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Introduction

The content of the present PhD thesis deals with computational models of cellular and
subcellular phenomena, using as tools ordinary and delay differential equations and
spatial stochastic simulations. In particular, the chapters of the thesis correspond to
the two distinct works which have been the object of my PhD research: in the first we
investigated the role of oscillations in a two-node genetic regulation network (GRN) with
delay, while in the second we developed a model to explain the peculiar dynamics of a
cancer stem cells population in a melanoma tissue as observed in a series of experiments
in the wet lab.

The work of Chap. 1 ("How likely are oscillations in a genetic feedback loop with
delay?") is an extension of the master thesis of F. Marchetti (1) and stems from the obser-
vation that genetic control networks display temporal oscillations as a result of delays
in their homeostatic control. A relevant question about these systems is whether the os-
cillating regime is a rare feature, or it corresponds to a sizeable volume of the space of
parameters. The importance of this question become clear if we transpose it in evolu-
tionary terms: if we are in the first case it means that evolution has driven living systems
to build specific configurations to obtain oscillatory behavior, through a fine-tuning of
the network’s parameters, while if oscillatory patterns are common features of genetic
circuits (i.e. there is are a large volume in the space of parameters of the networks that
corresponds to oscillatory states), it means that evolution has forced GRN to avoid them
when not necessary. The answer to the question is not trivial mainly due to the large
number of parameters controlling the rate equations which can be adopted to model the
network (as the number of parameters scales quadratically with the number of nodes in
the network) and the lack of sufficiently precise experimental estimations of their values.

To provide a first answer to the question, we considered a simple model of a two-
node genetic regulation networks, consisting of two different molecular species (for ex-
ample, proteins or RNAs) expressed by the cells and involved in a mutual feedback loop.
Apart from being a common network motif that can constitute a functional sub–unit of
more complex genetic networks, it is proved that a system of this kind is the most simple
whose dynamics can exhibit oscillations. The evolution of the concentration of the two
species has been modelled by a system of two differential (rate) equations characterised
by a delay in the feedback, accounting for a set of molecular processes which take time
to be finalised.

We have developed an efficient sampling scheme of the parameter space, based on a
Monte Carlo algorithm, and applied it to the two-node system with delay, characterised
by a 8-dimension parameter space. The result is that the volume fraction of the param-
eter space associated with oscillations is small but not negligible, and it is weakly de-

xix
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pendent on the duration of the delay. The most critical parameter to control oscillations
is the coupling production rates, which must have opposite sign, giving rise to a nega-
tive feedback loop. The oscillating regions are connected except along the equilibrium
constants between the two species, not allowing neutral evolution along this parame-
ter. The content of this first chapter has resulted in the following research paper: Cola
F., Marchetti F., Tiana G., “How likely are oscillations in a genetic feedback loop with
delay?”, Eur Phys J E Soft Matter. 2017 Aug; 40(8):74.

The work of Chap. 2 ("Control of phenotypic switching in cancer cells"), which is
to be published soon, is concerned with the dynamics of cancer cells populations in an
in-vitro experiment, with particular relevance accorded to cancer stem cells.

According to the so-called “cancer stem cell hyphotesis”, which is gaining more and
more experimental evidence in oncology, tumors are organized in an aberrant cell hi-
erarchy, in which differentiated cancer cells (CC) have a limited capacity to proliferate
and are produced by a tiny subpopulation of parent cancer stem cells (CSCs), that can
replicate indefinitely. If validated, this model would represent a paradigm shift for the
biology of carcinogenesis as well as having important clinical implications, possibly with
the design of therapies that selectively target the subpopulation of CSC in a tumor and
are able to effectively stop the dynamics of the whole tumor without the side effects pro-
vided by chemotherapy. However, the question has not yet been settled, and among the
other issues there is debate about whether the tumor cell population is strictly hierarchi-
cally organized or whether stochastic transitions that mutate differentiated cancer cells
to CSCs are also important. The degree of plasticity between the two compartments of
cancer cells has been so far the subject of various experimental investigations, but with-
out a definitive answer

In a significant series of experiments performed in the group of C. La Porta at the
University of Milan, biologists sort human melanoma cells using cancer stem cell mark-
ers, i.e. surface proteins widely believed to be expressed only by CSC. A large number
of CC (i.e. cells from cancer tissue negative to the CSC-biomarkers) are plated in a neu-
tral culture medium with a tiny fraction (under the 1-3 % of unsorted cells) of positice
cells (CSC). What is observed is that in a few days the fraction of CSC-marked cells first
overshoots to a higher level and then returns to the level of unsorted cells. In successive
experiments, biologists observed that a mass of negative cells plated in a special culture
medium (one resulting from the growth of a mass of melanoma cells for several days
in experiments like those in the previous series, and thus repleted with the molecular
species expressed by positive and negative cells during their growth), the re-expression
of positive markers is delayed, retarded with respect to the case of the neutral initial
medium.

We developed a model to test whether the possibility of stochastic transitions from
CC to CSC (called phenotypic switching), coupled with regulation performed by an un-
derlying field of a (so far) unknown switching-inhibitor molecule produced by the CSCs
themselves (possibly miRNA, according to the biologists), can qualitatively reproduce
the homeostatic regulation of the CSC population as observed in the wet lab. The model
consists in a system of differential equations which describe the evolution of the CSC an
CC population. The model includes the process of aging of the CCs, the processes of
cellular differentiation by division, the production of the switching-inhibitor molecule
by the CSCs, the phenotypic switching of CC to CSC and makes the key hypothesis that
switching is a delayed process, thus requires a certain time to complete. This simple
system of delay differential equations is able to qualitatively reproduce the evolution
of the concentration of CSCs in the different experiments performed, the timing of the
overshoot and the peculiar dependence of the observed height of the overshoot peak on
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the initial fraction of CSC.
Recently developed techniques of immunohistochemistry (among which immunoflu-

orescence is very popular) allow biologists to visualize the spatial distribution of a target
molecule through a tissue or a biological sample. In particular, cancer stem cells can be
localized from the observed distribution of their specific biomarkers. In order to inves-
tigate the spatial organization of the cancer cell populations for a lab–grown tumor, to
compare it with future experimental findings, we translated the rate equation model into
a spatial stochastic model on a 2D regular square lattice. In this model the evolution of
the different cellular processes is dictated by the stochastic Gillespie algorithm, coupled
with the deterministic Fourier diffusion of the switching inhibitor-molecule. This model
thus allow us to explore the role of diffusion on the spatial organization of the tumor
and the fraction of stem cells on the total.

From the simulations it can be observed that the radial density of the fraction of CSC
(starting from a single CSC in the centre of the lattice) always exhibits a peak at the ex-
terior border of the growing tumor mass, and the higher the diffusion coefficient of the
molecule, the higher the peak and the total fraction of CSCs. This peak, at least for lower
values of the diffusion coefficient, grows in height for an initial transient time of several
days, then the height becomes stationary, while the peak is transported exponentially
in time in the radial direction. We then developed a simple model (in the form of a
first-order transport P.D.E.) that is able to explain all these features of the CSC radial dis-
tribution, and also the stationarity of the total fraction of CSC for long times, as resultig
from the simulations.

An interesting additional result from the spatial simulations is that lower values of
the diffusion coefficient also favor anisotropy of the distribution of CSC and their lo-
calization in discrete high-density cluster at the border of the tumor mass, which is in
accordance with the few experimental results available in literature.





CHAPTER 1

How likely are oscillations in a genetic feedback loop with
delay?

1.1 Gene expression and regulation: introduction and modelling.

1.1.1 Gene expression and regulation.

All known forms of life – eukaryotes (including multicellular organisms), prokaryotes
(such as bacteria), and also viruses – are in need of generating the macromolecules
needed to perform the biological functions of life, starting from the information stored
in the DNA.

The process by which information from a gene (a stretch of DNA that encodes infor-
mation) is used in the synthesis of a functional gene product is called gene expression.
It is a complex mechanism divided in several steps: DNA transcription, RNA process-
ing and, in eukaryotes, transport, RNA translation and post-translational modification
of proteins. Gene products are often proteins, but in non-protein coding genes such as
transfer RNA (tRNA) or small nuclear RNA (snRNA) genes, the product is a functional
RNA.

It is essential for all forms of biological life to be able to control the expression of
gene products, since it increases the versatility and adaptability of an organism by al-
lowing cells to express them when needed. Gene regulation gives the cell control over
its structure and function, and is of supreme importance in the development of multi-
cellular organisms, since it drives cellular differentiation and morphogenesis in the em-
bryo, leading to the creation of different cell types that possess different gene expression
profiles from the same genome sequence. It also makes organisms able to respond to
environmental stimuli, and may also serve as a molecular basis for evolutionary change,
since control of gene expression can have a profound effect on the functions of a gene in
a cell or in a multicellular organism.

Since gene expression is made up of many molecular processes, there is a wide range
of mechanisms that cells can use to regulate gene expression by modulating any such
process. At the molecular level the easiest way to control gene expression is direct in-
teraction with DNA: genes have in fact several binding sites i.e. molecules with a large
affinity to bind a certain protein, near the coding region and in those sites proteins in-
teract with the DNA (for example DNA polymerase starts to produce the RNA after is
attached to the promoter region of the gene). In terms of regulation, binding sites may
differ in function: an enhancer will encourage RNA transcription while a silencer pre-
vents the binding of DNA polymerase to the promoter. Transcription factors are proteins
specifically made to activate or inhibit some genes, by binding to an enhancer site of the
gene and encouraging the production of the protein coded by the gene, or by binding to a
silencer gene and thus stopping the production of the same protein. Transcription factors
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action can also be modulated: other proteins which act as enzymes, i.e. micro-machines
that that catalyse some reaction, can enhance or suppress the production and the action
of transcription factors; a cellular signal can induce chemical transformation, such as
phosphorylation, acetylation, or glycosylation of the initial factor. These chemical reac-
tions, named post-translational modification, may change the ability of the protein to
bind to DNA. Finally all the proteins and molecules undergo a degradation pathway in
order to keep their activity under control, especially if the protein is damaged or overex-
pressed (2).

The molecules that interact with each other and with other substances in the cell to
govern the expression levels of gene products, and thus constitute the physical substrate
of the gene regulatory mechanism, are called gene regulators. In many cases, one gene
regulator (which can be DNA, RNA, a protein or complexes of these) does not control
only the expression level of one gene, but of many others. A genetic regulatory network
is the collection of all the gene regulators involved in the control of expression levels of
a set of genes, with a description of all of the possible interactions between each other
and with the genes themselves.

The interaction of different kinds of molecular regulators can give birth to regulatory
networks of growing complexity, obtained combining a huge variety of different net-
work motifs (elementary irreducible sub-networks with specific topology and function);
one of the most simple (and most common) example of a regulatory network motif is that
of the negative feedback control loop, well known in electronics, which can be biologi-
cally implemented, for example, in the following way: a gene products its own protein,
which in turn act as an enzyme that catalyses the production of a transcription factor
which inhibit the production of the original protein, thus homeostatically regulating the
amount of the original protein to be constant in time.

1.1.2 Graphical and quantitative models of genetic regulatory networks.

Gene regulatory networks (GRN) can be schematically represented with the tools of
graph theory. A graph is an ordered pair G = (V,E) comprising a set V of vertices,
nodes or points together with a set E of edges, arcs or lines, which are 2-element sub-
sets of V (i.e., an edge is associated with two vertices, and the association takes the form
of the unordered pair of the vertices). The edges represents the links, the interactions
between the nodes. If the interactions between the nodes are not symmetrical, and it is
necessary to distinguish the edge outgoing from a node from the edge entering„ the arcs
connecting two nodes can be represented by an oriented arrow (which is graphically
very common), or by introducing a label s to the edge (typically + for output and − for
input). The set G = (V,E, s) is called a directed or oriented graph.

A GRN can be represented as an oriented graph, where each node represents either a
gene whose activity is regulated or one of the molecular species that acts as a regulator.
The edges connecting the nodes represent the molecular interactions between the objects
represented by the nodes. They are oriented since the chemical reactions they represents
have almost always a precise direction.

Graphs representing GRN are reconstructed collecting information about relation-
ships between genes: information about these relationships is available in various bio-
logical database (for example EcoCyc (3), GeneNet (4), GeNet (5), KEGG (6) and Regu-
lonDB (7)), which collect results from large-scale experiments on gene expression. Re-
cently developed experimental techniques, like cDNA microarrays and oligonucleoti-
dechips, can be employed to monitor the expression of thousands of genes at the same
time, and have of course given a great impetus to the study of GRN: microarrays, in par-
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ticular, are used for detecting difference in gene expression over different experiments,
typically test vs control, helping in finding similarities in gene expression of multiple
experiments, either following the changes in gene expression values in a time interval,
or observing the response of the cell to an external stimulus.

The reconstruction of all the interactions between genes and regulators in a GRN
allows us to make a first sketch of the network topology: it can be either a large-scale
description (focusing only on the essential molecules) or as more fine-grained scheme,
considering all the molecules involved in every intermediate process. This level of de-
scription, though giving some important information, cannot give us information about
the actual overall expression of the genes involved (on the basis of the paradigm, stated
by Philip Anderson, that "more is different": the overall behaviour of a complex system,
like our GRN, is more than the sum of its constituent parts), nor about the temporal evo-
lution of the level of gene expressions. In order to achieve this, we have to build a quan-
titative, rather than just a purely descriptive, model of the GNR. The benefits of reaching
a quantitative setting are of undoubted importance: quantitative models of GRN could
be used to simulate various scenarios, and even predict future behaviour of systems.
The output of such simulations could provide hypotheses on the inner working of GRN
to be tested in ad hoc designed experiments. At a further level, with increasingly large
and refined models description may enlarge enough to elucidating the connection be-
tween gene regulation and phenotype, on a systemic scale, and complete understanding
of the regulators, and their interactions, can help to identify molecular tar gets for spe-
cific drugs and consequently designing controlled systems with potential for producing
disease-specific cures.

Several mathematical and computational models of GRN have been proposed in lit-
erature over time. They can be collected in different classes according to the specifica-
tions of the system and to the instruments employed. A first distinction to be made is
between deterministic and stochastic models. In deterministic models, given the same
initial conditions and the same parameters of the systems, the output of the model will
be always the same. In stochastic models, the concentration or the number of regulator
molecules are not defined with certainty, but are represented by a random variable which
follows a certain probability distribution. Solving such a model implies finding the prob-
ability distribution for each molecule involved. The output of a specific realization of the
systems (obtained almost always numerically) depends of course also on the random
numbers employed in the stochastic simulation. The level of precision of the two kinds
of models depends on the intensity and distribution of the intrinsic cellular noise: re-
cent (as of 2007) experimental results (8; 9) have demonstrated that gene expression is an
intrinsically stochastic process, and as such stochastic models have gained widespread
diffusion and popularity. Deterministic models can however still provide a realistic de-
scription of genetic regulatory systems, especially if the numbers of molecules involved
in the processes are sufficiently large and the microenvironment in which chemical and
biological reactions take place is well-mixed.

Another distinction to be made is between statical and dynamical models. Statical
models (such as Bayesian Networks) are only concerned with mutual interactions of
genes and only gives information about equilibrium values. In dynamical models every
quantity of interest is associated to a time-dependent function, so that it is possible to
track the evolution in time of the system. Of course dynamical models are more accurate
and more suitable to the aims set above, though they are of course more complex and
dependent on more parameters.

An example of dynamical and stochastic model is that of the Boolean network (10).
This stochastic technique defines the nodes of the graph as boolean variables (1 if the
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gene is expressing and 0 if is dormant) and the interaction between the vertices are
boolean function. The time-resolved expression is obtained integrating the sum of the
input boolean functions for every node. Of course the information we get from this ap-
proach are only qualitative. In order to get quantitative details of the dynamics we have
to build a more physical representation of the system. For a stochastic model, the most
common choice is that of the Master Equation (coupled with computational algorithms
to solve it efficiently on a calculator, such as the Gillespie algorithm (125)). Deterministic
dynamical models are instead usually written in terms of differential equations (one of
most common, powerful and versatile choice to analyse GRN).

1.1.3 Differential equations models of GRN.

Differential equations models for GRN are usually written in terms of ordinary differen-
tial equation (ODE). By doing this we make two key assumptions:

− the numbers or concentrations of molecules involved in the processes under exam-
ination are treated as continuous, rather than discrete, quantities: this is reasonable
if the numbers of molecules involved in the processes are sufficiently large (so that
the output is deterministic and noise is negligible);

− the reaction microenvironment is well-mixed (the dependence of the quantities of
interest from the spatial variables is not relevant). Fluctuations in space and time
are negligible and thus there are no stochastic or diffusion terms.

We assume that each node of the network correspond to a regulator molecule. We
then associate to the node i of the network a function xi(t) representing the average
number of molecules (or possibly the concentration).

To build the model we associate to every node of the genetic regulatory network a
differential equation: thus the whole model will be made up of a system of ordinary
differential equations, each for every node (that is, each for every dynamical variable).
The equation is written in function of the concentration of the regulators involved in the
biological process (those associated) and express the rate of production of the regulator
associated to that node of the network. The general form of such equation will be the
following

dxi
dt

= fi(x) (1.1)

where xi is the number (or concentration) of the regulator molecules associated with
the node i, fi : Rn −→ R is typically a non-linear function associated to the i-th node
and x = [x1, x2, . . . , xn] are the quantities of the element of the network (generally in the
function fi only the terms corresponding to the regulators of the node connected to the
i-th node will be present). The functions fi are ultimately derived from basic principles
of chemical kinetics or simple expressions derived from these, e.g. Michaelis-Menten
enzymatic kinetics.

The most important principle of chemical kinetics that is regularly employed in de-
termining th functional forms of the fi is the rate law, which links the reaction rate of a
chemical reaction (the speed at which reactants are converted into products) to the num-
bers or concentration of the reactants and the reaction rate constant (a specific, constant
value for each process, usually associated with the edges of the graph representing the
GRN).
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For many reactions A+B
k−→ C the rate r is given by a power law such as

r = k · [A]p · [B]q, (1.2)

where [A] and [B] express the numbers or concentration of the reactant species A
and B, the exponents p and q are the partial orders of reaction for A and B and k is the
reaction rate constant. For p = q = 1 this is the usual law of mass action. The partial
orders and the reaction rate constants are usually derived from simple phenomenologi-
cal considerations of from known experimental results. In the case of complex biological
processes, determining the reaction rate constants could be extremely difficult: we are
in possession of numerical parameters only of an handful of well-know system, for ex-
ample the bacteriophage λ lysis-lysogeny decision circuit (11), and this lack of in-vivo or
in-vitro measurements is hindering the use of numerical techniques.

A different functional forms that is used when a reaction is triggered by molecular
binding is known as Hill’s function, which can be applied for example in modelling the
rate at which a gene product is produced when its parent gene is being regulated by
transcription factors (e.g., activators and/or repressors) (13). This function applies also
(h >> 1) when a gene is regulated by multiple binding sites for transcription factors, in
which case the transcription factors may bind the DNA in a cooperative fashion (14). The
consequence of cooperative interaction is that the rate of expression of the gene’s product
is strongly dependent on the concentration of the transcription factor and the response
tends to saturate, which is usually modelled with a step function. Hill’s function g(x) is
one of the most simple and common functional form (15) to describe this interaction

g(x) =
xh

xh +Kh
A

, (1.3)

where x is the concentration of the transcription factor, h is the Hill coefficient de-
scribing the degree of cooperation of the reaction (a small integer number, which defines
the slope of the curve: an higher parameter determines an higher steepness of the curve),
and KA is a threshold value: it stands for the point at which the function reach 1

2 . Note
that for large values of x the function (which represents a sigmoid curve) tends to satu-
rate, i.e. come close in value to 1.

If the production of protein from geneX is up-regulated (activated) by a transcription
factor Y , then the rate of production of proteinXproduced can be modelled as a differential
equation in terms of the concentration of activated Yactive protein:

d[Xproduced]
dt

= k · [Yactive]h

[Yactive]h + (KA)h
= k · g([Yactive]), (1.4)

where k is the maximal transcription rate of gene X. Of course the function 1 − g(x)
can model the production of a protein from a gene which is down-regulated (repressed)
by a transcription factor.

Finally, we have consider the process of self-degradation of the gene product, which
is represented as a self-interaction of the i-th node, and modelled with a decreasing linear
function f(xi) = −γi · xi, where the parameter γi is the self-degradation rate of the
elements (usually measured as half-life).

At each node we apply the principle of superposition, assuming that different molecules
control gene expression independently on each other, and we conclude that that the total
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rate of production of the local regulator xi is obtained summing separately the contribu-
tions f ij from the connected nodes and the one from self regulation f̃i

dxi
dt

= fi(x) =
n∑
j=1

f ij(x) + f̃i(xi) (1.5)

Thus the general ODE which models the temporal evolution of the i-th node of the
network can be written in the following form

dxi
dt

=
∑
j 6=i

αij
xhj

xhj +Kh
ij

− γixi + si. (1.6)

The parameters αij are the saturation values of the Hill’s functions that quantify the
interaction of the i-th node with the j-th node: they can be viewed as the network con-
nection weight, that represent how much the node j stimulates the node i (as an en-
hancer if αij > 0, as a repressor if αij < 0). The parameter γi is the self-degradation
rate of the regulator of the node i (usually measured as a half-life), while si is the rate at
which the regulator of the node i is produced: a constant source term for the node i.

Two observations have to be made with reference to equations 1.6. First, the number
of parameters needed to model a GRN with this kind of systems is quite large and more-
over it grows rapidly with the number n of nodes in the network, exhibiting a "curse
of dimensionality": in fact, as n grows, the total number of parameters of systems goes
like n · (3n + 2). If n is sufficiently large, even with modern techniques for conducting
large-scale experiments on genetic expression (gene-chips, microarrays), a huge num-
bers of experiments would be needed to obtain information about the parameters of the
systems. Second, given the complexity of most biological networks, even with a large
amount of data it can be a complex task to infer precise information about the system’s
parameters. As we mentioned earlier, we have accurate numerical parameters only of
an handful of well-know system, while for most of the others only esteems of their or-
ders of magnitude, at best. New methods would be needed if we want to study the
general properties of such systems in absence of precise quantitative information about
the parameters of the model.
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1.1.4 The role of delay in GRN.

The model 1.6 we built to describe the most general GRN is not complete, since it leaves
out the fact that many molecular processes in gene regulation exhibit time delays which
follows from the obvious fact that chemical reactions takes some time to be completed
(and time is also needed for reactants and produced molecule to diffuse in the cell). In
table 1.1 are reported the typical time scales of a single-molecule process in eukaryotic
cells, from the fastest to the slowest (16).

Process Time scale
Translocation through nuclear pores 10−4 s

Molecular diffusion in the cell 1 s
Translation 30 s

Transcription 3 min
mRNA degradation 3 min
Protein degradation 10 min to 10 h

Cellular signals 1 h

Table 1.1: Typical time scales of a single-molecule process in eukaryotic cells, presented in order
from the fastest to the slowest (16).

It is evident that in a GRN, which often involves tens (or hundreds) of different chem-
ical reactions, some of which organized hierarchically (the products of one are the reac-
tants of another, so the second cannot start until the first has been completed), and which
take different times to be completed, it is reasonable to assume that some process will
display a net time delay τ , that can be conveniently modelled adding the time delay τ
in the interactions among the graph nodes involved in the delayed process. A typical
example is given by transcription and translation mechanisms, which are composed of
a large number of in-between stages: immediately after the polymerase is binded to the
DNA, the newly-formed closed complex performs a transition and modifies its shape in
an elongated one; the polymerase then runs along the unrolled DNA, synthesizing the
mRNA polymer until it reaches the end of the gene.

We should also consider that, when making a coarse-grained model of a GRN, we are
not interested in all the different intermediate reactions that makes up a complex process:
the intermediate nodes (and the corresponding reaction products) can be replaced by a
time delay between the nodes corresponding to the initial and the final regulators of the
process.

Coming to our general model 1.6, to make it more realistic we added a time delay
in the Hill’s function that models the interactions between different nodes. This is to
all intents and purposes a coarse-graining of all the intermediate steps and reactants
that make up the regulation process (diffusion of the regulator, binding to the promoter,
enzymatic reactions, formation of a protein complex, and so on).

The final and complete model we propose for the general GRN is thus the following

dxi
dt

=
∑
j 6=i

αij
xhj (t− τ)

xhj (t− τ) +Kh
ij

− γixi + si. (1.7)

A system of n equations like (1.7) is in general impossible to solve analytically and
have to be solved numerically. Such a system can usually exhibit a complex dynam-
ics, due to nonlinearity and the presence of time delay. In principle, for generic n
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(i = 1, . . . , n), the dynamics of the variable xi could be even chaotic. For n = 2, if the
possibility of chaotic dynamics is ruled out, the dynamics of each variable then, however
complicated, can display only three kind of behaviour: the dynamics could converge to
one point (a constant steady state), diverge to infinity or have sustained periodic oscil-
lations. The last case is of particular interest for us, given our aim to establish whether
the oscillating regime is a rare feature of GRN, or it corresponds to a sizeable volume of
the space of parameters. In the next section we shall therefore provide a short introduc-
tion to the role of oscillation in GRN, and then, in a subsequent section, we shall focus
on a more specific and simpler case of GRN: a two-node GRN with negative feedback.
This kind of GNR, though simple and computationally tractable (given the relatively
low number of parameters), has nonetheless a sufficiently rich dynamics, so that it is
worth to employ it to investigate the occurrence of oscillations in GNR.
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1.2 The role of oscillations in GRN.

All organism have to deal with situations that require exact timing or an efficient re-
sponse to environmental variations (think of the circadian rhythms and cell division).
For this reason biological system have developed extraordinary spatial and temporal
patterns, which reflects the fact the underlying cellular processes are highly dynamic
and operate on a wide range of timescales and lengthscales, with complex mechanisms
of cooperation and synchronization. From the great amount of measurement of the tem-
poral dynamics of protein concentrations (made possible by recent techniques such as
pulse-labelling, β-galactosidase measurements and immunoblotting, fluorescent tech-
niques, chromatin immunoprecipitation assays and microarrays (16)) it is now evident
that regulatory and signal transduction networks do not depend merely on shifting the
relevant protein concentrations from one steady state level to another. Rather, the signals
often have a significant temporal variation that is able to carry much more information,
as we shall see.

In particular, several genetic control systems in cells have been observed to display
regular temporal patterns in the form of stable periodic oscillations: this is the case, for
example, of p53 ((17; 18)), Hes1 (19), NfκB (20), and Wnt (21). As a rule, these oscil-
lations have a period of the order of tens of minutes to hours, are associated to some
specific mechanism and involve two main species linked in a feedback loop: P53 acti-
vates the transcription of Mdm2 which, in turn, promotes the degradation of p53; the
resulting 20 minute oscillations are thought to coordinate the cellular response to DNA
damage, causing growth arrest and eventually apoptosis (22). Also hormones, such as
the human growth factor, also show such intermittently periodic behaviour and pulsatile
secretion (23). The oscillatory dynamics is not only limited to the temporal domain, but
it is also fundamental for spatial organisation: the oscillations of Hes1, which inhibits
the transcription of its own mRNA, are turned into spatially repetitive units such as ver-
tebrae, ribs and skeletal muscles during embryogenesis (24); another example is parallel
root branching in plants (25).

We have seen that there are many examples of periodic oscillations in the dynamical
behaviour of GRN and that they are of great importance for cellular life, but regulatory
system could display another behaviour: multistationarity (26). Instead of oscillate be-
tween two extreme values, in the case of multistationarity the dynamics is forced to set-
tle, at least after a long evolution time, on one of the fixed points of the system, according
to their basins of attraction: the system thus in any case reaches a steady state. This kind
of control is required to account for epigenetic differences, including cell differentiation;
a sort of trigger circuit able to switch from "gene on" to "gene off" and vice versa. Once is
verified that there are multiple possibilities is interesting to investigate how difficult it is
for the cell to produce temporal oscillations against stable state configuration, and what
are the benefits of choosing one dynamical behaviour over the other.

In order to better investigate the nature of the oscillatory regime it is useful to draw
a comparison between biological and electronic circuits. The aims and functions of the
two kinds of systems are in fact remarkably similar: the genetic regulation network duty
is to process input signals coming from the cellular environment to create an appropriate
response. From a theoretical and systemic point of view, then, one can think of genetic
control elements as biological computers whose goal is to elaborate input stimuli to ob-
tain an appropriate output. For example, transcriptional inhibition can be regarded as a
logical NOT node in the cellular computing network, whereas promoters can build out
logical AND nodes. Cellular life can thus be summarized in a continuous elaboration
and diffusion and transport (i.e. transmission) of signals (besides the simpler produc-
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tion of energy, required for the former goal).
Having established this plausible comparison, we can borrow theoretical techniques

from information theory to study how much oscillations (and multistationarity) are im-
portant for GNR. That is, we can ask whether a cell get some benefit from the stable
oscillatory dynamical regime behaviour, with respect to multistationarity. To answer to
this question we need to find a value that quantifies the efficiency in the transmission of
information by a circuit, and such a value can be the channel capacity (27), i.e. the max-
imum of the rate at which a communication channel transfers information. A higher
transmission rate implies a better ability in elaborate and propagate signals in reaction
to external stimuli, and hence a finer efficiency and an evolutionary advantage.

In the case of a two-stable response system the associate capacity I , in term of Shan-
non’s information entropy, is I = 1 even in presence of noise (28), while if we consider a
periodic signal it has been proved by Shannon himself (29) that the channel capacity is
given by

I = T ·W · log2

(
1 +

P

N

)
, (1.8)

where P and N are, respectively, the spectrum and noise power, W is the highest
value of the spectrum and T is the duration of oscillations. To provide a quantitative es-
teem of the capacity I in the case of our system, let’as assume that the duration is several
hours long, so T ∼ 10h (16); concerning the spectrum, we do not expect any frequency
in it higher than the inverse of the fastest process taking place in the generating genetic
control elements, so for the maximum of the spectrum is reasonable to take the inverse
of the delay of the fastest process involved, and then we have W ∼ 10−1min−1. To eval-
uate P

N is usually a complicated task but even if we choose P ∼ N , that is the worse
possible case , the value of the capacity will be I ∼ 40 (30).

Finally, we have to stress the fact that a continuous rate equation (which is the model
we are considering for our system) implies that for every x variables in input a signal
y is obtained in output, therefore the amount of information accountable to the system
seems to be infinite, but our differential equation is actually an approximation, a coarse-
graining of the real situation: the number of particles in the cell have to be finite and also
the rate equation don’t envision the presence of noise that appear in every molecular
process.

We can conclude that the amount of information transmitted in a genetic control
circuit that exhibit an oscillatory response is greater than the that transmitted in the mul-
tistationary regime, even though the system is affected by noise. Thus the oscillatory
regime presents an evident advantage in terms of efficiency and adaptability for living
systems. What our present analysis leaves out is how difficult it is for the cell to produce
temporal oscillations against stable state configuration. To establish the amount trade-off
between efficiency and ease of implementation could help us to assess the plausibility
of one of the two possible scenarios: oscillations are a common feature of biological con-
trol systems or instead evolution has driven organisms to build specific configurations
to obtain oscillatory behaviour. Some recent work (30) suggests that periodic patterns
naturally arise in a regulatory system whereas steady state are an insulated incident. If
that scenario be true, evolution forced the hand at the molecular regulation mechanisms
stressing the pursuit of multiple constant steady states.
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1.3 Two-nodes systems with feedback.

In our work we take a reductionist approach, choosing to analyse a simple network
motif, which can constitute a recurrent and statistically significant sub-graphs of a more
complex regulatory network. The motif of interest is a simple two-node network with
feedback.

In the case n = 2 (two nodes, i.e. two regulator molecules) the GNR has the graphical
representation displayed in Fig. 1.1.

x1 x2

γ
1

γ
2

α

α

12

21

s1
s2

Figure 1.1: Simple graphical scheme of a GRN with two regulators molecule: the 1st node is a
repressor and the 2nd an activator. x1 and x2 are the concentration of the two regulator species,
αij are the connections weights, γi the self-degradation rates, si the local source rates.

The system of equations modelling the GNR (according to the general model of the
previous section) is the following

dx1

dt
= s1 + α12 ·

xh2 (t− τ)
kh12 + xh2 (t− τ)

− γ1x1

dx2

dt
= s2 + α21 ·

xh1 (t− τ)
kh21 + xh1 (t− τ)

− γ2x2, (1.9)

where x1 and x2 are the concentration of the two regulator species. Note that we
assumed for simplicity that the processes of coupling between the two nodes are similar,
so that they share the same time delay τ and the same Hill’s coefficient h.

For this kind of system, the possibility of chaotic dynamics is ruled out by a general-
ized version of the Poincaré-Bendixson theorem for monotone cyclic feedback systems
of ODEs with delay (31). The dynamics of each variable then, however complicated,
can display only three kind of behaviour: the dynamics could converge to one point (ba
steady state), diverge to infinity or have sustained periodic oscillations. In the first two
cases if the equilibrium (or infinity) is reached directly the system is called stable "node"
or fixed point (unstable "node") but if oscillates towards the steady state (or towards in-
finity) we talk about stable spiral (unstable). The oscillatory case is called limit cycle. The
introduction of time delays can induce instability of the fixed point, and hence causing
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the transition to a a limit cycle. In a large number of systems it has been verified that
sufficiently large delay produce oscillations ((32; 33)).

1.3.1 Feedback loops.

With the graphical convention employed in Fig. 1.1, the node 2 is an activator for the
node 1 (α12 > 0), while the node 1 is a repressor for the node 2 (α21 < 0). In other terms,
node 2 has a positive feedback on node 1, while node 1 has a negative feedback on node
2. Positive feedback of regulator A on regulator B means that if the concentration of
a regulator A goes up it makes the regulator B concentration growth, while in negative
feedback if the concentration of regulator A goes up it makes the protein B concentration
decrease.

The kind of system depicted in Fig. 1.1 is an example of a negative feedback loop, i.e. a
control loop network with an even number of repressors (while of course a positive feed-
back loop is control loop network with an odd number of repressors). Feedback loops are,
in general, the most common network motifs in cellular organization, especially when
one considers the regulation of small molecules (34). Of course the simplest negative
feedback loop (single-node) is a protein which represses itself; there are many examples
of such proteins: the main repressor of the SOS regulon in E. coli, LexA, also represses its
own production (35); Hes1 represses transcription of its own gene ((16; 35)).

General feedback loops with an arbitrary number of components N can be modelled
by equations like the following

dxi
dt

= gi(xi, xi−1) i = 1, . . . , N, (1.10)

where the rate of change of the variable xi at the node i of the feedback loop depends
only on itself and the previous variable xi−1. In modelling feedback loops, one usually
assumes the function gi of (1.10) to be monotonic in xi−1 (under this assumption, we
shall call (1.10) a monotonic system). This reflects the hypothesis that a protein that acti-
vates a particular process cannot change to repress it at some other concentration, and
vice versa, which is the case for most transcription factors (and implies that there is no
ambiguity about whether the loop implements negative or positive feedback,).

For monotone systems with a negative feedback loop it can be proved rigorously (16)
that there can be only one fixed point. If this point is stable, the system at infinity tends to
reach the only available steady state, while if it is unstable, and the system’s trajectories
are bounded (again, a reasonable assumption for a biological system) then the system
must display periodic oscillations, as it follows from the standard Poincaré-Bendixson
theorem (36).

For positive feedback loops, on the other hand, it can be proved (16) that they can
have multiple fixed points. Thus in this case the system tend to reach at infinity one of
the available stable points,according to their respective basins of attraction.

Positive and negative feedback loops, in conclusions, represents two dynamical and
biological paradigm: negative feedback loops represent stable periodical oscillations and
homeostasis, while positive feedback loops stand for multistability, which can be seen
as a scheme for the differentiation processes of developmental biology. In fact it can
be proved (37; 38) that for a wide class of systems the presence of at least one negative
feedback loop is a necessary condition for oscillations.

The condition is necessary, but not sufficient: it can be shown using Dulac’s criterion
that oscillations are not possible in the case of two-variable monotonic systems (16; 39).
What is needed is the possibility for the system’s only fixed point to become unstable,
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thus generating sustained periodic oscillations with the mechanism cited above. To gen-
erate the instability of the fixed point, and hence oscillations, a time delay in the system
is required : if a perturbation in the concentration of one variable instantaneously affects
the concentration of the next one, and so on, then for a negative feedback loop any per-
turbation will be immediately cancelled and the steady state will be stable. A sufficiently
large time delay on the other hand will produce oscillations: the mechanism involved is
that of the Hopf bifurcation (16).

For a feedback loop system to have the possibility of generating periodic oscilla-
tions we have shown that the feedback must be negative, the trajectories of the system
bounded, and if the system is monotone and two-component it must have an explicit
time delay. In the next subsection we analyse the two-node system (1.9) and prove that
it is the smallest realistic system of ODE which can generate sustained, periodic, oscilla-
tions.

1.3.2 Analysis of the two-node monotone systems with delay.

It can be easily seen that equations (1.9) of the two-node system are a particular case of
monotone system (1.10) (with the additional features of the delayed variables). (1.9) are
of the type

dxi
dt

= Fi(xi(t), xi−1(t− τ)) i = 1, . . . , 1, (1.11)

where the functions Fi are monotonic in the second variable. We note that their
trajectories, appropriately for the model of a biological system, are bounded; it is in fact

dxi
dt
≤ si + max{αij , 0} − γixi, (1.12)

and the trajectories of the system

dyi
dt

= si + max{αij , 0} − γiyi (1.13)

are certainly boundend (incidentally, from this follows that the domain of existence
of the solution xi is the whole R, since growth is sublinear).

We can quite easily show that if the system (1.9) is a negative feedback loop (i.e. if
α12 · α21 < 0 it has just one fixed point. Some of the variables in the system are delayed
delayed but the presence of the delay do not affect the value of the fixed point, since
when the equilibrium is reached xi(t) = xi(t − τ), therefore we can just analyse the
following system

dx1

dt
= s1 + α12 ·

xh2 (t)
kh12 + xh2 (t)

− γ1x1 = F1(x1, x2)

dx2

dt
= s2 + α21 ·

xh1 (t)
kh21 + xh1 (t)

− γ2x2 = F2(x1, x2). (1.14)

We introduce the equilibrium values x̃1 and x̃2 (for which dx1
dt

∣∣∣ex1,ex2

= 0 and dx2
dt

∣∣∣ex1,ex2

=

0)



14 1.3 Two-nodes systems with feedback.

x̃1 =
α12

γ1
· x̃h2
kh12 + x̃h2

+
s1

γ1

x̃2 =
α21

γ1
· x̃h1
kh21 + x̃h1

+
s2

γ2
. (1.15)

Thus we have two coupled equations

x̃1 = f1(x̃2)
x̃2 = f2(x̃1). (1.16)

Making a simple substitution we obtain x̃1 = f1(x̃2) = f1(f2(x̃1)) = f1 ◦ f2(x̃1) =
Γ(x̃1), where Γ is the composed function f1 ◦ f2.

The number of fixed points of 1.14 is the number of fixed points of the map Γ, so we
have to calculate the number of intersections of the curves y = Γ(x) and y = x. The
functions fi are monotonic, so Γ, as a composition of monotonic function, is monotonic.
If Γ′ < 0 the two curves can intersect in just one point, since y = Γ(x) is a decreasing
curve, while y = x is an increasing curve. On the other hand, if Γ′ < 0 the two curves
may cross in more than one point. By the chain rule for derivatives we have Γ′(x) = f ′1·f ′2
and it is sign(Γ′(x)) = sign(α12 · α21).

Thus if α12 ·α21 < 0 (negative feedback: one repressor and one activator), the system
(1.9) has just one fixed point, while if α12 · α21 > 0 (positive feedback: two repressors or
two activators) can have multiple fixed points.

In conclusion, if α12 · α21 < 0 the system has only one fixed point: since its trajecto-
ries are always bounded, then if that fixed point is unstable, for the standard Poincaré-
Bendixson theorem, the system dynamics exhibits a limit cycle, that is oscillates period-
ically. Since the system has an explicit delay in time, it can undergo a Hopf bifurcation
and thus have an unstable fixed point (16).

We have proved then that our two-node delay system of ODE is the simplest non
trivial system that can display a periodic stable oscillatory dynamics. Since it is of low
dimension and thus depends on a relatively low number of parameters (in total 8, if we
fix Hill’s coefficients), it is a computationally tractable system to test our methods for the
detection of stable periodic oscillatory states.
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1.4 Sampling oscillatory states in the phase space: a Metropolis algo-
rithm.

Our aim in this work is to investigate whether the the oscillating regime is a rare feature
of GRN, or it corresponds to a sizeable volume of the space of parameters. The answer to
this question is of importance to understand network motifs of gene regulatory systems
in evolutionary terms: if oscillatory patterns are common features of genetic circuits (i.e.
there is are a large volume in the space of parameters of the networks that corresponds
to oscillatory states), it means that evolution has forced GRN to avoid them when not
necessary, while if the size of oscillatory volume in the phase space is tiny, and thus
oscillations are a rare feature, it means that evolution has driven living systems to acquire
them through a fine-tuning of the network’s parameters.

As we have already stated before, the main problem in evaluating the size of the
phase space corresponding to oscillatory states is that the dimensionality of the space
of parameters needed to model a GRN rapidly increases with the number N of nodes,
scaling as N2, thus exhibiting a "curse of dimensionality".

In order to make the analysis more manageable, our first choice has been to concen-
trate on a model which is simple, but not too simple, i.e. that combines a relatively low
number of parameters and a sufficiently rich dynamics. As we argued in the previous
sections, such a model (which shall be our model of reference) is that of a two-species
feedback loop with delay, modelled via the following system of rate equation

dx1

dt
= s1 + α12 ·

xh2 (t− τ)
kh12 + xh2 (t− τ)

− γ1x1

dx2

dt
= s2 + α21 ·

xh1 (t− τ)
kh21 + xh1 (t− τ)

− γ2x2, (1.17)

The model is specified by the following parameters

− s1 and s2 are the unconditioned production rates of the two molecular species,
whose concentrations are x1 and x2;

− α12 and α21 are the production rates of each molecular regulator dependent on the
other species;

− γ1 and γ2 are the the natural degradation rates of the molecular species;

− k12 and k21 are the thresholds of the Hill’s functions that provide the regulatory
coupling between the two species;

− h is the HIll’s coefficient, which is assumed to be the same for both processes of
coupling, for simplicity;

We have that the dynamics of the system (1.17) is described by 9 numerical parame-
ters. Assuming that h = 2 (a common biological value for Hill’s coefficient, see (40)), we
further reduce the dimensionality of the phase space to 8.

The next step in our analysis is to devise a serial procedure that assign at each of
the parameters of the system a numerical value (among those permitted), then run a
numerical simulation of the system of rate equations (1.17). Once obtained the solution,
the procedure evaluates if it displays an oscillatory dynamics or not: if it oscillates, the
set of chosen parameters, which can be seen as a point in the 8-dimensional phase space,
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is assigned to the volume of the phase space corresponding to oscillations of the system.
At the end of the procedure, the ratio of points of the phase space belonging to the
oscillatory volume to the total number of considered points will provide an esteem of
the ratio of the oscillatory volume to the total volume of the phase space, if the sample
is ergodic.

Despite the relatively low number of parameters, the systematic exploration of a
8–dimensional parameter space is rather cumbersome, so the point is to develop a pro-
cedure for sampling efficiently the phase space: in our work we developed a sampling
scheme based on an optimisation principle. The general idea behind our method is to
define a function of the trajectory of the system which is minimised as oscillations ap-
pear, and to bias the exploration of parameter space with a Metropolis algorithm (41)
using this function as an energy. After the sampling is finished, one estimates the vol-
ume of parameter space associated with oscillations by subtracting the effect of the bias,
much similarly to what one does to obtain the density of states from a thermodynamic
sampling (49). The data can be analysed with some advanced tools developed in connec-
tion with molecular simulations, like the weighted–histogram method (48). In this way
one can quantify the fraction of the space of parameters associated with oscillations, and
also estimate the effect of the different parameters in inducing them.

The main advantage of employing the Metropolis algorithm is that it can make the
sampling faster and more efficient than if we were doing a random, uniform sampling of
the phase space, since with this method we can choose to explore configurations in the
phase space with a given probability distribution. In the implementation of the model,
we chose of course to explore more frequently the configurations associated with an os-
cillatory dynamics: this is necessary under the working hypothesis that the fraction of
the space of parameters corresponding to an oscillating behaviour is small, and there-
fore a random sampling of the oscillating regions is not expected to be efficient (it would
miss out most of the points, resulting in a severe underestimation of the oscillatory vol-
ume). The Metropolis algorithm is precisely what is needed to generate a given arbitrary
probability distribution, which in our choice was a Boltzmann-like distribution.

The algorithm we devised starts with a randomly chosen network configuration (i.e.
set of parameters of the system (1.17)) and then simulates the dynamics of the system by
integrating the ODEs for every node. To determine whether the resulting dynamics is
oscillatory or not, we use a technique of symbolic dynamics, consisting in counting the
peaks (i.e. the maximum points) of the solution for one variable of the system. The num-
ber of the peaks detected in the dynamics is defined to be the "energy" Ω of the system.
To explore the oscillatory state with a likelihood given by the Boltzmann distribution,
we have to employ a Markov Chain Monte Carlo algorithm with weights wi = e

Ω
T being

the temperature of the simulation): with this kind of settings the network is pushed to
reach the maximum number of peaks available. At every successive step we change the
network configuration moving the parameters randomly in a bounded interval. Here
we can provide a schematic description of the algorithm:

1. an arbitrary set of parameters is chosen;

2. we move the system, i.e. the parameters are changed multiplying them by a ran-
dom number;

3. we integrate the system of equations with this new set of parameters, obtaining the
dynamics;

4. the "energy" function Ω is evaluated counting the peaks of the solution with a sym-
bolic dynamics algorithm;
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5. the new parameter set is confirmed with probability min(1, e
Ωnew−Ωold

T );

6. the process is repeated from point (2);

In the next subsections we provide details about the implementation of some of these
steps of the algorithm.

1.4.1 Solving the system of delay equations.

At each step of our Metropolis-Monte Carlo algorithm we need to solve the system of de-
lay differential equations (1.17). Before solving it it is necessary to define its 8 numerical
parameters (and the time delay τ ). The 6 rates and the 2 threshold constants (kij) were
allowed to vary in a range of values which we assume to be biologically relevant (42). In
particular, we set the constraints (expressing all times in seconds and all concentrations
in mol)

• 10−10 ≤ si ≤ 10 mol/s;

• −10 ≤ αij ≤ 10−10 and 10−10 ≤ αij ≤ 10 mol/s;

• 10−9 ≤ kij ≤ 10 mol;

• 10−6 ≤ γi ≤ 10 s−1.

These constraints on the variables define a hyper–parallelepiped in the parameter
space, which we shall consider our phase space to be sampled to quantify the fraction of
it which is associated with oscillatory dynamics.

Once defined the parameters of the system, we must address the delicate issue of the
initial conditions for our system of ordinary delay differential equations (DDE). In the
case of DDE we have in fact to define an entire set of initial conditions (since we need
the value of the delayed function at the start and at every following integration step),
providing the values on the whole interval [−τ, 0] (if the system has a single time delay
τ ) in the form of an initial history function φ(s) = x(s), s ∈ [−τ, 0]. DDEs thus need
functional initial condition, and are an example of an infinite dimensional dynamical system:
this is why they are in general more complicated than simple ODEs, and as such their
dynamics is much more rich.

The set of initial conditions {x1(t), x2(t)}−τ≤t≤0 was set to the constant values {x0
1, x

0
2},

obtaining resolving the fixed-point system of algebraic equations (1.15), which defines
the steady state of the system (1.17), with a small perturbation ε in the source term

x0
1 =

α12

γ1
· x0

2
h

kh12 + x0
2
h

+ (1 + ε) · s1

γ1

x0
2 =

α21

γ1
· x0

1
h

kh21 + x0
1
h

+ (1 + ε) · s2

γ2
. (1.18)

If either x0
1 or x0

2 is negative, it is set to zero. In the present calculation we chose
ε = 0.2.

The flat initial condition is both computationally tractable and biologically plausible,
since it is based on the assumption that the initial condition is due to a perturbation of
the steady state (if the system has one), which put the dynamics in motion. We note that
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the choice of the initial conditions do not afflict the simulation results, i.e. if the dynamics
is oscillating or not. In fact the stability of a fixed point depends only on the parameters
of the equation (and on the delay τ ) and, in the case of a negative feedback loop, which
exhibit only a possible fixed point, if that fixed point is unstable the oscillations necessary
occur.

The system of equations (1.17) was solved with the adaptive-step Runge-Kutta method
implemented in the gsl libraries (43), with an absolute integration error set to 10−4 and
the relative error to 10−3; the time length of each simulation is 105 s, corresponding in
order of magnitude to the length of the cell cycle.

The variables xi of our system represent the concentration of the molecular species
in the cell and is unreasonable for a concentration, which is a normalized count on the
molecules number, to be negative. Therefore we add an approximation in the solution
of our system: when the xi value goes below zero we check if the derivative if time
derivative dxi

dt is also negative: if so, the variable xi is automatically set to zero (and also
its time derivative), while if dxi

dt > 0 only the variable xi is set to zero. We thus interrupt
the dynamics and force it to be positive only in the case if the variable is actually expected
to go negative.

1.4.2 Detection of oscillations and symbolic dynamics.

The Metropolis algorithm provides a method to sample the phase space according to a
given probability distribution. In the case of thermodynamic sampling, the probability
distribution is the Boltzmann distribution p(E) ∼ e−

E
kT , so that the points in the phase

space which are selected with more probability are the ones which corresponds to the
minimum of the energy E, which are the states most relevant for the statistics and cor-
responding to physical conformations. In our simulations we would like to select with
more probability the states corresponding to oscillations, thus we define as our "energy"
E = −Ω, where Ω is a function of our state (i.e. of the set of parameters of the network)
whose main requirement is to distinguish between an oscillating state and one which
settle on a constant steady state. Our definition E = −Ω indicates that the function will
have its minimum if the dynamics is not oscillatory.

The most simple function Ω which forces the Monte Carlo algorithm to sample with
more probability oscillatory states is the one which counts the number of peaks in the
dynamics of xi. The choice of Ω as the number of peaks reflects the obvious fact that an
oscillatory dynamics will display an interchanging succession of maxima and minima
in the solution xi, and a solution could be considered to be "more oscillating" if in the
time given by the simulation length display an higher number of peaks, with respect to
another solution.

Once again, the problem is to find an efficient algorithm to computer the function Ω,
since this calculation has to be performed at every step of the Monte Carlo algorithm.
Since we are looking for stable periodic solutions, we can calculate the discrete Fourier
transform of the solution with a Fast Fourier Transform (FFT) algorithm: the basic idea
is that once the FFT is done and we can detect a peak in it (or possibly more than one),
the peak reveals that the function is oscillating at the frequency corresponding to the
peak. However, this solution is computationally expensive and the results are not so
easy to interpret (because the dynamics is generally not purely sinusoidal and thus the
FFT exhibits different peaks of various height for the different frequencies of oscillations,
and it is difficult to find the right threshold to select just the relevant peaks).

The method we used in the end was simpler and based on symbolic dynamics, which
is the collective name employed for every mathematical technique that maps a contin-
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uous dynamical expression into a discrete space. The mapping consists in associating a
symbol to every state the system can produce. The basic idea is to follow the dynamics
and every time the system changes state a symbol (correspondent to the new state) is
noted. In the end a sequence of symbol is obtained and at this point is possible to study
the patterns formed by the symbolic expressions, easier to handle than the continuous
case.

We are analysing a continuous expression but we are only interested in the general
behaviour of the dynamics: if is oscillating or not. An oscillating dynamic shows an
interchanging succession of maxima and minima, and our goal is to choose a suitable la-
belling that still reproduce this periodic pattern. The procedure, developed by Pigolotti
(44), consists in labelling our dynamics with symbols representing the monotonicity of
our curve. Since we are considering continuous functions, in the interval between a
maximum and a successive minimum the sign of the slope of the function remains con-
stant. The dynamics is then investigated dividing the space in intervals with a defined
monotonicity, to which is associated a symbol, typically + if is growing and − if is de-
creasing. Doing so we passed from a continuous variable to discrete one: an example of
this method applied in reconstructing the dynamics of the kaiA− kaiC1− kaiB3 regu-
lation model is showed in the figure 1.2 taken from the work of Pigolotti (45) (see also
(16)).
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Figure 1.2: Symbolic dynamics algorithm applied to reconstructing the dynamics of circadian
rhythms in cyanobacteria from the empirical dynamics of concentration of three protein, from the
work of Pigolotti (45). The algorithm predicts that protein kaiA activates kaiC1, which represses
kaiB3, which, in turn, activates kaiA. The final sequence of symbols has allowed to know that the
dynamics is oscillating and also which variable is a repressor. In fact when the system pass from
a (+,+) zone to a (−,+) it means that the activity of the second variable has repressed the first
variable.
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We note that for a two-dimensional system we can just observe a single symbolic
sequence (if one variable in a feedback loop oscillates, so will the other one): the number
of maxima in the solution is equal to the number of the times the symbols change sign.

The procedure we have adopted takes place in parallel with the integration of the
dynamics. While solving the differential equations, when we print the value xj of the
solution x at the discrete time j (which happens every 5000 numerical time step, since the
time step to ensure stability and accuracy of the numerical scheme is quite small), we also
calculate the increment ∆xj = xj − xj−1 and we compare it to the previous increment
∆xj−1. If the increment is positive, we associate the value 1 to that discrete time in
a specific array, while if it is negative the value −1. In order to prevent considering
increments, both positive and negative, which are not real, but only due to numerical
approximations, we consider the increment to be real if |∆xj | ≥ xmaxj

c , where c is a
constant much greater than 1 (in our case c = 105) and xmaxj the last maximum of the
function found at the discrete time j.

It is important to note that the initial dynamics of the system is strongly affected by
the chosen initial conditions (while the dynamics for large evolution time, as we stated
earlier, is minimally affected), and anyway it requires a certain time to reach stability
(in our case, a stable periodic oscillatory regime). Therefore, it is necessary to exclude
a certain transient time at the beginning of the dynamics for each simulation. It is ob-
vious to exclude the interval [0, τ ], since this time will be strongly affected by the initial
conditions. Concerning the time needed to reach a stable regime, it cannot be precisely
quantified, since it depends of many parameters, but we can make a reasonable approxi-
mation of its timescale, saying it should be equal to the timescale of the simulation, given
by the inverses of the autoregulation parameters γi. Thus the cut-off time at the begin-
ning of the dynamics is calculated at every step of our algorithm (i.e. for each change
of parameters), and is chosen as the maximum between the time delay and the inverse
of the γi of the system, so in the case of our two-nodes system the cut-off interval is[
0,max

(
τ, 1

γ1
, 1
γ2

)]
. Since the terms 1

γi
are generally not so negligible, for our choices of

"realistic" values of γi, with respect to the duration of the simulation (T = 105 s), there is
no risk, in most cases, of including the transient dynamics in the symbolic analysis of the
extremal points. Actually, the risk is quite the opposite. To avoid missing the analysis of
a large part of the dynamics of the solution, a further condition could be imposed to the
cut-off time (for example, not to exceed half the total time duration of the simulation), or
we could extend suitably the time duration of the simulation, if the cut-off time happens
to be too long.

In the course of simulation we also save the time when the symbols change sign,
i.e. the time where maxima are present, so that we can compute compute the time be-
tween two neighbouring maxima (which, in case of stable periodic oscillations, would
be equal to the double of the period). This set of times could be used to calculate the
frequencies of the oscillations in line of principle, taking the average of the distribution,
or to distinguish between stable oscillations and other kinds of dynamics. In case of
stable oscillations, the distributions of times between two successive maxima will have
in fact a low standard deviation. In our successive data analysis, we used as a crite-
rion to distinguish the oscillatory regime from other kinds of dynamics the presence of
at least two maxima outside of the cut-off interval defined before. A further question
was to distinguish between stable oscillations, whose amplitude (i.e. the difference be-
tween a maximum and its successive minimum) remains stable with time, and damped
oscillations, whose amplitude goes to zero as time advances (thus the solution effec-
tively settles on a fixed point). For doing so we decided in the course of the dynamics
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of each simulation to compute the amplitudes between every maximum of the solution
and its successive minimum, and to discard those solutions where the amplitude de-
creased with time, more than a certain tolerance threshold (set in our case at 1%). This
guarantees that the oscillating solution is not damped.

1.4.3 Thermodynamic-like sampling of the space of parameters.

As stated above, our preliminary working hypothesis that the fraction of the space of
parameters corresponding to an oscillating behaviour is small, and thus a random sam-
pling of the oscillating regions is not expected to be efficient. This problem is analogous
to that of thermodynamic sampling, that is looking for the conformations of a complex
physical system which have such a low energy to be statistically relevant according to
Boltzmann distribution (where the density of states ρ of the system is distributed, in
function of the energy E of the system, as ρ(E) ∼ e−

E
kbT , kb being the Boltzmann con-

stant and T the absolute temperature). In the thermodynamic problem, a purely random
sampling is inefficient because the density of states is a non-decreasing function of en-
ergy, and consequently a random sampling would visit mainly high-energy states which
are irrelevant according to Boltzmann statistics.

To solve this problem, Monte Carlo methods have been introduced (41), which gener-
ate a Markov chain that samples the space according to the very probability distribution
one wants to recover, usually the Boltzmann distribution. In this way relevant states
are visited more often than poorly-relevant ones. In our case we are not interested in
sampling the states according to the Boltzmann distribution, but in selecting with more
probability the states corresponding to oscillating solutions, and thus our choice of the
function to be maximised is the number Ω of stable oscillations of the solution.

Our strategy consists in sampling the parameter space of the model making use of
a Markov chain much similar to that used by Monte Carlo methods. Given a set of
parameters π ≡ {s1, s2, α12, α21, k12, k21, γ1, γ2} we generated the solution trajectories,
as described in 1.4.1, and associated to it the quantity Ω, which counts how many steady
oscillations the trajectory displayed (calculated as described in 1.4.2, as the number of
maxima of x1(t) which assume, within a relative error of 1%, the same value of the first
relevant maximum).

To favour the sampling of the high-Ω regions of the space of parameters, we started
from a random set π chosen within the ranges defined in 1.4.1 and changed randomly the
parameters, multiplying them by 10r, where r is a random number such that−1 < r < 1
(uniformly distributed), with a probability of 0.8 ("small move"), or multiplying them
by 10r, where r is a random number such that −2 < r < 2, with a probability of 0.2
("big move"). In any case the parameters are moved globally, i.e. each of them is mul-
tiplied for a random number in the described ranges (not the same for each parameter,
of course). The possibilities of a single move (moving only one parameter in the set for
each Monte Carlo step) or of an addictive move (adding a random number, rather than
multiplying by one) have been considered but then rejected, because of the amplitude
of the phase space: the multiplicative change of the parameters allows the system to ex-
plore efficiently all the orders of magnitude in the space of parameters (i.e., effectively
exploring the logarithm of the rates).

In the case of αij , when the random move brings it above−10−12 or below 10−12, the
sign is changed: in this way the algorithm could sample continuously the two semi–regions
in which the αij are allowed to move.

After moving the parameters, solving the system and calculating Ω, the move was
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then accepted with a rate given by the Metropolis-like expression

w(π → π′) = min
[
1, exp

(Ω(π)− Ω(π′)
T

)]
(1.19)

Here the parameter T is analogous to the temperature in a standard Metropolis simu-
lation, and controls the bias towards high values of Ω (essentially, the higher the temper-
ature, the more the Metropolis algorithm resembles a random sampling). This procedure
is essentially equivalent to a Metropolis simulation controlled by the energy −Ω, where
the minus causes the algorithm to maximise Ω instead of minimising it, as usually done
with the energy.

Given Eq. (1.19), one can then use all the armoury of Monte Carlo algorithms to im-
prove the sampling of the space of parameters and to analyse the data. For example,
one can perform a parallel tempering sampling, in which different replica are sampled
simultaneously at different temperatures, to help the system to jump through discon-
nected regions of non-zero values of Ω (46). Actually, one can use all the advanced
sampling techniques which were developed for enhancing the exploration of molecu-
lar conformations, such as simulated tempering, umbrella sampling, metadynamics, etc.
(47).

Simulations of the kind described here were conducted for different choices of the
delay (τ = 500, 1000, 1500, 2000, 2500 s), using each time three temperature parameters
(T = 1, 2, 3), with each single Monte Carlo simulation running for 150000 steps. The
simulations are computationally quite demanding, and took approximately 6 months of
CPU time on an Intel i7 3.4Ghz processor.

In Fig. 1.3, in the upper panel, it is shown an example of an oscillating solution of the
system, found in a step of the Monte Carlo simulation, displaying a number of maxima
Ω = 54. It is evident from the picture the presence of a short transient time at the begin-
ning, after which the dynamics settles on a stable oscillatory regime. In the lower panel
we can see an example of a whole Monte Carlo sampling of the space of parameters,
where for each Monte Carlo step of the simulation is plotted the corresponding value of
Ω for the solution of the corresponding system.



How likely are oscillations in a genetic feedback loop with delay? 23

!"! #"!!$!
%

$"!!$!
#

$"#!$!
#

&'(

!

$!

)!

*!

%!

#!

+!

,!

�

! )!$!
%

%!$!
%

+!$!
%

-!$!
%

$!$!
#

./012

!"%

!"+

!"-

$

3
$
4.5

�!"#

Figure 1.3: (Upper panel) An example of oscillating solution x1(t) of the feedback loop, displaying
Ω = 54. (Lower panel) An example of Monte Carlo sampling of the space of parameters, where the
system first visits a region corresponding to stationary solutions (Ω ≤ 1) and later finds oscillating
solutions.

1.5 How likely are oscillations?

Once all the samplings reached convergence, to quantify the density of oscillating state
we employed a technique once again borrowed from the field of thermodynamic sam-
pling, the weighted-histogram method (48). We note in fact that we have, for each value
of the time delay τ , multiple Monte Carlo sampling of the function Ω (the correspond-
ing of the energy for thermodynamic sampling) over the phase space: these multiple



24 1.5 How likely are oscillations?

samplings are conducted with different biases (i.e. the temperature T of the Metropolis
algorithm) in order to make the sampling more efficient and provide more statistics for
the esteem. The Metropolis bias was introduced to make the sampling more effective
that a pure random sampling, and this bias in the sampling must be removed if we want
to calculate an estimation of the real fraction of oscillating volume. Thus a technique is
needed to provide an esteem of the fraction of oscillating volume that is independent on
the bias used and that uses all the data from the samplings conducted at different biases:
the weighted-histogram method provides exactly such a tool.

The fraction of the space of parameters associated with oscillations is the density

g(Ω) =
∫
d8π δ(Ω(π)− Ω), (1.20)

which is analogous to the density of states of thermodynamic systems. A multi-
ple–histogram algorithm extracts the density of states g(E) from the histograms of sam-
pled energy (the outputs of our simulations) (49).

From the histogramsNT (Ω) collected from the simulations at different temperatures,
one can obtain (maximising the likelihood) the most likely form of g(Ω) compatible with
them, which is the following (48)

g(Ω) =
∑
T NT (Ω)∑

T NT exp
(

Ω
T

)
/ZT

, (1.21)

where NT =
∑
T NT (Ω), and ZT is obtained solving the set of implicit equations

∑
Ω

∑
T ′ NT ′(Ω)∑

T ′ NT ′ exp
(

Ω
T ′ −

Ω
T

)
· ZT /ZT ′

= 1. (1.22)

In this way, the function g(Ω) is proportional to the volume of the parameter space
characterised by a given oscillation number Ω, independent on the bias used to make the
sampling efficient.

The functions g(Ω) resulting from the simulations for different delays are displayed
in Fig 1.4 in semi-logarithmic scale.

The points at Ω = 0 and 1 indicate sets of parameters not associated with oscilla-
tions. At all values of the delay τ , g(Ω) displays an overall decreasing trend, compatibly
with the idea that the stationary behaviour is the most common outcome, while oscil-
lations are somewhat disfavoured. However, the strongest decrease occurs at Ω . 10,
corresponding to a oscillation frequency of less that 10−4 s−1 , while the decrease is only
marginal at larger values of Ω. From the simulations it is difficult to assess if the wavy
behaviour at large Ω is a real physical effect or noise associated with the finite statistics.

The volume fraction of the space of parameters associated with oscillating solutions
of Eq. (1.17), defined by

f =
∑

Ω>1 g(Ω)∑
Ω≥0 g(Ω)

(1.23)

is displayed in Fig. 1.5 as a function of the delay τ . The volume fraction displays a
spike at small delays (τ = 500 s), reaching a fraction of f = 0.027, and then converges
to an almost constant value of f = 0.004. Perturbing the definition of f , for example
defining as oscillating also the solutions displaying Ω = 1 does not change the qualitative
behaviour of this plot, suggesting that it is quite robust.
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Figure 1.4: The density g(Ω) calculated for different values of the delay τ .

Once provided an esteem of the fraction f of the oscillating volume, what is left is to
investigate the effect of the 8 parameters of the model in inducing oscillations. In Fig.
1.6 the value of Ω sampled at the different values of the parameters of the rate equations
are plotted for the Monte Carlo simulation generated at τ = 500 s. The simulations
with the other delays are qualitatively similar (data shown in App. A, Figs. A.1 - A.5).
Since the system of rate equations is symmetric, we collected in the same plots the rates
corresponding to the two species.

It must be noted that what Fig. 1.6 only consider the dependence of Ω from the single
parameters separately, and so it is a very coarse analysis of the possible patterns in the
combination of the parameters that induce an oscillatory dynamics. However, some
useful information could anyway be drawn.

The dependence of oscillations on the mutual couplings αij (i = 1, 2) is bimodal,
displaying large values of Ω at small (in absolute value) negative and at large positive
values of αij (i = 1, 2). To further investigate this point, we plotted in Fig. 1.7 the
dependence of Ω on the product α12 · α21. Oscillations (Ω > 1) appears only if the
product is negative and small: in other words, the equations must describe a negative
feedback loop, in which one species activate the other, which, in turn, inhibits the former.
Moreover, in the inset of Fig. 1.7 it is shown the maximum value of Ω as a function of
the larger between α12 and α21. The curve is approximately straight, indicating that
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Figure 1.5: The fraction f of space of parameters associated with fluctuating trajectories, defined as
Ω > 1, as a function of the delay τ (circles). To test the robustness of the result, we perturbed the
definition of fluctuating trajectories, calculating the behaviour of f at Ω > 2 (squares) and Ω > 0
(diamonds).

to obtain oscillations with high frequency, the larger αij must be large and that such a
relation is linear.

As a function of the equilibrium constants kij , the oscillation parameter Ω is rather
variable, filling densely the scatter plot except for a region between 10−7 and 10−5 mol.
Although one cannot rule out that the lack of points in this region is due to a bad sam-
pling, the otherwise dense appearance of the plot, and the straight boundary between
the populated and non–populated region may suggest the this region of parameter space
is actually depleted of oscillating trajectories.

The scatter plot of Ω as a function of the degradation rates γi gathers all points with
Ω > 1 at γi > 10−1s−1. Note that the values of γi determine the time scale of the dy-
namics of x1(t) and, in absence of fixed ranges of variability of all the parameters, its
value would be irrelevant, setting the time units of all the rates. The accumulation of
the points with Ω > 1 at the higher border of γi indicates that if it were allowed to be
increased beyond this border, the system could find new oscillating regions by decreas-
ing the other rates; this would anyway results in rates assuming unrealistic values when
compared with the underlying molecular processes.
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Figure 1.6: The values of the number of oscillations Ω associated with the points of parameter
space sampled by the simulation carried out at τ = 500 s and T = 1 projected, respectively, onto
the parameters αij , kij , γi and si . To make the results more readable, αij is plotted in a linear
scale, while the other parameters in logarithmic scale. The density of points in each region of the
plots reflects the probability that the delay equations display a specific value of Ω for the value of
the parameters that define that region.

The dependence of Ω on the constant sources si is straightforward, the system dis-
playing oscillations only when both si are negligible. When this is not the case, the two
equations are essentially decoupled, and the process becomes approximately a birth-
death process, converging to a stationary solution.
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Figure 1.7: The values of Ω sampled by the simulation carried out at τ = 500 s and T = 1 as a
function of the product between the αij of the two species. In the inset, the maximum value of Ω
as a function of the larger between α12 and α21.

1.6 Discussion and conclusions.

Oscillations in the concentrations of proteins are a response of the cell to external stimuli
that has been observed in several cellular contexts (50; 51; 52). Even one of the simplest
system displaying oscillations, that is a two-node delayed feedback loop, can be diffi-
cult to study because one has little control over the numerical values of the parameters
which control the model. For most systems, only a qualitative accounting of the rela-
tion between genes is available (53), sometimes with the specification that the relation is
excitatory or inhibitory, but the associated numbers are unknown (54). When these are
available, they are often extracted from biochemical or model experiments, and not di-
rectly related to the in vivo situation. Consequently, one is compelled to study the model
by varying its parameters in a realistic, usually wide, range of values. However, this pro-
cedure is not straightforward even in the simple case of a two-node system, because this
is defined by eight numerical parameters, and their exhaustive scan is infeasible.

To face this problem, we have applied the sampling techniques and the analysis
strategies originally developed to study molecular systems in the canonical ensemble.
Analogously to the sampling of the space of parameters of out rate equations, molecular
systems typically display a very high dimensionality, often reaching 105−106 degrees of
freedom. This suggests that these techniques can be effective also to study larger regula-
tory networks, controlled by many more parameters. In the case of molecular systems,
sampling techniques build a Markov chain in conformational space to exploit energy
correlations and thus find the low-energy conformations, which are the most rare but at
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the same time the most significant according to Boltzmann distribution. Similarly, we
generated Markov chains in the space of the parameters of the delay equations, biasing
the search for highly-oscillating solutions through a temperature-like parameter. Once
we explored the available parameter space, using multiple temperatures to fasten the
exploration, we removed the bias to obtain the actual density of parameters associated
with oscillations at various frequencies.

The result is that oscillations occupy a small, but not negligible volume (fraction of∼
1%) of the entire parameter space, as is can be seen, for example, in Fig. 1.8. This fraction
is quite independent on the delay, and increases only at small delay values (cf. Fig.
1.5). Oscillations appear only for negative feedback loops, within a rather well-defined
range of the parameter which couples the two species, and only if their spontaneous
production rate is negligible. All these data point to a scenario in which evolution had
to search actively for oscillations. Although we already know that α12 and α21 must
have opposite sign for the system to display oscillations (16), we let the system explore
the whole parameter space to prove the generality of the approach and to constrain the
sampling as little as possible; the constrain on the sign of this parameter eventually
emerges as a result.

The projections of the oscillating regions of the space of parameters along the direc-
tion of the different rates are usually connected. Different seems to be the case along
the direction of the equilibrium constants kij , which displays a gap spanning more than
two orders of magnitude. This means that once evolution tunes the rates to produce
oscillations, it is quite easy to adjust them, for example, to change their frequency. On
the other hand, the model predicts an evolutionary barrier on the equilibrium constant
which defines the interaction properties between the two species.
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Figure 1.8: The values of Ω sampled as a function of α12 and k21 suggest that the oscillating region
is a small but not negligible part of the parameter space.



CHAPTER 2

Control of phenotypic switching in cancer cells

2.1 The cancer stem cell hypothesis.

Cancer is a group of about 200 known diseases involving abnormal cell growth with the
potential to invade and spread to other parts of the body: it is fundamentally a disease
associated with tissue growth regulation. The incidence of cancer and cancer types are
influenced by many factors such as age, gender, race, local environmental factors, diet,
and genetics (55). It is a leading cause of death worldwide: it accounted for 8.2 million
deaths (around 22% of all deaths not related to communicable diseases, according to the
World Health Organization (WHO) (56).

The commonly accepted model for carcinogenesis, as developed by Nowell and Vo-
gelstein (57; 58), is the so-called "stochastic model" of carcinogenesis. This model consid-
ers cancer as a purely genetic disorder, which develops by sequential accumulation of
mutations in oncogenes and tumour suppressor genes. In this view, cancer cells continue
to evolve by acquiring new mutations, thus leading to an heterogeneous population of
cells competing for resources in a highly dynamic process. Note that, in this model, any
cell may be the target of carcinogenesis.

Several other models for the formation of tumours have been proposed over the
years: in particular, the hypothesis that cancer might arise from a rare population of
cells with stem cell properties was proposed about 150 years ago (59; 60; 61), but it was
only recently, owing to advances in experimental tools and studies, that this hypothesis
has gained attention in the scientific community.

Stem cells are characterized by two specific features: the ability to differentiate into
all range of specialized cell types and the ability to renew themselves 1. According to this
analogy, therefore, properties of the supposed "cancer stem cells" (CSC) include unlim-
ited self-renewal, which drives tumorigenesis, and differentiation, albeit aberrant, into
"normal" cancer cells (CC), that contributes to cellular heterogeneity.

The first evidence for the existence of CSCs came from acute myeloid leukaemia
(62; 63), a tumour of the blood, in which a rare subset of cells, comprising 0.01–1% of
the total population, could induce leukaemia when transplanted into immunodeficient
mice. This first suggested, on the basis of experimental findings, that only a small sub-
set of the total tumour population has the capacity for self-renewal, and thus could ac-
tively drive tumour growth and recurrence. Thus initially, cancer stem cells could be
determined only operationally by their ability to seed new tumours in animal models,
and, for this reason, they have also been termed ”tumour-initiating cells” (64; 65). More

1There are two distinct types of mammalian stem cells: embryonic stem cells that are totipotent, e.g. having
the possibility to differentiate into all specialized tissues of the developing organism, and the adult stem cells,
which are multipotent, meaning the possibility to substitute specialized cells of the corresponding tissues, thus
maintaining the normal turnover of it.

31
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recently, for some cancer cell lines specific cancer stem cell biomarkers were reported,
which allow biochemical determination of this population and its further analysis (65).

Populations of cancer cells that match the described criteria for CSCs, that is, self-
renewal and the ability to give rise to a variety of differentiated cells, have since been
identified in a diversity of human malignant solid tumours (65). The first solid tumour
type from which a CSC population was isolated using cell surface markers was breast
cancer. In 2003, Al-Hajj et al. (66) showed that one hundred CD44+ CD24low/− ESA+

cells from breast carcinomas were able to grow a differentiated mammary carcinoma in
SCID mice. This is in contrast to the CD44− and CD24+ tumour cells that were not
able to grow a tumour even when 105 cells were injected. Currently, populations with
CSC characteristics have been identified in brain tumours, including medulloblastoma
and glioblastoma, head and neck squamous cell, colon, prostate, lung, pancreas, ovarian
and hepatic carcinoma (65). The CSCs in solid tumours are directly selected after dis-
sociation based on the expression of cell surface proteins frequently associated with a
primitive, non-mature cell type. These protein biomarkers can in some cases be associ-
ated with stem cells or progenitor cells in the specific tissue from which the cancer arose,
like CD133 in medulloblastomas (67) , while in other instances the marker protein used
to enrich the CSC population was not associated with the stem cells in the normal tissue
(69).

The picture that seems to emerge is that a small subpopulation of CSC have an unlim-
ited capacity to proliferate and gives birth by division to the population of differentiated
cancer cells (CC), which can divide for a certain number of generations and then die (see
ref. (63)). Thus, according to this "aberrant hierarchy theory" (70; 65), the dynamics of
tumour growth is driven ultimately by the tiny subpopulation of CSC, in analogy with
the dynamics of normal tissues. It is evident that his model represents a paradigm shift
in our thinking and has fundamental consequences for understanding the biology of car-
cinogenesis as well as important clinical implications for early detection, prevention, and
therapy of human malignancies (65). One of the most important clinical implications, ob-
tained in (68) by a simple ordinary differential equation model (considering normal and
abnormal stem and differentiated cell populations of the hematopoietic system), showed
that successful therapy must eradicate the CSCs, while any therapy that targets mature
CCs or partially induces differentiation of stem cells is unable to provide tumour control.
In this direction, the design of therapies that selectively target the subpopulation of CSC
in a tumour and are able to effectively stop the dynamics of the whole tumour without
the side effects provided by chemotherapy would be a major achievement.

Despite recent experiments in vivo have confirmed the presence of an aggressive
CSC-like subpopulation in benign and malignant tumours 2 (71; 72; 73)), and despite
cancer stem cell research has provided us with important new insights for future onco-
logical research, definitive proof of the CSC model is still lacking in most malignancies
(65; 74). In particular, there is lack on consensus even about the proportion of CSC in
the whole mass of the tumour. In many cases it has been assumed that CSCs necessar-
ily constitute only a small minority of the cells in a cancer, at most few percents of the
total (76; 69; 75). However, more recent work on melanomas (77) has shown that, while
earlier techniques could identify only one in 8.37 · 105 cells in a melanoma as being can-
cer stem cells,newer assays suggested that as many as one in four cells from melanomas
could form tumours in more stringently immuno-deprived mice and observed over a
longer period of time. Previous studies on mouse leukaemias have also shown that at

2Experiments confirming the presence of CSC in vivo are of particular importance, since animal tumour
xenografts in which CSCs were first identified miss the physiological environment in which the tumour grows.
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least some malignancies may be maintained by more than 10% of the cells in a tumour
(78). In (79) it is shown that the proportion of cancer stem cells that can be identified in
colorectal cancer derived cell lines can vary quite widely, from perhaps 20% of the total
to virtually all cells. It is therefore possible that the theory is faulted, or that different
individual cancers may contain widely differing proportions of CSCs.

About this, it has been shown recently (80), through computational models, corrob-
orated by in vitro studies, that tumours modelled in a CSC context more faithfully re-
semble human malignancies and show invasive behaviour, whereas tumours without a
CSC hierarchy do not. The same model also predicts that CSC paradigm allows for sig-
nificantly higher tumour heterogeneity, which may affect therapy resistance to the point
that therapy which fails to target the CSC population is not only unsuccessful in cur-
ing the patient, but also promotes malignant features in the recurring tumour. Another
mathematical model, presented in (75), and supported by experimental evidence, argues
that CSCs may comprise any possible proportion of the tumour, and that the higher the
proportion the more aggressive the tumour is likely to be.

It is evident from the examples reported that, at our present level of knowledge, the
question of whether most tumours present a hierarchical organization in their cellular
population, as that described by the theory of the cancer stem cells and their "aberrant
hierarchy", is a complex one. While it is obvious that the subdivision in compartments of
the cells of the tumours is necessarily schematic (for example, phenotypic heterogeneity
within CSC subpopulations is likely to exist (81)), we may ask whether the hierarchical
model with the CSC subpopulation is too simple and some important biological mecha-
nism (at the macroscopic, cellular level) is missed out in this picture. In the next section
we shall report some recent important experimental results which can suggest a new
way to integrate the CSC model; before doing so, in the next subsection we collect the
essential known facts about cellular kinetics in the CSC model, which shall be our stan-
dard reference throughout our work.

2.1.1 Cellular kinetics in the CSC hypothesis and related computational models.

According to the model of the aberrant hierarchy with a CSC subpopulation, the total
cell population of a tumour can be divided in two compartment: cancer stem cells (CSC),
a subpopulation of cells with an unlimited capacity of self-renewal and also able to dif-
ferentiate by division, and the population of "normal" differentiated cancer cells (CC),
which are produced by CSC as they differentiate and have a limited capacity of division,
just like normal cell in the body. We could also consider the compartment of dead, or
quiescent cells (DC), which is the state that CC reach after exhaust their proliferative
potential, having undergone the maximum number of available cell divisions.

The different kinds of cells in the tumour undergo different biological processes. CSC
cells can undergo symmetric division ((82; 83; 84)), whereby one CSC originates two CSCs

CSC → CSC + CSC. (2.1)
CSC can also undergo symmetric division producing two CCs (85; 86) (which is a

process of cell differentiation)

CSC → CC + CC. (2.2)
Alternatively, CSC can undergo asymmetric division (118; 87), producing one CSC and

one CC

CSC → CSC + CC. (2.3)
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This is done in analogy with normal stem cells, which generally undergo asymmetric
division in order to preserve their numbers constant, and thus maintain general tissue
homeostasis. However, cancer stem cells are generally believed to undergo asymmetric
divisions with relatively slow rates (88).

Concerning CCs, they can undergo symmetric division (90), giving birth to two CCs

CC → CC + CC. (2.4)

This cannot be done for a virtually unlimited number of times, as in the case of CSC,
but only for a limited number of times. CC are subjected to senescence as they divide
(89), and after they reach the maximum number of divisions, cells go quiescent, losing
their proliferative potential, and die

CC → DC. (2.5)

In Fig. 2.1 we summarize the whole theory of the aberrant hierarchy with CSC, col-
lecting the different kinds of cells and the processes they can undergo

Cancer Stem Cells  (CSC)

Normal cancer cells (CC)

Dead cancer cells (DC)

Death of N cells

Asymmetric division Symmetric division

Figure 2.1: The theory of the aberrant hierarchy with CSC: cells and processes.
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One factor responsible for establishing the CSC fraction within a tumour is the rel-
ative frequency with which CSCs either create another CSC (by symmetric division) or
a non-CSCs (by asymmetric division) (91) (92). Mechanisms known to directly affect
the symmetric division probability, in turn, include availability of certain host growth
factors such as EGF, and growth-factor-rich niches, which can skew division modes in
favour of symmetric production of CSC up to 85% (93).

The quantification of the fraction of CSC in a tumour is a matter hotly debated (75;
81). In fact, the biology of CSCs has not been fully elucidated and many questions still
remain unresolved, most of which related to the dynamics of tumour growth (94; 81).
However, both experimental and computational modelling results give strong evidence
to the following facts, that we shall take as working hypotheses in the rest of our work:

• CSCs are generally a small subpopulation within tumours. The fraction of CSC in
a tumour can go, according to the most realistic estimates, from fractions of percent
to about 5%. In addition to identification of CSCs through surface proteins in vitro
and in vivo mouse xenograft transplantation assays, novel approaches emerge that
trace tumour hierarchy and help estimate CSC kinetics and frequency in tumours.
One approach is to monitor the division kinetics of stem and progenitor cells in
normal epithelial tissues, skin papilloma, and invasive squamous cell carcinoma
during unperturbed growth emerged from clonal analysis using genetic lineage
tracing in mice (91; 81). In (95) an integrated experimental and cellular Potts model
approach to simulate glioblastoma population growth and response to irradiation,
which identified the (a)symmetric division kinetics of glioblastoma stem cells nec-
essary to reproduce the observed ratio of 2-3% of such cells. Another integrated ap-
proach (96) of single-molecule genomic data, spatial agent-based modelling, and
statistical inference was recently introduced to derive tumour ancestral trees in
patient-specific colorectal cancer samples that lead to the observation of a CSC
fraction of 0.5-4%;

• the percentage of cancer stem cell population is maintained at the same level dur-
ing several years of passages, as results from works on several cancer cell lines
(88). Another important observation is that when a cancer stem cell population is
isolated, purified and maintained in culture, the percentage of stem cells rapidly
decreased and finally stabilized at the initial level, characteristic for this given cell
culture (88). Thus there seems to be a homeostatic control mechanicsm that aims at
keeping the percentage of CSC constant in the tissue. One of the hypotheses about
the nature of this tissue regulation mechanism involves the existence of ”instruc-
tive signals” for cell-cell communication, in the form of an underlying field, that is
a diffusive molecular species (88).

Our last observations are about the translation of information about the hierarchical
model as summarized in Fig. 2.1 into mathematical and computational models which
have proved extremely useful in testing hypotheses about cellular kinetics and investi-
gating the dynamics of tumour growth. Rate equations models, as systems of ordinary
differential equations, are particularly suited to simulate compartment models like our
hierarchical model, which simplify the cell heterogeneity found in cancer considering
only few specific cell subpopulations. In this models, events related to CSC self-renewal,
to differentiation of CSCs into CC cells, to ageing of CC cells, and to death of all cell
subtypes, are represented as "chemical reactions" and are mediated by specific rate con-
stants. These reactions occur in a system that has no nutrient or spatial limitations,
typically during the phase of exponential tumour growth. Such kind of models have
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been employed for investigating how different values of the proliferation rates of dif-
ferent cells affect the steady-state fraction of CSC in the tumour (82), the role of various
feedbacks and control mechanisms in the general dynamics of cell populations (97), the
effects of the combination of different therapies in the evolution of a tumour (98), and
the estimation of cell proliferation potential (99). When it is necessary to incorporate the
inherent stochasticity of biological phenomena, especially in the case of small numbers
of cells, deterministic models such as the rate equation fail, and stochastic models are
needed, for example in the mathematical form of master equations or computationally
as stochastic simulations with the Gillespie algorithm (94). Simulation at a further level
of complexity, which include the role of the spatial dimension, can be performed with the
introduction of agent-based cellular automaton models, where single cells are considered to
be individual objects whose behaviour is determined by a fixed set of basic intrinsic cell
kinetics and their local environment. Cell are located in some point of the space, which
in many cases is a discrete regular lattice, bidimensional or tridimensional. At each dis-
crete simulation time point, the cell behaviour for all cells is updated and, over time,
complex population dynamics emerge. This approach is particularly useful for studying
carcinogenesis, natural selection, genetic instability and interactions of individual cells
with each other and the microenvironment, and its limitations in describing very large
systems can be overcome by carefully designing hybrid continuous-discrete and multi-
scale model (100), (101). Agent based model have been employed, for example, to study
tissue homeostasis in the context of CSC (100), to investigate tumour morphology at the
variation of the fraction of CSC (80), the paradoxical dependencies of tumour dormancy
and progression on cellular proliferation and death rates (102), and the role of spatial
distribution of stem cells in determining tumour response to radiotherapy (103).
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2.2 Phenotypic switching in the CSC context: theory and experiments.

We have seen in the previous section that the variations in the observed fractions of
CSC in tumours pose some challenge to the CSC hypothesis. One possibility is that
the model, as described in 2.1.1 is incomplete, and that some key cellular mechanism
is missing, and that the population dynamics of CSCs is more complex than the strict
hierarchy originally proposed.

In particular, some recent experimental findings points in the direction that CC can
revert to a stem-cell-like state even in the absence of mutations, undergoing a process
what has been called phenotypic switching. The first experimental evidence of transition
from CC to CSC state has been observed in human breast cancer cell lines (104): in this
work it has been shown that subpopulations of cells purified for a given phenotypic state
(i.e. sorted and collected with proportions of the different subpopulations different from
the equilibrium ones) return towards equilibrium proportions over time, and this could
be explained by a simple Markov model in which cells transition stochastically between
states. From this model it can be inferred that, given certain conditions, any subpopula-
tion of cells will return to equilibrium phenotypic proportions over time (in accordance
with the working hypothesis of the previous section) and, crucially, that breast cancer
stem-like cells arise de novo from non-stem-like cells. Similarly, in melanoma a small
population of CSC-like JARID1B positive cells has been shown to be dynamically regu-
lated in a way that differs from the standard hierarchical CSC model (105), in accordance
with earlier findings ((106; 106)).

The biological factors regulating the process of dedifferentiation of non-CSCs into
CSCs are still unclear: phenotypic switching may arise due to stochastically acquired
genetic or epigenetic changes in genes governing the CSC state (107): for instance, it
has been found that overexpression of BMI1 (polycomb ring finger oncogene) in trans-
formed epithelial cells can promote their conversion into a CSC-like state with increas-
ing tumorigenicity and metastatic potential (108). Microenvironmental factors, such as
TGFβ, are also found to enhance the rate of switching from non-CSC cells to the CSC
state (109). This is in accordance with results showing that ABCG2 negative cells iso-
lated from human melanoma biopsies re-express this marker after a few generations in
vitro (110; 71).

Despite increasing experimental evidence supports the hypothesis of switching from
CC to CSC (71), the question is still debated, and some papers do not support this hy-
pothesis: for example, in (111) it is shown that in melanoma, ABCB5- cells are not able to
generate ABCB51 cells, while in (112) CD341Cd271/Ngfr/p75- cells formed tumours
CD271- restricted, whereas CD34CD271/Ngfr/p75- cells formed tumours containing
both CD2711 and CD271- cells 3. The identification of cancer stem cells in vivo and
in vitro still relies mainly on detecting specific surface markers, characteristic for the
subpopulation of cells, and thus the hypothesis of phenotypic switching mainly orig-
inated from experiments reporting that sorted cancer cell populations after some time
tend to express again all the original markers (like in (104)): mathematical modelling for
cancer cell proliferation has been employed (113) to test with statistical significance if
the reappearance of original marker could be explained only by phenotypic switching,
or alternatively also by imperfect markers and error in the sorting process of cellular
populations. The conclusion was that the observation of reversible expression of sur-
face markers after sorting does not provide sufficient evidence in support of phenotypic
switching.

3the strings of letters are the name of the marker for CSCs, and the sign − indicates that they are not
expressing the markers, i.e. that they are negative cells.
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Advances in proving or disproving the phenotypic switching hypothesis could be
of decisive importance for laying the aberrant hierarchy theory on more solid ground
(with a possible modification to account for a certain degree of plasticity between the
non-CSC and CSC compartments, as shown in Fig. 2.2), and even more so for its clini-
cal implications, in the planning of appropriate and efficacious treatment strategies. In
fact, under the hypothesis of phenotypic switching, therapies that target primarily CSCs
may ultimately be unsuccessful if non-CSCs are able to dedifferentiate into a CSC state.
That would make the CSC population extremely difficult to eradicate completely (even
not considering the fact that, as several recent studies have indicated, that CSCs are resis-
tant to many of the standard therapeutic regimes, including chemotherapy and radiation
therapy (114; 107)). Hence, it is of critical importance to develop a deeper understanding
of the plasticity and heterogeneity of cancer cells to overcome these therapeutic limita-
tions, and for this the combination of appropriate mathematical models and sufficient
experimental data could be decisive. It is for this purpose that in the next subsection
we illustrate a particularly meaningful series of experimental results, performed by La
Porta’s group in the Department of Biosciences at the University of Milan, which provide
crucial new information about phenotypic switching and shall be the main reference of
our subsequent work.

2.2.1 Overshoot of CSCs in sorted cancer cells: experiments and models.

In (71) further evidence is provided about the existence of phenotypic switching in a
population of human melanoma cells cultivated in vitro and, most interestingly, it is
shown that the transition from the CC state to the CSC state in melanoma cells is reg-
ulated by an internal underdamped homeostatic mechanism controlling the fractional
population, not dependent on external microenvironment.

In the experiments, human melanoma cells (a minimum of 5 · 105 cells for each ex-
periment) are sorted using three distinct cancer stem cell (CSC) markers (CXCR6, CD271
and ABCG2); cells are then collected and plated in a culture medium, in such a way that
the percentage of cells positive to the CSC markers is very tiny, generally inferior to 1%
of the total number of cells (in any case inferior to the homeostatic fraction of CSC for
that specific kind of cancer). Then cells are let grow and cell populations dynamics for
longer times than earlier studies (such as (104)), because the experimenters recognized
that negative cells may require time to revert their phenotype (71). What is observed
in the following days is that, if the initial percentage of CSCs is below a certain thresh-
old (about the 1% mentioned before), the population of negative cells switch en mass
substantially overshooting the fraction seen in unsorted cells. The maximum in the per-
centage of CSC is reached in the course of 6-10 days, and then the fraction of CSC slowly
returns to the level of unsorted cells. This clearly indicates that the CSC population is
homeostatically regulated. in Fig. 2.3

The initial concentration of sorted CSC cells (on the total population) is in percent-
age ranging from 0.2% to 1%, while it is usually ranging from one to few percents for
unsorted cells (i.e. in physiological conditions in tissue). We see that the percentage of
CSC can reach very high values (up to 25% of the total), which would be very difficult
to explain without the hypothesis of phenotypic switching; we see also a peculiar de-
pendence of the height of the peak on the initial concentration of CSC: the lower the
initial percentage of positive cells, the higher the maximum peak observed during the
dynamics.

During the experiments, the percentage of CSC cells is obtained, as mentioned be-
fore, measuring the expression levels of three biomarkers (CXCR615, ABCG212, and
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Cancer Stem Cells  (CSC)

Normal cancer cells (CC)

Dead cancer cells  (DC)

Death of N cells Phenotypic switching

Asymmetric division Symmetric division

Figure 2.2: The theory of the aberrant hierarchy with CSC with the inclusion of the phenotypic
switching hypothesis: cells and processes.

CD27110). For all three markers, positive cells are known to give rise to a bigger tumour
in immunodeficient mice than the negative ones (the small tumour obtained with the
negative population could be due to the use of an imperfect marker, to sorting errors or
to phenotypic switching). Cells that are negative for CXCR6, ABCG2 or CD271 mark-
ers are sorted by flow cytometry, mixed with the negative ones in a fixed percentage
ranging from 0.2% to 1% (see Fig. 2.3) and then plated and grown under standard con-
ditions. Considering that the positive cells represent only a very small fraction of the
entire population, the possible error due to sorting is extremely low. Cells are then col-
lected 3, 10 and 20 days after sorting and analysed for each marker by flow cytometry or
immunofluorescence (for the complete set of results, see (71)). In all cases, the marker-
negative cells re-express their marker in a time-dependent manner. In particular, the
marker-positive population overshoots its initial level at 10 days post-sorting and then
returns to the steady-state level at 20 days. With a procedure of remixing cells sorted us-
ing the level of expression of one biomarker and analysed the levels of expression of one
of the other biomarkers during the growth of the tumoral mass, the authors prove that
there is a strong overlap between the populations of cell positive to each biomarker, and
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Figure 2.3: The percentage of positive cells obtained in the different experimental conditions (i.e.
with different initial CSC concentration), taken from (71).

thus that the overshoot is independent of the particular marker chosen to characterize
and sort CSCs. Indeed, the overshoot is observed for each biomarker.

The results of the experiments (the overshoot and the lack of significant mutations)
seems to indicate quite clearly that the fraction of CSCs in cancer tissue is subject to a
control mechanism of homeostatic regulation, aimed at maintaining the level of CSC at
about 1% of the total cancer cell population, and that switching is not a statistically ran-
dom event, but is regulated by the CSC population. What is missing is the exact nature
of this biological control mechanism. Concerning this, the authors of (71) focus on the
role of miRNA expressed by melanoma cells. miRNAs influence most fundamental bi-
ological processes by ultimately altering the expression levels of proteins either through
interference with mRNA translation or by reducing the stability of the mRNA in the cy-
toplasm, and human melanoma cells express many miRNAs. The authors identified all
the miRNAs that were significantly altered with respect to the unsorted condition in the
subsequent cellular dynamics of the experiments and, using bioinformatics tools and the
Diana-MirPath biological database, were able to identify the signalling pathways (Wnt
and PI3K-AkT) most likely to be targeted by the miRNAs. The same miRNAs control
network also regulates factors related to the epithelial–mesenchymal transition (EMT), a
profound event for large-scale cell movement during morphogenesis at the time of em-
bryonic development, which, because a similar process has been observed at the invasive
front of metastatic cancer, is considered to be a hallmark of neoplastic transformation
and seems to be related to CSC switching (71).

The action of the miRNAs regulatory network, as described in (71), on biological
processes related to the control of CSC switching is very complex and not understood in
detail. To understand the observed CSC population dynamics in which the CSC-like cell
population overshoots after sorting, the authors propose a simple mathematical model
for the dynamics of hierarchical cell populations with CSCs, cancer cells and senescent
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cells. Previous models for phenotypic switching, consisting in the introduction of a
small probability for cancer cells to switch back to the CSC state (104; 113), predicted
that the CSC population would reapproach its steady-state concentration after sorting,
but monotonically, without an overshoot. In the model proposed in (71), the switching
probability is assumed to be usually zero, but increases drastically after the activation
of a miRNA network which responds to the lack of CSCs in the population. The switch
probability is thus dependent on the expression level of a set of relevant miRNAs which
is in turn controlled by the population of CSCs.

Here we provide a brief description of the model, written in terms of rate equations.
Let’s indicate with S the number of CSC, C the number of CC, D the number of senes-
cent cells. CSC duplicates symmetrically into two CSC with probability p2 or into two
cancer cells with probability p0, or asymmetrically into one CSC and one cancer cell with
probability p1, so that p0 +p1 +p2 = 1. Cancer cells can switch to CSCs with a probability
p(µ) depending on the concentration of relevant miRNAs µ, or duplicate and give rise
to two non-duplicating cancer cells with probability 1 − p. Defining ε = p2 − p0 and
fixing for simplicity the rates of duplication and switching equal to Rd for all the cells,
the model assumes the following form

dS

dt
= Rd(εS + p(µ))(C +D) (2.6)

dC

dt
= Rd(1− ε)S −RdC(1− p(µ)) (2.7)

dD

dt
= Rd(2C − p(µ)D). (2.8)

In the model the switching probability is not constant but is controlled by the level of
relevant miRNAs, which responds to the depletion of the CSC population, as observed
experimentally. The authors assume that the miRNAs regulating phenotypic switching
are produced with a rate that rapidly vanishes when the fraction of CSCs fS = S

S+C+D
is sufficiently large, and decay with a constant rate γ, which can be modelled as follows

dµ

dt
= β exp

(
−fS
s0

)
− γµ. (2.9)

The authors suppose switching probability is activated when the level of miRNA
is above a threshold µ0. The probability of switching is then modelled with a smooth
sigmoid function

p(µ) = 1 + tanh
(µ− µ0

σ

)
. (2.10)

According to this model the switching probability is usually zero but increases dras-
tically after the activation of a miRNA network which responds to the lack of CSCs in the
population. This is an intuitive explanation for the presence of the overshoot in the evo-
lution of fS : when the CSC population is depleted, the miRNA expression level shoots
up, triggering a large switching probability, which in turn induces an overshoot in the
fraction of CSCs in the population that then falls back to the steady state level as the
level of miRNAs decreases. As can be seen from the output of numerical simulations
of the model (71) (performed choosing realistic parameters for (2.8)), the amplitude of
the overshoot whose decreases as the initial fraction of CSCs increases, in qualitative
accordance with results reported in Fig. 2.3.
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There are well-grounded reasons to be dissatisfied with the model presented in (71)
and summarized in Eqs. (2.8) – (2.10): in particular, it does not give a clear picture of
the molecular mechanism which regulates the switching of cancer cells; in particular, it
is not clear how the exponential function in the equation (2.9) can be justified, nor what
kind of molecular regulation processes (even at a coarse-grained level) are needed to
regulate in such a way the production rate of molecule µ.

Having acknowledged the said shortcomings of the presently available model, in the
next section we shall build an alternative mathematical model for the overshoot dynam-
ics of cancer cells as observed in the experiments. This model will rely on the hypothesis
(specular to that of the previous model) that in the culture medium of the grown tumor
mass a molecular species (probably a miRNA) is present that acts as an inhibitor o the
process of phenotypic switching. As we shall see in the next section, one of the key
assumption we make is that such molecule is a product of the CSCs themselves: it is
therefore part of a system of homeostatic control by which CSCs autoregulate their own
fraction (on the total number of cells) in the whole cancer tissue. This hypothesis can be
easily subjected to an experimental test: the procedures of the experiments reported in
(71) should substantially be repeated, but plating only negative cells in two different cul-
ture media, one of which is the neutral, standard one, also employed in the first series of
experiments. The second culture medium employed in this kind of experiments should
be the one resulting from the growth of a mass of the same kinds of melanoma cells for
several days in experiments like those in the previous series (71), and so, according to
our working hypothesis, repleted with the molecular species expressed by cancer cells
during their growth. If our proposed control mechanism is correct, after some days the
experimenters would observe a massive re-expression of biomarkers for positive cells,
due to phenotypic switching, in both media, but in the case of the non-neutral initial
medium this effect should be delayed, retarded with respect to the case of the neutral
initial medium.
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2.3 A rate equations model with delay for phenotypic switching.

In this section we describe an alternative model of the control mechanism phenotypic
switching that is simple, can be easily interpreted in terms of molecular interactions
and can reproduce the experimental data. At variance with other models, we suggest
that phenotypic switching is a spontaneous tendency of all cancer cells, and that, under
standard conditions of tumour growth, switching is inhibited by a specific (and so far
unknown) molecular species produced by CSC. If CSC are sorted out, the environment
experiences a depletion of this molecular species and its inhibition effect is abolished,
promoting phenotypic switching and allowing CSC to reach their steady fraction.

Other ingredients that characterize the model are that CSCs are capable of unlimited
proliferation and can undergo different kinds of cellular division, into two CSCs, into
two normal, non–stem cancer cells (CC), or into one CSC and one CC: these are the
biological processes of the classical theory of CSC aberrant hierarchy, as described in
Fig. 2.1. On the other hand, CC can only divide into two CCs for a limited number g
of generations, after which they become senescent and die; we note that the process of
senescence of tumours cells is well documented, and has been investigated even in the
context of the CSC hierarchy (89). Thus we do not have just one compartment of CC,
like in 2.1, but g compartments of CC, one for each generation of CC. Cells of generation
g cannot divide anymore and die at a constant rate (see Fig. 2.5).

We also assume that CC can switch stochastically to CSC at constant rate (in absence
of inhibition), regardless of their age, while dead cells cannot switch anymore. More-
over, CSC produce a molecular species that inhibits switching according to a Michaelis–
Menten molecular mechanism.

A further ingredient that allowed us to improve the agreement with the experimental
data is the introduction of a delay in the action of CCs, that account for the time needed
for cellular replication and switch, and have the effect of avoiding an immediate over-
shoot of CSC, that would not agree with what observed (see below). We shall further
discuss later the role and implications of time delay in switching.

Under well-mixed microenvironment hypothesis, and considering we are dealing
with a number of cells of the order of 106, so that we can neglect (at least for the time be-
ing) fluctuations in space, the model can be expressed by a system of delay rate equations
in the concentration S of CSC, the number Nj of CC of generation j (with 0 ≤ j ≤ g) and
the number m of the inhibiting species. The overall mechanism, with the complete reac-
tion networks, is sketched in Fig. 2.5 and its dynamics can be described by the system of
equations (2.11)



ṁ = kmpS − kmm
Ṡ = (k2S − k2N )S + σ

∑g−1
i=0 Ni(t− τ)

(
1− mh(t−τ)

Kh+mh(t−τ)

)
Ṅ0 = (2k2N + k1N1S)S − kdN0 − σ

(
1− mh(t−τ)

Kh+mh(t−τ)

)
N0(t− τ)

· · ·
Ṅi = 2kdNi−1 − kdNi − σ

(
1− mh(t−τ)

Kh+mh(t−τ)

)
Ni(t− τ)

Ṅi+1 = 2kdNi − kdNi+1 − σ
(

1− mh(t−τ)
Kh+mh(t−τ)

)
Ni+1(t− τ)

· · ·
Ṅg = 2kdNg−1 − 2kdfinNg

(2.11)

Table 2.1 show the list of all the coefficient expressing the temporal rates of the cellu-
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lar and molecular processes included in our model and the other parameters needed to
describe our system.

Coefficient Cellular/molecular process
kmp rate of production of signal molecule

concentration m by CSC
km rate of decay of signal molecules concentration m
σ rate of switching of CC cells

k2S rate of symmetric division
of CSC cells into 2 CSC cells

k2N rate of symmetric division
of CSC cells into 2 CC cells

k1N1S rate of asymmetric division of CSC cells
into 1 CC cell and 1 CSC cell;

kd rate of symmetric division of CC cells
into 2 CC cells

kdfin death rate of senescent (last generation) CC cells
K threshold of Hill’s inhibition function
h exponent of Hill’s inhibition function
g number of generations to senescence of CC cells

Table 2.1: Parameters of the model and corresponding molecular/cellular processes.

Figure 2.4: Ageing of normal cancer cells (CCs): a CC of generation Ni ages undergoing division,
producing two CCs of generation Ni + 1 (left). After a maximum number g of cellular divisions,
CCs get senescent (dead CCs) and cannot divide (or switch) anymore (centre). Dead CCs are
cleared at a certain rate (right).

We note that the Michaelis–Menten molecular mechanism of switching inhibition
results in the functional form of a Hill’s function (with Hill’s coefficient h and threshold
K) that models the level of inhibition depending on the number m of the inhibiting
species. The other terms are simply derived from the law of mass action.

Of course the quantity resulting from the solution of (2.11) which is of greatest inter-
est and that can be compared with experiments is the fraction c = S

S+N of CSC over the
total number of cells, with N =

∑g
i=0Ni. being the total number of CC.

The rate equations are to be solved numerically using a custom made C code. The nu-
merical method used to solve the system of differential equations is a variable-coefficient
linear multistep Adams method in Nordsieck form (from the GNU Scientific Library),
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Figure 2.5: Reaction network for the mean–field model, involving cancer stem cells (S), normal
cancer cells (Nj) and inhibitor molecule m.

which employs a variable time-step. In order to solve the system (2.11), one has to de-
fine the numerical values of the parameters which appear in it (see the next subsection)
and a set of initial conditions compatible with the experimental settings reported in (71).
Initial populations of CC is typically N0 ∼ 106,while the initial fraction of sorted CSC
cells ranges from 0.001 (0.1%) to 0.01 (1%) of the total number of cells. We thus take
N0 = N(0) = 106 and S0 = S(0) = f0 · N0, with f0 ranging from 0.001 (0.1%) to 0.01
(1%). Since our system (2.11) is made up of delay ordinary differential equations, ini-
tial conditions have to be defined in the whole interval [−τ, 0]. It is natural to choose
S(t) = 0, N(t) = 0 and m(t) = 0 for t ∈ [−τ, 0), since cancer cells are plated at time
t = 0; we assume that mt = 0 or t ∈ [−τ, 0), since it is evident that the technique of flow
cytometry to sort cells in a fluid flow should be quite efficient at removing most traces
of the previous environment and selecting the cells to be plated apart only (see (71) for a
description of the technique employed). Even if there is strong evidence that during the
sorting procedure the inhibitor molecule is mostly washed out, a small amount of m(0)
left does not change qualitatively the results; cf. Fig. D.2 in Appendix D .

Finally, we initially assume for simplicity that CC cells at time t = 0 are distributed
equally among the g generations. Another possibility, is that CC cells at time t = 0 are
distributed reflecting the steady-state distribution among generations associated with
our model. This alternative possibility is discussed with more details in Appendix B.
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2.3.1 Overshoot in the mean–field model.

As we have extensively discussed in Chap. 1, the main problem with models of com-
plex biological networks is that the number of independent parameters increases rapidly
(super-linearly) with the number of nodes of the networks. Making things worse, given
the complexity of biological systems, it is extremely difficult to have reliable and precise
measures of quantitative parameters such as the rates of biological processes: in fact we
have accurate numerical parameters only of an handful of well-know system, while for
most of the others only esteems of their orders of magnitude. Thus to infer meaning-
ful information about the dynamics of systems from models like (2.11) one has to make
some hypothesis about the values of the parameters appearing in them or at least define
the most stringent constraints on their range of variations which is compatible with ex-
perimental results. Only few of the numerical values that define Eq. (2.11) are known, at
least as order of magnitude. The division rate of melanoma cells is known from literature
to be 0.5-0.6/day (71).

As for the constraints to be imposed on the parameters, since we assume phenotypic
switching is naturally always active, it must be σ > 0. Beside this, an important experi-
mental fact that the model should reproduce is that, describing tumoral cells, their total
number S +N must be an increasing and unbounded function of time. A necessary and
sufficient condition for this is that (see Appendix C)

ε ≡ k2S − k2N ≥ 0 (2.12)

As is explained in Appendix C, the parameter ε is of particular importance, since
it is the main driver of the long-term dynamics of the system. If ε > 0 s and N grow
exponentially-like in time, thus reproducing the uncontrolled cellular growth of cancer
tissues. Incidentally, one can argue that the opposite case, that of ε < 0, can describe the
case of a benign tumour, that does not grow indefinitely invading neighbouring tissues.
This case is discussed in Appendix C.

The parameters relative to the processes of cellular division should be chosen so that
they satisfy the order of magnitude relative to experimental data about cellular division
(see (71) (88)) and to reproduce the experimental values of the steady-state concentration
of CSC cstaz (which according to (71) are of the order of at most few percent, the same
as in homeostatic conditions within the tumour). From the mathematical analysis of the
system (2.11), it follows that while both S and N , in the case ε > 0, grows exponentially-
like, the concentration of CSC c = S

S+N always reaches a constant steady state, for which
we can provide a closed-form expression in function of some of the parameters of (2.11)
(see App. B and App. C).

At the conclusion of this process of estimation, a set of numerical parameters was
chosen so that the parameters reflected the constraints provided by biology (known nu-
merical values or orders of magnitude) and were able to provide the best fit with experi-
mental results (height and timing of the peak of CSC concentration, steady-state value of
CSC concentration) when simulating the model (2.11). The set of parameters associated
with an overshoot which is most similar to the experimental data is given in Table 2.2.

The dynamics of the fraction c = S
S+N of CSC in time, obtained solving numerically

the system (2.11) with the previously defined initial conditions and the parameters in
Table 2.2, are shown in Fig. 2.6, for different values of the initial concentration c0.

In Fig. 2.7 are reported the fraction of CSC at 2 and 6 days (red bars), in function of
the initial concentration c(0), as observed in the experiments (71), while the continuous
lines represents the values of the concentration at the same time obtained solving the
system (2.11).
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Coefficient value Cellular/molecular process
kmp 300.0 day−1 rate of production of signal molecule concentration m by CSC
km 4.0 day−1 rate of decay of signal molecules concentration m
σ 0.22 day−1 rate of switching of CC cells

k2S 0.4 day−1 rate of symmetric division of CSC cells into 2 CSC cells
k2N 0.1 day−1 rate of symmetric division of CSC cells into 2 CC cells

k1N1S 0.2 day−1 rate of asymmetric division of CSC cells
into 1 CC cell and 1 CSC cell

kd 0.4 day−1 rate of symmetric division of CC cells into 2 CC cells
kdfin 0.4 day−1 death rate of senescent (last generation) CC cells
K 600000 threshold of Hill’s inhibition function
h 4 exponent of Hill’s inhibition function
g 20 number of generations to senescence of CC cells
τ 4 (days) time delay associated to the switching-regulation process

Table 2.2: Parameters of the model, their values associated to best fit with overshoot results, and
corresponding molecular/cellular processes.
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Figure 2.6: The dynamics of the concentration c(t) of CSC with different choices of the initial value
c(0) (N0 = 106, m0 = 0).

Consequently, there is at least a set of parameters for which the model reproduces
qualitatively the experimental data. Being a thorough exploration of the whole parame-
ter space of the model computationally infeasible, we started from those of Table 2.2 and
studied the dynamics of the system varying one parameter at a time.

The value of the maximum cmax concentration of CSC during the overshoot and of
its stationary value c∗ are displayed in Fig. 2.8 as a function of some of the parameters
of the system. The size of the overshoot increases smoothly but considerably as a func-
tion of the switching rate σ and of the rate difference ε, and decreases as a function of
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Figure 2.7: The experimental fraction c(t) of CSC after 2 days (blue bars) and after 6 days (red
bars) from their sort out, as a function of their remaining fraction c(0). The curves indicate the
simulated results.

the ageing rate kd of CC. The dependence on the other parameters is much weaker (cf.
Figs. D.5 – D.18 in Appendix D). These results suggest that the overshoot is overall a
robust property of the model. The strong dependence on the switching rate σ indicates
that phenotypic switch is an important ingredient to reproduce the experimental obser-
vations. Two important parameters seem to be kd and g, that control together the total
amount of CC. For large values of kd or g, the overall number of CC is large and the over-
shoot effect disappears. A simple qualitative explanation for this is that if we increase
the values of kd or g, then the total number of CC cells increases exponentially, while the
number of CSC increases only as there are more CC cells able to switch. Therefore we
expect the increase in those values to reduce the amount of the overshoot.
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Figure 2.8: The size cmax of the overshoot as a function of the switching rate σ, of the rate differ-
ence ε, of the rate kd and of the number g of generations of CC. The black vertical lines indicate
the values of the parameters employed in our simulations.
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2.3.2 Is this a minimal model?

A relevant question about the model is whether all the terms in Eqs. (2.11) are really
necessary to describe the system. If the time delay τ is not introduced in the switch-
related terms of the equations 2.11, the overshoot peak always occurs within the few
hours after sorting (see Fig. D.18 in Appendix D), while it is observed that some days are
needed for the increase of c(t) (71). Moreover, removing the time delay, the dependence
of the maximum of CSC concentration cmax on the initial concentration (as observed in
(71): see 2.3 and 2.7) is lost. To see an example of this, we simulate the system 2.11, with
time delay τ = 0 and different initial concentrations c0. The output is shown in Fig.2.10.

0 10 20 30 40 50 60 70

time (days)

0

0.05

0.1

0.15

0.2

0.25

c

S
0
 = 0.1 % N

0
, m

0
 = 10

2

S
0
 = 1 % N

0
, m

0
 = 10

2

Figure 2.10: Simulation of relative concentration of CSC evolution in the model without delay
(τ = 0): overshoot of the CSC relative fraction (N0 = 106, m0 = 0). Initial CC cells are equally
distributed among the g generations.

Apart from the overshoot being immediate, we can see from Fig.2.10 that the different
initial CSC concentrations c0 lead essentially to the same dynamics of ct, and thus to the
same value for cmax , while in the experiments the amount of CSC in the overshoot peak
decreases with the fraction c(0) of initial CSC. Thus removing the time delay from our
model causes the loss of two macroscopic features of the experimental results (the timing
of the overshoot and its dependence from the initial fraction of CSC).

If instead one disregards the ageing of CC, describing them just in terms of their total
number N , transforming Eqs. (2.11) into

ṁ = kmpS − kmm
Ṡ = (k2S − k2N )S + σN

(
1− mh

Kh+mh

)
Ṅ = (2k2N + k1N1S)S −

(
kd + σ

(
1− mh

Kh+mh

))
N,

(2.13)

then it is possible to write a nearly closed equation for the concentration c(t) of CSC.
Setting ∆ = kh

kh+mh , this reads

dc

dt
= −(ε+ λ+ kd)c2 + (kd + ε− σ∆)c+ σ∆. (2.14)
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Since for large time and ε > 0, then m −→ ∞ (cf. Appendix C), and so ∆ =
kh

kh+mh −→ 0, giving the stationary value

c∗ =
1

1 + 2k2N +k1N1S

k2S−k2N +kd

(2.15)

For c∗ to be of the order of the observed order of magnitude ∼ 10−2, Eq. (2.15)
requires that 3k2N + k1N1S � k2S + kd. This is unlikely to be the case, because the
experimentally observed division rates kd, k2S , k2N , k1S1N are all of the order of 0.1
days−1 (89) , and for sure k2N < k2S , because we are in the case ε > 0.

Finally, if phenotypic switching occurs in an uncontrolled way, no overshoot is pos-
sible. In fact, if one removes the dependence on m in the second of Eqs. (2.13, this is
equivalent to setting ∆ = 1 in Eq. (2.14. Setting f(c) = −(ε+λ+kd)c2 +(kd+ ε−σ)c+σ,
the stationary points of Eq. (2.14 can be found from f(c∗) = 0 and are

c∗1,2 =
kd + ε− σ ±

√
(kd + ε− σ)2 + 4σ(ε+ λ+ kd)
2(ε+ λ+ kd)

. (2.16)

These are always real because ε+ λ+ kd > 0, and have opposite sign (let us call, e.g.,
c∗2 < 0 and c∗1 > 0). The solution c∗2 is not admissible because it cannot describe a fraction
of cells. The stability of c∗1 is determined by the condition

f ′(c∗1) = kd + ε− σ − (ε+ λ+ kd)c∗1 < 0, (2.17)

which is satisfied for every initial concentration c0 in the range [0, 1]. One can exclude
the existence of an overshoot showing that c(t) is monotonous as it approaches c∗1 for
every t and every c0. Since −(ε + λ + kd) < 0, then f(c) > 0 if and only if c∗2 < c < c∗1,
that for the case of interest becomes 0 < c(t) < c∗1. For c(t) to have an overshoot, starting
from a small c0, c(t) must grow in a finite time to a peak strictly above the attractive
equilibrium value c∗1. But this is not possible since c′(t) = f(c) is strictly negative in
the region c∗1 < c(t) < 1. Thus, in the case of undamped (non-inhibited) phenotypic
switching at constant rate σ the phenomenon of overshoot of the concentration c is not
possible.

2.3.3 Interpretation of the experiments on growth inhibition

In Fig. 2.11 we show that it is possible to inhibit the growth of the total number of
tumoral cells after the sort–out of CSC, adding to the system the medium obtained prior
to sorting, that arguably contains the inhibiting molecule.

To understand this experiment from a quantitative point of view, we simulated it
with the model of Eq. 2.11. For this purpose, we compared the total number of cells at
fixed time T when the sorted cells are treated at time t = 0 with a solution containingm0

inhibiting molecules, with the total number of cells in the untreated case (i.e., m0 = 0).
We defined the quantity

RT,m0 =
[S(T ) +N(T )]m(0)=m0

[S(T ) +N(T )]m(0)=0
(2.18)

to quantify the effect of the inhibiting molecule at time T . It should be noted, that the
amount of inhibiting molecule varies with time from its initial value, because, besides
that provided at time zero, it is produced by CSC and undergoes degradation.
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Figure 2.11: Evolution of the total number of cells S + N , with different values of m0, initial
number of cells 2 · 105, c0 = 2%.

In the left panel of Fig. 2.12 it is displayed the value of R20days,m0 as a function of m0,
for different choices of c0, evaluating the number of cells after 20 days. Independently on
the remaining concentration c0 of CSC, there is a threshold of ∼ 105 molecules, beyond
which one can observe an effect of the inhibitor. Assuming that the dish used for the
experiment has a volume of ∼ 10 mL, this threshold correspond to a concentration of
10−17 mol, meaning that even a tiny amount of molecule has a detectable effect on the
(exponential) grow of the cells (cf. Fig. S18). The effect of the inhibitor saturates to a
c0–dependent value when its copy number reaches ∼ 1012, corresponding to ∼ 1 nmol.

From the behaviour of RT,m0 as a function of the experimental time T (cf. the right
panel of Fig. 2.12, it is possible to notice that the ideal time at which to carry out the
experiment to assess the effect of the inhibitor is no less than 20 days after sorting and
plating the cells, since only after that amount of time the tumoral mass for highest initial
concentrations of the molecule is reduced of about the 50%, and so the reduction is mass
is macroscopically quite detectable. From Figure S18 in the Supplementary Material we
can see that for T = 20 the tumoral mass reaches the maximum capacity of a single Petri
dish, i.e. 108 − 109 cells. Thus the time T = 20 days seems to be the optimal one to
perform our proposed experiment.

2.3.4 Delay and phenotypic switching: clues from literature.

The time delay in the switch-related terms of our model (2.11) may so far appear to have
been introduced ad hoc for purely the phenomenological reasons, in order to reproduce
the exact timing of the overshoot observed in the experiments. In (71) it is hinted that
cells may require some time to revert their phenotype (this is cited as the main reason
for following, in the experiments, the population dynamics of cancer cells for longer
times than earlier studies), but the topic is not further discussed in the paper. It is quite
obvious that a biological process like phenotypic switching, which presumably involves
the reorganizations of cellular circuits that regulates the expression of phenotype, and



Control of phenotypic switching in cancer cells 53

1 100 10000 1e+06 1e+08 1e+10 1e+12 1e+14

m
0

0.2

0.4

0.6

0.8

1

R
2
0
, 
m

0

c
0
 = 1%

c
0
 = 1.5 %

c
0
 = 2% 

c
0
 = 2.5 %

c
0
 = 3%

c
0
 = 4%

0 10 20 30

T (days)

0

0.2

0.4

0.6

0.8

1

R
T

,m
0

m
0
 = 10

4

m
0
 = 10

6

m
0
 = 10

9

m
0
 = 10

14

Figure 2.12: (left panel) The quantityRT,m0 for 2 ·105 sorted cancer cells assuming different possi-
bilities for c0 and making the experiments at T = 20 days. (right panel) The same quantity plotted
as a function of T for different choices of m0.

which is subject to control and feedback by a complex molecular regulatory network,
should take some time to complete, but no attempts to provide quantitative information
about its duration have been made.

In this brief section we plan to show that our model is not in contrast with one of
the few mathematical models related to phenotypic switching existing in literature that
reproduces experimental data (116). This model is also of particular interest since the
model in (116) was build to clarify the connections between phenotypic switching the
epithelial-mesenchymal transition (EMT), a topic which has been the subject of much
priomising investigations recently ((117; 118; 119; 120)).

EMT is a cellular differentiation process wherein epithelial cells lose expression of
genes that facilitate the ordered inter-cellular junctions that are characteristic of epithe-
lial cells and instead adopt mesenchymal features including the capacity for migration.
This process plays essential roles in normal development, including facilitating the for-
mation of the neural crest and secondary palate in embryogenesis (121); however, in
recent years, the study of EMT has transcended developmental biology as cancer biol-
ogists have noted similarities between developmental EMT and the acquisition of in-
vasive properties by cancer cells in various carcinomas (121) . While EMT appears to
be important in granting certain cancer cells the ability to metastasize, it is an implica-
tion of the CSC hypothesis, as we have already seen (65; 80), that successful metastatic
growth requires the dissemination of a CSC from the primary tumour (and its subse-
quent re-establishment of tumour growth at a secondary site) (116). A link between
EMT and CSCs was suggested in (118) and (119), where it was independently found that
by inducing both normal and neoplastic (i.e. coming from breast carcinomas) mammary
epithelial cells to undergo EMT, the proportion of cells in the population under study
displaying stem-like properties, including the ability to form spheres in nonadherent
culture and tumorigenicity (for neoplastic cells), increased.

The model proposed in (116) is an attempt to provide an explanation for the results
of (118). In fact there are two possible explanations for the observations of enrichment
of mammary epithelial/breast cancer CSCs following EMT: that non-CSCs are endowed
with a CSC phenotype as a consequence of EMT or that self-renewal of pre-existing CSCs
is upregulated by EMT. The first explanation implicates that EMT may be viewed in this
context as a phenotypic switching event.

To simulate the effect of the first scenario (which is the one of interest for us), the
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authors of (116) developed a hierarchical model for the evolution of the cellular sub-
populations (the CSC population and the different generations of CC), adding of course
terms that provided the transition from the CC compartment to the CSC compartment.
The resulting model is nearly identical to our model (2.11), with the notable exception
that switching is not subject to a control mechanism. In order to fit the data of (118)
with this model the authors found that, apart from choosing appropriate values from
the parameters, it was required to impose an initial delay period (of some days) for the
process of switching, after the process of EMT induction. This because experimentally, a
delay period of several days passes before any appreciable increase in stem cell activity
is observed following EMT induction (118).

In conclusion, one of the few examples of mathematical models available in literature
for phenotypic switching does present one of the key feature of our model (2.11) (the
time delay of switching, the other being the control mechanism for switching). The delay
period proposed for switching in (116) also appears to be of the same order of magnitude
of the delay period proposed by us (some days). All the available clues seems to indicate
that switching may actually be subject to a delay of several day to be completed since its
induction. The connection with the process of epithelial-mesenchymal transition (EMT)
is also interesting, since there is a growing number of papers exploring this relationship
(including (71)), offering a possible biological mechanism for phenotypic switching.
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2.4 The spatial model.

The rate equations (2.11) average the concentration of cells and of molecule over space.
To investigate whether specific spatial pattern appear during the replication of cells,
we studied an extension of the model in which the spatial degrees of freedom appear
explicitly. In recent years advanced techniques of immunohistochemistry 4 have been
developed that provide biologically and clinically useful information on protein expres-
sion and cellular localization in cancer cells (see for example (123)). A popular tech-
nique of immunohistochemistry used to investigate the spatial distribution in tissues is
immunofluorescence, which uses the specificity of antibodies to their antigen to target
fluorescent dyes to specific biomolecule targets within a cell, and therefore allows vi-
sualization of the distribution of the target molecule through the sample. Of course to
investigate the distribution of cancer cells in a tissue, the target molecules to be taken are
their respective biomarkers. Spatial patterns resulting from the simulation of the model
can thus be compared with patterns observed by means of immunohistochemical anal-
ysis in the the growth of tumoral masses cultivated in the wet lab. Experiments of such
kind are in course of being performed by La Porta’s group: these experiments consist
in selecting a single positive cell or a mass of negative cells, following the procedures
illustrated in 2.2.1, which are then plated to grow. They can be plated either in a Petri
dish with a pool of nutrients or cultured in a gel to form three-dimensional spheroids.

Apart for future comparison with experimental results, the inclusion of spatial de-
grees of freedom is also employed to investigate the role of diffusion of the switching-
inhibitor molecule in the growth of the tumoral mass and in the formation of spatial
patterns: this could provide some information about the nature of the molecule in ques-
tion, and for this purpose multiple simulations of the model are performed, for different
values of the diffusion coefficient in a realistic range.

2.4.1 Materials and methods.

In the model we assume that cells sit on the vertexes of a regular square lattice, whose
elementary length is then ` ∼ 10 µm (a typical value for the linear dimension of a cancer
cell (124)) and whose linear size is typically 103` ∼ 1 cm. The 2D lattice is more suitable
to model the growth of the tumour mass in a Petri dish, than a 3d-spheroid in gel. The
model could be easily adapted to simulate growth in three spatial dimensions, with the
introduction of a 3D square lattice, but we concentrated more on the 2D, also or ease of
analysing the results of the simulations.

Each site of the domain can host at most one cell, either normal or CSC. It undergoes
the same processes (symmetric or asymmetric division, phenotypic switching, cellular
ageing and death, production of the switching-inhibitor molecule) as described in Fig.
2.5 for the rate–equation model. Also the numerical values assigned to the rates of the
different processes are the same (cf. Table 2.2), with a notable exception that shall be
discussed in detail later.

The cellular dynamics is simulated with a Gillespie algorithm (125), starting either
with a single CSC located in the centre of the lattice or with a mass of negative cells (CC).
Upon cell division, one of the new cells remains in the same site, while the other occupies
a neighbouring site; if all of them are occupied, all cells in a random direction are shifted
to make room for the new one. Neighbours are defined along the horizontal, vertical

4Immunohistochemistry involves the process of selectively imaging antigens (proteins) in cells of a tissue
section by exploiting the principle of antibodies binding specifically to antigens in biological tissues.
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and diagonal directions, according to the Moore scheme, which minimizes artefacts due
to the on–lattice model, such as (126).

A further parameter which was not defined in connection with the rate equations
is the diffusion coefficient of the molecule. This is difficult to quantify because of our
ignorance about the properties of the molecule. If it were a nm–sized miRNA com-
plex, Stokes’ law would suggest a diffusion coefficient D ∼ 100 µm2/s (radius of about
2 nm, diffusion in water). In the cellular and extracellular environment the diffusion
coefficient is, however, lower by about one order of magnitude due to macromolecu-
lar crowding resulting in steric constraints on diffusion and influencing diffusion via
weak intermolecular interactions ((127)), thus resulting in an effective diffusion coeffi-
cient D0 = 10µm

2

s = 10−11m2

s , which shall be our main reference order of magnitude. It
should also be considered that miRNAs can be secreted into the extracellular environ-
ment through exosomes or in complexes with protein or lipid-based carriers. Accumu-
lating evidence (129; 128) demonstrates that miRNAs as well as proteins can be trans-
ferred to neighbouring or distant cells in these secretory forms to modulate cell function.
Exosomes are cell-derived extracellular vesicles (EVs) present in many and perhaps all
biological fluids, including blood, urine, and cultured media of cell cultures. Exosomes
range in diameter, between 40 and 150 nm (129). For miRNA coated in a vesicle, ac-
cording to Stokes’ law, the values of the diffusion coefficient would decrease to about
D ∼ 0.1 µm2/s (as indicative order of magnitude). In the following list we present
all the different values of the diffusion coefficient D employed in the simulations, from
lowest to highest, with their physical meaning (if any):

− D = 6 · 10−2 µm2/s ∼ 10−2 µm2/s;

− D = 3 · 10−1 µm2/s ∼ 10−1 µm2/s (miRNA coated in a vesicle of about 150 nm of
diameter, diffusing in a crowded environment);

− D = 1 µm2/s (miRNA coated in a vesicle of about 40 nm of diameter, diffusing in
a crowded environment);

− D = 10 µm2/s (miRNA of about 2 nm of diameter, diffusing in a crowded envi-
ronment);

− D = 102 µm2/s (miRNA of about 2 nm of diameter, diffusing in water);

− D = 103 µm2/s .

Simulating the diffusion (and the self-degradation) of the molecule within the Gille-
spie algorithm is computationally infeasible, because each movement of every single
molecule takes place on a time scale which is much smaller than that associated with
the cellular processes, and thus essentially all the computational time would be used to
simulate the diffusion of the molecule. Consequently, the diffusion of the molecule is
simulated in parallel to the Gillespie algorithm by solving a discretized version of the
diffusion equations

∂m(r, t)
∂t

≈ ∆m(r, t)
∆t

= kmpS(r, t)− kmm(r, t) +D∇2m(r, t), (2.19)

where m(r, t) is the number of molecules at position r of the lattice at time t and
∆t = 3 · 10−4 days is the time step used for numerical differentiation, following a
five-point stencil finite-difference explicit method (the maximum value that ensures nu-
merical stability of this numerical scheme in 2D). The Gillespie time-step is inherently
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stochastic (and thus variable), and tends to decrease in the course of the simulation, as
the number of cells involved increases. Since it rapidly become very tiny, multiple Gille-
spie steps takes place in the interval [t, t + ∆]. When the sum of successive Gillespie
time steps exceeds the value of the diffusion time step, the algorithm solves the equa-
tion (2.19) on the lattice advancing with the standard diffusion time step (∆t = 3 · 10−4

days). Another step of diffusion is necessary to make equal the "Gillespie time" and the
"diffusion time", so the algorithm solves once again (2.19) with the appropriate time step
to adjust their difference. This process is repeated until the end of the simulation.

Even with this separation of the time scales, the simulations remain computationally
quite expensive. Thus, as a a further approximation, we solve the diffusion equation
not in the whole square domain, but only in a circle of radius rmax + δ, rmax being the
distance the farthest cell from the center of the square lattice, while δ is a constant (we
choose δ = 4, in unit of lattice sites), fixing Dirichlet boundary conditions at the border
of the circle and outside of it, in the rest of the lattice: these boundary conditions are
reasonable, because since the molecule is produced by the CSCs, outside of the cellular
domain the only possibility, except diffusion, is progressive self-degradation, especially
at long distances, so this approximation does not significantly affect cellular dynamics.
The simulation effectively ends when rmax + δ = dim

2 − 2. With an algorithm so con-
ceived, each simulation takes approximately 400 hours of CPU time on Intel i7 3.4Ghz
processors.

The role of the space in relation to the molecule is strictly related to the only param-
eter for which, as mentioned, before, we cannot use in the simulation the same numer-
ical value employed in the rate equations, that is the the threshold K of Hill’s function
∆ = Kh

Kh+mh . In fact in the spatial simulation the quantity K is a local one, since it has
to be compared with the quantity m of molecule present in the specific site of the lattice,
while in the rate equations the threshold K of Hill’s function is global, i.e. it has to be
compared to the total number of molecules m. To obtain comparable results for the two
models (the spatial simulations and the rate equations), at least in terms of orders of
magnitude, we cannot keep the same values of K in the two models. We therefore chose
to divide the threshold K employed in the rate equations by the quantity dim2 = 10002,
that is the number of different sites in the 2d lattice: Kspace = Krate

dim2

In the case we want to include in our simulation the time delay τdelay for phenotypic
switching we have to add further steps. If, according to the Gillespie algorithm, the
switching of a CC into a CSC has to take place at a certain time t, instead of doing the
process immediately, we store the coordinates of the site of the CC which has to switch
in an array, along with the time in which the switch has to take place (t + τdelay). At
each step of the Gillespie algorithm, at the time tactual we search in the array if there
are cells which have to switch in a time t ∈ [tactual − τi−1, tactual + τi−1], where τi−1 is
the Gillespie stochastic time interval generated at the previous step of the algorithm. If
any such cell is found, the switching of the cell takes place and then its coordinates are
removed from the array. If in the interval of time between the selection of the CC which
has to switch and the actual switching the CC dies or goes quiescent, switching does not
happen. If in the same interval the cell moves, its coordinates in the array are updated,
while if cellular division takes place, one of the two cells resulting from division inherit
the future switching. A cell which has to switch is obviously not able to be selected again
for switching.

One last thing has to be said about the selection of cells once the biological reaction
that has to take place has been selected by the Gillespie algorithm. The coordinates
of the CSCs are stored in an array which is constantly updated during the algorithm,
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and the same for the CCs (adding to the parameters stored for each cell the number
corresponding to its present generation). Once the kind of reaction has been chosen,
for example symmetric division of CSCs, a CSC is randomly chosen in the array and
then the reaction takes place. Choices are made randomly because, since the tumour
grows in a culture medium in wet lab, each cell has the same resources at disposal and
therefore there are no cells with a particular reproductive advantage because of their
spatial position. If the reaction involved has to do, for CCs, with their age, random
choice is made between cells with the same age.
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2.4.2 Spatial growth of the tumoral mass.

We first performed a simulation of the model starting from a mass of only N cells (CC).
The initial number of cells placed in the center of the lattice (forming a circle) was
N = 105. We can see in Fig. 2.13 that such simulation (for three different values of
the diffusion coefficient) display an overshoot in CSC concentration, similar in ampli-
tude and timing to what observed in the rate equations and in the experiments. These
results validate our choice of the threshold Kspace = Krate

dim2

Figure 2.13: The fraction of CSC for a simulation starting from only N cells shows an overshoot
similar to that observed in the rate equations (red curve D = 10µm2/s, green curve D = 1µm2/s,
blue curve D = 0.1µm2/s)

In Appendix E (Figs. E.1, E.3, E.5) we show the spatial plots at time t = 11 d of the
simulations for different values of the diffusion coefficient and the corresponding radial
distributions of the fraction of CSC (E.2, E.4, E.6), which clearly show that, starting from
a relatively large number of CC cells, not only the timing and amplitude of the overshoot
does not depend on the diffusion (as it is evident from Fig. 2.13), but that also the spatial
organizations of cells in the tumour mass are quite independent from it.

We then focused our analysis of the growth of a tumoral mass starting from a single
CSC, as displayed in Fig. 2.14.

The overall growth of the number of CC and CSC becomes exponential after ∼ 5
days with a rate that depends mildly on the diffusion coefficient of the molecule (from
0.4 days−1 at low D to 0.5 days−1 at large D, see Figs. E.9-E.10 in Appendix E) and
is indistinguishable from a model without phenotypic switching (see lower left panel
in Fig. 2.14). The fraction S/(S + N) of CSC decreases quite smoothly to a stationary
value of few percent, slightly higher at large D, slightly lower at small D and without
switching (see lower right panel in Fig. 2.14, and for the complete set of data E.7 – E.70
in Appendix E). The dependence of the values of the overall fraction of CSC on the total
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Figure 2.14: (Upper panel) The growth of a cell population with D = 10µm2/s from a single
CSC at time 0. CSC are displayed in red, CC of different age from blue to yellow and dead cells
in green. To the left, a sketch of the lattice model used for the calculations. (Lower left panel)
The total number of cells as a function of time. (Lower right panel) The total fraction of CSC as a
function of time for different choices of the diffusion constant of the molecule, and in absence of
phenotypic switching.

number of cells from the diffusion coefficient D can be explained in a relatively simple
way: for higher values of D (D > 10µm2/s) the molecule is more likely to travel long
distances from the point where it was produced and reach the border of the domain 5,
where it dies (Dirichlet conditions at the borders); thus for higher values of D the to-
tal amount of molecule in the domain is inferior than in the case with lower values of
D (as it is evident from the radial distributions of m in Figs. E.65 – E.67 in Appendix
E), because less molecule means more probability of switching for CCs. This behaviour
would not change qualitatively if we extended the domain of resolution of the diffusion
equation, possibly to the whole lattice. In the case of lower values of D (D < 10µm2/s)
the molecule tends to travel shorter distances, and so it is usually concentrated in the
place where it has been produced (we can see in Figs. E.65 – E.67 in Appendix E that the
radial profiles have peaks located exactly where also the distributions of CSC fraction
have peaks, while for D > 10µm2/s the profiles are parabolic monotonically decreas-
ing), thus it is less subject to be transported to the border and die.

Unlike the cellular growth rate and the fraction of CSC, the spatial organization of

5Remember that for any time, if the radius of the tumour (distance of the farthest cell from the centre of the
lattice), the domain in which we solve the diffusion equation is a circle of radius rmax + δ, with δ = 4), and
we fix the amount m of molecule to be zero at the border of the circle (Dirichlet conditions) and outside of it.
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CC and CSC depends markedly on the properties of the diffusing molecule (cf. Fig. 2.15,
and Appendix E, Figs. E.16 – E.63 for more examples). The most apparent feature of
molecule–controlled switching is the accumulation of CSC at the border of the tumoral
mass. This effect increases with the diffusion coefficient D of the molecule and is absent
if no switching applies. Moreover, the same plot suggests that the peak at the border
does not grow monotonously with time, but reaches a maximum (in time) and then
converges to a stationary value.

no switch

D=10-2 μm2/s D=10 μm2/s 

D=102 μm2/s 

CSC
CC
dead cells

Figure 2.15: The spatial arrangements of CC of different ages and of CSC after 30 days at different
values of the diffusion constant of the molecule and without switch.
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2.4.3 Enrichment of CSC at the border

The effect of the enrichment of CSC at the border can be better quantified from the radial
distribution of the fraction of CSC, a typical example of which is displayed in Fig. 2.16 a
(more examples are shown in Figs. E.64 – E.69 in Appendix E). When D is large, the
fraction of CSC at the border of the tumoral mass reaches a higher peak than at smaller
values of D, while no enrichment at all is observed in absence of switching. This effect
is not due to a different characteristic time at which the peak grows, as shown in Fig.
2.16 b, where one can notice that the height of the border peak at small D is inferior to
the others at any time. The enrichment in CSC concentration and its location is thus
preserved in the dynamics, with the exception of the case with σ = 0 (where there is no
persistent enrichment in CSC concentration at the border, but rather fluctuations in the
radial distribution of CSC concentration, see Appendix E).
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Figure 2.16: (a) The fraction of CSC as a function of the radius of the tumoral mass (upper left
panel) at 30 days with τ = 4 d for different values of D and for the model without switching. (b)
The height of the maximum reached by the fraction of CSC as a function of time. (c) The black
curve displays the fraction of CSC as a function of the distance r from the center of the tumour for
D = 102 µm2/s; the gray curve is the switching factor π that depends on the local concentration
of molecule m, displayed in orange, and on the equilibrium constant K, displayed as a horizontal
dotted line. Where m = K then π = 1/2, and this point is highlighted with a vertical dotted
line. (d) The same as in panel (c), but simulated at D = 10 µm2/s; in this case, besides the final
distributions at t = 30 days, we show with thinner lines the distributions at t = 18 days.

In all the previous simulations we used the parameters reported in Tab. 2.2 (which
provided a quite good fit with the available data), with the said caveat for Hill’s thresh-
old K. In order to minimally test the robustness of the spatial patterns for reasonable
alternative values of the parameters (note that the simulation are computationally very
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expensive), we simulated the same system with a different value of km (the rate of
decay of the signal molecule), under the reasonable assumption that if the switching-
inhibitor molecule is secreted into the extracellular environment through vesicles then
of course it would be less subject to self-degradation. The results of these simulations
for km = 0.5 day−1 (instead of km = 4.0 day−1, as in the previous simulations) show
that the time evolution of the fraction of CSC, the growth rate of the tumour and, most
importantly, the radial distribution of CSC are qualitatively the same as in previous sim-
ulations (Figs. E.70 – E.73 in Appendix E).

To get an insight into the appearance of the peak at the border, we plotted in Figs.
2.16 c and d the radial profile of the fraction of CSC at 30 days together with that of
diffusing molecule and the switching factor π(r, t)

π(r, t) =
mh(r, t− τ)

Kh +mh(r, t− τ)
(2.20)

that controls the switching probability of CCs for two utmost values of the diffusion
coefficient D. At D = 102 µm2/s and t = 30 days, the front of the cellular mass is well
beyond the radius at which π � 0. The reason is that the distribution of molecule m
(orange curve decays smoothly from the center of the system) and assumes the value
K (i.e., the switching inhibition constant, at which π = 1/2) at quite small values of r.
Consequently, a large amount of cells near the border of the tumoral mass can undergo
phenotypic switching, resulting in the enrichment shown in Fig. 2.16 a. This enrichment
increases with time. On the contrary, at lower values of D, the long–term behaviour is
different. For D = 10 µm2/s, for example (see Fig. 2.16 d), all cells are in the region
where the molecule m is abundant and so inhibits consistently phenotypic switching,
causing π � 1. However this is not the case at all times: during an initial period (18 days
in Fig. 2.16 d), cells can overcome the front of the molecule, increasing transiently the
enrichment at the border: in fact the molecule diffuses in space at a distance r that scales
with time as r ∼

√
D ·t 1

2 , while cells grow initially at a super-exponential rate (Figs. E.9 –
E.10 in Appendix E). While the two processes of cellular growth and molecule diffusion
are coupled, it is evident that, especially for lower values of D, cellular mass can reach
a certain distance r before the concentration of molecule at that distance has reached a
level necessary to inhibit most of the switching (diffusing from the inner regions of the
tumour, where it is supposed to be present, at least initially, in larger numbers).

The height of the border peak of CSCs, after cells overcome the front of the molecule,
then decreases to (or reaches from below) a stationary value (Figs. E.74 – E.75 in Ap-
pendix E), meaning that the cellular mass grows in size with the border constantly en-
riched. What is then the reason for the long–time enrichment of CSC at the border of the
tumour when π ∼ 0? The answer is that the initial enrichment, caused by the transient
lack of molecule at the border, is sustained by the normal cell duplication, without the
need of further switching. This can be understood from a simple argument.

When phenotypic switching does not apply, a simple model that captures the fact
that CSCs duplicate into other CSCs with rate ε = k2S − k2N and into both CSCs and
CCs approximately with rate K = k2S + k2N + k1N1S and CCs duplicate into CCs with
rate kd, pushing the others to make room, can be obtained defining the amount S(r, t) of
CSCs in a radial bin of width ∆r. Assume that the system starts from a distribution of
CSCs S(r, 0) = S0(r) that is peaked at the border. The dynamics of S(r, t) can be roughly
described as
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∂S(r, t)
∂t

=

[
K

1
∆r

∫ r−∆r

0

dr′ S(r′, t) + kd
1

∆r

∫ r−∆r

0

dr′N(r′, t)

]
· [S(r −∆r, t)− S(r, t)] +

+ εS(r, t). (2.21)

stating that the variation of S at point r is proportional to the total amount of CSCs
and CCs within r, that duplicate respectively with rates K and kd pushing the others in
radial direction, and to the amount of CSC in the previous bin r−∆r, that can be pushed
to r. Applying a mean–field approximation

∫ r
0
dr′ S(r′, t) ≈ S · r and

∫ r
0
dr′N(r′, t) ≈

N · r, where S and N are the average number of CSCs and CCs per bin (which, except in
the peak region, tend to be constant and reach a steady state in the long time).

Thus, assuming that ∆r is small, the dynamics can be written as a partial differential
equation

∂S(r, t)
∂t

= −ε′r · ∂S
∂r

+ ∆ε∆r
∂S

∂r
+ εS(r, t), (2.22)

where ε′ ≡ KS + kdN and ∆ε ≡ ε′ − ε. Given the initial condition, the solution has
the form (see Appendix F)

S(r, t) = eεt · S0

(
ε′r −∆ε∆r

ε′
e−ε

′t +
∆ε∆r
ε′

)
. (2.23)

As it is proven in Appendix F, the initial values of the solution are transported along a
family of curves (in this case, exponential curves), called characteristics curves, according
to a mechanism typical of this kind of equations (hyperbolic p.d.e. of the first order, also
known as transport equations). This means that a peak that is initially at the border rb of
the tumoral mass is transported exponentially in time in the radial direction, along the
curve

exp[−(KS + kdN)t]r − r0 = C (2.24)

(where C = constant), as observed in the simulation (cf. Fig. 2.17). The radius
rtumour of the total mass (i.e. the measure of the support of the solution (2.23)) also
increases exponentially, in accordance with Fig. 2.17 (a sketch of the evolution of the
profile of radial number of CSCs is shown in Fig. 2.18).

The solution (2.23) provides an explanation of the evolution of the peaks of CSCs
density. An initial, consistent enrichment of CSCs at the border of the cellular mass
is formed, with the mechanism explained at the beginning of this section, when con-
trolled phenotypic switching is active: cellular growth is faster than the diffusion of the
molecule with its inhibitory effect and thus cells at the border lies in a region of space
where they can massively switch to CSC state. Instead, if σ = 0 (no phenotypic switch-
ing), tumour subpopulations’ growth is driven exclusively by cellular replication, and
thus there is not a deterministic mechanism which can allow a persistent and signifi-
cant enrichment of CSCs isotropically at the border or in some inner region (observed
peaks in the radial distribution of CSCs density are of small amplitude and should be
considered random fluctuations from the average density), while they can form isolated
clusters of higher density in some regions.

Once a consistent and significant enrichment (not a statistical fluctuation in the den-
sity) at the border of the tumour mass is formed (in the case when switching is active),
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Figure 2.17: The position r of the peak of CSC concentration for D = 10−3µm2/s (red lines) and
D = 102µm2/s (blue lines). The dashed lines are the position of the activation threshold, defined
as the value of r at which the concentration of the molecule gives π = 0.9, i.e., at which switching
inhibition drops to very low values. The dotted lines are the overall radius of the tumoral mass.

the peak of CSCs is transported, because of cellular replication in the inner regions of
the tumour mass. The height of the peak tends to increase, because cells at the border
divide and are pushed in the outer region where π ∼ 1, and thus they can freely switch
en masse. As time goes by, diffusion manages to keep up with cellular growth (as shall be
explained in more detail later) and from then on the peak lies in the region where π ∼ 0.
In this region phenotypic switching is almost totally inhibited and thus the spatial dy-
namics of CSCs can roughly be described by (2.22). In this case, the peak is sustained
purely by normal cellular duplication (and not by invasion of regions where π ∼ 0): in
the solution (2.23)

S(r, t) = eεt · S0

(
ε′r −∆ε∆r

ε′
e−ε

′t +
∆ε∆r
ε′

)
(2.25)

the term S0

(
ε′r−∆ε∆r

ε′ e−ε
′t + ∆ε∆r

ε′

)
represents the effect of transport of the initial

profile S0(r) of CSCs (with a peak at the border) due to growth of the inner cellular mass,
while the multiplicative reaction term eεt accounts for the in–loco replication of CSCs.
The transport part of the solution tends to maintain the peculiar shape of the initial
radial profile of CSCs (the peak at the border), while causing the support of the solution
to grow exponentially (reflecting the observed exponential growth of the tumour mass).
Since the multiplicative reaction term eεt is constant at a given time and monotonous in
t, it also preserves the peak of CSCs at the border during the evolution.

Thus the peak continues to advance along an exponential characteristic curve (2.24)
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of the hyperbolic equation (2.22), remaining located in the region where π ∼ 0, pre-
serving its shape and also, as can be seen in Fig. 2.16, its height. Our model does not
explain the fact that the height of the peak reaches a steady state, but we remark that
this is just an approximated qualitative argument; the main approximation in such a
space–dependent rate equation is that we neglect that in each bin the maximum value
of S is constrained by the the fact that each site can be occupied by only one CSC. We
also remark that our model (2.23) describes the evolution of the radial distribution of
the number of CSCs, and not of their local fraction S/(S + N), while all our previous
analyses are based on this quantity. However we note that a radial distribution of CSC
presenting a huge peak at the border would result in a radial density distribution with
the same qualitative shape, and vice versa.
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Figure 2.18: Time evolution of the radial distribution of the number of CSCs according to (2.22).

The evolution of the peaks with respect to the diffusion coefficient D could be clari-
fied by Fig. 2.17. We note that, for the lower value of D (D = 10−2 µm2/s), the peak of
the CSC fraction is behind the activation threshold for switching (the radius at which
π = 0.9, and behind which switching is rapidly inhibited) 6; thus switching ceases
rapidly to have a significant effect and to enrich too much the fraction of CSC at the
border, while transport dynamics described above translates the peak forward keeping
it approximately 7 constant. For D = 102 µm2/s, the peak goes behind the activation
threshold only at about day 25 of the simulation, so for the first 25 days there is persistent
enrichment of CSC at the border and increase in the height of the peak (see Figs. E.74 –
E.75 in Appendix E). We can explain the relative positions of the peak and the activation
threshold recurring to what said in 2.4.2. If D is large the molecule is more likely to
travel long distances from the point where it was produced and reach the border of the
domain, where it dies: thus its radial distribution will likely be parabolic monotonically
decreasing. On the other hand, if D is small the molecule will travel shorter distances
and will tend to accumulate where it was produced, forming a peak at the border where
also CSC tend to concentrate. Confronting the two radial profiles of molecule, it is evi-
dent that in the case with lower D the activation threshold is generally located at larger
distances from the centre of the lattice (relative to the tumour radius) than in the case
with larger D.

6the constant positions in the first days of the dynamics and the fact that they seem to exceed the radius of
the tumoral mass reflect the binning of the lattice. The lattice is divided into circular crowns, the most internal
of which must have a bigger radius in order to include a sufficient number of points, so that the calculation of
the average fraction of CSC in it is not excessively affected by fluctuations

7There are of course statistical spatial and temporal fluctuations and a residual switching factor.
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2.4.4 Clustering of CSC

From the snapshots displayed in Fig. 2.15 it is apparent that for small and intermediate
values of D CSC tend to cluster together, especially at the enriched border. This effect
seem to disappear at largeD, at which CSC are rather symmetric for rotations. In absence
of switching, some clustering seems present as well.

To get a more quantitative insight in this, we performed a clustering analysis of CSC
based on their spatial density, using as algorithm of reference the one developed from
(130).

In Fig. 2.19 we show the multiplicity of clusters found and the distribution of their
density (for the complete set of clustering analysis, see Appendix E, Figs. E.76 – E.95).
Without switching, the system display a small number of high–density clusters (mainly,
though not necessarily at the border). A similar behaviour is observed with switching at
low diffusion constant. IncreasingD, we observe many low–density clusters, suggesting
that CSCs decrease their tendency to partition in clusters. What is also evident is that, for
lower values of D, the distribution of CSC at the border becomes more asymmetric, as it
is shown in Fig. 2.20, which reports, for different values of D, the angular distribution
of the fraction of CSC, obtained dividing the border of the final plots of tumour mass (a
circular crown whose radius is rcrown = 0.2 ·rmax) equally into 32 sectors and calculating
the local fraction of CSC in each sector. It is evident that the distribution becomes more
uneven as the value of D becomes lower. We also note that the main factor contributing
to the anisotropy in the distribution of the CSC at the border is the value of D, and not
the time delay τ , as the curves for τ = 0 d and τ = 4 d are quite similar.

Summing up, clustering seem to appear as a consequence of CSC duplication, while
switching, which is more effective at large D (cf. Sect. 2.4.3), tends to make the distri-
bution of CSC more uniform. This is not unexpected, since cell duplication is a local
phenomenon, while switching is random in space, and can only be modulated in space
by the molecule; however, the high diffusivity of the molecule makes its distribution to
be quite uniform, suppressing most spatial patterns.

This observed effect about the partition of CSCs in clusters could suggest further
experiments to test the validity of our hypotheses. Since what we have observed is that
the most we suppress phenotypic switching, the most CSCs have a tendency to partition
in high-density clusters at the border, biologists could compare the spatial patterns in the
distribution of CSCs for a tumoral mass resulting from an initial CSC plated in a neutral
medium and for one resulting from an initial CSC in a culture medium repleted with
switching-inhibitor molecule (for example, one resulting from a long-time growth of
similar cells, collected and concentrated), possibly with continuous enrichment of such
medium during the experiment. At the end of the experiment the cellular mass resulting
from the non-neutral medium should show a higher degree of CSC clusterization at the
border. As usual, the main problem with this approach is whether the difference is so
relevant that it can be clearly detected in the lab.

The results obtained in the case for lower values ofD are consistent with recent exper-
iments by the Pajonk group at UCLA (132), who observed that, for sufficiently large tu-
mour spheroids in vitro, the CSC population becomes localized in discrete clusters near
the tumour boundary, resulting in a heterogeneous distribution of cells. They are also
consistent with the more complex models developed by Youssefpour et al. (131), who
using a partial differential equation approach to simulate the spatio-temporal dynamics
of cell lineage in solid tumours,were able to observe complex pattering with CSCs being
predominantly located in individual clusters at the outer rim of the total population, in
response to a variety of cellular feedback mechanisms and oxygen tension.
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Figure 2.19: (Upper panel) The clusters of CSC, subtracted their density halo and coloured differ-
ently for each cluster, at different values of D and without switching. The clustering was done
with the algorithm of ref. (130) using as parameters k −NN = 5 and Z = 1.8. (Lower panel) The
histogram of densities of the different clusters.
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0.2 · rmax) in which the border of final spatial plots of tumour mass has been divided, for some
values of the diffusion coefficient D.

2.4.5 Discussions and conclusions

In this work we proposed a model for the evolution of cancer cells from a melanoma
tissue plated in vitro as observed in (71). The main feature of the dynamics observed in
the experiments reported in (71) is the observation of a large overshoot (up to 25 %) in
the fraction of cancer stem cells (CSC), starting from a population where the fraction of
CSC has been reduced under the 1 % of the total. Our model for the dynamics of the cell
populations, written in terms of rate equations, was grounded in the theory of the aber-
rant hierarchy of CSC (which assumes that all cancer cells in a tumour are derived from
a small subpopulation of cells with stem cell-like properties, with an unlimited capacity
to proliferate and to generate normal, differentiated cancer cell (CC)) and included the
key hypothesis, still not universally accepted, that normal cancer cells could revert back
to CSC-state, undergoing what is called phenotypic switching. The first distinctive and
original feature of our model is a dynamic feedback regulation mechanism of the process
of phenotypic switching, given by an underlying field of a switching-inhibitor molecule
produced by the CSC themselves. This regulatory mechanism is consistent with the ex-
perimental results in (71) and the results of a successive series of experiments performed
by the same group (which are in contrast with the model proposed by the authors in
(71)). The second distinctive characteristic of our model is a time delay of some days in
the process of switching and its regulation.

Our model(2.11) with the features described above provides a clear regulatory mech-
anism for cellular dynamics and can qualitatively reproduce, for at least one realistic set
of the parameters, the experimental results observed in (71), in particular the overshoot
in the fraction of CSC and the dependence of the fraction of CSC at the overshoot on the
fraction of CSC in the initial population 2.7.



70 2.4 The spatial model.

Given the new opportunities provided by recent techniques of immunohistochem-
istry, which offer the possibility of investigating the localization of molecules and cells
in a tissue (in our specific case, it would allow to localize CSC measuring the spatial
distribution of its biomarkers), we have studied an extension of the model in which the
spatial degrees of freedom appear explicitly, where cells are points on a regular 2D lat-
tice and the molecule produced by the CSCs diffuse according to Fourier’s law. Apart
from observing patterns in the spatial distribution of cancer cells, this extended models
allows us to investigate the role of diffusion in the growth of the tumoral mass.

Spatial simulations are performed first starting from a mass of negative cells, which
shows that also in the spatial model an overshoot appears (from initial conditions with
a low concentration of CSC, see Fig. 2.13). Successive spatial simulations are performed
starting from a single CSC. The fraction S/(S + N) of CSC decreases quite smoothly
to a stationary value of few percent, slightly higher at large D, slightly lower at small
D (Fig. 2.16 a). The main feature resulting from these spatial simulations is that CSC
tend to accumulate at the border of the tumoral mass, with a strong dependence on the
value of the diffusion coefficient D (see Fig. 2.14): when D is large, the radial distribu-
tion of the fraction of CSC reaches a higher peak at the border of the tumoral mass than
at smaller values of D, while no enrichment at all is observed in absence of switching
(just stochastic fluctuations around the mean fraction). We also note that, especially for
smaller values of D, the peak at the border does not grow monotonously with time, but
reaches a maximum (in time) and then converges to a stationary value. In order to ex-
plain this phenomenon and to predict the future development in the spatial organization
of the tumour as it grows further, we proposed a simple mathematical model. As the tu-
moral mass grows, more and more part of the cellular mass tends to be in the region of
space where, due to abundance in the concentration of the switching-inhibitor molecule,
phenotypic switching is minimally active: this mechanism is much quicker in the case
of low D (Figs. 2.16, 2.17). If we suppose that switching is mostly inhibited, a first-order
hyperbolic PDE (2.22) describes the transport of CSC during the growth of the tumour,
due to local duplication and pushing from cells duplicating in the inner regions of the
tumour. We proved that such dynamics preserves the height of the peak of the initial
CSC fraction profile, which is transported exponentially in time in the radial direction,
and also that the total fraction of CSC is stationary: this is in perfect accordance with the
results of the simulations (Figs. 2.16, 2.17).

Finally, we showed that for lower values of D CSC tends to be localized in high-
density discrete clusters near the tumour boundary: since this is consistent with recent
experiments (132), and since the lower values for the CSC stationary fraction are ob-
tained for low D, we conclude that under this framework the most likely scenario is
for D to assume relatively low values. This means that it if the signalling unknown
molecule is effectively miRNA (as supposed by the authors of (71)), it is likely that it is
secreted into the extracellular environment through vesicles, whose dimensions can be
much larger than that of the simple miRNA molecule.

Further development of the present work could be concerned with the extension
of our spatial model to three dimensions, in order to simulate the growth of tumor
spheroids (which will require the development of some tools to better analyse the spa-
tial distribution of cells in 3D) and the development of more complex models (starting
from the rate equations), reflecting further degrees of heterogeneity in the cellular com-
partments of CSCs and CCs, and more complex signalling networks for the control of
cellular phenotype and proliferation potential. Building such kind of models shall of
course rely heavily on results from ongoing and future experimental tests, and hypothe-
ses arising from them. A first and simple example of hypothesis to be tested could be



that of the imperfection of biomarkers for CSCs with relation to the differentiation of
CSCs. Emerging evidence supports in fact the conclusion that early generations of CCs
share some biomarkers with CSCs (perhaps with decaying statistical correlation as the
number of generations in a small range increases) (116; 122; 133). Our present model
could be updated to reflect this evidence, to test whether such hypothesis could pro-
vide better accordance with experimental data and also some insight into the important
question of the reliability of biomarkers for the isolation of CSCs subpopulation.
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APPENDIX A

Dependence of oscillations on parameters.

In this appendix we collect the plots representing the dependence of Ω (number of oscil-
lations) on the parameters of the system (1.17) for all the time delays τ employed in the
simulations (τ = 500, 1000, 1500, 2000, 2500 s) and for temperature T = 1. The density of
points in each region of the plots reflects the probability that the delay equations display
a specific value of Ω for the value of the parameters that define that region.

Figure A.1: The values of the number of oscillations Ω associated with the points of parameter
space sampled by the simulation carried out at τ = 500 s and T = 1 projected, respectively, onto
the parameters αij , kij , γi and si . To make the results more readable, αij is plotted in a linear
scale, while the other parameters in logarithmic scale.
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Figure A.2: The values of the number of oscillations Ω associated with the points of parameter
space sampled by the simulation carried out at τ = 1000 s and T = 1 projected, respectively, onto
the parameters αij , kij , γi and si . To make the results more readable, αij is plotted in a linear
scale, while the other parameters in logarithmic scale.

Figure A.3: The values of the number of oscillations Ω associated with the points of parameter
space sampled by the simulation carried out at τ = 1500 s and T = 1 projected, respectively, onto
the parameters αij , kij , γi and si . To make the results more readable, αij is plotted in a linear
scale, while the other parameters in logarithmic scale.
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Figure A.4: The values of the number of oscillations Ω associated with the points of parameter
space sampled by the simulation carried out at τ = 2000 s and T = 1 projected, respectively, onto
the parameters αij , kij , γi and si . To make the results more readable, αij is plotted in a linear
scale, while the other parameters in logarithmic scale.

Figure A.5: The values of the number of oscillations Ω associated with the points of parameter
space sampled by the simulation carried out at τ = 2500 s and T = 1 projected, respectively, onto
the parameters αij , kij , γi and si . To make the results more readable, αij is plotted in a linear
scale, while the other parameters in logarithmic scale.





APPENDIX B

Steady state values of concentration c of CSC.

The stationary ratios of S∗ andN∗j (and thus the stationary value of CSC concentration c)
of the rate equations (2.11) can be found setting the time derivatives to zero and defining
ε = k2S − k2N and λ = 2k2N + k1N1S , thus obtaining

N∗0 =
λ

kd + ε
S∗

N∗1 =
λ

kd + ε

2kd
kd + ε

S∗

N∗i =
λ

kd + ε

(
2kd
kd + ε

)i
S∗ ∀i <= g. (B.1)

Thus,

N∗ =
λ

kd + ε
S∗

g∑
i=0

(
2kd
kd + ε

)i
. (B.2)

and one obtains

c∗ =
S∗

S∗ +N∗
=

1

1 + λ
kd+ε

∑g
i=0

(
2kd

kd+ε

)i (B.3)

If kd = ε, then Ni

Nj = 1 ∀i, j, and the CC are equally distributed among generations.
These finding could be useful to determine the initial conditions for our simulations,

since, assuming the validity of our model, cancer cells sorted in experiments to be plated
and grown are taken from a mature tissue, and therefore their distributions among gen-
erations should be consistent with the asymptotic ratios calculated here (of course the
more so the more cells are sorted and plated).

In order to test if initial conditions consistent with (B.1) could lead to qualitatively
different results in the solution of our model, we solved once again the rate equations
(2.11) distributing the initial CC among generations according to the asymptotic ratio.
The results of the simulations can be seen in Fig. B.1, from which it is evident that this
alternative distribution of the CC among generations does not affect the dynamics of the
system qualitatively.

79



80

0 10 20 30 40 50

time (days)

0

0.05

0.1

0.15

0.2

0.25

c

S
0
 = 0.05 % N

0

S
0
 = 0.1 % N

0

S
0
 = 0.2 % N

0

S
0
 = 0.4 % N

0

S
0
 = 1% N

0

S
0
 = 2% N

0

Figure B.1: The dynamics of the concentration c(t) of CSC with different choices of the initial value
c(0) (N0 = 106, m0 = 0) and initial CC cells distributed among generations according (B.1).



APPENDIX C

Long-time dynamics of the rate equations

C.1 Condition for monotonous and unbounded increase of the total
number of cells

We want to show that a necessary and sufficient condition for unlimited tumour growth
for our model (2.11) is ε ≥ 0. In order to do this we must prove that for this values of the
parameter ε the total number of cancer cells S +N diverges.

Consider the simplified version (without generations of CC cells and without delay,
which does not affect the value of the fixed points, as represented in Fig. C.1 ) of the
system (1) (ε = k2S − k2N , p = 2k2N + k1N1S)

S

N

m
σ K, h

kd

k2N

k
1N1S

kmd

kmp

k2S

Figure C.1: Reaction network for the simplified mean–field model, involving cancer stem cells (S),
normal cancer cells (N ) and inhibitor molecule m.


ṁ = kmpS − kmm
Ṡ = εS + σN

(
1− mh

Kh+mh

)
Ṅ = p · S −

(
kd + σ

(
1− mh

Kh+mh

))
N

(C.1)
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82 C.1 Condition for monotonous and unbounded increase of the total number of cells

The only fixed point of the system is (m,S,N) = (0, 0, 0). In the case ε > 0 with the
simple estimations Ṡ > εS and Ṅ > p · S − (kd + σ)N , wh have that the solutions of
system (C.1) are bounded from below by the corresponding solutions of the following
system (which has only the fixed point (m,S,N) = (0, 0, 0), as (C.1))

ṁ = kmpS − kmm
Ṡ = εS

Ṅ = p · S − (kd + σ)N
(C.2)

The Jacobian matrix of the system made up of the last two equations (decoupled from
the remaining one) is the following [

ε 0
p −kd − σ

]
The product of the eigenvalues of the Jacobian matrix λ1 ·λ2 = −ε(kd+σ) is negative

and thus the eigenvalues are of different sign. Thus the fixed point (m,S,N) = (0, 0, 0)
is unstable and all the solutions are divergent, and so are the solutions of (C.1).

For the case ε = 0, we can see that S diverges, since Ṡ = σN
(

1 − mh

Kh+mh

)
≥ 0, and

so does the total number S +N of cancer cells, since N is always positive (of course this
argument is also valid for ε > 0.

In the case with ε < 0 the solutions of the system (C.1) are bounded from above by
the corresponding solutions of the system

ṁ = kmpS − kmm
Ṡ = εS + σN

Ṅ = p · S − kd ·N
(C.3)

The Jacobian matrix of the system made up of the last two equations (decoupled from
the remaining one) is the following [

ε σ
p −kd

]
It is easy to see that the eigenvalues of the Jacobian matrix are complex conjugate

with negative real parts. the corresponding solutions of system (C.3) are linear combi-
nations of sines and cosines modulated by decreasing exponential functions. Therefore
the solutions are definitely bounded from above (and also from below, since they need
to be positive), and so are the solutions of system (C.1). In the case ε < 0, therefore, the
growth of cancer cells population is bounded.

A more refined analysis in the case ε < 0 is possible. In this case, (C.1) has two fixed
points, one being the usual (m,S,N) = (0, 0, 0), and the other

(m,S,N) =
(

1
rstaz

σ · k
−ε
− k, kmd

kmp
·
(

1
rstaz

σ · k
−ε
− k
)
,

kmd
kmp · rstaz

·
(

1
rstaz

σ · k
−ε
− k
))

,

where

rstaz =
(
S

N

)
staz

=
kd

k2S + k1N1S + k2N
. (C.4)
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The fixed point (m,S,N) = (0, 0, 0) is globally attractive (extinction of the tumour)
when

σ < σcrit =
−εkd
p+ ε

= σcrit. ,

while the positive fixed point (C.4) is globally attractive when σ > σcrit.
We can therefore conclude that a necessary and sufficient condition the total number

of cancer cells S +N to be an increasing and unbounded function of time is ε ≥ 0.

C.2 The case ε < 0 and benign tumours

In the previous section, considering the simplified equations (C.1) we have come to the
conclusion that a sufficient and necessary condition for unlimited tumour growth is ε ≥
0. In the case ε < 0, provided that the parameter σ is above a certain critical value, the
system reaches a positive steady state (m∗, S∗, N∗). Once we rename(

S

N

)
staz

= rstaz =
kd

k2S + k1N1S + k2N
; (C.1)

the values of (m∗, S∗, N∗) are given by

m∗ =
(

kh

rstaz

σ

−ε
− kh

) 1
h

.

S∗ =
kmd
kmp

·
(

kh

rstaz

σ

−ε
− kh

) 1
h

.

N∗ =
Sstaz
rstaz

=
kmd

rstaz · kmp
·
(

kh

rstaz

σ

−ε
− kh

) 1
h

.

Since in this case the mass of the tumour does not exceeds a finite value, we could
think of this case as a very basic model for the benign version of the tumour under
consideration. A benign tumour is a mass of cancer cells that lacks the ability to invade
neighbouring tissue or metastasize. In the case of unbounded growth of the tumour (that
is ε > 0), which we associate with the malignant version of the tumour, it is inevitable
cancer cells would spread into and invade nearby tissues, causing metastases. A benign
tumour could instead stay dormant or, as the cells divide and accumulate mutations,
undergoing phenotypical changes that cause the tumour to become malignant. In our
case the tumour progression would be triggered by a mutation that causes the potential
for symmetrical division into two CSC of a CSC (the rate k2S) to exceed its potential for
symmetrical division into two CC (the rate k2N ), since that would cause the transition
from ε < 0 (k2S < k2N ) to ε > 0 (k2S > k2N ).
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Figure D.1: Example of dynamics of S, N and m obtained solving numerically the rate equations.
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Figure D.2: Dynamics of c(t) for S0 = 10−4N0, varying the initial value m(0).
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Figure D.3: The maximum cmax of CSC concentration depending on the initial concentration c0
(N0 = 106, m0 = 0 for simulations carried out with the parameters listed in Table 1).
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out with the parameters listed in Table 1).
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Figure D.5: The stationary value c∗ as a function of k1N1S (k1N1S = 0.2 for simulations carried
out with the parameters listed in Table 1).
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Figure D.6: cmax variation with respect to K (K = 6 · 105 for simulations carried out with the
parameters listed in Table 1).
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Figure D.7: cstaz variation with respect to K (K = 6 · 105 for simulations carried out with the
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Figure D.8: cmax variation with respect to h (h = 4 for simulations carried out with the parameters
listed in Table 1).

5 10

h

0.0166

0.016605

0.01661

0.016615

c
s
ta

z

S
0
 = 0.1 % N

0

S
0
 = 1 % N

0

Figure D.9: cstaz variation with respect to h (h = 4 for simulations carried out with the parameters
listed in Table 1).



Supporting figures of Chap. 2 89

0 2 4 6 8 10

 τ 

0

0.05

0.1

0.15

0.2

0.25

c
m

a
x

S
0
 = 0.1 % N

0

S
0
 1 % N

0

Figure D.10: cmax variation with respect to τ (τ = 4 in Fig.??).
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Figure D.11: cstaz variation with respect to τ (τ = 4 for simulations carried out with the parame-
ters listed in Table 1).
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Figure D.12: cmax variation with respect to km (km = 4.0 for simulations carried out with the
parameters listed in Table 1).
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Figure D.13: cstaz variation with respect to km (km = 4.0 for simulations carried out with the
parameters listed in Table 1).
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Figure D.14: cmax variation with respect to kmp (kmp = 300.0 for simulations carried out with the
parameters listed in Table 1).
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Figure D.16: cmax variation with respect to kdfin (kdfin = 0.1 for simulations carried out with the
parameters listed in Table 1).
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Figure D.17: cstaz variation with respect to kdfin (kdfin = 0.1 for simulations carried out with the
parameters listed in Table 1).
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Figure D.20: Dependence of the total mass of the tumour at a fixed time on σ, according to our
model (standard initial conditions).





APPENDIX E

Spatial simulations.

E.1 Spatial overshoot.

Figure E.1: The spatial arrangements of CC of different ages and of CSC after 11 days, D =
101 µm2/s.

Figure E.2: Radial distribution of the fraction of CSC after 11 days, D = 101 µm2/s.
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96 E.1 Spatial overshoot.

Figure E.3: The spatial arrangements of CC of different ages and of CSC after 11 days, D =
1 µm2/s.

Figure E.4: Radial distribution of the fraction of CSC after 11 days, D = 1 µm2/s.
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Figure E.5: The spatial arrangements of CC of different ages and of CSC after 11 days, D =
10−1 µm2/s.

Figure E.6: Radial distribution of the fraction of CSC after 11 days, D = 10−1 µm2/s.



98 E.2 CSC fraction evolution.

E.2 CSC fraction evolution.

Here we consider the evolution of the fraction of CSC in the tumour mass. Defined as
c = S

S+N , it is clearly c = 1 for t = 0, since our initial condition is invariably a single CSC
in the centre of an otherwise empty 2D lattice. In the following pictures we report the
evolution of c(t), first in the case where delay in switching is active, and then in the case
where there is no delay in switching. In both cases we have included for comparison the
curve of c(t) in the case where σ = 0 (because when switching is inactive the delay loses
significance).
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Figure E.7: Evolution of fraction of CSCs on total number of cells with τ = 4 d.
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Figure E.8: Evolution of fraction of CSCs on total number of cells with τ = 0 d.

The behaviour observed in both cases is in accordance with the observation (resulting
from experiments reported, for example, in (88)) that when a cancer stem cell popula-
tion is isolated, purified and maintained in culture, the percentage of stem cells rapidly
decreases and finally stabilizes at a certain level, characteristic for this given cell cul-
ture. This is evident especially in the cases with lower diffusion coefficients, where c(t)
reaches an undoubted steady state. From the pictures we clearly see that when delay in
switching is present, the fraction of CSCs stabilizes faster than in the case with no delay
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and generally to a lower equilibrium value. Also we note that the fraction of CSCs in
the cases with low values of the diffusion coefficients is virtually indistinguishable, in its
evolution, from c(t) corresponding to the case with σ = 0 (no switching), while of course
the actual numbers of cells would be quite different in the two cases.

E.3 Total growth rate of the tumour and CSC growth rate.

Here we perform the analysis of the total rate of growth of the tumour mass. If the total
number of cells grows according the exponential law

S(t) +N(t) = c1 exp(K · t) (E.1)

then from the data of the simulations we can estimate the total instantaneous growth
rate K as K(t) = log(S(t)+N(t))

t .
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Figure E.9: Instantaneous growth rate of the tumour mass with time delay in switching.
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Figure E.10: Instantaneous growth rate of the tumour mass with no time delay in switching.

What is evident here is that after an initial period of super-exponential growth, the
growth rate become approximately constant, to mildly decline for larger times. We see
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wider gap of growth rate between high and low values of the diffusion coefficients in the
case with no time delay in switching. In the case with delay, the growth rate is generally
smaller, and again we observe no great difference between the curves of K(t) for the
lowest values of the diffusion coefficient and the curve for the case σ = 0.
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E.4 The case σ = 0.

In this section we collect two examples of spatial plots (with the cellular spatial organi-
zation of the tumoral mass) and their respective radial densities of the fraction of CSC
obtained during the simulation in absence of switching (σ = 0). It is evident that no per-
manent and isotropic enrichment of CSC at the border of the tumoral mass is present,
and that the maxima in the radial density of CSCs are assumed in the inner regions of
the tumour. These maxima, with respect to the case of active controlled switching, ap-
pear to be more statistical fluctuations from the average density, especially at large times
(when they are smoothed). CSC can however form (see Section E.9) individual clusters
of higher density, whose distribution is of course anistotropic.

Figure E.11: Spatial plot of the tumoral mass with cellular spatial organization, at time t = 30 d,
with σ = 0.
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Figure E.12: Snapshot of radial distribution of CSC at time t = 30 d, with σ = 0.
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Figure E.13: Spatial plot of the tumoral mass with cellular spatial organization, at time t = 35 d,
with σ = 0.
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Figure E.14: Snapshot of radial distribution of CSC at time t = 35 d, with σ = 0.

This is also evident from Fig. E.15, where it can be seen that rmax is not always close
to rtumour.
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Figure E.15: Evolution in the simulation of the position rmax of the peak in CSC concentration, the
activation threshold (position for which π = 0.9), and the overall radius rtumour of the tumoral
mass.
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E.5 Spatial plots and radial densities.

In this section we collect, for each simulation of interest, a sample of the output as fol-
lows:

– a spatial plot with the cellular spatial organization at a certain time t (in general
close to the end of the simulation);

– the radial distribution of the fraction of CSC on total cells at time t;

– a plot comparing (at the time T ) the radial distribution of the switching inhibitor
molecule, the radial distribution of the fraction of CSC on total cells, the threshold
K and the effective switching factor π(r, t) = mh(r, t)/[Kh +mh(r, t)];

– a plot showing the evolution of the position rmax of the peak in CSC concentration,
the evolution of the activation threshold, defined as the value of r at which the
concentration of the molecule gives π = 0.9, i.e., at which switching inhibition
drops to very low values, and the evolution of the overall radius rtumour of the
tumoral mass during the entire course of the simulation.
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E.5.1 D = 10−2 µm2/s, τ = 0 d.

Figure E.16: Spatial plot of the tumoral mass with cellular spatial organization, at time t = 30 d,
with τ = 0 d and D = 10−2 µm2/s.
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Figure E.17: Snapshot of radial distribution of CSC at time t = 30 d, with τ = 0 d and D =
10−2 µm2/s.
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Figure E.18: Snapshot of radial distributions at time t = 30 d, with τ = 0 d and D = 10−2 µm2/s.
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Figure E.19: Evolution in the simulation of the position rmax of the peak in CSC concentration, the
activation threshold (position for which π = 0.9), and the overall radius rtumour of the tumoral
mass.
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E.5.2 D = 10−2 µm2/s, τ = 4 d.

Figure E.20: Spatial plot of the tumoral mass with cellular spatial organization, at time t = 30 d,
with τ = 4 d and D = 10−2 µm2/s.
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Figure E.21: Snapshot of radial distribution of CSC at time t = 30 d, with τ = 4 d and D =
10−2 µm2/s.
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Figure E.22: Snapshot of radial distributions at time t = 30 d, with τ = 4 d and D = 10−2 µm2/s.
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Figure E.23: Evolution in the simulation of the position rmax of the peak in CSC concentration, the
activation threshold (position for which π = 0.9), and the overall radius rtumour of the tumoral
mass.
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E.5.3 D = 10−1 µm2/s, τ = 0 d.

Figure E.24: Spatial plot of the tumoral mass with cellular spatial organization, at time t = 30 d,
with τ = 0 d and D = 10−1 µm2/s.
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Figure E.25: Snapshot of radial distribution of CSC at time t = 30 d, with τ = 0 d and D =
10−1 µm2/s.
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Figure E.26: Snapshot of radial distrbutions at time t = 30 d, with τ = 0 d and D = 10−1 µm2/s.
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Figure E.27: Evolution in the simulation of the position rmax of the peak in CSC concentration, the
activation threshold (position for which π = 0.9), and the overall radius rtumour of the tumoral
mass.
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E.5.4 D = 10−1 µm2/s, τ = 4 d.

Figure E.28: Spatial plot of the tumoral mass with cellular spatial organization, at time t = 30 d,
with τ = 4 d and D = 10−1 µm2/s.
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Figure E.29: Snapshot of radial distribution of CSC at time t = 30 d, with τ = 4 d and D =
10−1 µm2/s.
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Figure E.30: Snapshot of radial distrbutions at time t = 30 d, with τ = 4 d and D = 10−1 µm2/s.
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Figure E.31: Evolution in the simulation of the position rmax of the peak in CSC concentration, the
activation threshold (position for which π = 0.9), and the overall radius rtumour of the tumoral
mass.
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E.5.5 D = 1 µm2/s, τ = 0 d.

Figure E.32: Spatial plot of the tumoral mass with cellular spatial organization, at time t = 30 d,
with τ = 0 d and D = 1 µm2/s.
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Figure E.33: Snapshot of radial distribution of CSC at time t = 30 d, with τ = 0 d and D =
1 µm2/s.
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Figure E.34: Snapshot of radial distrbutions at time t = 30 d, with τ = 0 d and D = 1 µm2/s.
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Figure E.35: Evolution in the simulation of the position rmax of the peak in CSC concentration, the
activation threshold (position for which π = 0.9), and the overall radius rtumour of the tumoral
mass.
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E.5.6 D = 1 µm2/s, τ = 4 d.

Figure E.36: Spatial plot of the tumoral mass with cellular spatial organization, at time t = 30 d,
with τ = 4 d and D = 1 µm2/s.
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Figure E.37: Snapshot of radial distribution of CSC at time t = 30 d, with τ = 4 d and D =
1 µm2/s.
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Figure E.38: Snapshot of radial distrbutions at time t = 30 d, with τ = 4 d and D = 1 µm2/s.
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Figure E.39: Evolution in the simulation of the position rmax of the peak in CSC concentration, the
activation threshold (position for which π = 0.9), and the overall radius rtumour of the tumoral
mass.
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E.5.7 D = 10 µm2/s, τ = 0 d.

Figure E.40: Spatial plot of the tumoral mass with cellular spatial organization, at time t = 29 d,
with τ = 0 d and D = 10 µm2/s.

Figure E.41: Snapshot of radial distribution of CSC at time t = 29 d, with τ = 0 d and D =
10 µm2/s.
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Figure E.42: Snapshot of radial distrbutions at time t = 29 d, with τ = 0 d and D = 10 µm2/s.
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Figure E.43: Evolution in the simulation of the position rmax of the peak in CSC concentration, the
activation threshold (position for which π = 0.9), and the overall radius rtumour of the tumoral
mass.
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E.5.8 D = 10 µm2/s, τ = 4 d.

Figure E.44: Spatial plot of the tumoral mass with cellular spatial organization, at time t = 30 d,
with τ = 4 d and D = 10 µm2/s.
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Figure E.45: Snapshot of radial distribution of CSC at time t = 30 d, with τ = 4 d and D =
10 µm2/s.
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Figure E.46: Snapshot of radial distrbutions at time t = 30 d, with τ = 4 d and D = 10 µm2/s.
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Figure E.47: Evolution in the simulation of the position rmax of the peak in CSC concentration, the
activation threshold (position for which π = 0.9), and the overall radius rtumour of the tumoral
mass.
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E.5.9 D = 102 µm2/s, τ = 0 d.

Figure E.48: Spatial plot of the tumoral mass with cellular spatial organization, at time t = 26 d,
with τ = 0 d and D = 102 µm2/s.
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Figure E.49: Snapshot of radial distribution of CSC at time t = 26 d, with τ = 0 d and D =
102 µm2/s.
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Figure E.50: Snapshot of radial distrbutions at time t = 26 d, with τ = 0 d and D = 102 µm2/s.
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Figure E.51: Evolution in the simulation of the position rmax of the peak in CSC concentration, the
activation threshold (position for which π = 0.9), and the overall radius rtumour of the tumoral
mass.
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E.5.10 D = 102 µm2/s, τ = 4 d.

Figure E.52: Spatial plot of the tumoral mass with cellular spatial organization, at time t = 30 d,
with τ = 4 d and D = 102 µm2/s.
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Figure E.53: Snapshot of radial distribution of CSC at time t = 30 d, with τ = 4 d and D =
102 µm2/s.
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Figure E.54: Snapshot of radial distrbutions at time t = 30 d, with τ = 4 d and D = 102 µm2/s.
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Figure E.55: Evolution in the simulation of the position rmax of the peak in CSC concentration, the
activation threshold (position for which π = 0.9), and the overall radius rtumour of the tumoral
mass.
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E.5.11 D = 103 µm2/s, τ = 0 d.

Figure E.56: Spatial plot of the tumoral mass with cellular spatial organization, at time t = 26 d,
with τ = 0 d and D = 103 µm2/s.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0  50  100  150  200  250  300  350  400  450  500

C
S

C
 a

ve
ra

ge
 d

en
si

ty

distance from centre

CSC fraction

Figure E.57: Snapshot of radial distribution of CSC at time t = 26 d, with τ = 0 d and D =
103 µm2/s.
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Figure E.58: Snapshot of radial distrbutions at time t = 26 d, with τ = 0 d and D = 103 µm2/s.
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Figure E.59: Evolution in the simulation of the position rmax of the peak in CSC concentration, the
activation threshold (position for which π = 0.9), and the overall radius rtumour of the tumoral
mass.
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E.5.12 D = 103 µm2/s, τ = 4 d.

Figure E.60: Spatial plot of the tumoral mass with cellular spatial organization, at time t = 30 d,
with τ = 4 d and D = 103 µm2/s.
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Figure E.61: Snapshot of radial distribution of CSC at time t = 30 d, with τ = 4 d and D =
103 µm2/s.
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Figure E.62: Snapshot of radial distrbutions at time t = 30 d, with τ = 4 d and D = 103 µm2/s.
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Figure E.63: Evolution in the simulation of the position rmax of the peak in CSC concentration, the
activation threshold (position for which π = 0.9), and the overall radius rtumour of the tumoral
mass.
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E.6 Radial distributions of CSC fractions and molecule density com-
pared.
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Figure E.64: Radial distribution of fraction of CSC at time t = 28 d, with τ = 4 d.
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Figure E.65: Radial distribution of molecule at time t = 28 d, with τ = 4 d.
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Figure E.66: Radial distribution of fraction of CSC at time t = 30 d, with τ = 4 d.
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Figure E.67: Radial distribution of molecule at time t = 30 d, with τ = 4 d.
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Figure E.68: Radial distribution of fraction of CSC at time t = 28 d, with τ = 0 d.
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Figure E.69: Radial distribution of molecule at time t = 28 d, with τ = 0 d.
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E.7 Simulations with km = 0.5 d−1 .
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Figure E.70: Evolution of fraction of CSCs on total number of cells with τ = 4 d.
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Figure E.71: Instantaneous growth rate of the tumour mass with τ = 4 d.
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Figure E.72: Radial distribution of fraction of CSC at time t = 28 d, with τ = 4 d.
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Figure E.73: Radial distribution of molecule at time t = 28 d, with τ = 4 d.
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E.8 Evolution of maxima of CSC fraction.

In this section we show the evolution of the maxima of the radial fraction of the CSC,
both in the case with E.74 and without delay E.75. In is worth remembering that, while
for σ 6= 0 the maximum, after the first 5–10 days of growth, is always located in the
proximity of the border of the tumoral mass, this is not the case for σ = 0.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0  5  10  15  20  25  30  35

m
ax

im
um

 r
ad

ia
l d

en
si

ty
 o

f C
S

C

time (days)

D = 103 µm2/s
D = 102 µm2/s
D = 10 µm2/s
D = 1 µm2/s

D = 10-1 µm2/s
D = 10-2 µm2/s

σ=0

Figure E.74: Evolution of maximum radial density of CSCs with no time delay in switching.
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Figure E.75: Evolution of maximum radial density of CSCs with time delay in switching.

What is evident from the picture is that in both cases the maximum of the local den-
sity (almost always located on the border of the tumour mass) grows in time until it
reaches a maximum value and then decreases. Observing the behaviour of the curves
corresponding the lowest diffusion coefficients, it seems reasonable to infer that the max-
imum of CSC fraction converges to a stationary value. It would be interesting to deter-
mine whether the curves for the highest diffusion coefficients, once extended the time of
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simulation, would display the same behaviour.
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E.9 Clustering analysis.

E.9.1 σ = 0, t = 34 d.

Figure E.76: Spatial plot of the tumoral mass with cellular spatial organization, at time t = 34 d,
with σ = 0.
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Figure E.77: The clusters of CSC, colored differently for each cluster, obtained with the algorithm
of ref. (130) using as parameters k-NN = 5 and Z = 1.8.
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Figure E.78: The clusters of CSC, colored differently according to the spatial density of each cluster,
obtained with the algorithm of ref. (130) using as parameters k-NN = 5 and Z = 1.8.
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Figure E.79: The clusters of CSC, subtracted their density halo and colored differently according
to the spatial density of each cluster (density calculated without the halo points), obtained with
the algorithm of ref. (130) using as parameters k-NN = 5 and Z = 1.8.
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E.9.2 D = 10−2 µm2/s, τ = 4 d, t = 34 d.

Figure E.80: Spatial plot of the tumoral mass with cellular spatial organization, at time t = 34 d,
with D = 10−2 µm2/s.

 0  200  400  600  800  1000
 0

 200

 400

 600

 800

 1000

 0

 10

 20

 30

 40

 50

 60

Figure E.81: The clusters of CSC, colored differently for each cluster, obtained with the algorithm
of ref. (130) using as parameters k-NN = 5 and Z = 1.8.
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Figure E.82: The clusters of CSC, colored differently according to the spatial density of each cluster,
obtained with the algorithm of ref. (130) using as parameters k-NN = 5 and Z = 1.8.
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Figure E.83: The clusters of CSC, subtracted their density halo and colored differently according
to the spatial density of each cluster (density calculated without the halo points), obtained with
the algorithm of ref. (130) using as parameters k-NN = 5 and Z = 1.8.
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E.9.3 D = 10−1 µm2/s, τ = 4 d, t = 34 d.

Figure E.84: Spatial plot of the tumoral mass with cellular spatial organization, at time t = 34 d,
with D = 10−1 µm2/s.
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Figure E.85: The clusters of CSC, colored differently for each cluster, obtained with the algorithm
of ref. (130) using as parameters k-NN = 5 and Z = 1.8.
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Figure E.86: The clusters of CSC, colored differently according to the spatial density of each cluster,
obtained with the algorithm of ref. (130) using as parameters k-NN = 5 and Z = 1.8.
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Figure E.87: The clusters of CSC, subtracted their density halo and colored differently according
to the spatial density of each cluster (density calculated without the halo points), obtained with
the algorithm of ref. (130) using as parameters k-NN = 5 and Z = 1.8.
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E.9.4 D = 10 µm2/s, τ = 4 d, t = 32 d.

Figure E.88: Spatial plot of the tumoral mass with cellular spatial organization, at time t = 34 d,
with D = 10 µm2/s.
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Figure E.89: The clusters of CSC, colored differently for each cluster, obtained with the algorithm
of ref. (130) using as parameters k-NN = 5 and Z = 1.8.
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Figure E.90: The clusters of CSC, colored differently according to the spatial density of each cluster,
obtained with the algorithm of ref. (130) using as parameters k-NN = 5 and Z = 1.8.

Figure E.91: The clusters of CSC, subtracted their density halo and colored differently according
to the spatial density of each cluster (density calculated without the halo points), obtained with
the algorithm of ref. (130) using as parameters k-NN = 5 and Z = 1.8.
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E.9.5 D = 102 µm2/s, τ = 4 d, t = 3 d.

Figure E.92: Spatial plot of the tumoral mass with cellular spatial organization, at time t = 3 d,
with D = 102 µm2/s.
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Figure E.93: The clusters of CSC, colored differently for each cluster, obtained with the algorithm
of ref. (130) using as parameters k-NN = 5 and Z = 1.8.
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Figure E.94: The clusters of CSC, colored differently according to the spatial density of each cluster,
obtained with the algorithm of ref. (130) using as parameters k-NN = 5 and Z = 1.8.
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Figure E.95: The clusters of CSC, subtracted their density halo and colored differently according
to the spatial density of each cluster (density calculated without the halo points), obtained with
the algorithm of ref. (130) using as parameters k-NN = 5 and Z = 1.8.



APPENDIX F

Persistence of enrichment at the border: mathematical
details.

Dividing the lattice radially with bin ∆r, one can assume that the number S(r, t) of CSC
in a bin follows

∂S(r, t)
∂t

=

[
K

1
∆r

∫ r−∆r

0

dr′ S(r′, t) + kd
1

∆r

∫ r−∆r

0

dr′N(r′, t)

]
· [S(r −∆r, t)− S(r, t)] +

+ εS(r, t). (F.1)

where the first describes the transport of CSC to site r: the duplication of CSC and
CC at any site r′ < r − ∆r shift all cells in a radial direction and, if combined with the
presence of CSC at site r − ∆r, shift this to site r. The second term is the increase of
CSC at site r due to duplication at site r − ∆r. Summing and subtracting εS(r, t) and
multiplying and dividing by ∆r, one obtains

∂S(r, t)
∂t

= −

[
K

∫ r−∆r

0

dr′ S(r′, t) + kd

∫ r−∆r

0

dr′N(r′, t)

]
· ∂S
∂r
− ε∆r ∂S

∂r
+

+ εS(r, t). (F.2)

Let’s make a mean–field approximation, setting

∫ r−∆r

0

dr′ S(r′, t) ≈ (r −∆r) · S∫ r−∆r

0

dr′N(r′, t) ≈ (r −∆r) ·N. (F.3)

where the constants S and N are respectively the average population of CSC. The
kinetic equation simplifies to

∂S(r, t)
∂t

= −(KS + kdN)r · ∂S
∂r

+ (KS + εN − ε)∆r ∂S
∂r

+ εS(r, t), (F.4)

which can be written, setting ε′ ≡ KS + kdN , as

∂S(r, t)
∂t

= −ε′r · ∂S
∂r

+ (ε′ − ε)∆r ∂S
∂r

+ εS(r, t). (F.5)
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The equation written in the following form (setting ∆ε ≡ ε′ − ε)

∂S(r, t)
∂t

+ ε′r · ∂S
∂r
−∆ε∆r

∂S

∂r
= εS(r, t). (F.6)

is a first-order transport partial differential equation, with a reaction term (εS(r, t))
and with a transport current going in the positive direction of the r axis (since the trans-
port velocity ε′r−∆ε∆r is positive, in the equation written in the form (F.6), as ∆r << r).

The solution of this p.d.e. has the form

S(r, t) = [ε′r −∆ε∆r]ε/ε
′

· f
(
ε′r −∆ε∆r

eε′t

)
, (F.7)

where f is an arbitrary function.
Assuming an initial condition S(r, t) = S0(r), using the above solution at t = 0 one

has

S0(r) = [ε′r −∆ε∆r]ε/ε
′

· f (ε′r −∆ε∆r) , (F.8)

from which

f(r) =
1

rε/ε′
S0

(
r + ∆ε∆r

ε′

)
(F.9)

that, substituted into Eq. (F.7) gives

S(r, t) = eεt · S0

(
ε′r −∆ε∆r

ε′
e−ε

′t +
∆ε∆r
ε′

)
. (F.10)

The characteristics of the solution, that is the lines at equal S, proceed in time as

ε′r −∆ε∆r
ε′

e−ε
′t +

∆ε∆r
ε′

= G, (F.11)

where G is a constant. Consequently, the maximum enrichment point moves as

r(t) =
(
G− ∆ε∆r

ε′

)
eε
′t +

∆ε∆r
ε′

(F.12)
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