.e. a
transition from the fast to the slow mode.

Solutions like eq. (7.21) imply that the eccentricity |Ep| = ep and |Ed| = ed of
planet and disc are

|Ep| =
√
C2

1 (t)η2
s + C2

2 (t)η2
f + 2C1(t)C2(t)ηsηf cos(∆ωt), (7.24)

|Ed| =
√
C2

1 (t) + C2
2 (t) + 2C1(t)C2(t) cos(∆ωt), (7.25)

where ∆ω = ωf−ωs. It becomes clear that the simulataneous presence of two eigen-
modes produces in the eccentricity some typical oscillations with a periodicity
equal to the beat frequency of the two precession rates ∆ω.

The pericentre phase evolution of the planet Φp(t) and of the disc Φd(t) is given
by

Φp = mod

{
ωs

2
t+

ωf

2
t+ arg

[
(ηsC1(t) + ηfC2(t)) cos

(
∆ω

2
t

)
+ (7.26)

+i(ηfC2(t)− ηsC1(t)) sin

(
∆ω

2
t

)]
, 2π

}
,

Φd = mod

{
ωs

2
t+

ωf

2
t+ arg

[
(C1(t) + C2(t)) cos

(
∆ω

2
t

)
+ (7.27)

+i(C2(t)− C1(t)) sin

(
∆ω

2
t

)]
, 2π

}
.

However, more relevantly, for any complex number in the the form E = Aeiωst +
Beiωf t, where A and B here represent the mode strength (C1,2(t)ηs,f for the planet
or C1,2 for the disc), it can be shown that the phase arg(E) = Φ can be approxi-
mated by

Φ ≈


ωst+

B
A sin(∆ωt), if B � A

ωft−
A
B sin(∆ωt), if A � B

, (7.28)
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implying that whether a component is predominantly precessing at the slow or
fast rate (and what is the amplitude of superposed oscillations on this mean pre-
cession rate) is determined by the relative values of ηsC1(t) and ηfC2(t) for the
planet solution, and by C1(t) and C2(t) for the disc one. The variation in time
of these parameters implies that the system might experience a transition from
the dominance of one mode to the other. This might occur at different times in
the planet and in the disc depending on the absolute value of the eigen-vectors.
It is important to stress that, for a given configuration, one component can be
dominated by one mode while the other not. In fact, the ratio of the amplitude
of the fast and the slow modes is given by

Rp =
ηfC2

ηsC1
(7.29)

and

Rd =
C2

C1
(7.30)

for the planet and the disc, respectively. Since ηf 6= ηs, the ratio of the two
amplitudes can be different in the two components of the system. In particular,
for small disc masses (small q), ηf � ηs (see Fig. 7.10) and thus the planet can
be in the slow mode while the disc resides in the fast mode.

It is important at this stage to notice that the sign of the eigen-vectors sets the
disc-planet configuration of the pericentre precession: in our formulation of the toy
model we used eigen-vectors of the form (ηs,f , 1). For the slow mode, since ηs > 0,
as we have seen in the previous section, both the disc and the planet component
of the eigen-vector are positive; thus, with reference to Eq. (7.28), when both the
planet and the disc satisfy B � A they will precess at the slow precession rate with
the disc and planet pericentres aligned. In contrast, for the fast mode, since ηf < 0,
when both planet and disc complex eccentricities satisfy A � B the planet and
disc will precess at the fast rate with the pericentres anti-aligned. It follows that
when the transition from the fast to the slow mode has been completed in both
the planet and in the disc, we will observe also a transition from an anti-aligned
to an aligned configuration of the disc-planet pericentre precession.

The initial values of C0
1 and C0

2 depend on the initial evolution of the system and,
as previously said, cannot be predicted a priori. As mentioned in Sec. 7.1, previous
works found at short timescales a dependence of the growth rate and saturation
value of the planet eccentricity on three main parameters: the planet mass, the
disc mass and the initial value of the planet orbital eccentricity (Papaloizou et al.
2001; D’Angelo et al. 2006; Dunhill et al. 2013; Duffell & Chiang 2015).

7.5 Interpretation in the light of the toy model

From Eq. (7.24) and (7.25) the relative amplitude of the oscillations between the
planet and the disc is set by ηsηf = −q/√α. Since ηsηf < 0, the oscillations in the
eccentricity between the planet and the disc are anti-phased, as can be noticed
in Fig. 7.6. This enables the conservation of the total AMD across the time of
one oscillation as would be expected in pure planet-planet interaction in celestial
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mechanics (the non-conservation of the AMD on longer timescales is due to the
pumping/damping effects).

Fig. 7.7 shows clearly that at the beginning of both simulations the disc and
planet pericentre phases are precessing in an anti-aligned configuration (∆Φ ≈
180◦). In the light case (left panel of Fig. 7.7), after ≈ 4 × 104 orbits the planet
pericentre phase decouples from the disc one and starts precessing at a much
slower rate. The same conclusion can be reached regarding the massive case, but
the anti-aligned configuration lasts for much longer and is apparently broken only
after t & 2× 105 orbits.

In the light case this behaviour can be easily interpreted as the coexistence of
the two evolving eigen-modes with positive precession rates ωs,f predicted in Eq.
(7.21), assuming that the following relationships between C1, C2, ηs, ηf hold:

C1ηs < C2ηf , if t . 4× 104 torb, (7.31)

C1ηs > C2ηf , if t & 4× 104 torb, (7.32)

C1 < C2, if t . 2× 105 torb, (7.33)

C1 > C2, if t & 2× 105 torb. (7.34)

Note that in the light case q � √α and thus ηf � ηs.
In the massive case, the same interpretation can be given but with different

times delimiting the different stages in the modes evolution

C1ηs < C2ηf , if t . 2× 105 torb, (7.35)

C1ηs > C2ηf , if t & 2× 105 torb, (7.36)

C1 < C2, if t . 2× 105 torb, (7.37)

C1 > C2, if t & 2× 105 torb. (7.38)

Note that here q &
√
α and thus ηf & ηs.

The time at which the transition between the fast and slow modes occurs de-
pends both on the conditions after the initial transient and on the parameters q
and α involved in the model.

Although we do not know a priori what are the conditions in the disc at the end
of the initial transient stage, we can use the picture of the mode structure outlined
in Sec. 7.4.2 in order to understand how the evolution of the two simulations dif-
fers on account of different values of q (effective disc to planet mass ratio) on long
timescales. The smaller the mass of the disc, the more angular momentum is con-
centrated in the planet, which means that the slow mode has a larger contribution
from the planet eccentricity. As the fast mode is damped, therefore, the planet
can be expected to make the transition to being predominantly in the slow mode
at an earlier evolutionary phase in the light case than in the massive simulation.
This is consistent with what we observe in our simulations: in the light case the
planet makes the transition to the slow precession mode at an earlier evolutionary
stage (see Fig. 7.7).

7.5.1 Evolution depending on the disc mass

We now illustrate how the difference between the two simulations can be under-
stood purely in terms of the dependence of the eigen-vectors on q. In Fig. 7.11 and
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Figure 7.11: Planet (blue curve) and disc (red curve) eccentricity using Eq. (7.24,7.25).
The left panel shows a reasonable choice of parameters for the light case, while the
right panel a choice for the massive case. The summary of the parameters used
can be found in Table 7.1. The evolution of C2 stops when C2 = 0.01 is reached,
as prescribed in Eq. (7.22,7.23), in order to prevent C2 from becoming negative.
Notice that the initial conditions C0

1 and C0
2 and pumping/damping coefficients

γs and γs are the same in the two simulations, while ωs and ωf were chosen in
order to reproduce the behaviour in the simulations. The blue shaded area of the
plots marks the time region where the fast f mode is dominant in both the planet
and the disc, causing the pericentres to precess at the fast rate in the anti-aligned
configuration; the red shaded are marks the time region where the slow s mode is
dominant in both the planet and the disc, causing the pericentres to precess at the
slow rate in the aligned configuration; the violet area marks the region where the
slow mode is dominant in the planet but not in the disc, causing a decoupling of the
precession rates. These figures are not meant to reproduce precisely the eccentricity
evolution in Fig. 7.6 but to show that a change in the values of the eigenvectors
produced by a different q (while keeping fixed all the other relevant parameters)
can give rise to very different evolutionary path of the system.

q α C0
1 C0

2 γs/Ωp γf/Ωp

light case 0.2 ≈ 0.25 0.004 0.1 1.60× 10−8 −7.15× 10−8

massive case 0.65 ≈ 0.25 0.004 0.1 1.60× 10−8 −7.15× 10−8

ωs/Ωp ωf/Ωp ηs ηf

light case 7.95× 10−6 6.35× 10−5 2.3 −0.2
massive case −1.60× 10−5 6.35× 10−5 0.4 −1.3

Table 7.1: Summary of the parameters used to produce Fig. 7.11 and 7.12.
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Figure 7.12: Planet (blue curve) and disc (red curve) pericentre phase using Eq.
(7.26,7.27). The left panel shows a reasonable choice of parameters for the light
case, while the right panel a choice for the massive case. The summary of the pa-
rameters used can be found in Table 7.1. The evolution of C2 stops when C2 = 0.01
is reached, as prescribed in Eq. (7.22,7.23), in order to prevent C2 from becoming
negative. Notice that the initial conditions C0

1 and C0
2 and pumping/damping coef-

ficients γs and γs are the same in the two simulations, while ωs and ωf were chosen
in order to reproduce the behaviour in the simulations. The blue shaded area of the
plots marks the time region where the fast f mode is dominant in both the planet
and the disc, causing the pericentres to precess at the fast rate in the anti-aligned
configuration; the red shaded are marks the time region where the slow s mode is
dominant in both the planet and the disc, causing the pericentres to precess at the
slow rate in the aligned configuration; the violet area marks the region where the
slow mode is dominant in the planet but not in the disc, causing a decoupling of the
precession rates. These figures are not meant to reproduce precisely the eccentricity
evolution in Fig. 7.6 but to show that a change in the values of the eigenvectors
produced by a different q (while keeping fixed all the other relevant parameters)
can give rise to very different evolutionary path of the system.
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7.12 we plot Eq. (7.24,7.25) and Eq. (7.26,7.27) with a set of parameter choices
for each simulation that qualitatively reproduce the main evolutionary features
observed in our simulations (Fig. 7.6 and 7.7).

In both Fig. 7.11 and 7.12 we prescribe the same pumping/damping prescrip-
tion: a linearly decreasing fast mode (γf = −7.15 × 10−8 Ωp) and a growing slow
mode (γs = 1.60× 10−8 Ωp). We choose ωs,f to be consistent with those observed
in the simulations. The summary of the parameters used in Fig. 7.6 and 7.7 can
be found in Table 7.1.

This choice implies ηs/ηf changes from being> 1 to< 1 between the simulations.
We notice from Fig. 7.10 that this implies that q/

√
α is respectively lower and

greater than 1 (i.e. that the circular angular momentum is mainly in the planet in
the light case and mainly in the disc in the massive case). We choose C0

1 � C0
2 for

both our simulations (see caption to Fig. 7.11 and 7.12). Noting that the “density
edge of the cavity” is located at R ≈ 4.5 in both simulations we adopt α ≈ 0.25
in both cases. The values of q in the two simulations are 0.2 and 0.65 for the light
and massive case, respectively.

Obviously our simulations are not supposed to share the initial conditions and
mode pumping/damping rates, in contrast with what we prescribed. However,
we remark that Fig. 7.11 and 7.12 are not meant to reproduce precisely the
eccentricity evolution in Fig. 7.6. We find it more instructive to show a comparison
between the two regimes while keeping fixed all the other relevant parameters in
order to highlight the role of the mass ratio q in determining the evolution of the
system.

We believe that these images show clearly that a change in the values of the
eigenvectors produced by a different q (while keeping fixed all the other relevant
parameters) can give rise to very different evolutionary path of the system, de-
spite our inability to model properly the evolution during the initial phases of
the simulation. Furthermore, we see from Fig. 7.11 and 7.12 that this simple
parametrisation does an extraordinarily good job of reproducing the main fea-
tures of the planet and disc eccentricity evolution on long timescales (compare
with Fig. 7.6 and 7.7).

In the light case the planet makes the transition to the slow mode significantly
before the disc because the simulation is in the regime q � √α where the two
eigenvectors are very different. In the massive case the value of q/

√
α is closer to

1 and so the eigenvectors are more similar to each other. Consequently the disc
and the planet follow more similar evolution of the eccentricity and indeed they
make the transition to being predominantly in the slow mode at nearly the same
time. By the end of the simulation both simulations are mainly in the slow mode
and hence the ratio of eccentricities is given simply by the eigenvector of the slow
mode.

The main conclusion that can be drawn from these considerations, is that,
assuming a damping of the fast mode, the system will end up in a configuration
where ep > ed for all those cases in which q/

√
α = Jd/Jp < 1 (light discs)

and vice versa ep < ed for all those cases in which q/
√
α > 1 (massive discs).

As a consequence, under this assumption one should expect that low mass discs
favour the growth of the eccentricity at long timescales. We caution however
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Figure 7.13: Eccentricity evolution of planet (blue curve) and disc (red curve, AMD
based) during the early stages of the simulation for a q = 2 disc-planet system. This
behaviour is consistent with what was observed in the previous work by Papaloizou
et al. (2001). However our analysis suggests that this is a transient growth phase,
and we expect the eccentricity to decay on a longer timescale

that the assumption about the fast mode damping is tentative since it is based
only on the two simulations we performed. A larger number of simulations is
required to address the reliability of this assumption and the direction that further
investigations should take.

It should be noted that our simulations show that higher disc masses can pump
higher levels of planetary eccentricity at short timescales (as previously pointed
out by Dunhill et al. 2013). In addition, we have carried a third simulation with
a much more massive disc (q = 2), in order to compare with the previous results
obtained by Papaloizou et al. (2001), finding that such a high disc mass allows
the planet to reach eccentricities as high as e = 0.3 during the first 3× 103 orbits
(see Fig. 7.13), consistently with what they previously found. This shows that the
eccentricity of the planet acquired over hundreds of orbits does indeed increase
with disc mass as one would naively expect but, if our analysis holds for such
massive discs, we expect the eccentricity to decay on a longer timescale ( 105

orbits).

We do not attempt to run this simulation for as many orbits as the two cases
we presented in this chapter. Due to the required computational resources, it is
beyond the scope of this project to further verify whether massive discs lead to
more damping of the planet on long timescales, but future work should address
this statement.
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7.5.2 Effects of disc viscosity and thickness

Disc viscosity (ν) and thickness (H/R) are expected to play a role in the eccen-
tricity evolution of the disc-planet system.

The effects of viscosity might act to either increase or damp the eccentricity. On
the one hand, an increase in the disc viscosity implies stronger damping effects
(Teyssandier & Ogilvie 2016), providing thus an overall faster decrease of the
system eccentricity. On the other hand, more viscous discs have smaller cavities,
modifying the surface density at resonant locations and thus produce a stronger
resonant interaction and faster evolution of the growing/decreasing trend. The
pumping or damping nature of this latter effect depends on the type of resonances
(Lindblad or co-rotation) that are strengthened.

Regarding the disc thickness, a higher H/R also provides a narrower gap, hence
stronger resonant interaction again. Furthermore, the resonance width is broad-
ened by pressure effects, and scales as (H/R)2/3, so higher H/R implies that reso-
nances operate on a broader disc region, which also increases the growth/decrease
rate. Higher H/R implies a faster propagation speed of the mode, making the
growth of a trapped slow mode more difficult in the inner regions (Teyssandier &
Ogilvie 2016). Finally, larger H/R increases the effect of pressure, which drives
retrograde precession. This opposes the gravitational secular interaction, which
drives prograde precession.

Finally, large eccentricity gradients imply large fluid relative velocities, that
approach the sound speed when Rde/dR ∼ H/R and produce the crossing of fluid
trajectories when Rde/dR ∼ 1 (Ogilvie 2001), possibly inducing shocks and large
pressure gradients that might limit the further growth of the disc eccentricity.
Whether this implies that the planet eccentricity scales with H/R (Duffell &
Chiang 2015) still needs to be addressed with further work, although note that in
our simulations we reach planet eccentricities ≈ 0.1, well in excess of the value of
H/R ≈ 0.036.

A further exploration of the parameter space is required to address the depen-
dence of the evolution on these parameters.

7.5.3 Effects of the disc evolution

While our toy model reproduces the qualitative features we have highlighted so
far, as already noticed in Sec. 7.3 a careful inspection of Fig. 7.6 reveals that the
oscillation frequency of the eccentricity is not fixed in time. This effect cannot be
captured within our modelling but it indicates that the viscous evolution of the
disc has a role in determining the precession rate (eigen-frequencies) and modes
relative strength (eigen-vectors): as the disc viscously spreads the effective q and
α change, causing an evolution of the eigenfrequencies. The accretion of material
at the inner edge causes a further decrease of the effective q. In addition, it is very
important to remember that the eccentricity values of the planet have an effect
in determining the size and the density profile of the cavity edge (Artymowicz &
Lubow 1994; Thun et al. 2017) causing a variation of the effective α.

As a consequence, it should be noticed that any system naturally evolves toward
a situation where q/

√
α < 1 due to the progressive disc dispersal. This implies
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the existence of a period in which the planet eccentricity grows above that of the
disc. However the growth of the eccentricity occurs on a very long timescale, thus
if the disc disperses too rapidly this final growth might not occur at all.

In the massive case the disc switches to the slow mode after 2× 105 orbits. The
dominance of this single mode produces an abrupt change in the disc eccentricity
and density profile. In particular, in this mode the resonant region is very de-
pleted. This not only explains the stalling of migration but also the fact that the
eccentricity stops growing and is then subject just to very slow damping for the
last ∼ 105 orbits (likely due to viscous effects in the disc).

7.6 Conclusions

We performed two long time scale 2D hydrodynamical simulations of a planet
embedded in a gaseous disc using two different disc masses (light case and mas-
sive case), in order to study the long term evolution of both the planet and disc
eccentricities.

The disc-planet interaction induces an eccentricity exchange between the planet
and the disc in the form of periodic oscillations of both planet and disc eccentricity
superimposed on a growing or decreasing trend depending on the disc mass.

In the light disc case the planet eccentricity, after an apparent stalling of its
evolution, grows linearly with time up to ep ≈ 0.12 (reached after 3× 105 orbits).
After 2× 105 orbits the growth appears to slow down, probably because of some
saturation effects. The disc eccentricity rapidly reaches ed ≈ 0.1 at the beginning
of the simulation and then decreases linearly. At the end of the simulation the
planet-to-disc eccentricity ratio is (ep/ed)light ≈ 3.

In the massive case instead the planet eccentricity grows exponentially up to
ep ≈ 0.14 during the initial phases of the simulation but then linearly decreases as a
function of time. As in the low mass case, in the massive case the disc eccentricity
grows rapidly during the initial phases of the simulation up to ed ≈ 0.1 and
then decreases linearly as a function of time. In this case the planet eccentricity
exceeds the disc one (ep/ed > 1) up to t ≈ 2× 105 orbits, when a rapid transition
to ep/ed ≈ 0.3 occurs.

In our simulations we find that the planet eccentricity can reach values ep &
0.1, well in excess of the value of H/R ≈ 0.036 suggested by Duffell & Chiang
(2015) as the maximum value of the eccentricity. Furthermore, Goldreich & Sari
(2003) and Duffell & Chiang (2015) have argued for the need of a non-zero initial
eccentricity of the planet to ensure the saturation of the corotation torque, and
subsequent growth of the eccentricity. In our simulations, both the planet and the
disc are initially on circular orbits, suggesting that corotation resonances might
not necessarily need to be saturated to cause eccentricity growth.

We interpret the coupled evolution of the planet and disc eccentricity in terms
of a superposition of secular modes whose relative amplitudes are slowly modified
by resonant pumping and viscous damping. These modes are generically a rapidly
precessing mode with anti-alignment between disc and planet pericentres and a
slowly precessing aligned mode. The ratio of disc to planet eccentricity in each
of these modes is generically > 1 and < 1, depending on the ratio between the
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planet and disc angular momenta. The dominance of the disc eccentricity in the
fast mode implies that viscous damping preferentially damps the fast mode. The
system thus ends up being completely in the slow mode at the end of the simulation
but following very different evolutionary paths.

At the end of the low mass simulation, the planet is describable as being pri-
marily in the slow mode which is growing very slowly whereas the disc is executing
high frequency low amplitude libration about this slow precession. The high mass
simulation has instead evolved to a situation where the planet is on an almost
circular orbit with stalled migration and the eccentric disc undergoes retrograde
precession due to pressure effects. At the end of this simulation the region encom-
passing the Lindblad resonances has been cleared of material so failing re-supply
of this region (by accretion from the outer disc), the orbital evolution of the planet
is stalled in an almost circular orbit.

We provide a simplified toy model in which we treat the disc as a second “vir-
tual” planet undergoing the secular interaction with the real one. This model
depends only on two variables q = Md/Mp and α = ap/ad, predicts the presence
of two eigen-modes with respective eigen-values (setting the precession rate) and
eigen-vectors (setting the ratio ep/ed).

Under the same initial conditions and pumping/damping prescription, we are
able to qualitatively reproduce with our toy model the two very different evolutions
of eccentricity and pericentre phase in the light case and massive one (Fig. 7.11 and
7.12, to be compared with Fig. 7.6 and 7.7). The different behaviour of the two
simulations can be understood in terms of different eigenvectors characterizing the
fast and slow precession modes. Indeed in Eq. (7.20) (see also Fig. 7.10) predicts
that, for the same α, low values of q produce a slow mode with ep > ed, high
values of q predicts ep < ed. This is in perfect agreement with the outcome of our
simulations.

Simply requiring a different mass ratio between the “virtual” planet and the
real one the toy model is able to explain:

• Oscillations in the eccentricity.

• Transition from the fast to the slow mode.

• Aligned and anti-aligned configurations of the pericentre precession.

• Faster transition to the slow mode of the planet in the light case than in the
massive one.

• Final values of the eccentricity when the system is fully in the slow mode.

Our model is not able to capture the intrinsic nature of the pumping and damp-
ing mechanism and thus it cannot be used as predictive tool to determine under
which conditions the slow mode grows or decreases the eccentricity. However, we
expect the disc thickness and viscosity to have a role in determining the intensity
of the pumping and damping mechanisms as pointed out in Sec. 7.5.2. The ab-
solute mass of the planet might be relevant as well affecting the strength of the
resonant disc-planet interaction. In contrast it provides larger cavities, and some
resonances might be saturated.
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Nevertherless, the model predicts some useful relationships that apparently hold
between the planet and disc eccentricity depending on the disc-to-planet mass ratio
and disc cavity size.

If we assume that the damping of the fast mode on very long timescales is
a general result, massive discs appear to disfavour values of planet eccentricity
higher than those in light discs at late stages of their evolution. For relatively
high Md/Mp, and a disc density profile comparable with that produced by a
13MJ planet, the system ends up in a slow mode configuration characterized
by ep/ed < 1. In contrast, light discs are expected to produce a slow mode with
ep/ed > 1, in fact favouring higher values of ep. This goes in the opposite direction
of what is often found in the literature, where high planet eccentricities have been
observed to develop in presence of high disc masses on short timescales (Papaloizou
et al. 2001): they found that a 30MJ planet can reach ep ≈ 0.3 in less than 103 torb

with Md/Mp ≈ 2. To support the results by Papaloizou et al. (2001), we report
that some preliminary simulations we performed reached eccentricity values as
high as ep ≈ 0.3 for Md/Mp ≈ 2 after t ≈ 103torb (see Fig. 7.13). If the damping
of the fast mode at long timescales is confirmed to be a general feature, this implies
in fact a reversal of the dependence on the disc mass of the eccentricity evolution
on short timescales.

We caution that our last claim is tentative and supported only by two numerical
simulations. A larger number of simulations exploring a wider range of disc masses
is required in order to properly investigate the issue. In general, a more complete
understanding of the origin of the mechanisms for pumping or damping of the
eigen-modes is obviously required in order to make quantitative predictions about
the eccentricity evolution at very late times and constitutes a possible follow up
of this work.

It should be also considered that in principle any planetary system passes
through a phase in which the ratio Md/Mp � 1, due to the progressive disc
dispersal and accretion of material on the planet, which increases its mass. If
we for now adopt the assumption that planets attain larger eccentricities in the
case of lower mass discs, then it raises some interesting possibilities about planet
eccentricity evolution during disc dispersal. Whereas rapid dispersal (i.e. on a
timescale � 105 orbits) would simply freeze the planet’s eccentricity at its previ-
ous value, slow dispersal could instead cause the planet eccentricity to rise in the
last stages. However, further investigations are required in order to understand
how the secular eccentricity evolution is affected by substantial changes in the disc
parameters throughout its lifetime.

Finally, we believe that this work demonstrates the importance of carrying out
long timescale simulations when studying the disc-planet interaction in proto-
planetary discs: both our simulations indeed undergo a complete inversion of the
evolutionary trend on long timescales with respect to those shown in the initial
phases. This however does not occur before 5 × 104 orbits, which is beyond the
timescales explored in previous simulations.
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Chapter

8

Transition Discs

“...The goal has never been to be famous,
my goal has been to be a star.”

Lady Gaga, (...but it suits transition discs)

The recent advent of the Atacama Large Millimiter Array (ALMA) and the
Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) instrument,
mounted on the Very Large Telescope (VLT), has allowed the observation of a large
number of sources in the nearby star forming regions (Taurus, Lupus, Ophiucus,
Upper Scorpius, Orion). The extensive imaging campaigns conducted in these
regions resolved with unprecedented detail a large number of protostellar discs,
revealing a variety of structures such as: spirals (Muto et al. 2012; Grady et al.
2013; Garufi et al. 2013; Benisty et al. 2015; Pérez et al. 2016; Stolker et al. 2016;
Benisty et al. 2017), shadows (Garufi et al. 2014; Avenhaus et al. 2014; Benisty
et al. 2017; Avenhaus et al. 2017), circular gaps (ALMA Partnership et al. 2015;
Hendler et al. 2018; Fedele et al. 2018; Dipierro et al. 2018a), cavities, rings and
non-axisymmetric features (Dutrey et al. 2008; Brown et al. 2009; Andrews et al.
2011; Isella et al. 2013; Zhang et al. 2014; van der Marel et al. 2016b; Canovas et al.
2016; Fedele et al. 2017; Pinilla et al. 2017; van der Marel et al. 2018; Casassus
et al. 2018; Long et al. 2018; Liu et al. 2018).

Protoplanetary discs presenting cavities are generally referred to as “transition
discs” (also “transitional” is used). These systems are a special category of class
II accretion discs (see Sec. 1.4) surrounding young pre-main sequence stars. They
were originally thought to bridge class II and class III objects, where the disc is
progressively dispersed as the system ages. This interpretation has been recently
put into question, following the observation of these features also in very young
systems.
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Many of these systems present very large horseshoe structures at the edge of
their cavity in the dust continuum, and spiral density features in the infrared, that
have been suggested to be hints of the presence of forming planets.

In this chapter we will review both the observations and possible physical origin
of the cavities and structures in these sources, emphasising the role planet disc
interaction may play for their origin; in the next chapter we will better discuss
the models at the basis of the formation of the horseshoe structures, proposing a
new scenario that allows us to relax some assumptions currently required in the
most widely invoked model.

8.1 Observations of transition discs

The existence of systems with dust cavities comes from four main obervational
diagnostics, probing different disc components, that we briefly review in this sec-
tion: SED in the IR, imaging in the sub-mm and mm continuum (probing mm
dust grains), IR imaging (probing µm dust grains) and line emission. However,
these systems are still very far from being completely understood: some systems
can be identified as transition discs in all the channels, others just in some of them.
We refer to the papers by Espaillat et al. (2014), Owen (2016) and Ercolano &
Pascucci (2017) for detailed reviews of the observations.

8.1.1 SED surveys in the IR

These objects were identified for the first time by Strom et al. (1989); Skrutskie
et al. (1990), due to their very peculiar SED, characterized by a flux reduction
at near-mid-infrared wavelengths (NIR/MIR, λ ≈ 1–20µm)1. The advent of the
Spitzer Space Telescope and, in particular, the usage of the InfraRed Spectrograph
(IRS), allowed the characterization of a large number of young star spectra. The
general outcome is that a number ranging between 10–20% of the total sources
presents these peculiar features in their infrared colours (Luhman et al. 2010;
Ercolano et al. 2011).

The electromagnetic flux at those wavelengths is dominated by thermal emission
coming from small dust grains with sizes ranging between 1–20µm, as a conse-
quence of their opacity peak at those wavelengths. This straightforwardly leads
us to interpret these peculiar spectra as protostellar systems where some physical
mechanisms have partially (pre-transition discs are expected to show an inner ring
of dust close to the star), or completely, cleared the inner disc region from small
dust grains, causing a change in the optical depth of the emission in those regions
of the disc. The presence of the 10µm emission feature (see Fig. 8.1) indicates
that inside the hole there is still some micrometric dust (the feature can come only
from dust grains with size ≈ 1µm). Fig. 8.1 shows the typical SED of transition
and pre-transition discs and a sketch of the dust distribution producing them.

The SEDs of many of these objects show a strong UV excess produced by
accretion shocks on the stellar surface (Espaillat et al. 2014; Owen 2016), denoting

1It should be noted that a sub-category, showing only MIR wavelengths depletion, is referred
to as “pre-transition” (Espaillat et al. 2007).
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Figure 8.1: Left panels: top, SED from pre-transition disc LKCa 15 (Espaillat et al.
2007); bottom, SED from transitional disc GM Tau (Calvet et al. 2005); the green
and blue lines are the data collected using the Spitzer Infrared Spectrograph (IRS),
the long dashed lines represent the star photospheric emission, the short dashed lines
represents the median Taurus SED (D’Alessio et al. 1999), representing the typical
optically thick emission from a disc in the Taurus star forming region. We note the
emission bump at λ = 10µm called the “10µm silicate emission feature”. Right
panels: sketches of the dust distributions for a pre-transition (top) and transitional
(bottom) disc: in brown the dust distribution; discs said to be “pre-transition” have
an inner ring of optically thick material close to the star that still provides some
emission at NIR wavelengths. Image adapted from Espaillat et al. (2014).
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that gas is still accreting on to the central star with a relatively high rate. This
is surprising: small dust grains are expected to be strongly coupled with the gas;
a depletion in the small dust grains in the inner regions of the disc would thus
suggest that also the gas is depleted, which is actually not the case.

8.1.2 (sub-)mm dust continuum imaging: probing millimetric dust
grains

The advent of radio interferometric facilities such as the Very Large Array (VLA),
the Small Millimetre Array (SMA) (Dutrey et al. 2008; Brown et al. 2009; Andrews
et al. 2011; Isella et al. 2013), and, in particular, the recent advent of the Atacama
Large Millimetre Array (ALMA) (Zhang et al. 2014; van der Marel et al. 2016b;
Canovas et al. 2016; Fedele et al. 2017; Pinilla et al. 2017; Fuente et al. 2017;
van der Marel et al. 2018), enabled the imaging of these systems at mm and
sub-mm wavelengths. One of the observing channels of these facilities is sensible
to the dust continuum emission from ∼mm dust grains. The images show holes
as large as ≈ 100au in the (sub-)millimetric emission (see Fig. 8.2), confirming
in fact the hypothesis that transition discs spectra are caused by an important
reduction of dust opacity in the inner regions of the disc, but also a broad variety
of non-axisymmetric features whose origin will be the subject of the next chapter
(Casassus et al. 2013; Pérez et al. 2014; Casassus et al. 2015a; van der Marel et al.
2016a; van der Plas et al. 2017).

In some sources, the size of the observed cavities grows with the wavelength
of the observations (Pinilla et al. 2015, 2017), moreover the azimuthal extent of
non-axisymmetric structures is smaller for large dust grains (van der Marel et al.
2013; Casassus et al. 2015b). This has been suggested to be a consequence of the
different aerodynamical coupling that depends on the grain sizes. As expected,
larger dust grains are more easily trapped in gas pressure maxima (dust trapping,
see Sec. 2.7.2).

Andrews et al. (2011) conducted a large imaging survey of bright sources in close
star forming regions. They found that at least 1 out of 3 sources presents a cavity,
i.e. much more than the previous result of 10–20% obtained by spectroscopic
methods surveys (Luhman et al. 2010; Ercolano et al. 2011). The reliability of
this result has been put into question since the sample of these surveys is biased
toward highly luminous sources. However, more recent surveys of unbiased disc
samples appear to confirm that not all cavities are associated with SED features
(van der Marel et al. 2018), implying in fact that transition discs are a larger
population than thought before, even though they appear to be more common in
bright sources.

The detection of (sub-)mm dust cavities in sources that are not showing any
feature in the SED can be understood by noting that the 80% of the dust emission
at wavelengths ≈ 10µm comes from within R . 1 au (D’Alessio et al. 2006) so
that SED surveys detected dust holes (transitional discs), without being able to
detect large gaps (pre-transition discs). Furthermore, it is not straightforward
to link (sub-)mm imaging with IR SEDs: observations at (sub-)mm wavelengths
probe the optically thin thermal emission of millimetric dust grains, that only
partially contribute to the opacity at µm wavelengths. Millimetric dust grains are
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Figure 8.2: Dust continuum observations of several sources (adapted from van der Marel
et al. 2016a, Casassus et al. 2013,Casassus et al. 2015a and Isella et al. 2013). Left
column (blue style plots): 345 GHz dust continuum images, from top-left to bottom-
right panel, HD135344B, DoAr44, IRS48 and SR21 (adapted from original image
in van der Marel et al. 2016a). Middle column: 345 GHz ALMA dust continuum
image of HD142527 (top panel), 2µm GEMINI observation of scattered light from
the same object (middle panel) (original images from Casassus et al. 2013), summary
(bottom panel) of the 345 GHz dust continuum (in red), moment 0 map of 12CO
(3-2) emission (in blue), moment 0 map of HCO+ (4-3) emission (original image from
Casassus et al. 2015a). Right column: CARMA 1.3 mm (top) and SMA 0.88 mm
(bottom) dust continuum observations of LkHα330 (original image from Isella et al.
2013).

also expected to have a different dynamical behaviour with respect to smaller dust
grains, so the depletion of mm grains is not necessarily reflected in the µm grains.

We finally report that two broad families of transition discs can be identified
based on their luminosity at mm-wavelengths (Owen & Clarke 2012): one is “mm-
bright”, associated with massive discs, large accretion rates on to the central star
(Ṁ? ∼ 10−8 M� yr−1) and large cavities (Rcav & 20 au); the other “mm-faint”,
associated with low disc mass, low accretion rates Ṁ? . 10−9 M� yr−1 and small
cavities Rcav . 20 au. While the second family can be easily associated with discs
in the process of being dispersed, the first cannot, possibly suggesting that their
origin has to be found in different physical processes.

8.1.3 IR imaging and gas line emission: probing µm dust grains
and gas distribution

IR imaging became available after the operation commencement of instruments
such as NACO (short for NAOS/CONICA), the High Contrast Instrument for the
Subaru next generation Adaptive Optic (HiCIAO), and the Spectro-Polarimetric
High-contrast Exoplanet REsearch (SPHERE) instrument mounted on the Very
Large Telescope (VLT). These instruments probe the polarized scattered light
from µm dust grains in the surface layers of discs at wavelengths 1–10µm, and
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obtain the images subtracting the non-polarized contribution coming from the star
photosphere (Polarimetric Differential Imaging, PDI).

Some of the sources with large cavities in the (sub-)mm observations show a very
different behaviour at µm wavelengths: although some sources present cavities also
for smaller grains, many others, in contrast, show a much shallower depletion or
even no depletion at all. Furthermore, sources with cavities in (sub-)mm images,
in the IR have been often found to show a set of non-axisymmetric structures, like
shadows (Garufi et al. 2014; Avenhaus et al. 2014; Benisty et al. 2017; Avenhaus
et al. 2017) or spirals (Muto et al. 2012; Grady et al. 2013; Garufi et al. 2013;
Benisty et al. 2015; Stolker et al. 2016; Benisty et al. 2017), see the top row in
Fig. 1.3.

As previously mentioned, an indirect evidence of the presence of gas is its high
rate of accretion on the central star, detected as UV excess in many of these
systems.

The gas distribution can be probed at high resolution by looking at molecular
gas rotational lines in the (sub-)mm such as the HCO+ (4-3), or the CO: 12CO
and its isotopologues, 13CO and C18O (Bruderer et al. 2014a; Zhang et al. 2014;
Perez et al. 2015; van der Marel et al. 2016a; Canovas et al. 2016; Boehler et al.
2017; Fedele et al. 2017; Tang et al. 2017b), or, less frequently, HCO+ and its
isotopologue DCO+, HCN and its isotopologue DCN, or N2H+ and N2D+ (Casas-
sus et al. 2013; van der Plas et al. 2017; Salinas et al. 2017; Kastner et al. 2018).
Moreover, the observation of roto-vibrational lines in the IR such as the funda-
mental CO transition at λ = 4.6µm and ionized NeII λ = 12.8µm (Salyk et al.
2007; Najita et al. 2008, 2009) act as a probe of the presence of the gas in the
inner regions (R ≈ 1 au) of the disc. As a general result, a discrepancy between
the distribution of gas and dust cavities imaged at (sub-)mm and IR wavelengths
is present: in particular gas cavities have been generally found to be smaller than
those observed in the dust (van der Marel et al. 2016a; Canovas et al. 2016; van
der Marel et al. 2018).

Nevertheless, the reader should keep in mind that molecular emission acts as
tracer for the gas, but the abundance of molecular species with respect to the
hydrogen (that constitutes the most abundant species) throughout the disc might
change significantly as a function of the local conditions, so that the lack of emis-
sion in some regions might have a chemical origin instead of dynamical.

8.2 Physical mechanisms producing disc cavities

Different mechanisms have been proposed to be the cause of the cavity structure
observed in transition discs. Among them, the most credited ones are: dust
grain growth (Dullemond & Dominik 2005; Birnstiel et al. 2012), photoevaporation
(Clarke et al. 2001; Alexander et al. 2014) or dynamical clearing (implying the
interaction of the disc with one or multiple planets/sub-stellar companion Lin &
Papaloizou 1979; Zhu et al. 2011, see Chapter 4).

In general, a reliable mechanism must be able to explain at least three main
characteristics of transition discs: strong dust depletion in the cavity region with
respect to the outer disc, large cavities (& 20 au), high accretion rates on to the
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central star & 10−8 M� yr−1.
Finally, the reader should also keep in mind that although all the three mecha-

nisms mentioned before might be responsible, or more generally to concur (Rosotti
et al. 2013; Jennings et al. 2018), for the creation of the cavity, only the presence
of a planet/companion can possibly explain the non-axisymmetric structures that
have been widely observed accompanying transition discs. In this section we briefly
review them, in order to highlight their working principle, while we defer to the
next section a more thorough discussion regarding the perturbations in the dust
and gas density producing the asymmetries.

8.2.1 Dust grain growth

The dust grain population is expected to evolve as the time passes depending on
two competing mechanisms: coagulation and fragmentation. The relative motion
provided by Brownian motion, the differential settling (i.e., different grain sizes
show different rate of relaxation of the dust distribution toward the midplane)
and turbulence enable the dust grains to meet each other (Dullemond & Dominik
2005; Birnstiel et al. 2012). Attractive forces, such as van der Waals or electrostatic
forces (Dominik & Tielens 1997), stick dust grains together forming larger ones.
Collisions with energies greater than the binding energies of the stuck grains cause
them to fragment. The balance between these mechanisms sets a ≈ 1 cm as the
maximum size the grains can grow by this mechanism2 (Windmark et al. 2012).

Numerical simulations by Birnstiel et al. (2012) have shown that most of the
mass of the grains is concentrated in larger grains. The growth of dust grains to
sizes ad ≈ mm–cm produces a reduction of the emissivity at µm wavelengths, due
to the different opacity function of large dust grains (i.e. the emission is optically
thicker at larger wavelengths). This produces a dip in the SED at µm wavelengths
that can explain the SED discussed in Sec. 8.1.1. However, in the same work they
also note that the abundance of larger grains would still be detectable at mm
wavelengths, failing in fact to explain the large cavities observed by ALMA and
other facilities in the (sub-)mm.

8.2.2 Photoevaporation

Photoevaporation is a physical process where discs lose material through pho-
toevaporative winds (Clarke et al. 2001; Alexander et al. 2014). High energy
photons coming from the central star heat up the gas surface layers of the disc.
Three main photon wavebands have been identified for their different heating
mechanisms, far-ultraviolet (FUV, Ephot ≈ 6–13.6 eV), extreme-ultraviolet (EUV,
Ephot ≈ 13.6–100 eV) or X-ray (Ephot ≈ 0.1–10 keV). In this process the disc
surface temperature can grow significantly up to Thot ≈ 103–104 K. The rise in
the gas temperature makes the surface layers gravitationally unbound, so that
they “evaporate” producing a photoevaporative wind and contributing to the disc
dispersal at the end of the disc life.

2It should be noted that still an effective mechanism able to grow the dust grain size from
cm to m has not been provided yet, see Sec. 1.4.2.2.
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The regions farther from the star are the most susceptible to this mechanism,
for this reason we can define the critical radius Rphot

crit where the material becomes
gravitationally unbound

Rphot
crit '

GM?

c2
s,hot

≈ 1.8

(
M?

M�

)(
Thot

104

)−1

au, (8.1)

where cs,hot is the sound speed in the heated surface layers.
In this picture, numerical studies of the viscous evolution of discs accounting for

photoevaporative winds have shown that the disc dispersal occurs as an inside-out
process (Alexander et al. 2006; Gorti et al. 2009; Alexander et al. 2014). At early
times, the disc accretion rate on to the central star is much higher than that at
which the disc photoevaporates; as the disc evolves, material accretes on to the
central star and spreads at larger radii. After a few Myr its mass decreases and
the accretion rate becomes comparable to the mass loss due to photoevaporation.
At this stage, for radii R & Rphot

crit the inward motion of the material is significantly
slowed down, failing to supply the inner region that instead is still accreting at
normal rate. This causes the inner disc to be rapidly (≈ 105 yr) emptied creating
a disc cavity both in the gas and in the dust. During this process the dust grains
rapidly drift on to the central star leaving behind a purely gaseous inner disc
(that is still accreting3) and a dust hole. The disc is finally completely dispersed
in ≈ 105 yr.

The short time the disc takes in order to accrete the material, form a cavity and
then to finally disperse the disc compared to the entire life of the accretion disc
implies that the observation of systems exactly in this phase of their evolution is
statistically unlikely.

Such an evolutionary scenario for discs naturally provides the formation of a
cavity in the dust; furthermore, it seems to be consistent with the statistical con-
straints on the transition discs population. Nevertheless, photoevaporation alone
can explain only relatively small cavities (up to Rcav ≈ 20 au) and low accretion
rates (≈ 10−9M�yr−1). The observation of higher accretion rates on to the cen-
tral star, the large cavities observed in these systems and the rapid disc dispersal
after the carving of the cavity all appear to be in contrast with the hypothesis that
photoevaporation is the main physical process producing transition discs (Owen
et al. 2011), we refer to Sec. 3.1 in Owen (2016) for a more thorough discussion.

However, despite not being responsible alone for the creation of transition discs,
photoevaporation still remains an important ingredient to be considered in other
scenarios such as the dynamical clearing by planets that we will discuss in the
next section (Rosotti et al. 2013; Jennings et al. 2018).

8.2.3 Dynamical clearing

As discussed in Chapter 4, the presence of secondary companions such as one
(or multiple) planets, or a second binary star, are expected to carve a gap or a
cavity in the accretion disc. This idea comes directly from the studies conducted

3However, the viscous accretion rate must be smaller than the photoevaporation in order to
clear the cavity, i.e. the viscous accretion rate must satisfy Ṁ . 10−8 M�yr−1.
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starting from the late ’70s about the disc-satellite interaction (Lin & Papaloizou
1979; Goldreich & Tremaine 1980) and it is very well suited for explaining the
dust cavities, but also spirals and non axisymmetric features detected in transition
discs.

In general, what is most appealing in the dynamical clearing hypothesis is that,
as discussed in section 2.7.2, the trapping of dust grains in pressure maxima pro-
vides an effective way to explain the discrepancy between the dust and gas cavity
size: large dust grains concentrate in the gas pressure maximum produced outside
the planet orbit by the perturbed density structure of the gas, even though the
gas distribution extends closer to the planet, this process is often referred to as
“dust filtration”.

Furthermore, in some numerical simulations the formation of large gas streams
has been observed linking the edge of the gas cavity with the central star. This
provides an interesting solution that enables the feeding of the central star with a
large amount of material despite the formation of a large dust and gas cavities.

We finally remark that all the mechanisms discussed in these sections do not
necessarily exclude each other. The combined action of dynamical clearing with
dust growth (Zhu et al. 2012b) and/or photoevaporation (Rosotti et al. 2013;
Jennings et al. 2018) has been proposed to improve the clearing of the inner
cavity from small dust grains, possibly solving the problem of dust filtration arising
within the multiple planet system scenario and the inability of one single planet
to open a cavity.

Below, we review the results regarding both (sub-)stellar and planetary com-
panions as possible explanations of the observed cavities in transition discs.

Clearing by a sub-stellar companion

Bodies with relatively large satellite-to-star mass ratios (q & 0.04 D’Orazio et al.
2016) are expected to clear cavities. Secondly, accretion streams of material linking
the cavity with circum-individual discs provide an effective mechanism to feed the
central star allowing us to explain the accretion related UV excess observed in
these systems (Farris et al. 2014; Ragusa et al. 2016).

To further strengthen this hypothesis, (sub-)stellar companions have been de-
tected in transition disc cavities. Namely, the system CoKu/Tau4, associated with
a transition disc (Forrest et al. 2004; Nagel et al. 2010), has been found to host
an almost equal mass binary with a binary separation a ≈ 8 au (Ireland & Kraus
2008).

HD142527 hosts an M-dwarf companion (Biller et al. 2012), orbiting the central
star on an eccentric, inclined orbit (Lacour et al. 2016) with a semi-major axis
a ≈ 30–50 au and a mass constrained by evolutionary models of 13–30 MJ. In
particular, this system have received a lot of attention by the scientific community
for its peculiar features in all the observational bands discussed in the previous
sections, including gas streams across the cavity visible in the HCO+ line emission
(Casassus et al. 2013, see the bottom panel of the central column in Fig. 8.2).

GGTau is a well known quadruple system composed by a close, almost equal
mass binary (GGTau A). This system shows a clear circumbinary disc structure
with an inner dust cavity in the IR (Beck et al. 2012; Yang et al. 2017).
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The main criticism raised about the hypothesis concerning the clearing of the
cavity (sub-)stellar companion comes from the fact that cavities in transition discs
have been detected to be as large as Rcav ≈ 100 au but the presence of such a
companion have been excluded up to much smaller radii: this would in principle
set a limit on the maximum semi-major axis of the companion, preventing the
formation of such large cavities. However, it cannot be excluded that these massive
companion might reside on inclined or/and eccentric orbits, so that their projected
separation appears to be much closer to the central star than its real semi-major
axis, as recently demonstrated in Price et al. (2018b) for the system HD142527.

Clearing by a planetary companion

Lower satellite-to-star mass ratios (q ≈ 10−3) have been found to open gaps rather
than cavities, implying that one single planet is not expected to be able to carve
a large cavity alone4. Scenarios where a system with multiple planets embedded
in the disc carve the cavity have been explored (Dodson-Robinson & Salyk 2011;
Zhu et al. 2011; Dong et al. 2015; Duffell & Dong 2015; Dong & Dawson 2016).
However, one general result from these studies is that dust cavities produced by
multiple systems of planets are generally shallower than those carved by single
planets (Zhu et al. 2011; Duffell & Dong 2015), and therefore they are not able
to reproduce the level of dust depletion in observations; moreover, the presence
of multiple planets significantly reduces the accretion rate on to the central star
with respect to the unperturbed state, in contrast with observations (Zhu et al.
2011). Finally, even considering the most optimistic occurrence rates of giant
planets forming at separations between 3 – 30 au from exoplanets data, there are
not enough planets with the characteristics to open such gaps (Dong & Dawson
2016).

From the observational point of view, few transition discs have been found to
host forming planets strengthening the dynamical clearing scenario. In particular,

1. Two planet candidates at separations of ≈ 10 au (inside the dust cavity) and
≈ 50 au (in the outer disc) have been observed in HD 100546 Quanz et al.
2013; Currie et al. 2015.

2. Two planets at separations ≈ 14 au and ≈ 18 au have been observed in
LkCa15 (Kraus & Ireland 2012; Sallum et al. 2015).

3. Besides the presence of ring-like structures and of a cavity (Osorio et al. 2014;
Fedele et al. 2017) in the continuum observations of HD 169142, a number of
point-like sources have been detected at IR wavelengths (Biller et al. 2014;
Ligi et al. 2018), suggesting that this object hosts a multiple-planet system.

4. A planet candidate with mass . 5 MJ orbiting at ≈ 20 au the central star
within a non-completely depleted cavity has been detected in MWC 758
(Reggiani et al. 2018).

4We note that recently Bae et al. (2018) showed numerically that, properly modeling the dust
grain growth physical processes, also systems with one planet with ∼ 1 MJ might be characterized
by cavities at radio wavelengths.
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5. The system PDS 70 appears to host a massive companion of≈ 17 MJ orbiting
at ≈ 20 au (Keppler et al. 2018; Müller et al. 2018), well within the dust
cavity.

It must be reported that some candidates have been questioned due to the
strong data processing needed to obtain high contrast images necessary to claim
the detection of a planet (e.g., the innermost candidate in HD 100546 (Rameau
et al. 2017; Mendigut́ıa et al. 2017; Follette et al. 2017), the same applies to one
of the point-like sources in HD 169142 (Ligi et al. 2018)).

However, although the planet dynamical clearing mechanism appears to be very
promising to model the formation of transition discs, some issues still remain
unsolved. Dust filtration works well but has difficulties to explain the NIR deficit
in moderately accreting transition discs (Zhu et al. 2012b). Indeed, while large
dust grains are effectively trapped beyond the planet orbit, small dust grains
are expected to cross the planet orbit following the dynamics of the gas. This
replenishes the cavity with small grains, whose depletion is expected to provide
a NIR deficit in the SED, being in fact not consistent with the observations.
Furthermore, circumplanetary discs surrounding large planets are expected to be
detectable with long integration times in ALMA band 7 or band 9 (Szulágyi et al.
2018; Zhu et al. 2018), but they still remain elusive.
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Chapter

9
On the origin of horseshoes

in transition discs

Based on the paper by Enrico Ragusa, Giovanni Dipierro, Giuseppe Lodato,
Guillaume Laibe & Daniel J. Price (2017), “On the origin of horseshoes in
transitional discs”, Monthly Notices of the Royal Astronomical Society, 464,

1449

“Space bananas?!”

Minions, Despicable horseshoes

9.1 Non-axisymmetric structures in transition discs

Recent spectacular observations of dust and gas in nearby protoplanetary discs
have revealed substructures in the form of spirals, gaps, cavities and ring-like
features (ALMA Partnership et al. 2015; Andrews et al. 2016; see recent review
by Casassus 2016). Whether, and how, such structures are created is critical to
understanding the planet formation process.

One of the most spectacular first results with the Atacama Large Millime-
tre/Submillimetre Array (ALMA) was the observation of a non-axisymmetric
‘horseshoe’ in the dust continuum emission in Oph IRS 48 (van der Marel et al.
2013), with subsequent observations revealing asymmetric structures in several
other transition discs (van der Marel et al. 2016a, see Fig. 8.2). Such features are
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most commonly interpreted (including by van der Marel et al. 2013) as vortices,
for example arising from the Rossby Wave Instability (RWI) at the edge of the
gap formed by a young planet (Lovelace et al. 1999; Lyra et al. 2009; Lyra &
Lin 2013; Zhu & Stone 2014; Hammer et al. 2017, 2018) or as a result of internal
dynamical processes associated with the presence of a weak magnetic field (Ruge
et al. 2016) and deadzones (Regály et al. 2012, 2017). RWI arises in sufficiently in-
viscid discs, with equivalent α parameters (Shakura & Sunyaev 1973) of the order
of α . 10−4. Such a low viscosity allows the vortex to survive for thousands and
up to 104 orbits (de Val-Borro et al. 2007; Ataiee et al. 2013; Zhu & Stone 2014;
Fu et al. 2014a). Vortices can effectively trap dust particles, leading to a more
azimuthally and radially concentrated dust density distribution of larger grains
at the center of the vortex1 (Barge & Sommeria 1995; Birnstiel et al. 2013; Lyra
& Lin 2013; Zhu et al. 2014; Ruge et al. 2016). However, the combined effect of
the dust settling and trapping inside the vortex produces an enhanced dust-to-gas
mass ratio in the vortex, leading to an increase of the dust back-reaction. This
produces an alteration of the coherent vorticity pattern and destroys the vortex
(Johansen et al. 2004; Fu et al. 2014c).

Lopsided discs have been identified in high-resolution observations at (sub-)mm
wavelengths. While in the case of IRS 48 (van der Marel et al. 2013) millimetre
grains appear to be more concentrated in the horseshoe region compared to smaller
sizes, in other cases (SR 21 and HD135344B; Pinilla et al. 2015), dust trapping
is not observed, further challenging the vortex scenario. HD142527 shows a large
horseshoe in mm continuum emission but whether or not dust trapping occurs is
more controversial (Perez et al. 2015; Muto et al. 2015; Casassus et al. 2015b).

Here, we investigate an alternative explanation for the development of non-
axisymmetric gas and dust structures based on studies of discs around black hole
binaries (Shi et al. 2012; Farris et al. 2014; D’Orazio et al. 2016; Ragusa et al.
2016; Miranda et al. 2017). These showed that, for mass ratios q & 0.04, the wide
cavity around the primary object carved by the companion becomes eccentric and
develops a strong overdensity at the cavity edge, orbiting at the local Keplerian
frequency. This arises naturally even in relatively viscous discs in the presence
of a sufficiently massive companion. In the protostellar case, Ataiee et al. (2013)
showed with 2D hydrodynamic simulations that, for lower mass ratios (∼ 10−3),
the asymmetries at the cavity edge are weaker than in the vortex scenario, resulting
in ring-like rather than horseshoe morphologies. It is therefore timely to explore
the case with higher mass ratio to determine whether the horseshoe-like density
features revealed by ALMA observations might be explained by the presence of a
massive companion inside the cavity. We explore this hypothesis using global, 3D
smoothed particle hydrodynamics (SPH) simulations of gas and dust evolution
in a circumbinary disc, where the binary consists of a young star and either a
massive planet or low mass stellar companion. We demonstrate the formation of
crescent-like structures with emissivity contrast up to ∼ 10, sufficient to explain
many of the ‘dust horseshoes’ and other non-axisymmetric features observed in

1It can be shown that the velocity field in a vortex is sustained by a pressure configuration
with a maximum when the vortex is anticyclonic and by a minimum when the vortex is cyclonic,
this leads to particle trapping according to Eq. (2.58) (Youdin 2010).
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Figure 9.1: Gas (top row) and dust (middle row) surface density in units of g/cm2

in logarithmic scale after 140 binary orbits for four different binary mass ratios;
q = {0.01, 0.05, 0.1, 0.2} (left to right, respectively). High mass ratio binaries drive
the formation of a large eccentric cavity leading to non-axisymmetric overdensities
in both gas and dust (q & 0.05; right columns). Low binary mass ratios, by contrast,
produce more axisymmetric overdensities around a smaller central cavity (q . 0.05;
left columns). The bottom row shows the column averaged dust-to-gas ratio in
logarithmic scale for the different mass ratios. Note that, for the millimetre size
particles we simulate, no dust trapping occurs in the overdense region. Simulated
observations of these calculations are shown in Figure 9.2.

transition discs.
The idea of transitional discs as circumbinary discs has been recently explored

by Rúız-Rodŕıguez et al. (2016). They found that the spectral energy distributions
of ∼ 40% of transitional discs in their sample can be explained as being produced
by the flux emission of discs orbiting around binary systems.

9.2 Methods

We perform a set of 3D gas and dust numerical simulations of a circumbinary disc
surrounding a binary object (to be interpreted both as star-star or star-planet
system), using the phantom SPH code (Lodato & Price 2010; Price & Federrath
2010; Price 2012). The binary is represented by two sink particles (e.g. Bate et al.
1995; Nixon et al. 2013) that exert the gravitational force on each other and on
the gas particles. The sink particles are free to move under the backreaction force
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Figure 9.2: Comparison of ALMA simulated observations at 345 GHz of disc models
with a mass ratio q = 0.01 (upper left), q = 0.05 (upper right), q = 0.1 (bottom left)
and q = 0.2 (bottom right). Intensities are in mJy beam−1. The white colour in the
filled ellipse in the upper left corner indicates the size of the half-power contour of
the synthesized beam: 0.12× 0.1 arcsec (∼ 16× 13 au at 130 pc.).
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of the gas on them, allowing the overall conservation of the binary-disc angular
momentum, migration and eccentricity evolution of the binary. The sink particles
are also allowed to accrete gas particles when they cross the sink radius and satisfy
several dynamical conditions assuring that they are not able to escape from the
gravitational field (Bate et al. 1995).

We model the gas-dust interaction using the one fluid model SPH formulation
developed by Laibe & Price (2014a) and Price & Laibe (2015), assuming small
grains (i.e. a Stokes number St� 1) such that the terminal velocity approximation
is valid. We set the dust grain size to be s = 1 mm and vary the mass ratio of the
binary. Pressure is computed using a locally isothermal equation of state assuming
a radial power-law temperature profile. We do not consider the disc self-gravity.

We exploit the SPH artificial viscosity to model the physical processes responsi-
ble for the angular momentum transfer throughout the disc. With reference to the
notation used in Lodato & Price (2010), we set the artificial viscosity parameter
αAV = 0.1 that corresponds, given our initial conditions, to a Shakura & Sunyaev
(1973) αSS parameter ranging between 0.01 . αSS . 0.04 across the disc. To pre-
vent particle interpenetration we set the parameter β = 2 as prescribed in Price
(2012).

SPH artificial viscosity provides also a natural way to reproduce turbulent dif-
fusion of the gas (Arena & Gonzalez 2013) which is transmitted to the dust by
the drag.

Each simulation is evolved for 140 binary orbits, corresponding to a physical
time of ∼ 5600 yr, which is long enough to allow the dust to settle from its initial
displacement and to reach quasi-stationarity in the disc shape.

9.2.1 Initial conditions

Our initial setup consists of a sink particle binary surrounded by a disc of 2× 106

SPH particles. The binary has a total mass Mtot = 2.2M� (note, however, that
the dynamics are only sensitive to the mass ratio, not the absolute mass), a binary
separation a = 15 au and an orbital eccentricity e = 0. We performed a set of four
simulations varying the mass ratio q = {0.01; 0.05; 0.10; 0.20}.

The disc extends between an inner radius Rin = 18 au and an outer radius
Rout = 100 au, centred on the centre of mass of the binary. The surface density
distribution is Σ = Σ0R

−p, where R is the radial coordinate in the disc, p = 0.5
and Σ0 determines the total disc mass, Mdisc = (1 + ε)Mg,disc, where ε = 10−3 is
the millimetre dust-to-gas ratio (corresponding to a total dust-to-gas ratio of 0.01,
for our assumed grain size distribution, see Section 9.2.2), and Mg,disc = 0.05M�
is the gas disc mass. Particles are distributed vertically according to a Gaussian
distribution with thickness H = cs/Ωk, where cs is the gas sound speed and
Ωk =

√
GMtot/R3. We assume that H/R ∝ R0.25 and that H/R = 0.05 at

R = 18 au. The dust-to-gas ratio is ε = 10−3 throughout the entire disc, implying
that the dust has initially the same vertical structure as the gas. After a few
orbits of the secondary, the dust has settled from its initial displacement forming
a layer with thickness Hd = H

√
αSS/St ∼ 0.7H, consistently with the Dubrulle

et al. (1995) model.

The velocity of each particle follows a Keplerian profile centered on the binary
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centre of mass, with orbital velocities corrected to take account of the radial
pressure gradient.

The average vertical resolution of this setup can be expressed as 〈h/H〉 ∼ 0.2,
where h is the SPH smoothing length. Since, for our parameter choice, Hd ∼ H,
the disc remains vertically well resolved both in the gas and in the dust.

9.2.2 Simulated ALMA observations

We performed mock ALMA observations of our models using the RADMC-3D
Monte Carlo radiative transfer code (Dullemond 2012) together with the Com-
mon Astronomy Software Application (CASA) ALMA simulator (version 4.5.3),
focusing on ALMA band 7 (continuum emission at 345 GHz). The source of ra-
diation is assumed to be the central star, located at the centre of the coordinate
system, with M? = 2M�, Teff = 5500 K and R? = 2R�. Dust opacities were
produced using the routine2 developed by Woitke et al. (2016) adopting the dust
model from Min et al. (2016). Since ALMA band 7 images essentially trace mil-
limetre particles with a maximum size of ∼ 3λ (Draine 2006), we assumed a dust
population with a power-law grain size distribution given by n(s) ∝ s−m between
smin = 0.1 mm to smax = 3 mm, with m = 3.5. Starting from the 3D density
distribution of millimetre grains of our model, we computed the spatial densities
of grains in this size range by scaling the dust mass for each grain sizes accord-
ing to the assumed size distribution, with a total dust mass in the size range
[0.1µm, 10 cm] equal to 0.01 of the gas mass.

We computed full-resolution images using 108 photon packages. These images
were then used as input sky models to simulate realistic ALMA observations taking
into account the thermal noise from the receivers and the atmosphere and assuming
a perfect calibration of the visibility measurements. We assumed that all the
sources were located in Ophiuchus star-forming region (d ∼130 pc), observed with
a transit duration of 3 minutes. We assumed Cycle 2 ALMA capabilities adopting
an antenna configuration that provides a beam of 0.12 × 0.1 arcsec (∼ 16 × 13
au).

9.3 Results

Fig. 9.1 shows the surface density after 140 binary orbits in the gas (top panels)
and dust (middle panels) for four different disc models with increasing binary
mass ratio (q = 0.01, 0.05, 0.1 and 0.2; left to right, respectively). As expected,
the cavity size increases with the mass ratio (e.g. Artymowicz & Lubow 1994). The
orbital eccentricity of the gas at the cavity edge also increases with q, reaching
e = 0.1 for our highest mass ratio case (q = 0.2; last right column).

For lower mass ratios (q = 0.01 and q = 0.05; left two columns), the dust and
gas density distribution are more axisymmetric, showing a ring-like overdensity
at the cavity edge. After ≈ 100 orbits from the beginning of the simulation, an
asymmetric crescent-shaped overdensity develops at the cavity edge for q & 0.05

2https://dianaproject.wp.st-andrews.ac.uk/data-results-downloads/

fortran-package

https://dianaproject.wp.st-andrews.ac.uk/data-results-downloads/fortran-package
https://dianaproject.wp.st-andrews.ac.uk/data-results-downloads/fortran-package
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within a few binary orbital periods, with surface densities up to a factor ∼ 10
denser than the surrounding gas, consistent with previous numerical simulations
in the context of black hole binaries (Shi et al. 2012; Farris et al. 2014; Ragusa
et al. 2016; Miranda et al. 2017). The overdensity is a Lagrangian feature that
rotates with the local orbital frequency.

For fixed mass ratio, the level of contrast in the surface density across the
crescent-shaped region is similar in both in the gas and in the dust. This is due
to the fact that the high gas density in the lump produces a strong aerodynamical
coupling between the gas and the dust in the disc. Interestingly, the sharpness of
the region increases with increasing mass ratio.

Fig. 9.2 shows mock ALMA images of our disc models at band 7 for the four
different mass ratios. The simulated ALMA images reflect the density structures
observed in Fig. 9.1. In particular, a crescent or ‘dust horseshoe’ is evident for
q > 0.05, with the contrast increasing with increasing mass ratio: for q = 0.1 the
typical contrast is ≈ 5, while for q = 0.2 we obtain a contrast ≈ 7. For q = 0.05,
the ALMA image shows a double-lobed feature with a low contrast ∼ 1.5, similar
to those observed in SR21 or DoAr 44 (van der Marel et al. 2016a). For q = 0.01
a ring-like structure can be observed, as observed e.g. in Sz 91 (Canovas et al.
2016).

The right panel of Fig. 9.3 shows a snapshot of the vorticity ω = ∇× v, scaled
to the Keplerian value ωK = ∇×vK, where vK is the Keplerian velocity field. The
flow is close to Keplerian in the outer regions of the disc, while in the overdense
region the value of the vorticity is 0 . ω/ωK < 1. The extended region outside the
overdense crescent where ω > ωK is due to the steeper than Keplerian gradient of
the azimuthal velocity. Vortices induced by the Rossby wave instability typically
result in much higher vorticities, with anti-cyclonic vortices reaching |ω/ωK| ∼ 2
(Owen & Kollmeier 2017).

9.4 Discussion

The idea that large scale asymmetries might be due to a planetary companion
was explored by Ataiee et al. (2013), who concluded that planetary mass objects
only produce ring-like features in the disc, in contrast to the observed horseshoe.
However, we have shown the dynamics induced in the disc by low and high mass
companions is markedly different. It is known that low-mass companions, with
q ∼ 10−3 can produce eccentric cavities, that precess slowly around the star-planet
system (Papaloizou et al. 2001; Kley & Dirksen 2006; Thun et al. 2017; Ragusa
et al. 2018). In contrast, more massive companions, with q & 0.2–0.3 (Shi et al.
2012; D’Orazio et al. 2016; Haiman, private communication) produce strong non-
axisymmetric lumps that orbit at the local Keplerian frequency. We have explored
the latter case in this paper.

We observe the formation of non-axisymmetric structures starting from mass
ratios q & 0.05. For sufficiently massive companions (binary mass ratio q = 0.2),
we obtain an azimuthal contrast of the order of ∼ 10 in the mm-wavelength map
(Fig. 9.2), where the contrast is an increasing function of the binary mass ratio.

The mechanism causing the formation of the gas overdensity is thought to be
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Figure 9.3: Map of the vorticity ω = ∇×v (right panel) in the region of the overdensity,
scaled to the Keplerian value ωK = ∇ × vK, for q = 0.2. The left panel shows the
gas density structure. There is no evidence of vortices associated with the overdense
region (cf. Owen & Kollmeier 2017).

related to shocks in the gas at the cavity edge, arising from the intersection of
gas flows within the cavity (Shi et al. 2012). D’Orazio et al. (2016) suggested
that the formation of strong tidal streams has to be associated to the transition
of the disc structure from an annular gap to a cavity, which take place for binary
mass ratios q & 0.04, due to lack of stable orbits around the Lagrange points
L4 and L5. However, they also find that strong lopsidedness forms for slightly
larger mass ratios q = 0.2–0.3 (Haiman, private communication). This appears
to be in general agreement with our findings. However, we caution that further
studies are required to investigate the evolution and survival of these features at
longer timescales, and to determine whether the critical value of q depends on
other parameters of the system, such as H/R and α. We also note that our sink
prescription does not allow the formation of circum-individual discs that may or
may not have an impact on the circum-binary disc structure, possibly causing the
artificial accretion of some material in the tidal streams.

Due to the temperature change in shocking regions, it might be expected that
the chemistry would be affected by shocks. Processes such as desorption of vari-
ous chemical species from the surface of disc dust grains and gas-phase chemical
reactions due to shocks occurring in the cavity wall, produce clear chemical signa-
tures of the disc dynamics (see e.g. Ilee et al. 2011 in the case of shocks induced
by gravitational instabilities) which may be detected using ALMA. Additionally,
shocks might induce the emission of forbidden lines, the detection of which would
confirm eccentric cavities as the origin of these structures.

As previously mentioned, horseshoes in transition discs are often assumed to
be due to a vortex induced by a low-mass companion in the cavity. In this case,
a variation of the azimuthal extent of the horseshoe at different wavelengths is
expected. Indeed, models of dust trapping by a vortex predict that larger grains
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would be more azimuthally concentrated in the centre of the vortex. However, in
some cases (SR21 and HD135344B Pinilla et al. 2015) smaller grains appear to
be more trapped than larger grains. Since we compute the dynamics of a single
species of dust, we cannot predict if our model would reproduce this scenario.

9.4.1 Comparison with observed systems

Non-axisymmetric features have been observed in a handful of transitional discs
(see Table 9.1). We report here below a brief summary about the cavity features
and the current evidence for the presence of massive companions in these systems.

Regarding the upper-limits on the mass of putative companions, the most ac-
curate results have been obtained applying the aperture masking interferometric
observations and speckle imaging in the near-IR waveband. It is worth notic-
ing that detecting planets through imaging is challenging due to the proximity of
planets to the central star and their low contrast ratio in emission compared to
the brightness of their host star. Additionally, massive companions might have
eccentric or misaligned orbits with respect to the disc. This implies that the size of
the cavity they are able to carve can be much larger than ∼ 2 times the separation
at which they are located in the imaging due to projection effects or orbital phase
(a planet might not be resolved at the pericentre of its orbit, while resolved and
thus detectable at the apocentre).

9.4.1.1 HD135344B

Recent observations of line and continuum emission from HD135344B evidenced
the presence of a cavity both in the gas (∼ 30 au) and in the dust (∼ 40 au) (van
der Marel et al. 2016a). The continuum emission shows also a well defined crescent
shaped overdense feature at the cavity edge with a mild contrast (van der Marel
et al. 2016a). A spiral structure has also been detected in the near-IR scattered
light, constituting a strong indication of the presence of a massive companion
(Garufi et al. 2013). Using the “locally optimized combination of images” (LOCI)
technique, in order to be able to possibly resolve and locate the exact position
of the companion, Vicente et al. (2011) put an upper-limit of Mc ∼ 230MJ at
separations a . 14 au and Mc ∼ 85MJ at a . 37 au.

Given the central star estimated mass M? ∼ 1.7M�, the upper-limits on the
secondary mass imply mass ratios q . 0.05 at a . 37 au and up to q ∼ 0.13 for
separations a . 14 au. This is consistent with our models, since the crescent-like
feature with contrast . 10 observed in HD135344B (van der Marel et al. 2016c)
is similar to what we obtain for our q = 0.1 case (bottom left panel of Fig. 9.2).

9.4.1.2 SR 21

The continuum emission from this system shows different asymmetric features at
different wavelengths: a crescent shaped overdense feature at 690 GHz (Pérez et al.
2014), and a double-lobed structure at 345 GHz (van der Marel et al. 2016a). In
both cases the contrast is mild (. 10). Modeling the dust emission van der Marel
et al. (2016a) inferred a cavity edge in the dust at ∼ 25 au, while the gas cavity
appears to be much smaller (∼ 7 au, Pontoppidan et al. 2008).
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The presence of a warm companion surrounded by a cloud of accreting gas in this
system was invoked by Eisner et al. (2009) to explain an excess in the near-IR and
mid-IR SEDs, which could be explained by an additional warm (∼ 700 K) black
body emission from an extended region of 40R�. The total luminosity produced
by the companion in this framework appears to be consistent with a T-Tauri star
with mass Mc ∼ 0.2M� enveloped in a gaseous cloud (Follette et al. 2013). Using
the angular differential imaging (ADI) technique, Follette et al. (2013) were able
to rule out the presence of a secondary stellar object for separations a & 18 au;
based on the contrast sensitivity achieved by Follette et al. (2013), Wright et al.
(2015) constrained the upper-limit on the companion mass to ∼ 40 − 60MJ at
separations a & 18 au, implying that such a stellar source needs to be located at
separations a . 18 au. This implies possible secondary-to-primary mass ratios of
q ∼ 0.1 for a . 18 au and q ∼ 0.03 for a & 18 au. The double-lobed structures
detected in the continuum emission in SR 21 (e.g. Pinilla et al. 2015) at 345 GHz
are consistent with our models with q ∼ 0.05, which is in agreement with the
detection limits reported in literature.

9.4.1.3 IRS 48

With an azimuthal contrast of & 130 of the peak emission compared to the back-
ground disc, IRS 48 represents the source with the strongest crescent-shaped dust
structure in our sample. This dramatic azimuthal range at the cavity wall observed
in IRS 48 is best described by the segregation of millimetre grain sizes induced
by an azimuthal bump in pressure (van der Marel et al. 2013). The dust cavity
was found to be extended 60 au from the central star (Bruderer et al. 2014b).
The continuum asymmetry has been modeled as a major dust trap, triggered by
the presence of a substellar companion with a mass of 9MJ (Zhu & Stone 2014).
This would seem very unlikely to correspond to an equally sharp gas distribu-
tion. Alternatively, Wright et al. (2015), based on the detection limit reported
in Ratzka et al. (2005), rule out a potential companion with a mass & 100MJ,
which correspond to a mass ratio of q ∼ 0.05 at a radial separation of 19 au. As
expected, this result does not appear consistent with the mechanism presented in
this paper.

9.4.1.4 DoAr 44

DoAr 44 (also known as ROX 44 and Haro 1-16) is the source with the mildest
contrast in (sub-) mm continuum emission in our sample (van der Marel et al.
2016a). This source has been classified as a pre-transition disc with a dust cavity
between 2 and 32 au (Espaillat et al. 2010; van der Marel et al. 2016a). Based
on the companion detection limits reported in Ratzka et al. (2005), Wright et al.
(2015) derived that a potential companion should have a mass . 80MJ at a
separation . 12.5 au which correspond to a mass ratio of . 0.06, adopting the
star properties reported in Espaillat et al. (2010). The values of the mass ratio
inferred from observations appear to be consistent with our scenario: the double-
lobed structures observed in DoAr 44 can be explained for q ∼ 0.05 according to
our model.
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9.4.1.5 HD142527

HD142527 harbours a disc with a wide dust cavity extending from 10 au to 120
au. At the cavity inner wall, the (sub-) millimetre dust continuum emission show
a bright horseshoe with contrast ∼30. The existence of a massive close compan-
ion with q ≈ 0.16 has been established for HD142527 using the sparse masking
aperture technique (Biller et al. 2012; Lacour et al. 2016). This is particularly
interesting since the contrast in HD142527 of ∼ 30 is within a factor of 3 of the
contrast we find in our highest mass ratio. However, this companion is also in-
clined by ∼ 70◦ with respect to the disc (Lacour et al. 2016) and this case might be
further complicated by a strong warp (Casassus et al. 2015a). Intriguingly, Casas-
sus et al. (2015b) comment that “the large sub-mm crescent [in HD142527] mostly
reflects the gas background, with relatively inefficient trapping, so that the observed
contrast ratio of ∼ 30 is accounted for with a contrast of 20 in the gas”, consis-
tent with our model. Seemingly this conflicts with Muto et al. (2015) who found
variations of ∼ 10–30 in the dust-to-gas ratio. This difference may be explained
by uncertainties in grain surface chemistry, in particular whether or not a fraction
of CO is depleted on dust grains (Casassus 2016). Recently Price et al. (2018b)
showed that all the main observational features of HD142527 can be explained by
the interaction of the disc with the inclined sub-stellar companion hosted in this
system.

9.4.1.6 Lk Hα 330

Lk Hα 330 is characterised by a millimetre dust cavity with a size of about 40
au and an azimuthal intensity variation of a factor of two. Recent observations
performed by Willson et al. (2016), using the sparse aperture masking technique
in the K’ near infrared band, on Lk Hα 330 revealed the presence of a possible
massive companion characterized by a value of McṀc ∼ 10−3 M2

Jyr−1 orbiting
at a separation a ∼ 37 au from the central star. Assuming an accretion rate on
the secondary object of Ṁc . 10−8M�yr−1 implies an mass Mc & 100 MJ and a
mass ratio q & 0.05. It should be noted that previous works (Brown et al. 2009;
Andrews et al. 2011; Isella et al. 2013) had reported private communications that,
based on near-IR observations, ruled out the presence of secondary objects with
masses Mc & 50 MJ (q & 0.025) at separations Mc & 10 au, indicating how elusive
these objects might be. In any event, these estimates for the companion mass
appear to be consistent with the low sharpness of the crescent-shaped structure
predicted by our model (see the upper panels of Fig. 9.2).

9.5 Conclusions

We performed 3D SPH gas and dust simulations of circumbinary discs surrounding
a protostar and either a low mass stellar companion or massive protoplanet. We
showed that the companion carves a wide, eccentric cavity in the disc, resulting
in a non-axisymmetric gas overdensity at the cavity edge. For sufficiently large
binary mass ratios this feature appears as a ‘horseshoe’ in millimetre wavelength
dust continuum images, as observed in several transition discs.
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Name Contrast Dust trapping Companion Consistency

HD135344B . 10 No Strong indication Yes
SR 21 . 10 No Indication Yes

DoAr 44 . 10 ? ? Yes
IRS 48 & 100 Yes ? No

HD142527 ∼ 30 cm grains? Yes Yes
Lk Hα 330 . 10 ? Indication Yes

Table 9.1: Summary of transition discs displaying horseshoe or other non-axisymmetric
features. For each source, we indicate the observed contrast in mm images, whether
there is evidence for dust trapping in the crescent, and whether the system is known to
host a massive companion. The last column indicates whether the observed structures
are consistent with our model, given the upper-limits on the companion mass as
reported in the literature.

Our model makes testable predictions that can be used to observationally dis-
tinguish the eccentric cavity model from the more commonly assumed ‘gap edge
vortex’ model. We identify the following main features differentiating the two
processes, which can be used as the basis for observational tests of our hypothesis:

1. Dust and gas kinematics. In our model, the fluid velocity is close to Kep-
lerian, and does not show the large vorticity expected in the vortex model
(see Fig. 9.3).

2. Our mechanism applies both in high and in low viscosity discs, while vortices
only arise for α . 10−4.

3. With our parameter choice, dust horseshoes arise from eccentric cavities only
for relatively large mass ratios q & 0.05, while in principle vortices can arise
for lower mass planets. Clearly, stablishing whether a relatively massive
companion is present within the cavity is a key observational test of our
model.

4. The structures described in this paper only occur at the edge of the central
cavity, while vortices can occur in principle at any location within the disc.
Observing a non-axisymmetric feature at a location different from the edge
of the cavity excludes the mechanism we propose to be responsible for its
formation.

5. Less massive companions should produce more axisymmetric structures, po-
tentially explaining the ‘dust rings’ seen in (e.g.) Sz 91 and DoAr 44. We
predict that a higher degree of non-axisymmetry around larger central cav-
ities.

6. Our model does not require azimuthal dust trapping and the observed con-
trast largely reflects the gas density contrast.

In summary, cavities opened by massive companions are a promising mechanism
for explaining rings, lopsided features and horseshoes seen in transition discs.
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Future works should investigate the validity of the threshold mass ratio q & 0.05
for different values of viscosity, disc thickness and the evolution of the structures
at longer timescales.





Summary and conclusions

“...And everything under the sun is in tune
But the sun is eclipsed by the moon.”

Pink Floyd, Eclipse

In this thesis we discussed the role of the disc-satellite mutual interaction in
determining the dynamics and electromagnetic output of the system. The presence
of a secondary body embedded in a gaseous accretion disc significantly alters the
dynamics of the material with respect to the predictions of classic accretion theory.

Accounting for the presence of secondary bodies embedded in a gaseous envi-
ronment is of paramount importance in a large variety of astrophysical systems
(star + star, planet + star, black hole + black hole, planet + moons, e.g. Saturn
and its rings and moons). Despite the differences among all these systems, their
dynamics and, as a consequence, the evolution of their geometry/structure can be
modelled under one unique framework: the tidal disc-satellite interaction.

With the ambitious aim to make the thesis as self-consistent as possible, in Part
I we provided a broad introduction of the fundamental concepts required for the
understanding of the topics presented throughout this manuscript.

Part II and Part III are then dedicated to three aspects of disc-satellite in-
teraction that are still not completely understood, in particular: the suppression
of accretion rate driven by the tidal effects of the satellite, the mutual long term
evolution of satellite/disc eccentricity and the stability of the disc with respect to
azimuthal density perturbations producing non-axisymmetric structures.

Each of these problems can be studied from a purely theoretical point of view,
studying the fluid dynamics equations under the effects of gravitational forces
exerted by point masses, and vice versa. As a consequence, the results found in
this thesis can be applied to any astrophysical system satisfying the appropriate

171
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assumptions. However, in all cases, our studies focus on specific classes of objects
where we believe the physical processes under investigation are relevant. We
summarize below our main results:

• Part II, Chapter 6 (Ragusa et al. 2016): We investigate whether the tidal
effects exerted on the disc by the binary can reduce the accretion rate of
material on to it. The dam effect produced by the companion depends on
the balance between two competing mechanisms: viscous/pressure processes
promote the inward motion of the material, while tidal effects exert an op-
posite torque on the disc reducing the accretion. In particular, the accretion
rate on to the binary Ṁbin is expected to decrease with the the disc thickness
faster than what would be expected for the rate on to a single central object
Ṁ0 (Ṁ0 ∝ (H/R)2), so that possibly Ṁbin/Ṁ0 < 1.

Some numerical simulations showed that Ṁbin is not altered with respect to
Ṁ0 for a disc thickness H/R ∼ 0.1 (D’Orazio et al. 2013; Farris et al. 2014;
Miranda et al. 2017). However, since the intensity of the viscous processes
depends on the disc thickness, we expect that the tidal forces overcome the
viscous ones for smaller values of H/R, resulting in Ṁbin/Ṁ0 < 1.

The reduction of the accretion rate due to a binary companion has extremely
important implications in the context of black hole binary systems. In partic-
ular, it affects the detectability and the dynamical evolution of these systems,
both before and after the merger of the two black holes.

In order to address this issue, we performed a set of numerical simulations
of equal mass binaries surrounded by accretion discs for different values of
disc thickness. We recover the previous result in the literature Ṁbin/Ṁ0 ≈ 1
for H/R = 0.1, but, as expected, we find a linear decrease of Ṁbin/Ṁ0 for
smaller values of H/R. Our results suggest that extrapolating the accretion
rate for a disc thickness H/R ≈ 10−3, which is expected in discs surrounding
black holes, one would get a reduction of a factor ∼ 100 of the accretion rate.

We caution that in our simulations we do not inject material steadily at large
radii, as D’Orazio et al. (2013), Farris et al. (2014) and Miranda et al. (2017)
did, we use instead a finite disc. Which one of these two implementations of
the mass supply is the most appropriate to describe the physical behaviour
of real systems likely depends on whether these systems receive a constant
inflow of material for the entire length of their life or they undergo multiple
isolated accretion events.

In conclusion, this work suggests that the reduction of the luminosity of
the system, associated with the suppression of the accretion rate, might
affect our ability to identify these systems using the electromagnetic channel.
Furthermore, low accretion rates have been associated with poor spin-orbit
alignment of the black holes at the time of the merger, possibly resulting in
high recoil velocities of the merger remnant (see Sec. 5.4).

• Part III, Chapter 7 (Ragusa et al. 2018): The interaction between a satel-
lite and the disc causes the mutual evolution of their orbital properties,
impacting the structure of the whole system. The role of the tidal torque in
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driving the growth of the eccentricity of both the satellite and the disc is well
documented in the literature. In particular, the growth (or decrease) of the
eccentricity appears to be due to the relative intensity of the angular mo-
mentum exchange between the disc and the satellite at resonant locations,
which intrinsically depends on the local disc structure and depletion of the
co-orbital region (Artymowicz et al. 1991). This translates to a minimum
mass (but possibly also initial minimum satellite eccentricity, D’Angelo et al.
2006,Duffell & Chiang 2015) for which eccentricity growth occurs (Ogilvie &
Lubow 2003; Goldreich & Sari 2003). When this happens, the disc has been
observed to achieve an eccentricity profile that decreases with radius. The
mass of the disc has also been shown to play a role in this process, enabling a
faster growth of the eccentricity of the system when the disc is more massive
(Papaloizou et al. 2001; Dunhill et al. 2013).

This mechanism has possibly a deep impact in determining the orbital prop-
erties of planets during the protoplanetary disc phase. Motivated by the
observation of eccentric hot Jupiters orbiting very close to their host stars,
we investigated the long term evolution of a 13 MJ satellite and two dif-
ferent values of disc mass (we refer to them as the light and the massive
case), by means of performing two long timescale 2D hydrodynamical sim-
ulations. Both the planet and the disc were left free to evolve under the
effects of their mutual interaction for ≈ 3× 105 planet orbits (for reference,
the longest simulation in the literature covered 2× 104 orbits).

The evolution of planet and disc eccentricity shows a very peculiar periodic
exchange of eccentricity between the disc and the planet, superimposed to
a long term trend of linearly growing planet eccentricity for the case where
the less massive disc was used, and, in contrast a linearly decreasing planet
eccentricity for the more massive disc case. The disc eccentricity is instead
linearly decreasing in both cases at a similar rate. Both the planet and
the disc eccentricity show very similar precession patterns characterized by
aligned or antialigned pericentres configurations, rapidly or slowly precessing
at two discrete frequencies.

We provided a simplified toy model to explain the periodic oscillations. The
results can be qualitatively reproduced and modeled by the presence of two
eigen-modes for the evolution of planet and disc eccentricity. One mode is
growing, the other one is decreasing. The relative intensity of the eigen-
modes, that appears to be related to the ratio between the planet and disc
angular momenta, determines the evolution of the system.

The results obtained within this part of the thesis highlight the importance
of the long term evolution for these systems to determine the final structure
after the disc dispersal. Furthermore, our results also suggest that the ex-
pectation that more massive discs are more prone to produce higher values
of planetary eccentricity can be completely reversed at very long timescales.
However, a deeper study further exploring the parameter space is required
to confirm this result.

• Part III, Chapter 9 (Ragusa et al. 2017): The presence of a secondary
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object embedded in the disc alters significantly its structure and, for suffi-
ciently large mass ratios, it results in the formation of a cavity. Furthermore,
the disc-satellite interaction appears to promote the development of a cer-
tain degree of axial asymmetry in the disc that results in the formation of
overdensities at the cavity edge.

Recent (sub)mm images taken by ALMA reveal a large variety of azimuthal
features. The formation of such structures has been broadly associated with
the formation of vortices in the flow induced by a planet (Lyra & Lin 2013;
Zhu & Stone 2014) or other possible mechanisms (Regály et al. 2012; Ruge
et al. 2016) triggering the RWI (rapidly evolving structures, orbital motion
of the feature), that requires very low levels of disc viscosity (αSS ∼ 10−4).
These types of structures have also been associated with the growth of the
disc eccentricity (Ataiee et al. 2013; Ragusa et al. 2018) induced by a planet
(slowly evolving eccentric structures, secular precession of the feature). How-
ever, a number of simulations with large mass ratios (q ≈ 1) in the field of
black hole binaries, showed the formation of similar features with relatively
high viscosity (αSS ∼ 0.1, Shi et al. 2012; Farris et al. 2014; Ragusa et al.
2016; Miranda et al. 2017).

With the aim to investigate this issue, we performed a set of hydro gas+dust
simulations. Consistent with the results obtained in the black holes simu-
lations, our results show that for q ≥ 0.1 the disc develops an overdense
non-axisymmetric feature (constrast ratio, up to a factor 10), that rapidly
moves with Keplerian frequency, where the vorticity vanishes. This suggests
the existence of an alternative mechanism for the formation of these struc-
tures that require larger masses than those expected to trigger RWI, but
that is not suppressed by higher levels of disc viscosity (αSS = 0.01–0.04).
We created radiative transfer synthetic images to ensure that the overdensi-
ties we observe in the hydro simulations translates to the surface brightness
observed in the ALMA images. The mechanism feeding the overdensities
appears to be a form of instability related to the formation of strong tidal
streams and an eccentric cavity, but still some work needs to be done in
order to properly understand its physical origin.

In conclusion, horseshoe structures in protoplanetary systems might be due
to the presence of a relatively massive substellar companion in the brown
dwarf regime rather than a planet. The constraints in the literature about
the detectability of such a massive companion appear to allow this mech-
anism as a possible explanation for the observed structures in a number
of systems. However, we are not able to reproduce contrast ratios of the
asymmetries & 10, as for example the case of IRS48 (van der Marel et al.
2013)

We want here to note the paramount importance for scientists in the research
field of disc-satellite interaction to keep updated about the results from both the
high energy side, involving black holes, and from the protoplanetary discs side.
Indeed, we remark that two of the three projects presented throughout this thesis
were originally inspired by the results and advancements obtained in completely
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different fields: the accretion rate on to binary objects has been long supposed
to depend on the disc thickness in the field of protoplanetary systems, but the
impact of this dependence on the luminosity and dynamical evolution of black
hole binaries had not been considered before (Ragusa et al. 2016); analogously,
the formation of non-axisymmetric structures in simulations of discs surrounding
black hole binaries has been widely reported, but they have not been associated
with the horseshoe structures observed in the resolved images of protoplanetary
discs provided after the advent of ALMA (Ragusa et al. 2017).

We also note here how the results presented in Ragusa et al. (2018), obtained for
planetary systems, might be relevant for the dynamics of extreme mass ratio in-
spirals (EMRI, i.e. gravitational wave events involving black holes with extremely
small mass ratios) possibly setting the initial conditions of the gravitational wave
phase during their way toward the merger.

Finally we want to remark how important performing very long timescale sim-
ulations is, in order to fully capture the dynamics of the system: secular effects
might be effective over thousands of orbits, and can possibly reverse the dynamical
behaviour at short timescales as shown in Ragusa et al. (2018).

Future developments

Starting from the work I performed in this thesis, I identified four issues that I
will address in future projects

1. A criterion for the formation of non-axisymmetric structures

As broadly discussed, numerical simulations performed both by the protoplan-
etary disc community (Ataiee et al. 2013; Lyra & Lin 2013; Ragusa et al. 2017)
and by the black hole one (Shi et al. 2012; Ragusa et al. 2016; Farris et al. 2014)
have revealed that non-axisymmetric structures are divided mainly in two broad
categories: slowly evolving features (Ataiee et al. 2013; Ragusa et al. 2018), ap-
parently due to the clustering of eccentric fluid trajectories (slowly precessing over
a secular timescale), and rapidly evolving ones (wih the Keplerian frequency at
the lump location of the overdensity). The latter come in two different flavours:
one showing vortical motion (Ataiee et al. 2013; Lyra & Lin 2013) requiring low
viscosities α ∼ 10−4 and the setting in of the Rossby Wave Instability (RWI), and
the other one showing no vortices (Ragusa et al. 2017; Farris et al. 2014).

Deepening our understanding of the formation mechanisms of non-axisymmetric
structures is of great importance both for compact objects binaries, since it pro-
vides a modulation of the accretion rate and thus of the EM luminosity, and for
planets, since they favour the aggregation of dust grains into larger objects.

A possible development in this direction could be to determine a criterion in
terms of mass ratio, viscosity and disc thickness (performing 3D SPH numerical
simulations and providing an analytical criterion) to describe the transition from
the slowly evolving to the rapidly evolving features and also understand whether
the vortical and non-vortical configuration are produced by two separate mecha-
nism or are just two faces of the same coin. The starting point is to investigate
a poorly understood instability that depends on the binary mass ratio (D’Orazio
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et al. 2016), and see whether it can be associated with the formation of tidal
streams shocking at the cavity edge.

2. Distinguishing vortices, slowly evolving and rapidly evolving fea-
tures

In the numerical simulations performed in Ragusa et al. (2017), where we ob-
served rapidly evolving features, we did not observe dust trapping for 1 mm dust
grains, but we are able to achieve a contrast ratio in the surface density Σ/Σ0 ∼ 10.
Slow eccentric features, being simple “traffic jams” in the fluid trajectories should
not show dust trapping of large particles; they can reach surface contrast ratios
Σ/Σ0 ∼ 3 (Ataiee et al. 2013). Regarding vortices, numerical simulations showed
that they present dust trapping of large dust grains, and produce surface densities
contrast ratios reaching Σ/Σ0 ∼ 6 (Ataiee et al. 2013).

Pure imaging alone is not able to discern the difference between these three
mechanisms since the contrast ratio is similar, therefore it would be interesting to
predict the kinematical appearance of these structures in protoplanetary systems
(or at least to put constraints on the technical requirements we need to distinguish
them). This can be done by post processing the output of numerical simulations
(from both grid and particle methods) using a radiative transfer code, such as
RADMC-3D (Dullemond 2012), in order to obtain the predictions about velocity
maps (1st moment) of the CO vibrational lines to be compared with ALMA real
observations.

3. Secular disc-satellite interaction for long timescales

In Ragusa et al. (2018) we studied the long term evolution of the eccentricity
in a protoplanetary system in presence of a massive planet (planet-star mass ratio
q = 0.013). We performed two very long timescale (3 × 105 orbits) numerical
simulations for two different disc masses. Both simulations show periodic eccen-
tricity oscillations superimposed on a growing/decreasing trend (see Fig. 7.6) and
the precession of pericentre of both planet and disc, and a reversal of the mass
dependence of the eccentricity growth rate at late times, i.e.: the less massive disc
pumps the eccentricity at late times, while the massive one damps it, contrary
to what previously observed at short timescales (Papaloizou et al. 2001; Dunhill
et al. 2013).

The complete reversal of the initial growth trends of the eccentricity and its
periodic oscillations offer a clear evidence of the importance of carrying out very
long timescale numerical simulations in order to also allow the secular interaction
to play a role in the evolution.

In this context it might be useful to explore in greater detail the secular binary
disc interaction and its effects on the dynamics at very late times. This includes
an extensive survey of the parameter space in order to simulate systems of interest
both for the protoplanetary community (q � 1, H/R ≈ 0.1, αSS = 0.001) and for
the BHB one (q ∼ 1, H/R ≈ 10−3, αSS = 0.1).

4. Accretion rate: modulation and reduction

In (Ragusa et al. 2016) we investigated the dependence of the accretion rate on
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the disc thickness, which is expected to be very small for discs surrounding black
holes (H/R ∼ 10−3). Numerically, we found a linear relationship of the type
Ṁbin ∝ ξ(H/R)Ṁ0, where Ṁbin is the accretion rate on to the binary, while Ṁ0 is
the corresponding rate for a single central object; ξ(H/R) is a roughly linear func-
tion of H/R, thus implying a reduction of the accretion rate as the disc becomes
thinner. However, we were not able to simulate discs thinner than H/R = 0.02
due the poor vertical resolution below this threshold. In this context, the imme-
diate development is to provide an analytical model to describe the dependence
of the accretion rate in binary systems on the disc temperature: this would allow
us to strengthen the numerical results with theoretical predictions, increasing the
reliability of the extrapolation of the accretion rate at values of disc thickness that
are prohibitively small to be investigated with numerical simulations.





Appendices

179





Appendix

A
Disc thickness in discs sur-

rounding supermassive black
holes

A.1 The Shakura & Sunyaev solutions

In this section we aim to provide an analytical estimate of the disc thickness.
With reference to the notation we adopted in Chap. 2, we provide here the closed
set of equations determining the structure of a thin, isothermal disc (Frank et al.
2002); the further underlying assumptions are that the disc is optically thick and
in steady state 

1. ρ =
Σ

H
,

2. H = cs

√
R3

GM
,

3. c2
s =

∂P

∂ρ
,

4. p =
kbTcρ

µmp
+

4σSB

3c
T 4

c ,

5.
4σSB

3τ
T 4

c =
3

8π

GMpṀ

R3

(
1−

√
Rin

R

)
,

6. τ(Σ, ρ, Tc) = κR(ρ, Tc)Σ,

7. νΣ =
Ṁ

3π

(
1−

√
Rin

R

)
,

8. ν = ν(ρ,Σ, H, cs, ...).

(A.1.1)

The second term on the r.h.s. of Eq. 4. is the radiation pressure, where σSB =
5.6704 × 10−5erg cm−2 s−1 K−4 is the Stefan-Boltzmann constant, while c is the
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speed of light. This set of equations consists of 8 equations in 8 unknowns ρ, Σ,
H, cs, p, Tc, τ and ν. The system is completely self-consistent, however, in order
to close the equations, a prescription for the viscous parameter ν(cs, H) and the
Rosseland mean opacity κR(ρ, Tc) needs to be provided.

In their seminal paper, Shakura & Sunyaev (1973) found analytical solutions
for the set of equations (A.1.1), prescribing ν(cs, H) = αcsH (see Eq. 2.35), while
Rosseland mean opacity is determined by to two competitive mechanism: free-free
interaction ruled by the Kramers’ law for κR,ff :

κR,ff = 6.4× 10−24

(
ρ

g cm−3

)(
Tc

K

)−7/2

cm2 g−1; (A.1.2)

the second is the Thomson scattering:

κR,Th =
σTh

µmp
. (A.1.3)

µ is the average atomic number and σTh = 6.665 × 10−25cm2 is the Thomson
scattering cross section; the dominance of one process on the other depends on
the temperature and on the density of the gas. The solutions will then depend on
the free parameters α, Ṁ , M and R.

Shakura & Sunyaev (1973) discuss the solutions in three distinct regions of the
disc (a, b, c). Each region assumes a different combinations of pressure and opacity
as follows:

a. It is the region closest to the central object. The radiation pressure dom-
inates over the gas one and the mean opacity is mostly due to Thomson
scattering of photons on free electrons.

b. Gas pressure dominates over the radiation one, but Thomson scattering still
dominates the opacity, Eq. (A.1.3).

c. Gas pressure still dominates with respect to radiation but now the dominant
process for opacity is free-free absorption and Eq.(A.1.2) is used.

Solving the system of equations (A.1.1) in the c. region, the predicted H/R
aspect ratio reads

H

R
= 0.001

(
R

GM?/c2

)1/20( M?

107 M�

)−1/10
(
Ṁ/ṀEdd

0.1

)1/5 ( α

0.2

)−1/10
(A.1.4)

where ṀEdd = 4πGM?mp/cσT is the Eddington limit for the accretion, Eq. (1.33).
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B
Solutions at Lindblad res-

onant locations

In the following sections we will discuss in detail the analytic form of the den-
sity perturbations produced by barred potentials. With reference to the harmonic
decomposition in Eq. 3.36 of the satellite potential, we will not specify the depen-
dence of ω on l, in order to not lose generality: the only effect of the l variable
is to produce a secondary set of harmonics with pattern frequencies Ωlm

p given in
Eq. (3.37). For a given ω one can always recover the result for a specific l by
substituting ω = lΩs.

B.1 The WKB and tight-winding approximation

Analytical solutions to the equations (3.31,3.32,3.34) presented in Sec. 3.3 can
be found under two main simplifying assumptions. We firstly assume that the
solutions are characterized by radial oscillations that can be captured expressing
the generic perturbed quantity X1 as follows

X1(R,ϕ, t) = χ1(R)ei
∫R kR(u)du︸ ︷︷ ︸

x1(R)

ei(mϕ−ωt). (B.1.1)

Here the quantity x1(R) has been divided into a purely real, slowly varying, com-

ponent χ1(R) and into a radially varying complex phase ei
∫R kR(u)du.

This form of the perturbations intrinsically assume that the perturbations are

spiral shaped waves. Indeed, it can be easily verified1, since ei
∫R kR(u)du represents

a phase that progressively grows (or decreases) with the radius, so that at different
radii it provides a different amount of azimuthal deviation from the the pure bar-
like perturbation ei(mϕ−ωt). This causes the winding of the bar perturbation into

1We note that, if kR = const, the complex exponent in Eq. (B.1.1) would read ei(kRR+mϕ−ωt).

183



184 B. Solutions at Lindblad resonant locations

a spiral. We will refer to those waves that wind backward with respect to the
direction of motion of the gas as “trailing” (kR(R) > 0); in contrast, those that
wind in the opposite direction (kR(R) < 0) as “leading”.

We introduce now the so called “tight-winding” approximation. The “tight-
wound” nature of the perturbation implies that the radial wave number kR(R) is
much greater than the azimuthal one kR � kϕ = m/R (this is satisfied obviously
for sufficiently small m values). Note that in accretion discs, perturbations with
lengthscales lower than the disc vertical displacement H are stable; this intrin-
sically sets kR . 1/H. Thus, the tight-winding approximation is valid only for
m� (H/R)−1.

Throughout the next sections, we will also largely use the WKB approxima-
tion, which requires that radial oscillations occurs on a lengthscale that is shorter
than the variation lengthscale of χ(R), i.e. characterized by a radial wavenum-
ber kR � R. This assumption implies, when computing the radial derivative of
the perturbed quantities X1, that we can neglect ei

∫
kRdR∂Rχ1 with respect to

χ1∂Re
i
∫
kRdR so that

∂

∂R
X1 ≈ i

∂

∂R

(∫ R

kR(u)du

)
X1 = ikR(R)X1. (B.1.2)

Furthermore, given the fast radial oscillations of X1, R−1 � ∂R so that we are
allowed to write ∂R(RX1) ≈ R∂RX1. More generally, this result can be applied to
any f(R) that is assumed to satisfy ∂Rf(R)� ∂RX1, implying as a consequence
that f(R) can be brought outside and inside the derivative operator as a constant
without affecting the final result as follows

∂

∂R
[f(R)X1] ≈ f(R)

∂

∂R
X1. (B.1.3)

We note that assuming that we can safely apply the WKB approximation does
not guarantee that we can apply safely the tight-winding one: e.g., when m is suf-
ficiently large that m/R� kR the tigh-winding approximation fails, even though
the condition kR � R−1 for the applicability of the WKB approximation is sat-
isfied. vice versa, being able to safely apply the tight-winding approximation
does not necessarily imply that we can safely apply also the WKB one: e.g.,
m = 0 always satisfy the tight-winding approximation but, nothing prevents to
have kR � R.

Under these assumptions, radial derivatives of the quantities X1 can be substi-
tuted as

∂

∂R
→ ikR(R). (B.1.4)

In the light of the tight winding assumption2, we drop the term containing vϕ
term on the r.h.s of Eq. 3.30, so that we can re-write the perturbed continuity
equation (3.30) as

i[mΩ(R)− ω]Σ1 =
∂

∂R
(Σ0vR,1), (B.1.5)

2Since we know from Eq.s (3.31) and (3.32) that v1,ϕ ∼ v1,R, assuming that perturbations
are thight wound (kϕ � kR) also implies that im/Rv1,ϕ � kRvR.
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Finally, using the tight-winding prescription kϕ � kR, the substitution in Eq.
B.1.3, and assuming a WKB form of the perturbation ΦΣ1 , we can rewrite the
Poisson’s equation (3.14) as

− k2
R(R)ΦΣ1 +

∂2ΦΣ1

∂z2
= 4πGΣ1δ(z). (B.1.6)

B.2 Solving the Poisson’s equation

This section is dedicated to the solution of the Poisson’s equation in the simplified
form provided in Eq. (B.1.6). The following standard approach to its solution can
be found in Armitage (2010). The WKB form of the self-gravitating potential is

ΦΣ1 = V (R)ei
∫R kR(u)du︸ ︷︷ ︸

φΣ1
(R)

ei(mϕ−ωt), (B.2.1)

Since δ(z 6= 0) = 0, the solution of ΦΣ1 for z 6= 0 satisfies3

∂2ΦΣ1

∂z2
= k2

RΦΣ1 , (B.2.2)

that implies4

ΦΣ1 = V (R)e−|kR(R)z|ei
∫R kR(u)duei(mϕ−ωt). (B.2.3)

We find the dependence of ΦΣ1(R) on Σ1 by integrating Eq. (B.1.6) along z across
the infinitesimally thin disc layer:

lim
ε→0

∫ +ε

−ε

∂2ΦΣ1

∂z2
dz = lim

ε→0

∫ +ε

−ε

[
k2
R(R)ΦΣ1 + 4πGΣ1δ(z)

]
dz. (B.2.4)

Assuming the functional form of ΦΣ1 in Eq. (B.2.3), we find the solution in the
z = 0 plane, by further developing Eq. (B.2.4) as

lim
ε→0

∂ΦΣ1

∂z

∣∣∣∣+ε
−ε
≡ lim

ε→0
−2|kR(R)|ΦΣ1e

−|kRε| = 4πGΣ1, (B.2.5)

that finally becomes

ΦΣ1 = − 2πGΣ1

|kR(R)| . (B.2.6)

Where Σ1 has the same WKB form of ΦΣ1 . Keeping in mind that the substitution
in Eq. (B.1.4) can be applied in both directions, we can state Eq. (B.2.6) also as

i sgn[kR(R)]
∂ΦΣ1

∂R
= 2πGΣ1. (B.2.7)

3Even though the problem is 2D and the domain is the plane z = 0, it is required add a
spurious vertical dependence of ΦΣ1 in order deal with the presence of the δ(z) function while
solving the equation.

4The sign of the z-exponent in e−|kR(R)z| is set in order to have that ΦΣ1 vanishes for z → ±∞.
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Eq.s (B.2.6) and (B.2.7) set the relation between Σ1 and ΦΣ1 .We introduce here
an additional constraint on the relation between ΦΣ1 and kR(R) that will be useful
below:

∂

∂R

[
RΦ2

Σ1

(
c2
s,0|kR(R)|
πGΣ0

− 1

)]
= 0. (B.2.8)

This relation can be obtained5 by considering a more accurate version of Eq.
(B.2.6), which instead is only O(|kRR|−1) accurate (see Eq. 17 in Goldreich &
Tremaine (1979), which is O(|kRR|−2) accurate).

B.3 Density waves equation

Our approximations explicitly assume the dependence of the density perturbation
Σ1 on ϕ and t. As a consequence, solving Eq. (B.1.5) implies determining the
radial behaviour of the perturbations.

We rewrite Eq. (B.1.5) as a function ΦΣ1 exploiting Eq. (B.2.7). Under the
assumptions in Sec. B.1, substituting Eq. (3.28) in Eq. (B.1.5), with the aid also
of Eq. (B.2.7) in order to rewrite h1 as a function of ΦΣ1 , we get6

i sgn kR(R)

2πG

∂ΦΣ1

∂R︸ ︷︷ ︸
Σ1

=
∂

∂R


Σ0

D(R)

vR,1︷ ︸︸ ︷[
∂

∂R
+

2mΩ

R(mΩ(R)− ω)

]ΦΣ1 +
i sgn kR(R)c2

s

2πGΣ0

∂ΦΣ1

∂R︸ ︷︷ ︸
h1

+Φm
1



.

(B.3.1)
We define the quantity Ψm with the aim to shorten the expression of the differ-

ential operators acting on Φm
1

1

R

[
R
∂Φm

1

∂R
+

2mΩ

mΩ(R)− ωΦm
1

]
≡ Ψm(R)

R
, (B.3.2)

Far from the corotation resonance, Eq. (B.3.1) can be further simplified, using
the tight-winding assumption: since ΦΣ1 + h1 � ∂R(ΦΣ1 + h1), we can drop
the remaining terms7 containing 2mΩ(ΦΣ1 + h1)/[R(mΩ(R) − ω)] (Goldreich &
Tremaine 1979; Shu 1984; Ward 1986).

In the light of these considerations, by equating the arguments of the radial
derivative on the l.h.s. with the one on the r.h.s., Eq. (B.3.1) can be approxi-

5See Appendix J of Binney & Tremaine 2008 for further details.
6For a matter of clarity, the property in Eq. (B.1.3) allows us to bring mΩ(R)− ω out from

the derivative operator. Anyway we do not make any assumption on ∂RΣ0/D. We also remind
the reader that the term containing vϕ,1 as been dropped as a consequence of our assumptions
when deriving Eq. (B.1.5).

7Artymowicz (1993a) showed then that this approximation is perfectly reasonable for low m
values, but it ends up with neglecting some important terms when the value of m is sufficiently
large.
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mated8 as(
∂2

∂R2
− i sgn kR

2πGΣ0

c2
s

∂

∂R
− D(R)

c2
s

)
ΦΣ1 = i sgn kR

2πGΣ0

c2
s

Ψm(R)

R
. (B.3.3)

It is very easy to recognize that Eq. (B.3.3) is solved by a density wave (ΦΣ1

directly relates with the perturbed density Σ1).

B.4 Solutions far from resonances

Insights about the asymptotic behaviour of the solutions to Eq. (B.3.3) at large
distance from resonances can be successfully gained by studying separately the
wave-like solutions of the homogeneous equation (Φm

1 = 0 → Ψm = 0) and the
non-wave solutions of the non-homogeneous one (Ψm 6= 0).

Regarding the non-wave solution, it can be shown that, at distances |R −
RL|/RL � (cs/ΩR)1/2 and |R − Rc|/Rc � cs/ΩR, the non-wave solution can be
found solving Eq. B.3.3 neglecting the first two terms in the l.h.s.: i.e., shutting
down the effects of pressure (h1) and self-gravity (ΦΣ1), conserving only the effects
introduced by the perturbing gravitational potential (Φm

1 ) Goldreich & Tremaine
(1979). This part of the solution has a radial power-law decrease at large distance
from the resonances (Goldreich & Tremaine 1979; Shu 1984; Ward 1986). In the
non-wave solution Σ1 and Φm

1 are in phase, as a consequence, no angular momen-
tum flux is associated with this solution (Goldreich & Tremaine 1979). Overall,
this condition produces a vanishing net torque for a matter of symmetry (see also
Sec. 3.6).

Regarding wave-like solutions to the homogeneous equation, we can gain some
insights about the dispersion relation of the spiral waves by applying substitution
in Eq. (B.1.4) to Eq. (B.3.3). Rearranging the terms we obtain

[mΩ(R)− ω]2 = κ2 − 2πGΣ0|kR(R)|+ c2
s,0k

2
R(R). (B.4.1)

This equation represents the dispersion relation for spiral density waves (Eq.
B.1.1) in a self-gravitating disc. With m = 0 the disc is stable with respect
to the gravitational instability if

Q ≡ csκ

πGΣ0
> 1, (B.4.2)

obtained requiring the r.h.s. of Eq. (B.4.1) to be positive for all the values of kR.
In the left panel of Fig. B.1 we plot the quantity [mΩ(R)−ω]/κ as a function of

kR/kQ where kQ = πGΣ0/c
2
s . The plot shows three main regimes of propagation

of the density perturbation:

• For values of Q > 1, all values of kR are allowed, but the waves do not
propagate throughout a prohibited region. This region covers the entire
area between the ILR and OLR for values of Q � 1. Furthermore, the left
panel of Fig. B.1 also shows that long-waves (kR/kQ � 1) do not propagate
outside the region between the ILR and the OLR.

8Further simplifications have been done by assuming that the perturbation is tightly wound,
which allows us to move slowly varying quantities in and out the radial derivative sign.
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• For values of Q = 1, waves can propagate up to the corotation resonance,
and no prohibited region is present.

• For values of Q < 1, some wavelenghts kR provide (mΩ − ω)2 < 0, im-
plying exponential growth of the perturbation, causing the disc material
to clump setting in the gravitational collapse of the perturbations at those
wavelengths.

We can study the group velocity cg of the wave (Goldreich & Tremaine 1979):

cg ≡
∂ω

∂kR
= sgn kR

πGΣ0 − |kR(R)|c2
s

mΩ(R)− ω . (B.4.3)

The group velocity sets the direction of propagation of the perturbation. From
Eq. (B.4.3) we see that it depends on three main properties of the wave and
of the disc. Firstly, the sign of kR(R), i.e. whether the spiral wave is leading
or trailing. Secondly, it depends on whether the wave is a gravity or a pressure
wave: i.e., whether pressure effects (c2

s ) are dominant with respect to gravity ones
(πGΣ0). Finally, on the wavelength of the perturbation: kR � kQ, are short
waves kR � kQ are long waves.

Looking at the power of kR terms in Eq. (B.4.1) it is easy to understand that
for small kR (long waves), the dispersion relation is dominated by the self-gravity
term, while for large kR (short waves) the dispersion relation is dominated by the
pressure term.

It is interesting to note that the solutions to the homogeneous equation provide
predictions that do not depend on the mechanisms that have excited the wave,
describing only how both leading and trailing perturbations propagate throughout
the disc. However, studying in more detail the solutions at resonant locations, it
can be shown (see Sec. B.5.1 and B.5.2) that no leading perturbations are excited
by the perturbing potential (Goldreich & Tremaine 1979; Meyer-Vernet & Sicardy
1987). Therefore, density perturbations are excited as trailing waves with long
wavelengths (kR ∼ 0) around R ≈ RL. After the excitation, they propagate
toward the CR and are reflected at the boundary with the forbidden zone where
cg changes sign. Then, they propagate away from the CR at shorter wavelengths
as pressure waves. In the right panel of Fig. B.1 a sketch of the wave direction of
propagation we just discussed can be found.

B.5 Density waves

The simplified approach used to study the properties of wave and non-wave solu-
tions cannot be applied in domains containing resonant regions, where the coupling
between the disc and the perturbing satellite is stronger. In these specific regions,
the amplitude of both wave and non-wave like solutions to Eq. (B.3.3) is set by
the effects of the perturbing potential Φm

1 .

The solutions to Eq. (B.3.3) is given in integral form by Goldreich & Tremaine
(1979). Nevertheless, we find more instructive to separate long gravity waves
(i.e. kR � πGΣ0/c

2
s ) and short pressure waves (kR � πGΣ0/c

2
s ) following the
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Figure B.1: Left panel: |mΩ(R)−ω|/κ as a function of kR(R)/kQ where kQ = πGΣ0/c
2
s

for different values of Q. Right panel: sketch of the direction of long and short
trailing waves; the yellow shaded area represents the region where waves cannot
propagate because the wave group velocity changes sign. The forbidden region has
nothing to do with the condition κ2 + c2sk

2
R(R) − 2πGΣ0|kR(R)| < 0, that instead

sets the wavelengths for which the perturbations are gravitationally unstable.

discussion given by Shu (1984) and Ward (1986), respectively, but using a unified
notation9.

B.5.1 Long gravity waves

We want to find the solution to Eq. (B.3.3) neglecting the pressure term, i.e. the
term ∂2/∂R2. The equation we want to solve is

∂ΦΣ1

∂R
− isgn kRD(R)

2πGΣ0
ΦΣ1 = −Ψm(R)

R
. (B.5.1)

We now study the solution at Lindblad resonances. To do so, we substitute R
with the variable x that satisfies

x =
R−RL
RL

. (B.5.2)

We approximate D in the region of the resonance RL as

D(R) = (R−RL)
∂

∂R
D(RL) = xRL

∂

∂R
D(RL). (B.5.3)

We define the quantity

D ≡ RL
∣∣∣∣ ∂∂RD(RL)

∣∣∣∣ , (B.5.4)

so that we can write D(R) = εDx, where ε = ±1 at ILRs and at OLRs respectively
(the sign of ε depends on the sign of ∂RD). Eq. (B.5.1) becomes10(

∂

∂x
− isgn kRRLεD

2πGΣ0
x

)
ΦΣ1 = −Ψm(RL). (B.5.5)

9See also the textbook Hahn (2009).
10In the r.h.s. Ψm(RL)/(1 + x) ≈ Ψm(RL) since 1 + x ≈ 1.
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This equation can be solved using the integrating factor technique (Shu 1984).
Indeed, it can be shown that for a differential equation of the type

dy

dx
+ p(x)y = Q(x), (B.5.6)

its solution y(x) is given by

y(x) = e−P(x)

∫ x

C0

eP(t)Q(t)dt, (B.5.7)

where P(x) =
∫ x

p(t)dt, C0 is an integration constant. Applying this technique
to Eq. (B.5.5), we firstly identify the integrating factor P(x) as

P(x) ≡
∫ x

−isgn kRRLεD
2πGΣ0

t dt = −isgn kRRLεD
2πGΣ0

x2

2
. (B.5.8)

We simplify the notation making the substitution

u = ξ

√
RLD

2πGΣ0

x√
2
, (B.5.9)

where ξ = sgn(εkR). The general solution to Eq. (B.5.5) is

ΦΣ1(u) = −

Ψm(RL)ξ

(√
RLD

4πGΣ0

)−1

eiξu
2

∫ u

C0

e−iξt
2
dt

 ei(mφ−ωt). (B.5.10)

We define Hξ(u)

Hξ(u) ≡ 1√
π
eiξu

2

∫ u

C0

e−iξt
2
dt. (B.5.11)

Hξ can be expressed as a function of the Fresnel type integrals (Meyer-Vernet &
Sicardy 1987). In Fig. (B.2) a plot of the function H+ can be found. H− can
be obtained exploiting the complex conjugate operation as H− = H?

+. Imposing
radiative boundary conditions at Lindblad resonances, so that waves can only
radiate away from the excitation region, it can be shown that no leading waves
emerge from Lindblad resonances. This intrinsically sets ξ = ε. As previously
shown, no waves can be found in the region of u < 0. It can be shown that
requiring the real part in Eq. (B.5.11) to vanish for u→ −∞ implies C0 = −∞.

The solution to Eq. (B.5.5) can be now written as

ΦΣ1 = −2π

√
GΣ0

RLD
ξΨm(RL)Hξ(u)ei(mφ−ωt), (B.5.12)

Eq. (B.5.12) is a wave for u > 0, while the non-wave part vanishes for u → −∞
(see the left panel of B.2).

Far from the resonance, when u → ∞ it can be shown that the asymptotic
behaviour of Eq. (B.5.12) is (Shu 1984):

ΦΣ1 ∼ −ξ2π
√
GΣ0

RLD
Ψm(RL) exp

[
iξ
(
u2 +

π

4

)]
ei(mφ−ωt), foru→∞. (B.5.13)
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.

Figure B.2: Left panel: Plot of the function H+ function in Eq. (B.5.11). The blue
line represents Re(H+), the orange one Im(H+). H− can be obtained inverting
the sign of Im(H+), keeping in mind that u ∝ ξx, so that the wavy part is be in
the negative side of the physical spatial coordinate x. Waves propagate away from
Lindblad resonances x = 0 toward the corotation region. Right Panel: function F
in Eq. (B.5.22) for ε = +1 (i.e., ILR). Again, the blue curve represents Re(F ) and
the orange one ImF . In this case, the waves propagate away from the resonance at
z = 0 in the opposite direction with respect to the corotation resonance.

A comparison with Eq. (B.2.1) allows us to finally define the asymptotic amplitude
of the self-gravitating potential wave far from the resonance Vg ≡ |ΦΣ1(∞)|, so
that Vg reads

Vg = 2π

√
GΣ0

RLD
Ψm(RL). (B.5.14)

It should be noted that Vg ≡ |ΦΣ1 | represents the slowly varying component of
the radial part in the WKB form of ΦΣ1 (see Eq. B.1.1)

B.5.2 Short pressure waves

This time we neglect the self-gravitating part in Eq. (B.3.1), i.e. the ∂/∂R term
in Eq. (B.3.3). In this context, ΦΣ1 has no physical meaning, since we are here
neglecting the effects of self gravity. We restate Eq. (B.3.3) using the substitution
(c2

s/Σ0)Σ1 = RL∂Rζ, where ζ is a generic function of R.

Σ0

c2
s

RL
∂ζ

∂R
=

∂

∂R

[
Σ0

D(R)

∂

∂R

(
RL

∂ζ

∂R
+

Ψm(R)

R

)]
. (B.5.15)

Equating the arguments of the radial derivative on the l.h.s. with the one on the
r.h.s. we end up with the following equation8

RL
∂2ζ

∂R2
− D(R)

c2
s

RLζ = −Ψm(R)

R
. (B.5.16)

As in the previous section, we make the substitution R → x as prescribed in Eq.
(B.5.2). Using then Eq. (B.5.4), we get

∂2ζ

∂x2
− εR2

LDx
c2

s

ζ = −Ψm(RL). (B.5.17)
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We substitute z ≡ ε(R2
LD/c2

s )1/3x. Eq. (B.5.17) becomes

∂2ζ

∂z2
− zζ = −Ψm(RL)

(
c2

s

R2
LD

)2/3

. (B.5.18)

The general solution to this equation is

ζ(z) = πΨm(RL)

(
c2

s

R2
LD

)2/3 [
Ai(z)

(
a+

∫ z

0
Bi(t) dt

)
− Bi(z)

(
b+

∫ z

0
Ai(t) dt

)]
ei(mφ−ωt),

(B.5.19)
where Ai(z) and Bi(z) are Airy functions. We apply then the radiative boundary
condition (again no leading waves satisfy this condition), so that waves can only
radiate away from the excitation region and we prescribe that the solution vanishes
for z → ∞ due to the considerations on the direction of propagation of pressure
waves we did in Sec. B.4. It can be shown that this procedure leads to a = iε and
b = −1/3 (Ward 1986). The solution to Eq. (B.5.18) is

ζ(z) = πΨm(RL)

(
c2

s

R2
LD

)2/3

[iεAi(z) + Gi(z)] ei(mφ−ωt), (B.5.20)

where Gi(z) is the Scorer function. We can now express Σ1 as

c2
s

Σ1

Σ0
,
∂ζ

∂z

∂z

∂x
= πΨm(RL)

(
c2

s

R2
LD

)1/3

F (z)ei(mφ−ωt), (B.5.21)

where F (z) is given by (see also Fig. B.2)

F (z) = i
∂

∂z
Ai(z) + ε

∂

∂z
Gi(z). (B.5.22)

Using the properties of ∂zAi(z) and ∂zGi(z) (Abramowitz & Stegun 1968) it can
be shown that for z → −∞

F (z) ∼ 1√
π
|z|1/4

{
i cos

[
2

3
z3/2 +

π

4

]
+ ε sin

[
2

3
z3/2 +

π

4

]}
=

= i
1√
π
|z|1/4 exp

[
−iε

(
2

3
z3/2 +

π

4

)]
. (B.5.23)

It can be shown that the asymptotic behaviour of Σ1 far away from the resonance
is (Ward 1986):

Σ1 ∼ i
√
πΣ0Ψm

c2
s

(
c2

s

R2
LD

)1/3

|z|1/4 exp

[
−iε

(
2

3
z3/2 +

π

4

)]
ei(mφ−ωt), for z → −∞,

(B.5.24)
which is a wave with an amplitude Ap ≡ |Σ1(−∞)| that, recasted as a function of
x, reads

Ap =
√
π

Σ0Ψm

c2
s

(
c2

s

R2
LD

)1/4

|x|1/4. (B.5.25)

It should be noticed that Ap ≡ |Σ1| represents the slowly varying component of
the radial part in the WKB form of Σ1 (see Eq. B.1.1).
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B.6 Angular momentum transport by density waves

The theoretical framework regarding the angular momentum transport provided
by spiral waves propagating in discs was originally developed by Lynden-Bell
& Kalnajs (1972) for spiral galaxies. Exploiting their formalism, Goldreich &
Tremaine (1979) studied the transport of angular momentum in discs where a
perturbing satellite potential is responsible for the excitation of the density spiral
waves. The angular momentum flux due to the disc self-gravity at a specific radius
R carried by a spiral wave is given by

Fg ≡
1

4πG

∫ 2π

0

∫ ∞
−∞

Re

(
∂ΦΣ1

∂ϕ

)
Re

(
∂ΦΣ1

∂R

)
rdz dϕ = sgn kR

mR|ΦΣ1 |2
4G

.

(B.6.1)
The advective flux of angular momentum due to the radial motion of material
across a non-zero radial gradient of angular momentum carried by a spiral density
wave is given instead by11

Fa ≡ R2Σ0

∫ 2π

0
Re(vR,1) Re(vϕ,1) dϕ = −πmRΣ0kR

D

∣∣∣∣ΦΣ1 +
c2

s

Σ0
Σ1

∣∣∣∣2 . (B.6.2)

For a self-gravitating disc, exploiting the WKB form of the quantities involved in
these equations, and using D = −c2

sk
2
R + 2πGΣ0|kR| from the dispersion relation

in Eq. (B.4.1) to eliminate D in Eq. (B.6.2), it is possible to reduce the total
angular momentum flux to

Ftot ≡ Fg + Fa = − sgn kR
mR|ΦΣ1 |2

4G

(
1− c2

s |kR|
πGΣ0

)
. (B.6.3)

Comparing Eq. (B.2.8) and Eq. (B.6.3) we see that the angular momentum flux
carried by a free wave is conserved throughout the entire disc.

As previously mentioned, density waves are excited at Lindblad resonances
where the exchange of angular momentum between the satellite and the disc is
mostly effective. The angular momentum is then transported away by the density
waves. Due to the conservation of the angular momentum during the disc-satellite
interaction, in absence of dissipation, the angular momentum flux the wave carries
away from its excitation region must equal the tidal torque the planet exerts on
the disc.

We can compute the angular momentum flux carried by the wave excited by
an m-barred perturbing potential by deriving the asymptotic amplitudes of pure
gravity and pressure waves Vg (Eq. B.5.14) and Ap (Eq. B.5.25), respectively,
and substituting them into Eq.s (B.6.1) and (B.6.2).

We rewrite the term in the bracket of Eq. (B.6.3) as 1−|kR|/kQ. For |kR| � kQ
we are in the regime of long gravity waves, therefore we can neglect the term
|kR|/kQ and substitute |ΦΣ1 | with the asymptotic amplitude of gravity wave |Vg|
in Eq. (B.5.14). The asymptotic amplitude of the gravity wave reads:

|ΦΣ1 | ≡ |Vg| = 2π

√
GΣ0

RLD
|Ψm(RL)| (B.6.4)

11A detailed derivation of both Eq.s (B.6.1) and (B.6.2) can be found in Hahn (2009).



194 B. Solutions at Lindblad resonant locations

Substituting Eq. (B.6.4) into Eq. (B.6.3), neglecting |kR|/kQ � 1 the angular
momentum flux across RL reads:

Ftot,g = − sgn kR
π2mΣ0

D |Ψm(RL)|2, (B.6.5)

where D is defined in Eq. (3.47) (see also Eq. (B.5.4).
On the other hand, when |kR|/kQ � 1, i.e. in the regime of short pressure

waves, or in general when self-gravity is neglected, the asymptotic amplitude of
the density wave is given by (Eq. B.5.25):

|Σ1| ≡ Ap =
√
π

Σ0|Ψm|
c2

s

(
c2

s

R2
LD

)1/4 ∣∣∣∣R−RLRL

∣∣∣∣1/4 . (B.6.6)

Substituting |Σ1| in Eq. (B.6.3) and neglecting the first term in the bracket since
|kR|/kQ � 1, we obtain12 the angular momentum flux for short pressure waves at
RL

Ftot,p =
mπ2Σ0

D |Ψm(RL)|2, (B.6.7)

It should be noticed that the total flux for short-pressure waves is purely advec-
tive Ftot,p = Fa. Eq.s (B.6.5) and (B.6.7) interestingly have the same magnitude
but different sign. Indeed, the angular momentum is transferred at resonant loca-
tions by the perturbing potential Φm

1 . This excites a low kR wave that transports
the angular momentum away from the excitation region; the direction of propaga-
tion of the wave depends on the magnitude of kR through its group velocity (Eq.
B.4.3), as well as the angular momentum flux to it associated.

12To do so, we note that εD(R − RL)/RL = −c2sk2
R, and recall the relationship between ΦΣ1

and Σ1 derived in Eq. B.2.6.



Appendix

C
Secular eccentricity evolu-

tion during disc-planet in-
teraction

With reference to Chapter 7 we report here two further developments of the model
provided in Sec. 7.4 concerning the limiting case q = 0 and analytical approxima-
tions of the pericentre phase evolution in three limiting cases.

C.1 The limiting case q = 0

To understand the physical meaning of the two eigen-modes, it is instructive to
consider the limit q = 0. This case is particularly interesting from a physical
point of view because is the case in which the second outer planet has negligible
mass. Thus it constitutes the reference situation for all those simulations in which
the binary is kept fixed on its initial orbit with constant orbital eccentricity and
semi-major axis (D’Angelo et al. 2006; Müller & Kley 2013; Duffell & Dong 2015;
Miranda et al. 2017; Thun et al. 2017). The problem becomes in fact the classical
restricted three body problem in which a test particle orbits a binary object.

To further simplify the equations we assume also α � 1, so that β ≈ 5/4α
(Murray & Dermott 1999). In this limit the eigen-frequencies reads

ωs0 = 0, (C.1.1)

ωf0 = Ωsec

√
α, (C.1.2)

while the non-unit component of the eigenvectors η reads

ηs0 =
4

5α
, (C.1.3)

ηf0 = 0. (C.1.4)

With reference to Eq. (7.18), these values for eigen-frequencies and eigen-vectors
imply the following two limiting cases: first, the system is completely in the fast

195
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f mode, the inner planet (Mp) has ep = 0 while the outer planet (for this case
Md = 0) orbits with arbitrary eccentricity with a pericentre precession frequency
given by Eq. C.1.2, no oscillations of the outer-planet eccentricity are observed.
Second, the system is completely in the slow s mode, the inner planet has an
eccentricity ep = C1ηs0 6= 0 while the outer one orbiting with an eccentricity ed =
ep/ηs0 = C1, its pericentre phase does not experience any form of precession, no
oscillations of the outer-planet eccentricity are observed. In both cases, obviously
the inner planet pericentre phase do not experience any precession since in this
limit it does not feel the the presence of the outer planet at all.

In a mixed situation (the system is both in the slow and in the fast mode, i.e.
ep 6= 0, ed 6= ep/ηs0) if ed > ep/ηs the outer planet will experience a complete
precession (the pericentre phase of the outer planet will complete a revolution of
360◦ around the central star) with a precession rate given by C.1.2. In contrast
if ed < ep/ηs0, the outer planet librates around the pericentre phase of the inner
planet spanning a range of phases that becomes progressively smaller as ed →
ep/ηs0.

We can further expand ωf0 in Eq. C.1.2 expliciting Ωsec

ωf0 =
3

4
α7/2Ωp

Mp

M?
, (C.1.5)

associated with a precession period tprec of the outer planet pericentre phase given
by

tprec =
4

3
α−7/2

(
Mp

M?

)−1

torb, (C.1.6)

which is perfectly consistent with the precession rate predicted by Moriwaki &
Nakagawa (2004) for the restricted three body problem apart from higher order
corrections in e in the expansion of the perturbing potential and with the inter-
pretation of the precession frequency in the fixed planet simulations in Miranda
et al. (2017) and Thun et al. (2017) (equivalent to the q = 0 case). Furthermore,
ep/ηs0 has the equivalent role of eforced in Moriwaki & Nakagawa (2004) and also
in this case the two expressions are perfectly consistent apart from higher order
corrections in e in the expansion of the perturbing potential.

C.2 Phase evolution

In this section we will present some analytical approximations of Eq. (7.26) and
(7.27) through which it will be possible to obtain Eq. (7.28). In order to simplify
the notation, we will refer to the modulus part of the eigen-modes as A and B,
implying that A = ηsC1(t) and B = ηfC2(t) for the planet equations, and that
A = C1(t) and B = C2(t) for the disc ones. With this simplifying substitution Eq.
(7.21) reads

|E|eiΦ = Aeiωst + Beiωf t, (C.2.1)

which can be restated also as:

|E|eiΦ = ei
ωs+ωf

2
t (A+ B)

[
cos

(
ωf − ωs

2
t

)
+ i
B −A
A+ B sin

(
ωf − ωs

2
t

)]
︸ ︷︷ ︸

(A+B) cos(∆ω
2
t)+i(B−A) sin(∆ω

2
t) =Ae−i

∆ω
2 t+Bei

∆ω
2 t

. (C.2.2)
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We can obtain the pericentre phase Φ applying the logarithm on both sides and
taking only the imaginary part:

Φ = arg(|E|eiΦ) = Im
[
log
(
Aeiωst + Beiωf t

)]
(C.2.3)

which gives1:

Φ =
ωs

2
t+

ωf

2
t+ Im

{
log

[
cos

(
ωf − ωs

2
t

)
+ i
B −A
A+ B sin

(
ωf − ωs

2
t

)]}
. (C.2.4)

Expanding Eq. (C.2.4) to the first order in A/B → {0, 1,∞} one then gets

Φ ≈



ωst+

≈ BA sin(∆ωt)︷ ︸︸ ︷
Im

[
log

(
1 +
B
Ae

i(ωf−ωs)t

)]
, if B � A

ωs

2
t+

ωf

2
t+
B2 −A2

4AB tan

(
∆ωt

2

)
, if A ∼ B

ωft+ Im

[
log

(
1 +
A
B e
−i(ωf−ωs)t

)]
︸ ︷︷ ︸

≈−AB sin(∆ωt)

, if A � B

, (C.2.5)

where ∆ω = ωf − ωs. In the limiting cases A � B and B � A, Eq. (C.2.5)
tells us that the pericentre precesses linearly with the rate of the dominant mode;
however, small periodic oscillations with the beat frequency of the two eigen-modes
are superimosed to the linear trend.

1Obtained exploiting log x = 1/2 log x+ 1/2 log x.
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Appendix

D
Smoothed Particle Hydro-

dynamics

The acronym SPH (Smoothed Particle Hydrodynamics) was firstly used in Gin-
gold & Monaghan (1977) and, independently, in Lucy (1977) as a numerical ap-
proach for non-axisymmetric problems in astrophysics involving fluid dynamics.

The algorithm discretises the fluid using a set of moving fluid particles storing
information about the fluid properties (position, velocity, density, internal energy).
Fluid particles update their properties using specific discretised equations at each
timestep and are allowed to move under the action of fluid forces (e.g. pressure,
viscosity or fluid self-gravity) and external ones (like the gravity of point masses).

Fluid particles perfectly comove with the fluid. This causes the advection terms
to vanish, making in fact the description of the fluid properties Lagrangian. The
Lagrangian formalism also enables the conservation of linear momentum, energy
and other physical invariants, that instead is not always easy to be guaranteed in
grid codes.

Furthermore, other “attractive features” of SPH are (Monaghan 2005):

1. SPH allows the exact treatment of pure advection, which for grid methods
needs a moving mesh with a specific geometry.

2. Interface problems can be treated easily in SPH using different sets of parti-
cles, which is not the case for finite difference methods (e.g. like dust + gas
mixtures).

3. Particle methods like SPH are the best way to treat fractures and fragmen-
tations of solids.

4. The fact that resolution can be made dependent from position and time:
SPH invests computational power only where particles are present.

5. The inclusion of complex microscopical physics is made quite simple by the
close similarity of SPH to molecular dynamics.
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Even though SPH has been originally developed to study the fluid dynamics in
astrophysical environment, it has gained through the years a lot of popularity also
outside the field. Indeed, it finds many applications also in the film and videogame
industry, engineering and geophysics. We note that for these characteristics, the
SPH algorithm represents a good example of a tool, developed for pure research,
that later has been broadly employed for commercial purposes beyond the scope
it was originally designed for.

In this Appendix, we rapidly review SPH fundamental concepts and equations.
For a deeper discussion we refer to Monaghan (2005) and Price (2012) as thorough
reviews on the subject. The details about the implementation of the equations in
the code phantom, that we used as an SPH code throughout this thesis, can be
found in Price et al. (2018a).

D.1 Computing continous quantities from point par-
ticles: interpolation theory

We can “smooth” the value of a quantity A over a kernel of width h as follows

A(r) =

∫
A(r′)W (r − r′, h)dr′, (D.1.1)

where W (r − r′, h) is the so called “Smoothing kernel”, which acts as a sort
of weight function over a lengthscale h (called smoothing length) and has the
dimension of the inverse of a volume. This function must have two main properties:∫

W (r − r′, h)dr′ = 1, (D.1.2)

lim
h→0

W (r − r′, h) = δ(r − r′). (D.1.3)

The operation of “smoothing” the quantity A is equivalent to compute a weighted
average of A(r) in the surroundings of r.

If we do not know the value of A over a continuum domain of points r′, but
only its value at a discrete set of points, we can anyway compute A(r) discretizing
Eq. (D.1.1) as follows

A(r) =

∫ A(r′)

ρ(r′)
W (r − r′, h)ρ(r′)dr′ = (D.1.4)

≈
N∑
b=1

mb
A(rb)

ρ(rb)
W (r − rb, h) (D.1.5)

where we used mb = ρ(r′)dr′ and it represents the mass of the b-th particle. Using
equation (D.1.5) and substituting A with ρ we obtain the following SPH density
estimate for the a-th particle:

ρa =

N∑
b=1

mbW (ra − rb, ha). (D.1.6)
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The smoothing kernel W (r− rb, h) used in SPH are generally compact support
functions. This implies that only a limited number of neighbours contributes to
the density estimate at a given location1. As a consequence, the choice of h plays
a fundamental role in determining the accuracy of the density estimate. Indeed, if
we used a constant h, when particles are in a sufficiently sparse configuration, some
of them might have no neighbours at all. One possible solution to the issue is to
provide a self-consistent estimate of h and ρ, which also guarantees the algorithm
to be fully enforce the conservation of linear momentum and energy, and that the
number of particles within the kernel is approximately the same for each particle.
In 3D SPH, this can be achieved solving simultaneously Eq. (D.1.6) and (see Sec.
2.1.4 of Price et al. 2018a for an implementation of the numerical method)

h(ra) = η

(
ma

ρa

)1/3

(D.1.7)

where η is an arbitary constant. For compact support kernels, η qualitatively sets
the number of neighbours involved in the density estimate for a given particle (see
Price 2012 for further details).

Note that the density estimate only relies on the location of particles. As a
consequence, there is no need to study the time evolution of the density: as far
as we know the position of particles we can always compute the instantaneous
density.

D.2 Equations of motion

The motion of the a-th particle is determined by pressure, viscous and gravita-
tional forces, the evolution of its velocity va reads

dvia
dt

= −
∑
b

mb

[
Θij
a

Ωaρ2
a

∇jaWab(ha) +
Θij
b

Ωbρ
2
b

∇jaWab(hb)

]
+ f ipot, (D.2.1)

where Wab is a shortcoming for Wab = W (ra − rb, ha), fi accounts for the con-
tribution of gravity forces and other external forces, Θij is the pressure-viscous
stress tensor:

Θij
a = −(Pa + qAV

a )δij +

[(
ζa −

2

3
ηa

)
∂vka
∂xka

δij + ηa

(
∂via

∂xja
+
∂vja
∂xia

)]
︸ ︷︷ ︸

Navier−Stokes

. (D.2.2)

The term Ωa is related to the gradient of the smoothing length, it is given by:

Ωa = 1−
∑
c

mc
∂Wac(ha)

∂ha

∂ha
∂ρa

, (D.2.3)

1We note that, in order to prevent misleading interpretations of the physical interpretation
of the algorithm, one should always keep in mind the first Golden Rule of SPH:

“However, if you want to find a physical interpretation of an SPH equation, it is always best to
assume the kernel is a Gaussian.” Monaghan (1992)
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it accounts for the variation of h with the density and becomes Ω = 1 if a constant
h prescription is adopted. Equation (D.2.1) can be obtained using variational
principles and the Lagrangian for hydrodynamics introduced by Eckart (1960).
The expression of Ωa follows from the imposition of the constraint ρah

3
a−η3ma = 0

in the Lagrangian, that is equivalent to require that the mass entangled by the
kernel is constant (Springel & Hernquist 2002)2.

The term qAV
a in Eq. (D.2.1) is the “artificial viscosity” term, that is required in

SPH to properly resolve discontinuities in the velocity field (i.e. shocks), it reads:

qAVa =

{
1
2ρavsig,a|vab · r̂ab|, vab · r̂ab < 0

0, vab · r̂ab ≥ 0
, (D.2.4)

where r̂ab = (rb − ra)/|rb − ra| is the unit vector in the direction joining the
particles, vab = vb−va and vsig represents the signal speed in the fluid, it is given
by

vsig,a = αAV
a cS,a + βAV|vab · r̂ab|. (D.2.5)

The term αAV
a ∈ [0, 1] is the artificial viscosity parameter and βAV = 2 is in-

troduced to avoid particle interpenetration (imagine two fluid fronts shocking: a
shock interface between the two must form, particles cannot interpenetrate and
freely move on the other side of the shock). We note that artificial viscosity is
active only when particles are approaching (vab · r̂ab < 0), while it vanishes when
particles are receiding. Since artificial viscosity is a numerical tool introduced ad
hoc to resolve shocks, it is generally desirable to keep it as low as possible. For
this reason, often a switch that regulates the value of αAV

a is introduced, in order
to increase its value in the regions where the fluid is shocking and keep it as low
as possible elsewhere (see Morris & Monaghan 1997 and Cullen & Dehnen 2010
for two possible implementations of the switch).

Finally Pa is the fluid pressure at the location of the a-th particle. It can be
prescribed through an equation of state Pa(ρa,xa) (where xa is a spatial coordi-
nate), or it can be selfconsitently obtained evolving the specific internal energy u
of the fluid (energy per unit mass)

dua
dt

=
Pa

Ωaρ2
a

∑
b

mb(va − vb) · ∇aWab(ha) + L, (D.2.6)

where L represents the contribution of all the internal and external sources of
heating and cooling. The system of equations is closed in this case prescribing
P (ρ, u)

Pa = (γ − 1)ρaua, (D.2.7)

where γ is the adiabatic index.

2Indeed, fixed a number of particle Npart of mass mp the mass entangled by the kernel is

4

3
πρh3 = mpNpart
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The position of the a-th particle is then updated at each step integrating the
following equation:

dxa
dt

= va. (D.2.8)

We note however that in this thesis we never evolved the internal energy through
Eq. (D.2.6), we always relied on a locally isothermal equation of state.

D.3 Dust evolution: the one fluid algorithm

There are essentially two ways to simulate the coupled evolution of a dust + gas
mixture using SPH: two fluid and one fluid approach.

The first consists in the addition of a second fluid, whose evolution is ruled
by an indipendent set of equations (where pressure and viscous terms do not
appear), which is coupled to the gas equations through a drag term (Laibe &
Price 2012a,b). However, the two fluid algorithm suffers an important slowdown
when the dust is in the regime of strong coupling with the gas, since the small
stopping time constrains the length of the timestep in the simulation. We did not
use this algorithm throughout this thesis, its description and implementation can
be found in Price et al. (2018a).

Concerning the second, Laibe & Price (2014a) re-formulated the two fluid hy-
drodynamical formalism showing that the evolution of the a gas + dust mixture
could be effectively described as a single fluid composed by a fraction 1 − ε by
gas and a fraction ε of dust. This formulation prescribes the equations for the
evolution of:

1. The total density of dust and gas ρtot = ρg + ρd.

2. The barycentric velocity of the mixture vbar = (vgρg + vdρd)/ρtot (see also
Eq. 2.57).

3. The dust fraction ε = ρd/ρtot (so that ρg = (1− ε)ρtot and ρd = ερtot).

4. The velocity difference ∆v between gas and dust.

The most interesting aspect of this formalism is that the case of strong coupling
St� 1 do not cause the simulation to slow down, instead it allows to further
simplify the equations: |∆v|/|vbar| � 1 and ∆v is given by the terminal velocity
approximation, introduced in Eq. (2.58).

Laibe & Price (2014b) described the SPH equations for the one fluid approach.
The one fluid formulation is in principle exact, but the numerical implementation
has some problems in reproducing the streaming of dust particles in the weak
coupling limit. For this reason in Price & Laibe (2015) the numerical SPH im-
plementation of the terminal velocity approximation is provided, being much less
computationally expensive. This implies that the numerical SPH implementation
of the one fluid formalism is adequate only for the description of strongly coupled
dust grains (St� 1, i.e. adst . 1 mm for typical disc parameters).
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Within this approximation, the equations ruling the evolution of the dust gas
mixture are exactly the same as those presented in the previous section (substi-
tuting ρ = ρtot with the total density and v = vbar with the baricentric veloc-
ity). The fluid moves as if it was composed only by gas, with the only difference
that the effective sound speed is slightly reduced by the presence of the dust3

c̄2
s = c2

s/(1 + ρd/ρg) since dust grains are not contributing to the pressure (Laibe
& Price 2014a). The difference between dust and gas velocities is obtained from
the pressure gradient, as prescribed in Eq. (2.58) ∆v = ts∇p/ρg, while the evolu-
tion of the dust fraction satisfies the following equation4

dε

dt
= −1

ρ
∇ · (εts∇p) . (D.3.1)

The previous equation is discretised as follows

dεa
dt

= −
∑
b

mb

[
εa(1− εa)ts,a

Ωaρa
∆aa · ∇aWab(ha)+

εb(1− εb)ts,b
Ωbρb

∆ab · ∇aWab(hb)

]
,

(D.3.2)
where ∆ai = −aig represents the difference of the accelerations of dust and gas
(i.e. the pressure gradient and viscous terms) so that aig reads

aig = − 1

1− εa
∑
b

mb

[
Pa + qAVa

Ωaρ2
a

∇aWab(ha) +
Pb + qAVb

Ωbρ
2
b

∇aWab(hb)

]
, (D.3.3)

where the factor 1− εa comes from the fact that this acceleration acts only on the
gas contributing by an amount (1 − ε)a to the overall acceleration of the dust +
gas mixture.

Recently Ballabio et al. (2018) provided a new formulation of the dust fraction
in order to avoid that numerical fluctuations lead to ε > 1.

D.4 Code Units

The simulations presented in chapter 6 are completely scalable. We have chosen
the parameters in order to allow the easy conversion to physical units. Our setup
has indeed Mtot = 1, a = 1 and G = 1; this gives tbin = 2π, where tbin =
2π(GM/a3)−1/2. Once the physical total mass of the binary Mtot and the binary
distance a have been fixed, lengths lcode, time tcode, velocity vcode, density ρcode,
surface density Σcode and accretion rate Ṁcode in code units have the following

3We note indeed that
∇P
ρtot

=
1

1 + ρd/ρg

∇P
ρg

.

4Note that using a globally isothermal equation of state P = csρg = cs(1−ε)ρtot and constant
density, Eq. (D.3.1) becomes a diffusion equation

dε

dt
= −∇ ·

(
εtsc

2
s∇ε

)
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rescaling to physical units:

lphys = 1.496× 1013 aau · lcode cm = 3.085× 1018 apc · lcode cm, (D.4.1)

tphys =
1

2π

√
a3

au

Mtot,M�
· tcode yr, (D.4.2)

= 1.487× 103

√
a3

pc

Mtot,108·M�
· tcode yr, (D.4.3)

vphys = 29.78

√
Mtot,M�

aau
· vcode km s−1 (D.4.4)

= 6.561× 102

√
Mtot,108·M�

apc
· vcode km s−1, (D.4.5)

ρphys = 5.941× 10−6Mtot,M�

a3
au

· ρcode g cm−3 (D.4.6)

= 6.435× 10−14
Mtot,108·M�

a3
pc

· ρcode g cm−3, (D.4.7)

Σphys = 8.887× 107Mtot,M�

a2
au

· Σcode g cm−2 (D.4.8)

= 1.969× 105
Mtot,108·M�

a2
pc

· Σcode g cm−2, (D.4.9)

Ṁphys = 2π ·
√
M3

tot,M�

a3
au

· Ṁcode M� yr−1, (D.4.10)

= 6.724× 104

√√√√M3
tot,108·M�
a3

pc

· Ṁcode M� yr−1, (D.4.11)

where lphys is the physical length, tphys is the physical time, vphys is the physical
speed, ρphys the physical density, Σphys the physical surface densisty of the disc
and Mphys the physical accretion rate; aau and apc are the binary separation in
au and pc units, respectively; Mtot,M� and Mtot,108·M� are the total mass of the
binary in solar masses, M�, and 108M� units, respectively.
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Pérez L. M., Isella A., Carpenter J. M., Chandler C. J., 2014, ApJ, 783, L13

Perez S., et al., 2015, ApJ, 798, 85
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