
 

 

 
 
 

UNIVERSITÀ DEGLI STUDI DI MILANO 
 

SCUOLA DI DOTTORATO 
INFORMATICA 

 
DIPARTIMENTO 

DI INFORMATICA “GIOVANNI DEGLI ANTONI” 
 

 
TESI DI DOTTORATO DI RICERCA  

 
 

ARTIFICIAL INTELLIGENCE  
APPLIED TO THE STUDY  

OF CONSCIOUS PERCEPTIVE STATES  
 

 
Marialessia Musumeci 

 
 
TUTOR 
Prof.ssa Rita Pizzi 
 
COORDINATORE DEL DOTTORATO 
Prof. Paolo Boldi 
 

A.A.2018-2019    



 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 



 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

To my husband 
 
 
 
 

  



 

 
 
 
 
 

 

INDEX 

 
 
ABSTRACT          3 
1 THE CONCEPT OF CONSCIOUSNESS IN NEUROSCIENCE  5 

1.1 INTRODUCTION        5 
1.2 INTEGRATED INFORMATION THEORY    8 
1.3 THESIS OBJECTIVE           12 

2 BRAIN AS DYNAMICAL SYSTEM     14 
2.1 SELF-ORGANIZATION, COMPLEX SYSTEMS AND CHAOS  14 
2.2 COMPLEXITY AND NON-LINEARITY     16 
2.3 NON-LINEARITY AND DYNAMICAL SYSTEMS   17 

2.3.1 Non-Linear Analytical Methods     19 
2.3.2 Fractal Dimension and Correlation Dimension  20 

2.4 ARTIFICIAL NEURAL NETWORKS AS DYNAMICAL SYSTEMS 24 
2.4.1 Stability and Regions of Attraction in Neural Models 24 
2.4.2 Cohen-Grossberg THEOREM     26 

    2.4.3  Neural Models of Dynamical Systems Processing:  
Spatiotemporal Patterns in  Artificial Neural Networks 31 

2.4.4 Neural Models  of Dynamical Systems Processing:  
Recurrent Neural Networks     33 

2.4.5 Self-Organizing Networks     37 
2.4.6 The ITSOM Architecture      40 
2.4.7 Dynamical Analysis of ITSOM     44 
2.4.8 Non-Linear Analysis of Cortical Signals and Functional  

Binding of Perceptions      46 
3 THE EXPERIMENTAL PHASE      51 

3.1 EMOTIV EPOC +        51 
3.2 EMOTIV EPOC +  SOFTWARE:  TEST BENCH    52 
3.3 EMOTIV EPOC +  3D BRAIN ACTIVITY MAP    55 
3.4 EPOC-SIMULINK CONNECTION      56 
3.5 3D EXCELVAN GLASSES       59 
3.6 SELECTED ELECTRODES       60 

l%20
l%20


 

2 

 

3.7 VIDEOS         65 
3.7.1 First Colors Test       65 
3.7.2 Second Colors test       67 

3.8 EXPERIMENTAL PROCEDURE      69 
4 SIGNAL PROCESSING       71 

4.1 EMOTIVE EPOC +: DATA PRE-PROCESSING    71 
4.2 PROCESSING        72 
4.3 ITSOM APPLICATION       74 

4.3.1 ITSOM results       79 
4.3.2 First Colors Test results      79 
4.3.3 Second Colors Test results     81 

   4.4  CORRESPONDENCE BETWEEN STIMULI AND  
SHAPE OF ATTRACTORS       84 

4.5 FINAL RESULTS        88 
5 EVALUATION OF INTEGRATED INFORMATION   90 

5.1 INTEGRATED INFORMATION CALCULUS    94 
6 CONCLUSION        99 
REFERENCES         103 
INDEX OF FIGURES        108 
INDEX OF TABLES         109 

 

 

 

 

 

 

 

 

 

 

 



 

3 

 

 

 

 

ABSTRACT 
 
 
 

My PhD research consists of the processing of signals from a 14-electrode EEG system, 

connected to immersive glasses that allow for a realistic visual experience and for the 

investigation of the brain network in order to identify signal features corresponding to 

different perceptive and cognitive stimuli.  

The aim of the research is to implement a procedure that identifies correspondences 

among EEG signals and chaotic attractors.  

The chaotic attractors can be defined as a trajectory of a dynamical system, contained in a 

defined volume of phase space. A dynamical system can have chaotic behavior, i.e. an 

organized (but not periodic) behavior sensitive to the initial conditions. EEG signals can 

be considered dynamical systems. 

In this work a custom Artificial Neural Network (ITSOM) processes individual signals or 

many signals simultaneously.  

The sequence of the ITSOM winning nodes tends to repeat itself creating a time series of 

chaotic attractors.  

The ITSOM attributes similar codes to attractors emerging from similar brain states, 

perceptions and emotions.  

These attractors are isomorphic to the attractors in which the corresponding dynamical 

system (the signal time series) is evolving and univocally characterize the input element 

that produces them. 
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If the attractors are chaotic, this means that the signals are individually self-organized or, 

by examining more signals together, there is a form of coherence among signals. 

The ITSOM network memorizes the time series of the winning nodes.  

The cumulative scores for each input are normalized following the z standardized variable 

distribution.  

Attractors are labeled with a binary code that univocally identifies them, and the 

flexibility of the Artificial Neural Network allows attributing the same codes to similar 

dynamical events.  

During the experiment, the subject is looking at the screen while different shades of 

colors, yellow, red and blue are displayed. Each stimulation lasts five seconds, between 

stimuli there is a black screen, used to reset the previous color stimuli.  

The collected results show, as forecast, many correspondences among binary codes 

coming from similar stimuli. The thesis provides a detailed description of these results. 
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1    THE CONCEPT OF CONSCIOUSNESS IN NEUROSCIENCE 
 
 
 

1.1   INTRODUCTION 

 
 

In the last decade, neurosciences have started to consider the concept of consciousness as 

a research subject, the definition and analysis of which constitutes one of the most 

fascinating and difficult challenges in modern science.  

Various authors have attempted to describe the general properties of consciousness. 

Among them, Nagel [1], James [2], Greenfield [3], Hofstadter [4], Baars [5] , Searle [6]  , 

Chalmers [7], Dennet [8], Metzinger  [9] , Baars [10]. 

Specifically, in 1948, the noted neurophysiologist, Charles S. Sherrington, in an article 

titled “The Integrative Action of the Nervous System” [11] wrote:  

“Every day of wakefulness is a stage dominated, for better or for worse, be it comedy, farce, or 

tragedy, by a personal drama, the "I". And so it will be until the curtain comes down. And this “I” 

is a unit. Its continuity in time, is only interrupted by sleep, its inalienable “interiority,” its 

stability of perspective, the private, subjective nature of its experience, combine to guarantee it a 

unique existence. Although characterized by multiple aspects, it has an internal cohesion.” 

In summary, Sherrington highlights two aspects of the “Ego” by analyzing three 

fundamental points: 

1. Subjectivity: the state of the ego intended as the degree/level of personal 

impression; 

2. Integration: the concept of conscious experience and its connections affirming 

"this ego is a unit". The problem of the feasibility in establishing a consciousness  
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3. measurement unit is not new: in philosophy at the times of Kant it was defined as 

the problem of the "transcendental unity of perception". Today, in 

neurophysiology the "binding problem" is discussed, i.e. the problem of how it is 

possible to "integrate" the activity of different and distant neuronal groups, under 

the assumption that their activity corresponds to different aspects of our conscious 

experience. 

4. Informativity: the conscious experience is defined as the amount of information 

generated by the brain over a period of time, which unit of measurement is 

evaluated. 

 

The examination of these three fundamental aspects of the human psyche has been 

interpreted from time to time, often in very different terms, by philosophers, 

psychologists of various backgrounds, psychiatrists interested in psychopathology, and 

finally by neurobiologists, who generally have tried to relate these to activity in certain 

areas of the brain. Depending on the branch of Neuroscience considered, the concept of 

consciousness assumes different meanings. 

Some most neurobiological theories about consciousness assume that cortical activity as 

well as that of the thalamus provide a large part of the content of consciousness. The 

majority of these theories stems from the premise that the neural system that represents 

consciousness is a functional complex of neuronal cells, but it is not yet clear what 

neurons, cortical regions, or connections are involved. 

Over the last fifteen years, Giulio Tononi has formulated a theoretical proposal to define 

consciousness and to provide an explanation on both why the thalamo-cortical system 

(Fig.1-1), unlike other structures such as the cerebellum, is more involved in conscious 
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experience, and why the different functional regime that involves this structure is able to 

determine the presence or absence of consciousness in different states of wakefulness and 

sleep. This is the Integrated Information Theory. The theory is founded on three 

fundamental principles:  

1. Consciousness is born out of the rapid integration of a great quantity of 

information inside a dynamical nucleus of strongly integrated elements;  

2. The reciprocal interconnections among the regions of the thalamocortical system 

mediate this rapid integration;  

3. The onset of the “primary consciousness”, i.e., the construction of our multi-mode 

perceptual world, depends on the integration of sensory elaborations with the 

memory of previously gained experiences.  

This theory highlights the importance of a complex integration of thalamocortical 

subsystems that appear to be functionally separated, yet highly interactive.  

 

 

Figure 1-1 Composition of the thalamocortical system. These structures transmit information booth as inputs and 
output from the external environment, integrating their signals. Source: Anastasi, Motta, Balboni ”Trattato di 
Anatomia Umana”, Edi-Ermes, ed. IV, 2006. 
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1.2 INTEGRATED INFORMATION THEORY 

 
 

The Integrated Information Theory (IIT) [12] [13] [14] [15] [16] aims at explaining what 

consciousness is, by describing the requirements of the physical systems that make it 

possible and by measuring its quantity and quality thereof. Instead of starting from how 

the brain is structured or from the functions it performs, IIT reverses the question, going 

from phenomenology to physics: it begins by identifying the essential properties of 

consciousness itself to derive the necessary and sufficient requirements for why a 

physical substrate makes subjective experience possible. In summary, the Integrated 

Information Theory deals with the fundamental problem of consciousness: what are the 

necessary and sufficient conditions in which a physical system has the experience of 

consciousness? 

The theory starts from two observations concerning the fundamental properties of the 

experience of consciousness: first of all, consciousness is highly informative; in fact, 

whenever we enter a particular conscious state (for example, when we see a dark blue 

sky), we exclude a number of possible alternative states (seeing red, yellow, darkness, 

rain, being in a room, being in a cinema and seeing a particular frame of one of all 

possible films, etc.). Secondly, consciousness is integrated; in fact, every conscious 

experience is absolutely unitary, we could never, for example, be separately conscious of 

the left or right visual field1. This fundamental statement can be derived from those two 

premises: "a physical system is conscious to the extent that it is able to integrate 

information". That is, the substrate of consciousness must be a system composed of many 

                                                             
1 Actually this statement may be just a Tononi’s assumption, as it is contradicted by the so-called 

“binocular rivalry” phenomenon: see e.g. Baer N., and Baer W. “Interest-Attention Feedback 

System for Separating Cognitive Awareness in to Different Left and Right Sensor Display” Patent 

Application, 13/455,134, Filed 4/25/2012. 
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functionally different elements (information) that are, however, closely linked to each 

other, forming an indivisible whole (integration). This is anything but trivial: it is a very 

delicate balance between diversity and unity. 

This interpretation helps to solve many paradoxes concerning the brain-consciousness 

relationship. For example, it explains why an injury to the thalamo-cortical system can 

result in coma while the complete removal of the cerebellum (a very complicated 

structure with even more neurons) has no effect on consciousness. While the former is 

made up of elements functionally very different from each other but closely linked by 

short and long-distance nerve fibers, the latter has an essentially modular structure, not 

integrated. Similarly, this theory explains why consciousness is reduced during slow-

wave sleep, even if the brain stays very active. 

There are five essential properties of consciousness of every conceivable experience: 

1. Its experience exists intrinsically (for the subject, not for an external observer); 

2. It is structured (it is composed of various contents and their relationships); 

3. It is informative (each experience is specific that which it is, therefore different 

from countless others); 

4. It is integrated, in the sense discussed below; 

5. It is well defined in the subjective experience. 

These five essential properties of phenomenology are converted by IIT into the five 

physical requirements that must be satisfied by any physical substrate of consciousness, 

where "physical" means, very generally, any substrate that has causal power - that is, it 

can be directly or indirectly manipulated or observed - from the brain to neurons to 

elemental particles. 



 

10 

 

Tononi intuitively identifies a fundamental difference between a non-conscious system 

like a photodiode and a conscious system like Galileo, a human being. To describe this 

difference in scrupulous, mathematical and quantitative terms, Tononi refers to the 

mathematical information theory proposed by Claude Shannon and Warren Weaver [17].  

According to the definitions given by the two two authors, the concept of information is 

based on that of entropy (H), i.e. the measure of the amount of "uncertainty" present in an 

aleatory signal. The concept of entropy, and therefore of uncertainty, emerges clearly 

using some representative examples taken from the theory of probability. 

If entropy corresponds to uncertainty, information is classically defined as a measure of 

"reduction of uncertainty": the greater the number of alternative events excluded from the 

realization of the observed event, the greater the information brought by the event in 

question. In mathematical terms, the bit measurement of the amount of information 

associated with an event corresponds to the negative logarithm to the base two of the 

probability (P) of the event in question, or: 

 

𝐼(𝑥) = −𝑙𝑜𝑔2(𝑃(𝑥)) 

 

Another way of calculating the amount of information for each state, in fact, is to 

consider the number of possible states of a system, its repertoire of possible states (R), 

and to calculate the logarithm to the base two of that number. Given that each state has 

the same probability of being realized, the number of possible states will be equal to the 

reciprocal of the probability of realization of each single state. 
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The key to calculating the first fundamental difference in the information present in a 

system is suggested by analyzing not only the "observed" responses produced in output, 

but the "possible" responses. 

Considering that the photodiode has a "binary" sensor capable of determining the 

presence or absence of light, it will have a repertoire of only two possible states, each 

corresponding to 1 bit of information. On the contrary, a human being like Galileo, being 

able to discriminate a very large number of different states, will have a vast repertoire of 

possible states and the information brought by each will be extensive. 

If Galileo and the photodiode are subjected to a very limited number of stimuli, the 

simple alternation between light and dark, the responses of the two systems may seem 

informative. To see the difference, therefore, it is necessary to establish as a condition 

that the repertoire of possible states of a system is calculated by disrupting the input 

peripheral devices of the system in all possible ways. 

It must be emphasized that IIT is the antithesis of reductionism: even the fundamental 

unit of integrated information, Φ, is a measure of irreducibility, which indicates if and 

how much the whole cannot be reduced to its parts. 

One of the consequences of the theory is that consciousness is measurable in principle: 

the higher the value of integrated information Φ, the higher the concept of consciousness. 

Theory can therefore be tested with facts. Thus a "consciousness meter", as 

primitive/simple/basic as it may be, has been developed which uses a transcranial 

magnetic stimulator and a large number of electrodes to read the integration of 

information from the brain responses. 
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In principle, IIT can serve to establish if and to what extent animals other than us are 

conscious, to clarify why consciousness has evolved and to explain why certain regions of 

the cerebral cortex are essential for consciousness and others are not. 

Finally, the theory has important implications for artificial intelligence, which is hastily 

making new machines capable of equating and even exceeding our cognitive abilities. 

The reason why a computer with a traditional Von Neumann architecture can never be 

conscious is in direct agreement with IIT, as its sequential structure prevents to reach a 

high integrated information value.   

Consciousness is measured by considering how much actual information a set of elements 

can integrate, or how many states are available to a single integrated system, in terms of 

bits. Once one knows how to identify the integrated entities, one can go on to measure the 

complexity, that is, to see how much integrated information there is inside. At the end of 

the process you get a number associated with a particular set of elements. 

The hypothesis is that complexity is distributed on a continuum, which is at a minimum in 

sleep without dreams and its maximum when wide awake. 

 

      1.3  THESIS OBJECTIVE 

 

 

The measurement of Φ has so far been carried out with computer simulation. 

In this thesis, a first experimental method of measurement of IIT is proposed [18]. This 

objective is achieved by developing a coding method of states of consciousness that 

makes use of an Artificial Neural Network (ANN) to identify perceptive and cognitive 

events within EEG signals. The events are marked by chaotic attractors present in the 
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signals. 

The ANN encodes them by assigning them with a binary code, attributing similar codes 

to similar events and distinct codes to distinct events.  

Finally, the attractors identified in this way make it possible to calculate the quantity of Ф 

for each event. 
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2 BRAIN AS DYNAMICAL  SYSTEM 

 

2.1  SELF-ORGANIZATION, COMPLEX SYSTEMS AND CHAOS 

 

The theory of complex systems aims at analyzing and forecasting their behavior of the 

interaction among many elementary components, using mathematical and other formal 

tools. It also studies self-organization [19], i.e. the organization that emerges 

spontaneously from complex systems that, in the presence of suitable conditions, react to 

external environment changes reorganizing themselves [20] so as to exhibit novel 

properties [21]. 

A classic example is a fluid heated from the bottom. In the presence of appropriate 

boundary conditions, the convective motions of the molecules are arranged according to 

the so-called Bénard columns, that are vertical honeycomb formations. This unexpected 

cooperation between molecules is established whereas the system would simply be 

expected to increase in molecular disorder. The system reacted to the external 

environment modifications by reorganizing in such a way as to exhibit an innovative 

property. 

Self-organization can be defined as a space-time structure that is not imposed from the 

outside but emerges spontaneously from the evolution of the system as a function of its 

dynamics [22]. The emerging organization is observable at a different space-time scale, 

much greater than the molecular one. 
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The development of mathematical models for such systems [23]  shows that the equations 

that hold them are generally extremely sensitive to the initial conditions, so that extremely 

small fluctuations give rise to completely different dynamical stories (the famous 

Lorentz’s “butterfly effect” [24]). This indeterminacy in real terms (but not in principle) 

is not avoidable, since for any numerical system a not infinite degree of precision must be 

fixed, and any degree, even the highest possible, will produce different dynamical stories. 

This represents the so-called "deterministic chaos": the system has a behavior altogether 

regular but irregular in detail, thus it is impossible to predict its future behavior. 

We define chaos the unpredictable behavior of deterministic dynamical systems because 

of their sensitivity to initial conditions [25]. 

The behavior of a deterministic dynamical system is predictable once the initial 

conditions are known. But there are cases in which, depending on the precision in 

measuring the initial conditions, the motion of the system behaves very differently. More 

precisely, a set S exhibits  sensitivity  to  the initial values if there is a neighborhood  ρ  

such as for  each ε > 0 and for every x in S, there exists a y such that  

 

| x - y | < ε     and    | xn - yn | > ρ    for some    n> 0. 

 

Then there is a fixed distance ρ such that, no matter how precisely an initial state is 

specified, there are neighboring states that eventually move away more than the distance 

ρ. This is what happens in chaotic systems. 

A typical example of self-organization is present in all biological systems [26] and in 

their more evolved expression, intelligent life.  

In addition, computational models are becoming more and more advanced, being able to 

simulate quite complex real systems.  
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A promising attempt to reproduce advanced functionalities by means of the collective 

behavior of simple elements is given, as specified below, by the Artificial Neural 

Networks paradigm: multiple interconnected elements exchange information on the basis 

of a series of input from the outside, and realize a form of functional organization that is 

not directly derivable from the algorithm imposed from the outside, but emerges from the 

complexity of the system. 

 

2.2  COMPLEXITY AND NON-LINEARITY 

 
 

In the traditional approach the complex systems are processed analytically, i.e. are 

reduced to a linear combination of elements. A classic linear relationship is the Hook's 

law  ( F= - kx , where x is the spring length  and F  the applied force) which regulates the 

elastic force. But when the elasticity is lost (e.g. straining the spring or the rubber band 

too much) the graph ceases to be linear. The system is not linear anymore, and in specific 

conditions it shows a sudden change of behavior: the rubber band breaks.  

In nature many systems are linear or approximated to linearity (e.g. the electromagnetic 

wave equations), and this allowed the modeling of many natural phenomena. But for 

many physical systems linearity is not sustainable, and their modeling becomes extremely 

complex: as we will see in the following, almost all dynamical systems exhibit a chaotic 

behavior, i.e. they are not inherently nondeterministic, but in fact unpredictable [27] [28]. 

The processing of strongly time-varying and not strictly linear space-time patterns, such 

as those coming from the acquisition of real-world data, is an issue of growing 

importance, and its complexity involves necessarily  

the use and development of advanced mathematical tools. 

The typical adaptivity of the Artificial Neural Networks and their generalization ability 
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seems to indicate them as a valid choice for the analysis of these systems. We will 

examine them in more detail in the following. 

 

2.3  NON-LINEARITY AND DYNAMICAL SYSTEMS 

 
 

We call linear the functions which behave in such a way that 

 

( ) ( ) ( )f ax by af x bf y    

 

where this equality is not held, the function is called non-linear, and everything becomes 

mathematically more difficult.  

For example if 

( ) 0f x      and    ( ) 0f y   

( )f ax by  is no more equal to zero for any     and    (superposition principle: more 

solutions exist for each variable) and the solution must be sought with special methods.  

A function that models real world is hardly linear, but is often approximated to a linear 

function. Non-linear systems exhibit complex effects that are not deducible with linear 

methods. This is particularly evident for dynamical systems [29] [30]. A system is called 

dynamical system when it expresses the variability of a state X (or a point in a vector 

space) in time: 

 

( , )
dX

F x t
dt

     : n nF W R R     differentiable           (1) 

  

The solution of the system is the set of trajectories as a function of the initial conditions. 

A dynamic system is completely defined by a phase space or state space, whose 
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coordinates describe it at all times, and by a rule that specifies the future trend of all the 

state variables. 

Dynamic systems are said deterministic if there is only one solution for each state, 

stochastic if there are several solutions following a certain probability distribution (e.g. 

the toss of a coin). 

The phase space is the collection of all possible states of a dynamic system. It can be 

finite (as in the case of the coin, two states) or infinite (if the variables are real numbers). 

For example, a cellular automaton is a dynamic system with discrete time, discrete 

geometric space and discrete state space s(i, j), where i are spatial coordinates,  j is the 

time, and the update rule is  

 

s (i, j + 1) = f (s)  . 

 

A simple example is the case of the pendulum, in which the phase space is continuous, 

two-dimensional and its coordinates are angle and speed. 

If we include time as a coordinate of the phase space we represent the dynamic system 

with the above-mentioned differential equation (1), where (X, t) is the phase space. 

Mathematically, a dynamic system is described by an initial value problem. The trajectory 

in the phase space traced by a solution of an initial value problem is called trajectory of 

the dynamic system. 

We define constant trajectory a constant solution  

 

( ) (0)x t x    

 

of (1), i.e. a vector x(0) for which each component of the right side of (1) is zero.  
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A constant trajectory is said stable if the following conditions are met: 

a) there must be a positive number ε such that each trajectory beginning within ε of  

must asymptotically approach  x(0) . 

b) for each positive number ε a positive number δ(ε) must exist such that a trajectory is 

guaranteed to stay within ε of x(0) simply requiring it to start within δ(ε) of  x(0).    

c) the set of all points that can be initial states of trajectories that asymptotically approach 

a stable trajectory is said region of attraction of the stable trajectory. 

A limit cycle, or cyclic attractor, is a closed curve in the n-dimensional space with the 

following properties: 

a) no constant trajectory is contained in the limit cycle 

b) any trajectory that begins in a point of the limit cycle must lie within the limit cycle 

also later on 

c) for each positive number ε there must be a positive number δ(ε) such that a trajectory is 

guaranteed to stay within ε of the limit cycle simply requiring it to begin within δ(ε) of 

the limit cycle. 

In summary, if some trajectories converge in some point, the set of initial states of these 

generated trajectories is said region of attraction of the point. A region of attraction is 

ultimately a set of points in the state space delimiting a finite diameter region such that 

each trajectory enters and never gets out. 

 

2.3.1 Non-Linear Analytical Methods 

 
 

A very common type of self-organization, which in nature is established also outside the 

life phenomena (e.g. involving meteorological and astronomical phenomena, fluid 
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dynamics, etc.), as mentioned above, is the deterministic chaos. The long-term behavior 

of the chaotic systems follows structured patterns detectable by displaying the system 

trajectories in the state space. These trajectories exhibit a spatial structure in which they 

are confined in a strange attractor (i.e. they exhibit some regularity but never repeat 

themselves exactly) [31]. A strange attractor is geometrically a fractal i.e. a structure with 

a non-integer dimension. 

 

2.3.2 Fractal Dimension and Correlation Dimension 

 
 

Define dimension D of an object the exponent which connects its extent b with the linear 

distance r : 

Db r  

 

The extent b can refer to the linear distance, area, volume, or the amount of information in 

bits. For a line 
1b r (and in fact a line has dimension 1), for a plan 

2b r , etc. Taking 

the logarithms we obtain. 

 

0

log
lim

logr

b
D

r
  

 

It is possible to have non-integer dimension objects, the so-called fractals [32], [33]. 

Their important feature is to be self-similar, i.e. they do not possess a characteristic scale. 

For example, a branch is a fractal object whose dimension ranges between 1 and 2. It is 

shown that chaotic attractors have a fractal (or Hausdorff) dimension > 2. 
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It has been shown for example that the fractal dimension of eyes-closed EEG (about 2) is 

lower than the open-eyes EEG dimension  [34]. As we will see in detail below, according 

to W. Freeman [35], [36], [37] a chaotic brain activity prepares for the perception of a 

particular stimulus, and its trajectories end up within a periodic (limit cycle) or chaotic 

basin of attraction.  Even time series may exhibit characteristics of stochasticity or chaotic 

organization [38]. 

To assess the dimension of a series, a procedure called delay-time embedding is used. If a 

time series is long enough, the trajectory of the state space generated by it is 

geometrically equivalent to the attractor of the system that generated the original series. 

Grassberger and Procaccia [39] have developed a method, often applied to physiological 

data, which allows to determine the so-called D2 correlation dimension (which 

corresponds to a lower limit for the fractal dimension). 

We replace each observation in the original signal X(t) with the vector: 

 

( ) ( ), ( ), ( 2 ),..., ( ( 1) )y i x i x i d x i d x i m d      

 

obtaining as a result a series of vectors of m coordinates in an m-dimensional space: 

 

(1), (2),..., ( ( 1) ))Y y y y N m d    

 

n=2d+1. 

 

 

where N is the length of the original series and d the so-called lag or delay time, i.e. the 

number of points between the components of each reconstructed state vector. 
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It can be shown that the reconstructed state vectors are topologically invariant 

transformations of the original state vectors, and that the set of state vectors (points in the 

m-dimensional space) formed by Y in the reconstructed space has the same dimension of 

the attractor of the system. 

It also demonstrates (Taken’s Theorem) that there is a mathematical relationship between 

the embedding dimension n of the series and the dimension of the attractor of the 

corresponding dynamic system: 

Now, the dimension D2 is defined as 

 

0

log ( )
2 lim

logr

C r
D

r
  

 

where the extension of the series is given by the correlation integral C(r). 

The correlation integral is calculated as the average number of state vectors that stay 

within a distance r from each other. In other words, C(r) calculates the average number of 

points that are on the corresponding reconstructed attractor. If the attractor is a fractal, for 

a certain range of r (the range in which fractals are perfectly self-similar) the logarithm of 

this average will have a linear relationship with the logarithm of r.  

In this region the slope of the curve measures the correlation dimension D2. The 

correlation dimension  D2 gives the measure of the complexity of the system attractor 

and, in the way shown above, is connected to the correlation integral, which instead 

measures the extension of the attractor. 

The graph of the correlation dimension is expressed as a function of the embedding 

dimension. Ideally, the graph should converge asymptotically to the real correlation 

dimension. 
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In a time series the concept of self-similarity is used in a distributional sense: if viewed at 

a different scale, the object distribution remains unchanged.  

In such a case a long-range dependency occurs, i.e. the values at each instant are 

correlated to the values of all the successive instants. 

A self-similar time series has the property that when aggregated into a shorter series 

(where each point is the sum of multiple original points) it maintains the same 

autocorrelation function 

 

  [( )( )]  t t kr k E X X     

 

both in the series X = (Xt : t = 0,1,2, ...)  and in the contracted series X (m) = (Xk 
(m): k = 

1,2,3, ...), aggregated in blocks of size m. So, the series is distributionally self-similar, 

because the distribution of the aggregate series is the same (except for a scale variation) 

as the original.  

As a result, the self-similar processes show long-range dependency, i.e. have an 

autocorrelation function, 

 

r(k)  k   for k    0 1     

 

i.e.  the function decays hyperbolically. 
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2.4   ARTIFICIAL NEURAL NETWORKS AS DYNAMICAL SYSTEMS 

 

2.4.1 Stability and Regions of Attraction in Neural Models  

 
 

An Artificial Neural Network (ANN) can be seen as a dynamic system which gives 

account for the dynamics of n neurons.  

Each neuron is mathematically defined by its state x(i) and its function g= g(xi) (gain) 

differentiable everywhere and non-decrescent. A typical gain function is the logistic 

function 

   
1

1   xg x e


   

 

This feature provides values between 0 and 1. But it is often useful to use a transfer 

function symmetrical with respect to zero, so to keep any symmetry of the input values. 

Thus, the hyperbolic tangent function (values between -1 and +1) is used, or the function 

 

 
 
 

 –1
 

 1

kp

kp

A e
F P

e



 

 

with positive constants A and k.  

The rate of change of each xi is determined by a function dependent on xi and on the 

outputs gi(xi). In general, we can express this change with the system of differential 

equations 
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                  ( ( ))i
i i i

dx
k x p g x

dt
        (2) 

 

where ki is a positive constant, and each pi is an in general polynomial function of n 

variables g1(x(t), g2(x(t), ..., gn (x(t)), which behave well enough to make sure that the 

trajectories for the system of equations exist and are unique. 

By trajectory, we mean a series of points in an n-dimensional space that depart from some 

initial state (at time zero) in the n-space to a final state. The task of the Artificial Neural 

Network is to generate such a set of points up to the final state, which constitutes the 

output of the network.  

The levels of activity of n neurons are represented by a point in the n-dimensional space 

[40]. Therefore, we build an n-dimensional dynamic system which solutions are 

trajectories representing constant attractors (stable equilibrium) or cyclic attractors (limit 

cycles). 

We say that the purpose of the Artificial Neural Network is to generate trajectories in the 

n-dimensional space that are asymptotically approaching some of the constant attractor 

trajectories. 

In the additive neural models (as the Multilayer Perceptron, see below) each pi is a linear 

function of the components of g: 

 

  (3) 

 

where Tij are real constants forming an n × n matrix. 

However, recently higher order Artificial Neural Networks have emerged as more 
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efficient. In this kind of networks, each pi is a polynomial function of the components of 

g: typically of the form 

 

 

 

where each exponent ei is 0 or 1. 

For linear networks of the type (3) the Cohen-Grossberg theorem [41] ensures the 

existence of stable points,  i.e. points such that  

 

     . 

 

2.4.2 Cohen-Grossberg THEOREM 

 
 

Every dynamical system of the form 

 

 

s.t. 

1) The matrix wij is symmetrical and each wij ≥0 

2) The function aj(x) is continuous for x≥0 and aj(x)>0 for  x>0 

3) The function bj(x) is continuous and does not tend to infinity for any open interval for 

x> 0 

4) The function   Sij(x)    is differentiable and   S’ij(x)>0  for  x≥0 
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5) bi(x)-WiSi<0 for x has an at least countable set of stable points P such that  

. 

If the network status at time 0 is such that xi (0)>0 , then the ANN will converge usually 

at some stable point P (i.e. such that                        ),  

and at least a countable set of such points will exist. 

Although these conditions are restrictive, they match those supported by many hetero- 

and auto-associative ANNs (see below the Hopfield network, with fully interconnected 

nodes and symmetrical weights).  

The memories are set in the attractors, and the theorem guarantees their existence, 

although there are many spurious attractors (Fig. 2-1). 

To any state of a network an energy Lyapounov function can be associated that allows 

you to determine certain properties of the trajectories. A Lyapounov function L is a 

function: 

 

      , 

 

for each                    , where T is the transition function operated by the network. 

Thus, L is monotone non-increasing along each trajectory. It follows that the equilibrium 

points of the system correspond to the minimum points of L. For networks with a square 

connection matrix, the L function is called energy function and is chosen as  
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where one can easily see that it is monotone non-increasing and  anytime, i.e. the 

system is globally stable. 

This is the case for the Hopfield network [31], an obvious example of how an ANN is a 

dynamic system that can tend to a series of stable attractors. 

It is a fully connected network with symmetrical weights, with bipolar input (+/- 1 or 

0/1).  

The inputs are simultaneously applied to all nodes, and the weights are set according to 

the law 

wij=xixj   for   ij 

wij=0        for   i=j 

 

In the learning cycle each output of a neuron is a new input for the same neuron. The 

calculation of the new value is established by the function  

 

    if        

 (threshold possibly equal to zero) 

          if        

               if        

 

We can see an input pattern as a point in the state space that, while the network iterates, 

moves gradually toward minima, which represent stable states of the network. The last 

values of the weights represent the output of the network. The solution occurs when the 

point moves to the lowest region of the basin of attraction.  

In fact, as for symmetric matrices with diagonal equal to zero 
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if            then        

      if                                then 

   

  i.e. always .  . 

After a number of iterations the network will stabilize in a state of minimum energy. Each 

minimum corresponds to a pattern stored in the network. An unknown pattern constitutes 

a point on this hyperplane, which gradually moves toward a minimum. There may be so-

called metastable states, i.e. minimum points that don’t have a corresponding stored 

pattern (spurious attractors). 

 

 

 

 

Figure 2-1 Typical trajectories in a two dimensional space with two memories and a limit cycle model 

 

More generally the following theorem holds: 

THEOREM:  

Each ANN model of type (2) has a finite region of attraction. 



 

30 

 

 

Learning 

Once a particular dynamic model and its attractors have been identified, a learning 

algorithm is to be established that varies the locations of fixed points to encode 

information. Therefore, a condition sufficient for the existence of such an algorithm is the 

existence of isolated stable attractors in the system, i.e. of fixed points. 

The weight matrix is to be adjusted in such a way as, given an initial state x0=x(t0), a 

fixed point x∞=x(t∞) corresponds to a given input, and the fixed point has components that 

have a desired set of values Di in the output units. 

A typical method, used in the backpropagation networks [30], is to minimize a function E 

that measures the distance between the desired fixed point (attractor) and the current fixed 

point: 

 

 

 

where 

 

 

and Qi is a function which value is 1 or 0 according to whether the i-th unit belongs or not 

to the output subset of the network units.  

Then the learning algorithm will move the fixed points so as to satisfy on the output units 

the equation 

   
.
 

A typical way to do this is to let the system evolve in the weight space along the 
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trajectories antiparallel to the gradient of E: 

 

 

 

where τ is a numeric constant that defines the temporal scale with which the weights are 

changing.  τ must be small, so that x could always be substantially constant, i.e. 

. 

When on the output layer the error is computed between current output and desired 

output, this is propagated backwards to the other layers, in such a way as to adjust 

weights of any single node.  

This algorithm, that is called gradient descent, is used by the backpropagation networks; 

it is not the only possible algorithm but is no doubt the easiest and most effective equation 

for the minimization of E [42] [43].  

It can be shown that, if the initial network is stable, the gradient descent dynamics does 

not change the network stability. 

This allows to state the reliability of the backpropagation algorithm, that yields the 

necessary robustness to the deviations generated by the noise present in real data. 

 

2.4.3 Neural Models of Dynamical Systems Processing: Spatiotemporal 

Patterns in Artificial Neural Networks. 

 
 

ANNs have been initially applied to problems regarding spatial or instantaneous patterns, 

but the evolution of technology has made it necessary to apply them also to 
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spatiotemporal pattern. By spatiotemporal pattern we mean a function x(t) that associates 

at any time t a point in the n-dimensional input space: 

 

  0 1 : ,{ } nx t t t R  

 

In three dimensions, it is possible to represent a spatiotemporal pattern as a trajectory in 

the input space parameterized as a function of time. The task of the ANN will be to 

implement a time-variant transformation, that associates an output function y(t) to the 

function x(t) for each time t.  

Several methods have been proposed in the past to allow the ANNs to process the 

spatiotemporal patterns, i.e. to generate parameterized attractor trajectories over time. 

These methods can be classified mainly in the following variants [44]: 

- Creation of a spatial representation of temporal data 

- Setting of time-delays in neurons or connections 

- Use of neurons with activations that add up  the inputs over time 

- Combinations of the above methods. 

The earliest strategy was to convert the output data into a sequence of data. When a new 

set of inputs is received, the previous data are deleted and so on. The network preserves 

the memory of the past only in the intermediate layers.  

Then the so-called time-delay networks were studied, in which the information at an 

instant of time is moved to the right in a chain of nodes, while the new information is 

added to the left. The number of nodes  determines the number of time intervals on which 

information is sampled. 

An architecture that leads to stable states without time-delay can produce oscillations or a  

chaotic behavior (with cyclic or chaotic attractors) once the delay is introduced. Instead, if 
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the delay is transmitted in the connections, the information remains in a certain state for a 

period, then a connection is triggered that brings it to another state and so on. It can be 

proved that such networks, which are obviously equipped with long or short-term 

memory, are able to reproduce different types of temporal sequences.  

Another method is to change the neurons in such a way  that they are able to add up data 

that arrive through time, allowing a gradual decay of the older information. 

If neurons have recurrent connections, the feedback acts creating hysteresis in each 

neuron, thus a memory of the information that persists beyond the stimulus. 

ANNs have also been proposed that accept input information coded  in the form of 

frequencies, as actually occurs in the natural sensors. 

These networks were  used to drive robotic actuators, with good results in the hardware 

implementation. The simplest of the above described ANNs  are networks not equipped 

with memory, with static architecture, which does not include any actual management of 

the time variable [44]. 

 

2.4.4 Neural Models  of Dynamical Systems Processing: Recurrent Neural 

Networks 

 
 

The so-called dynamical (in the strict sense) networks have proved to be more efficient in 

processing time-dependent inputs. Their architecture [45] is characterized by a feedback 

system called state feedback (Fig. 2-2), achieved through appropriate connections 

between the nodes. It consists of the fact that a node receives as afferent signals both the 

inputs and all the outputs of the other nodes, including its own. An internal state of the 

network becomes definable, which all the nodes in the network with their current outputs 
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contribute to. These networks can be described by differential equations of the type where  

ui(t) is the internal state of the i-th unit, ti is the time constant of the i-th unit, wij are the 

connection weights, Ii(t) is the input of the i-th unit and g(uj (t)) is the output of the i-th 

unit.  

 

Figure 2-2 Recurrent network with state feedback 

 

Pineda [46] shows that this system of equations is reduced to the system (2) through a 

simple linear transformation. 

Recurrent neural networks are ultimately nothing more than networks that possess 

complex connections between the nodes, in contrast to the feedforward networks which 

bind the connections to a single direction (from input towards the output) [47]. 

This model includes a large class of ANNs. 

As mentioned, Recurrent neural networks give better performances than feedforward 

networks in the treatment of spatiotemporal pattern and in general in the modeling of real 

dynamic systems. For such systems theorems exist  ( [48] [49]) showing that time-finite 

trajectories of a given n-dimensional dynamical system are approximated by the internal 

states of the output units of a Recurrent network with n units of output, N hidden nodes 
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and appropriate initial states.  

In this way the theorem of existence of attractors in the case of Recurrent neural networks 

is guaranteed by the same theorem (4). 

The multilayer perceptron (MLP) is suitable to be turned into a Recurrent neural network 

according to various possible schemes, the more  classic of which is due to K. Narendra 

[50] and  is  visible  in  Fig. 2-3: 

 

Figure 2-3 Narendra Architetture 

 

The input layer is connected to a tapped delay line, where the sequence of data to be 

processed is flowing. In another delay line flow the output observations. The only output 

u(k) is function of the n input observations and of the m previous outputs. The n+m-ple of 

inputs is interpretable as a point in the input space. 

Following the method introduced by Williams and improved by Pineda  [51], [52], [46] 

the following model is obtained.  

The node equation  is 
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u(k+1) = f (wijuj(k) + vi(k))   0 k n   

 

The first layer output is 

 

      j jz u k       0 j N   

   vj jz k           1N j L    

 

where zj is the output of the first layer and vj the current input. 

The current output is 

 

    ' 1i iu k f I k   

where 

    0    i ij j

j

I k w z k z           0  z bias  

 

and the node equation is 

 

    1   i iu k f I k   

 

where f is sigmoid function. The learning algorithm is similar to that of the static MLP. 

Despite Recurrent networks are an advanced treatment method for spatiotemporal 

patterns [47], high variability in the data limits the performance of this ANN  model in 

the use in real time due to the difficulty of finding an exhaustive training set and/or to the 
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length of the learning process [53]. 

Applications suffer from severe limitations in computational speed or alternately in the 

ability to adapt to input fluctuations, being difficult to arrive at a positive compromise 

between the slow online learning process and the poor off-line learning performances. 

This issue is intrinsic to the supervised learning method. 

 

2.4.5 Self-Organizing Networks 

 
 

An almost forced alternative to the limits of this architecture seems to be constituted by 

the unsupervised ANNs [54] [55], whose most classical and still effective explication 

remains currently the Self-Organizing Map (SOM) of T. Kohonen. 

The SOM was developed in the 80s by  T. Kohonen [56] based on previous studies of 

neurophysiology. In fact the SOM mechanism was written taking into account the 

neurophysiological mapping of sensory stimuli on the neocortex, where similar inputs are 

mapped to nearby locations of the cortex in an orderly and topology-conservative fashion. 

The structure of a Kohonen network consists of a layer of N elements, said competitive 

layer. Each of these receives n signals x1, ...,xn that originate from an input layer of n 

elements, whose connections have weight wij  (Fig. 2-4). 

If the competitive layer has a matrix topology, neurons are connected to each other in a 

square, hexagonal or rhomboid pattern. If they are vector-based, neurons are simply 

connected together to form a chain. 

To estimate the input intensity Ii of each of the Kohonen layer elements the process is as 

follows: 
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where ( , )D u x  is some distance function, e.g. the Euclidean one. 

At this point a competition is put in place to assess which element  has  the  smaller 

intensity input (i.e .which wi is the nearest to x).  

 

 

 

Figure 2-4  Kohonen Self organizing Map 

 

In this architecture, each element receives excitatory stimuli from the adjacent elements 

(the so-called  neighborhood).  

The existence of the neighborhood is useful not to polarize the network on a few winning 

neurons. 

In this way only the elements with distance below a certain value are activated, or in 

restrictive cases only the unit with minimum distance is activated. At this point the 

learning phase takes place, according to the so-called "Winner Take All” law (WTA). 
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The training data consist of a sequence of input vectors x. The Kohonen layer then 

decides the winner neuron on the basis of the minimum distance. Now the weights are 

modified according to the law 

 

( )inew iold iold iw w x w z    

 

where  0 1    slowly decreases over time with the law 

 

(t) = [1 - t/] 

 

where  is a suitable constant. Being zi ≠ 0 only for the winning neuron, the weights of the 

winning neurons rotate more and more towards the closest vectors, up to ideally overlap 

with them (Fig. 2-5). 

 

 

Figure 2-5  Rotation of the weight vectors 

 

In this way the SOM performs a vector quantization, that is a mapping from a space with 

many dimensions to a space with a smaller number of dimensions, preserving the initial 
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topology. 

In other words a Nearest Neighbor (NN) form of clustering is carried out, in which each 

element of the competitive layer represents the class of the input elements. 

The NN method classifies a pattern according to the smallest  value obtained among all 

the distances from a set of reference patterns. This method is useful for separating classes 

representable by segments of  hyperplanes. 

For this reason, the SOM classifies correctly pattern topologically well distributed, but 

shows difficulties in the case of non-linear distributions. 

Moreover the importance of the initial weight configuration appears evident, as it must be 

the most similar to the input topology.  

 

2.4.6 The ITSOM Architecture 

 
 

Various are, however, the reasons which in turn limit the SOM performances in the case 

of strictly non-linear and time-varying input. The first reason is that if the non-linearity of 

the input topology is too accentuated, the competitive layer is not capable to disentangle 

itself enough on the form of that topology.  

The second reason concerns the difficulty of ensuring convergence (due to the lack of 

ability to establish a network error for each epoch). The third reason is the low output 

cardinality, limited to number of competitive layer neurons. 

Another problem of the SOM, typical of any clustering algorithm, and the lack of output 

explication. Once the classification output is obtained, the user must extrapolate the 

significance with an ad-hoc procedure, which in real-time applications can further 

penalize the computational load.  
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Figure 2-6 Series of the winning neurons in 2-dimensional state space -  x axis and y axis  

indicate the weight order e values 

 

A proven successful solution was found observing the time series the SOM winning 

neurons epoch after epoch (Fig. 2-6). It can be shown in fact that this series forms 

attractors that hold through epochs and that identify univocally the input pattern that 

generated them. On the basis of this evidence the ITSOM (Inductive Tracing Self-

Organizing Map) model was developed, whose architecture is described below.  

The time sequence of the SOM winning neurons tends to repeat creating chaotic attractors 

or precise limit cycles that uniquely characterize the input that produced them: in fact, the 

learning rule implies that the winning weight represents an approximation of the input. 

At every epoch the new winning weight, along with the weight that won in the previous 

epoch, constitutes a second order approximation of the input value, and so on.  

So it is possible to derive the input value by comparing the characteristic configurations 

of each input with a set of reference configurations, whose value is known. 

In this way a real process of induction is realized, because once a vector quantization 

many-to-few from the input layer on the weight layer is carried out, a few-to-many step is 
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operated from  reference configurations to the whole input (Fig. 2-7).  

 

 

Figure 2-7 ITSOM  Architecture 

 

This form of induction  is much finer than that obtainable from the only final winning 

neurons of the a SOM network, because the choice among a set of competitive layer 

neurons is too limited to provide a meaningful classification.  

Instead the possible ITSOM outputs are 2n, where n is the number of neurons of the 

competitive layer, that make it possible to finely discriminate the input features. 

It should be emphasized that the ITSOM does not need to be brought to convergence, 

because the winning neurons configurations reach the necessary stability within a few 

tens of epochs. 

It was verified that for best results the network should not polarize on too few neurons but 

even not disperse throughout the layer. 

The best suited algorithm to recognize the configurations created by the network is based 
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on the z-score method. 

The cumulative scores for each input are normalized according to the distribution of the 

standardized variable z given by 

 

   
  

x
z






  

 

where x is the input,   is the average of the scores on the neurons of the competitive layer  

and   is the standard deviation. 

Once set a threshold  0 1  , which therefore constitutes one of the parameters of this 

type of network, we put 

 

  1      

  0      

z for z

z for z





 

 
 

 

In this way, each configuration of winning neurons is represented by a binary number 

formed by as many ones and zeros as many the output layer neurons. 

Then it is immediate to use these binary numbers as templates of the input patterns.  

Both SOM and other ANNs base their learning process on the cyclic repetition of the 

input stimulus. Even in the brain there is evidence of reverberating circuits that strengthen 

the input information on the cortical map. 

However it seems unlikely that these loops can be repeated thousands of times in search 

of a fixed target, also because it is difficult to support the  hypothesis that the brain 

recognizes the last activated neuron as the only information carrier. 

It appears more reasonable that the reverberation activities run out spontaneously with the 
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exhaustion of the electrical firing process, and that the cortical maps is formed by a 

constellation of activated neurons, the so-called mnestic traces, which in the following 

will be used to recover information. 

For this reason the ITSOM mechanism may appear more physiologically justified.  

On the other hand the fact that learning can be both supervised and unsupervised seems 

confirmed by the everyday experience and by several studies [57] [58]  [59] [60] [61] 

[62].  

But ITSOM can also be used in a supervised fashion, as it can learn from a set of 

examples and  the obtained z-scores can be used to recognized new patterns [63] [64]. 

 

2.4.7 Dynamical Analysis of ITSOM 

 
 

The SOM can be expressed as a non-linear dynamic model expressed by the differential 

equation [65] [66]. 

 

( )i
i i

dx
I x

dt
   

 

where the output variable xi can be matched to the average firing rate of the neuron i, Ii is 

the combined effect of all inputs to the neuron i, and (xi) the sum of all the non-linear 

losses of the firing process. 

As mentioned above, the SOM architecture was studied by T. Kohonen following his 

neurophysiological studies, observing the WTA function in the cortex [67]. 

B. Ermentrout [68] studied a cortical model in which the WTA process has the dual role 
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of selecting the most important stimulus and strengthening the patterns after the 

disappearance of the stimulus. 

The author shows that every time a neuron is active for a certain time and then stops 

firing, the network oscillates between different states, as "ponies on a merry-go-round". 

The author explains that the limit cycles that are created are the effect of the bifurcation 

solutions of system. 

 

  ,  ;  1,     ...,i
j j

dx
x F x u t j N

dt
      

 

for N activated neurons xj , where F(x, y; ) is a function of two variables parameterized 

by  and such that 

 

( )
0

F

dx


    and    

( )
0

F

dy


 , 

 

and u(t) is the inhibitory feedback of the form 

 

   k

k

u G xt






 
  

 

where G is monotonically increasing. 

The overall activity x1(t) + .... + xj (t) is shown to lie almost on a closed trajectory, that 

means that the total excitatory network activity remains almost constant. 
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2.4.8 Non-Linear Analysis of Cortical Signals and Functional Binding of 

Perceptions 

 

 
 

An application of the non-linear analysis methods has been tested in the study of the so-

called binding problem, i.e. the problem of understanding the origin of the perceptual 

unity of consciousness in the multiplicity of sensory stimuli.  

Many neurophysiologists [69] [70] [71] [70] [72] [73] [74] [75] have proposed that such 

unity can be related to the self-organization of gamma waves (~ 40 Hz) emitted by the 

cortical neurons, which in many studies show to synchronize under sensory stimuli  

among distant sites, and may therefore create a functional binding. 

It was proposed that the oscillation activity at high frequency in the cortex may be linked 

to the functional binding related to high-level cognitive functions such as memory and 

learning. 

Global coherent patterns of neuronal activity are considered by influent neuroscientists as 

the main neural correlate of conscious experience [36], [37]. 

The ability to simultaneously record the activity of distant cortex sites through 

microelectrodes led to the possibility to analyze the mechanism by which the activity of a 

collection of neurons can be coordinated in a unique pattern. 

It was proposed that neurons in the sensory cortex interact extensively and that the action 

potentials evoked by stimuli lead to the emergence of a self-organized pattern of activity 

as a cortical response to the stimulus [69]. 

In order to evaluate the possible correlations in the neural signals the above described 

ITSOM network model was used, to highlight the presence of  limit cycles or chaotic 

attractors [76]. 

Electrophysiological signals were obtained from the brains of guinea pig isolated 
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artificially [70]. It was seen that the gamma activity can be induced in the median 

entorhinal cortex (ERC) of guinea pigs which is administered carbachol (50-100 mM), 

simulating the attentional activity in the presence of a sensory stimulus. 

The gamma activity is recorded simultaneously at different points (up to 20) separated by 

about 1mm in the median ERC [71]  (Fig. 2-8).. 

 

 

 

Figure 2-8 Entorhinal median cortex signals before and  after carbachol admistration 

 

Several files derived from 4 different monitoring sites in the entorhinal cortex were 

recorded before, during and after the administration of carbachol, simulation of an 

attentional stimulation. 

The signals were considered simultaneously on all recording sites to assess their 

correlation.  

The same records were used as input for the ITSOM network, and the time series of the 

winning neurons was processed with a MATLAB/SIMULINK procedure.  

The procedure allowed to highlight the presence of limit cycles or chaotic attractors, 

displaying their trajectory in the phase space.  

Under control conditions (before the activation of the fast oscillations), the graphs   show   
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some  organization  on  the single record, but  patterns with random structure or poorly 

organized  appear in case of signals processed simultaneously from multiple sites. 

However, after the induction of oscillatory activity through the application of carbachol, 

more chaotic patterns appear, with similar but never identical values, and strongly 

symmetrical shapes (Fig. 2-9). 

 

 

Figure 2-9 State space attractors before and after carbachol administration 

 

In order to quantitatively evaluate the attractors, Hurst parameter, correlation dimension 

and Recurrence Quantitative Analysis [77] have been used. 

The Hurst parameter, constantly under the value of 0.4 before carbachol, grows sharply 

after carbachol and exceeded the threshold of 0.5, often reaching 0.8. This indicates that 

the signals become organized during the stimulus and keep the organization for a time 

after the stimulus. 

The correlation dimension does not appear to be a significant parameter because it keeps 

constant in the range 2.6-3.2 (using 10 as the embedding dimension value) before and 

after the stimulus: this value seems to be a feature of the type of signal. 

It should be noted that the size> 2 shows a generic chaotic behavior of the series. 

On the other hand the measurement of determinism of the embedded series, evaluated 

with the Recurrent Quantification Analysis, confirms the same increase after the stimulus 
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shown by the Hurst parameter, jumping up to over 90% and keeping this very high value 

for a time. 

The analysis of the original time series with linear methods tested on distant sites 

confirms an increase in values after the stimulus but is maintained lower than 0.4 in all 

tests. The non-linear analysis on the single record or two records carried out with the 

calculus of correlation dimension, Hurst parameter and Recurrence Quantification 

Analysis essentially confirms the ITSOM results. 

In some cases sharp differences of the parameter values have been detected whose 

neurophysiological meaning is not known and should be investigated more closely. 

In general, we can conclude that the ITSOM network identifies self-organizing structures 

more often than linear numerical analysis. This may suggest a finer sensitivity of ANNs, 

although the possibility of false positives cannot be ruled out. 

On the other hand, the values of the Hurst parameter derived from the ITSOM are often 

higher than the corresponding values derived from the original series. 

It should also be pointed out that, unlike non-linear analysis on the original series, the 

analysis carried out with the ANN made it possible to simultaneously analyze all the 

recording sites, testing their possible synchronicity. 

It is also possible, once an organized pattern is found, to identify it by its z-score and to 

recognize the same attractor every time  the set of signals generates one. 

In conclusion, the existence of a non-linear coherence (in the form of chaotic attractors) in 

rapid oscillations induced on guinea pig cortex is confirmed, suggesting a possible 

functional binding of chaotic nature between distant regions of the entorhinal cortex. The 

ITSOM method can test the coherence of records simultaneously from all sites. It is also 

possible to deepen the analysis of the meaning of these patterns through the possibility to 

compare similar attractors in time.  
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W. Freeman researches ( [35] and subsequent work) have proposed, through a study with 

microelectrodes implanted on the cortex of rabbits and recorded during the experimental 

release of smells, that cortical neurons interact extensively highlighting chaotic 

spatiotemporal patterns, repetitive in correspondence of a specific smell and different in 

response to different stimuli.  

The ITSOM ANN non-linear analysis confirms the hypothesis  that the coordinated 40 Hz 

activity of cortical neurons may clarify the origin of the sensory "binding" that we all 

perceive. It is also possible to deepen the analysis of the meaning of these patterns 

through the possibility to  compare similar attractors in time.  
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3      THE EXPERIMENTAL PHASE 

 
 

The goal of this work is to process signals in order to detect and quantify their 

information (and in some way their consciousness) content. For this purpose we carried 

out an experimental phase devoted to obtain recorded digital EEG signals from human 

subjects. 

 

 

3.1    EMOTIV EPOC + 

 
 

The instrument that has been used for recording EEG signals is EMOTIV EPOC +. The 

signals amplitudes are recorded during the administration of two videos: the first consists 

of primary colors with different shades, the second experiment with colors and images of 

emotional and sensorial appeal. 

In this project we processed signals from 14 electrodes of the wireless EEG system [78] 

(Fig. 3-1). The EMOTIV EPOC + offers a headset with 14 electrodes plus a reference, a 

single set of electrode felts, and a USB receiver for recording data on a PC has a 

frequency of sampling equal to 2048 Hz with a resolution of 14 Bits, with a notch set 

between the 50 and the 60 Hz. The electrodes provided are at international 10-20 

locations: AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4. There is a fixed 

reference electrode at P3 (Emotiv labels for the CMS or “common mode sense”) and a 
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“driven right leg” (DRL) at P4. The CMS is the actual electrical reference for the EEG 

recordings, the DRL provides a feedback noise cancellation system and is not a reference 

in the EEG sense. The EMOTIV EPOC + uses saline felt electrodes. The electrodes are 

gold-plated disks, and a round felt, wetted with saline, is placed in between this disk and 

the scalp. 

 

 

 

Figure 3-1 The  EMOTIV EPOC + 

 

The EEG signals received from the headset are transferred to a computer through a 

wireless USB dongle. These properties along with it being lightweight make the EPOC 

extremely portable and easy to use [78].  

 

3.2  EMOTIV EPOC +  SOFTWARE:  TEST BENCH 

 

 

The test bench is composed by the following tabs:  

EEG: The function of this panel is to display contact quality feedback for the EPOC 

Neuroheadset’s sensors and guidance to the user the EPOC Neuroheadset correctly. It is 
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most important for the user to test the contact quality before proceeding to the other 

EPOC Control Panel tabs. Poor contact quality will result in poor Emotiv detection 

results, although the EPOC will continue to perform moderately well with a small number 

of missing or lower quality sensors (Fig.3-2). 

Each circle represents one sensor and its approximate location when wearing the SDK 

headset. The color of the sensor circle is a representation of the contact quality. To 

achieve the best possible contact quality, all of the sensors should show as green. 

 

 

 

Figure 3-2 Display of the electrodes contact quality 

 

Another graph displays the signals from the EEG channels (Fig. 3-3). 

 It shows brainwave signals of 14 channels (AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, 

FC6, F4,F8, AF4). In this mode, the users can select to display one or different channels.  

Black: No signal (Not Acceptable) 

Red: Very poor signal (Not Acceptable) 

Orange: Poor signal 

Yellow: Fair signal 

All Green: Ideal signal 
Green + Some Yellows: Acceptable 

Green + Black and/or Orange/Red: Not 

Acceptable (EPOC may continue to function 

with several black or red sensors however 

many detections will be disabled and others 

will be less reliable). 
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Figure 3-3 EEG Channels 

 

FFT: The FFT Suite shows EEG graph in the frequency domain and the power of signal 

in the frequency band (Fig. 3.4). 

The first panel shows the FFT graphs of the selected channel in real time. The second 

panel displays the power of signal in specific frequency bands: Delta (1-4Hz); Theta (4-

7Hz); Alpha (7-13Hz); Beta (13-30Hz). 
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Figure 3-4  FFT EEG Band 

 

 

3.3 EMOTIV EPOC +  3D BRAIN ACTIVITY MAP 

 
 

This tool displays a real-time map of mental activity in different brainwave frequency 

bands. Adjustable gain allows you to see detailed information and relative strengths 

between different brain regions. Adjustable buffer size allows you to see instant responses 

or average over longer periods.  

The Advanced Suite allows to display significant brainwave in any frequency band. 

In Fig.3-5 the screen displays brain activity in four significant brainwave frequency bands 
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(Delta, Theta, Alpha, Beta) and the contact quality for each EPOC sensor. 

 

     

Figure 3-5 Brain activity map 

 

        

Figure 3-6 Brain Activity summary 

 

Fig 3-6 shows the brain activity in any frequency band defined by the user and the review 

of a recorded session at any time. 

 

3.4  EPOC-SIMULINK CONNECTION 

 
 

Simulink is a MATLAB [79] environment used to simulate and model dynamic systems.  
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Simulink supports the simulation of non-linear systems that operate with continuity 

classifying them based on the continuous or discrete time. 

Moreover, Simulink offers a graphic interface that allows to define and create the model 

through its flowchart. The blocks can be moved. This environment includes an elevated 

number of libraries that include a wide range of blocks able to develop (easier) operation 

on the signals. In addition, Simulink integrates itself completely with MATLAB. 

In this project, Simulink has been interfaced both with EMOTIV and with MATLAB as 

explained hereafter. 

Simulink can be connected with EMOTIV EPOC + to allow recording in real time EEG 

signals, synchronizing them with other procedure. By inserting the USB receiver of the 

Emotiv device and clicking on Epoc-SimulinkSignalserver.exe, the connection is 

activated when clicking START, as shown in Fig. 3-7. 

 

Figure 3-7 EPOC Simulink  Signal Server 

Then, opening the MATLAB directory by importing the Epoc Simulink Signals folder, 

the Simulink model opens  (Fig. 3-8). 
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Simulink is an environment for the modeling, the analysis and the simulation of dynamic 

systems.  

 

 

 

Figure 3-8  The Simulink blocks 

 

The model is formed of a series of blocks that are copied from a library in the work area 

to create the chosen calculation model (Table 1): 
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TYPES OF BLOCKS DESCRIPTION 

 

This represents the connection of the circuit and is 

can be seen how all the blocks are connected. 

 

 

 

EpocEEG real time data synchronization with 

video frames 

  

 

This block receives the data which in real time are 

converted into numbers. 

 

Table 1 Types of Simulink blocks with description 

The blocks are graphically connected with oriented links. 

When clicking on Run on the blocks window, both the stimulating video and the 

recording of the signals start in a synchronous mode. 

 

3.5  3D EXCELVAN GLASSES 

 
To isolate the sensitive experience of the videos in the surrounding environment we used 

special glasses connected to the pc. 

The 3D EXCELVAN glasses are in general used as Multi-media player for movies, 

music, photos and books (Fig. 3-9). 

The EXCELVAN glasses work with MP4, MP5, PMP, DVD and other multi-media 

formats. 
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This Virtual Screen is equipped of detachable earphones, super dynamic quality stereo 

sound effect. They are endowed with built-in rechargeable battery, advanced micro 

displays technology, connected to the PC via HDMI . 

 

 

Figure 3-9   3D-Excelvan Glasses 

 
 
 
 

3.6    SELECTED ELECTRODES 

 
 

In anatomy, the brain is divided into four lobes, differentiated by their location and 

functions [80]. 

The electrodes have been selected on the of their functional role in relationship with the 

chosen electrodes: F7 (Frontal lobe), T8 (Temporal lobe), P7(Parietal lobe), O1 

(Occipital lobe). 

F7 (Frontal lobe): The frontal lobe is the biggest lobe in the brain and the most important 

lobe for the human species. In anatomy it extends from the frontal pole to the central 
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sulcus and is composed by different parts: precentral gyrus, premotor cortex, 

supplementary motor cortex, frontal eye field and motor speech area (Broca speech area)  

 The association cortex of the frontal lobe, also known as the prefrontal cortex, is a late-

developing region of the neocortex. In the human adult, the frontal lobe constitutes as 

much as nearly one-third of the totality of the neocortex. The most general executive 

function of the lateral prefrontal cortex is the temporal organization of goal-directed 

actions in the domains of behavior, cognition, and language. 

 

T8 (Temporal Lobe): The temporal lobe is located between the lateral fissure on both 

cerebral hemispheres, inferior to the lateral sulcus, which separates the frontal lobe and 

the parietal lobe. The temporal lobe is composed by: superior temporal gyrus, middle 

temporal gyrus, inferior temporal gyrus, auditory tract, primary auditory cortex, 

secondary auditory cortex. This lobe is active in processing sensory input and the in the 

appropriate retention of visual memory, language comprehension, and emotion 

association. 

 

P7 (Parietal Lobe): The parietal lobe is superior to the occipital lobe and temporal lobe, 

separated from the frontal lobe by the central sulcus. This lobe is composed to: MT 

middle temporal area postcentral gyrus, primary somatosensory cortex, secondary 

somatosensory cortex, supramarginal gyrus and angular gyrus. This lobe integrates 

sensory information among various modalities, including spatial sense and navigation 

(proprioception). The major sensory inputs from the skin (touch, temperature, and pain 

receptors), relay through the thalamus to the parietal lobe. Several areas of the parietal 

lobe are important in language processing. 
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O1 (Occipital Lobe): The occipital lobe is the visual processing center, containing most 

of the anatomical region of the visual cortex. The primary visual cortex is the Brodmann 

area 17, and it is located on the medial side of the occipital lobe within the calcarine 

sulcus; the full extent continues onto the posterior pole of the occipital lobe. This lobe is 

specialized for different visual tasks, such as visuospatial processing, color 

differentiation, and motion perception. 

We chose in particular to process four electrodes (T8, P7, O1, F7) as the most interesting 

in relationship with the chosen stimulations. In fact, F7 is involved in cognitive control, 

T8 in language and visual input and memory, P7 in visuospatial processing and the O1 

main functional area is the primary visual cortex.  The frequency analyzed were Beta 

(between 12.5 and 30 Hz) and Gamma (>30 Hz) (Tables 2 and 3). 
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Table 2 Selected electrodes F7 (Frontal Lobe) and T8 (temporal lobe) 

 

 

 

 

 

 

F7 T8 

Location: Frontal lobe, Rostral region of 

superior frontal gyrus  

Function, Connectivity: 

BA9 and BA11 make up prefrontal 

cortex,Executive functions Cognitive control  

 

 

Location: Temporal lobe  

Function, Connectivity: 

Posterior part contains Wernicke's Area  

Language comprehension  
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Table 3 Selected electrodes P7 (parietal Lobe) and  O1(Occipital Lobe) 

 
  

P7 O1 

Location: 

Occipital lobe  

Includes parts of cuneus, lingual gyrus and the 

lateral occipital gyrus  

Function, Connectivity.  

Visual processing  

 

 

Location: 

Medial part of occipital lobe  

Function, Connectivity.  

Initial site of cortical processing of visual information  

Organized in orientation columns,  
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3.7  VIDEOS 

 
 

We created two videos representing different perceptions and cognitive stimuli. 

The videos have been realized with PowerPoint. Successively the Power Point 

presentation has been saved into .mp4 format and synchronized using the Simulink 

procedure. 

 

3.7.1  First Colors Test 

 
 

The First Colors test consists of three tones of the same colors. The colors that have been 

selected are: Yellow, Red and Blue. Each colored stimulus last 5 s and is followed  by  a 

5 s black stimulus, as a function of control and reset (Table 4 and Fig. 3-10). 
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Table 4   First Colors test  

  

COLORS LIGHT COLORS DARK COLORS 

YELLOW 

 

 

 

 

RED  

 

 

 

 

 

 

BLU 
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Figure 3-10  The first Colors test 

 

3.7.2   Second Colors test 

 
 

In this test we selected: colors, color imagines recalling colors written words representing 

colors and sounds of the words of the colors. 

The stimuli last 5s, followed by a 5 s black stimulus, as a function of control and reset 

(Table 5 and Fig. 3-11). 

. 
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COLORS 

 

COLORED IMAGES  

 

WRITTEN 
COLORS 

 

COLORS 
SOUND 

YELLOW 

 

LEMONS 

 

 

 

YELLOW 

 

 

 

YELLOW 

GREEN 

 

MEADOW 

 

 

 

GREEN 

 

 

 

GREEN 

BLUE 

 

SKY 

 

 

 

BLUE 

 

 

BLUE 

 

Table 5 Second Colors Test  
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Figure 3-11  The second Colors test 

 
 
 
 

3.8     EXPERIMENTAL PROCEDURE 

 
 

We collected 10 recordings from eight men and two women, aged between 22 and 65; the 

educational level was graduations and PhD (Table 6). 

The above described Simulink procedure synchronizes the acquired signals with the 

various sensory and cognitive experiences presented in the videos. At the end of the 

experiment, signals are recorded and the analysis procedure is applied. 
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SEX 

 

AGE 

 

EDUCATION 

LEVEL 

 
8 MEN 22-65 Master Degree. 

2 WOMEN 30-60 Master Degree. 

 

Table 6  Subjects Data 
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4   SIGNAL PROCESSING  

 

4.1   EMOTIVE EPOC +:  DATA PRE-PROCESSING 

 

The EMOTIVE EPOC + system provides data to the user at a sampling rate of 128 Hz, 

although per the technical specifications it works at a rate of 1024 Hz internally. The 

down sampling is for various technical reasons including wireless transmission to the 

receiver. Resolution is approximately 0.5 microvolts (14 bits). The working bandwidth is 

0.2 to 43 Hz, allowing recordings into the low gamma range, and there are notch filters at 

50 and 60 Hz for 7 electrical noise in both North America and Europe (Fig. 4-1). 

 

Figure 4-1 From the Epoc+ manual: Epoc+ parameters 
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The online EEG was sampled at 1000 Hz with an online bandpass filter from1 to 100 Hz.  

The signals from the other 14 scalp sites (channels) were high-pass filtered with a 0.16 Hz 

cut-off, pre-amplified and low-pass filtered at an 83 Hz cut-off. The digitized signal was 

filtered using a 5th-order sinc notch filter (50–60 Hz), low-pass filtered and down-

sampled to 128 Hz. 

The system provides an embedded, in signals processing, a sinc filter is an idealized filter 

that removes all frequency components above a given cutoff frequency, without affecting 

lower frequencies, and has linear phase response. It is an "ideal" low-pass filter in the 

frequency sense, perfectly passing low frequencies, perfectly cutting high frequencies; 

and thus may be considered to be a brick-wall filter. 

Real-time filters can only approximate this ideal, since an ideal sinc filter (a.k.a. 

rectangular filter) is non-causal and has an infinite delay, but it is commonly found in 

conceptual demonstrations or proofs, such as the sampling theorem and the Whittaker–

Shannon . 

 

4.2   PROCESSING 

 
 

As previously presented, the aim of this work is that of using the EEG tracing to isolate 

some sensorial and cognitive stimuli (colors, writings or words) comparing the resulting 

attractors and maximizing the similarities between similar stimuli and the differences 

between different stimuli. For this reason, we used the ANN ITSOM network. 

The parameters of the neural network have been optimized during the analysis.  A schema 

of the ideal structure of the whole system can be depicted as in Fig. 4-2 . 

 

https://en.m.wikipedia.org/wiki/Filter_(signal_processing)
https://en.m.wikipedia.org/wiki/Cutoff_frequency
https://en.m.wikipedia.org/wiki/Linear_phase
https://en.m.wikipedia.org/wiki/Low-pass_filter
https://en.m.wikipedia.org/wiki/Causal_filter
https://en.m.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem
https://en.m.wikipedia.org/wiki/Whittaker%E2%80%93Shannon_interpolation_formula
https://en.m.wikipedia.org/wiki/Whittaker%E2%80%93Shannon_interpolation_formula
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Figure 4-2 System representation. The dotted line indicates the ideal correspondence between the 
neural correlates of color perception and the ANN attractors. 

 

 
 

The full tracing has been cleared from the start and end columns leaving only the 14 

columns deriving from the electrodes. 

The file has been further filtered through two elaboration chains written in MATLAB to 

separate and distinguish beta and gamma frequencies. 

● butterbeta.m  (Butterworth band-pass filter between 14 and 30, 

beta waves)  

● buttergamma.m (Butterworth band-pass filter between 31 and 46, 

gamma waves)   

 

COLOR 
STIMULATION 

ANN 

MODELING 

EEG 

 MEASUREMENT 

TEST 
CASES  
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The procedures create two filtered files in beta and gamma frequencies for all the 

electrodes. A track that divides the sampled signal compared to the different stimulations 

is included in a script that creates one file (blue.txt, yellow.txt, ecc.) for each stimulation. 

The electrodes in each file are in the following order: 

AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4. 

At the end, for each stimulation we have: 4 filtered files, one for electrode F7, P7, O1, 

T8. Therefore, there are 8 unidimensional files in total, relating to each individual 

color/writing/voice stimulation. 

 

4.3  ITSOM  APPLICATION 

 
 

The sampled amplitudes files, thus divided, are elaborated by the ANN which is written 

in C ANSI. 

The ITSOM network is able to process more signals simultaneously but in this case it was 

useful to process one signal at a time. 

Starting parameters selected to elaborate this kind of signal are summarized in Table 7. 

However, these parameters have been modified from time to time until a dynamic 

stabilization threshold is reached. 
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Table 7  Initial parameters for ITSOM 

The executable creates four output files in a subfolder that contain the signal files: 

DYNDEC.txt, WEIGHTS.txt, ZSCORE.txt, ZREALS.txt 

DYNDEC.txt: Represent the winning neurons that is those neurons that win the 

competitions with weights. Fig. 4-3 shows a typical series of winning neurons. 

INPUT NEURONS 1500 

COMPETITIVE LAYER NEURONS 15 neurons 

LEARNING RATE 0.01 

DELTA1 0 

DELTA2 0 

0 

NUMBER OF EPOCHS 400 
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Figure 4-3 Series of winning neurons of the yellow stimulation on electrode F7 
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WEIGHTS.txt :The weights are visualized with the goal of perform a control on their 

variation (Fig. 4-4). 

 

 

 

 

 

 

 

 

 

Figure 4-4 Snapshot of the weights variation file, indicating the  ANN  evolution  in the time 

 

 

ZREALS.txt: Coding in real numbers without threshold (Fig. 4-5). 

  

Figure 4-5 List of  Z real numbers  
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ZSCORE.txt : after the application of the threshold, the zeta score code processes in a 

binary string the dynamic behavior (Fig. 4-6). 

 

 

Figure 4-6  0s and 1s sequence that represents the network dynamic behavior 

 

Once these files are generated, it is verified if the zscore are (as much as possible) similar 

for similar stimuli and different for different stimuli. 

If this is not the case, we look at zreal and see if, changing the delta threshold between 0 

and 1, the zscore would change in a more appropriate way. In this situation, the threshold 

is changed. 

Otherwise, we proceed to change the other parameters of the network and restart the 

procedure. As a general rule, larger competitive layers make it more difficult to find 

correspondences. The learning rate should move the weights of the network at every 

epoch, but not too much because the network must remain stable. If the weights do not 

move, Dyndec.txt gives a series of equal values or close to equal. Dyndec.txt should show 

groups of numbers that, more or less, repeat themselves in time. In the first epochs there 

could be a transient, then the network should stabilize itself. It might tend to move and 

show new numbers, but it should not change completely. The optimization of the 
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parameters should at the end be a single one for all the elaborated signals. 

 

4.3.1 ITSOM RESULTS 

 
 

In this paragraph the optimized ITSOM parameters and the results are presented (Table 

8). 

INPUT NEURONS 500 

COMPETITIVE LAYER NEURONS 10 

LEARNING RATE 0.001000 

DELTA1 -0.200000 

DELTA2 0.200000 

NUMBER OF EPOCHS 150 

 

Table 8  Optimized ITSOM parameters 

 

4.3.2   First Colors Test Results 

 
 

In Table 9  are reported the tones of colors that have been mainly involved, considering 

all the available recordings, and on which electrode they have had an impact on the 

presence of the chaotic attractor. Light yellow and dark yellow are present both on F7 and 

T8 electrodes. The O1 electrode did not detect any correlation. 

We highlight these results, divided in stimulation and reference electrodes. 
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Table 9 First Colors test: highest correlation between stimuli and electrodes  

 

In the Table 10 are reported, for each stimulus and electrode, the corresponding binary 

code. The EEG band the results refer to is the gamma band, since the beta band did not 

present satisfying results. The table refers to the best recording available. 

 

 

 

COLORS  TONES ELECTRODES 

LIGHT BLUE  

DARK BLU 

LIGHT YELLOW 

DARK YELLOW 

 

F7 

RED 

PINK  

 

P7 

 

LIGHT YELLOW 

DARK YELLOW 

 

T8 



 

81 

 

 

Table 10 Stimulus, Electrode and corresponding binary Code: best similarities  

 

It can be deduced that similar stimuli have similar responses and different stimuli have 

different codes. 

 

4.3.3  Second Colors Test Results 

 

The second colors test  consists of the presentation of colored stimuli with different 

features entities such as: monochromatic, color associated to pictures, written colors and 

in audio format. As in the previous example, Table 11 shows what are the images, colors, 

colored writings that have been mainly involved in relation to which electrodes. In this 

case the electrodes that showed the highest involvement in the stimuli were F7 and O1.  

  

STIMULI ELECTRODES BINARY CODE  

BLUE  

DARK BLU 

 

 

F7 

1  0  1  1  0  0  0  0  0  1 

1  0  1  1  0  0  0  0  0  0 

LIGHT YELLOW 

DARK YELLOW 

1  0  1  0  1  0  0  0  0  0 

1  0  1  0  1  0  0  0  0  0 

DARK RED 

RED 

 

P7 

0  0  0  0  0  1  1  1  1  0 

0  0  0  0  1  1  1  1  1  0 

LIGHT YELLOW 

DARK YELLOW 

 

T8 

0  1  0  1  1  1  1  1  0  0 

0  1  0  1  0  1  0  1  0  0 
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STIMULI ELECTRODES 

WRITTEN GREEN  

WRITTEN MEADOW  

SKY 

WRITTEN SKY  

 

O1 

WRITTEN GREEN  

WRITTEN MEADOWN  

SKY 

WRITTEN SKY  

YELLOW SOUND 

WRITTEN YELLOW  

YELLOW 

 WRITTEN LEMON  

 MEADOW SOUND 

 GREEN WRITTEN 

YELLOW SOUND 

YELLOW IMMAGIN COLORS 

LEMON SOUND  

MEADOWN SOUND 

LEMON WRITTEN 

YELLOW 

 

 

 

 

F7 

LIGHT BLUE  

SKY 

WRITTEN LIGHTBLUE  

 

 

T8 
YELLOW 

LEMONS 

WRITTEN YELLOW  

GREEN 

MEADOW 

WRITTEN GREEN  

 

Table 11  Second Colors test: highest correlation between stimuli and electrodes 



 

83 

 

A common element on the four electrodes is that there is a higher involvement of the 

colors when in written form. As in the previous experiment, the results displayed are 

related to the gamma band, since the beta band did not report significant results. 

Hereafter (Table 12) are summarized the stimuli, electrodes and bands involved with 

binary codes. Also in this case it is confirmed that similar stimuli offer similar binary 

codes. 

STIMULI ELECTRODES-  

EEG BAND 

BINARY CODE 

LIGHTBLUE  

SKY 

WRITTEN LIGHTBLUE  

 

 

 

 

T8 

GAMMA 

 

 

 

0  0  0  1  1  0  1  0  1  0 

0  0  0  1  1  0  0  1  1  0 

0  0  0  1  1  0  1  1  1  0 

YELLOW 

LEMONS 

WRITTEN YELLOW  

1  0  0  1  0  0  1  1  1  1 

1  0  0  1  0  0  1  1  1  1 

1  0  0  0  0  1  1  1  1  1 

GREEN 

MEADOW 

WRITTEN GREEN  

0  0  0  0  0  1  0  1  0  0 

0  0  0  0  0  1  1  1  0  0 

0  0  0  0  0  1  1  1  0  0 

YELLOW 

LEMONS 

WRITTEN YELLOW  

 

 

P7  

GAMMA 

1  0  0  0  0  1  0  0  1  1 

1  0  1  0  0  0  1  1  1  0 

1  0  1  0  0  0  1  1  0  0 

LIGHT BLUE  

WRITTEN LIGHTBLUE  

0 1  0  0  0  0  1  1  0  0 

0  0  0  0  0  0  1  1  0  0 

WRITTEN GREEN 

MEADOWN SOUND 

 

 

F7 

GAMMA 

 

 

 

    

     0  0   0   0   0   0  1  1  0  0 

 0  0   0   0   0   0  1  1  0  0 

 

WRITTEN LEMON  

 YELLOW  

 

1  0  0  1  0  0  0  0  0  0 

1  0  0  1  1  0  0  0  0  1 
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YELLOW  

LEMON SOUND 

 

 

F7 

GAMMA 

 

1  0  0  0  1  0  0  0  0  0   

1  0  0  0  0  0  0  1  0  0   

 

WRITTEN YELLOW  

YELLOW SOUND 

 

1  0  0  0  0  0  1  1  1  0 

1  0  0  0  0  0  0  1  1  0 

 

SKY 

WRITTEN SKY  

 

0  0  0  0  0  0  0  0  0  1 

0  0  0  0  1  0  0  0  0  0 

 

WRITTEN GREEN  

WRITTEN MEADOWN  

 

 

O1 

GAMMA 

 

0  0  0  1  1  0  0  0  1  0 

0  0  0  1  1  0  1  1  0  0 

 

SKY 

WRITEN SKY  

 

0  0  0  0  1  1  0  0  0  0 

0  0  0  0  1  0  0  0  0  0 

 

Table 12 Stimuli, Electrodes and Binary codes of the second Colors test 

 
 

   

4.4  CORRESPONDENCE BETWEEN STIMULI AND SHAPE  
OF   ATTRACTORS 

 

It is important to outline that there is a correspondence not only in the codes, but also in 

the shape of the attractors during the phases related to the considered stimuli. As we said 

the attractors are created from the series of the winning neurons, using a two dimensional 

model. 

In Tab. n. 13-14-15  the first column shows the sensory and cognitive stimuli, the second 

column shows the binary code resulted from the ANN processing the third column shows 

the attractors generated by the dynamics of the sequence of the ITSOM winning neurons. 
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We can observe that similar stimuli present attractors that have a similar shape. 

Moreover, this shape is different from that of the attractors deriving from different 

stimuli. 

The shape of the configuration of these attractors could therefore be apt to represent the 

qualitative aspect of the states of consciousness, the so-called “qualia” [88], [89], [90].  

It must be outlined that of course the concept of ‘qualia’ refers to a purely subjective 

phenomenon: it cannot be observed from ‘outside’, is not available by correlative 

measures or physics in generally. It accounts for the subjective ‘meaning’ of information, 

not to its contents or the diversity or differences in perception . 

Thus we have to stress that in this work we are dealing with a representation of the 

perceptive counterpart of “qualia”. 
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STIMULUS BINARY CODE CHAOTIC ATTRACTORS 

 

YELLOW 

 

 

 

1  1  0  0  1  0  1  1  1  1 

 

 

LEMONS 

 

 

 

1  1  0  0  0  0  1  1  1  1 

 
 

 

 

YELLOW  

 

 

 

1  1  0  0  0  1  1  1  1  1 

 

 

 

Table 13  Results of the Yellow stimulus 
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STIMULUS BINARY CODE CHAOTIC ATTRACTORS 

BLUE 

 

 

 

0  0  0  1  1  0  0  0  1  0 

 

SKY 

 

 

 

0  0  0  1  1  0  1  0  1  0 

 

 

BLUE 

 

 

0  0  0  1  1  0  0  1  1  0 

 

 

Table 14 Results of the Blue stimulus 
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STIMULUS BINARY CODE CHAOTIC ATTRACTORS 

GREEN 

 

 

 

0  0  0  0  0  1  1  1  0  0 
 

MEADOW 

 

 

 

1  0  0  0  0  1  1  1  0  0 

 

 

GREEN 

 

 

1  0  0  0  0  0  1  1  0  0 

 

 

Table 15  Results of the Green stimulus 

 

 

4.5 FINAL RESULTS 

 

From the results of the first observation we can highlight that: 

1. The electrode that presents a higher correspondence with the stimulations it T8. 
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2. Low presence of correspondence relative to pure colors. 

3. Substantial absence of spurious correspondences between pure colors or between 

images, 

4. Low correspondence of the  red color   and similar (red appears with 4 electrodes), 

5. Clear higher number of correspondences for writing and words, 

6. The stabilization of the network is when reaching 150 epochs and is maintained 

until over 1200 epochs. 

7. The Gamma band shows in both experiments a higher correspondence between 

binary codes.  

8.  There is a correspondence between stimulus and shape of the attractor: again. 

Similar stimuli give raise to similar attractor shapes, different stimuli give raise to 

different attractor shapes.  
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5   EVALUATION OF INTEGRATED INFORMATION 

 
 

As mentioned in cap. 1, IIT refers to the mathematical theory of information proposed by 

C. Shannon and W. Weaver [17]. According to this framework, information is defined as 

the reduction of uncertainty among a number of possible outcomes x of a random variable 

X when one of them occurs. Thus, an increase of uncertainty corresponds to higher 

information, and the information content of x, I(x), will be a decreasing function of its 

probability. Shannon showed that this function is expressed by 

 

𝐼(𝑥) = −𝑙𝑜𝑔2 𝑃(𝑥) 

 

where P(x) is the probability that x occurs. Entropy of the random variable X is defined as 

the expected value of the information content of X (i.e. its average information content). 

 

𝐻(𝑋) = 𝐸(𝐼(𝑋)) 

 

Thus Entropy can be defined as a measure of the uncertainty associated with X. Given 

two subsets A and B defining a single bipartition of a system X, Mutual Information 

measures the uncertainty of A that is accounted for by the state of B, and is defined as 

 

𝑀𝐼(𝐴; 𝐵) = 𝐻(𝐴) + 𝐻(𝐵) − 𝐻(𝐴𝐵) 
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The Effective Information of a system measures the extent to which its repertoire of 

possible states is differentiated in response to all possible inputs. Effective Information is 

calculated as the Mutual Information across a partition when the outputs from one subset 

have maximum Entropy. 

As before mentioned, the IIT hypothesizes that consciousness corresponds to the capacity 

of the system to integrate information, and this measure is indicated by Ф. 

Ф is defined as the Effective Information across the weakest link of the system, i.e. the 

Minimum Information Bipartition. The Minimum Information Bipartition is the partition 

of the system for which the Effective Information is lowest. 

To summarize, in order to calculate the integrated information of a system Ф (thus a 

measure of consciousness, as intended in the IIT framework) it is sufficient to calculate 

the integrated information between two partitions of the system, among all the possible 

ones, which have the lesser amount of effective information between them. A high value 

Ф will denote highly structured complexity. In the brain, the thalamo-cortical system can 

be described as a single large highly complex system whereas, on the contrary, the 

cerebellum consists of a large number of very small complexes, each corresponding to a 

single module and thus having a very low complexity. In terms of complexity, the 

differences between brain and cerebellum are therefore not the amount of effective 

information related to the repository of possible states that characterize each system, but 

rather the level of integration of the information contained therein. 

Hence the flow of information between two parts of the same system must be considered. 

But once defined a formal way to measure Ф and once identified a brain system that may 

represent a good candidate to generate integrated information, a method to represent 

complexity and integration in brain structures in such a way as to quantify Ф from real 
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data must be developed. 

One of the methods currently studied to analyze complexity in brain structures is to study 

the brain as a dynamical system. 

Brain dynamics refers typically to the dynamics of neuronal populations, networks or 

columns within cortical areas. It is characterized by its high complexity, often involving 

oscillations at different frequencies and amplitudes, perhaps interrupted by chaotic or 

pseudo-chaotic irregular behaviour. Synchronization among groups of neurons were first 

discovered in the olfactory system [81], [82], but has also been demonstrated in other 

brain structures, such as the hippocampus [83] [84] and the visual cortex [85], [86], where 

the oscillations tend to synchronize in phase. 

Synchronous oscillations can occur in nearby neurons, but also over considerable 

distances across spatially separate columns [86] and even between cortical areas [85], 

[87]. According to IIT, several aspects of the organization of the cortico-thalamic system 

and of transient attractor dynamics appear well suited to information integration. 

It has been recognized that the massive interconnectivity within and among cortical areas 

(and with thalamus) provides an ideal substrate for cooperative dynamics among 

distributed neurons [88]. A plausible scenario for characterizing such dynamics is in 

terms of transient attractors. 

In fact neurons in the cortico-thalamic system seem to behave in such a way as to ensure 

the rapid emergence of firing patterns that are distributed over wide regions of the cortex, 

where some neurons are strongly activated, and many more are deactivated. These firing 

patterns remain stable (hence they form attractors) over a time scale of tens/hundreds of 

milliseconds, but then rapidly dissolve (hence the attractors are transient), to make room 

for another transient attractor. 

Attractors have been indicated in the form of binary strings (e.g. in a Hopfield network 
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consisting of 8 elements with 6 embedded attractors, the attractors are indicated with 

00001111, 00110011, 01010101, and their mirror images.) 

Metastable systems, namely dynamical configurations that constitute non-fixed-point 

attractors, are good candidates to form a class of systems with high Ф [89], [90], [91]. 

Our approach stems from the wide literature mentioned above. Whit the ANN ITSOM, 

we show how the dynamical analysis of neural signals may highlight the existence of 

chaotic attractors, differentiated depending on the cognitive states, that outlines the 

attractors in which the corresponding dynamical system is evolving. 

If the attractors show to be chaotic, this means that the neural signals are individually 

self-organized and, when analyzing more signals together, that there is a form of 

coherence between signals. The ANN can also highlight the time course of this form of 

coherence and identify different attractors with a unique code as we have  the  ANN 

allows to attribute the same codes to similar but not identical brain events, reaching the 

necessary range of flexibility. In Table 12 the first columns show the sensory and 

cognitive stimuli, the second columns show the binary code resulted from the ANN 

processing, the third columns show the attractors generated by the dynamics of the 

sequence of ITSOM winning neurons: the figure represents a snapshot of movies that 

show a typical chaotic path. 

To summarize the results, comparing the stimuli, the codes in Table 16 are obtained, 

clearly highlighting how similar stimuli give rise to similar codes, that result to be quite 

different from the codes obtained by different stimuli.  
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Table 16   Summary of the results. Codes of similar stimuli are similar, codes of different stimuli are quite different 

 

 

5.1  INTEGRATED INFORMATION CALCULUS 

 
 

In order to quantify the IIT content of the organized signals collected after perceptive and 

cognitive stimulations we considered the case of the T8 electrode in gamma band, that 

slowed the best results in the previously described analysis. 

Using the tool available at the website of the Center of Sleep and Consciousness of the 

University of Wisconsin [92] [93], that implements the procedure explained at the 

paragraph 1.2, we have been able to calculate the Ф value of the specific patterns through 

their related dynamical attractors. 

The summary of results in sketched in Table 17, where Φ represents the integration at a 

system level. 

The dynamical representation in the concept (qualia) space of some of the patterns is 

reported in Figures 5-1, 5-2 ,5-3, and their conceptual structure after calculation in the IIT 

framework is depicted in Figures 5-4, 5-5, 5-6. 
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Table 17  Integrated Information Calculus 

 

In conclusion, for all the color stimulations the Ф value was equal to 0.08323, except for 

the Green color that had a Ф value equal to 0.21528. The other stimulations had a Ф value 

higher than the pure colors and equal to 0.21528: in line with the IIT, this is correct as 

they have not only sensory but also cognitive contents, thus should involve more neural 

structures and can be considered more complex. Although the Ф value of stimulation 

patterns of information content with equivalent complexity coincide, their specific 

information contents are diverse and composed by subsystems with different values. 

We would be tempted to state that these codes can be a way to identify qualia, i.e. the 

subjective and qualitative experience of mental conscious states and of their neural 

correlates [91], as there is an extremely high number of possible binary codes, but we can 

distinguish a set of dynamical states with unique codes that we may call “qualia codes”. 
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Figure 5-1 Attractor of Yellow 

 

 

Figure 5-2 Attractor of Lemon 
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Figure 5-3 Attractor of Written Green 

 

 

 

Figure 5-4 Conceptual structure of Yellow 
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Figure 5-5 Conceptual structure of Lemon 

 

 

Figure 5-6 Conceptual structure of written Green 
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6  CONCLUSION 

 
 

The aim of this thesis was the development of a method for the identification of 

perceptive and cognitive mental states starting from EEG signals. The method used a tool 

of computational intelligence, that is to say an AAN, able to catch the dynamical behavior 

of the signal and codifying it in a binary string. Such code is comparable with the 

corresponding codes to/of other mental events. 

This way it was possible to identify the chaotic attractors present in the dynamical system 

represented by the signal and, thanks to these, calculate the content of Integrated 

Information related to each mental state. 

The thesis has been presented by developing the following points. 

The concept of consciousness  and of Integrated Information has been introduced. Recent 

studies in the field of neurophysiology brought to the understanding and study of the 

requirements needed to measure the consciousness, analyzing the composition in 

quantum terms [94]. 

The main concept underlying this thesis is that, under controlled stimuli, it is possible to 

show that similar stimuli correspond to similar responses and different stimuli correspond 

to different responses, and these responses can be identified and coded.  

To elaborate this theory, we studied the brain as a dynamical system and processed 

signals by means of the chaos theory and a suitable self-organized ANN.  
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Lastly, we highlighted the processed results with the ITSOM. Moreover, very detailed the 

different phases of the experiments carried out were described in detail, as well  the tools 

used to record the signals and the choice of the electrodes, the analyzed EEG frequency 

and the creation and choice of the sensorial and emotive stimuli.  

Eventually, the procedure of preprocessing, data registration and the related results have 

been presented. 

The signal analysis with the abovementioned computational method indicated some key 

points: 

In general, there is a correspondence between binary codes and similar mental events, 

while different mental events have very different codes: to be more precise, it can be 

noted that there is a constant absence of spurious correspondence between pure colors and 

images. The most frequent correspondences are between images and written words. 

Pure colors are not involved in correspondences as much as we would expect, since they 

are “easier” perceptions to identify. Moreover, it is observed that a less significant 

number of correspondences is related to the color red. 

The electrode in which correspondences are more frequent is F7, the electrode more 

involved in cognitive activities. Actually the presence of complex images, not only 

related to pure perceptions, make a cognitive processing necessary. The electrodes that do 

not or only partially involve it do not seem apt to generate signals able to recognize 

similarities between similar images. 

Between the two chosen frequencies, the gamma frequency is definitely more selective 

than the beta one. This is in line with the converging evidence that processes involved in 

the creation and maintenance of (visual) feature bindings are accompanied by, and 

systematically related to, neural activity in the gamma band.  

A known unifying concept relates the associative principle of neural networks to the 
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mechanism of temporal binding at high frequencies. It suggests that for each memory 

stored in an associative network there is a corresponding quasi-stable state of 

synchronous oscillation at some frequency within the gamma band. 

In particular, gamma band power is correlated with visual awareness [95] [96]. 

The chaotic attractors, isomorphic to the signals and created by the series of winning 

neurons, are stabilized around 150 epochs and remain stable up until at least 1200 epochs. 

This allowed us to characterize them and calculate the value of Integrated Information 

related to each mental state. 

We highlighted that the stimulation patterns with cognitive content have a value higher 

than that of purely perceptive patterns (pure colors). This is completely in line with the 

Integrated Information Theory. 

By continuing the graphic processing of the attractors during the phases, we verified a 

structural similarity of the attractors of similar cognitive-perceptive content and a 

different shape in the attractors corresponding to different mental events. 

We could try to affirm that the shape of these attractors may constitute a visual 

counterpart of the “qualia”, the elusive qualitative characterization of the conscious 

states. The present work cannot clearly give a measure about the variation in subjective 

experience for a given stimulus. 

We can affirm that the possibility to computationally encode mental events, based on the 

dynamical structure of the cerebral signals involved, gives an interesting result that can be 

confirmed with further experiments. 

In particular, the analysis of signals from waking and sleeping patients in the NREM 

phase is underway with the aim to find a method to distinguish algorithmically the 

conscious state (waking) from the unconscious state (NREM). 

The other result of this thesis is the definition of a method to find the value of Integrated 
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Information related to real mental states. The ability to measure this value on real cerebral 

signals opens unexplored perspectives on the possibility to explore conscious and 

unconscious mental states and add new elements to the understanding of the complicated 

and fascinating problem of consciousness. 
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