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Abstract 
Fzd4 is a receptor for Wnt proteins, belonging to the 

frizzled receptors family. Its stimulation can activate 

both Wnt/β-catenin canonical and Wnt/Ca2+ non 

canonical pathways. This receptor plays an 

important role in the development processes, in 

particular in the retinal vascularization: it binds the 

Norrin ligand, a Wnt-unrelated growth factor, and 

activates β-catenin signalling pathway. Mutations of 

FZD4 gene are associated with Familial Exudative 

Vitreoretinopathy (FEVR). Recently dysregulation 

of FZD4 expression has been reported in different 

type of cancers, but FZD4 contribution in tumor 

pathogenesis and progression is still not entirely 

elucidated. 

Keywords 

Frizzled 4, WNT, Wnt/β-catenin signaling 

Identity 
Other names 

Frizzled 4, Seven Transmembrane Spanning 

Receptor, Frizzled (Drosophila) homology 4, 

Frizzled homolog 4 (Drosophila), CD344 Antigen, 

FEVR, Fz-4, FZD4, Wnt receptor Frizzled -4, hFz4 

HGNC (Hugo) 

FZD4 

Location 

11q14.2 

Location (base pair) 

Starts at 86945675 and ends at 86955398 bp from 

pter ( according to hg38-Dec_2013) 

DNA/RNA 

Figure 1:  Schematic representation of FZD4 gene 

that contains a total of two exons and FZD4 

transcript. 

Description 

DNA size: 9.71kb encoding two exons. This gene 

has one transcript (splice variant), 82 orthologues, 12 

paralogues (www.emsable.org). Sagara et al., 

reported a splice variant of FZD4 gene which they 

called FZD4SA, it retains intronic sequence and 

encodes shorter isoform of only 125 aa. However, its 

expression is not supported by other experimental 

evidences. 

Transcription 

The FZD4 mRNA transcript is 7383 bp. FZD4-001 

ENST00000531380.1: mRNA7383 bp, protein 537 

aa. 

Protein 
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Description 

The gene FZD4 encodes a 537 aa protein with a 

molecular weight of 59 kDa. FZD4 is a member of 

the seven transmembrane receptor family consist of 

10 receptors that are activated by Wnt family of lipo-

glycoproteins. The Wnt/ FZD signaling is involved 

in a variety of biological processes and its 

dysregulation have been implicated in cancer 

development. FZD4 protein contains the N-terminal 

signal peptide (aa 1-36) that assurances proper 

membrane insertion of the protein, an extracellular 

cysteine rich domain (CRD; aa 40-161), which 

creates the binding site for WNT ligands, a seven-

pass transmembrane domain (aa 161-221) that gives 

rise to three intracellular loops, three extracellular 

loops and a C- terminal domain (aa 221-537). The 

CRD domain is necessary to bind WNT ligands or 

Norrin ligand leading to initiation of distinct 

downstream signaling pathways. (Schulte G., 2010). 

 

Expression 

In human, FZD4 is a ubiquitous protein. It is 

expressed in brain, ovary, liver, pancreas, brain, 

colon, heart, skeletal muscle, endothelial cells, 

endometrium, bone marrow, prostate, spleen, breast 

(www.ncbi.nlm.nih.gov). 

 

Figure 3:  Visualization of FZD4/WNT10B interaction in MCF7 adherent (top) and tumorsphere (bottom) by 

proximity ligation assay (Lazzaroni et al.,2016). 

 

Localisation 

FZD4 is localized on the plasma membrane surface. 

It can be internalized through both constitutive and 

agonist dependent endocytosis in response to Wnt5a 

stimulation (Chen W. et al., 2003). 
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Function 

FZD4 is a member of Frizzled gene family involved 

in neuronal, follicle, cardiomyocyte and retinal 

vascular development, likewise its dysregulated 

expression lead to cancer and other diseases. 

Depending on the cellular contest, FZD4 interacts 

with different WNT ligands, leading to the activation 

of Wnt/β catenin signaling and sometimes non 

canonical Wnt/Ca2+ signaling. Wnt/β catenin 

signaling is activated when WNT ligands bind CDR 

FZD/Low-density lipoprotein receptor-related 

protein5/6 ( LRP5/ LRP6) complex, in this case 

CTNNB1 (β-catenin) degradation complex becomes 

inactivated, resulting in stabilization of β-catenin 

that can translocate in the nucleus, where it interacts 

with LEF1 (TCF/LEF) transcription factor, inducing 

the transcription of target genes (Clevers H., 2006). 

Recently, WNT10B/FZD4 interaction in the MCF7 

breast cancer cell line suggests an autocrine 

activation of Wnt signalling in this cell line model 

(Lazzaroni F. et al, 2016). In melanoma FZD4 binds 

WNT5A and stimulates tumor invasion through 

activation of βcatenin signaling (Grossman A. et al., 

2013), while in acute myeloid leukemia the 

interaction between WNT3A and FZD4 induce 

higher resistance against apoptosis (Tickenbrock L. 

et al., 2008). WNT2, WNT5A/ WNT5B and WNT11 

via FZD4 and FZD6 induced non canonical Wnt 

signaling activation that regulates cardiomyocite 

differentiation (Mazzotta S. et al., 2016) 

FZD4 is also the only FZD family member that binds 

selectively a growth factor called NDP (Norrin) and 

regulates endothelial cells growth during retinal 

vascular development. In retina, the binding of 

Norrin with FZD4 conjugated with LRP5 co-

receptor and protein TSPAN12 (Tetraspanin-12), 

results in activation of βcatenin signalling (Schulte 

G., 2010), alteration in one of this gene is associated 

with Familial Exudative Vitreoretinopathy. 

Homology 

The FZD4 gene is conserved in chimpanzee, mouse, 

Rhesus monkey, dog, cow, rat, chicken, zebrafish 

and frog. 

Mutations 

Germinal 

Several types of mutations (missense, nonsense, 

small deletions) have been reported for the human 

FZD4 gene and are related to the familial exudative 

vitreoretinopathy (FEVR). Among these mutations, 

different heterozygous substitutions have been 

reported: M342V, W335C, R417, I256V, P33S, 

G36N, H69Y, M105T, M105V, C181R, C204R, 

C204Y, C45Y, Y58C, W226X, and G488D (Zhang 

K. et al., 2011; Kondo H. et al. 2003; Quin et al., 

2005) It  has also been described a loss of function 

mutation of FZD4 with nucleotides 1479-1484 

deletion in two cases of FEVR, resulting in the 

lacking of met493 and trp494 that leads to a 

frameshift and creates a stop codon at residue 533 

(Robitaille J. et al.,2002). 

Implicated in 

Familial Exudative Vitreoretinopathy 
(FEVR) 

Familial Exudative Vitreoretinopathy (FEVR) is a 

hereditary ocular disorder characterized by 

incomplete development of the retinal vasculature.  

 

It is possible to distinguish two forms of FEVR: one 

with dominant autosomal inheritance and one with 

X-linked recessive inheritance (Gilmour DF., 2015).  

 

Autosomal inheritance has been associated with 

mutation of FZD4, LRP5 or Tetraspanin 12 

(TSPAN12) genes, while X-linked recessive 

inheritance is due to mutation of Norrin gene (NPD) 

that it is also involved in other ocular disease.  

 

Several FZD4 mutations were connected with 

FEVR, many of which were found in the 

extracellular portion of the protein. Kaykas et al., 

have shown how some FZD4 mutations in FEVR 

lead to the retention of mutated protein within the 

endoplasmic reticulum (ER), where it is recognized 

by endoplasmic-reticulum-associated protein 

degradation (ERAD) and degraded, not allowing its 

exposure on the plasma membrane. They also 

demonstrated that oligomerization of mutants and 

wild-type FZD4 in the ER reduces the FZD4 

function by preventing a sufficient amount of FZD4 

from reaching the cell membrane and inhibits its 
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signaling. This dominant-negative effect can partly 

explain the pathological mechanism that causes the 

disease phenotype, in patients with heterozygous 

FZD4 mutations. Mutations that do not cause 

retention in ER of mutated protein, induce a 

conformational modification of the CRD FZD4 that 

doesn't permit the biding to its ligands or 

downstream targets. 

Acute myeloid leukemia (AML) 

It was demonstrated that FZD4 represents one of the 

mechanism of canonical or non canonical Wnt 

signaling activation in the pathogenesis of AML. 

Recently microarray analysis confirmed a higher 

expression of FZD4 in primary AML blast cells. 

(Beghini A. et al., 2012).  

 

Tickenbrock, A. et al, also showed FZD4 

overexpression in primary AML blasts, both in the 

presence or absence of FLT3 mutations. They also 

showed a canonical Wnt pathway activation due at 

specific WNT3A/FZD4 interaction, that leads to the 

stabilization of β-catenin and induces higher 

resistance against apoptosis. It was observed an 

involvement of FZD4 in differentiation of AML cell 

line mediated by 6-benzylthioinosine (6-BT) 

treatment. 6-BT treatment results in downregulation 

of canonical Wnt molecules and up-regulation of 

transcriptional level of the non canonical Wnt ligand 

Wnt5a and receptors FZD2, FZD4, FZD5, resulting 

in activation of Wnt/Ca2+ pathway ( Zang S. et al., 

2014). 

Non small cell lung cancer (NSCLC) 

Recently several studies have reported that single 

nucleotide polymorphisms (SNPs) of FZD4 gene can 

influence recurrence and survival of early stage 

NSCLC patients treated with only surgery or in 

combination with chemotherapy.  

 

miR-related SNP (rs713065) in the 3?UTR region of 

FZD4 gene is associated with decreased risk of death 

in early stage NSCLC patients treated with only 

surgery, while it is related to increased risk of death 

in patients treated with surgery plus chemotherapy 

(Pu X. et al., 2013). This FZD4-miR-SNP 

specifically interacts with MIR204 which acts as a 

tumor suppressor and inhibits the expression of 

FZD4 and transduction of Wnt/βcatenin signalling 

(Lin J. et al, 2017).) This FZD4-miR-SNP 

specifically interacts with miR-204 which acts as a 

tumor suppressor and inhibits the expression of 

FZD4 and transduction of Wnt/βcatenin signalling 

(Lin J. et al, 2017).  

 

Coscio A. et al, demonstrated that miR-SNP 

(rs10898564) of FZD4 is most significantly 

associated with increased recurrence and death risk 

in NSCLC patients treated with only surgery but not 

in patients treated with surgery and chemotherapy. 

These reports suggest a potential role of FZD4-SNPs 

as predictive biomarkers for both recurrence and 

survival in early stage NSCLC patients. 

Prostate cancer 

In prostate cancer cells have been shown activation 

of Wnt signalling through FZD4 leading to 

epithelial-to-mesenchymal transition (EMT) and 

loss of cell adhesion (Gupta S. et al., 2010; Acevedo 

VD et al., 2007). 

Breast cancer 

Recently Lazzaroni F. et al. evidenced an autocrine 

activation of Wnt signalling in breast cancer cell line 

model. In MCF7 cell line model they identified the 

WNT10B/FZD4 interacting complex using the in 

situ proximity ligation assay and a dose dependent 

reduction of WNT10B/FZD4 complex after the 

treatment with pharmacological inhibitor of 

porcupine, a membrane-bound acyltransferase that is 

essential to the production of Wnt proteins. 

Liver cancer 

It was revealed that Let7b microRNA inhibit Wnt/β-

catenin signaling pathway via downregulation of 

FZD4 in liver cancer cell, resulting in a reduction of 

proliferation, invasion, migration of liver cancer 

cells and reduction in the amount of cancer stem cells 

in liver (Cai H.et al 2017). 

Glioblastoma 

Microarray analysis in U87R4 invasive glioblastoma 

cell line reported an overexpression of FZD4, which 

actives Wnt/β catenin signalling pathway and 

promotes stemness and invasiveness of glioblastoma 

cells. (Jin X. et al. 2011). 

Medulloblastoma 

Recently evidences showed an involvement of 

Norrin/FZD4 signaling pathway in the cerebellar 

tumor medulloblastoma (MB) initiation. In this 

tumor, Norrin/FZD4 pathway acts as anti-tumor 

signal in the preneoplastic niche, in fact loss of 

function of Norrin/FZD4 signaling in the 

endothelian cells promotes the formation of 

preneoplastic lesion of MB and their progression to 

malignancies (Bassett E. et al., 2016). 

Bladder cancer 

FZD4 is a target of miR-493 in the bladder cancer. It 

was observed a down-regulated expression of miR-

493 in the bladder cancer tissue in comparison with 

normal bladder tissue. MIR493 transfection in the 

T24 or J82 bladder cancer cell line inhibits FZD4 and 

Rho4 expression, resulting in the inhibition of cell 

motility and migration  

 

These results, suggested that miR-493 represent a 

new tumor suppressor in the bladder cancer (Ueno 

K. et al., 2012). 
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Melanoma 

It was reported that in melanoma cells Wnt 

signalling activation through FZD4 promotes tumor 

cell invasion and metastasis. WNT5a binds 

FZD4/LRP6 receptor complex and actives the 

guanosine triphosphatase adenosine diphosphate 

ribosylation factor 6 ( ARF6), leading to the 

disruption of N-cadherin-βcatenin complex and 

accumulation of nuclear βcatenin, which increases 

the transcription of its target genes and stimulates 

melanoma invasion (Grossman A. et al., 2013) 

Chronic Myeloid Leukemia 

Agarwal P. et al., revealed a role of FZD4 in Wnt-

mediated regulation of CML progenitor growth and 

their resistance to tyrosine kinase inhibitor (TKI) 

treatment. Silencing of FZD4 expression in 

combination with Nilotinib (NIL) treatment reduces 

Wnt signalling activation and the colony forming 

capacity of CML cells. 

Colorectal cancer 

Expression of FZD4 in colorectal cancer and its 

binding with the Norrin ligand, produced by the 

same cells and endothelial tumor cells, activates β-

catenin signalling and regulates angiogenesis in the 

colorectal cancer microenvironment (K. Platinus et 

al. 2014). 
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Abstract 

Myc-associated zinc finger protein (MAZ), also 

known as serum amyloid A-activating factor 1 

(SAF1), Pur-1 or Zif87, is ubiquitously expressed in 

various tissues.  MAZ is a transcription factor with 

six Cys2His2-type zinc finger motifs at the carboxyl-

terminus that interact with a permutation of the 

GGGAGGG sequence motif present in GC-rich 

promoter regions of target genes, likely through 

DNA unfolding of G-quadruplex structures to 

modulate gene expressions. MAZ is also suggested 

to participate in transcription termination and 

polyadenylation. Deregulated expression of MAZ is 

reported to correlate with various tissue 

malignancies that include the breast, thyroid, 

hepatocellular and urothelial cancers. 

Keywords 

MAZ; transcription factor; Zinc finger; DNA 

binding; Purine binding; breast cancer; thyroid 

cancer; hepatocellular cancer; urothelial cancer. 

Identity 
Other names 

PUR1 (Purine-Binding Transcription Factor), SAF-

1 (Serum Amyloid A Activating Factor 1), SAF-2 

(Serum Amyloid A Activating Factor 2), SAF-3 

(Serum Amyloid A Activating Factor 3), ZF87 

(Transcription Factor Zif87), ZNF801 (Zinc Finger 

Protein 801) 

HGNC (Hugo) 

MAZ 

Location 

16p11.2 

Location (base pair) 

chr16:29,817,858-29,822,504; 4,647 bp. 

UCSC representation of the gene on chromosome 16. RefSeq sequence shows introns as lines, exons as boxes 

and encoding exons as thicker boxes. Retrieved from: http://genome.ucsc.edu on November 6, 2017. 

DNA/RNA 
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The human MAZ consists of six exons, the first five of which are encoding exons; total exon length is 4.57 kb 

(Song et al., 1998). 

Description 

The human MAZ contains six exons; the encoding 

sequence consists of 1431 bases (Song et al., 1998). 

Transcription 

The human gene encoding for MAZ is located on 

chromosome 16p11.2 and is transcribed as an 

mRNA of 2.7 kilobases (kb). The primary transcript 

encodes a 477 amino-acid long MAZ-1 protein with 

a 60-kDa molecular mass that contains six C2H2-

type zinc-finger domains responsible for DNA 

binding. MAZ protein has two additional isoforms: 

MAZ-2 and MAZ-3. The MAZ-2 transcript is 

generated by an alternative splicing that results in the 

insertion of a new exon originating from the non-

coding sequences of the intron 4. This transcript 

gives rise to the MAZ-2 isoform, which is a 493 

amino-acids long protein with distinct carboxyl-

terminus which contains two additional zinc-finger 

domains (Ray et al., 2002). The MAZ-2 isoform is 

reported to have a higher DNA-binding activity and 

to act as a negative regulator of MAZ-1 function 

(Ray et al., 2002). The MAZ-3 transcript is 

expressed at very low levels under normal 

physiological condition in various tissues, but is 

highly expressed during inflammation. The MAZ-3 

transcript is transcribed from a distinct upstream 

promoter and is processed with alternative splicing. 

The MAZ-3 transcript is translated from a different 

starting codon that gives rise to the MAZ-3 isoform 

of 455 amino-acids (Ray et al., 2009). 

Pseudogene 

No reported pseudogenes are found. 

Protein 

 

Domains of MAZ are depicted with vertical colored lines; Blacks are Poly-Alanine repeats; Green is Poly-

Proline tract; Red column is Poly-Glycine repeat. C2H2-type zinc finger domains of MAZ-1 are represented in 

dark blue-green vertical lines 

 

. 

Description 

The human MAZ protein contains three Poly 

alanine, one poly-proline and one poly-glycine 

domains (Song et al., 1998). Poly-alanine repeats 

considered to have role in cellular localization of the 

protein; the alteration in the intracellular distribution 

may contribute to diseases, including muscular 

dystrophy (OPMD) (Oma et al., 2004). Similarly, 

poly-glycine repeats are responsible in protein 

targeting (Uthayakumar et al., 2012). Poly-proline 

tracks, on the other hand, generates structures that 

are predicted to have important roles in protein-

protein interactions (Williamson, 1994). The human 

MAZ-1 contains six C2H2-type zinc finger domains 

(Song et al., 1998), which are frequently occurring 

in proteins involved in transcriptional regulation. 



MAZ (MYC Associated Zinc Finger Protein)  
 

Atlas Genet Cytogenet Oncol Haematol. 2018; 22(8) 325 
 

 

Expression and synthesis of MAZ in various cancerous tissues. Retrieved from: 

http://www.proteinatlas.org/ENSG00000103495-MAZ/cancer on November 2, 2017. 

 

Expression 

MAZ is expressed in the human heart, brain, lungs, 

liver, skeletal muscle, pancreas, and prostate (Jiao et 

al., 2013; Dudas et al., 2008). The synthesis of MAZ 

protein is observed to occur at high levels in breast, 

thyroid and urothelial cancers as well as in 

melanoma (Ugai et al., 2001) 

 

Immunofluorescent staining of human cell line MCF7. Retrieved from: 

http://www.proteinatlas.org/ENSG00000103495-MAZ/cell on November 2, 2017. Immunofluorescent staining 

of MCF7 cells derived from breast adenocarcinoma shows that MAZ localizes to the nucleus. 

 

Localisation 

MAZ is located in the nucleus (Jordan-Sciutto et al, 

2000). 

Function 

MAZ as a transcription factor interacts with a 

permutation of the GGGAGGG sequence motif 
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present in GC-rich promoter regions of target genes 

by unfolding of G-quadruplex structures of DNA 

(Cogoi et al., 2014) to activate or repress 

transcription. MAZ is also suggested to participate in 

transcription termination and polyadenylation. 

Several oncogenes, including MYC, HRAS, 

PPARG, TSG101, VEGFA, CAV1, PTHR1, NOS3, 

MYB, and hTER, are transcriptionally regulated by 

MAZ (Jun Song et al., 2001; Lee et al., 2016; Ray et 

al., 2002). Deregulated expression of MAZ appears 

to participate in the development and/or progress 

various tissue malignancies including the breast, 

thyroid, hepatocellular and urothelial cancers (Jiao et 

al., 2013; Dudas et al., 2008; Yu et al., 2017; Ray, 

2011; Zhu et al., 2016) 

Homology 

The human MAZ protein is conserved 100% in 

chimpanzee (P.troglodytes), 98.4% in mouse 

(M.musculus), and 98.4% in rat (R.norvegicus); with 

conserved DNA of 99.8%, 93.2%, and 92.7%, 

respectively (Retrieved from: 

https://blast.ncbi.nlm.nih.gov/Blast.cgi. November 

2, 2017). 

Mutations 
Note 

Genetic mutations are not described for MAZ. 

Implicated in 

Prostate cancer 

It was reported that the MAZ expression is higher in 

clinical prostate cancer (PCa) specimens than in 

benign prostatic hyperplasia (BPH) and adjacent 

normal tissues (Jiao et al., 2013). Moreover, the 

MAZ expression appears to be positively correlated 

with the expression of androgen receptor ( AR), 

which is critical for the initiation and development 

of androgen-dependent PCa (Jiao et al., 2013). 

Extending these findings, experimental studies in 

cell models derived from PCa indicated that MAZ is 

involved in the phenotypic manifestation of PCa cell 

models as siRNA knockdown of MAZ levels 

reduces cell proliferation, migration, and invasion 

through mechanisms involve the expression of AR 

(Jiao et al., 2013). 

Hepatocellular carcinoma 

The expression of MAZ was reported to be 

upregulated in the majority (78.94%) of 

hepatocellular carcinoma (HCC) samples compared 

to normal liver samples (Dudas et al., 2008). 

Experimental studies using cell lines derived from 

HCC further suggest that MAZ-mediated regulation 

of PROX1, which is a transcription factor critical for 

the expression of a number of genes involved in 

hepatic metabolic functions, contributes to the 

progression of HCC (Dudas et al., 2008). 

Breast cancer 

Based on data sets in Gene expression-based 

Outcome for Breast Cancer Online (GOBO, 

http://co.bmc.lu.se/gobo/), the expression of MAZ is 

found to be correlated with distant metastasis-free 

survival (DMFS) in basal-like breast cancer (BLBC) 

patients and that the under-expression of MAZ is 

involved in the metastatic spread of BLBC (Yu et al., 

2017). Based on these finding, it was suggested that 

MAZ plays dual roles in basal-like breast cancer 

(BLBC): it suppresses cancer progression but 

promotes cellular proliferation (Yu et al., 2017). 

Experimental studies using model cell lines derived 

from breast cancer indeed suggest that MAZ 

promotes cell proliferation yet it suppresses the 

aggressiveness of BLBC by controlling the transition 

toward a more mesenchymal phenotype (Yu et al., 

2017; Ray, 2011). 

Pancreatic carcinoma 

Based on samples from pancreatic carcinoma 

patients, it was reported that the expression of MAZ 

is significantly higher in PC tissue compared to the 

adjacent non-tumor tissues (Zhu et al., 2016). 

Moreover, it appears that the over-expression of 

MAZ is associated with poor prognosis of PC 

patients (Zhu et al., 2016). 

Hodgkin's Disease and 
Paraneoplastic Cerebellar 
Dysfunction 

In neuronal cells, MAZ interacts with the Deleted in 

Colorectal Cancer product ( DCC), the receptor for 

NTN1 netrin-1 which plays a central role in axonal 

guidance and neuronal migration as well as survival 

during development. Analyses of sera from patients 

with HD and PCD Hodgkin's disease and 

paraneoplastic cerebellar degeneration indicated that 

patient sera contain auto-antigens directed against 

the MAZ-DCC complex.  Based on these 

observations, it was speculated that auto-antigens 

could interfere with neuronal function resulting in 

neuronal degeneration (Bataller and Wade, 2002). 

To be noted 
Expression of the MAZ gene is found to be regulated 

by MIR-125B, which is suggested to affect VEGF-

induced angiogenesis in glioblastoma (Vandertop et 

al., 2017).  

 

MIR449A targets MAZ transcripts, the down-

regulation of which is reported to contribute to 

glioblastoma (Chen et al., 2015; Zhao et al., 2014; 

Yao et al., 2015).  

 

MIR34C is also reported to target MAZ. Decrease 

levels of MAZ by miR-34c are suggested to impair 

the integrity and increased the permeability of blood-

tumor barrier (Zhao et al., 2014). 
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Abstract 

UHMK1 (also known as KIS) is a serine/threonine 

kinase initially identified as a Stathmin interacting 

protein. UHMK1 is characterized by an N-terminal 

kinase domain and a C-terminal UHM motif. 

Through the UHM motif, the protein is capable of 

interacting with splicing factors, such as SF1 and 

SF3B1, involved in early steps of spliceosome 

assembly.  UHMK1 is ubiquitously but 

preferentially expressed in the developing nervous 

system, where it plays a role in mRNA processing, 

translational enhancing, neurite outgrowth and 

postsynaptic plasticity. Protein interactions between 

UHMK1 and a range of proteins pointed to its 

function in different cellular processes, such as RNA 

metabolism, cell cycle progression, cell migration 

and membrane trafficking. More recently, a role of 

UHMK1 in cell differentiation has also been 

proposed. 

Keywords 

phosphorylation; splicing; cell-cycle control; 

nervous system 

Identity 
Other names 

KIS, KIST, P-CIP2 

HGNC (Hugo) 

UHMK1 

Location 

1q23.3 

Location (base pair) 

Starts at 162497174 and ends at 162529629 bp from 

pter (according to GRCh38.p7, 2016) 

DNA/RNA 

Description 

The UHMK1 gene is located on the chromosome 1, 

band q23, orientated in the plus (+) strand. The 

genomic locus spans 32456 base pairs 

(NC_000001.11), contains 8 exons and two 

alternative first exons. 

Transcription 

Three alternatively spliced transcripts of 8535, 8194 

and 8446 base pairs are formed (NM_175866, 

NM_001184763 and NM_144624, respectively). 

The transcript variant 1 (NM_175866) codes for the 

longest protein isoform, which has 419 amino acids 

in length (isoform 1; NP_787062). The transcript 

variant 2 (NM_001184763) differs in the 5' UTR and 

initiates translation at the alternative start codon. The 

resulting protein (isoform 2; NP_0011716921) of 

345 amino acids has a distinct 15 amino acids N-

terminal, encoded by the alternative exon 1, and the 

remaining 330 amino acids encoded by exons 2-8. 

The transcript variant 3 (NM_144624) lacks exon 7, 

which results in a frame shift and early stop codon 

within exon 8. The encoded protein (isoform 3; 

NP_653225) of 344 residues, shares the first 341 

amino acids (exons 1-6) with isoform 1, differing 

only in the last 3 amino acids at the C-terminal 
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(Figure 1). An additional processed transcript of 

3345 bp (ENST00000282169.8) retaining intron 2 

(between exons 2 and 3), which does not contain an 

open reading frame (ORF) has been annotated for 

this gene. Moreover, the first 540 nucleotides of 

UHMK1 locus (NC_000001.11) are shared with the 

LOC105371497 gene, which produces a 708 bp long 

non-coding RNA (XR_922225.1), transcribed in the 

opposite direction of UHMK1 

(https://www.ncbi.nlm.nih.gov/gene/127933). 

 

 

Figure 1. Genomic organization, alternative splicing and protein isoforms of UHMK1.  Exons are 

represented by numbered blue boxes and introns by the black line. The positions of the exons within the genome 

(NC_000001.11) are numbered. Exon joining is represented for each transcript by light green, purple and orange 

continuous lines; dashed lines indicate the respective protein isoform; dotted lines indicate the alternatively first 

exon usage. Size of the transcript variants are shown in parentheses. The transcript variant 1 codes for the longer 

protein (UHMK1 isoform 1, light green). The transcript variant 2 comprises an alternative first exon (light purple 

box), which encodes the distinct 15 amino acids N-terminal of the protein (UHMK1 isoform 2, purple). The 

transcript variant 3 lacks exon 7, whose excision results in a frameshift and early stop codon in exon 8. The 

resulting UHMK1 isoform 3 (orange), exhibits a distinct C-terminal formed by 3 aminoacids encoded by the 

beginning of exon 8. Sizes were scaled up, where 0.5 cm symbolizes 150 bp of exonic region (blue boxes) and 

624 bp of intronic regions (black line). Number and position of aminoacids are depicted for each isoform. 

 

Protein 

 

Figure 2. Diagram representing UHMK1 protein and the posttranslational modifications.  UHMK1 is 

characterized by an N-terminal kinase core of 282 aminoacids, represented in green and a C-terminal UHM of 

100 aminoacids, represented in violet. All residues described to be phosphorylated or ubiquitinated in large scale 

proteomic studies are depicted. Source: Phosphoproteomic databases PhosphoSitePlus 

(http://www.phosphosite.org) UHM: U2AF homology motif (modified from Archangelo, et al. 2013).

 

Description 

UHMK1 is a serine/threonine kinase with calculated 

molecular weight of 46.5 kDa and a theoretical pI of 

5.59 (PhosphoSite Plus). The primary sequence of 

the protein is characterized by an N-terminal kinase 

core (282 aminoacids) and the C-terminal U2AF 

homology motif (UHM), responsible for establishing 

protein interactions with UHM-ligand motifs 

(ULM), particularly present among splicing factors 

(Kielkopf et al., 2004; Manceau et al., 2006). 

UHMK1 phosphorylates preferentially proline 

directed serine residues on its target proteins 

(Maucuer et al., 2000). The lysine 54 within the N-

terminal region is essential for its kinase activity and 

autophosphorylation activity has been observed 

(Boehm et al., 2002; Maucuer et al., 1997). A variety 

of large scale proteomic studies identified two types 

of posttranslational modifications within UHMK1, 

http://www.phosphosite.org/
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namely lysine-ubiquitination (K190-ub, K282-ub, 

K383-ub and K387-ub) and phosphorylation (Y197-

p, S283-p and S290-p) as indicated at the 

phosphoproteomic database PhosphoSitePlus 

(http://www.phosphosite.org) (Figure 2). 

Expression 

UHMK1 is ubiquitously expressed throughout rat 

and human tissues, with enriched expression in the 

nervous system (Bieche et al., 2003; Caldwell et al., 

1999; Maucuer et al., 1997). Uhmk1 mRNA is 

expressed during rat embryonic development and 

increases after birth and during the first month of 

brain development (Bieche et al., 2003). In the adult 

brain, in situ hybridization revealed remarkable 

expression in the substantia nigra and some sensorial 

and motor nuclei in the brain stem (Bieche et al., 

2003). In the human brain, UHMK1 expression was 

detected in all regions examined, with highest levels 

in the deeper cortical layers. Strong expression was 

observed in dentate gyrus, CA1, CA3 and CA4 

regions of the hippocampus, in Purkinje cells and 

granule cell layer of the cerebellum. No expression 

was detected in the white matter (Bristow et al., 

2009). 

In the hematopoietic compartment, high levels of 

UHMK1 transcripts were observed in differentiated 

lymphocytes (CD4+, CD8+ and CD19+) compared 

to the progenitor enriched subpopulation (CD34+) or 

leukemia cell lines. UHMK1 expression was 

upregulated in megakaryocytic-, monocytic- and 

granulocytic-induced differentiation of leukemia cell 

lines and in erythrocytic-induced differentiation of 

primary CD34+ cells (Barbutti et al., 2017). 

Levels of UHMK1 protein are induced by mitogens. 

In serum starved cells, UHMK1 expression was 

reduced in contrast to serum stimulated cells (Boehm 

et al., 2002; Crook et al., 2008; Petrovic et al., 2008). 

UHMK1 expression increased after quiescent 

peripheral blood lymphocytes (PBLs) were induced 

to proliferate upon mitogen activation (Barbutti et 

al., 2017). Moreover, the amount of UHMK1 protein 

varies throughout the cell cycle. In synchronized 

cells, UHMK1 accumulates in G1 phase and 

decreases during S phase of the cell cycle 

(Archangelo et al., 2013). 

Little is known about the transcriptional regulation 

of UHMK1, which was described as direct target of 

the transcription factors GABP (Crook et al., 2008) 

and FOXM1 (Petrovic et al., 2008). The core 

promoter region of UHMK1 was described within -

141 to -41 base pairs upstream of the transcription 

start site and has no consensus sequences for TATA 

or CCAAT boxes. Instead, it has GC-box and 3 Ets-

binding sites (EBS-1, EBS-2 and EBS-3), which are 

essential for the promoter activity, in vitro. The 

regions spanning EBS-1 and EBS-2 (-103/-73 bp), 

and EBS-3 (-52/-42 bp) bind GABP in response to 

serum, leading to UHMK1 expression, cell 

migration and cell cycle progression of VSCM cells 

(Crook et al., 2008). 

FoxM1 binds an internal regulatory region within 

UHMK1 and transactivates its expression in vitro. 

FoxM1 appears to be essential for serum-dependent 

activation of UHMK1 mRNA expression, as 

assessed in FoxM1-/- MEF cells. It was suggested 

that FoxM1-induced UHMK1 expression is required 

for UHMK1-mediated phosphorylation and 

consequently degradation of CDKN1B (p27Kip1) 

(Petrovic et al., 2008). 

Furthermore, UHMK1 was described as 

transcriptional target of the WD repeat domain 5 

(WDR5), a core component of the KMT2A (MLL) / 

SETD1A complex, known for its methyltransferase 

activity on H3 lysine 4 (H3K4). The H3K4me3 

epigenetic modification correlates with gene 

activation, thus it is suggested that WDR5-mediated 

H3K4me3 at UHMK1 locus promotes its expression 

(Chen et al., 2015). 

 

Figure 3. Subcellular localization of Uhmk1. Confocal image of HeLa cells transiently transfected with 

plasmid expressing ha-tagged Uhmk1 (pECE-HA-Kis; Manceau et al, 2008). Ectopic Uhmk1 localizes mainly to 

the nucleus and to a lesser extent to the cytoplasm. The anti-Kis 3B12 antibody (Manceau et al, 2012) and 

Phalloidin (Invitrogen A1238) were used to detected Uhmk1 and Actin, respectively. 63x objective, zoom 2,5 x. 

Personal data. 

 

Localisation 

The UHMK1 protein localizes mainly to the nucleus 

and to a lesser extent to the cytoplasm (Boehm et al., 

2002; Maucuer et al., 1997) (Figure 3). Shuttling 

between nucleus and cytoplasm has been described 

for the GFP-fused protein by fluorescence recovery 

after photobleaching (FRAP) (Francone et al., 2010). 
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The kinase domain is essential for the protein nuclear 

localization, since deletion mutants of this domain, 

particularly the residues 1-211, extinguished Uhmk1 

signal in immunofluorescence analysis (Manceau et 

al., 2008). Overexpressed ha-tagged Uhmk1 

localized to the RNA granules of axon and dendrites 

of cortical neurons (Cambray et al., 2009). Also, a 

nucleolar enriched localization was observed when 

ha-tagged Uhmk1 was co-expressed with its GFP-

fused interacting partner PIMREG (Archangelo et 

al., 2013). 

 

Figure 4. Potential functions of UHMK1. 1- UHMK1 interacts with and phosphorylates the splicing factors 

SF1 and SF3B1. 2- UHMK1 counteracts the inhibitory effect of p27Kip1 on cell cycle. Upon mitogenic activation, 

UHMK1 is upregulated and phosphorylates p27Kip1, which is exported from the nucleus and targeted for 

degradation by the proteasome. 3- UHMK1 impairs cell migration through negatively regulating the microtubule 

destabilizing protein Stathmin (STMN). UHMK1-mediated phosphorylation of STMN on S38 targets the protein 

for degradation. 4- UHMK1 regulates the secretory pathway in neurons and endocrine cells through its 

interaction with the peptidylglycine α-amidating mono-oxigenase (PAM). 5- UHMK1 interacts with components 

of neuronal RNA granules, such as KIF3A, NonO and eEF1A. It also associates with RNP-transported mRNAs 

and stimulates translation driven by the β-actin 3' UTR. 6- UHMK1 interacts with and phosphorylates the 

proliferation marker PIMREG, suggesting a potential role in regulating proliferation. Black arrow: represents the 

mitogen-dependent activation of UHMK1. Grey arrows: indicate the UHMK1-mediated phosphorylation of 

target proteins. Grey dotted arrows: represent the fate of the UHMK1 phosphorylated proteins targeted for 

degradation. P: phosphorylation; Ub: ubiquitination. Illustration was drawn using Servier Medical Art. 

 

Function 

UHMK1 was described to interact with a range of 

proteins, shedding light on different functions of this 

protein in diverse cellular processes (Figure 4). 

UHMK1 is the only kinase that possesses the N-

terminal kinase core juxtaposed to a C-terminal 

U2AF homology motif (UHM) (Maucuer et al., 

1997). Through the UHM motif, UHMK1 interacts 

with the splicing factors SF1 and SF3B1 (Manceau 

et al., 2008). Upon interaction, UHMK1 

phosphorylates SF1, which enhances SF1 specific 

binding to U2AF65 and reduces the SF1-U2AF65 

binding to the 3' splice site RNA (Chatrikhi et al., 

2016; Manceau et al., 2006). In addition, UHMK1 

expression is necessary for normal phosphorylation 

of SF1 in vivo (Manceau et al., 2012). The fact that 

UHMK1 interacts with and regulates splicing factors 

suggests that UHMK1 might be involved in RNA 

metabolism. 

Since UHMK1 is highly expressed in neurons, it is 

expected to exerts important functions in the nervous 

system. It was demonstrated an abnormal 

phosphorylation of SF1 in brain extracts of neonate 

Uhmk1-/- mice. Also, Uhmk1 deletion resulted in 

increased ratio of pre-mRNA relative to mRNA, and 

consequently down-regulation of brain specific 

genes, like cys-loop ligand-gated ion channels and 

metabolic enzymes. Although adult Uhmk1-/- mice 

did not present an obvious phenotype, animal 
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behavior was affected. The Uhmk1-/- mice displayed 

locomotor hyperactivity, reduced fear conditioning 

and learning capacities from aversive stimuli 

(Manceau et al., 2012). 

The murine Uhmk1 was described to interact with 

known components of neuronal RNA granules, such 

as KIF3A, NONO and EEF1A1. The protein 

colocalizes with KIF3A kinesin in neurites and is 

required for neuritic outgrowth in cortical mouse 

neurons. Furthermore, Uhmk1 associates with RNP-

transported mRNAs and stimulate translation driven 

by the β-actin 3' UTR, suggesting that Uhmk1 

contributes to modulate translation in RNA-

transporting granules as a result of local signals 

(Cambray et al., 2009). Still, comparison of primary 

cultures derived from Uhmk1-/- mice did not reveal a 

significant difference in neuritic arborization of 

cortical neurons (Manceau et al., 2012). 

Furthermore, a study investigating Uhmk1 action on 

hippocampal synaptic plasticity in mice, showed that 

Uhmk1 knockdown impaired spine development, 

altered actin dynamics, and reduced postsynaptic 

responsiveness. Moreover, Uhmk1 depletion 

resulted in decrease of the postsynaptic scaffolding 

protein PSD-95 and of AMPA receptor subunits. 

Thus Uhmk1 enhances translation of AMPA 

receptors and stimulates dendritic spine remodeling 

(Pedraza et al., 2014). 

Another described function of UHMK1 involves the 

regulation of secretory pathway in neurons and 

endocrine cells through its interaction with 

peptidylglycine α-amidating mono-oxigenase 

(PAM) (Alam et al., 1996). PAM cytosolic domain 

(CD) phosphorylation by UHMK1 (Ser-949) is 

required for the correct routing of this protein and 

consequently for its ability to affect trafficking in the 

regulated secretion pathway (Alam et al., 2001; 

Caldwell et al., 1999). Lately, it was described an 

intramembrane proteolysis pathway for PAM, 

generating a soluble fragment of the cytosolic 

domain (sf-CD), which accumulates in the nucleus 

in a phosphorylation-dependent manner, modulating 

the expression of genes involved in the secretory 

pathway. UHMK1 phosphorylates sf-CD, 

diminishing its localization in the nucleus and 

negatively regulating the expression of a subset of 

genes (Francone et al., 2010; Rajagopal et al., 2010). 

An extensively documented function of UHMK1 is 

its ability to positively regulate cell cycle 

progression through phosphorylation and inhibition 

of the cyclin dependent kinase inhibitor (CDKI) 

p27Kip1. Upon mitogenic activation, UHMK1 

expression is upregulated and phosphorylates p27Kip1 

on serine 10 (Ser10). As a consequence, p27Kip1 is 

exported from nucleus to cytoplasm, where it is 

targeted to the proteasome and degraded, and has no 

longer inhibitory effect on cell cycle. Thus, UHMK1 

promotes cell cycle re-entry by inactivating p27Kip1 

following growth factor stimulation (Boehm et al., 

2002). 

Another important target of UHMK1 is the 

microtubule-destabilizing protein, Stathmin 

(Maucuer et al., 1995). UHMK1 interacts with and 

phosphorylates Stathmin on serine 38 (Ser38), 

targeting this protein to proteasome. Through 

negative regulation of Stathmin, UHMK1 alter 

microtubule dynamics and consequently impairs cell 

migration (Langenickel et al., 2008). 

UHMK1 expression is upregulated upon 

hematopoietic cell differentiation, thus a possible 

role of UHMK1 in cell differentiation was proposed 

(Barbutti et al., 2017). This idea was supported by 

the fact that UHMK1 mRNA is highly expressed in 

the mature brain and in terminally differentiated 

neural cells (Bieche et al., 2003) as well as during 

osteoclasts differentiation (Choi et al., 2016). The 

human UHMK1 shares high homology with a 

number of species as depicted in Table 1. 

PIMREG (previously known as FAM64A; CATS) is 

a proliferation marker shown to interact with 

UHMK1. The fact that UHMK1 interacts with and 

phosphorylates PIMREG suggests that UHMK1 

regulates PIMREG function and/or localization. 

Nevertheless, the functional implication of this 

interaction remains elusive (Archangelo et al., 

2013). 

Homology 

The human UHMK1 shares high homology with a 

number of species as depicted in Table 1. The human 

UHMK1 shares high homology with a number of 

species as depicted in Table 1. 

Table 1. Homology between the human UHMK1 and other species

Homo sapiens UHMK1 Symbol Protein (% Identity) DNA(% Identity) 

vs. P. troglodytes 

vs. M. mulatta 

UHMK1 

UHMK1 

99.8 (XP_001174268)  

99.8 (NP_001253697) 

99.7 (XM_001174268) 

99.0 (NM_001266768) 

vs. C. lupus UHMK1 99.8 (XP_536143) 95.8 (XM_536143) 

vs. B. taurus UHMK1 99.8 (NP_001192514) 95.9 (NM_001205585) 
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vs. M. musculus Uhmk1 99.3 (NP_034763) 93.0 (NM_010633) 

vs. R. norvegicus Uhmk1 99.3 (NP_058989) 92.6 (NM_017293) 

vs. G. gallus UHMK1 88.2 (XP_015145890) 81.6 (XM_015290404) 

vs. D. rerio uhmk1 73.6 (NP_001070127) 69.4 (NM_001076659) 

(Source: http://www.ncbi.nlm.nih.gov/homologene/) 

Mutations 

Somatic 

Recurrent mutations have not been identified for the 

UHMK1 gene. Nonetheless, more than 160 unique 

mutations were reported in this gene in the catalogue 

of somatic mutations in cancer database (COSMIC), 

mainly in lung, gastric, esophageal, colon, rectal and 

hepatocellular/liver cancer 

(http://cancer.sanger.ac.uk/cancergenome/projects/c

osmic). 

Implicated in 

Breast cancer 

Erlotinib resistence in breast cancer treatment was 

attributed to p27Kip1 cytoplasmic localization. 

UHMK1 depletion by siRNA enhanced erlotinib 

cytotoxicity in EGFR-expressing breast cancer cells, 

due to its accumulation in the nucleus and reduced 

p27Kip1 cytoplasmic localization (Zhang et al., 2010). 

Besides, UHMK1 expression was reported to be 

inhibited in a dose-dependent manner by the anti-

HER2 antibody trastuzumab, used for treatment of 

human metastatic breast cancer with HER2 

overexpression (Le et al., 2005). 

Neurological tumors 

Higher levels of UHMK1 transcripts were observed 

in small cohort of neurological tumors associated 

with neurofibromatosis type 1 (NF1). Among the 

NF1-associated tumors analyzed, plexiform 

neurofibroma and malignant peripheral nerve sheath 

tumors (MPNSTs) presented higher UHMK1 

mRNA levels compared to dermal neurofibroma 

(Bieche et al., 2003). 

Bladder cancer 

Silencing of WDR5, a protein shown to be 

upregulated in bladder cancer, reduced the 

H3K4me3 epigenetic marker on its target genes, 

such as UHMK1 and consequently downregulated 

UHMK1 expression in bladder cancer cells (Chen et 

al., 2015). 

Hematological malignancies 

No aberrant expression was observed in patient 

samples with myelodysplastic syndrome (MDS), 

acute myeloid (AML) or lymphoblastic (ALL) 

leukemia. Nonetheless, in MDS patients, increased 

levels of UHMK1 expression positively impacted 

event free and overall survival (Barbutti et al., 2017). 

Schizophrenia 

Puri and colleagues performed a fine mapping by 

genetic association and identified two SNPs within 

the UHMK1 gene (rs10494370, p =.004, and 

rs7513662, p = .043), which showed significant 

association with schizophrenia (Puri et al., 2007). 

The genetic association of these markers was 

confirmed in a second case-control (Puri et al., 

2008). Nevertheless, the association of UHMK1 

with schizophrenia is controversial since the data 

from different cohorts did not support the findings 

(Betcheva et al., 2009; Dumaine et al., 2011). 

Osteoporosis 

The SNP rs16863247 was identified within the 

UHMK1 locus in a genome-wide association study 

(GWAS) carried out to identify genetic variants that 

influence bone mineral density (BMD) in east 

Asians. Thus, UHMK1 was described as a bone 

mineral density susceptibility gene for this ethnical 

group. The authors also showed opposed expression 

levels of UHMK1 during osteoblast and osteoclast 

differentiation and proposed that UHMK1 may play 

a role in bone metabolism by controlling osteoclast 

and osteoblast differentiation (Choi et al., 2016). 

Vascular remodeling and wound 
repair 

Langenickel and coworkers demonstrated the 

importance of UHMK1 expression in controlling 

vascular remodeling and wound repair. These 

processes are characterized by vascular smooth 

muscle cell (VSCM) proliferation and cell 

migration, which can be achieved by inhibiting 

p27Kip1 and Stathmin, two known substrates of 

UHMK1. In a mouse model, deletion of Uhmk1 led 

to accelerated neointima formation and vessel 

occlusion, caused by increased migratory activity of 

VSMCs, as a consequence of diminished 

degradation of Stathmin (Langenickel et al., 2008). 

Corneal fibrosis 

It was shown that FGF2-mediated proliferation of 

corneal endothelial cells (CECs) is partially 

dependent on UHMK1 upregulation and its 

inhibitory effects on CDK inhibitor p27Kip1 (Lee and 

Kay, 2011; Lee et al., 2011). 

http://www.ncbi.nlm.nih.gov/homologene/
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Cerebral visual impairment 

UHMK1 was recently reported among candidate 

genes for cerebral visual impairment (CVI), a major 

cause of low vision in childhood (Bosch et al., 2016). 

To be noted 
It is well accepted that UHMK1 promotes cell cycle 

re-entry by inactivating p27Kip1 following growth 

factor stimulation. Thus it is expected that 

abnormally elevated UHMK1 activity, which is 

supposed to relieve cells from p27Kip-dependent 

growth inhibition, could be involved in some aspects 

of tumor development. Nonetheless, no aberrant 

expression of UHMK1 has been reported amongst 

different cancer samples (Barbutti et al., 2017; 

Bieche et al., 2003), except in a few cases of 

neurological tumors associated with NF1 (Bieche et 

al., 2003). Hence, whether it plays a role in 

tumorigenesis or not remains largely elusive and 

must be further investigated. 
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Abstract 

Isochromosomes are nonrandom chromosomal 

anomalies in acute lymphoblastic leukemia (ALL), 

but relatively few patients ALL and i(8)(q10) have 

been reported. In the majority of cases, i(8)(q10) was 

part of complex karyotypes, suggesting that it is a 

secondary chromosomal abnormality in ALL 

associated with clonal evolution. 

KEYWORDS 

Isochromosome; Acute lymphoblastic leukemia; 

Chromosome gain; Clonal evolution. 

Identity 

Partial karyotypes with isochchromosome i(8)(q10) (A). Fluorescence in situ hybridization with LSI MYC probe 

hybridizing to 8q24 (Vysis/Abott Molecular, US) showing end-to-end joining of homologous chromosomes 8 at 

the telomeres (B). It can be hypothesized that telomeric fusion of homologous chromosomes can promote 

creation of an unstable dicentric chromosome potentially causing an unbalanced translocation product. However, 

the precise consequences of telomere fusion events and their role in formation of isochromosomes remain 

unclear. 
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Clinics and pathology 

Disease 

Acute lymphoblastic leukemia 

Phenotype/cell stem origin 

Associated with B-lineage immunophenotype with 

exception of 1 chronic myeloid leukaemia  (CML) 

with lymphoid blast crisis of B-cell type who 

developed a secondary T-cell ALL (Dawson et al., 

1999) case and 2 biphenotypic leukemia (Sulak et 

al.,1990; Saikevich et al., 1991) patients. 

Epidemiology 

At least 40 reported cases (21 males, 19 

females aged 0 to 85 years; median age 17 

years) were described. Nearly half the cases 

were children: 2 female infants (O'Malley et 

al., 1988; Pui et al., 1991) and 12 pediatric 

cases aged 0 to 15 years (Pollak & Hagemeijer 

1987; Krance et al., 1992; Pui et al., 1992; Rafi 

et al., 2000; An et al., 2008; Suenobu et al., 

2010; Chapiro et al., 2011; Harrison et al., 

2014; Olsson et al., 2015; Yasuda et al.,  2016; 

Zhang et al., 2016) or young adults aged 17 to 

24 years old ( Mossafa et al., 1994; Tang et al., 

1998; Jarosova et al., 2000; Soriani et al., 

2011; Harrison et al., 2014; Safavi et al., 2015) 

(Table 1).

 

  Sex/Age Karyotype 

1 F/7 47,XX,del(7)(p?),i(8)(q10),add(9)(p21),ins(9;9)(p21;q12q22),add(14)(q?)  

2 F/0  
46,XX,ins(11;4)/46,idem,del(5)(q15q33)/46,idem,del(5),i(8)(q10)/46,idem,t(2;4)(q33;p16),del(5)/47,ide

m,+8/ 

3 M/85 77-87,XY,-X,-Y,del(5)(q23)x2,i(8)(q10)x2,add(22)(q13),inc        Bilineage or biphenotypic leukemia 

4 M/53 46,XY,+1,der(1;16)(q10;p10),i(8)(q10),t(9;22),-12,der(15)t(12;15)(q12;p11),i(17)(q10),+21 

5 F/0 50,XX,+X,+X,i(8)(q10),+10,-20,+21,i(21)(q10)x2,+mar  

6 M/63 
43,XY,t(1;9)(q?32;p?24),-2,der(3)t(3;12;17)(p?14;p?11;q?25),-5,i(8)(q10),-

12,der(17)t(3;12;17)       Bilineage or biphenotypic leukemia 

7 M/13  46,XY,i(8)(q10),t(12;17)(p13;q21) 

8 M/10  46,XY,i(7)(q10),t(9;22)(q34;q11)/48,idem,i(8)(q10),+i(8)(q10)x2  

9 M 49,XY,+4,+8,i(8)(q10)x2,t(9;22)(q34;q11),+der(22)t(9;22)  

10 F 46,XX,t(9;22)(q34;q11)/47,idem,+i(8)(q10)/47,idem,+8,i(8)(q10)x2 

11 F/60  46,XX,t(9;22)(q34;q11)/46,idem,i(8)(q10) 

12 M/44  46,XY,i(8)(q10),t(9;22)(q34;q11) 

13 F/24  46,XX,del(6)(q21q24),i(8)(q10) 

14 M 46,XY,t(14;18)(q32;q21)/46,XY,del(3)(p24),i(8)(q10),del(12)(p12) 

15 F/42  47,XX,dup(1)(q21q32),add(2)(p11),+7,i(8)(q10),t(8;22)(q24;q11)/47,idem,-dup(1),+trp(1)(q21q32) 

16 F/36  53,XX,+4,t(9;22)(q34;q11),i(8)(q10),+18,+19,+der(22)t(9;22)x2 

17 M/53 46,XY,t(9;22)(q34;q11)/45,XY,-7,i(8)(q10),ider(9)(q10)t(9;22),der(22)t(9;22) 
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18 M 48,XY,i(8)(q10),t(9;22)(q34;q11),+2mar  

19 F/21  46,XX,i(7)(q10),i(8)(q10),t(9;22) 

20 M 
47,Y,-X,-5,-7,+13,-14,-15,+5-6mar/84-91,YY,-X,-X,-4,-4,-5,-5,-7,-7,i(8)(q10),-14,-14,-15,del(22)(q13),+8-

10mar 

21 M/39 
46,Y,t(X;11),i(7)(q10),dup(8)(q21q22)/46,idem,i(8)(q10)/45,idem,-Y       T-cell ALL after chemotherapy 

for CML 

22 M/17 45,XY,i(8)(p?),?add(12),-21/45,XY,i(8)(q10),der(12)del(12)(p13)dic(12;21)(p13;p11)  

23 F/15 
45,X,-X,-6,del(7)(q21),i(8)(q10),-

9,add(9),add(12)(q24),t(12;21)(p13;q22),der(13)t(?6;13)(q12;q32),der(22)t(9;22),+1-2mar  

24 M/62 46,XY,del(1)(q32),i(8)(q10),-9,-10,der(22)t(9;22)(q34;q11),+2mar 

25 F/48 45,X,-X,add(1)(p36),-5,add(6)(q15),i(8)(q10),add(18)(p11)   

26 F/14  45,XX,i(8)(q10),dic(9;12)(p11;p11),der(17)t(?X;17)(?q12;?p11)  

27 F/13 46,XX,dic(9;20)(p11;q11),+21/46,idem,i(8)(q10)/46,idem,add(15)(p10) 

28 M/51 46,XY,i(8)(q10),t(9;22)(q34;q11),der(9)t(8;9)(q1?;p12)  

29 M  47,XY,i(8)(q10),+21c 

30 F/13  

45,XX,t(9;22)(q34;q11),add(10)(q22),-12,der(12)t(12;12)(p13;q13),i(17)(q10)/45,idem,i(8)(q10) 

46,X,-X,+1,t(2;16)(p10;q10),+8,-9,t(9;22),add(10),-12,der(12),-

13,i(17)(q10),+18,add(19)(p13),del(19)(q?),+21,-22,+mar/47,idem,+8       therapy for neuroblastoma 

31 M/17 48,XY,i(8)(q10),+i(8)(q10)x2,t(9;22)(q34;q11)/49,idem,+der(22)t(9;22) 

32 M/7  46,XY,t(14;20)(q32;q12)/46,idem,i(8)(q10)  

33 F/7 
45,XX,dup(1)(q21q32),i(8)(q10),t(9;14)(p22;q11),der(11)t(11;21)(q13;q11)t(21;22)(q22;q11)t(22;22)(q1

1;q22) 

34 M 46,XY,-21,+r/46,idem,inv(11)(p15q13)/46,idem,i(8)(q10) 

35 F/19  
44,XX,i(8)(q10),-10,add(11)(q23),add(12)(p13),-14,add(14)(q32),add(15)(q25), +16,add(21)(q22),-

22,+mar 

1.Pollak & Hagemeijer 1987; 2.O'Malley et al., 1988; 3.Sulak et al.,1990; 4.Kageyama et al., 1991; 5.Pui et al., 

1991; 6.Saikevich et al., 1991; 7.Krance et al., 1992; 8.Pui et al., 1992; 9.Dewald et al., 1993; 10.Tuszynski et al., 

1993; 11-13.Mossafa et al., 1994; 14.Pirc-Danoewinata et al., 1995; 15.Martineau et al., 1996; 16-17.Rieder et al., 

1996; 18.Pabst et al., 1996; 19.Tang et al., 1998; 20.Dabaja et al., 1999; 21.Dawson et al., 1999; 22.Jarosova et 

al., 2000; 23.Rafi et al., 2000; 24.Rieder et al., 2003; 25.Strefford et al., 2007; 26-27.An et al., 2008; 28.Coyaud 

et al., 2010; 29.Kowalczyk et al., 2010; 30.Suenobu et al., 2010; 31.Soriani et al., 2011; 32.Chapiro et al., 2013; 

33-36.Harrison et al., 2014; 37.Olsson et al., 2015; 38.Safavi et al., 2015; 39.Yasuda et al., 2016; 40.Zhang et al., 

2016.  

 Abbreviations:  M, male; F, female. 
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Prognosis 

As it occurs rarely as a sole anomaly only in sporadic 

cases in ALL, thus the prognosis is uncertain; 

patients with favorable primary aberrations and 

i(8)(q10) may maintain favorable clinical outcome 

similar to patients with +8; its combination with 

unfavorable primary anomaly or complex anomalies 

may lead to the worst prognosis. 

Cytogenetics 

Cytogenetics morphological 

Sole abnormality in 3 (Kowalczyk et al., 2010; 

Olsson et al., 2015; Yasuda et al.,  2016) and in the 

stemline, but with other chromosomal changes in 4 

patients (Pirc-Danoewinata et al., 1995; Dabaja et 

al., 1999; Jarosova et al., 2000; Zhang et al., 2016). 

Double i(8)(q10) was detected in 5 cases (Sulak et 

al.,1990; Pui et al., 1992; Dewald et al., 1993; 

Tuszynski et al 1993; Soriani et al., 2011). Complex 

karyotypes, mainly with occurrence of primary 

anomalies in the remaining cases. Among them, the 

most common structural anomaly was 

t(9;22)(q34;q11) , found in 16 patients (Kageyama et 

al., 1991; Pui et al., 1992; Dewald et al., 1993; 

Tuszynski et al., 1993; Mossafa et al., 1994; Rieder 

et al., 1996; Pabst et al., 1996; Tang et al., 1998; Rafi 

et al., 2000; Rieder et al., 2003; Coyaud et al., 2010; 

Suenobu et al., 2010; Soriani et al., 2011; Safavi et 

al., 2015). 

Result of the chromosomal 
anomaly 

Fusion protein 

Oncogenesis 

Partial chromosome 8q gain resulting from an 

isochromosome i(8)(q10) is a nonrandom 

chromosomal anomaly in ALL. It occurs rarely as a 

sole anomaly and is mainly observed together with 

primary chromosome aberrations, most frequently 

with t(9;22)(q34;q11). Therefore, the occurrence of 

i(8)(q10) in ALL may signal clonal evolution, often 

associated with disease progression. The 

consequence of the formation of i(8)(q10) is gain of 

8q and loss of 8p, leading to imbalances in gene 

dosage. As trisomy 8 is among the most common 

secondary chromosome changes in hematological 

malignancies, it is likely that gain of 8q, but not the 

loss of 8p is important in leukemogenesis. In this 

regard it is interesting to note, that while extra 

chromosome 8 is a common clonal evolution marker 

for progression in CML, the occurrence of i(8)(q10) 

has been only rarely described during CML 

transformation. While differential diagnosis between 

blast transformation of CML and Ph1(+) ALL may 

be difficult, particularly in cases identified initially 

in blastic crisis, it is possible that i(8)(q10) is a 

specific secondary anomaly to t(9;22)(q34;q11) in a 

pre-B immunophenotype ALL. 
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Abstract 
Review on acute lymphoblastic leukemia in Down 

syndrome, with data on clinics, pathology, and 

involved genes. 

KEYWORDS 

Down syndrome; leukemia; lymphoblastic 

leukemia. 

Clinics and pathology 

Disease 

Acute lymphoblastic leukemia (ALL) associated 

with Down syndrome (ALL-DS), is predominantly a 

B lymphoblastic leukemia, with only very rare cases 

of mature B cell ALL ( Burkitt leukemia) and T-cell 

ALL. 

Epidemiology 

Trisomy 21 has an incidence of approximately 1 in 

700 live births.  The frequency of acute 

lymphoblastic leukemia in Down syndrome (ALL-

DS) is estimated at 1 in 300 (Lange, 2000).  The 

incidence of ALL-DS <5 years of age is 40.7 times 

greater than that in individuals without Down 

syndrome of the same age; in addition, there remains 

an increased risk of ALL-DS compared to  those 

without Down syndrome up to the age of 30 years 

(Hasle et al., 2000).  However, unlike those without 

Down syndrome, ALL -DS usually does not present 

in patients <1 year of age. 

Clinics 

Other than the lack of presentation in children <1 

year of age, ALL-DS has similar clinical features to 

ALL in children without Down syndrome, including 

age, sex, presenting white blood cell count, and NCI 

risk group (Maloney et al., 2010).  Some studies 

identify similar rates of mediastinal masses and 

central nervous system involvement at diagnosis in 

those with ALL-DS and those with ALL without 

Down syndrome, but other studies identified 

decreased CNS disease and mediastinal masses in 

those with ALL-DS (Maloney, 2011). 

Cytology 

Blasts are characterized as small to medium in size 

with high nuclear-to-cytoplasmic ratios, round to 

irregular nuclei, smooth chromatin, and scant deeply 

basophilic agranular cytoplasm. 

Pathology 

The blasts of ALL-DS usually have an immature B 

cell phenotype, expressing CD19, CD10, and 

CD79a. 

Cytogenetics 

The cytogenetics of ALL-DS differs from the 

cytogenetics in those with ALL not associated with 

Down syndrome.  The children with ALL-DS have a 
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decreased frequency of favorable cytogenetics 

including high hyperdiploidy, trisomies of 

chromosomes 4, 10, and 17, and the t(12;21) 

translocation compared to children without Down 

syndrome (Maloney et al., 2010; Bruwier and 

Chantrain, 2012); these ALL-DS children also have 

a decreased frequency of unfavorable translocations 

such as t(9;22) and 11q23 (MLL) rearrangements. 

Approximately 50-60% of ALL-DS have been found 

to have CRLF2 gene rearrangements by FISH or RT-

PCR (Mullighan et al., 2009; Hertzberg et al., 2010).  

The most common rearrangement is a deletion in the 

pseudoautosomal region 1 (PAR1) of Xp22.33/Yp11 

resulting in a fusion between the first noncoding 

exon on P2RY8 with the entire coding region of 

CRLF2 ( del(X)(p22.33p22.33)/del(Y)(p11p11)) 

(Mullighan et al., 2009). Less commonly, CRLF2 

rearrangements with IGH (immunoglobulin heavy 

chain locus) are identified 

(t(X;14)(p22;q32)/t(Y;14)(p11;q32)).  These fusions 

result in overexpression of CRLF2.  Overexpression 

of CRFL2 has not been found to be correlated with 

outcome. 

  

 

Figure 1:  Bone marrow aspirate smears reveal increased blasts which are small to medium in size with high 

nuclear-to-cytoplasmic ratios, round to irregular nuclei, smooth chromatin, and scant basophilic agranular 

cytoplasm.  Some background maturing myeloid cells are also present in this case. 

Overall, these common B-ALL gene rearrangements, which occur at a rate of approximately 60% in non-Down 

syndrome patients, only occur at a rate of approximately 20% in ALL-DS.  Instead, ALL-DS is more likely to 

have a normal karyotype (with the exception of the constitutional trisomy 21).  In those without normal 

karyotypes, DS-ALL are more likely to be low hyperdiploid, with common acquired changes including +X 

and/or del(9p) (Forestier et al., 2008; Lundin et al., 2014).  

 

 

Genes 

JAK2 activating mutations have been found in 

approximately 20% of ALL-DS, with the most 

common mutations occurring at or around amino 

acid R683 in the pseudokinase domain (Bercovich et 

al., 2008; Kearney et al., 2009; Gaikwad et al., 

2009); however, other JAK2 mutations have been 

identified in ALL-DS, as have mutation in other JAK 

genes including JAK1 (Mullighan et al., 2009).  

These JAK2 mutations are found predominantly in 

those with CRLF2 gene rearrangements.  JAK2 

mutation status has not been found to correlate with 

outcome.  The JAK2 mutations are thought to act in 

concert with the CRFL2 gene rearrangements, 

resulting in cytokine-independent growth and 

leukemogenesis (Mullighan et al., 2009).  

 

In addition to mutations in the JAK-STAT pathway, 

mutations in the RAS/receptor tyrosine kinase 

(RTK) pathway genes such as KRAS and NRAS 

have been identified at a rate of approximately 35%; 

these mutations are mutually exclusive of the JAK2 

mutations (Nikolaev et al., 2014).  However, similar 

to the JAK2 mutations, the RAS pathway mutations 

often occur in the setting of CRLF2 rearrangements.  

Nikolaev et al. (2014) also identified mutations in 

cohesion complex genes, epigenetic 

modifiers/remodellers of DNA or chromatin, 

classical tumor suppressor genes, and lymphoid 
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differentiation factors/markers.  

 

Activating mutations in CRLF2 can also occur, again 

usually in the setting of CRLF2 gene rearrangements 

(Hertzberg et al., 2010).  

 

Deletions in IKZF1 are also often found in DS-ALL, 

estimated at 24-35% (Hertzberg et al., 2010; 

Buitenkamp et al., 2012), as are deletions in the 

PAX5 gene (12-22%) (Kearney et al., 2009; Lundin 

et al., 2012; Buitenkamp et al., 2012).  Patients with 

an IKZF1 deletion or a PAX5 deletion have 

decreased overall survival compared to those 

without these deletions (Buitenkamp et al., 2012). 

Treatment 

ALL-DS is treated similarly to ALL in those without 

Down syndrome.  However, some additional 

modifications and supportive care guidelines are 

often employed in their treatment, including the use 

of discontinuous dexamethasone during delayed 

intensification and adding leucovorin rescue after 

intrathecal methotrexate (Maloney, 2011).  Down 

syndrome patients have increased susceptibility to 

methotrexate, with higher rates of mucositis, 

gastrointestinal toxicity, and hepatotoxicity.  Some 

trials have decreased the methotrexate dosage, 

increasing the dose only if tolerated.  Additionally, 

Down syndrome patient have a higher risk of 

hyperglycemia after corticosteroids and 

asparaginase therapy due to alterations in glucose 

metabolism. 

Prognosis 

In some studies, children with ALL-DS have been 

found to have poorer outcomes than children with 

ALL without Down syndrome, sometimes 

demonstrating increased induction failures, higher 

relapse rates, and increased therapy-related 

mortality.  The poorer outcomes are thought to be 

due, at least in part, to increased sensitivity to 

methotrexate side effects, and increased 

susceptibility to infection.  The latter susceptibilities 

are thought to be enhanced by the inherent 

immunodeficiencies of Down syndrome.  However, 

more recently, with appropriate prognostic group 

identification based upon favorable and unfavorable 

cytogenetic features, ALL-DS has been found to 

have comparable outcomes to ALL not associated 

with Down syndrome (Maloney et al., 2010; 

Maloney, 2011).  In addition, Buitenkamp et al., 

2014 found favorable prognostic factors to include 

diagnosis < 6 years of age and a WBC 9/L.  

 

In those who relapse, ALL-DS has a lower event-free 

survival and lower overall survival compared to 

those with ALL without Down syndrome, usually 

due to induction deaths and treatment-related 

mortality (Meyr et al., 2013).  These relapses usually 

occur late (more than 6 months after completion of 

therapy) (Meyr et al., 2013; Buitenkamp et al., 

2014).  

 

In those who undergo a hematopoietic cell transplant 

(HCT), post-transplant relapse often occurs, with a 

probability of 54% within 3 years in one cohort, with 

an overall survival at 3 years of 29% (Hitzler et al., 

2014). 

Genes involved and 
proteins 

JAK2 (janus kinase 2) 

Location 

9p24.1 

Protein 

Protein tyrosine kinase involved in cytokine receptor 

signaling pathways. 

Somatic mutations 

Mutations often occur in the pseudokinase domain at 

or around R683 in exon 16 and result in constitutive 

kinase activity. 

IKZF1 (Ikaros family zinc finger 1) 

Location 

7p12.2 

Protein 

Zinc-finger DNA-binding protein that is a 

transcription factor associated with chromatin 

remodeling.  It is a transcription regulator of 

lymphocyte differentiation. 

Somatic mutations 

Usually deletions. 

PAX5 (paired box gene 5) 

Location 

9p13.2 

Protein 

Paired box transcription factor which has a role in B-

cell differentiation, involving regulation of CD19. 

Somatic mutations 

Usually deletions. 

KRAS (Kirsten rat sarcoma 2 viral 
oncogene homolog) 

Location 

12p12.1 

Protein 

RAS oncogene that is a member of the small GTPase 

family. 

NRAS (neuroblastoma RAS viral 
oncogene homolog) 

Location 

1p13.2 

Protein 

RAS oncogene that is a member of the small GTPase 

family. 



Acute lymphoblastic leukemia in Down 
syndrome 

 

 

Atlas Genet Cytogenet Oncol Haematol. 2018; 22(8) 344 
 

CRLF2 (cytokine receptor-like factor 
2) 

Location 

Xp22.33 

Protein 

Encodes cytokine receptor-like factor 2 which is a 

lymphoid signaling receptor that dimerizes with 

interleukin-7 receptor ( IL7R) to form a receptor for 

thymic stromal lymphopoietin ( TSLP). This 

complex (CRLF2/IL7R/TSLP) can stimulate cell 

proliferation through activation of STAT3 and 

STAT5. 

Somatic mutations 

Most commonly, translocations occur with P2RY8 

or IGH.  In addition to the translocations, in some 

patients activating mutations in CRLF2 can also 

occur. 

P2RY8 (purinergic receptor P2Y, G-
protein coupled, 8) 

Location 

Xp22.33 

Protein 

Encodes a G-protein coupled purinergic receptor 

(P2Y, G-protein coupled, 8). 

Somatic mutations 

Through an interstitial deletion, the first noncoding 

exon of this gene hybridizes with the coding region 

of CRLF2. 

IGH (Immunoglobulin Heavy) 

Location 

14q32.33 

Protein 

Immunoglobulin heavy chain. 

Somatic mutations 

Through a translocation, this gene hybridizes to 

CRLF2. 

Result of the chromosomal 
anomaly 

Hybrid gene 

Note 

The P2RY8/CRLF2 fusion is much more common 

than the IGH/CRLF2 fusion. 

Description 

An interstitial deletion in the pseudoautosomal 

region 1 (PAR1) of Xp22.3/Yp11 occurs in the 

P2RY8/CRLF2 fusion, hybridizing the first 

noncoding exon of P2RY8 to the entire coding 

region of CRLF2 

[del(X)(p22.33p22.33)/del(Y)(p11.32p11.32)].  

Alternatively, a translocation occurs between 

CRLF2 and IGH resulting in 

t(X;14)(p22;q32)/t(Y;14)(p11;q32). 

Detection 

These fusions can be detected by FISH or RT-PCR. 

Fusion protein 

Oncogenesis 

Results in overexpression/dysregulated expression 

of CRLF2. 
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Abstract 
Myelodysplastic syndrome with excess blasts 

(MDS-EB) represents the most clinically aggressive 

end of the continuum of the myelodysplastic 

syndromes (MDS). All MDS are characterized by 

clonal, ineffective hematopoiesis with maturation 

defects and increased apoptosis resulting in 

peripheral blood cytopenias, abnormal myeloid 

maturation (dysplasia) and variable risk of 

progression to bone marrow failure and/or acute 

myeloid leukemia. Progressive degrees of restricted 

myeloid maturation represented by abnormally 

increased numbers of morphologically-defined 

blasts in the blood and/or bone marrow is the key 

feature separating MDS-EB from the other 

myelodysplastic syndromes and is strongly 

associated with increased risk of disease progression 

and decreased survival. Metaphase chromosome 

analysis of bone marrow myeloid cells is the 

cornerstone of documenting clonal hematopoiesis to 

establish the diagnosis of MDS and for risk 

stratification of patients with confirmed MDS. 

Molecular analyses are becoming increasingly 

utilized for diagnosis and prognosis. 

KEYWORDS 

Myelodysplastic syndrome, blast, mutation, 

karyotype, chromosome, deletion, monosomy. 

Identity 
Other names 

Refractory anemia with excess blasts (W.H.O. 2001, 

W.H.O. 2008, F.A.B. 1976, F.A.B 1982). 

Myelodysplastic syndrome with excess blasts is the 

W.H.O. 2016 s name. 

Clinics and pathology 

Disease 

Myelodysplastic syndrome with excess blasts 

(MDS-EB) is a clonal disorder of hematopoietic 

stem cells (HSC) characterized by morphologically 

disordered maturation ("dysplasia") and restricted 

maturation of the myeloid lineages in the bone 

marrow resulting in ineffective hematopoiesis, 

cytopenias, increased blasts (5-19% of blood or bone 

marrow nucleated cells), and increased risk of 

progressive bone marrow failure and/or developing 

acute myeloid leukemia. Disease-specific morbidity 

and mortality is related to cytopenias, i.e. anemia, 

neutropenia, and thrombocytopenia resulting in 

infection and/or bleeding, due to progressive bone 

marrow failure and/or development of acute 

leukemia. 

Phenotype/cell stem origin 

Recent work suggests that the leukemia stem cell in 

myelodysplastic syndromes is a specific 

hematopoietic stem cell with the following 

phenotype: Lin-, CD34+, CD38-, CD90+, and 

CD45RA- (Woll et al., 2014). 
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Epidemiology 

Myelodysplastic syndromes may affect individuals 

of any age, gender or ethnicity. Accurate 

measurement of the incidence of myelodysplastic 

syndromes, including MDS-EB, is very difficult to 

obtain due to underreporting and underdiagnosing, 

but clearly shows a marked increase incidence with 

age. Some estimates are as high as 63.9 / 100,000 in 

people ≥85 y.o. (Cogle et al., 2015). The median age 

of diagnosis is around 71 years (Pfeilstöcker et al., 

2016). 

Clinics 

Patients may present with asymptomatics cytopenias 

identified on routine laboratory testing or due to 

symptoms related to cytopenias, e.g. fatigue or 

exercise intolerance due to anemia, infections due to 

neutropenia and/or bleeding due to 

thrombocytopenia. Diagnosis requires examination 

of blood and bone marrow for morphological 

features of disordered maturation of myeloid 

lineages ("dysplasia") and enumeration of blast cells 

in blood and marrow correlated with genetic and 

often molecular testing. 

 

Bone marrow aspirate smear from a patient with MDS-EB (Wright-Geimsa, 1000X). A. Extensive 

dysgranulopoiesis with marked nuclear-to-cytoplasmic dyssynchrony, numerous "Pelgeroid" segmented 

neutrophils with bilobed nuclei and hypogranular cytoplasm (∗) and giant forms. B. Increased blasts (arrows). 

 

Cytogenetics 

Metaphase chromosome analysis remains a crucial 

pillar in the diagnosis and prognosis of patients with 

MDS. Overall, about 40-50% of all individuals with 

de novo MDS will show a clonal chromosomal 

abnormality at the time of diagnosis (Greenberg 

2012). Not surprisingly, the likelihood of identifying 

a clonal chromosomal abnormality is correlated with 

the severity of the disease, e.g. about 32 %patient's 

with MDS with single-lineage dysplasia and 

Chromosomal abnormalities in myelodysplastic 

syndromes are myriad, but the most common are 

unbalanced resulting in net loss/gain of 

chromosomal material, such as monosomy, deletions 

and/or unbalanced translocations, and trisomy. 

Specifically, the incidence of common chromosomal 

abnormalities in MDS with an abnormal karyotype 

is: del(5q) (30%), -7/del(7q) (21%), +8 (16%), -

18/18q- (7%), 20q- (7%), -5 (6%), -Y (5%), -17/17p- 

(including isochromosome (17q)) (5%), +Mar (5%), 

+21 (4%), inv/t(3q) (4%), -13/13q- ID: 1096 (4%), 

+1/+1q (3%), -21 (3%), +11 (3%), 12p- (2%), t(5q) 

(2%), 11q- (2%), and t(7q) (2%). MDS-EB is 

enriched for unfavorable risk abnormalities (i.e. ≥ 3 

abnormalities or any chromosome 7 abnormality) as 

compared to MDS with <5% blasts. (Haase 2017)    
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The most recent multinational study of prognosis in 

MDS created a Revised International Prognostic 

Scoring System (IPSS-R) (Greenberg et al.,2012) 

stratified chromosomal abnormalities into 5 

categories:  Very good, good, intermediate, poor and 

very poor as follows: (Schanz et al, 2012). 

 

In contrast to acute myeloid leukemia (AML), 

balanced reciprocal translocations are conspicuously 

uncommon in MDS-EB. 

 

IPSS-R Cytogenetic Risk Categories 

Very Good: Single: del(11q), -Y 

Good: Single: Normal, del(5q), del(12p), del(20q) 

 Double: including del(5q) 

Intermediate: Single: del(7q), +8, i(17q), +19, any other, independent clones 

 Double: any other 

Poor: Single: inv(3)/t(3q)/del(3q) 

 Double: including -7/del(7q) 

 Complex: 3 abnormalities 

Very poor: Complex: Greater than 3 abnormalities 

 

I. 

Genes 

As about 40% of patients with MDS-EB will have 

normal metaphase chromosomes, many 

investigators have sought to use higher-resolution 

molecular techniques to identify diagnostic, 

prognostic and predictive molecular aberrations. 

The use of FISH for as an adjunct to metaphase 

chromosome analysis in MDS is controversial. 

Many physicians routinely request a panel of 

interphase FISH probes to common and/or clinically 

significant abnormalities (e.g. -5/5q-, +8, -7/7q-, 

20q-, 17p/TP53) a priori for all patients with 

suspected or confirmed MDS. However, several 

studies have shown essentially no additional 

clinically useful information is discovered with this 

technique if the metaphase study is adequate. 

Interphase FISH may be useful for specimens 

without adequate metaphases. Metaphase and/or 

interphase FISH may also be helpful to clarify subtle 

abnormalities of metaphase spreads. 

Array comparative genomic hybridization (aCGH) 

and single nucleotide polymorphism array (SNP 

array) are particularly attractive methods to 

interrogate the entire genome at a fairly fine 

resolution to identify the gains and/or losses of 

chromosomal material that are common in MDS. 

Additionally, SNP arrays can identify copy-neutral 

loss of heterozygosity (CN-LAH) which can 

functionally inactivate tumor suppressor genes, 

similar to gross monosomies and deletions. These 

techniques have been shown to confirm most, but not 

all chromosomal abnormalities concurrently 

identified in metaphase chromosome analysis. They 

also detect additional abnormalities in genes or 

regions implicated in the pathogenesis or prognosis 

of patients with myeloid neoplasia. The precise 

clinical significance of detecting these 

submicroscopic chromosomal abnormalities in 

patients with MDS is currently under extensive 

study. 

Sequence level techniques, including targeted 

sequencing of specific genes or broader whole-

genome sequencing (WGS) may be used to 

document clonal hematopoiesis and to provide 

prognostic and predictive data to patients with 

established MDS. Targeted sequencing techniques 

will identify mutations in up to 90% of all MDS 

patients. Commonly mutated genes include: SF3B1, 

TET2, SRSF2, ASXL1, DNMT3A, RUNX1, 

U2AF1, TP53, and EZH2 (Haferlach et al., 2014). 

The clinical significance of specific mutations is 

currently evolving (Bejar et al, 2017). 

In patients with MDS-EB, the issue of clonality is 

rarely a question, but the predictive information 

about which therapies may work for an individual 

patient may prove highly beneficial, such as 

mutations of IDH1 /IDH2 that can be targeted by 

specific drug therapies. In addition, these techniques 
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have identified novel genetic abnormalities and 

mechanisms, e.g. chromothripsis, which are 

improving our understanding of the mechanisms of 

disease development and progression (Abaigar et al., 

2016). 

Treatment 

Treatment options for patients with MDS-EB 

include a broad spectrum of options from supportive 

care, low-intensity therapies, to high-intensity 

therapies +/- stem cell transplantation. Given that the 

incidence of MDS-EB is highly positively correlated 

with age, it is no surprise that many patients will 

have significant comorbidities and decreased 

performance status at the time of diagnosis, which 

are likely to limit their tolerance of higher-intensity 

chemotherapy and stem cell transplant. 

Supportive care options are aimed at ameliorating or 

lessening symptoms and improving quality of life, 

such as RBC transfusion to improve symptoms of 

decreased oxygen carrying capacity or platelet 

transfusions for bleeding events. Antifibrinolytics 

may benefit patients who are unresponsive to platelet 

transfusion. Some patients may also respond to 

colony stimulating factors such as erythropoietin, 

granulocyte colony stimulating factor, granulocyte-

monocyte stimulating factor and thrombopoietin 

mimetics. 

Low intensity therapeutic options mostly center 

hypomethylating agents such as 5' azacytidine or 

decitabine or low-dose cytotoxic chemotherapies 

such a as cytosine arabinoside. Some patients will 

respond to immunosuppression (ATG) and/or 

biological response modifiers (lenalidomide) 

suggesting an immune-mediated etiology in some 

individuals. 

High intensity treatments are similar to those used 

for acute myeloid leukemia such as intensive 

induction chemotherapy, e.g. 

idarubicin/daunorubicin, cytarabine/fludarabine, 

topoisomerase inhibitors, etc. +/- allogeneic stem 

cell transplantation. 

Evolution 

MDS-EB is usually a clinically and genomically 

unstable disease state with a very high rate of 

progression to death due to bone marrow failure 

and/or acute myeloid leukemia (>20% blasts). 

Cytogenetic evolution often accompanies and/or 

precedes clinical and morphological progression. 

Prognosis 

The prognosis for patients with MDS has been 

studied intensively leading to several risk 

stratification models, e.g. IPSS, IPSS-R and IPSS-

RA (ie, IPSS-R including age),the original WHO 

classification-based Prognostic Scoring System 

(WPSS) applying transfusion need, its modification 

using hemoglobin thresholds (WPSS 2011) and its 

modification including age (WPSS-A), and the 

Lower-Risk Prognostic Scoring System (LR-PSS). 

(Pfeilstoeker et al., 2016) The most commonly used 

system in clinical practice is the IPSS-RA. 

(Greenberg et al, 2012) These systems all 

incorporate chromosomal analysis with clinical and 

morphological features. Most patients with MDS-EB 

will be stratified into higher-risk categories with 

median overall survival about 9 months to 2 years 

and about 50-90% risk of progression to AML within 

5 years. 

Cytogenetics 
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Abnormal karyogram from the bone marrow of a patient with MDS-EB showing a highly complex karyotype 

with numerous monosomies and unbalanced translocations resulting in net loss of chromosomal material. 

Common abnormalities associated with MDS include del(5q), -7q, del(17p), -18, -20 are illustrated. Karyogram 

and interpretation provided by Rhett P. Ketterling, M.D., Mayo Medical Laboratories, Rochester, MN, USA. 
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Abstract 
Review on Subcutaneous panniculitis-like T-cell 

lymphoma, with data on clinics and the genes 

possibly involved. 

KEYWORDS 

Subcutaneous panniculitis-like T-cell lymphoma; 

NAV3; IDO1; IFNG; CXCR3; CCL5; ARID1B; 

SMARCA4; CHD4; MTOR; TSC1 

Clinics and pathology 

Disease 

Subcutaneous panniculitis-like T-cell lymphoma 

(SPTCL) is a lymphoma derived from cytotoxic α/β 

T cells that preferentially involves subcutaneous 

tissue (Gonzalez, Medeiros et al. 1991; Salhany, 

Macon et al. 1998; Parveen and Thompson 2009). 

The definition of SPTCL was revised in the 2008 

World Health Organization (WHO) classification to 

exclude cases of γ/δ T-cell origin; these latter cases 

are now classified as primary cutaneous T-cell γ/δ 

lymphoma (Harris, Swerdlow et al. 2008). 

Etiology 

No specific etiologic factor has been identified for 

SPTCL. Autoimmune diseases occur in 

approximately 20% of patients and some cases show 

overlapping histologic features with subcutaneous 

lupus (Marzano, Berti et al. 2000). The lesions have 

been associated with rheumatoid arthritis (Levy, 

George et al. 1997), inflammatory bowel disease 

(Hoque, Child et al. 2003), and Sjögren syndrome 

(Yokota, Akiyama et al. 2009) . Lesions occurring 

following transplantation also have been described; 

however, a clear association with Epstein-Barr virus 

or other infectious agents has not been identified 

(Salhany, Macon et al. 1998; Go and Wester 2004; 

Bregman, Yeaney et al. 2005). 

Epidemiology 

SPTCL represents less than 1% of all non-Hodgkin 

lymphomas. It affects both children and adults with 

a median age of onset of 35 years. It is slightly more 

common in women but no racial or ethnic 

predisposition has been reported (Kumar, Krenacs et 

al. 1998; Weenig, Ng et al. 2001; Willemze, Jansen 

et al. 2008). 

Clinics 

Patients with SPTCL typically present with solitary 

or multiple painless subcutaneous nodules or 

plaques. The lesions are most commonly located on 

the lower extremities but the upper extremities and 

trunk may also be involved. The lesions may be 

small or measure several centimeters. The nodules 

may become necrotic but ulceration is rare 

(Willemze, Jansen et al. 2008; Parveen and 

Thompson 2009). Systemic symptoms, including 

fever, fatigue, and weight loss are reported in 

approximately half of cases while hemophagocytic 
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syndrome is seen in 15-20% of cases (Marzano, 

Alessi et al. 1997). 

Pathology 

SPTCL is characterized by a dense subcutaneous 

infiltrate of small to medium-sized lymphoid cells. 

The infiltrate involves the fat lobules, usually with 

relative sparing of septa. Typically, there is minimal 

involvement of the overlying epidermis and dermis. 

The adipocytes characteristically show rimming by 

neoplastic lymphocytes. Macrophages and 

vacuolated histiocytes with associated fat necrosis 

and karyorrhectic debris are commonly present 

(Parveen and Thompson 2009). Erythrophagocytosis 

by histiocytes is occasionally seen (Gonzalez, 

Medeiros et al. 1991; Salhany, Macon et al. 1998; 

Willemze, Jansen et al. 2008). 

By immunohistochemistry, the tumor cells have a 

mature alpha-beta cytotoxic T-cell phenotype and 

are characteristically positive for CD3 and CD8 and 

negative for CD4. The cytotoxic proteins granzyme 

B, TIA-1, and perforin are usually present (Kumar, 

Krenacs et al. 1998). Rarely, there is co-expression 

of CD4 and CD8 while the absence of both CD4 and 

CD8 should prompt consideration of a γ/δ T-cell 

lymphoma (Santucci, Pimpinelli et al. 2003; Kong, 

Dai et al. 2008). 

In situ hybridization for Epstein-Barr virus-encoded 

RNA (EBER) is negative in almost all cases 

(Salhany, Macon et al. 1998). 

Treatment 

Multi-agent chemotherapy has traditionally been 

used for the treatment of SPTCL but more recent 

studies suggest that conservative 

immunosuppressive agents such as cyclosporine, 

steroids or chlorambucil may be as effective and 

should be considered in patients without associated 

hemophagocytic syndrome (Tsukamoto, Katsunobu 

et al. 2006). Local radiation therapy has been used 

effectively in patients presenting with a solitary 

lesion (Willemze, Jansen et al. 2008). For patients 

with more aggressive disease, anthracycline-based 

combination chemotherapeutic regimens with or 

without stem cell transplantation are frequently used 

(Go and Wester 2004). 

Prognosis 

SPTCL generally is a clinically indolent disease with 

a waxing and waning course. The 5-year disease-

specific survival is around 80% (Gonzalez, Medeiros 

et al. 1991; Salhany, Macon et al. 1998). In most 

patients the disease remains confined to the 

subcutaneous tissue, and spread to lymph nodes and 

internal organs is rare. Patients who develop 

hemophagocytic syndrome generally have a poor 

outcome (Aronson, West et al. 1985; Gonzalez, 

Medeiros et al. 1991). Most previous reports of 

SPTCL with a rapidly fatal course in the absence of 

hemophagocytic syndrome are probably attributable 

to inclusion of γ/δ T-cell lymphomas, which have a 

much worse prognosis, in the previous classification 

of SPTCL (Toro, Liewehr et al. 2003). 

Genetics 
Note 

Polymerase chain reaction (PCR) analysis of SPTCL 

has shown clonal rearrangements of the TCR β,  γ, 

and α genes without evidence of clonal 

immunoglobulin gene rearrangements (Ghobrial, 

Weenig et al. 2005; Willemze, Jansen et al. 2008; 

Kong, Dai et al. 2009).  

 

Deletion of NAV3 (neuron navigator 3) gene has 

been identified in approximately 50% of cases by 

fluorescence in situ hybridization (FISH) and loss of 

heterozygosity (LOH) assays (Hahtola, Burghart et 

al. 2008).  

 

Gene expression microarray and quantitative PCR 

analysis have shown upregulated expression of 

indoleamine 2,3-dioxygenase ( IDO1), an 

immunotolerance-inducing gene, along with 

upregulation of Th1 type cytokines, most notably 

IFNG, CXCR3, and CCL5. Over-expression of these 

genes may contribute to the formation of an 

immunosuppressive microenvironment, favorable 

for the neoplastic T-cells  

 

A recent next-generation sequencing study has 

identified recurrent mutations in epigenetic 

modifiers and the PI3K/AKT/mTOR pathway in 

SPTCL, with mutations in ARID1B, SMARCA4, 

CHD4, MTOR, and TSC1 each observed in 3/18 

cases (Li, Lu et al. 2017). 
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Subcutaneous panniculitis-like T-cell lymphoma.  At low power (top), the tumor can be seen infiltrating the fat 

lobules. At high power (bottom), cytologically atypical tumor cells can be seen "rimming" the fat spaces. 

 

Cytogenetics 

Cytogenetics morphological 

Relatively few cases have been analyzed by 

conventional cytogenetics and no consistent 

abnormalities have been identified. 

Cytogenetics molecular 

Several DNA copy number abnormalities have been 

identified by comparative genomic hybridization 

(CGH), including losses of chromosomes 1p, 2p, 2q, 

5p, 7p, 9q, 10q, 11q, 12q, 16, 17q, 19, 20, and 22, 

and gains of chromosomes 2q, 4q, 5q, 6q, 13q. Some 

of these changes overlapped those seen in other 

cutaneous T-cell lymphomas, whereas alterations of 



Subcutaneous panniculitis-like T-cell lymphoma 

Atlas Genet Cytogenet Oncol Haematol. 2018; 22(8) 355 

chromosomes 5q and 13q appeared unique to 

SPTCL (Hahtola, Burghart et al. 2008). 
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Abstract 

Chromosome translocation between the short arm of 

chromosome 18 and the long arm of chromosome 21 

including the t(18;21)(p11;q11) is a rare event, 

reported only in sporadic cases. 

KEYWORDS 

Chromosome 18; Chromosome 21; Acute 

erythroleukemia; AML-M6; Acute lymphoblastic 

leukemia; Follicular lymphoma. 

Clinics and pathology 

Disease 

Acute erythroleukemia (FAB type M6), acute 

lymphoblastic leukemia (ALL) and follicular 

lymphoma 

Epidemiology 

Only 3 cases to date: a 71-years old male diagnosed 

with acute erythroleukemia (Cigudosa et al., 2003), 

a female patient with follicular lymphoma (Lestou et 

al., 2003) and a 27-years old male with B-cell ALL 

(present case, personal observation). 

Prognosis 

Unknown (sporadic cases described). The ALL 

patient relapsed after 7 months of therapy and was 

alive in the last follow-up 2 years from the diagnosis. 

Cytogenetics 
Note 

Breakpoints on 18p and 21q are difficult to ascertain 

in suboptimal preparations. 

Additional anomalies 

Associated with del(5)(q13q31) del(5)(q13q31), 

monosomy 7, hsr and complex karyotype in the 

AML case (Cigadusa et al., 2003), del(5)(q15q31), 

+7, t(14;18)(q32;q21) in the lymphoma case (Lestou 

et al., 2003) and with homozygous 9p deletion (70% 

of cells), detected by fluorescence in situ 

hybridization in the present case. 

Variants 

Genes involved are unknown. 
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Partial karyotypes with t(18;21)(p11;q11) (A). Fluorescence in situ hybridization with LSI TEL-AML1 probe 

(Vysis/Abott Molecular, US) probe showing relocation of AML1 (RUNX1) sequences from 21q22 to the short 

arm of chromosome 18 (B). 
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Identity 
Phylum 

Urinary 

system:Kidney:Adult:Oncocytoma/oncocytosis 

Classification 
Note 

Renal Oncocytoma is a benign renal epithelial 

neoplasm that comprises approximately 5-9% of 

renal tubular epithelial tumors. 

Clinics and pathology 
Note 

The first case of renal oncocytoma was reported by 

Zippel in 1942. Since then this tumor have been 

described as proximal tubular adenoma with 

oncocytic features and later oncocytoma became the 

generally accepted term. 

Embryonic origin 

Many investigators have suggested that these tumors 

originate from intercalated cells of the collecting 

system. 

Etiology 

Renal oncocytomas can present in familial or 

sporadic forms. Oncocytomas may be seen in 

patients with Birt-Hogg-Dube syndrome (BHD, who 

carry germline mutations in the folliculin gene 

(FLCN). However, sporadic cases are much more 

common and have an unknown etiology. 

Epidemiology 

Renal oncocytomas account for about 5-9% of all 

renal tumors and occur across a broad age range, 

peaking in the seventh decade. There is a male 

predominance (2:1) and tumors are frequently small 

and found incidentally. A rare association between 

oncocytoma and angiomyolipoma or tuberous 

sclerosis has been reported.. 

Pathology 

Macroscopically, renal oncocytomas are well-

circumscribed, slightly lobulated solid tumors with 

generally mahogany brown or dark red cut surface. 

The tumors are typically solitary, but can be 

multifocal or bilateral. A central scar is frequently 

observed. Some cases show involvement of the 

perinephric fat or rarely the renal vein with no 

change in prognosis. Microscopically, the tumor is 

composed of nests and tubular structures made up 

from oncocytic cells, and is frequently associated 

with fibrous or edematous stroma. The tumor cells 

are large round eosinophilic cells with granular 

cytoplasm that is packed with mitochondria. Nuclei 

are round and monomorphic and contain small 

nucleoli. Tumor cells around the central scar are 

small with scant cytoplasm. Bizarre cells with 
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pleomorphic nuclei may be present in some tumors 

and have no affect on outcome. Mitoses and necrosis 

are not seen. Tumor cells are typically 

immunoreactive for KIT, S100A (multifocal), and 

HNF1beta, and are negative for CD10, AMACR and 

vimentin. CK7 is usually negative or patchy positive 

with immunoreactivityini single scattered cells; this 

is in contrast to chromophobe renal cell carcinoma 

which shows diffuse membranous positivity. 

Rare cases that show multiple oncocytic tumors can 

be referred to as oncocytosis. Oncocytosis, as well as 

hybrid oncocytic tumors may occur sporadically or 

in association with Birt-Hogg-Dubé syndrome. . 

 

Figure 1A:  Oncocytoma is a benign renal epithelial neoplasm. Oncocytomas contain small oncocytic cells with 

round, regular nuclei that sometimes contain a small nucleolus. Architecturally the tumors are solid, nested or 

tubular, and are frequently associated with edematous stroma. 

 

Figure 1B:  Occasionally oncocytomas extend into perinephric adipose tissue; this findings has no affect on 

clinical outcome (i.e., the tumor is still benign). 
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Figure 1C:  A small subset of oncocytomas demonstrate nuclear atypia and/or multinucleation. Some think this 

is due to degenerative change. Regardless, these nuclear features do not affect clinical outcome (i.e., the tumor is 

still benign). 

Treatment 

Most patients with RO are treated with nephrectomy. 

Nephrectomy (radical or partial). Enucleation, 

wedge resection or ablation may also be considered 

for treatment options but are less common. 

Prognosis 

Oncocytomas behave in a benign fashion. Atypical 

pathologic features, such as nuclear pleomorphism, 

perinephric fat involvement and extension into renal 

vein branches do not influence prognosis. 

Cytogenetics 
Note 

Oncocytomas frequently exhibit losses of 

chromosome 1/1p-, chromosome 14 and/or a sex 

chromosome. Structural rearrangements of 11q13 

have been reported, with t(5;11) and t(9;11) 

representing the most common translocations. A 

t(6;9)(p21;p23) has been reported in three cases of 

oncocytoma (Balzarini et al., 1999; Hudacko et al., 

2011). A subset of oncocytomas exhibit non-

recurrent numerical or structural abnormalities A 

normal karyotype is also frequently observed. 

 

One of the diagnostic pitfalls in renal epithelial 

tumors is distinguishing between benign RO from 

the eosinophillic variant of chromophobe carcinoma. 

Many studies have reported that chromophobe RCC 

shows complex simultaneous losses of 

chromosomes 1, 2, 6, 10, 13, 17, and 21. Although 

occasional losses of all these chromosomes have 

been reported in RO, the simultaneous loss of all 

these chromosomes has not been seen in 

oncocytomas. 

Genes involved and 
proteins 
Note 

Mitochondrial DNA mutations that disrupt 

components of complex I in the electron transport 

chain can be found in bilateral and multifocal 

oncocytomas (Lang et al., 2015). 

FLCN (folliculin gene) 

Location 

17p11.2 

Note 

Germline mutations in FLCN cause Birt-Hogg-Dubé 

syndrome, an inherited disorder characterized by 

follicular hamartomas, renal tumors, pulmonary 

cysts, and spontaneous pneumothorax. Hybrid 

oncocytic/chromophobe tumors and chromophobe 

renal cell carcinomas are the most common renal 

tumors in Birt-Hogg-Dubé syndrome, but 

oncocytomas may be seen in a subset of cases. The 

renal tumors are typically bilateral and multifocal. 

Protein 

Folliculin is a putative tumor suppressor that plays a 

role in the regulation of energy homeostasis and 

AMPK and CC: TXT: mTOR ID: 40639> signaling. 
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