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Abstract

We use analytical theory and numerical simulation to study the role of short-range

hydrodynamics (lubrication forces) in determining the lifetime of colloidal bonds. Such

insight is useful in understanding many aspects of colloidal systems, such as gelation,

nucleation, yielding and rejuvenation, and as a paradigm for diffusion-controlled disso-

ciation reactions in liquids. Our model system consists of spherical particles with an

attractive square-well potential of variable width δ. We find that the predicted colloidal

bond lifetimes can be substantially increased upon inclusion of lubrication forces, to an

extent which depends on the attraction range. An analytical law is derived which pre-

dicts this enhancement as a function of the well width, in quantitative agreement with

simulation data. For sufficiently short-ranged attraction, lubrication forces dramati-

cally enhance the drag on two bonded particles, leading to reduced effective diffusion

coefficients and hence longer bond lifetimes. This effect disappears upon increasing

the width of the attractive wells beyond a length-scale comparable to the particle di-

ameter. The simulation further suggests that the role of lubrication forces becomes

less important as confinement is increased, i.e. upon approaching the supersaturation

limit, φ ≈ 0.5, where caging effects become important. Our findings complement recent
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studies of the role of long-range hydrodynamic interactions, contributing to a compre-

hensive description of the subtle link between hydrodynamics and bonding in attractive

colloids.

Introduction

Yield-stress materials, such as gels, are ubiquitous in diverse areas of industry and nature.1

Their complex mechanical properties make them suitable for applications such as in health-

care, cosmetics, and foodstuffs,2 while simultaneously making manufacture and processing

challenging and empirical. Of particular interest, both as industrial and commercial prod-

ucts and as model systems for fundamental studies, are colloidal gels. Such systems are

highly appealing, as the particle-particle interactions may be precisely tuned by modifying

the surface chemistry of, for example, PMMA spheres,3 while the colloids are typically large

enough to be seen easily under a confocal microscope.4

In the limit of very attractive particles, colloidal suspensions may irreversibly form stable

percolating gels at low volume fractions.5 For more weakly attractive particles binding may

be reversible, in which case higher volume fractions are required to achieve percolation, and

the kinetic arrest associated with gelation shares features with the colloidal glass transition.6

In such cases, the bond lifetime is central to determining the timescales over which the

gel will yield, creep and flow.7 Of crucial importance, therefore, is a good understanding

of those factors that influence the lifetime of reversible binding in such weakly attractive

colloids. Clearly, the depth of the attractive potential influences the bond lifetime, with

attractive strengths of order kBT being sufficiently weak to break and reform under quiescent

conditions. Further complicating this, though, is the role of hydrodynamic interactions in

setting the particle diffusion coefficients.

The fundamental understanding of this problem is of course also important in the context

of molecular diffusion-limited dissociation reactions in liquids, where the dynamics is also

overdamped (Brownian) and hydrodynamic interactions can be important for large molecules
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and molecular complexes. In this area, a theory of the effect of hydrodynamic interactions

on diffusion-limited association rates was developed by Deutch and Felderhof,8 using long-

range hydrodynamics, but the reverse process of dissociation reactions has not been treated.

Clearly, one expects short-range hydrodynamics to be more important for the dissociation

reaction than for the association reaction, and vice versa for the long-range hydrodynamics.

The importance of hydrodynamic interactions (HI) to gelation has now been appreciated,9

and recent studies have attested to the augmenting role played specifically by long-range hy-

drodynamic interactions.10,11 In the present study, we turn the attention to short-range

hydrodynamic interactions (lubrication forces),12 and investigate their influence on the life-

time of colloidal bonds. Our theoretical analysis predicts a strong decrease of the diffusion

coefficients of closely-neighbouring particles when lubrication forces are accounted for, which

is crucially modulated by the attraction range. This interplay between hydrodynamics and

attraction range directly controls the colloidal bond lifetimes.

We simulate a quiescent system of colloidal particles that interact via attractive square

wells, and find a quantitative match with the theoretical prediction when comparing results

with and without lubrication forces, for low volume fractions. The results show that lubrica-

tion forces increase the lifetime of colloidal bonds, and that this effect is most significant in

those colloids with short range attractions. Short range attractions bring particles into close

proximity, where the lubrication forces diverge. By contrast, the range of proximities over

which long range attractions act mean that some neighbouring bonded particles feel large lu-

brication forces, while many do not. In this case, the typical bond lifetime is only marginally

enhanced by the inclusion of lubrication. Furthermore, our simulation model allows us to

investigate the competing effects of confinement and lubrication. At high volume fractions,

φ = 0.50, 0.55, bond lifetimes are enhanced additionally by many-body confinement imposed

by neighbouring particles, which to some extent masks the effects of lubrication.
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Analytical theory

Let us consider the case where the bound state is given by an attractive rectangular potential

well U(r), such that U = const = −∆ for σ < r 6 σ + δ, U = 0 for r > σ + δ, and U = ∞

for r = σ, where δ and ∆ are the width of the well and its depth, respectively, and σ

the particle diameter, Fig 1. We assume that lubrication forces affect the particle mobility

through the particle diffusion coefficient D(r) = G(r)D∞, where G(r) is the hydrodynamic

viscous lubrication function, D∞ = kBT/(3πµσ/2) the Stokes-Einstein formula for mutual

diffusion, and µ denotes the solvent viscosity.

In general, lubrication leads to a very low diffusivity when the particles are close to each

other due to the incompressible solvent being squeezed in the gap between the two spheres,

and ultimately D = 0 at r = σ which implies that the mobility is zero when the particles are

in contact due to the incompressibility of the solvent. Since the hydrodynamic interaction

decays as 1/r, the effect tends to vanish for very long distance where D(r)→ D∞ as r →∞.

The friction coefficients, and thus D, for a system of two spheres were calculated ana-

lytically by solving the Stokes equations by Stimson and Jeffery.13 However, since the full

theoretical expression is given as an infinite series, for the purpose of analytical calculations

it is customary to represent it with the following interpolation formula:14

G(h) =
6h2 + 4h

6h2 + 13h+ 2
(1)

where h = (r− σ)/(σ/2). D(r)/D∞ using Eq.(1) is plotted in Fig 2 and shows the expected

trend.

Here we show how the Kramers escape rate from such a square-well bound state can

be calculated upon accounting for two-body hydrodynamic interactions. In the Kramers

escape theory, the Smoluchowski diffusion in a field of potential energy is taken as the

starting point. The key assumption is made that the potential well is deep enough such that

the probability of finding a particle in the well follows the Boltzmann distribution (which
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Figure 1: The attractive potential considered in this work. Shown are the square well U(r),
the square well adjusted for entropic effects U(r)− 2 ln r, and the simulation approximation.

solves the Smoluchowski equation at steady-state). Next, the steady-state flux from the

well through a barrier is calculated by integrating the Smoluchowski equation using the

assumption above and the assumption that the probability of finding the particle beyond

the barrier is low because the potential energy pushes the particle away on its outward

trajectory. Clearly, for a purely attractive potential, there is no force that pushes the particle

away along the outward direction, and nothing prevents the particle from falling back into

the well. This subtle issue has been discussed in Ref.15 A practical way around this paradox,

for dimensions d > 1, comes from the metric space in spherical coordinates. With an exact

manipulation, the metric factor in the integrals can be written as an effectively repulsive

(“dilution entropy") contribution to the potential U(r), as was already discussed in Ref.16

This procedure reduces the original 3D spherical problem to an effective 1D problem with

an effective potential that now features a maximum (the barrier), and now also the second

Kramers assumption is satisfied. Finally, the presence of the barrier as a local maximum

of the potential energy, allows one to use the saddle-point approximation for the integrals.

Below we work in 3D with spherical symmetry, therefore even though there is no barrier,

obviously, in our square-well potential, the above trick could be applied. However, as we

show below, this is not necessary because the integrals turn out to be analytical solvable for

the square-well case.
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Figure 2: The lubrication correction to the Stokes-Einstein diffusion coefficient according to
the formula Eq. (1) which parameterizes the analytical solution of Stimson and Jeffery.

If n(r, t) denotes the probability density of finding the particle at position r and time t

(and thus coincides with the mean number density n = N/V at a macroscopic level), the

quasi-stationary Smoluchowski (diffusion) equation17

∂n

∂t
=

[
1

r2

d

dr
r2D(r)

(
1

kBT

dU(r)

dr
n+

dn

dr

)]
= 0 (2)

yields a current J (of dimensionality [1/time]) of particles diffusing into the spherical surface

of radius r. This total current J is constant (r-independent) in the steady state, unlike the

vector of flux in this spherical 3D geometry; this integrated current is given by

J = −(4πr2)D(r)e−U(r)/kBT
d

dr

[
eU(r)/kBTn(r)

]
(3)

where n(r) is the probability density of particles, which need to travel across the interac-

tion potential energy landscape for dissociation, U(r). Following the Kramers method, we

integrate Eq.(3) between r∗ and C. Here C is some point far away on the radial axis, and

r∗ is some point inside the well r∗ . σ + δ. Upon assuming that the probability of finding

a particle in the well has thermalised at steady-state before the escape can take place, we

have
∫ C
r∗
d[eU(r)/kBTn(r)] ≈ [eU(r)/kBTn(r)]r∗ .
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Assuming that the probability density becomes negligible at r = C far away on the r

axis, we can express the constant current as

J =
eU(r∗)/kBTn(r∗)∫ C
r∗

eU(r)/kBT

4πD(r)r2 dr
. (4)

The steady-state probability density in the well is given approximately by the stationary

Boltzmann distribution n(r) = n(r∗)e−[U(r)−U(r∗)]/kBT . Thus the probability of finding the

particle in the 3D well is given by integrating the density over the spherical shell of this well,

i.e. by integrating up to σ + δ:

p =

∫ σ+δ

σ

n(r) 4πr2dr

= n(r∗)eU(r∗)/kBT

∫ σ+δ

σ

e−U(r)/kBT4πr2dr .

(5)

Upon taking C =∞, the Kramers escape time follows as 1/κ ≡ p/J , that is,

1

κ
=

1

D∞

∫ σ+δ

σ

e−U(r)/kBT r2dr

∫ ∞
σ+δ

eU(r)/kBT

G(r)r2
dr. (6)

This result can be rewritten by introducing a formal identification Ueff = U(r)− 2kBT ln r,

where we just bring the metric factor r2 into the exponential to give the exactly equivalent

form:
1

κ
=

1

D∞

∫ σ+δ

σ

e−Ueff(r)/kBTdr

∫ ∞
σ+δ

eUeff(r)/kBT

G(r)
dr. (7)

This expression is exactly identical to the result that one would get in 1D with a potential

given approximately by the dashed line in Fig. 1. Physically this means that, in 3D, the

particle moving away along the r axis effectively enjoys a larger number of degrees of freedom

due to the metric (a sort of dilution entropy) compared to the situation in 1D where the

metric factor is equal to 1, as was already pointed out in Ref.16

The integrals can be done analytically for the square-well case, which leads to the fol-
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lowing analytical expression for the rate of dissociation of a colloidal square well bond in the

presence of lubrication forces:

κHI =

3
2

σ
(σ+δ)3−δ3D∞e

−∆/kBT

1
8

[
11 ln

(
1 + δ

σ

)
− 2 ln δ

σ
+ 9 ln

(
3

1+3(δ/σ)

)] (8)

and the lifetime of the colloidal bond is just the inverse of the rate, τHI = 1/κHI :

τHI =
2
3

(σ+δ)3−δ3

σD∞
e∆/kBT{

1
8

[
11 ln

(
1 + δ

σ

)
− 2 ln δ

σ
+ 9 ln

(
3

1+3(δ/σ)

)]}−1 (9)

In the absence of hydrodynamic interactions, one has:

κ =

3
2

σD∞
(σ+δ)3−δ3 e

−∆/kBT

1
1+δ/σ

=
3

2

σ(1 + δ/σ)D∞
(σ + δ)3 − δ3

e−∆/kBT (10)

and for the lifetime:

τ =
2

3

(σ + δ)3 − δ3

σ(1 + δ/σ)D∞
e∆/kBT . (11)

The lifetime of a colloidal bond with hydrodynamic interactions, τHI is compared with

the lifetime in the absence of HI in Fig 3. It is evident that with HI the lifetime of the

colloidal bond is significantly larger than without HI, especially for short range attractions.

For very long range attraction δ > 10σ, instead, the enhancement of the bond lifetime due

to HI tends to vanish and there is basically no effect of HI. To better understand the effect

of hydrodynamic interactions on the dissociation process, we introduce the following attrac-

tion range-dependent (but r-independent!) effective diffusion coefficient for the dissociation

process:

Deff =
D∞/(1 + (δ/σ))

1
8

[
11 ln

(
1 + δ

σ

)
− 2 ln δ

σ
+ 9 ln

(
3

1+3(δ/σ)

)] . (12)

With this notation, the lifetime with HI can be written in terms of the lifetime without

hydrodynamic interactions where the Stokes-Einstein diffusivity is replaced by the effective
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one accounting for HI:

τHI =
2

3

(σ + δ)3 − δ3

σ(1 + δ/σ)Deff

e∆/kBT = τD∞/Deff (13)

and therefore:

τHI/τ = D∞/Deff . (14)

The effect of two-body hydrodynamic interactions is to generate a stronger resistance to

Brownian motion, hence Deff < D∞ always, and only in the far-field r → ∞ one recovers

Deff = D∞, because the HI is long-range and vanishes at infinity. In the bond-breakup

process, Brownian motion is the driving force which provides the colloidal particle with the

kinetic energy fluctuations required to jump over the barrier given by the bonding energy

with the other particle. The longer lifetime in the presence of HI is thus explained in terms

of a higher friction or higher resistance to Brownian motion caused by HI which effectively

reduces the kinetic energy fluctuations that promote bond-breakup. As a consequence, the

lifetime of a bond between two colloidal particles can be greatly enhanced, up to a factor 4

for short-ranged attraction, by hydrodynamic interactions.
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Figure 3: The ratio between the colloidal bond lifetime with HI,τHI , and the lifetime without
HI, τ .
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Simulation model and results

We solve the Langevin equation

m
dv

dt
= Fh + Fc + Fb, (15)

for a system of 2000 monodisperse particles with radii σ, masses m, velocities v and subject

to hydrodynamic Fh, contact Fc and Brownian Fb forces.18 We remain in the limit where the

time-scales for relaxation of momentum and position are well-separated. Following Refs.,19,20

we approximate the full hydrodynamic resistance matrix R21 simply using pairwise, frame-

invariant lubrication interactions and we compute just the leading terms

Fh = −asq6πηf (vi − vj) · nijnij, (16)

for liquid viscosity ηf and particle-particle unit vector nij, where the squeeze resistances asq

diverge with σ/h for particle-particle separation h, which is truncated at hmin = 0.001σ to

prevent singularities. The contact force Fc is derived from an approximate square-well of

width δ, for particle pairs separated by a distance r

Fc =



k1(σ − r) for r ≤ σ

0 for σ < r ≤ (σ + δ)

k2[(σ + δ)− r] for (σ + δ) < r ≤ (σ + δ + ξ)

0 for r > (σ + δ + ξ)

(17)

where the outer attractive force is applied over a narrow region ξ chosen such that the

cumulative force exerted upon entry into the well corresponds to the well depth ∆, which

we set equal to kBT . Random Brownian forces Fb are generated at each timestep according

to Refs,20,22 to satisfy 〈Fb〉 = 0 and 〈Fb(t)Fb(t′)〉 = 2kBTRδ(t − t′). We simulate periodic

domains with particle volume fractions of φ = 0.2, 0.5 and 0.55, for two cases: one where
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Fh is as described above, and the other where Fh = 0 (and the Brownian force satisfies

〈Fb(t)Fb(t′)〉 = 2kBT (6πηfr)Iδ(t− t′)7).

For each case, we compute the system-averaged colloidal bond lifetime, i.e. the typical

amount of time that a pair of particles spend with r ≤ (σ + δ), as a function of the well

width δ. We then compare the cases with and without hydrodynamic forces, presented in

Fig. 4(a), as well as the effect of concentration φ, presented in Fig 4(b). For the lowest

volume fraction considered, the lifetime measured in the simulation refers to colloidal dimers

without many-body effects, whereas the latter become important upon approaching φ ≈ 0.5.
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Figure 4: (a) The ratio between the colloidal bond lifetime with hydrodynamic interactions,
τHI , and the lifetime without hydrodynamic interactions, τ . Shown are the theoretical result
(solid line), and predictions from the simulation at three different volume fractions (symbols)
as a function of δ/D. (b) Colloidal bond life-time versus concentration φ with and without
hydrodynamic interactions, at δ/D = 10−4.

Comparison and discussion

Overall we find very satisfying agreement between the analytical theory and the simulation

prediction, with the role of lubrication forces being most prevalent for short-range attractive
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particles with small δ. For the lowest volume fraction considered, the agreement is excellent,

in view of the simplifications used in the theory.

Moreover, we consider the role of many-body confinement as an additional contributor to

bond lifetime for the more concentrated systems,23 Fig 4(b). It is found that as the volume

fraction is increased, the role of lubrication forces appears to diminish. This is particularly

prevalent comparing φ = 0.2 to φ = 0.5 in Fig 4(a). This result has an intuitive physical

explanation: as φ increases, the effects of confinement mean that particles are increasingly

enclosed in cages by their neighbours, so that their motions become more localised and

structural relaxation times are enhanced. Such an effect has previously been pointed out by

Ref,24 who found comparable dependence of bond life-time on volume fraction. Consistent

with their reasoning, we might argue that as φ increases, bond life-times are increased due

to steric and caging effects as the glassy regime is approached, which in general may be

less sensitive to the presence or absence of lubrication forces. Further, recent numerical

work25 in dimerizing fluids found increasing association and decreasing self-diffusion rates

with increasing φ, hinting at comparable volume fraction dependence across a broader class of

systems. Unifying understanding of the influence of hydrodynamics on bond life-times across

simple dimerizing and more fully percolating systems remains an outstanding challenge.

Finally, we shall briefly discuss the effect of the potential shape. Here we presented an

analysis on the example of a square or rectangular well potential, because this is amenable

to analytical manipulation and allows us to clearly single out the effect of the well width.

Other types of attractive potentials that are frequently encountered in colloidal and soft

matter systems are: the Lennard-Jones (LJ) potential with an attractive r−6 tail from the

van der Waals attraction; the Yukawa-type potential ∼ e−r/ξ/r, where the range ξ is related

to Debye-Hueckel screening of an attractive Coulomb potential; and the polymer depletion

attraction in colloid-polymer mixtures where the range ξ of the attraction is dictated by

the radius of gyration of the polymer which is depleted in the gap between two particles

due to excluded-volume. In the case of the LJ potential, the effect that we described here
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is expected to be very important: indeed, the inflection point of the LJ potential, beyond

which the attractive force becomes much weaker, corresponds roughly to the same range

δ/σ ≈ 0.2 − 0.5 where the effect of lubrication on the bond stability also becomes small.

Clearly, this implies that the effect of hydrodynamic lubrication to stabilize the bonding is

at least as important as the attractive force of the potential within the inflection point, and

possibly more important. With LJ potentials a systematic study of the interplay between

width and HIs similar to what we did here for the square well can be done in future studies

by varying the power-exponent of the attractive part of the potential to values larger and

smaller than 6. For the cases of Yukawa and depletion attraction, a similar effect is also

expected to be found upon varying the size ξ of the Debye screening and of the polymer

radius of gyration, respectively.

Conclusions and outlook

We have thus reported two key findings related to the role of lubrication forces on colloidal

bond lifetimes, using the example of a square-well potential. First, the predicted colloidal

bond lifetimes can be substantially increased, up to a factor 4, upon inclusion of lubrication

forces; second, this effect is strongly modulated by the attraction range. This is evident

for very narrow attractive wells where bonded particles experience diverging lubrication

forces, which result in very long bond lifetimes. Conversely, if the range of the square well

is sufficiently long (i.e. > σ, with σ being the particle diameter) the enhancement of the

bond lifetime becomes negligible. The physical explanation for this strong effect lies in the

reduced mutual diffusion coefficient due to lubrication forces. Since the mutual diffusion is

the driving force for the particle to escape from the bond with a second particle, it is clear

that reducing the diffusion must enhance the lifetime. We have shown here for the first time,

using both analytical theory and numerical simulations, that this effect can be suppressed

by taking longer-ranged attractions, because in that case the particles can explore regions
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of the well where the diffusion coefficient is large enough (and close enough to its far-field

value) to allow the Kramers escape process to take place.

We further showed that this effect of lubrication forces is less pronounced in systems

that have higher volume fraction, where confinement plays an important role. The challenge

remains to comprehensively link the constituent particle and fluid chemistry to the gel prop-

erties such as bonds lifetimes and mesoscopic percolation structures,26 and then, ultimately,

to form predictive theoretical links between these and the macroscopic rheological properties

of the gel.27–29 The single-bond lifetime, for which we provided a theory here, is also the

starting point for a bottom-up description of the yielding of colloidal gels and glasses, and

of the phenomenon of colloidal aggregate breakup under flow, where the escape is assisted

by both diffusion and stress-transmission.30–34 In a different context, the lifetime of colloidal

bond may affect the kinetic evolution of clusters in colloidal nucleation, where a huge dis-

crepancy persists between the nucleation rate from experiments (where HI are important)

and from numerical simulations (where different approximations are used).35,36

In a more applied context, our results provide guidance for future approaches to strategic

material design for gels and other colloidal and nano-structured materials. For example,

one might tune the range of colloidal attraction to achieve appropriate bond lifetimes to

form a synthetic gel with tailored stability, structure, and mechanical properties. Also,

based on our finding, surface roughnesses may be tuned to decrease or enhance lubrication

forces, with the effect of being able to control the bond lifetimes. Further applications of

this present finding are in biological systems, where liquid films might play a mechanical

role in enhancing contact duration while simultaneously playing a chemical role such as the

transport of substrates between cells.

Finally, future work will be directed towards implementing depletion-attraction potentials

in order to allow a quantitative comparison with recent experimental results by Furst and co-

workers.37 Another interesting direction would be to assess the effect of electrostatic repulsion

and its interplay with both attraction and HI, which might introduce a different sensitivity
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to HI altogether, and is important for a broad range of colloidal systems.38,39

Acknowledgement

CN is supported by the Maudslay-Butler Research Fellowship at Pembroke College, Cam-

bridge.

References

(1) Lu, P. J.; Zaccarelli, E.; Ciulla, F.; Schofield, A. B.; Sciortino, F.; Weitz, D. Gelation

of particles with short-range attraction. Nature 2008, 453, 499–503.

(2) Mezzenga, R.; Schurtenberger, P.; Burbidge, A.; Michel, M. Understanding foods as

soft materials. Nature materials 2005, 4, 729–740.

(3) Sedgwick, H.; Egelhaaf, S. U.; Poon, W. C. K. Clusters and gels in systems of sticky

particles. Journal of Physics: Condensed Matter 2004, 16, S4913–S4922.

(4) Lu, P. J.; Weitz, D. A. Colloidal Particles: Crystals, Glasses, and Gels. Annual Review

of Condensed Matter Physics 2013, 4, 217–233.

(5) Anderson, V. J.; Lekkerkerker, H. N. W. Insights into phase transition kinetics from

colloid science. Nature 2002, 416, 811–815.

(6) Segre, P. N.; Prasad, V.; Schofield, A. B.; Weitz, D. A. Glasslike kinetic arrest at the

colloidal-gelation transition. Physical Review Letters 2001, 86, 6042–6045.

(7) Landrum, B. J.; Russel, W. B.; Zia, R. N. Delayed yield in colloidal gels: Creep, flow,

and re-entrant solid regimes. Journal of Rheology 2016, 60, 783–807.

(8) Deutch, J. M.; Felderhof, B. U. Hydrodynamic effect in diffusion-controlled reaction.

Chemical Physics 1973, 59, 1669–1671.

15



(9) Furukawa, A.; Tanaka, H. Key role of hydrodynamic interactions in colloidal gelation.

Physical Review Letters 2010, 104, 245702.

(10) Varga, Z.; Wang, G.; Swan, J. The hydrodynamics of colloidal gelation. Soft Matter

2015, 11, 9009–9019.

(11) Varga, Z.; Swan, J. Hydrodynamic interactions enhance gelation in dispersions of col-

loids with short-ranged attraction and long-ranged repulsion. Soft Matter 2016, 79,

131–139.

(12) Happel, J.; Brenner, H. Low Reynolds Number Hydrodynamics ; Springer, 1983.

(13) Stimson, M.; Jeffery, G. B. The Motion of Two Spheres in a Viscous Fluid. Proceedings

of the Royal Society A: Mathematical, Physical and Engineering Sciences 1926, 111,

110–116.

(14) Honig, E. P.; Roebersen, G. J.; Wiersema, P. H. Effect of hydrodynamic interaction on

the coagulation rate of hydrophobic colloids. Journal of Colloid And Interface Science

1971, 36, 97–109.

(15) Zaccone, A.; Terentjev, E. M. Theory of thermally activated ionization and dissociation

of bound states. Physical Review Letters 2012, 108, 1–5.

(16) Hanggi, P.; Talkner, P.; Borkovec, M. Reaction-rate theory: Fifty years after Kramers.

Reviews of Modern Physics 1990, 62, 251–341.

(17) Kramers, H. A. Brownian motion in a field of force and the diffusion model of chemical

reactions. Physica 1940, 7, 284–304.

(18) Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. Journal

of Computational Physics 1995, 117, 1–19.

(19) Kim, S.; Karilla, S. J. Microhydrodynamics: Principles and Selected Applications ;

Butterworth-Heinemann, 1991; p 503.

16



(20) Ball, R. C.; Melrose, J. R. A simulation technique for many spheres in quasi-static

motion under frame-invariant pair drag and Brownian forces. Physica A: Statistical

Mechanics and its Applications 1997, 247, 444–472.

(21) Bossis, G.; Brady, J. F. Self-diffusion of Brownian particles in concentrated suspensions

under shear. The Journal of Chemical Physics 1987, 87, 5437–5448.

(22) Ermak, D. L.; McCammon, J. A. Brownian dynamics with hydrodynamic interactions.

The Journal of Chemical Physics 1978, 69, 1352–1360.

(23) Zaccarelli, E.; Poon, W. C. K. Colloidal glasses and gels: the interplay of bonding and

caging. Proceedings of the National Academy of Sciences 2009, 106, 15203–15208.

(24) De Candia, A.; Del Gado, E.; Fierro, A.; Sator, N.; Coniglio, A. Colloidal gelation,

percolation and structural arrest. Physica A: Statistical Mechanics and its Applications

2005, 358, 239–248.

(25) Bertrand, C. E.; Liu, Y. Molecular dynamics of a model dimerizing fluid. Journal of

Chemical Physics 2015, 142, 1–9.

(26) Hsiao, L. C.; Solomon, M. J.; Whitaker, K. A.; Furst, E. M. A model colloidal gel for

coordinated measurements of force, structure, and rheology. Journal of Rheology 2014,

58, 1485–1504.

(27) Wu, H.; Morbidelli, M. Model relating structure of colloidal gels to their elastic prop-

erties. Langmuir 2001, 17, 1030–1036.

(28) Cates, M. E.; Fuchs, M.; Kroy, K.; Poon, W. C. K.; Puertas, A. M. Theory and simu-

lation of gelation, arrest and yielding in attracting colloids. Journal of Physics: Con-

densed Matter 2004, 16, S4861–S4875.

(29) Lee, M. H.; Furst, E. M. Response of a colloidal gel to a microscopic oscillatory strain.

Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 2008, 77, 041408.

17



(30) Sprakel, J.; Lindström, S. B.; Kodger, T. E.; Weitz, D. A. Stress enhancement in the

delayed yielding of colloidal gels. Physical Review Letters 2011, 106, 248303.

(31) Lindström, S. B.; Kodger, T. E.; Sprakel, J.; Weitz, D. A. Structures, stresses, and

fluctuations in the delayed failure of colloidal gels. Soft Matter 2012, 8, 3657–3664.

(32) Gibaud, T.; Perge, C.; Lindström, S. B.; Taberlet, N.; Manneville, S. Multiple yielding

processes in a colloidal gel under large amplitude oscillatory stress. Soft Matter 2016,

1701–1712.

(33) Laurati, M.; Maßhoff, P.; Mutch, K. J.; Egelhaaf, S. U.; Zaccone, A. Long-lived neigh-

bors determine the rheological response of glasses. Physical Review Letters 2017, 118,

018002.

(34) Conchuir, B.; Zaccone, A. Mechanism of flow-induced biomolecular and colloidal ag-

gregate breakup. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics

2013, 87, 032310.

(35) Fortini, A.; Sanz, E.; Dijkstra, M. Crystallization and gelation in colloidal systems

with short-ranged attractive interactions. Physical Review E - Statistical, Nonlinear,

and Soft Matter Physics 2008, 78, 041402.

(36) Radu, M.; Schilling, T. Solvent hydrodynamics speed up crystal nucleation in suspen-

sions of hard spheres. Europhysics Letters 2014, 105, 26001.

(37) Whitaker, K. A.; Furst, E. M. Bond rupture between colloidal particles with a depletion

interaction. Journal of Rheology 2016, 60, 517–529.

(38) Groenewold, J.; Kegel, W. K. Anomalously large equilibrium clusters of colloids. Jour-

nal of Physical Chemistry B 2001, 105, 11702–11709.

18



(39) Zaccone, A.; Wu, H.; Lattuada, M.; Morbidelli, M. Charged molecular films on brow-

nian particles: Structure, interactions, and relation to stability. Journal of Physical

Chemistry B 2008, 112, 6793–6802.

19


