
Online Model-based Testing Under Uncertainty
Matteo Camilli and Carlo Bellettini

Dept. of Computer Science
Università degli Studi di Milano

Milano, Italy
Email: {camilli,bellettini}@di.unimi.it

Angelo Gargantini and Patrizia Scandurra
Dept. of Management, Information and Production Engineering

Università degli Studi di Bergamo
Bergamo, Italy

Email: {angelo.gargantini,patrizia.scandurra}@unibg.it

Abstract—Modern software systems are required to operate
in a highly uncertain and changing environment. They have
to control the satisfaction of their requirements at run-time,
and possibly adapt and cope with situations that have not
been completely addressed at design-time. Software engineering
methods and techniques are, more than ever, forced to deal with
change and uncertainty (lack of knowledge) explicitly.

For tackling the challenge posed by uncertainty in delivering
more reliable systems, this paper proposes a novel online Model-
based Testing technique that complements classic test case
generation based on pseudo-random sampling strategies with
an uncertainty-aware sampling strategy. To deal with system
uncertainty during testing, the proposed strategy builds on an
Inverse Uncertainty Quantification approach that is related to
the discrepancy between the measured data at run-time (while
the system executes) and a Markov Decision Process model
describing the behavior of the system under test. To this purpose,
a conformance game approach is adopted in which tests feed
a Bayesian inference calibrator that continuously learns from
test data to tune the system model and the system itself. A
comparative evaluation between the proposed uncertainty-aware
sampling policy and classical pseudo-random sampling policies is
also presented using the Tele Assistance System running example,
showing the differences in achieved accuracy and efficiency.

Index Terms—Uncertainty Quantification, Reliability under
Uncertainty, Bayesian Calibration, Online Model-based Testing.

I. INTRODUCTION

Modern software systems are required to work in different
and dynamically changing environments. They have to control
the satisfaction of their requirements at run-time, and pos-
sibly adapt to cope with situations that have not been fully
understood or anticipated at design-time. More importantly,
they have to deal with uncertainty introduced both at design-
time and at run-time due to the lack of knowledge, such as
the lack of control over third-party system components (e.g.,
native cloud services), humans in the loop, highly configurable
environments (such as cloud-based systems), and complex
interactions among software, hardware infrastructures and
physical phenomena. Today, endowing conventional software
engineering methods and techniques with a means to model,
quantify, and manage uncertainty explicitly is becoming a
crucial and challenging task [1], [2]. In particular, Model-
based Testing (MBT) [3] techniques that explicitly consider
uncertainty in testing the expected behavior of a system is an
unexplored research direction.

This paper presents a novel online MBT approach that
adopts Bayesian reasoning [4] as learning technique to manage

uncertainty. Bayesian and probabilistic techniques really come
into their own in domains where uncertainty must be taken
into account. In our view, the sources of uncertainty can be
mitigated by a incremental learning approach during online
MBT. Posterior beliefs can be inferred and used to update
the hypothesis about uncertain Quality of Service (QoS)
parameters of the formal model describing the behavior of the
system. Concretely, we introduce a uncertainty-aware sam-
pling strategy that complements classic test case generation
(based on pseudo-random sampling strategies) in order to deal
with system uncertainty. The proposed strategy maximizes the
probability to reach the uncertain components of the system
under test (SUT) during test case generation. The online
MBT activity uses a Inverse Uncertainty Quantification (IUQ)
approach [5], [6] to assess the discrepancy between measured
data at run-time (while the system executes) and a Markov
Decision Process (MDP) model describing the expected be-
havior (including uncertainty) of the SUT. To this purpose,
tests feed a Bayesian inference calibrator that continuously
learns from test data to tune the uncertain components of
the system model. New estimations, after the online MBT
activity, represent the basis of new verification phases and the
prior knowledge for future evolutions of the software system.
Developers and testers would greatly benefit from such a
technique, which could be used to test system’s functionality
and ensure the system will handle uncertainty during its
operation, thus improving its reliability in the presence of
uncertainty.

A preliminary sketch of our approach, to organize and
share the idea, appeared in the position paper [6]. Here,
we also present a toolchain supporting our methodology,
and report the results of a comparative evaluation between
the proposed uncertainty-aware sampling policy and classical
pseudo-random sampling policies using the Tele Assistance
System (TAS) running example [7].

The main contributions of this paper can be summarized as
follows:

1) We introduce and formalize a novel online MBT tech-
nique that complements classic test case generation with an
uncertainty-aware sampling strategy.

2) We describe how online MBT can be used to feed a
Bayesian inference calibrator that continuously learns from
test data to perform IUQ.

3) We present the evaluation of both the accuracy and

the efficiency of our IUQ process depending on the selected
sampling strategy, thus showing the effectiveness of our
uncertainty-aware technique.

The remainder of this paper is structured as follows. Sect. II
briefly recalls background concepts on MDPs, the Probabilistic
Computation Tree Logic (PCTL) extended with reward proper-
ties, and Bayesian inference. Sect. III presents the TAS running
example, used throughout the paper to illustrate and validate
the approach. Sect. IV introduces the workflow and toolchain
of our online MBT approach. Sect. V formalizes the under-
lying framework and the uncertainty-aware sampling strategy.
Sect. VI reports our experience in validating and comparing
our uncertainty-aware sampling strategy with classical pseudo-
random sampling strategies. Sect. VII discusses related work,
and Sect. VIII reports our conclusions and future work.

II. BACKGROUND CONCEPTS

This section provides some background concepts related to
Markov Decision Processes, the temporal logic PCTL with
rewards, and the Bayesian inference.

A. Markov Decision Processes with rewards

We adopt MDPs for probabilistic modeling of systems with
uncertainty and rewards. MDPs [8], [9] represent a widely used
formalism for modeling systems exhibiting both probabilistic
and nondeterministic behavior. Formally, a MDP is defined as
a tuple M = (S, s0, A, δ, L) where: S is a finite set of states;
s0 ∈ S is an initial state; A is a finite alphabet of actions;
δ : S × A → Dist(S)1 is a partial probabilistic transition
function; and L : S → 2AP is a labeling function mapping
each state to a set of atomic propositions taken from a set
AP . Transitions between states occur in two steps: (i) a
nondeterministic choice among the actions available from state
s: A(s) = {a ∈ A : ∃δ(s, a)}; (ii) a random choice of the
successor state s′, according to the probability distribution δ,
such that δ(s, a)(s′) represents the probability that a transition
from s to s′ occurs. Note that δ satisfies

∑
s′ δ(s, a)(s

′) = 1,
foreach s, a and successor state s′.

To perform quantitative analysis on MDP models, a prob-
ability space over infinite paths must be constructed. This is
achieved by solving nondeterminism using a specific policy,
which chooses an action for each state of the MDP, usually
depending on the execution history. Formally, given the set
of all finite paths FPathM of a MDP M, a policy is a
function σ : FPathM → Dist(A), such that σ(ρ)(a) > 0
only if a ∈ A(last(ρ)), where last(ρ) is the last state in the
path ρ. Thus, an action is chosen (from the actions available
in the current state) randomly depending on the full history
of the MDP. A policy σ is deterministic if σ(ρ) is a point
distribution2 for all ρ ∈ FPathM.

MDPs can be augmented with reward structures, useful for
representing quantitative information about the system such as

1Dist(S) represents the set of discrete probability distributions over a
countable set S.

2The point distribution over a countable set S, is the distribution that assigns
probability 1 to a single element s ∈ S.

response time or energy consumption. A reward structure for
a MDP M is defined as a pair r = (rs, ra) composed of a
state reward function rs : S → R≥0 and an action reward
function ra : S × A× S → R≥0 that assign reward values to
states and transitions, respectively.

B. Probabilistic Computation Tree Logic

PCTL [10] is a well-known probabilistic extension of the
temporal logic CTL [11] for specifying properties over MDPs.
In particular, PCTL adds the probabilistic path operator that
takes as parameter a path formula ψ. Intuitively, a state
s satisfies the formula PBCp[ψ] if, under any policy, the
probability of taking a path from s satisfying ψ is in the
interval specified by BCp, where BC ∈ {≤, <,≥, >} and
p ∈ [0, 1]. The properties verified on the TAS (Sect. III)
are written as reward-based properties in PCTL by using the
reward operator RrBCx[φ]. Intuitively, RrBCx[φ] holds in s
if the expected reward cumulated along the path originating
from s expressed by φ and considering the reward structure
r, meets the bound BCx, where x ∈ R≥0.

A comprehensive theoretical treatment of PCTL extended
with reward-based properties can be found in [11].

C. Bayesian Inference

This section provides a summary of the main key points of
this approach. We refer the reader to [4] for further details on
this topic. The Bayesian approach represents a very popular
framework for inference and prediction. In particular, a very
common goal in statistics is to learn about one (or more)
uncertain/unknown parameters θ describing some details of
a stochastic phenomenon of interest. To learn about θ, we
observe the phenomenon of interest and we collect a data
sample y = (y1, y2, ..., yn) in order to compute the conditional
density f(y|θ) of the observed data given θ (i.e., the likelihood
function). The Bayesian approach also takes into account the
hypothesis about θ. This information is often available from
external sources such as expert information based on past
experience or previous studies [12]. This information is repre-
sented by the Prior distribution f(θ). By combining the Prior
and the likelihood using the Bayes’ theorem (see Equation 1)
we obtain the Posterior distribution f(θ|y), describing the best
knowledge of the true value of θ, given the data sample y.

f(θ|y) ∝ f(θ) · f(y|θ) (1)

The Posterior distribution can be used in turn to perform
point and interval estimation of the uncertain parameters. This
is typically addressed, in the multivariate case, by summarizing
the distribution through the Posterior mean (Equation 2) and
the shortest possible region of probability 0.95 (Equation 3),
that is the Highest Posterior Density (HPD) region [13] defined
by the set of θ-values C.

E[θ|y] =
∫
θ · f(θ|y)dθ (2) C = {θ : f(θ|y) ≥ 0.95} (3)

2

{init}

{alarm}alarmMsg

{error}

sendAlarm

1.0

vitalParamsMsg
0.7 ?0.09 ?

1.0

1.0

alarmMsg
1.0

0.95 ?

0.03 ?
wait

wait 1.0 wait

1.0
{success}

changeDrug 1.0 wait 0.2 ?
{slow}

wait
1.0

{fast}{error}

wait

1.0
1.0

wait

wait

1.0

{fail}

0.02 ?

0.01 ?

finishMsg

1.0

discard
1.0

s0
0.5/1.0

s1
0.5/1.0

s4
5.0/3.0

s3
1.0/2.0

s8
0.5/1.0

s5
0.5/1.0

s2
0.5/1.0

s6
2.0/5.0

s7
5.0/1.0

s10
1.0/2.0

s9
5.0/3.0

Fig. 1: Markov Decision Process of the TAS behavior.

III. RUNNING EXAMPLE

In this section we revisit the Tele Assistance System (TAS)
exemplar [7]. We use it throughout the paper as running
example. The TAS is a service-based system (SBS) providing
health support to chronic condition patients at their homes.
It is composed of a number of sensors embedded in one
or more wearable devices to track patients’ vital parameters
and a number of remote services provided by healthcare,
pharmacy and emergency units. The TAS is an example of
a wide category of SBSs (e.g., e-commerce, e-health, online
banking, taxi-hailing, etc.) characterized by a workflow of in-
teractions with distributed components [14] (e.g., web-services
or microservices) owned by multiple third-party providers with
different QoS (e.g, reliability, performance, cost, etc.). In this
context, our approach to IUQ can be used to calibrate the
initial design-time model of the system behavior and verify
that the running implementation does not violate specific
quality requirements. Therefore, the overall functional and
non-functional quality of the final system also depend on
the capability of the external services to comply with the
assumptions made to design the application workflow.

Figure 1 shows a formalization of the TAS behavior by
means of a MDP. The TAS workflow takes periodical measure-
ments of the vital parameters of a patient and employs a third-
party medical service for their analysis. This is represented by
the occurrence of the action vitalParamsMsg from the initial
state S0 and the sojourn in state S4. The analysis made by
the medical service may trigger either the invocation of a
pharmacy service (i.e., changeDrug action) to add/deliver new
medication to the patient or to change the medication dose,
or the invocation of an alarm service eventually leading to
dispatch a first aid team to the patient home (i.e., alarmMsg
action). The same alarm service can be invoked directly by the
patient, by using a special button placed on a wearable device.
This behavior of the workflow is represented by the alarmMsg
action directly occurring from state S0. Once an alarm has
been sent (i.e., sendAlarm action), the alarm service may

successfully complete the execution (with probability 0.95),
or exhibit a faulty behavior such as data loss on the commu-
nication channel or an unexpected exception (with probability
0.03), or exhibit a failing behavior such as unreachability
of the alarm service (with probability 0.02). The pharmacy
service, represented by the sojourn in state S5, accepts as input
a single action named wait. Intuitively, this means that waiting
in state S5 can ends up in different target states with different
probabilities. The operation can succeed slowly (probability
0.2), or succeed very fast (probability 0.7), or fail with a
recoverable error (probability 0.09), or fail in an unrecoverable
manner (probability 0.01).

It is worth noting that, during the initial stages of the
development process, these transition probabilities represent
initial assumptions/beliefs on the QoS-related properties of the
TAS. These assumptions are intrinsically subject to different
types of uncertainty, usually found in SBSs: network data loss,
service failure, service response time, inadequate design, and
so forth [15]). Uncertain transition probabilities, identifying
the set of uncertain/unknown parameters θ, are explicitly rep-
resented in Figure 1 by numeric values followed by question
marks. Lists of labels associated with states (e.g., {alarm})
represent the labeling function L. Moreover, the model is
augmented with two reward structures rtime/renergy associated
with states (e.g., S0 maps to 0.5/1.0). These values represent
response time and power consumption of components, respec-
tively.

Finally, let us assume that the TAS must satisfy the non-
functional requirements reported in Table I. All these non-
functional properties can be easily verified by means of off-
the-shelf model checking software tools supporting PCTL as
probabilistic temporal logics, such as PRISM [16]. However,
the uncertainty, discussed early on, can harm the ability to
achieve these properties. A crucial point is that TAS must
ensure reliability under uncertainty, meaning that reliability
is a first class concern but it cannot be proven until the
uncertainty has been mitigated by accounting evidence during

3

TABLE I: TAS non-functional requirements.

label description category PCTL formula
R1 The probability of successfully handling a request must be at least 0.98 reliability P≥0.98(Fsuccess)

R2
The probability of successfully handling a request without errors must
be at least 0.89 reliability P≥0.91(¬error U (¬error & success))

R3
The probability of encounter two errors in a single run must be less
than 0.009

reliability P<0.009(Ferror & X(Ferror))

R4
The probability of of successfully handling a request between 5 and 7
operations must be at least 0.9 complexity bound P≥0.9(F[5,7]success)

R5 The expected response time of a fast execution must be less than 2.0 response time Rtime<2.0(F S6)

R6
The expected energy consumption of a run with less than 10 operations
must be less than 15.0

energy consumption Renergy<15.0(C≤10)

MDP
model

Modeler

PRISM
model checker

PCTL
requirements

model, prior,
reward-structures u

AspectJ script

SUT

online MBT
module

posterior

Front end: Modeling & Verification Back end: online MBT & Inference

calibration

Generator

(1)

(5)
(2)

(4)

(3)

(6)

(7)

Fig. 2: Online MBT under uncertainty workflow and toolchain.

testing/execution. This could make the usage of classic model
checking (or more in general formal verification) ineffective
or even leading to erroneous conclusions, if used in isolation
only at design-time.

IV. ONLINE MBT UNDER UNCERTAINTY OVERVIEW

This section provides an overview of our online MBT
under uncertainty framework. Fig. 2 sketches the workflow
and the toolchain of the proposed framework. It has two main
components: the design-time modeling & verification front
end, and the online MBT & Inference back end.

A prototype 3 of the proposed toolchain has been developed
using the JAVA programming language and the frameworks
XTEXT/XTEND [17] and ASPECTJ [18]. The main steps
supported by the toolchain along with technical details on
the front end and back end components are reported in the
following.

A. Front end: Modeling & verification

The front end contains the Modeler, the Generator, and the
PRISM model checker. The Modeler is an ECLIPSE IDE plug-
in supporting standard editing features (syntax highlighting,
error checking, auto-completion, etc.). The Modeler allows
the user to define a MDP model of the system’s behavior

3The toolchain has been released as open source software avail-
able at https://github.com/SELab-unimi/mdp-generator and https://github.
com/SELab-unimi/mdp-simulator-monitored, together with all artifacts pro-
duced for the TAS example.

including the uncertain parameters, the Prior distributions,
and the connection to the SUT. All these concepts can be
defined using a textual Domain Specific Language (DSL)
defined by means of the grammarware framework XTEXT.
As an example, Listing 1 reports an extract of the TAS MDP
specification using the DSL. The language allows the MDP
to be defined intuitively by means of the keywords actions,
states, and arcs. Moreover, states can be augmented with
Prior distributions (using the keyword Dir) describing the
hypothesis on the uncertain parameters θ attached to the
outgoing edges. Here, we abstract from the details of the Prior
definition. This topic will be discussed later on in Sect. V.

Listing 1 contains also the definition of the binding between
the specification of the system’s behavior and the imple-
mentation. The binding is defined by using the keywords
observe and control. Essentially, we follow a common
notation introduced in [3] to distinguish between controllable
behavior from the tester (i.e., the environment, such as user
requests) and observable behavior from the running software
system. In particular, the observe section contains a mapping
between transitions of the model and methods (or more
generally subroutines) of the SUT along with pre- and post-
conditions (i.e., arbitrary conditions on input parameters and
return values of the methods). The control keyword is used
to define a mapping between states of the model and states of
quiescence [19] of the SUT, i.e., states where the SUT expects
inputs from the external environment using the available SUT
APIs. Inputs depend on the actions available from the quies-
cent states. Inputs must be declared in the actions section
by mapping actions to Java objects (e.g., Strings “v” and “a”,
associated to the actions vitalParamsMsg and alarmMsg

actions, respectively).
The Generator has been implemented using the XTEND

language. It translates the textual MDP model into the PRISM
model checker input file, and generates the software artifacts
used as input by the online MBT module. These last include:
the ASPECTJ instrumentation script (a file .aj) that allows the
SUT to be linked to the MBT structure taking into account
the binding, and a concise textual representation of the MDP
model (a file .jmdp) equipped with the priors and the reward
structures needed by the MBT module to carry out Bayesian
inference while observing the behavior of the SUT.

As part of the front end, desired properties of the system
can be expressed in PCTL and verified against the MDP model

4

https://github.com/SELab-unimi/mdp-generator
https://github.com/SELab-unimi/mdp-simulator-monitored
https://github.com/SELab-unimi/mdp-simulator-monitored

model ”tas−model”
actions

vitalParamsMsg {”v”} alarmMsg {”a”} finish {”f”} sendAlarm {”s”} ...
states

S0 {} initial
S1 {alarm} Dir(sendAlarm, <S2, 190.0> <S10, 4.0> <S3, 6.0>)
S2 {}
S3 {error}
S4 {}
S5 {} Dir(wait, <S6, 140.0> <S7, 40.0> <S8, 18.0> <S10, 2.0>)
S6 {}
S7 {slow}
S8 {fast}
S9 {success}
S10 {fail}

arcs
a0 : (S0, vitalParamsMsg) −> S4, 1.0
a1 : (S0, alarmMsg) −> S1, 1.0
a2 : (S0, finish) −> S9, 1.0
a3 : (S1, sendAlarm) −> S2, 0.95
a4 : (S1, sendAlarm) −> S10, 0.02
a5 : (S1, sendAlarm) −> S3, 0.03
...

observe
a0 −> ”public IntegerState MDPSimulator.doAction(..)”,

args {state:”IntegerState” action:”char”},
precondition ”state.label().equals(\”S0\”) && action==’v’”,
postcondition ”result.label().equals(\”S4\”)”

a1 −> ”public IntegerState MDPSimulator.doAction(..)”,
args {state:”IntegerState” action:”char”},
precondition ”state.label().equals(\”S0\”) && action==’a’”,
postcondition ”result.label().equals(\”S1\”)”

...
control

S0 −> ”private char MDPDriver.waitForAction(..)”,
args {actionList: ”Actions<CharAction>” input:”InputStream”}

S2 −> ”private char MDPDriver.waitForAction(..)”,
args {actionList:”Actions<CharAction>” input:”InputStream”}

S5 −> ”private char MDPDriver.waitForAction(..)”,
args {actionList:”Actions<CharAction>” input:”InputStream”}

sampleSize 2000
explorationPolicy uncertainty

Listing 1: Extract of the TAS specification using our DSL.

of the system using the probabilistic model checker PRISM.
We focus on the verification of non-functional requirements
such as reliability and performance (see Table I). Design-
time model checking serves therefore as a means to verify
the desired requirements against the system model with some
degree of uncertainty that becomes quantified later on, during
the online MBT and inference phase.

B. Back end: Online MBT & Inference

The back end has been implemented as a JAVA program and
it is distributed along with a JAVA MDP simulator to allow
users to easily try out the capability of our IUQ approach.
Here, we assume that the system implementation, reifying the
MDP model, is already available. A complete description of
this phase is beyond the scope of this paper. The customized
test instrumentation is realized by generating a collection of
ASPECTJ pointcuts and advices that allow controllable/observ-
able methods to be handled at runtime by the MBT module.
More precisely, the instrumentation provides a serialized view
of the execution of observable methods in order to gather data

used to perform the inference activity. Controllable methods
are handled by supplying external inputs using the available
APIs. This is realized by injecting specific input arguments
upon the execution of the controllable methods during testing.

The online MBT module derives tests from the MDP spec-
ification by stochastically sampling the state space at runtime.
Nondeterminism in the MDP is used to capture the possible
ways that a controller has to influence the behavior of the
system by means of controllable actions. Thus, our algorithm
choses over different available actions using specific sampling
policies (selected by the user) which determine the exploration
strategy of the SUT.

In particular, we introduce a uncertainty-aware sampling
policy that allows the probability to reach the uncertain regions
of the SUT to be maximized during test case generation.

During testing, the back end collects data and performs
a Bayesian inference activity to compute the Posterior dis-
tributions associated with the uncertain parameters θ. The
online MBT module gives as output the summarization of
the posterior distributions computed during testing activity.
Information given by the summarization can be used in turn to
perform point and interval estimation and calibrate the initial
MDP model thus updating the knowledge on the uncertain
parameters.

The overall learning process terminates when the discrep-
ancy between the model and the SUT became acceptable and
all the initial requirements are satisfied.

V. FORMAL FRAMEWORK

In this section we provide a formalization of the proposed
online MBT approach. After providing some preliminary
definitions about expressing the SUT behavior as a MDP,
we describe how the conformance relation is realized in
our MBT technique, the supported sampling policies for test
case generation, and the mathematical machinery involved
during the model calibration process including the termination
conditions.

A. Preliminary definitions

Typically a SBS is composed of a collection of APIs
allowing the actual SUT to receive inputs from the external
environment. The APIs are connected to a customized test
instrumentation that provides a particular high-level view of
the behavior of the SUT matching the abstraction level of
the MDP specification. The instrumentation provides also a
view of the observable actions (i.e., execution of tasks or
subroutines of interest) resulting from the stimulation of the
SUT by means of the external inputs. In this sense the SUT
is an open system [20]. This mathematical abstraction reflects
the classic transition-based interpretation of the behavior of
open systems by considering states as configurations or some
functional status of the system, in terms of working and/or
failed (distributed) components and transitions as task execu-
tions causing changes in the configuration.

The MDP model corresponding to the SUT is called pro-
gram model and denoted by MSUT . This model is defined

5

exploiting the notion of binding declared by the user by means
of the DSL introduced in Sect. IV. In the following, we
write ~vin to identify a sequence of input parameters (i.e., the
arguments of a subroutine), and we write ~vout for the output
parameters including the return value.

Definition 1 (Binding): Given a MDP M and a set of
subroutines H ⊆ P , a binding is a tuple of partial functions
(H, I,Pre,Post) with domain S ×A s.t.,
• H(a), with a ∈ A(s), identifies a subroutine h ∈ H
• I(a), with a ∈ A(s), identifies a valid vector of input

parameters ~vin for the subroutine H(a)
• Pre(s, a), with a ∈ A(s), maps to a pre-condition that

must hold for ~vin given to H(a) from the source state s
• Post(s, a), with a ∈ A(s), maps to a post-condition that

must hold for ~vout after the execution of H(a) in the
target state s

The binding allows the behavior of the SUT to be viewed in
the same way as that of the MDP specification. In particular,
MSUT is defined taking into account the specification M as
follows.

Definition 2 (Program model): Given a MDP specification
M = (S, s0, A, δ, L) and a binding (H, I,Pre,Post), the
program model MSUT = (S′, s′0, A

′, δ′, L′) is a MDP, s.t.,
• S′ ⊆ S, A′ ⊇ A
• s0 = s′0, L′(s) = L(s) if s ∈ S, ∅ otherwise
• δ′(s, a)(s′) > 0 iff.

(i) H(a) and I(a) are defined and map to h and ~vin,
respectively

(ii) the pre-condition Pre(s, a) holds for ~vin
(iii) the post-condition Post(s′, a) holds for ~vout, result-

ing from the execution of h(~vin)
The intuition is as follows. The first condition ensures that,
on one hand all observable configurations (states) of the
implementation are possible in the model, and on the other
hand that all possible actions in the model are possible in the
implementation. The second condition imposes that the model
and the implementation have the same initial state and labeling
function. The latter condition describes possible transitions
defined by δ′ from a source state s and an action a to a target
state s′, provided that the model elements s, a, and s′ have
been bound to the implementation.

B. Conformance Checking

Given the preliminary definitions above, we formally define
the conformance relation between the MDP models M (i.e.,
the specification) and MSUT (i.e., the program model) using
the notions of alternating simulation and refinement as used
in [20], [21].

Definition 3 (Alternating simulation): An alternating simu-
lation betweenM andMSUT is a binary relation π ⊆ S×S′,
s.t. for all (s, s′) ∈ π,

(i) A(s) ⊇ A′(s′)
(ii) ∀a ∈ A(s), t : δ(s, a)(t) > 0, ∃a′ ∈ A′(s′), t′ :

δ′(s′, a′)(t′)>0 s.t. (t, t′) ∈ π.

Observer Controller

execute H(a)
with input I(a)

determine s' s.t.
Post(s',a) holds

choose a in A(s) evaluate Pre(s,a)

Fig. 3: Conformance game.

Intuitively, the condition (i) ensures that the available actions
in the model are possible in the implementation. The condition
(ii) guarantees that if (i) holds for a given pair of source
states then it also holds in the resulting target states of any
controllable action enabled in the model.

Definition 4 (Refinement): A MDP M refines a MDP
MSUT iff. there exists an alternating simulation π from M
and MSUT s.t. (s0, s′0) ∈ π.
The notion of refinement can be explained in terms of a
conformance game [21], [22] between two players: a controller
and an observer (Figure 3). The game starts from the initial
state s0 of the model M and the initial configuration s′0 of
the implementation MSUT , and it consists of a sequence
of steps. For each step, the controller makes it own move,
i.e., it choses an available action in A(s) from the current
state s of the specification M and it executes the subroutine
H(a) with a valid input vector of parameters I(a). There is
a conformance failure if it is not possible to determine the
available actions, or the subroutine, or a valid input. After the
controller, the observer makes its own move, i.e., it evaluates
the pre-condition Pre(s, a) on the input vector, then if the
precondition holds it determines the target state s′, such that
the post-condition Post(s′, a) evaluated on the output vector
holds. Whenever a pre-condition does not hold or does not
exist a target state s′ such that the post-condition holds, there
is a conformance failure.

The game continues until the controller decides to end the
game (i.e., a termination condition has been reached) or a
conformance failure is found.

C. Sampling policies

Online MBT is a technique able to derive tests from a
model program and then execute them by means of a single
algorithm. The idea is to stochastically sample a large state
space at runtime rather than pre-computing a huge amount
test cases derived from all possible responses from the SUT
(usually performed by classical MBT approaches).

Our algorithm dynamically generates test cases by executing
the conformance game and providing to the user control over
test scenarios by selecting actions during the test run based
on specific sampling policies and termination conditions. The
sampling policy is governed by a probabilistic function that
has the following form:

P(s, a) =

{
0 ω(s, a) = 0

ω(s, a)/
∑

a′∈A(s) ω(s, a
′) otherwise

(4)

The function ω is a per-state weight function that maps a state
s and an action a to a value in N≥0. The weight function

6

allows to configure the generation of test cases depending on
different model-based exploration strategies.

Our framework provides three different sampling policies
grounded on random-based, history-based, and uncertainty-
aware weight functions, respectively.

1) Random sampling policy: It allows the actions to be
selected depending on a statically defined weight function ωr

that maps a pair (s, a) to a fixed value. If ωr(s, a) maps to the
same value k ≥ 0 for each a ∈ A(s), the action is chosen by
using a discrete uniform distribution whereby all the available
actions are equally likely to be observed. Otherwise, weights
can be used to selectively increase or decrease the probability
associated with specific state-action pairs. This could be useful
to favor the execution of new released functionalities that we
may want to stress during testing.

2) History sampling policy: By using this policy, the online
MBT algorithm keeps the selected actions balanced during test
generation, by taking into account the history of the test run.
It is governed by the following weight function.

ωh(s, a) =
∑

a′∈A(s)

#(a′)−#(a) (5)

where #(a) denotes the number of times the action a has
been chosen during a test run. Intuitively, this policy is
typically adopted when we want to increase the coverage of
the available actions by dynamically increasing and decreasing
the probability associated with uncovered and covered state-
action pairs, respectively. In fact, by using the function ωh

in Equation 4, P(s, a) becomes inversely proportional to the
number of times a has been chosen in s.

3) Uncertainty sampling policy: This policy takes into ac-
count the uncertainty explicitly modeled by the user-supplied
Prior distributions associated with the θ parameters. In the fol-
lowing we formalize how our algorithm handles the uncertain
parameters to solve nondeterminism and guide the generation
of the test cases.

The main objective of such a policy is to stress the uncertain
components of the SUT during testing. To achieve this goal,
we first construct a set of uncertainty-aware reward structures
defined as follows.

Definition 5 (uncertainty-aware reward structure): Given
a MDP M and a set of uncertain parameters θi ⊆ θ,
the uncertainty-aware reward structure is a reward structure
u = (us, ua), s.t.,
• us(s) = 0,∀s ∈ S

• ua(s, a, s
′) =

{
k δ(s, a)(s′) ∈ θi
0 otherwise

where k ∈ N>0.
The intuition of the structure u is to assign a high reward

value (k) to transitions of the model associated with uncertain
parameters, and a low reward value (0) to the other transitions.

Given an uncertainty-aware reward structure u, the optimal
deterministic policy σ∗ that maximizes the expected sum
rewards can be constructed by computing the optimal value
function V ∗ : S → R≥0 for the discounted infinite horizon

TABLE II: P(s, a) using ωu evaluated on the TAS.

action
state

S0 S1 S4 S5-S10

alarmMsg 1/2 0 1/2 0
sendAlarm 0 1 0 0

vitalParamsMsg 1/2 0 0 0
changeDrug 0 0 1/2 0

wait 0 0 0 1

problem4, which satisfies the Bellman equation [23]. Namely,
V ∗ is used to produce the optimal policy σ∗ as follows.

σ∗u(s) = arg max
a∈A(s)

∑
s′

δ(s, a)(s′) · (ua(s, a, s′) + γV ∗(s′))

(6)
where V ∗(s′) represents the expected reward accumulated
when starting from state s′ and acting optimally along a
infinite horizon; γ ∈ [0, 1] represents a discount factor that
alleviates the contribution of future rewards in favor of present
rewards. The best policy σ∗u(s) returns for each state s the
action that allows the reward, considering the uncertainty-
aware reward structure u, to be maximized.

The subsets θi are partitions of θ constructed by grouping
θ-parameters attached to transitions sharing the same source
state and action. Namely,

⊎
i θi = θ such that,

θi = {α ∈ θ s.t. ∃a ∈ A(si), sj ∈ S : δ(si, a)(sj) = α} (7)

The intuition of this operation is as follows. We partition θ
in order to identify different uncertain regions of the model
and then we compute the set of best policies that maximize
the probability to reach each different uncertain region of the
model.

Considering our running example, the set θ is partitioned in
two subsets θ1 and θ2: θ1 contains the parameters attached
to transitions starting from s1 when choosing the action
sendAlarm; θ2 contains the parameters attached to transitions
starting from s5 when choosing the action wait.

The set of best policies {σ∗ui
}, is used in turn to construct

the uncertainty weight function ωu as follows.

ωu(s, a) =

{
1 ∃i : σ∗ui

(s) = a

0 otherwise
(8)

The weight function ωu makes the controller able to stochasti-
cally sample the available actions maximizing the probability
to reach the uncertain parameters θ.

The best policies computed on the TAS example, consider-
ing the uncertainty-aware reward structures given by θ1 and
θ2, are reported in Table II. Such a computation in this case
is trivial. However, in general, it can be arbitrarily complex
due to the arbitrary combination of transition probabilities,
alternative paths and loops in a MDP model.

4A detailed and comprehensive treatment of the discounted infinite horizon
problem for MDPs can be found in [8].

7

D. Inference & Calibration

During testing activity, we set up a Bayesian framework,
where the prior knowledge f(θ) is incrementally updated
taking into account the evidence y. In the following we
introduce a brief overview on the statistical machinery used
to perform this calibration and we refer the reader to [13] for
more details.

A natural conjugate Prior for the uncertain transition
probabilities of a MDP model is defined by letting pai =
(pai,j , ..., p

a
i,k) have a Dirichlet distribution [24], where pai,j

is the probability to observe a transition from si to sj when
the action a is chosen.

pai ∼ Dir(αi), where αi = (αi,j , ..., αi,k) (9)

During the conformance game, the observer component col-
lects nai,j that represents how many times the transition from si
to sj has been observed, when the action a is selected. Given
a sequence of observations (i.e., a sample), the Posterior dis-
tribution is also a Dirichlet distribution and can be computed
very efficiently as follows.

pai |y ∼ Dir(α′i), where α′i = (αi,j + nai,j , ..., αi,k + nai,k)
(10)

When little prior information, a natural possibility is to use a
Dirichlet Prior with αa

i,j = 1/2,∀i, j, a. Otherwise, when past
experience is available, is it possible to use a Dirichlet Prior
with αi,j = nai,j .

For instance, considering the TAS we may describe the
hypothesis on θ1 with a Dirichlet Prior with α1 = (α1,2 =
900, α1,3 = 90, α1,10 = 10), if in our past experience, we
observed 900 transitions from s1 to s2, 90 transitions from s1
to s3 and 10 transitions from s1 to s10, in a sample of 1000
observations.

At termination, our online MBT algorithm performs the cal-
ibration of the θ-parameters by performing point and interval
estimation of the Posterior distributions. For instance, let us
consider once again the TAS example. Assume that starting
from the Prior example given above, and by running the online
MBT, we eventually come up with a Posterior distribution with
updated α′1 = (α′1,2 = 88000, α′1,3 = 11000, α′1,10 = 1000).
This Posterior leads to update the parameters attached to
transitions 〈s1, s2〉 and 〈s1, s3〉 (when sendAlarm is chosen)
to 0.88 and 0.12, respectively. The calibration process in this
case can be carried out with high confidence because of a very
small HPD region (< 0.05 for each parameter). The model
with the new estimations can lead to invalidate the design-time
requirements of the TAS (Table I). For instance, by using the
PRISM model checker we can easily verify that R2 and R3

do not hold after the calibration activity.
The accuracy and the efficiency of the calibration will be

discussed in detail in Sect. VI.

E. Termination conditions

Our online MBT algorithm can use different termination
conditions. Two first conditions are classic criteria based on the
desired level of coverage of the available state-action pairs and

the desired length of test runs in terms of number of executed
methods. These termination conditions are typically used in
combination with random and history-based sampling policies.
The intuition is to test the SUT by generating a pseudo-random
permutation of actions until either a conformance failure is
found, or the desired level of confidence has been reached.

In presence of uncertainty, the online MBT algorithm can
also use a termination condition based on the precision reached
by the inference process. This condition is grounded on a
model selection criteria based on the convergence of the Bayes
factor [13]. The Bayes factor is used to choose between two
probabilistic models with different parameters θ and θ′, on the
basis of observed data y.

K =
f(y|θ)
f(y|θ′)

(11)

The two terms of the ratio K represent the likelihood that
data y are produced under different assumptions θ and θ′. A
positive value of K means that the data under consideration
supports more the assumption θ than θ′. The usual interpreta-
tion of this value considers K ∈ [100, 101/2] as not substantial.
So, the termination condition reduces to check the K value
in this interval. More precisely, given a sample size N , the
online MBT algorithm computes the Bayes factor K, for each
Posterior under consideration, every N observations. Thus, the
convergence of the values K is used as a termination condition
of the algorithm. The rationale behind this choice is to exploit
the Bayes factor to recognize when the observed data does not
make the posterior knowledge change more than a significant
threshold.

VI. COMPARATIVE EVALUATION

The approach has been evaluated through a large simu-
lation campaign using the TAS example. We assessed the
accuracy and the efficiency of the calibration of our online
MBT technique, configuring the SUT with the desired true
θ-values. Experiments have been carried out on a machine
with following setting: Intel Xeon E5-2630 at 2.30GHz CPU,
32GB of RAM, Ubuntu 16.04.3 LTS (GNU/Linux 4.4.0-112-
generic x86 64), and Oracle Java Runtime Environment 1.8.
Each experiment is discussed in the following by reporting the
most significant results.

1) Inference activity: A fundamental aspect to discuss is
the sample size. In fact, it influences both the number of tests
needed to achieve termination (based on the convergence of
the Bayes factor) and the accuracy of the calibration process.
The graph reported in Figure 4 shows the number of tests
needed to achieve convergence (left y axis) and the relative
error5 (RE) (right y axis) of the Posterior. Data has been
extracted by running the inference activity on the TAS example
several times varying the sample size (from 200 to 4000).
For each different sample size value, we considered three

5The relative error describes the discrepancy between an exact value and
some approximation of it. It has been computed in a standard way: dividing
the absolute error between the true and the inferred θ-values by the magnitude
of true θ-values.

8

P
o

s
te

ri
o

r
R

E

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

#
te

s
ts

0

2750

5500

8250

11000

13750

16500

19250

22000

sample size

200 500 1000 2000 3000 4000

#test(1) Post-RE(1) #test(2) Post-RE(2) #test(3) Post-RE(3)

Fig. 4: Tests and Posterior RE depending
on the Prior RE and the sample size.

B
a
y
e
s
 f

a
c
to

r
K

0,0

2,5

5,0

7,5

10,0

θ
-v

a
lu

e

0,6

0,675

0,75

0,825

0,9

#tests

1 500 1000 1500 2000 2500 3000 3500 4000

HPD lower HPD upper mean Bayes factor true θ-value

(a) 0.8 HPD region size scenario

B
a
y
e
s
 f

a
c
to

r
K

0,0

2,5

5,0

7,5

10,0

θ
-v

a
lu

e

0,6

0,675

0,75

0,825

0,9

#tests

1 1500 3000 4500 6000 7500 9000 10500 12000

HPD lower HPD upper mean Bayes factor true θ-value

(b) 0.1 HPD region size scenario

Fig. 5: Convergence and Bayes Factor depending on the Prior HDP region size.

R
E

,
H

P
D

 s
iz

e

0

0,1

0,2

0,3

0,4

c
o

v
e
ra

g
e

0,0

0,3

0,5

0,8

1,0

policy

random history uncertainty

coverage Posterior RE Posterior HPD size

Fig. 6: Inference accuracy depending on
the sampling policy.

#
m

e
th

o
d

s

0

18000

36000

54000

72000

90000

sample size

200 500 1000 2000 3000 4000

uncertainty random history

(a) Simple scenario

#
m

e
th

o
d

s

0

120000

240000

360000

480000

600000

sample size

200 500 1000 2000 3000 4000

uncertainty random history

(b) Complex scenario

Fig. 7: Inference efficiency depending on the sampling policy and the sample size.

scenarios keeping the Prior HPD region fixed, but varying
the Prior RE: (1) 0.4, (2) 0.8, and (3) 1.6. The objective is
to evaluate the inference activity starting from different initial
hypothesis for the θ-values. In this comparison, we can observe
that by increasing the sample size we obtained a smaller
Posterior RE. In fact, more data usually leads to compute
a more significant Bayes factor, thus allowing for better
model selection supported by the data under consideration.
We also observed that the calibration achieved almost the same
precision, although varying the Prior RE. The number of tests
needed to achieve termination increases proportionally over
the Prior RE. We empirically found that a sample size of 2000
represents a good give-and-take setting in terms of number of
tests and accuracy in terms of Posterior RE (∼ 0.05).

Figure 5 shows two graphs where we can observe the
convergence of the θ-values and the Bayes factor, during the
Bayesian inference process. The two graphs have been drawn
by considering two different scenarios where we kept fixed the
Prior RE (0.8) and the sample size (2000), but we changed
the HPD region size. In particular, the scenario 5a adopts
a large HPD region (i.e., low confidence in the hypothesis),
while the scenario 5b adopts a small HPD region (i.e., high
confidence in the hypothesis). In particular, the two graphs
report the convergence of a θ-parameter (with true value set
to 0.77), along with the HDP region. We observed that the
smaller is the Prior HPD region, the higher is the number of
tests needed to achieve termination. For instance, the second

scenario (Figure 5b) takes ∼ 8000 more tests to achieve
termination. The convergence in the first scenario is faster
because it relies more on the data under consideration. The
Bayes factor K, in this case, falls inside the convergence
interval at the second check (i.e., after 4000 samples), while at
the first check (i.e., after 2000 samples) K>>10. This means
that during the first 2000 samples, the data under consideration
make the Posterior change a lot very rapidly. Considering the
new estimation (after the first check), the sampled data does
not make the Posterior change significantly, thus the inference
process stops at the second check. Figure 5b, shows instead
that the latter scenario takes 6 iterations to converge. In fact,
a very informative (but wrong) Prior determines a slowdown
in the Bayesian inference process because its relies more on
the hypothesis.

2) Sampling policies: Another important aspect the com-
parison between the available exploration policies in terms of
accuracy and efficiency of the IUQ process performed during
the online MBT activity. Figure 6 shows the accuracy in terms
of Posterior RE and Posterior HPD region by varying the
sampling policy and the termination condition. In particular we
ran the online MBT module along with the inference back end
to calibrate a set of θ-parameters, starting from a Prior with
0.4 RE and 0.1 HPD region size, and using a sample size of
2000. We considered three different runs as follows. In the first
two runs we adopted the classic random-based and history-
based sampling policy, respectively. Moreover, we adopted a

9

classic termination condition based on the total coverage of
the available state-action pairs. In the latter run, we used our
proposed uncertainty-aware sampling policy coupled with the
termination condition based on the convergence of the Bayes
factor. Although, we achieve in general higher coverage by
using the classic pseudo-random exploration policies, the IUQ
activity is way more accurate by adopting our uncertainty-
aware approach. In fact, it allows the uncertain parts of the
SUT to be stressed until the desired level of confidence has
been reached. By using the the uncertainty-aware approach,
we observed, in this experiment, an increase in the Posterior
accuracy by a factor of 8.04± 0.22.

Figure 7 shows the efficiency of the Bayesian inference
process when varying the sampling policy and using the
convergence of the Bayes factor as termination condition. The
two graphs have been drawn by considering two different
scenarios where we considered two different uncertain sets of
θ-parameters in the TAS example. The two scenarios 7a and 7b
consider the parameters θ1 and θ2, respectively (introduced in
Sect. V). The former scenario is simpler in terms of number
of actions and alternative paths leading from the initial state to
the θ-parameters. Namely, the probability to take the correct
sequence of actions leading to θ1 (using a discrete uniform
distribution for each choice) is 0.33. In the latter scenario, the
probability to reach θ2 (with the same setting) is 0.11. The
two graphs show the number of executed methods during the
online MBT activity until termination, varying the sampling
policy and the sample size. The number of methods executed
using the random-based and the history-based sampling policy
is very similar. Using instead the uncertainty-aware sampling
policy, the convergence is way more efficient. In particular,
we can observe from graph 7a that we need on average 42%
fewer method executions to achieve termination. Considering
the graph 7b, the convenience of using our sampling policy
in presence of uncertainty is even more evident. In fact,
the uncertainty-aware approach takes on average 80% fewer
method executions to achieve termination in this scenario.

VII. RELATED WORK

Uncertainty mitigation has a lot of attention in different
fields of software engineering. A popular technique to deal
with uncertainty at design-time is parametric model check-
ing [25]. It follows a Forward Uncertainty Propagation [26]
approach which focuses on the influence on the model outputs
from the parametric variability in the sources of uncertainty.
Our technique follows instead a IUQ (inverse) approach to
estimate the discrepancy between experimental data (from a
real system) and the mathematical model.

Many works, inside the community of self-adaptive systems,
aim at making adaptation decisions taking into account the
sources of uncertainty. Notable examples can be found in [27],
[15], [2], [28]. Most of them employ Markov Models to
express uncertain QoS properties by using probability.

The usage of Bayesian reasoning has been mainly influ-
enced by different existing approaches [29], [30]. Bayesian
estimators [12], [13] have recently gained high interest for

online calibration thanks to the ease with which the basic
ideas are put into place. Moreover, convergence is usually
fast and the Bayesian approach allows expert knowledge to
be embedded in the inference framework. The approaches
in [29], [30] apply Bayesian reasoning to calibrate transition
probabilities of Discrete Time Markov Chains kept alive along
with the running system in production. Improvements of these
approaches can be found in [31], [32]. They aim at alleviating
the negative effect of historical data on the estimation, by using
aging mechanisms [33] to discard old information.

The employment of these methods in software testing to
tackle the IUQ problem is still in its early stages. The Active
Learning strategy to black-box test case generation has been
proposed in [34]. This work aims at overcoming the problem
of intractability in MBT and generating test cases which the
inferred model is “least certain” about. Our approach deals
with intractability by using an online approach that stochasti-
cally samples alternative choices, rather than enumerate them.
The basic idea of online/on-the-fly MBT is not new. It has
been introduced in the context of labeled transition systems
using both ioco theory [22] and alternating simulation [21].

MBT under uncertainty has been considered in the test
modeling framework UncerTum [35] in the context of Cyber-
Physical Systems. It provides a UML profile and model
libraries to capture uncertainty explicitly in UML-based test
ready models, but it does not provide yet a MBT technique
guided by such models.

In summary, to the best of our knowledge, the approach
proposed in this paper is a pioneer work in addressing the
IUQ problem by combining Bayesian inference and online
MBT guided by uncertainty-aware strategies.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we introduced a novel approach to quantify
and mitigate the sources of uncertainty, before the deployment
of a software release build, by combining Bayesian reasoning
and online Model-based testing.

The uncertainty quantification, in our view, is part of a
stepwise incremental process for building understanding and
confidence in system reliability. In this process, our online
MBT technique can be applied to: (i) validate the current SUT
against the certain components of the formal specification,
and (ii) perform interface activity to calibrate the uncertain
QoS parameters. To this end, it dynamically generates test
cases using a specific uncertainty-aware exploration policy.
We performed a comparative evaluation between the uncer-
tainty-aware policy and other classic pseudo-random test case
generation strategies, showing the effectiveness of our proposal
both in terms of accuracy and efficiency of the IUQ process.

We plan to enhance the toolchain that supports the proposed
approach with the ability to perform sensitivity analysis [4],
to study how the variability of the uncertain parameters in the
model can be apportioned to different experimental designs,
i.e., values assigned to one or more independent variables such
as hardware/software settings, traffic condition in the commu-
nication channels, load of different distributed components.

10

REFERENCES

[1] D. Garlan, “Software engineering in an uncertain world,” in Proceedings
of the FSE/SDP Workshop on Future of Software Engineering Research,
ser. FoSER ’10. New York, NY, USA: ACM, 2010, pp. 125–128.
[Online]. Available: http://doi.acm.org/10.1145/1882362.1882389

[2] N. Esfahani and S. Malek, Uncertainty in Self-Adaptive Software Sys-
tems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 214–
238.

[3] M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and A. Pretschner,
Model-Based Testing of Reactive Systems: Advanced Lectures (Lecture
Notes in Computer Science). Secaucus, NJ, USA: Springer-Verlag New
York, Inc., 2005.

[4] J. Berger, Statistical Decision Theory and Bayesian Analysis, ser.
Springer Series in Statistics. Springer, 1985.

[5] P. D. Arendt, D. W. Apley, and W. Chen, “Quantification of model
uncertainty: Calibration, model discrepancy, and identifiability.” J. Mech.
Des., vol. 134, no. 10, p. 100908, 2012.

[6] M. Camilli, A. Gargantini, P. Scandurra, and C. Bellettini, “Towards in-
verse uncertainty quantification in software development (short paper),”
in Software Engineering and Formal Methods, A. Cimatti and M. Sirjani,
Eds. Cham: Springer International Publishing, 2017, pp. 375–381.

[7] D. Weyns and R. Calinescu, “Tele assistance: A self-adaptive service-
based system examplar,” in Proceedings of the 10th International
Symposium on Software Engineering for Adaptive and Self-Managing
Systems, ser. SEAMS ’15. Piscataway, NJ, USA: IEEE Press, 2015,
pp. 88–92.

[8] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dy-
namic Programming, 1st ed. New York, NY, USA: John Wiley & Sons,
Inc., 1994.

[9] V. Forejt, M. Kwiatkowska, G. Norman, and D. Parker, Automated
Verification Techniques for Probabilistic Systems. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 53–113.

[10] A. Aziz, V. Singhal, F. Balarin, R. K. Brayton, and A. L. Sangiovanni-
Vincentelli, “It usually works: The temporal logic of stochastic systems,”
in Computer Aided Verification, P. Wolper, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1995, pp. 155–165.

[11] C. Baier and J.-P. Katoen, Principles of Model Checking (Representation
and Mind Series). The MIT Press, 2008.

[12] C. P. Robert, The Bayesian Choice: From Decision-Theoretic Founda-
tions to Computational Implementation, 2nd ed. Springer, May 2007.

[13] D. Insua, F. Ruggeri, and M. Wiper, Bayesian Analysis of Stochastic
Process Models, ser. Wiley Series in Probability and Statistics. Wiley,
2012.

[14] M. Camilli, C. Bellettini, L. Capra, and M. Monga, “A formal framework
for specifying and verifying microservices based process flows,” in
Software Engineering and Formal Methods, A. Cerone and M. Roveri,
Eds. Cham: Springer International Publishing, 2018, pp. 187–202.

[15] A. J. Ramirez, A. C. Jensen, and B. H. C. Cheng, “A taxonomy
of uncertainty for dynamically adaptive systems,” in Proceedings
of the 7th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, ser. SEAMS ’12. Piscataway,
NJ, USA: IEEE Press, 2012, pp. 99–108. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2666795.2666812

[16] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification
of probabilistic real-time systems,” in Proc. 23rd International Confer-
ence on Computer Aided Verification (CAV’11), ser. LNCS, G. Gopalakr-
ishnan and S. Qadeer, Eds., vol. 6806. Springer, 2011, pp. 585–591.

[17] M. Eysholdt and H. Behrens, “Xtext: Implement your language
faster than the quick and dirty way,” in Proceedings of the ACM
International Conference Companion on Object Oriented Programming
Systems Languages and Applications Companion, ser. OOPSLA ’10.
New York, NY, USA: ACM, 2010, pp. 307–309. [Online]. Available:
http://doi.acm.org/10.1145/1869542.1869625

[18] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold, “An overview of aspectj,” in ECOOP 2001 — Object-Oriented

Programming, J. L. Knudsen, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2001, pp. 327–354.

[19] J. Tretmans and A. Belinfante, “Automatic testing with formal methods,”
in 7th European Int. Conf. on Software Testing, Analysis & Review, 1999,
pp. 8–12.

[20] L. de Alfaro, Game Models for Open Systems. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2003, pp. 269–289. [Online]. Available:
https://doi.org/10.1007/978-3-540-39910-0 12

[21] M. Veanes, C. Campbell, W. Schulte, and N. Tillmann, “Online testing
with model programs,” in Proceedings of the 10th European Software
Engineering Conf. / 13th ACM Int. Symp. on Foundations of Software
Engineering, 2005, pp. 273–282.

[22] M. van der Bijl, A. Rensink, and J. Tretmans, “Compositional testing
with ioco,” in Formal Approaches to Software Testing, A. Petrenko and
A. Ulrich, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004,
pp. 86–100.

[23] R. E. Bellman, Dynamic Programming. Dover Publications, Incorpo-
rated, 2003.

[24] P. Diaconis and D. Ylvisaker, “Conjugate priors for exponential
families,” Ann. Statist., vol. 7, no. 2, pp. 269–281, 03 1979. [Online].
Available: https://doi.org/10.1214/aos/1176344611

[25] E. M. Hahn, H. Hermanns, B. Wachter, and L. Zhang, “Param: A model
checker for parametric markov models,” in Computer Aided Verification,
T. Touili, B. Cook, and P. Jackson, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 660–664.

[26] S. H. Lee and W. Chen, “A comparative study of uncertainty propagation
methods for black-box-type problems,” Structural and Multidisciplinary
Optimization, vol. 37, no. 3, p. 239, 2008.

[27] M. Camilli, A. Gargantini, and P. Scandurra, “Zone-based formal speci-
fication and timing analysis of real-time self-adaptive systems,” Science
of Computer Programming, vol. 159, pp. 28 – 57, 2018.

[28] D. Perez-Palacin and R. Mirandola, “Uncertainties in the modeling
of self-adaptive systems: A taxonomy and an example of availability
evaluation,” in Proceedings of the 5th ACM/SPEC International
Conference on Performance Engineering, ser. ICPE ’14. New
York, NY, USA: ACM, 2014, pp. 3–14. [Online]. Available:
http://doi.acm.org/10.1145/2568088.2568095

[29] A. Filieri, C. Ghezzi, and G. Tamburrelli, “A formal approach to adaptive
software: Continuous assurance of non-functional requirements,” Form.
Asp. Comput., vol. 24, no. 2, pp. 163–186, Mar. 2012. [Online].
Available: http://dx.doi.org/10.1007/s00165-011-0207-2

[30] A. Filieri, G. Tamburrelli, and C. Ghezzi, “Supporting self-adaptation
via quantitative verification and sensitivity analysis at run time,” IEEE
Transactions on Software Engineering, vol. 42, no. 1, pp. 75–99, Jan
2016.

[31] R. Calinescu, Y. Rafiq, K. Johnson, and M. E. Bakir, “Adaptive
model learning for continual verification of non-functional properties,”
in Proceedings of the 5th ACM/SPEC International Conference on
Performance Engineering, ser. ICPE ’14. New York, NY, USA: ACM,
2014, pp. 87–98.

[32] A. Filieri, L. Grunske, and A. Leva, “Lightweight adaptive filtering for
efficient learning and updating of probabilistic models,” in Proceedings
of the 37th International Conference on Software Engineering - Volume
1, ser. ICSE ’15. Piscataway, NJ, USA: IEEE Press, 2015, pp. 200–211.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2818754.2818781

[33] K. J. Astrom and B. Wittenmark, Computer-controlled Systems: Theory
and Design (2Nd Ed.). Upper Saddle River, NJ, USA: Prentice-Hall,
Inc., 1990.

[34] N. Walkinshaw and G. Fraser, “Uncertainty-driven black-box test data
generation,” in 2017 IEEE International Conference on Software Testing,
Verification and Validation (ICST), March 2017, pp. 253–263.

[35] M. Zhang, S. Ali, T. Yue, R. Norgren, and O. Okariz, “Uncertainty-wise
cyber-physical system test modeling,” Software & Systems Modeling, Jul
2017. [Online]. Available: https://doi.org/10.1007/s10270-017-0609-6

11

http://doi.acm.org/10.1145/1882362.1882389
http://dl.acm.org/citation.cfm?id=2666795.2666812
http://doi.acm.org/10.1145/1869542.1869625
https://doi.org/10.1007/978-3-540-39910-0_12
https://doi.org/10.1214/aos/1176344611
http://doi.acm.org/10.1145/2568088.2568095
http://dx.doi.org/10.1007/s00165-011-0207-2
http://dl.acm.org/citation.cfm?id=2818754.2818781
https://doi.org/10.1007/s10270-017-0609-6

	Introduction
	Background concepts
	Markov Decision Processes with rewards
	Probabilistic Computation Tree Logic
	Bayesian Inference

	Running Example
	Online MBT under uncertainty overview
	Front end: Modeling & verification
	Back end: Online MBT & Inference

	Formal Framework
	Preliminary definitions
	Conformance Checking
	Sampling policies
	Random sampling policy
	History sampling policy
	Uncertainty sampling policy

	Inference & Calibration
	Termination conditions

	Comparative Evaluation
	Inference activity
	Sampling policies

	Related Work
	Conclusion and Future Work
	References

