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Summary 

Soil organic carbon (SOC) represents the biggest carbon pool of the biosphere, bigger than the living 

plant pool. In agriculture, SOC is of pivotal importance for sustainable soil management and is a main 

soil fertility indicator. As soils are responsible for food production and the provision of various 

ecosystem services, there is a sturdy interest in understanding how land use and management affect 

natural plant and crop growth, and ecosystem resilience and functioning. These processes require 

time and soil sustainability is to be evaluated in a long-term economic perspective by policy makers 

with the aim of maintaining adequate, and likely improved, conditions of the soil and the whole farm 

for the future. Thus, long-term actions for crop sustainability could also admit little short-time yield 

reduction if yield potential, stability and environmental health are maintained at the long-time.  

Food production and ecosystem services provision depend on the maintenance, or increase, of SOC 

in agricultural soil, since SOC act as a short-term nutrient reservoir, increase water holding capacity 

and soil infiltration rate, reduce soil compaction, and favour soil resilience against pollutants. These 

effects should be taken into account at both a narrow and broad geographical breadth. 

When aiming to manage SOC at broad geographical extent, a detailed knowledge of SOC distribution 

and likely change in time is required. However, such a knowledge relies on correct sampling method 

and modelling procedures that in turn depend on the environmental variability of the area under study. 

Mediterranean areas are frequently variable as an harbour, the area has been subjected to a high share 

of soil and above-ground biodiversity and experienced long cultivation history and intensification 

since the last century, which increased their fragility. In this environment, the acquisition of reliable 

information on SOC can require a highly dense sampling, which can also negatively affect some relict 

environment. In addition, sampling can imply a high cost for field work and laboratory analyses.  

The aim of my Ph.D. work was thus to investigate the main factors related to SOC spatial distribution 

in agricultural land under various pedoclimatic conditions in semiarid Mediterranean areas, using a 
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legacy soil database (1968-2008) of SOC and soil bulk density. The dissertation is structured in six 

chapters: the first one is a general introduction where the rationale of the dissertation is explained, 

and the research questions are stated. The second chapter is a novel approach to systematically 

collecting literature from international peer-review issues, namely systematic map. The third one is 

an analysis of the legacy soil database, which intends to make the database ready to be used for the 

SOC assessment and for the digital soil mapping. The fourth chapter touches an issue dealing with 

SOC stock mapping with the boosted regression tree and a set of covariates to produce local SOC 

benchmarks to be compared with European and Global SOC maps. The fifth chapter fits in the same 

modelling frame and it is addressed at the SOC dynamics using the most widespread legacy sampling 

campaign. A high number of available spatial data were collected and computed and used to calibrate 

the SOC models. At this stage, due to the ungridded structure of the data, a machine learning based 

model has been used (Boosted Regression Trees). The last chapter is a comparison of models 

(geostatistical, machine learning and linear), and shows useful information about the way that the 

error is reported by each algorithm. Soil maps are not just produced for the sake of creating attractive 

geographical visualizations: they have a very precise task to fulfil, i.e. provide accurate and reliable 

information on soil properties that decision makers can use to plan interventions of any kind. 

The use of the Regression Kriging and Boosted Regression Trees models, which resulted in the best 

prediction performance in terms of R2 and RMSE, highlighted the SOC dependence on 

environmental factors, and the prediction of the agricultural land covers. All land cover groups were 

studied in the preliminary stage of this study (chapter 2), while only the cropland identified with the 

legacy data was the candidate for the development of the final models which lead to the detection of 

a positive SOC trend. The last chapter aimed at the comparison between geostatistical, machine 

learning and linear models to predict SOC in agricultural lands, and an improvement in local 

uncertainty estimation. The outstanding result was that SOC at the monitoring sites were accurately 

simulated, being in full agreement with observed data. Once more, actual data will be available and 

the model will be calibrated and validated, a model of SOC potential sequestration regional scale can 

be produced. The results of this dissertation has led to a clear and shared vision in the community 

regarding the selection of the estimation methods for SOC prediction needs to be based on careful 

considerations. It is good practice to test algorithms already used in literature for similar purposes, 

but it may be counterproductive to only look at an algorithm because it is new and never used before 

in a particular field. This sometimes happens in science where methods are selected only because 

fashionable and not based on real and tested experiments. In the dissertation the origin of the data 

was sometimes know and sometimes it has been data driven based. In particular, sampling design 

was based on geostatistics only in the 2008 campaign and it may well be that looking at very advanced 
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methods like deep-learning could be interesting, but still less accurate than the geostatistical kriging 

based algorithms, which can also provide robust and well tested uncertainty estimations. In summary, 

even though we have now access to advanced algorithms it does not mean that we need to use them 

blindly without fully considering what we are trying to achieve with our working hypothesis and 

research question. 

After the last chapter, a brief paragraph outlines the general conclusions and recommendations. 

------------------------------------------------------------------------------------------------------------------------ 

Foreword 

The dissertation aimed at the optimization of an underused legacy database, which can be integrated 

with other soil database (e.g. at European level), and at the development of a monitoring and mapping 

solutions for legacy soil data-based analysis for the agro-ecosystem of a semi-arid Mediterranean 

island (Sicily). With this work, a bunch of regional data takes shape along with the ability to generate 

information derived mainly from historical data. Processes of these kind are hard to discover and 

mostly studied, for some environment, only through a wide use of intercontinental benchmarks. These 

make possible to achieve satisfactory results when evaluating broad changes in wide regions, but are 

scarcely applicable to downscaling processes for the evaluation in small regions. 

The PhD has been driving me through the academic and publishing pipelines, that include ethics. In 

the papers presented in this dissertation, I have conducted and supervised the very most of the research 

steps, from data collection, to analysis, to presentation and interpretation of the results. However, I 

am in debt to some of my colleagues, which made an insightful intellectual contribution to the data 

analysis and interpretation: firstly with my supervisor Prof. Marco Acutis and my co-supervisor Dr. 

Sergio Saia. 
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1. Introduction 

1.1 Background and paradigms of soil carbon mapping in agricultural soils 

Soil organic carbon (SOC) is an ecological indicator of soil health and ability to provide ecosystem 

services and soil fertility. Its study is mandatory for decisions making on sustainability (Dai et al., 

2014; Panagos et al., 2013b). From a subsistence to a commercial level, agriculture soils have to 

provide crops, fibres and livestock (Bocchi, 2015). Soil data are the base for quantitative soil science. 

In this regards, there is a debate running on the use of existing and future data for non-experts by 

enhancing data access and providing easy-to-understand documentation, such as maps and supporting 

materials (Campbell et al., 2017). The scientific production about SOC in the last decade has been 

quantified in around 35 thousand papers (Smith et al., 2018). However, there is still a gap in the 

practical use by non-expert stakeholders and to find effective ways to share knowledge with soil 

managers and policy makers so that best management can be implemented (Lobry de Bruyn et al., 

2017; Smith et al., 2015).  

Maps conceal with a power of persuasion (Boria, 2017) by better reaching the aim of visual display. 

Nowadays the possibility to process and analyse big data allows for the rediscovery of legacy 

information stored in tables and in maps. At global scale, there is a lack of common procedures on 

protocols of soil surveying and lab procedures (Jandl et al., 2014), and difficulties in quantifying SOC 

pool changes over time (Köchy et al., 2015b, 2015a). This was underlined by a paper signed by 73 

authors, in which an urgent need to reduce uncertainty associated with SOC management across 

terrestrial ecosystems is stated (Milne et al., 2015).  

Many Earth System Models recognized that climatic variables are of primary importance in empirical 

and modelling approaches of SOC (Davidson and Janssens, 2006). Recently (Doetterl et al., 2015a) 

indicated that SOC turnover is likely to be related to geochemical factors. Based on data from field 

experiments across North America, Europe and Asia, it was recently demonstrated that global 

warming have induced changes in soil carbon stocks  (Crowther et al., 2016). Also, these changes are 

likely to intensively impact soils in Mediterranean areas, which are fragile, and thus also reduce 

biodiversity in Mediterranean ecosystems and agro-ecosystems (Sokos et al., 2013; Underwood et 

al., 2009; Zamora et al., 2007). 

Several studies were carried out to characterize soil diversity of the Mediterranean region, especially 

in cropland and knowing its status of conservation is a pre-requisite to improve land management. In 

particular, the knowledge of soil status and its modelling can allow for the problem identification of 

the soil organic pool and thus establish tools to reduce the pressure on agro-ecosystems while 

preserving its functionality (Brilli et al., 2017; Hijbeek et al., 2017). SOC mapping is one of the most 
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important tasks if considering that the Mediterranean region suffer by various agro-environmental 

problems, including climate change; land reclamation for industry and buildings; and high intensity 

of intensive crop production. These issues dramatically increase land degradation (Rodeghiero et al., 

2011). Recently a worldwide initiative has been launched at the COP21 to offset CO2 emission by 

increasing the global SOC stock by 4 per 1000 (or 0.4 %) per year (Minasny et al., 2017). This based 

the findings on the SOC stock estimates and sequestration potentials from 20 regions in the world 

and under best management practices. European Community has worked for the monitor and the 

adoption of new strategies of subsidies for farmers to slow the land degradation processes (Borrelli 

et al., 2016; Lugato et al., 2016).  

1.2 Soil Organic Carbon in the digital soil mapping frame 

To classify a soil and quantitatively measure their property fits in the general framework of soil 

mapping and pedometrics (McBratney et al., 2003; Vaysse et al., 2017; Xiong et al., 2015). Soil 

mapping as a branch of soil science has been developed mainly for the assessment of soil resource 

using geographic information systems (GIS), in order to limit the labour intensive work of soil 

analysis and field surveys. The temporal dimension is also important to understand the reasons of the 

SOC dynamics in space. Indeed, historical land assessment can give information on critical soil 

management aspects that strongly affect soil conditions (e.g. land use, tillage and fertilisation 

practices, plant residue management, crop rotation, flooding, low SOC values, change in topographic 

variables, construction of dams, etc.), and that should be taken into account for maintaining soil 

quality (Gregorich et al., 1994). 

There are currently amount of mid-term (around 3-5 years) rather than long term (more than 10 years) 

experiments that have let to accumulate time or spatial clustered data. These data can be effectively 

treated with the statistical approaches. The discipline that offers different tool to understand such a 

variation in a quantitative way is Digital soil mapping (McBratney et al. 2003; Behrens & Scholter 

2006a).  DSM has multiple aims, including the provision of accurate estimates along with its accuracy 

regardless of the scale. 

Understanding soil variation across the landscape and especially for agriculture management is of 

foremost importance in the actual changing climate conditions. For examples, topographical variables 

plays an important role in SOC prediction in heterogeneous landscapes (Behrens et al., 2010; Grimm 

et al., 2008; Mondal et al., 2016; Odeh et al., 1994). 

After many years that the discipline was brought to an operational level, two reviews appeared 

important for its uniform use by researchers (McBratney et al., 2003; Scull et al., 2003). Scull et al. 

(2003), referred to predictive soil mapping and provided an overview of intents of the DSM to i) use 
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other ancillary variables in the process of estimating the property of interest and to collect soil data 

more effectively, ii) to produce a better representation of soil as a continuous, landscape variable and 

iii) to incorporate expert knowledge into predictive modelling. McBratney et al (2003) gave the 

theoretical framework of the discipline and their modern aspects (Malone et al., 2009; Minasny et al., 

2013). The bunch of techniques DSM offers can drive knowledge in pedogenesis at local and regional 

scales. DSM needs as  input  digital  data  to represent the feature space for  the  quantitative  models 

(Behrens et al., 2010). DSM seems to be based on the Jenny’s well-known  equation CLORPT (1941) 

which identified  5  major  factors  in  the  soil  formation, subsequently modified in the actual 

SCORPAN equation where C is the Climate, O represents the Organisms, R the Relief, P the Parent 

material, A the Age, time, N the Geographic position. The SCORPAN model is a top-down data 

driven approach. This model was proved to be formalized firstly by Dokuchaev between 1899 and 

subsequently treated by Sergey Zakharov in its well-known fundamental textbook published in 1927 

(Florinsky, 2012). The latter author argue that Jenny (1941) adopted the soil formation equation 

learning by the work of Sergey Zakharov that represent the work of Dokuchaev itself. This was the 

result of a recent investigation published in the anniversary year for publications of Dokuchaev and 

Jenny (Florinsky, 2012). DSM currently rely on finding geographical areas where soil properties are 

relatively constant. By exploring environmental covariates with multivariate statistical analysis and 

Machine Learning is the new frontier of soil science and pedology. Spatial distribution across multiple 

spatial scales is then searched in the interactions between soil forming factors, biophysical processes 

responsible for soil development and various other environmental proxies. Spatial scale in DSM could 

be summarized in High <20 m, Medium 20-200 m and Low > 200 m (McBratney et al., 2000). 

Temporal scale are better documented at detailed scale via intensive multiple year georeferenced 

sampling but are lacking to document the evolution of soil properties and processes at regional and 

continental scale (Grunwald et al., 2011). 

World soil data have been first organized for a SOC and N map by Batjes (1996), followed by a global 

assessment (Hiederer and Köchy, 2012; Köchy et al., 2015a, 2015b), and subsequently mapped with 

a biome approach by Batjes (2014). Those studies are based on incorporated data points over the 

world, however there are biases in their spatial distribution and their density much different between 

the developed countries and the growing economies and rural ones. Latest worldwide SOC models 

has taken into account the capabilities of different observational databases using a data mining 

(Boosted regression trees) for the SOC mapping (Hashimoto et al., 2016). In the aforementioned 

paper, the relative importance of five groups of predictor (topographical, climate, soil properties, 

vegetation and land cover) were leading in the SOC distribution in Earth System Models ESMs. 
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At European level croplands plays an important role in acting as a potential carbon sink because of 

their area, their biological potential for carbon storage is of the order of 90–120 Mt C (Freibauer et 

al., 2004; Smith, 2004), by the fact that there is up to 45 Mt C per year of raw materials available. 

Furthermore, much effort has been made by the Joint research centre (JRC) of the European 

commission. European scale have benefited by ad hoc European sampling networks (Lugato et al., 

2014a; Orgiazzi et al., 2017; Panagos et al., 2013a). 

1.3 An introductory note on semi-arid Mediterranean agroecosystems and the study site  

Drylands cover nearly of the half of the world and are inhabited by cca. 40 % of the world’s 

population. Such lands, mostly occurring in undeveloped and developing countries, harbour a variety 

of soils whose net primary and agricultural production is limited by water scarcity and high 

temperatures in the area, low water holding capacity (WHC) and fertility of the soil and other soil-

specific traits, including potential and actual soil erosion. In such conditions, the preservation of the 

soil organic carbon (SOC) pool, especially in the topsoil, has a striking potential to mitigate the loss 

of WHC and fertility and thus yield potential and variability among years, and also increase the CO2 

sequestration ability of the soil. These are further need at the light of the current climate change, 

which is mostly harming the fragile agro-ecosystems of drylands. 

Mediterranean soils are the result of a complex genesis (Lagacherie et al., 2018), and thus SOC in the 

Mediterranean is determined by pedogenesis, erosion and especially in agro-ecosystems it is 

influenced by tillage. Many territories are cultivated and grazed by sheep and goats intensively. 

Catchment country scale assessments have a large importance if we consider the food security aspect. 

For this reason, focus of the work was the catchment scale. Frequent tillage have negative effects on 

SOC accumulation and soil resilience to erosion, desertification and climate change (Kämpf et al., 

2016; Novara et al., 2013; Schillaci et al., 2017b), especially when tillage is intensive. This implies 

that SOC management plays a direct and crucial role in the world economy and is strategic to combat 

hunger and poverty. A number of agronomical management measures can be adopted to mitigate loss 

of carbon and preserve carbon-rich soil aggregates and preserve soil ecosystem services. The most 

important agronomical management measures include land use, land cover, the choice of crop species 

and genotypes, and soil management techniques, especially tillage. However, the role of each of these 

techniques and their interaction on SOC concentration, stock and spatio-temporal dynamics appear 

far to be clarified since it varies with the environmental traits of the site under study (Álvaro-Fuentes 

et al., 2012; Haddaway et al., 2016; Parras-Alcantara et al., 2016) and likely with the gross income 

of the population in the area and nation. In addition, the lack of data from many areas strongly impairs 

the ability to produce reliable indications on the site-specific management. Such information would 
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allow for the prescription of valuable actions able to preserve SOC and produce incentives to the 

actual agricultural production system and potential income derived from soil security. 

 

Fig.1 Example of the conceptual workflow for this DSM experiment 

The study area of the dissertation is a reference semiarid area (Sicily, Italy). This area was used for 

the estimate of the importance of land use and soil erosion potential on SOC variation in time (both 

as % and absolute compared to the initial) at varying soil type and aridity of the environment. Sicily 

has great potential as an open laboratory for studies about ecological issues and anthropic pressure 

on the agro-ecosystems thanks to the variability of its traits and deep knowledge of its soils. Indeed, 

a total of about 7000 soil samples corresponding to ca. 2700 georeferenced points (more than 1 point 

each 10 km2, Fig. 1A) are available, with information on SOC concentration, bulk density and soil 

texture. In addition, Sicily has variable, but on average high, demographic density and % area cropped 

in its territory, an ancient environmental and sociological history, a high climatic variability, several 

land uses and dominations from different populations, which introduced various plant species and 

management techniques and environmental heritages. The sum of such conditions makes Sicily an 

open and well suited laboratory to study the impact of anthropic pressure and of environmental 

variation at large scale (ecosystem level) and micro scale (few squared km), and of land cultivation 

and management on other environmental traits, including SOC distribution and dynamics. Finally, 

the present results can imply both agronomic and policy consequences at the district level and call 

for an intervention on soil fertility to maintain agriculture productivity (Acutis et al., 2014; Dono et 

al., 2016). 
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1.4 Objective of the thesis and Synopsis 

The spatial scales in this dissertation range from plot to a third order catchment and the temporal 

scales from few years to almost three decades. Complexity is the word that best suit the Mediterranean 

soils (Yaalon, 1997).  In the first chapter was provided an analysis of the literature available in the 

two most used databases: SCOPUS and Web of Science, out of that we can confirm that the two 

database have around 80 % of overlap, forcing the researcher looking at both. Non-peer reviewed 

reports were not taken into account. In the second chapter, the Legacy database have been carefully 

checked for potential errors of reporting and a 3D data clearing, screening and preparation for the 

modelling and mapping issues was performed. Such an optimization procedure was accompanied by 

a first test on the soil organic carbon (SOC) variation at varying depth, land use and soil and climate 

properties. In the third chapter, a digital soil mapping (DSM) experiment of the SOC stock in Sicily 

agro-ecosystems with Stochastic gradient treebost (SGT) was performed. It turned out an effective 

method proven for unbalanced, non-normal distributed data. SGT is in the family of the Boosted 

Regression trees models (BRT), with recursive partition model based on classification and regression 

trees CART (Elith et al., 2008). In this family of models, the effect of each predictor is represented 

after accounting for effects of other predictors. The splitting rules are based on binary splits on 

sequential explanatory variables. Input explanatory variables are weighted in subsequent trees and 

weights are applied in such a way that explanatory variables which has been poorly considered by 

previous trees has a higher probability of being selected in the new tree (Strobl et al., 2009). This 

sequential approach is the boosted (stochasticity) part of the regression tree meaning that the model 

takes in account as much as possible the explanatory variables available and avoid overfitting. This 

feature accounts for the main difference for another well-known Machine Learning method called 

Random Forest in which the explanatory variables have an equal probability of being selected for the 

next tree. This result was obtained by applying a BRT for the prediction of topsoil organic carbon 

stock (0-0.3 m) and examined the effects of 17 predictors, both continuous and categorical, that can 

be divided in five groups (climate, soil property, topography, vegetation, and land-use history). Aim 

of this paper was to produce a reliable and highly accurate topsoil SOC stock map by a robust mapping 

method and comparing this result with the newest global and European benchmarks available. 

The fourth chapter dealt with SOC content mapping over Sicilian agro-ecosystem by using the two 

legacy most widespread soil sampling campaign, namely 1993 and 2008, and computing the expected 

SOC dynamics in three main agricultural land covers: i) field crops; ii) Vineyards, Olive grove and 

fruit berry trees plantations; iii) semi-natural areas and complex cultivation patterns. Semi-natural 

areas are defined as patches of land that has around the 50% of their coverage occupied by natural 

vegetation such as shrubs, wood, grassland and mountains. In this experiment, BRT model has been 
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feed with a set of explanatory variables coming from: i) topography, ii) soil properties, iii) remotely 

sensed, iv) land cover. Based on the Legacy data of each sampling year, 1993 and 2008, the models 

translated to a better performance in deployment when remote sensing covariate has been used than 

without their use in model. Although the methods of analysis are the same for the two sets of data, 

the most recent sampling campaign was not originally aimed at discover the dynamics of SOC and 

the other agricultural related traits but to increase the spatial density to produce detail scale 

pedological map, that are not yet published. The predictive space (made up by the aforementioned 

covariates) differed slightly, so the discovery of a pattern of SOC increase was due to the input data 

(that are object of further laboratory analysis) that were since the beginning higher in the most recent 

sampling campaign. However, the two stratified sampling does not certainly capture the extreme 

values as well as one might anticipate. Where the majority of the data were aligned, by the use of a 

common model one could highlight differences due to change in land use or even change in the 

management directly, that is not possible for the constrains that the experiment had.  

The last chapter is a progression of an aim of the dissertation, i.e. quantifying the goodness of the 

most used DSM techniques and the local uncertainty at some unsampled location. Having reached 

relatively high R2 (0.68 for SOC prediction with BRT), the model results were compared with other 

four classes of models: i) linear models, ii) geostatistical kriging based models, iii) Random forest, 

iv) Hybrid, regression kriging and regression kriging boosted regression trees. The dataset used is the 

2008 sampling campaign. The topic is relatively new and proved BRT as the best machine learning 

model solution for SOC mapping, which confirmed previous results.  

________________________________________________________________________________ 
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Chapter 2- Modelling of Soil Organic Carbon in the Mediterranean area: a 

systematic map 

From: Schillaci, C., Saia, S., Acutis, M., 2018. Modelling of Soil Organic Carbon in the Mediterranean area: a 

systematic map. Rend. Online della Soc. Geol. Ital. doi.org/10.3301/ROL.2018.68. 

Keywords: digital soil mapping; soil carbon model; spatial modelling; systematic map; carbon 

stock. 

Abstract 

A general feature of soil health is the sustainment of soil organic carbon (SOC) concentration and its 

stock. Digital soil mapping (DSM) development allowed for the implementation of soil properties 

mapping at various spatial and time scales. However, many of these studies were made in temperate 

or cold environments from central and northern Europe or United States or in stably arid ecosystems 

of Australia. Geographical information on the SOC are often fragmented, and this does not allow for 

a comparison on SOC regional variability in contrasting areas. Here a systematic research of peer-

reviewed papers in the Web of science (WoS) and Scopus databases was carried out to highlight 

knowledge gaps in SOC studies in the Mediterranean area. The systematic searches identified 500 

articles in WoS and 750 in Scopus, but only few of them were eligible as ad hoc studies. Regarding 

WoS, after screening, 150 studies were further analysed for inclusion in the map and only 128 

included in the final map (1995-2018). From Scopus, only 104 studies were included in the map 

(1995-2017). Of all the countries around the Mediterranean Basin, report studies on SOC are available 

for 15 countries, only. Data gaps identified included the absence of long-term monitoring networks 

in the south of Europe, a scarcity of information from countries on the eastern coast of the Adriatic 

and Mediterranean Sea and almost lack of detailed information on SOC models and maps from north 

Africa. Model exportation built in neighbourhood countries (e.g. from Sicily, Italy, to northern 

Tunisia, or Andalusia, Spain, to northern Morocco) are strongly needed. 

2.1 Introduction 

Mediterranean areas have experienced large anthropic pressure, including fires and intensive 

cropping and other inappropriate management. This caused damage to the natural and agricultural 

ecosystems that has brought to severe land degradation by means of desertification, soil erosion and 

landslides, and reduction in soil organic carbon (SOC) (Persichillo et al., 2017; Saia et al., 2017b). In 

these areas, soil organic carbon (SOC) accumulation is peculiar and hampered by an unfavourable 

water-energy balance, especially in agricultural land where bare soil often occurs for several months, 

including those characterized by hot summers and discontinuous rainfall. Nonetheless, such issues 

can strongly vary with land use, its management, and morphology (Schillaci et al., 2017a). However, 

information on the region variability of SOC are fragmented, and this often does not allow for a 
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comparison of SOC evolution trends in contrasting areas that share similar land use management or 

SOC accumulation trends in similar areas with contrasting soil use management. In addition, this lack 

of information also impair the policy decisions about the soil use and management to preserve SOC 

stock, maintain soil fertility and reduce the environmental impact at broad areas (Pielke et al., 2002). 

Indeed, many reports pointed out at the SOC pool as a major player of the greenhouse gases (GHGs) 

emissions (e.g. Don et al., 2012; Lal, 2004).  

The fragmented knowledge of SOC drives research at country scale, such as Spain (Aguilera et al., 

2018), France (Martin et al., 2010) and even global projects such as 4x1000 (Minasny et al., 2017). 

In the present work, a systematic map (James et al., 2016) of the SOC studies (mapping and 

modelling) in the Mediterranean region was made to highlight information gaps. Such gaps impair 

the modelling of SOC and other soil properties to highlight the relationships with environmental 

management, which, for these areas, can be extremely variable depending on the subdomain of SOC 

or predictors (Lombardo et al., 2018; Schillaci et al., 2017b). Thus, aim of the present work is to 

analyse the coverage of two research databases, namely Web of Knowledge (WoS) and Scopus of 

papers dealing with SOC maps in Mediterranean areas, systematically refine its list and summarise it 

in a conceptual map along with some cartographic representation. 

Systematic map protocols are unequivocal means of collection of reports of a given topic and were 

indicated as a first step to perform a systematic review (James et al., 2016). For the standards in use 

in ecological evidence journal, huge investment are needed to perform a systematic map that take into 

account ‘grey literature’, since many reports, especially before the 1995, are not available online or 

are collected in private repositories. In the present work, fund and time limitations did not allow for 

a complete exploration of the grey literature repositories and only WoS and Scopus outputs were 

taken into account. A guideline to perform systematic maps was developed first by the Social Care 

Institute for Excellence (SCIE, at http://www.scie.org.uk/research/maps.asp) to collect and analyse 

results in social science. A formalization of the procedure related to environmental science was made 

by James et al. (2016), which offered a thorough description of how synthesize, investigate natural 

evidences, to collate data to make an inventory, and highlight research gaps. Thus, despite no grey 

literature was checked for, the systematic map here offers a feasible and reproducible means of 

selection of references pertaining to SOC maps in Mediterranean areas. Indeed, systematic maps may 

be helpful to observe trends in the literature.  

With regards to the studies on properties that could be predicted in space and time, such as crop yield, 

ecosystem services, soil or bedrock properties such as geological strata, population flows, etc., 

systematic maps can also be coupled with an mapping ‘as such’. In such kind of studies, systematic 

http://www.scie.org.uk/research/maps.asp
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maps can also provide synthetic information with an open framed question, e.g. about the amount of 

researches conducted in a place in term of density of results, reliability of former mapping/modelling 

procedures, spatial and temporal resolution available in the literature (James et al., 2016). Such 

information can be given as tables and graph with regards of the geographical coordinates of the 

studies or either can be coupled with a GIS to produce spatial re-usable information that can be 

integrated or it can address future spatial or spatio-temporal researches. Few systematic maps and 

systematic map protocols has been published yet as stand-alone research ideas along with 

cartographic outputs of the literature research (Bayliss et al., 2016; Haddaway, 2014; Randall and 

James, 2012; Thorn et al., 2016). 

A systematic research was conducted with reports dealing with studies on soil organic carbon 

modelling and mapping in the Web of science (WoS) and Scopus (Mongeon and Paul-Hus, 2016). 

The second aim of the work was to build a geodatabase for the Mediterranean region and highlight 

areas uncovered by any study. 

 

2.2 Materials e Methods 

A Systematic map was made according to the systematic process described by James et al. (2016) 

applied to the WoS and Scopus databases. Queries were built with Boolean operators after multiple 

trials from simple to complex strings, looking for the maximum coverage of the research area, the 

maximum overlap of the researches, and the minimum number of researches out of the chosen topic 

(i.e. SOC) .  

The general principles of making a systematic map is proceeding in sequential stages (Fig. 1). 
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Fig. 1. Workflow of the systematic mapping (adapted from James et al 2016) 

Following a systematic map approach, a search strategy has been defined and keywords were 

identified. Keywords of the research: soil organic carbon, mapping, model, Mediterranean, topsoil 

organic carbon. Boolean operators used; AND, OR and NOT. 

Records dealing with SOC spatial and temporal mapping along with modelling at changing conditions 

(management, climate and land use) was done with an ad-hoc query reported in the supplementary 

material. 

Records were exported as comma separated values and converted into an excel format to enable final 

editing of the strings. Title and abstract screening has been made, however no full text reading was 

performed with few exceptions (when the study area or methods were not clear) since this procedure 

does not imply systematic review of the results.  

The database search was completed on the 10th October 2017. Using predefined categories assigned 

to each study for a suite of variables that describe the study’s setting and design.  

The following step called “coding” consisted in the database population with additional study 

metadata (e.g. extension of the study site in a qualitative way) using predefined classes, for a suite of 

variables that define the study’s location and methodology design. 
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As the previous research schemes, the present work was a systematic search of potential relevant 

studies between 1995 and 2017.  

Finally, a geodatabase was built along with cartographic output to make results easily intelligible for 

specialist and practitioner. 

2.3 Results and discussion 

The literature search on Web of Science “all collections” and Scopus yielded 128 and 104 

experimental reports, respectively, of which only 19 in common (Supplementary Table 1), for 213 

papers in this topic. Many of the original reports retrieved in the databases by means of the search 

were discarded since they did not include a Mediterranean area. More than three quarter of reports 

were however from France (20%), Italy (31%) and Spain (27%) and very few or no reports were 

found from countries on the eastern side of the Adriatic sea and North Africa, especially Libya. 

Review papers were discarded. In addition, 12 papers were reporting on the whole Europe and one 

on the whole world. The results of this work was in the form of a geographical database (Fig. 2).   

 

Fig. 2. Map of the total number of articles per country. Number in the legend indicates total number of 

countries.  



21 
 

This high discrepancy on the provenance of data have implication for the relationship between 

European soil(s) and its impact on the Mediterranean area. Haddaway et al. (2014) showed that 

systematic map targeting key environments could give indication on the potential impact of lack of 

knowledge in an area. Indeed in the Mediterranean areas taken into account in the present study, and 

especially those with semi-arid and arid ecosystems, the area covered by arable land is predominant 

compared to other land use (Schillaci et al., 2017b) and such area appeared to change few with time 

(Schillaci et al., 2017a). Arable land in these areas are mostly cropped with cereals and legumes 

growing from early winter to late spring and left with bare soil during summer and fall, in which 

rainfall have high intensity; permanent plantation which cover also an high percentage of the 

cultivated surface are offering a protection to soil aggregates and then lower the water erosion. This 

implies an impact in term of environmental acidification, eco-toxicity for aquatic fresh water, 

freshwater and marine eutrophication and Land use/soil organic matter and soil loss that can be high 

even for the less intensive system (Napoli et al., 2017; Novara et al., 2013; Saia et al., 2017a). The 

data in the present systematic map were mostly published after the year 2000 (Fig. 3) and rarely report 

data on SOC change in time. In addition, Scopus and WoS coverages showed some discrepancies, as 

also showed by Mongeon & Paul-Hus (2016).  

 

 

Fig. 3. Number of articles by Country per year in the WOS (left) and Scopus (right) databases. Left ordinate 

axis for articles from France (Fr), Italy (It), Spain (Sp) and the sum of other countries. Right ordinate for total 

articles. 

With regards to land use change, other authors (Evrendilek et al., 2004; Novara et al., 2013) showed 

that it can imply very high change in C loss rate and total C loss, especially when natural/semi-natural 

stands are converted into crops. Such trends were confirmed for wider areas in both Mediterranean 

and continental climates (Barré et al., 2010; Schillaci et al., 2017a). Land use is likely changing in 

the northern, southern and eastern coasts of the Mediterranean Sea due to a number of European and 
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worldwide policy and economic issues (such as the European Union [EU] Common Agricultural 

Policy [CAP]). 

Limitations of this study and survey include the inability to detect the grey literature and those papers 

that not reporting in the keywords, topic or title the search terms used here. In addition, there is 

scarcity of papers reporting on the whole Mediterranean area (by a world scale paper) and Europe, of 

which the coast is more populated than that of north Africa or the eastern coast, and can thus 

contributes more to the Mediterranean pollution and soil loss. Such scarcity implies that 

continental/broad studies are needed to normalize local/regional studies on SOC and its stock space-

time variation (Malone et al., 2017), given that model exportation or downscaling imply the 

knowledge of the predictors behaviour at both the subdomains of the predicted (Lombardo et al., 

2018) or predictor variable (Vaysse and Lagacherie, 2017). 

In addition, such maps are needed to normalise for method diversity (sample density, 

modelling/mapping algorithms, area coverage; information gaps resulting from area covered at 

extremely low or uneven sample density and uncovered areas) in local modelling. Nonetheless, model 

exportation could be a rapid way to gain insight on the soils of northern Africa, given the similarities 

of these environments with those of southern Italy or Spain, as also confirmed by the share in key 

plant species and similarities in the natural populations of these species (Giovino et al., 2014; Mateu-

Andrés et al., 2013; Said et al., 2016). The maps of SOC and other soil properties built for the 

Mediterranean area and an increased amount of local or regional reports are also needed to infer on 

SOC and soil relationship with release of GHGs in this peculiar environment (Leip et al., 2008). 

Peculiarities of the Mediterranean soils are indeed the richness in carbonates (Chevallier et al., 2017; 

Perri et al., 2016) and variation of soil pH upon topography, climate and management, which can 

affect CO2 and N release in both cropped and natural soils from inorganic source, plant-derived, and 

native carbon pools (Badagliacca et al., 2017; Bleuler et al., 2017; Heinze et al., 2018). 

 

2.4 Conclusion 

This work has employed a systematic procedure to map the research paper on the WoS and Scopus 

databases about SOC mapping or modelling conducted in the countries around the Mediterranean 

Sea. An online platform and a GIS environment were combined. Out of our systematic procedure of 

selection, a thorough vision of the present published scientific developments could be easily achieved, 

and it is easily updatable and extendable to other environments, although it presently lacks of reports 

from the grey literature.  
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The main result of this systematic map is that many studies reported are not directly comparable due 

to very different methodology, time or area extent or sample resolution. The database generated here 

comprises 213 studies, which offers an overview geographical literature base, and provides evidence 

concerning a wide range of conditions of SOC in Mediterranean ecosystems and land uses. However, 

the studies available are unevenly distributed among countries, with France, Spain and Italy well 

sampled/studied, and the southern Mediterranean countries and the east cost of the Adriatic seas 

strongly underrepresented. Most notably, no reports in these databases was found from areas such as 

Libya, Lebanon, Palestine, and the eastern coast of the Adriatic seas, which lack hampers the 

exportation of models to these countries. This poses a concern on the implication of SOC management 

for both freshwater and marine environments, especially if taking into account of the shallow seabed 

and scarce water exchange with other sea areas.  

Different output in some European region could have depended on the effect of European aids (e.g. 

CAP, LIFE projects, European Neighbourhood Policy, act.) that contributed to the intensification of 

agriculture in agro-ecosystems or the abandonment of lands (either degraded or interested by 

secondary successions) or to the sampling of soils. 

Results from this systematic map also suggests that some studies shall be soon addressed to model 

exportation among similar countries and confirmation with ad-hoc soil sampling and analysis with 

robust methodologies (Conforti et al., 2017). Also, mapping procedures of the whole Mediterranean 

area should be produced, given the importance of maps for a plenty of policy aims (but see Pereira et 

al. 2018). For example, many areas from Sicily (south of Italy) and southern Spain frequently share 

geological strata, bedrock, soil types, and other environmental (climatic) variables with those of 

northern Tunisia or other parts of northern Africa (Brahim et al., 2011; Darwish and Fadel, 2017; 

Gargouri et al., 2013; Henry et al., 2009; Lal, 2007).This systematic map can be easily updated 

(Bayliss et al., 2016) and extended for additional coding or used as a basis of future secondary 

researches in the forms of systematic reviews. 
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Supplementary table caption 

Supplementary Table 1. Table of the results of the queries in Web of Knowledge ("organic carbon" 

AND "mapping" AND "Mediterranean" NOT "sea") OR TOPIC: ("organic carbon" AND "model" 

AND "Mediterranean" NOT "sea") and in Scopus: "soil organic carbon" AND mapping  AND 

modelling AND Mediterranean OR "topsoil carbon mapping" AND NOT sea.  
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Chapter 3- A simple pipeline for the assessment of legacy soil datasets: an example and test with 

soil organic carbon from a highly variable area 

From: Calogero Schillaci, Marco Acutis, Fosco Vesely, Sergio Saia, (CATENA 

doi.org/10.1016/j.catena2018.12.015.) 

Keywords: Bulk density, Texture, R, GIS, CORINE land cover, LASSO.  

Abstract 

Legacy databases provide unique information on soil properties and act as a guide for the setup of 

monitoring processes. However, their use requires an evaluation of their drawbacks, especially when 

aiming to model the soil traits by depth. We set up a procedure for the integration and error correction 

of a soil legacy database. This database consisted of 6994 records in its original form and 6674 records 

after correction. These records were collected from 2886 locations in the south of Italy on a 25711-

km2 island (Sicily, Italy). Samples were taken in arable lands (5471 records), orchards, vineyards and 

seminatural lands (3010 records), and woodland and natural areas (1203 records). The procedure for 

the integration and error highlighting improved the prediction of soil organic carbon (SOC), and a 

general linear model with covariate selection by Least Absolute Shrinkage and Selection Operator 

(LASSO) tested the procedure. We focussed on exploring the amount of legacy information as 

georeferenced soil properties. SOC and fine earth fractions were analysed for each sample. Bulk 

density was provided for only 20% of the samples. These results will help to account for the legacy 

data available and propose an analysis to harmonize an SOC dataset; highlight missing or incorrect 

data; summarize data; and offer synthesis criteria for benchmarking SOC in different land uses and 

pedological areas. In addition, the results may stimulate funding bodies to support research in an open 

data frame, which can be turned into more sustainable use of resources, improved communication 

between governments and farmers, and the production of standard datasets that meet and facilitate 

the requirements for regional agro-environmental modelling. 

3.1 Introduction 

Information on soil organic carbon (SOC) and its dynamics is of growing interest to many different 

user groups. The increasing interest is because SOC is the main soil fertility indicator, plays a pivotal 

role in CO2 sequestration and other greenhouse gases, and therefore is related to global warming. 

SOC stock is a potential sink of C considering both the biosphere and atmosphere (Batjes, 2016). 

SOC was recently recognized from a survey conducted by Campbell et al. (2017) as among the first 

three important soil functions by non-science stakeholders.  

However, data on soil properties and its past trends can be absent or difficult to achieve for several 

reasons that include the cost of sampling and analysis and the risk of disturbing fragile ecosystems 

(Lobry de Bruyn et al., 2017; Rial et al., 2017b). Legacy soil data are considered as a scientific priority 
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for digital soil mapping (DSM) (Odeh et al. 2012). However, soil sampling included in legacy 

databases can be very heterogeneous because of the aims of sampling campaigns, precision of the 

measures and data reported, distribution of samples by depth and maximum sampling depth, spatial 

coverage, and sample design (Arrouays, 2017; Dobos et al., 2010).  

For instance, a sampling campaign can be conducted to obtain information on cropped or non 

cultivated soils, on soils that underwent erosion (Borrelli et al., 2017), for building pedological 

information or checking for soil fertility, for communicating the soil fertility status to farmers, etc. 

(Ingram et al., 2016; Sánchez et al., 2016). Lack of quality control can produce not usable legacy 

databases or provide information not closely responding to the soil conditions (Ramos et al., 2017).  

When unevenly distributed, subsets of data can be affected by local tendencies, seasonality and 

general climate trends (Rial et al., 2017b). Extensive soil surveys have been undertaken in Europe 

(Bradley et al., 2005; Orgiazzi et al., 2017) and the Americas (Guevara et al., 2018; Liu et al., 2013; 

Sperow, 2016). In particular, Guevara et al. (2018) showed that country-specific soil estimates can 

depend on both geopolitical issues and environmental traits. In the Mediterranean area, many studies 

about SOC mapping and modelling have been undertaken: Schillaci et al. (2018) reported more than 

300 studies from this area after a systematic map was prepared in the ‘Scopus’ and ‘Web of Science’ 

databases. In some of these areas, monitoring networks are presently operating and used for DSM. 

However, few studies have been merged in a unique mapping and modelling procedure (Grunwald, 

2009), which is strongly needed for i) land management, ii) programming of ecosystem service 

provision, iii) present and newly to-build infrastructures and above all, iv) direct agronomical 

applications. In addition, limitation in the SOC accumulation in Mediterranean areas frequently 

occurs due to an unbalanced energy (i.e., solar radiation) per unit water available in the soil and long 

periods of bare soil and crop stubble burning (Egli et al., 2007; Huang et al., 2018; Lombardo et al., 

2018), as well as application the Set-Aside directive of the Common Agricultural Policy. Indeed, 

stubble burning can dramatically reduce SOC accumulation, since straw is the main C input in some 

soils (Li et al., 2018). 

Odeh et al. (2012) increased the attention on legacy data and summarized some of the main 

procedures necessary to make legacy data usable. However, simple procedures for error checking and 

data harmonization when creating a legacy database are few and are mostly provided for tropical or 

cold regions (Aitkenhead and Coull, 2016; Hendriks et al., 2016; Kempen et al., 2015; Stumpf et al., 

2016; Sulaeman et al., 2013; Sun et al., 2015), and few papers deal with Mediterranean soil 

inventories and strategies for their building (Bogunovic et al., 2017; Fernández-Getino and Duarte, 

2015; Francaviglia et al., 2017; Ramos et al., 2017). Indeed, procedures for checking putative errors 
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strictly depend on the area and traits chosen (e.g., when checking for soil pH or reliability of SOC 

measures). In particular, important features to check the quality of soil legacy databases pertain to 

various aspects of the database compilation, soil survey, and reporting of methodology (Krol, 2008), 

which implies that crucial pre-processing and harmonization of the data are needed for any further 

application (Gosling et al., 2017). Lack of these procedures impairs the extraction of knowledge from 

the data (Rivera et al., 2015).   

Here, we present key points for a technical screening of legacy datasets to facilitate access to the 

digital soil database repository (Huang et al., 2017), optimize land suitability assessment (Hallett et 

al., 2017), and identify patterns of SOC in a dataset that can constrain modelling. Such an analysis 

aimed at assessing the measurement quality of the SOC concentration and texture and their accuracy 

for further DSM and updating. For the analysis, we used the database of the sole mainland area of 

Sicily, the most southern Italian region, which accounted for 6674 records. We applied a pipeline of 

data integration and error correction, which led to discarded records, and tested the effect of the 

optimization by predicting the log-linearized SOC by general linear models. Additional information 

was provided such as accuracy of texture, land use at the time of survey and CORINE land cover 

close to the time of survey, accuracy of the geographical position of each site and land use recent 

history (from CORINE, 1990 to 2012) of the sampling locations. The soil legacy dataset of Sicily 

was already used, with regards to the sole A and Ap soil horizons of the cropped soil, in some previous 

DSM applications (Schillaci et al., 2017b). 

3.2 Materials and Methods 

3.2.1 Study area, climate, soils and sampling database 

Sicily is the largest Mediterranean island (25,711 km2). The island has high soil heterogeneity due to 

a high variability in geological strata, intraregional climatic features, agronomical techniques applied 

and land use variability. In addition, various land uses coexist closely (Fig. 1). We referred to the 

Sicily mainland soil legacy database (SMSLD). This database originally included 6674 records of 

SOC and 1426 of bulk density (BD) collected in 2843 and 1080 sites, respectively, up to a mean depth 

of 83.8 cm (median=75.0 cm, s.d. of maximum depth sampled=44.6 cm). Assessorato Regionale 

Territorio Ambiente (ARTA) provided the SMSLD as georeferenced values derived by pedological 

profiles and soil pits spanning 1967 to 2008 and containing 44 sampling campaigns. The BD was not 

sampled before 1993. The density of sampling was on average 0.12 sampling sites per km2. A 

physiographic description of the island along with a physiographic map is given in Schillaci et al. 

(2017a) and Fantappiè et al. (2016).  
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Fig. 1 Main agricultural land uses, a) cropland (during early spring, a wheat field reported as 

CORINE 2.1.1 or 2.1), b) vineyards (during early summer, reported as CORINE 2.2.1 or 2.2), c) olive 

grove (during early summer, reported as CORINE 2.2.3 or 2.2), d) peach orchard (during early fall, 

reported as CORINE 2.2.2 or 2.2). 

3.2.2 Legacy database 

The SMSLD contained the following: sampling code, sampling year, site code, latitude, longitude, 

upper and lower limit of the sample in depth, SOC, sand, silt and clay content, actual land use (as 

CORINE codes), and values in rows. Data were structured as a matrix. In this study, we made 

computations and individuation of drawbacks of the SMSLD by Microsoft Excel and R, data 

visualization with ArcGIS® by ESRI and SAGA GIS (Conrad et al., 2015), and testing of the 

procedure for the integration and error correction with the SAS 9.2 statistical software package. 

Latitude and longitude were measured with handheld GPS receivers since the 90s, whereas 

coordinates of soil profiles and soil samples collected before 1990 were likely reported from the 

1:10,000 topographic maps. The original coordinate system of the database was geographic WGS 84, 

and we converted the system to UTM, because the metric system was used for the calculation of the 

topographical attributes.   
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3.2.3 Detailed dataset description 

General information on the sampling campaigns was drawn by the SMSLD itself; therefore, the 

description was made in the column of the original database. The SMSLD originally provided the 

following information:  

1. "Survey code" (Fig. 2): the survey code was of pivotal importance because samples taken a 

few months apart could be grouped together and was also useful to merge surveys that spanned 

a few years of separation.  

2. "Observation type": profile, denoted as P, or soil quality (as Q). Soil quality referred to the 

sampling campaigns aimed at an agro-pedological characterization.  

3. "Number soil survey" was an identification number. 

4. "Horizon number" indicated the position of the samples in the profile, with 1 the upper surface 

horizon.  

5. "year" of sampling (Fig. 3). Unfortunately, no further information on the month or season of 

sampling was given. Therefore, for such a reason at a particular moment, the role of soil 

management in cropped soil on SOC and BD was uncertain. In particular, the entire region 

suffers from a scarcity of rainfall (and in general water) during late spring and summer.

 

Fig. 2. Traits and distribution of sampling campaign across the region 
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6. “Sampling depth” was expressed as upper and lower limits of a sample. Since horizon depth 

may change in space, the depth referred to for each sample may also change with space and 

in different campaigns.  

7. "Latitude" and "Longitude". Horizons belonging to the same profile had the same coordinates 

(See Suppmat. Section “R codes used”).  

8. The observed “land use” was reported as CORINE codes. In the original SMSLD, the land 

use code was reported up to 5 digits from level 1 to 5, and then, we split it in single digits for 

purposes of analyses. See Suppmat. Fig. 1. 

 
Supplementary Fig. 1. Soil organic carbon (% of the fine earth fraction) by land use observed. These 

new fields allowed for the selection of levels with contrasting depth of information (e.g. a layer with 

Land use 2 and another with land use 2.1, sharing the level one information, i.e. 2, agricultural use). 

Thus, categorization was made according to a first level grouping: 2 (agriculture) or 3 (natural and 

semi-natural); second level: e.g. 2.1 (arable) or 2.2 (permanent) crops; and third level: e.g. 2.1.1 

rainfed field crops or 2.2.1 vineyards.  
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9. "SOC" was expressed as % (i.e., dag SOC kg-1 soil dry weight) of the fine earth fraction. The 

method reported was Walkley-Black with the chromic acid wet oxidation method (Walkley 

and Black, 1934). 

10. Texture was reported as clay (<2 µm), total silt (2 to 20 µm), and total sand (20 to 2000 µm). 

To confirm that sums of fractions would sum to 100%, the actual sums were considered valid 

when between 97.5 and 102.5%. Data out of this range were discarded. The rest of data were 

recomputed to 100% by weighting each fraction. The textural plot was plotted in R with the 

package “ggtern” (See Suppmat. Section “R codes used”). 

11. The "% of gravel in the total soil". This field reported the amount of gravel (in weight) per 

unit weight of each sample.  

12. Soil texture type according to the USDA description (referred to as “usda” in Suppmat. tab. 2 

and Suppmat. tab. 3). 

 

3.2.4 Data integration and error correction 

The first steps of the analysis were for quality control and outlier detection, harmonization and 

duplicate removal (see Suppmat. Section “Data harmonization detail”). The steps consisted of the 

following: 

- exclusion of samples without complete texture data; 

- exclusion of samples from litter layers; 

- exclusion of samples with land use =1, i.e., “Artificial surfaces”; 

- correction of likely wrong samples that indicated a null or negative thickness, i.e., a lower 

boundary shallower than the upper boundary.  

- elimination of doubled samples (by means of the “pivot” tool in Excel including the sampling 

campaign, year, coordinates and depth at one time as discriminant fields).  

- identification of clustered sampling campaigns, in GIS, to consolidate those sampling 

campaigns spread in close years. 

3.2.5 Data consolidation and synthesis 

Samples were aggregated by sampling code. Spatial coverage statistics were assessed (density per 

sampling campaign, year and land use). Descriptive statistics, statistical distribution of the SOC, 

texture, thickness and main depth were also computed. Temporal and spatial distribution of the 

georeferenced observations were shown. Accuracy assessment of the coordinates reported was made 

by checking for the number of decimal digits of each site. See also Suppmat. section “Metadata” for 

additional information. 
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3.2.6 Covariates 

We created a list of soil properties predictors (Suppmat. Tab. 1), which include a range of climatic 

traits (mean annual rainfall and temperature and some climatic indices), geographical traits (slope, 

altitude, catchment area, etc.), land use by the CORINE land cover. These 14 covariates were chosen 

among those highly or scarcely important in SOC or SOC stock prediction in the same area as 

observed in previous experiments (Lombardo et al., 2018; Schillaci et al., 2017b, 2017a). 

3.2.7 Test of the corrected dataset predictive ability  

To test for the correction procedure, we compared the goodness-to-fit of 4 models built on the 

optimized and uncorrected (i.e., original) databases. Such a comparison was made by applying to 

each dataset (corrected or original) a general linear model with two strategies of predictor selection: 

no selection method (i.e., compulsorily retaining all predictors in the modelling process) and Least 

Absolute Shrinkage and Selection Operator (LASSO) (Camilo et al., 2017; Veronesi et al., 2016). 

The sequence of models in LASSO was determined including at any step the coefficients of the 

parameters for the model by using ordinary least squares. The test was conducted both on the 

complete database and separately after splitting the complete databases into two sub-databases: one 

pertaining to samples for which the deepest information was shallower than 50 cm (named “DIS50”) 

and another with information deeper than 50 cm (named “DID50”, which was the counterpart of the 

former), irrespective of the mean depth of the layer and sample thickness. Therefore, layers included 

in the ‘subsoil’ information stratum could also have a wide part between the field surface and the 50-

cm limit (e.g., a layer from 10 to 55 cm). DIS50 and DID50 were needed to highlight the number of 

samples with minimum information content up to the 50 cm depth. Such a depth was chosen since 

most of the agricultural soil, especially in field crops, is usually ploughed up to various cm depths. 

Thus, the split into 2 databases allowed accounting for the greater amount of data in DIS50 than that 

in DID50 and the likely role of tillage in SOC accumulation in agricultural soil, which rarely went 

beyond a 50 cm depth. In the modelling process, land use was included as CORINE level 1 as a main 

factor (referred to as SU) and as CORINE level 2 as a nested factor (referred as LU). Furthermore, 

metadata were created. 

To do so, we used the GLMSELECT procedure in the SAS/STAT 9.2 statistical software program. 

GLMSELECT is a general linear model for normal responses capable of individuating regression 

coefficients between a dependent variable and various independent variables. Both the dependent and 

independent variables can be dichotomous, class or continuous variables. Such a procedure does not 

handle random effects. Thus, SOC was linearized by log transformation. Within the LASSO selection 

method, the LSCOEFFS option was applied. 



33 
 

LASSO avoided overfitting, discarded noninformative covariates, and handled multicollinearity of 

predictors. LASSO was stopped according to the minimization of the Schwarz Bayesian information 

criterion (SBC). See also Camilo et al. (2017) for additional information on the LASSO criteria of 

variable selection and variable estimation. 

Model statistics were provided, including the R2 and adjusted R2 statistics (ADJRSQ), Akaike’s 

information criterion (AIC), corrected Akaike’s information criterion (AICC), the Sawa Bayesian 

information criterion (BIC), the Mallows C(p) statistic, the predicted residual sum of squares statistic 

(PRESS), and the Schwarz Bayesian information criterion (SBC). These statistics are directly 

proportional to the increase in model-to-data error. 

Average square error (ASE) and the F and p statistics of the retained effects were computed. The 

variation, if any, of the standardized coefficients of the retained predictors at each step of each model 

building was plotted. 

3.3 Results 

3.3.1 Database assessment 

The first correction procedure aimed at individuating layers reporting null or negative thickness. We 

highlighted that such an error was reported for 12 samples and that their coordinates included a total 

of 33 samples. In total, 317 lines were deleted from the original dataset (see Suppmat. Section 

“procedure for the integration and error highlighting” for details). 

A procedure for highlighting likely ‘very wrong’ coarse fraction and land use reported was set up as 

follows: 

- samples with coarse fraction higher than 80% were selected; 

- in this selection, samples with SOC content higher than 1.0% or sand content lower than 80% 

were selected; 

- we assumed that these fractions could be flawed by reporting errors, since high coarse fraction 

contents are unlikely associated with high organic C contents (Anderson et al., 1981); thus, 

these samples were deleted. 
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at the same time, with BD information (Fig 3). 

 

Fig. 3. Percentage distribution of sample per land use observed by year of the sampling campaign. 

CLC 1990, 2000, 2006, 2012 indicates the percentage area distribution of the land use according to 

the CORINE maps of the relevant year. See the CORINE manual for correspondence between codes 

and land use. 
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Tab. 1. Number of sites sampled in each land use in which various soil layers were sampled, with information on the bulk density, if any, and 1 

minimum and maximum depth sampled.  2 

amount of 

layers 

sampled 

  

without bulk density data 

  

with bulk density data 

Land use = 2 

  

Land use = 3 Land use = 2 

  

Land use = 3 

amount 

of sites 

sampled 

minimum 

depth 

sampled 

maximum 

depth 

sampled 

amount 

of sites 

sampled 

minimum 

depth 

sampled 

maximum 

depth 

sampled 

amount 

of sites 

sampled 

minimum 

depth 

sampled 

maximum 

depth 

sampled 

amount 

of sites 

sampled 

minimum 

depth 

sampled 

maximum 

depth 

sampled 

1 676 6 200 215 3 110 779 10 130 84 10 115 

2 460 25 205 139 14 160 121 20 180 14 20 140 

3 464 40 180 100 35 165 44 44 165 2 50 150 

4 200 50 210 35 80 220 25 65 230 0 

n.a. 

5 51 90 210 7 70 180 11 110 270 0 

6 13 90 240 4 140 280 0 

n.a. 

0 

7 0 n.a.* n.a. 0 n.a. n.a. 0 0 

8 3 170 250 1 120 120 0 0 

9 0 n.a. n.a. 2 100 120 0 0 

10 1 120 120 1 120 120 0 0 

11 1 220 220 3 120 130 0 0 

12 0 n.a. n.a. 2 110 120 0 0 

* not available. 3 

  4 
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Tab. 2. Land use depth of information (CORINE code level) by site for soil organic carbon (SOC) 5 

and bulk density (BD) data 6 

Land use depth of 

information 

  
Land use = 2   Land use = 3 

SOC BD   SOC BD 

  

number of sites 

1   58 35      

2   688 355  75 36 

3   1319 523  419 58 

4   218 74  60 10 

5   18 8  18 10 

6   7 6       

  

Number of non 

integer digits in the 

GPS datum 

  

number of sites Lon Lat 

 

2 
2 1 1 

 

    

5 1   1   

3 

2 1 1     

3 1 1     

4 3 2     

5 57 51 2 2 

6 1 0     

4 

2 1 1     

3 3 1     

4 6 1 1   

5 56 36 5 4 

6 14 4 3   

5 

2 21 18 2 1 

3 13 12 4 2 

4 49 40 7 4 

5 717 545 55 40 

6 121 21 48 4 

6 

4 11 2 7   

5 117 33 39 1 

6 1093 210 383 42 

 7 

  8 
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Tab. 3. Descriptive statistics of the samples by soil organic carbon (SOC) and bulk density (BD) and 9 

Land use. 10 

  

Land use 2 (Agricultural Areas) 

all data 

from LU2 
  

"2" only 

indication 
  21   22   23   24 

SOC BD   SOC BD   SOC BD   SOC BD   SOC BD   SOC BD 

n   5471 1308   112 37   2162 564   2671 606   336 87   190 14 

Mean   1.067 1.204   1.048 1.160   0.907 1.238   1.201 1.165   0.900 1.256   1.331 1.348 

Min   0.012 0.500   0.160 0.900   0.020 0.600   0.012 0.500   0.020 0.580   0.030 0.900 

Q 0.025   0.100 0.700   0.186 0.900   0.100 0.700   0.100 0.700   0.100 0.900   0.115 0.965 

Q 0.05   0.120 0.800   0.217 0.900   0.130 0.800   0.110 0.700   0.150 0.928   0.164 1.030 

Q 0.25   0.500 1.000   0.500 0.900   0.500 1.099   0.500 0.900   0.490 1.099   0.630 1.303 

Median   0.830 1.200   0.905 1.100   0.800 1.260   0.886 1.137   0.730 1.287   1.005 1.390 

Q 0.75   1.280 1.400   1.300 1.300   1.120 1.400   1.420 1.380   1.053 1.400   1.670 1.440 

Q 0.95   3.010 1.618   2.225 1.800   1.999 1.620   3.714 1.600   2.100 1.603   3.650 1.592 

Q 0.975   4.136 1.700   3.584 1.800   2.789 1.660   4.703 1.711   2.800 1.696   4.299 1.621 

Max   12.50 2.30   5.40 1.80   8.10 2.16   12.50 2.30   6.01 1.91   7.75 1.65 

S.D.   0.99 0.27   0.81 0.30   0.68 0.26   1.17 0.28   0.77 0.21   1.17 0.19 

Skewness   2.91 0.14   2.66 1.03   2.96 -0.04   2.53 0.33   3.29 0.06   2.26 -0.90 

Kurtosis   13.51 -0.15   10.05 -0.18   16.19 -0.13   9.91 -0.05   15.27 1.01   7.07 1.41 

                   

  

Land use 3 (Forest and semi natural areas) 

  

all data 

from LU3 
  31   32   33 

SOC BD   SOC BD   SOC BD   SOC BD 

n   1203 118   477 47   699 71   26 0 

Mean   1.576 1.206   1.587 1.195   1.563 1.213   1.615   

Min   0.010 0.550   0.010 0.550   0.020 0.800   0.060   

Q 0.025   0.100 0.696   0.157 0.606   0.100 0.878   0.110   

Q 0.05   0.151 0.729   0.200 0.658   0.140 0.900   0.155   

Q 0.25   0.510 0.900   0.630 0.800   0.460 0.900   0.640   

Median   1.050 1.203   1.140 1.330   1.000 1.200   1.120   

Q 0.75   1.970 1.485   1.978 1.605   1.940 1.450   2.273   

Q 0.95   4.679 1.650   4.076 1.664   4.823 1.590   4.420   

Q 0.975   5.969 1.671   5.183 1.670   6.455 1.620   5.733   

Max   20.10 1.70   15.64 1.70   20.10 1.70   7.07   

S.D.   1.74 0.32   1.58 0.39   1.85 0.27   1.58   

Skewness   3.65 -0.11   3.70 -0.17   3.65 0.10   2.02   

Kurtosis   23.02 -1.33   23.60 -1.65   22.67 -1.42   5.08   

 11 

 12 

 13 
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Tab. 4. Performance statistics of the models run with the complete database (Unsplit) or split by in two sub-databases: samples for which the 14 

deepest information was shallower than 50 cm (DIS50) and for which the information was deeper than 50 cm (DID50). Statistics are root mean 15 

square error (MSE), dependent mean, R2 and adjusted R2 statistics, Akaike’s information criterion (AIC), corrected Akaike’s information criterion 16 

(AICC), the Sawa Bayesian information criterion (BIC), the Mallows C(p) statistic, the predicted residual sum of squares statistic (PRESS), the 17 

Schwarz Bayesian information criterion (SBC), the model average square error (ASE) and the model F statistic. 18 

Performance 

statistics 

Unsplit 

(Total database) 

  Split 

 DIS50  DID50 

No Selection 
 

LASSO 
 

No Selection 
 

LASSO 
 

No Selection 
 

LASSO 

Corr Uncorr   Corr Uncorr   Corr Uncorr   Corr Uncorr   Corr Uncorr   Corr Uncorr 

Root MSE 0.320 0.317 
 

0.320 0.318 
 

0.270 0.269 
 

0.278 0.277 
 

0.348 0.345 
 

0.349 0.345 

Dependent Mean -0.102 -0.097 
 

-0.102 -0.097 
 

0.065 0.066 
 

0.065 0.066 
 

-0.265 -0.256 
 

-0.265 -0.256 

R2 0.364 0.356 
 

0.362 0.352 
 

0.278 0.271 
 

0.233 0.222 
 

0.271 0.264 
 

0.263 0.259 

Adjusted R2 0.362 0.354 
 

0.360 0.351 
 

0.272 0.264 
 

0.232 0.220 
 

0.265 0.258 
 

0.260 0.255 

AIC -8515 -9029 
 

-8507 -9014 
 

-5296 -5572 
 

-5138 -5393 
 

-3715 -3970 
 

-3707 -3971 

AICC -8515 -9029 
 

-8507 -9014 
 

-5295 -5571 
 

-5138 -5393 
 

-3714 -3970 
 

-3707 -3971 

BIC -15187 -16014 
 

-15179 -15999 
 

-8593 -9016 
 

-8437 -8839 
 

-7088 -7510 
 

-7081 -7511 

C(p) 29.00 32.00 
 

36.98 46.58 
 

29.00 32.00 
 

190.62 216.07 
 

29.00 31.00 
 

36.18 30.00 

PRESS 685 705 
 

686 707 
 

244 252 
 

256 265 
 

413 424 
 

414 424 

SBC -14992 -15797 
 

-15052 -15878 
 

-8419 -8822 
 

-8383 -8785 
 

-6913 -7321 
 

-6992 -7402 

ASE 0.102 0.100 
 

0.102 0.101 
 

0.073 0.072 
 

0.077 0.076 
 

0.120 0.118 
 

0.121 0.119 

F Value 136.04 124.16   209.49 222.99   44.93 40.94   125.13 122.51   44.42 41.98   85.79 72.36 

 19 

  20 
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From the second deletion procedure and on, we always checked whether the coordinate of the sample 

to delete was already present in the other deleted samples. No correspondence occurred.  

Only 25 sites reported low detailed geographical information (i.e., with less than a 2 non integer digit 

precision in the coordinate reported, Tab. 2) 

The sampled sites were widely distributed in the region only in 3 sampling campaigns (Fig. 2): a 

campaign in 1993-94 and two in 2008, one of which was a gridded scheme with a 20 km spatial 

resolution. Across these campaigns and the whole dataset, SOC had a wide range of variation in 

arable lands (2.1), vineyards (2.2.1), fruit trees and berry plantations (2.2.2), complex cropping 

systems (2.4), and natural areas (3.1 and 3.2) (Fig. 4 and Fig. 5). 

Strong and well-represented information on soil texture occurred only for the agricultural lands 

(CORINE code 2) (Fig. 6), irrespective of the assigned category “Topsoil” (i.e., those samples with 

no information deeper than 50 cm) or “Subsoil” (i.e., those samples with information deeper than 50 

cm). The CORINE code 3 lacked data with clay content lower than 20% and higher than 80%. 

Maximum depth sampled (Fig. 7) differed by land covers (see Suppmat. Section “procedure for the 

integration and error highlighting” for details). 

3.3.2 Descriptive statistics of SOC and BD 

SOC was on average 1.067±0.013% (mean ±standard error) in the land cover agriculture (CORINE 

code 2) and 1.576±0.050% in the land cover forests and seminatural areas (CORINE code 3) 

irrespective of the depth of sampling (Fig. 8 and Tab. 3). Bulk density was similar between the two 

land use groups within the CORINE code 2, and SOC was lower in arable land (2.1) and pastures 

(2.3) than that in permanent crops (2.2) and heterogeneous agricultural areas (2.4), whereas within 

the CORINE code 3, few differences in SOC among the forests and seminatural areas (3.1), shrubs 

and/or herbaceous vegetation association (3.2) and open spaces with little or no vegetation (3.3) were 

found. Skewness and kurtosis were high in all sub-datasets of SOC and relatively low in those of BD. 
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Fig. 4. Distribution of the SOC samples categorized as TOPSOIL  by sampling campaign indicated 

with year of sampling (a-e): pre1994 is for the sum of campaigns before the 1993-94; 1994 is for the 

1993-94 campaign, pre 2008 is for the sum of campaigns between 1995 and 2007; 2008 is for the 

ARTA campaign in 2008, ARPA 2008 is for a campaign from the regional agency for the 

environmental protection (ARPA) conducted in the 2008. In the panel f) maps of the mean sampling 

depth is shown. See text for a correct definition of “TOPSOIL” samples.  
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Fig. 5. Distribution of the SOC samples categorized as SUBSOIL  by sampling campaign 

indicated with year of sampling (a-e): pre1994 is for the sum of campaigns before the 1993-94; 

1994 is for the 1993-94 campaign, pre 2008 is for the sum of campaigns between 1995 and 2007; 

2008 is for the ARTA campaign in 2008, ARPA 2008 is for a campaign from the regional agency 

for the environmental protection (ARPA) conducted in the 2008. In the panel f) maps of the mean 

sampling depth is shown. See text for a correct definition of “SUBSOIL” samples 
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Fig. 6. Distribution of samples by texture and SOC ranges in the TOPSOIL and SUBSOIL by each 

CORINE level 1 (agricultural or natural) land use. See text for a correct definition of “TOPSOIL” 

and “SUBSOIL”. 

 

Fig. 7. Maximum depth sampled by number (as percentage of the total or each fraction) of sites in 

each land use. 
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3.3.3 The predictive ability of the corrected compared to that of the original dataset 

When no covariate selection method was applied, the GLMSELECT retained 12 of the 13 covariates 

(Suppmat. Tab. 2). Adjusted R2 values of the models built from the corrected (number of records used 

= 6674) and noncorrected (number of records used = 6985) datasets were 0.36 and 0.35, respectively 

(Tab. 4). Differences in the model performance statistics varied slightly by the effects of the 

correction (ranging from 9.4% to +9.6% depending on the statistics, see Tab. 4). Most of the 

standardized coefficients varied slightly at each step of the model building, with mean depth of the 

sample sturdily but constantly affecting the prediction at each step of the model building (Suppmat. 

Figs. 4 and 5). Notably, inclusion of the SRTM increased the contribution of CNBL to the SOC 

estimation. 

 

 

Fig. 8. Density distribution of SOC (as % of the fine earth fraction) by TOPSOIL and SUBSOIL. See 

text for a correct definition of “TOPSOIL” and “SUBSOIL”. 

When LASSO was applied, GLMSELECT retained 9 predictors and 7 predictor levels for the 

corrected and 9 predictors and 6 predictor levels for the non corrected datasets (Suppmat. Tab. 3 and 

Fig. 9). Adjusted R2 values of models did not vary compared to the no variable selection method, but 

the F statistic increased by 54 and 80% in the corrected and uncorrected databases, respectively. After 

LASSO application, the contribution of each retained predictor changed. In particular, the 

contribution of depth and CNBL increased, whereas soil type was discarded and only some of its 

levels of coefficients retained (Fig. 9 and Suppmat. Figs. 6 and 7). In particular, the negative 
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association between SOC and mean depth of sampling and the positive association between average 

annual rainfall or CNBL and SOC were confirmed. Application of LASSO reduced the number of 

soil texture types relevant for the prediction, but in the optimized dataset, it highlighted a similar 

contribution by the percentage of sand in the fine earth or the presence of sandy soil. When procedures 

were run with splitting the database into the DIS50 and DID50 sub-databases, both the adjusted R2 

values of the models (Tab. 4) and contribution of depth to the modelling strongly decreased, with few 

differences by the sub-database. In each sub-database, the variable selection method had an effect on 

the performance statistic similar to that found in the complete database. However, DIS50 showed a 

lower ASE than both DID50 and the complete dataset (Suppmat. Fig. 8). 

In each modelling process run for every sub-database (Suppmat. Figs. 9-12), CNBL frequently 

showed highly positive coefficients of association in either the corrected database or not and with the 

application of LASSO or not. 

When no covariate selection was applied, clay and sand percentages in the fine earth fraction were 

strongly and negatively associated with SOC in DIS50 and with SRTM in DID50 (Suppmat. Figs. 9-

10). When LASSO was applied, similar results were found. However, LASSO-models included fewer 

covariates than those with no variable selection for DIS50 but similar or more for DID50 (Suppmat. 

Figs. 11-12). 

 

Fig. 9. Contribution (expressed in percentage) of the inclusion of each predictor to the total adjusted 

R2 of the models built with the optimized (+OPT) or non-optimized (unOPT) databases by applying 

a LASSO predictor selection strategy (“with LASSO”) or not (“no SEL”). 
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3.4 Discussions   

A wealth of studies are addressing the use of soil legacy data to estimate important soil traits, 

especially SOC (An et al., 2018; Dobos et al., 2010; Dong et al., 2018; Morvan et al., 2008; Odeh et 

al., 2012; Rial et al., 2017a; Suuster et al., 2012; Vaysse and Lagacherie, 2015). Such studies are 

important to fill data gaps in certain (fragile or hard to reach) areas, act as a guide for the 

harmonization of content-wide or worldwide sampling campaigns, and take the most from existing 

data from older times (Karunaratne et al., 2014).  

In particular, soil legacy data can be uniquely adjusted for the space-time effects on soil properties 

(Dong et al., 2018) and jointly with newly computed or derived variables, can make important 

inferences on the quality of past and present soil representation (Teng et al., 2018). Such aspects 

fostered the creation of a soil legacy database at the global scale (Arrouays et al., 2017). In Europe, 

Morvan et al. (2008) indicated that the implementation of a monitoring system for the Mediterranean 

semiarid regions is urgent. In addition, the European monitoring network could benefit from local 

and country-scale sources of data, but this gain depends on the quality of the legacy data provided.  

The procedure for the integration and error highlighting in this study was valid and improved 

goodness-to-fit, which was confirmed by the modelling procedures (either including or not a predictor 

selection method) and the marked reduction in fit statistics (such a reduction indicated a reduction in 

the model-to-data error). We retrieved relatively high SOC values in the quantiles >0.975, especially 

in the agricultural areas. In these areas, such an amount is likely high but it may still occur in irrigated 

lands under a conservative soil management system. These land uses were unfortunately not clearly 

recorded since the CORINE land cover (e.g., code 2.1 or 2.4) and not the actual standing cropland 

cover (e.g., wheat, tomato, peach orchards, or rosemary) was used; in addition, information on soil 

management was not provided. The discrepancy in land use attribution (data not shown) between the 

data in the present study and those used in previous experiments (Schillaci et al., 2017a) is because 

in the latter experiments, land cover was chosen by the CORINE land cover and not the land use 

actually observed in the field. 

In the database used here, the sampling campaigns were mostly addressed to agricultural soils (bold 

yellow line and reddish fractions in Fig. 3), and only 3 surveys were mostly addressed to non 

agricultural land uses. Similarly, distribution of land use observed for each sample by year of 

sampling was mostly in agricultural areas. When comparing the share of area of each land use from 

the CORINE land cover maps and the percentages of sites in each land use from each sampling 

campaign, a discrepancy between datasets occurred. In particular, samples from the land cover forests 

and seminatural areas were often underrepresented in the sampling campaigns compared to the 
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CORINE, and samples from land uses arable land (2.1), permanent crops (2.2), pastures (2.3), and 

heterogeneous agricultural areas (2.4) were often unbalanced compared to the CORINE information. 

Such discrepancy should be taken into account when modelling with remote-sensed or spatial data, 

since agricultural soils are often ploughed up to various cm depths (usually between 20 and 40 cm). 

Ploughing can homogenize and reduce some soil properties, including both the stable SOC fraction 

and BD. Such a homogenization can lead to an overestimation of some environmental properties, 

including SOC stock (Akpa et al., 2016; Chen et al., 2018b; Lee et al., 2009). 

In the area under study, the low SOC content in the shallow (0-50 cm depth) layers of many cropland 

samples (CORINE code 2.1, mean SOC=1.2% of 842 data) could limit the potential exploitation of 

these soils for intensive agricultural production and further indicated a potential risk of degradation 

for these soils. At the same time, the low SOC indicated a high storage potential, as recently shown 

in a France national survey by Chen et al. (2018). Tree crops (2.2.1, 2.2.2, and 2.2.3, mean SOC= 

1.5% of 1091 data), seminatural areas (2.3 and 2.4, mean SOC= 1.2% and 1.7%, respectively, of only 

120 and 82 data) and woodland and forestry areas (CORINE code 3, mean SOC= 2.2% of 570 data) 

showed higher SOC content than that of arable lands. Arable lands in the region are mostly grown 

with winter-growing cereals (durum wheat and barley) and pulses (especially fava bean) with a fallow 

time-lapse of 6-7 months per year.  

When aiming to fill gaps in the soil BD within databases, the application of a threshold of the 

maximum depth of information from each sample in this study agrees with the findings by Sequeira 

et al. (2014). Such thresholds, jointly with mean sample depth and sample thickness, can help in the 

modelling processes of BD and thus for SOC stock, since BD estimation is a major limit to the 

correctness of SOC stock computation (Poeplau et al., 2017). Indeed, we found that splitting the 

databases by maximum depth of information into two sub-databases dramatically reduced the 

contribution of depth to the modelling process and increased those of topographic and morphometric 

traits, including CNBL and SRTM, mean rainfall and temperature, and soil type. 

The procedure for the integration and error highlighting used in this study can thus help in the 

harmonization of data in wider databases (Ribeiro et al., 2015) and their merging with databases built 

at different scales (Bardy et al., 2018; Wiesmeier et al., 2019). Last, the procedure can remove the 

noises that hamper the study of the temporal by depth dimension and achieve a clearer view of the 

land use/soil effects on SOC stocks at various scales, as also suggested by other authors for similar 

conditions (Di Bene et al., 2016; Francaviglia et al., 2017; Rabbi et al., 2016). 
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3.5 Conclusion 

The analysis carried on in this paper looked at the real needs of a monitoring network that will allow 

better planning of agriculture and environmental management at a regional and sub-regional extent. 

A wider usage of the SMSLD in environmental modelling and DSM for national and international 

projects is expected. From the description of the data collection, we obtained useful information about 

the limits of a sampling campaign organization and the purpose of a sampling. The supplemental 

information strata created from our analysis fixed some important shortcomings in the analytical 

values of soil texture, coordinate precision and land cover, and this approach should be used in further 

processes of bulk density modelling. The coordinate precision was assessed by a new field in the 

database that allowed the user to measure the reliability of the precision when aiming to derive data 

from other sources (e.g., the CORINE land cover). The land cover of the sampled data was provided 

at the most detailed CORINE level when available and for all the data, was provided up to the second 

level. These pre-processing procedures allowed the compilation of a solid database from which some 

physical properties have been used together with topographical indices to fit an SOC model. Last, the 

application of the modelling processes to the complete database or the two sub-databases differing 

per deepest information highlighted that dominant covariates changed with a change in the sample 

pools considered, and such changes should be carefully taken into account when planning new 

sampling campaigns. 

Thus, future perspectives include the following: 

- to move towards better methodology of capturing (historical analysis) and sampling 

(renewing) the legacy data, 

- to study in detail the temporal by depth dimension of the SMSLD, 

- to highlight the statistical correction terms to apply for unbalanced data, 

- to explore the modelling process at varying key aspects of the data considered that include 

proximity, density, layer, subdomains of environmental variables (such as rainfall or 

temperatures), etc., 

- to foster land management at the administrative level (e.g., by province),  

- to suggest a data sharing agreement form at the involved institutions. 
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Data harmonization supplemental materials 1 

Correction of likely wrong samples of coarse fraction (diameter higher than 2 mm). This step was 2 

done by checking for samples with coarse fraction higher than 80% and at the same time sand lower 3 

than 80%, and SOC>1% (by means of the “IF” tool in Excel); 4 

This procedure allowed the univocal identification of doubled records, which were ordered by the 5 

internal code. Such code was then used to create a list of doubled records. The creation of such list 6 

was made by identifying, in the pivot system, those internal codes which were not aligned to the 7 

coordinate identification were selected and used as an ordination table of the internal code in the 8 

database by means of the combination of the tools “VLOOKUP” and “FILTER”. Briefly, a table of 9 

the doubled lines was made and ordered from the lower to the higher number. Then an additional 10 

column was created in the database. In this column, we applied the “VLOOKUP” to the total internal 11 

codes. Those internal codes corresponding to a doubled code were indicated by 1, else they were 12 

indicated by 0. Then we selected the “1”-indicated records by the “filter”, which were copied in 13 

another sheet and deleted from those of the main database. 14 

Metadata  15 

In its original form, the dataset had no metadata reporting instruction to how to use the data, how and 16 

why the data were collected, and which was their reliability in terms of coordinate precision. Every 17 

time that we performed a search for mistakes, outliers or correction (e.g. texture sum up to 100% or 18 

duplicate removal) a new field in the SMSLD was added with information on the change. Deleted 19 

lines were copied in a new sheet. We also collected several auxiliary data that were projected in 20 

UTM33N (http://spatialreference.org/ref/epsg/wgs-84-utm-zone-33n/). These data include spatial 21 

extent, geographic projection, data owner, accessibility. 22 

The data from the various sampling campaigns provided by ARTA and included in the legacy 23 

SMSLD had the same spatial reference system. 24 

Covariates 25 

Supplementary Material Tab. 1. Predictors used to build the models to test the database optimization 26 

procedure. 27 

Trait (Acronym) reference 

Land Use (LU) Regional Bureau of Agricuture, Sicly, Italy 

Texture (USDA) 

Mean depth of the sampling (Mdepth) 

Coarse earth fraction % (CEF) 

Soil type 

Clay Content (CLAY, particle size <0.002 

mm) 
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Sand content (SAND, particle size from 

0.02 mm to 2 mm) 

Mean Annual Temperature (Temp) Fick & Hijmans, 2017. Int. J. Climatol. 37, 4302–

4315. doi:10.1002/joc.5086 Mean Annual Rainfall (Rain) 

Slope aspect (asp) Zevenbergen, & Thorne, 1987. Earth Surf. Process. 

Landforms 12, 47–56. doi:10.1002/esp.3290120107 Slope length factor (LS) 

Channel network base level (CNBL) Conrad et al., 2015. Geosci. Model Dev. 8, 1991–

2007. doi:10.5194/gmd-8-1991-2015 Vertical distance channel network (VDCN) 

Digital elevation model (SRTM) Farr et al., 2007. Rev. Geophys. 45, RG2004. 

doi:10.1029/2005RG000183 

Topographic wetness index (TWI) Moore et al., 1991. Hydrol. Process. 5, 3–30. 

doi:DOI: 10.1002/hyp.3360050103 
 28 

Correction and error highlighting 29 

We checked the negative depth reported. E.g. in a sample, the first layer reported the depth from 0 30 

to 2 cm and the deeper 3 layer steps of 25 cm thickness, i.e. from 25 to 50 cm, from 50 to 75 cm and 31 

from 75 to 100 cm. Thus 2 was changed to 25. 32 

In addition, we created two additional information fields of the beginning of the soil layers within 33 

each sampling size with three classes (Supplementary Material Fig. 2): 34 

 ‘0’ for layers starting from 0 cm (i.e. soil surface) containing 2807 observations of SOC and 977 35 

of BD;  36 

 “SUP” for layers starting from 0.1 to 9.9 cm (i.e. close to the soil surface) and containing 61 37 

observations of SOC and 16 of BD. Such stratum was due to an objective hardness in assuming 38 

that these soils are or not directly influenced by the atmosphere. Among these samples 39 

(corresponding to 51 sites with SOC measures and 14 of BD), 18 sites for SOC and 3 of BD 40 

showed the upper layer sampled not beginning from the soil surface; 41 

 “INF” for layers starting from deeper than 10.0 cm (i.e. ‘far’ from the soil surface) and containing 42 

3809 observations of SOC and 433 of BD. The coupling of these two latter information strata 43 

give a rapid information on the layer positioning in the profile. 44 

Lines deleted were: 45 

 8 records lacking sand and silt information, since we hypothesized clay was not reliable. From 46 

the rest of data, sum of clay+silt+sand percentages was checked to be comprised between 97.5 47 

and 102.5%. No data were out of these boundaries. Nonetheless, original data were harmonised 48 

to 100% to allow for statistical inference assuming that sum of fine earth fraction is, in theory, a 49 

constant value; 50 
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 4 records of litter (i.e. with upper soil limit lower than 0). This was due since the scarce 51 

numerousness would not allow for any modelling approach and strongly and negatively affect 52 

the computations on the mineral soils; 53 

 11 records with observed CORINE Land use =1 (Artificial surface) for the same reasons above 54 

and because relationships between predictors and target variable can’t be found in artificial, non-55 

systematically made, soils; 56 

 294 doubled records.  57 

 58 

Modification of the coarse fraction of 3 samples (all from Land use=2) was done as follows. Samples 59 

derived from 3 different sampling campaigns, they were sampled in layers 0-20, 20-55, and 25-50 cm 60 

depth, and showed SOC content of 1.8, 1.51 and 2.66%, respectively. The second and third samples 61 

were coming from close sites (distant around 30 km). Lastly, one sample (internal id: 5547) reported 62 

as a land use the CORINE code 344, which does not exist in the CORINE legend. After checking in 63 

the orthophotos, the indication was changed to 244. 64 

Profundity of information about land use and coordinates reported was in general high. Only 58 sites 65 

with SOC information and 35 with BD information reported only the level one of the CORINE 66 

information (i.e. agricultural land use, with no further specification on which agricultural land use; 67 

tab. 2). The rest of the sampling sites reported highly detailed information on the land use.  68 

CORINE land cover maps of 1990, 2000, 2006, and 2012 (total area covered in land uses 2 and 3: 69 

24134 km2, 24157 km2, 24087, and 24065 km2, respectively) was 67-73% in land use 2 (Agricultural 70 

areas) and 27-33% in the land use 3 (Forest and semi natural areas). In the whole dataset, 82% of 71 

SOC samples were coming from soils categorised in the land use 2.  72 

With regards to sampling depth, 80% of sites sampled in land use 2 (agricultural soils) gave an 73 

information up to 50 cm, whereas in land use 3 (natural soils), information on a 50 cm depth was 74 

available for less than 50% of sites sampled. Information on SOC concentration at 100 cm was 75 

available for only 40% and 20% of sites with land use 2 and 3, respectively. 76 

Such correction made us to discard 317 data, the most of which due to duplication and only 23 for 77 

not being similar to others. These latter data were discarded due to the extremely low number of cases 78 

compared to the core of data (i.e. mineral soil).  79 

Supplementary Material Fig. 3. Area share in by CORINE per land use in Sicily (Italy) from 1990 80 

to 2012, and area covered by each map in the land uses indicated. 81 
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Supplementary Material Tab. 2. Fit-statistics for the models with no covariate selection built with the CORRECTED and UNCORRECTED (i.e., original) 89 
databases. See Supplementary Material Tab. 1 for codes. Procedure was run with the complete database, including samples from all layers. * Optimal Value Of 90 

Criterion 91 

 92 

OPTIMIZED DATABASE 
           

No covariate selection 

summary 

Step Effect Number 

of 

paramete

rs in the 

model 

R-

Squar

e 

Adjuste

d R-

Square 

AIC AICC BIC CP SBC PRESS ASE F 

Value 

Pr > 

F 

0 Intercept 1 0 0 -5549.41 -5549.408 -12225.4 3826.69

94 

-12219.6 1068.97

19 

0.160

1 

0 1 

1 LU 8 0.019 0.018 -5663.532 -5663.505 -12344.41 3641.08

62 

-12286.08 1050.93

58 

0.157

1 

18.46 <.000

1 

2 usda 19 0.061

3 

0.0587 -5935.456 -5935.33 -12622.93 3219.37

73 

-12483.14 1009.26

3 

0.150

3 

27.24 <.000

1 

3 Mdepth 20 0.243

3 

0.2411 -7371.921 -7371.782 -14053.37 1310.60

03 

-13912.8 813.811

1 

0.121

2 

1600.4

1 

<.000

1 

4 CEF 21 0.258 0.2558 -7501.673 -7501.52 -14182.73 1157.30

73 

-14035.74 798.289

8 

0.118

8 

132.64 <.000

1 

5 CLAY 22 0.269 0.2667 -7599.032 -7598.866 -14279.8 1044.20

46 

-14126.3 786.711

1 

0.117 99.77 <.000

1 

6 SAND 23 0.280

8 

0.2784 -7705.251 -7705.07 -14385.62 922.773

6 

-14225.71 774.300

4 

0.115

1 

108.72 <.000

1 
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7 Temp 24 0.305

8 

0.3034 -7939.989 -7939.794 -14619.05 661.632

8 

-14453.64 747.851

9 

0.111

1 

240.12 <.000

1 

8 Rain 25 0.346

1 

0.3438 -8337.304 -8337.093 -15013.69 240.394

8 

-14844.15 704.447

7 

0.104

7 

409.96 <.000

1 

9 asp 26 0.348

6 

0.3462 -8360.968 -8360.74 -15037.22 216.050

1 

-14861.01 701.970

2 

0.104

3 

25.61 <.000

1 

10 CNBL 27 0.352

5 

0.35 -8398.582 -8398.337 -15074.56 177.582

7 

-14891.82 698.074 0.103

7 

39.57 <.000

1 

11 LS 28 0.353

7 

0.3511 -8408.95 -8408.688 -15084.87 166.997

4 

-14895.38 697.061

8 

0.103

5 

12.33 0.000

4 

12 SRTM 29 0.361

4 

0.3587 -8486.81 -8486.53 -15162.07 88.2927 -14966.43 689.007

9 

0.102

2 

79.99 <.000

1 

13 TWI 30 0.367

1 

0.3644

* 

-

8545.101

8* 

-

8544.803

1* 

-

15219.83

1* 

30.0000

* 

-

15017.91

8* 

682.986

6* 

0.101

3 

60.29 <.000

1 

14 VDCN 30 0.367

1 

0.3644 -8545.102 -8544.803 -15219.83 30 -15017.92 682.986

6 

0.101

3 

. . 

* Optimal Value Of Cr

iterion 
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UNCORRECTED 

DATABASE 
           

No covariate selection 

summary 

Step Effect Number 

of 

paramete

rs in the 

model 

R-

Squar

e 

Adjuste

d R-

Square 

AIC AICC BIC CP SBC PRESS ASE F 

Value 

Pr > 

F 

0 Intercept 1 0 0 -6013.664 -6013.663 -12999.63 3850.25

69 

-12993.81 1086.04

09 

0.155

4 

0 1 

1 LU 11 0.020

8 

0.0194 -6140.231 -6140.186 -13132.98 3645.31

05 

-13051.86 1065.85

1 

0.152

2 

14.79 <.000

1 

2 usda 22 0.063

1 

0.0603 -6426.947 -6426.788 -13425.86 3208.66

49 

-13263.21 1023.36

05 

0.145

6 

28.6 <.000

1 

3 Mdepth 23 0.241

3 

0.2389 -7898.473 -7898.3 -14890.43 1280.29

95 

-14727.89 828.971

5 

0.117

9 

1635.0

8 

<.000

1 

4 CEF 24 0.255

5 

0.2531 -8028.902 -8028.715 -15020.37 1127.93

72 

-14851.47 813.756

5 

0.115

7 

133.23 <.000

1 

5 CLAY 25 0.265

7 

0.2632 -8123.301 -8123.099 -15114.42 1019.39

82 

-14939.01 802.789 0.114

1 

96.72 <.000

1 

6 SAND 26 0.277

3 

0.2747 -8232.545 -8232.328 -15223.17 895.718

6 

-15041.41 790.358

9 

0.112

3 

111.72 <.000

1 

7 Temp 27 0.300

7 

0.2981 -8459.833 -8459.6 -15449.06 644.906

8 

-15261.84 765.347

1 

0.108

7 

232.19 <.000

1 

8 Rain 28 0.338 0.3355 -8841.179 -8840.929 -15827.64 242.335

1 

-15636.34 724.497

3 

0.102

9 

392.48 <.000

1 
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9 asp 29 0.340

2 

0.3376 -8862.479 -8862.211 -15848.8 220.453

4 

-15650.79 722.315

2 

0.102

6 

23.24 <.000

1 

10 CNBL 30 0.344

2 

0.3415 -8902.536 -8902.25 -15888.55 179.547

7 

-15683.99 718.231

2 

0.101

9 

42 <.000

1 

11 LS 31 0.345

9 

0.3431 -8918.984 -8918.68 -15904.87 162.808

5 

-15693.59 716.617

4 

0.101

7 

18.39 <.000

1 

12 SRTM 32 0.353 0.3501 -8992.945 -8992.623 -15978.17 88.1681 -15760.7 709.101

8 

0.100

6 

76.03 <.000

1 

13 TWI 33 0.358

3 

0.3553

* 

-

9048.149

9* 

-

9047.807

4* 

-

16032.83

7* 

33.0000

* 

-

15809.05

0* 

703.498

4* 

0.099

7 

57.17 <.000

1 

14 VDCN 33 0.358

3 

0.3553 -9048.15 -9047.807 -16032.84 33 -15809.05 703.498

4 

0.099

7 

. . 

* Optimal Value Of Cr

iterion 

 93 

  94 
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Supplementary Material Tab. 3. Fit-statistics for the models with LASSO selection procedure built with the CORRECTED and UNCORRECTED (i.e., 95 
original) databases. See Supplementary Material Tab. 1 for codes. Procedure was run with the complete database, including samples from all layers. * Optimal 96 

Value Of Criterion 97 

OPTIMIZED DATABASE 
         

LASSO 

Selection 

Summary 

Step Effect Model R-

Square 

Adjusted R-

Square 

AIC AICC BIC CP SBC ASE F Value Pr > F 

0 Intercept 0 0 -5549.4098 -5549.408 -12225.404 3826.6994 -12219.604 0.1601 0 1 

1 Mdepth 0.1344 0.1342 -6510.5863 -6510.5827 -13186.79 2417.8694 -13173.974 0.1386 1035.82 <.0001 

2 CNBL 0.1483 0.148 -6616.8487 -6616.8427 -13293.499 2273.6454 -13273.43 0.1364 109.1 <.0001 

3 Rain 0.2463 0.246 -7430.7425 -7430.7335 -14107.044 1246.7374 -14080.518 0.1207 867.33 <.0001 

4 usda_SAND 0.2827 0.2823 -7759.3264 -7759.3138 -14435.489 866.3513 -14402.296 0.1148 338.65 <.0001 

5 CEF 0.2856 0.285 -7784.0845 -7784.0677 -14460.43 838.2208 -14420.248 0.1144 26.79 <.0001 

6 usda_SANDY 

CLAY LOAM 

0.2922 0.2916 -7844.226 -7844.2044 -14520.672 770.7115 -14473.583 0.1133 62.37 <.0001 

7 SAND 0.2956 0.2949 -7874.8352 -7874.8082 -14551.413 736.4942 -14497.386 0.1128 32.65 <.0001 

8 TWI 0.3048 0.3039 -7959.8128 -7959.7797 -14636.368 642.7535 -14575.558 0.1113 87.43 <.0001 

9 asp 0.3069 0.3059 -7978.1925 -7978.1529 -14654.862 622.5003 -14587.131 0.111 20.38 <.0001 

10 Temp 0.3281 0.3271 -8184.1437 -8184.0968 -14860.332 401.2742 -14786.276 0.1076 210.88 <.0001 

11 usda_SILT 

LOAM 

0.3306 0.3295* -8206.7713* -8206.7167* -14882.983* 377.2951* -14802.098* 0.1072 24.63 <.0001 
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* Optimal Va

lue Of Criteri

on 

            
UNCORREC

TED 

DATABASE 
         

LASSO 

Selection 

Summary 

Step Effect Model R-

Square 

Adjusted R-

Square 

AIC AICC BIC CP SBC ASE F Value Pr > F 

0 Intercept 0 0 -6013.6643 -6013.6625 -12999.627 3850.2569 -12993.813 0.1554 0 1 

1 Mdepth 0.1325 0.1324 -7004.4979 -7004.4945 -13990.657 2416.8674 -13977.795 0.1348 1066.55 <.0001 

2 CNBL 0.159 0.1587 -7219.0684 -7219.0627 -14205.577 2131.9565 -14185.514 0.1307 219.87 <.0001 

3 Rain 0.2369 0.2366 -7896.4696 -7896.461 -14882.758 1289.5063 -14856.063 0.1186 713.13 <.0001 

4 usda_SAND 0.278 0.2776 -8280.9251 -8280.913 -15267.018 846.5714 -15233.667 0.1122 397.06 <.0001 

5 CEF 0.2791 0.2786* -8289.6479* -8289.6318* -15275.937* 836.5736* -15235.539* 0.1121 10.72 0.0011 

* Optimal Va

lue Of Criteri

on 

 98 

  99 
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Supplementary Material Tab. 4. Fit-statistics for the models with no covariate selection built with the CORRECTED and UNCORRECTED (i.e., original) 100 
databases. See Supplementary Material Tab. 1 for codes. Procedure were run only on the database pertaining samples for which the deepest information was 101 
shallower than 50 cm (named “DIS50”) or only on the database pertaining samples for which the deepest information was deeper than 50 cm (named “DID50”). 102 

* Optimal Value Of Criterion 103 

CORRECTED DATABASE – DIS50 - No covariate selection summary 104 

Step Effect Number of 

parameters 

in the 

model 

Model 

R-

Square 

Adjusted 

R-

Square 

AIC AICC BIC CP SBC PRESS ASE F 

Value 

Pr > F 

0 Intercept 1 0 0 -4277.87 -4277.87 -7576.56 1230.9534 -7571.77 331.4094 0.1004 0 1 

1 SU 2 0.0269 0.0266 -4365.96 -4365.95 -7665.09 1110.974 -7653.75 322.7398 0.0977 91.27 <.0001 

2 LU(SU) 8 0.0353 0.0332 -4382.39 -4382.34 -7684.43 1085.1541 -7633.59 321.1734 0.0969 4.75 <.0001 

3 usda 19 0.0973 0.0924 -4579.5 -4579.25 -7884.91 826.4391 -7763.58 302.534 0.0907 20.48 <.0001 

4 Mdepth 20 0.1284 0.1233 -4692.95 -4692.66 -7997.57 687.8753 -7870.92 292.3174 0.0875 116.77 <.0001 

5 CEF 21 0.1566 0.1515 -4799.73 -4799.42 -8103.48 561.8479 -7971.6 283.0856 0.0847 109.89 <.0001 

6 CLAY 22 0.1732 0.1679 -4863.1 -4862.76 -8166.36 488.9146 -8028.88 277.6901 0.083 65.59 <.0001 

7 SAND 23 0.1935 0.1881 -4943.22 -4942.85 -8245.68 398.8723 -8102.89 271.0433 0.081 82.57 <.0001 

8 Temp 24 0.2281 0.2226 -5085.58 -5085.18 -8386.29 244.5061 -8239.16 259.7934 0.0775 146.5 <.0001 

9 Rain 25 0.2665 0.2611 -5252 -5251.57 -8550.33 72.5381 -8399.47 246.9913 0.0737 171.48 <.0001 

10 CNBL 26 0.2691 0.2635 -5261.65 -5261.19 -8559.82 62.8261 -8403.02 246.3863 0.0734 11.58 0.0007 

11 LS 27 0.2696 0.2638 -5261.82 -5261.33 -8559.96 62.6452 -8397.09 246.4255 0.0734 2.16 0.142 

12 SRTM 28 0.2757 0.2697 -5287.49 -5286.95 -8585.16 37.0261 -8416.66 244.5805 0.0727 27.54 <.0001 
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13 TWI 29 0.2779 0.2717* -

5295.5848* 

-

5295.0155* 

-

8593.0704* 

29.0000* -

8418.6537* 

243.9786* 0.0725 10.03 0.0016 

14 VDCN 29 0.2779 0.2717 -5295.58 -5295.02 -8593.07 29 -8418.65 243.9786 0.0725 . . 

  105 
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UNCORRECTED DATABASE – DIS50 - No covariate selection summary 106 

Step Effect Number of 

parameters 

in the 

model 

Model 

R-

Square 

Adjusted 

R-

Square 

AIC AICC BIC CP SBC PRESS ASE F 

Value 

Pr > F 

0 Intercept 1 0 0 -4544.82 -4544.81 -7990.49 1239.2033 -7985.67 338.6097 0.0982 0 1 

1 SU 3 0.0255 0.025 -4629.92 -4629.9 -8076.51 1123.6601 -8058.48 330.3234 0.0957 45.09 <.0001 

2 LU(SU) 11 0.0342 0.0314 -4644.87 -4644.78 -8095.22 1098.8456 -8024.28 328.5986 0.0949 3.87 0.0001 

3 usda 22 0.0965 0.091 -4852.47 -4852.15 -8305.71 829.2991 -8164.29 309.4579 0.0888 21.45 <.0001 

4 Mdepth 23 0.1288 0.1232 -4975.86 -4975.5 -8428.05 680.1032 -8281.53 298.5522 0.0856 126.84 <.0001 

5 CEF 24 0.1569 0.1512 -5086.63 -5086.25 -8537.77 550.7348 -8386.16 289.1547 0.0828 113.84 <.0001 

6 CLAY 25 0.1721 0.1662 -5147.24 -5146.83 -8597.84 481.6282 -8440.63 284.0626 0.0813 62.73 <.0001 

7 SAND 26 0.1935 0.1876 -5235.8 -5235.36 -8685.37 383.0572 -8523.04 276.8859 0.0792 91.06 <.0001 

8 Temp 27 0.2256 0.2197 -5373.37 -5372.9 -8821.08 235.1267 -8654.47 266.2287 0.0761 141.33 <.0001 

9 Rain 28 0.2606 0.2547 -5530.79 -5530.28 -8976.07 73.1507 -8805.74 254.3212 0.0726 161.84 <.0001 

10 CNBL 29 0.2632 0.2572 -5541.25 -5540.7 -8986.33 62.6548 -8810.05 253.6648 0.0724 12.37 0.0004 

11 LS 30 0.264 0.2577 -5542.59 -5542.01 -8987.62 61.3054 -8805.25 253.6213 0.0723 3.32 0.0686 

12 SRTM 31 0.2695 0.263 -5566.49 -5565.87 -9011.05 37.4969 -

8823.0046* 

251.9371 0.0718 25.76 <.0001 

13 TWI 32 0.2711 0.2644* -

5572.0485* 

-

5571.3906* 

-

9016.4486* 

32.0000* -8822.42 251.5345* 0.0716 7.5 0.0062 

14 VDCN 32 0.2711 0.2644 -5572.05 -5571.39 -9016.45 32 -8822.42 251.5345 0.0716 . . 
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CORRECTED DATABASE – DID50 - No covariate selection summary 107 

Step Effect Number of 

parameters 

in the 

model 

Model 

R-

Square 

Adjusted 

R-

Square 

AIC AICC BIC CP SBC PRESS ASE F 

Value 

Pr > F 

0 Intercept 1 0 0 -2703.99 -2703.98 -6078.66 1216.8362 -6073.86 556.5978 0.1649 0 1 

1 SU 2 0.0005 0.0002 -2703.52 -2703.51 -6078.72 1216.753 -6067.27 556.7006 0.1648 1.53 0.216 

2 LU(SU) 8 0.0149 0.0129 -2740.7 -2740.65 -6118.89 1162.3759 -6067.71 550.5151 0.1624 8.24 <.0001 

3 usda 19 0.0541 0.049 -2855.54 -2855.29 -6238.1 1004.7094 -6115.19 532.5227 0.156 12.62 <.0001 

4 Mdepth 20 0.1192 0.1143 -3094.4 -3094.13 -6475.07 707.6396 -6347.93 496.0846 0.1452 248.19 <.0001 

5 CEF 21 0.1316 0.1264 -3140 -3139.7 -6520.49 653.0265 -6387.4 489.6042 0.1432 47.63 <.0001 

6 CLAY 22 0.1413 0.136 -3176.1 -3175.77 -6556.46 610.2796 -6417.37 484.3479 0.1416 38.07 <.0001 

7 SAND 23 0.1516 0.1461 -3214.79 -3214.43 -6594.96 565.0467 -6449.94 478.8329 0.1399 40.66 <.0001 

8 Temp 24 0.1776 0.172 -3317.8 -3317.41 -6696.91 447.7485 -6546.83 464.8916 0.1356 105.9 <.0001 

9 Rain 25 0.2302 0.2247 -3538.78 -3538.36 -6915.03 208.4062 -6761.69 434.9704 0.1269 228.81 <.0001 

10 CNBL 26 0.2375 0.2318 -3569.01 -3568.56 -6944.87 176.8249 -6785.79 431.1158 0.1257 32.13 <.0001 

11 LS 27 0.2435 0.2376 -3593.53 -3593.05 -6969.05 151.4322 -6804.19 428.0602 0.1247 26.41 <.0001 

12 SRTM 28 0.2606 0.2546 -3668.67 -3668.15 -7042.98 74.9718 -6873.2 418.7657 0.1219 77.37 <.0001 

13 TWI 29 0.2711 0.2650* -

3714.7096* 

-

3714.1532* 

-

7088.2069* 

29.0000* -

6913.1178* 

413.0039* 0.1202 47.97 <.0001 

14 VDCN 29 0.2711 0.265 -3714.71 -3714.15 -7088.21 29 -6913.12 413.0039 0.1202 . . 
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UNCORRECTED DATABASE – DID50 - No covariate selection summary 109 

Step Effect Number of 

parameters 

in the 

model 

Model 

R-

Square 

Adjusted 

R-

Square 

AIC AICC BIC CP SBC PRESS ASE F 

Value 

Pr > F 

0 Intercept 1 0 0 -2944.82 -2944.81 -6485.47 1230.2704 -6480.65 566.4834 0.1599 0 1 

1 SU 3 0.0002 -0.0004 -2941.57 -2941.56 -6483.25 1233.2536 -6465.06 566.9292 0.1599 0.38 0.6858 

2 LU(SU) 10 0.0224 0.0199 -3006.86 -3006.78 -6551.78 1141.6703 -6487.14 555.9497 0.1564 11.42 <.0001 

3 usda 21 0.0602 0.0549 -3124.79 -3124.5 -6673.7 982.996 -6537.18 538.2799 0.1503 12.9 <.0001 

4 Mdepth 22 0.1198 0.1145 -3354.45 -3354.14 -6901.39 701.1431 -6760.67 504.4701 0.1408 237.92 <.0001 

5 CEF 23 0.1313 0.1259 -3399.14 -3398.8 -6945.87 648.1448 -6799.19 498.3236 0.1389 46.7 <.0001 

6 CLAY 24 0.14 0.1344 -3432.93 -3432.56 -6979.53 608.4853 -6826.8 493.5371 0.1375 35.72 <.0001 

7 SAND 25 0.1495 0.1437 -3470.03 -3469.63 -7016.42 565.4404 -6857.73 488.4024 0.136 39.04 <.0001 

8 Temp 26 0.1735 0.1676 -3569.48 -3569.05 -7114.79 452.8656 -6951.01 475.3851 0.1322 102.16 <.0001 

9 Rain 27 0.2225 0.2167 -3783.52 -3783.06 -7325.97 221.5522 -7158.88 447.0694 0.1244 221.07 <.0001 

10 CNBL 28 0.2299 0.224 -3815.62 -3815.12 -7357.64 188.0131 -7184.81 443.1276 0.1232 33.99 <.0001 

11 LS 29 0.2377 0.2316 -3849.47 -3848.94 -7390.99 153.0161 -7212.48 438.9598 0.1219 35.73 <.0001 

12 SRTM 30 0.2537 0.2476 -3922.83 -3922.26 -7463.14 78.4502 -7279.67 430.1122 0.1194 75.52 <.0001 

13 TWI 31 0.2641 0.2578* -

3970.3677* 

-

3969.7655* 

-

7509.8201* 

31.0000* -

7321.0393* 

424.2663* 0.1177 49.45 <.0001 

14 VDCN 31 0.2641 0.2578 -3970.37 -3969.77 -7509.82 31 -7321.04 424.2663 0.1177 . . 
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- 112 

Supplementary Material Tab. 5. Fit-statistics for the models with LASSO selection procedure built with the CORRECTED and UNCORRECTED (i.e., 113 
original) databases. See Supplementary Material Tab. 1 for codes. Procedure were run only on the database pertaining samples for which the deepest information 114 
was shallower than 50 cm (named “DIS50”) or only on the database pertaining samples for which the deepest information was deeper than 50 cm (named 115 

“DID50”). * Optimal Value Of Criterion 116 

CORRECTED DATABASE – DIS50 - LASSO selection summary 117 

Step Effect Model 

R-

Square 

Adjusted R-

Square 

AIC AICC BIC CP SBC PRESS ASE F 

Value 

Pr > F 

0 Intercept 0 0 -4277.8713 -4277.8676 -7576.5616 1230.9534 -7571.7702 331.4094 0.1 0 1 

1 Rain 0.0761 0.0758 -4536.9092 -4536.9019 -7835.8445 888.4567 -7824.707 306.4676 0.093 271.48 <.0001 

2 SRTM 0.1106 0.1101 -4660.4486 -4660.4365 -7959.5993 734.2422 -7942.1454 295.216 0.089 127.84 <.0001 

3 CNBL 0.1118 0.111 -4662.7572 -4662.7389 -7962.2603 730.9857 -7938.3529 295.0963 0.089 4.31 0.0381 

4 Mdepth 0.1523 0.1513 -4814.7229 -4814.6974 -8114.1685 549.582 -8084.2176 281.8275 0.085 157.38 <.0001 

5 CEF 0.1685 0.1673 -4876.5829 -4876.5488 -8176.0991 477.9888 -8139.9764 276.7089 0.084 64.36 <.0001 

6 usda_SILT 

LOAM 

0.1876 0.1861 -4951.0408 -4950.997 -8250.5076 393.7316 -8208.3333 270.5399 0.082 77.19 

<.0001 

7 usda_SAND 0.2257 0.224 -5107.3777 -5107.323 -8406.3311 223.3352 -8358.5692 258.1647 0.078 161.81 <.0001 

8 Temp 0.2333 0.2315* -

5138.2057* 

-

5138.1388* 

-

8437.1059* 

190.6165* -

8383.2961* 

255.8591* 0.077 32.9 

<.0001 
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UNCORRECTED DATABASE – DIS50 - LASSO selection summary 120 

Step Effect Model 

R-

Square 

Adjusted R-

Square 

AIC AICC BIC CP SBC PRESS ASE F 

Value 

Pr > F 

0 Intercept 0 0 -4544.8183 -4544.8148 -7990.4864 1239.2033 -7985.6736 338.6097 0.098 0 1 

1 SRTM 0.0719 0.0716 -4799.9404 -4799.9334 -8245.8551 904.4638 -8234.651 314.4885 0.091 266.81 <.0001 

2 Rain 0.1042 0.1037 -4919.9179 -4919.9063 -8366.0536 755.2954 -8348.4839 303.7822 0.088 124.05 <.0001 

3 CNBL 0.1052 0.1045 -4921.8691 -4921.8517 -8368.3539 752.4876 -8344.2904 303.693 0.088 3.95 0.047 

4 Mdepth 0.1451 0.1441 -5076.8022 -5076.7778 -8523.2348 567.9219 -8493.0788 290.352 0.084 160.33 <.0001 

5 CEF 0.1596 0.1583 -5133.6463 -5133.6137 -8580.1719 502.1285 -8543.7782 285.7025 0.083 59.25 <.0001 

6 usda_SILT 

LOAM 

0.1772 0.1758 -5204.7195 -5204.6776 -8651.2229 421.538 -8608.7068 279.8788 0.081 73.7 

<.0001 

7 usda_SAND 0.215 0.2134 -5364.8893 -5364.8369 -8810.9001 246.3861 -8762.7319 267.3133 0.077 165.66 <.0001 

8 Temp 0.2219 0.2201* -

5393.3117* 

-

5393.2476* 

-

8839.2963* 

216.0721* -

8785.0096* 

265.2222* 0.076 30.48 

<.0001 
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CORRECTED DATABASE – DID50 - LASSO selection summary 122 

Step Effect Model 

R-

Square 

Adjusted R-

Square 

AIC AICC BIC CP SBC PRESS ASE F 

Value 

Pr > F 

0 Intercept 0 0 -2703.9866 -2703.983 -6078.6562 1216.8362 -6073.8627 556.5978 0.165 0 1 

1 CNBL 0.0733 0.073 -2958.8432 -2958.8361 -6333.7549 882.4624 -6322.5955 516.1482 0.153 266.73 <.0001 

2 Mdepth 0.1315 0.131 -3175.7369 -3175.725 -6550.7043 617.336 -6533.3653 484.0371 0.143 225.95 <.0001 

3 Rain 0.1596 0.1588 -3284.4547 -3284.4369 -6659.4872 490.6796 -6635.9593 468.7408 0.139 112.42 <.0001 

4 usda_SAND 0.1901 0.1891 -3407.2332 -3407.2083 -6782.1722 352.6556 -6752.614 452.0882 0.134 126.93 <.0001 

5 TWI 0.2117 0.2105 -3496.5118 -3496.4785 -6871.3284 255.4549 -6835.7686 440.2827 0.13 92.36 <.0001 

6 LU_32(SU_NAT) 0.224 0.2226 -3547.5556 -3547.5128 -6922.2964 201.0284 -6880.6886 433.6958 0.128 53.35 <.0001 

7 usda_SANDY 

CLAY LOAM 

0.2332 0.2316 -3586.0274 -3585.9739 -6960.6882 160.5683 -6913.0366 428.7776 0.126 40.62 

<.0001 

8 SAND 0.2413 0.2395 -3619.6546 -3619.5892 -6994.2129 125.61 -6940.5399 424.6354 0.125 35.72 <.0001 

9 VDCN 0.2459 0.2439 -3638.35 -3638.271 -7012.85 106.3202 -6953.111 422.301 0.124 20.7 <.0001 

10 CEF 0.2493 0.2471 -3651.5166 -3651.4238 -7025.9696 92.8002 -6960.1542 420.7304 0.124 15.15 0.0001 

11 Temp 0.2579 0.2555 -3688.4537 -3688.3454 -7062.6743 55.2745 -6990.9675 415.9328 0.122 39.02 <.0001 

12 usda_SILT 0.2604 0.2577 -3697.6033 -3697.4783 -7071.7569 46.0402 -6993.9932 414.819 0.122 11.12 0.0009 

13 usda_SILT LOAM 0.2625 0.2596 -3705.3387 -3705.1957 -7079.4236 38.2611 -

6995.6047* 

413.9026 0.122 9.71 

0.0018 

14 LU_31(SU_NAT) 0.2634 0.2603* -

3707.4144* 

-

3707.2523* 

-

7081.4692* 

36.1755* -6991.5565 413.6399* 0.121 4.06 

0.044 
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UNCORRECTED DATABASE – DID50 - LASSO selection summary 124 

Step Effect Model 

R-

Square 

Adjusted R-

Square 

AIC AICC BIC CP SBC PRESS ASE F 

Value 

Pr > F 

0 Intercept 0 0 -2944.8177 -2944.8143 -6485.4656 1230.2704 -6480.6458 566.4834 0.16 0 1 

1 CNBL 0.0728 0.0726 -3210.5647 -3210.5579 -6751.4412 884.9247 -6740.2209 525.5656 0.148 277.98 <.0001 

2 Mdepth 0.1282 0.1277 -3426.3377 -3426.3264 -6967.2725 623.1556 -6949.8221 494.5144 0.139 224.42 <.0001 

3 Rain 0.1508 0.1501 -3517.4901 -3517.4731 -7058.5277 517.19 -7034.8026 481.989 0.136 94.28 <.0001 

4 LU_2(SU_AGR) 0.1521 0.1511 -3520.8515 -3520.8277 -7062.1267 513.0621 -7031.9921 481.5181 0.136 5.36 0.0207 

5 usda_SAND 0.1826 0.1815 -3648.6224 -3648.5907 -7189.7401 369.5334 -7153.5911 464.574 0.131 131.95 <.0001 

6 LU_32(SU_NAT) 0.1968 0.1954 -3708.5388 -3708.498 -7249.6102 303.9563 -7207.3356 456.8246 0.129 62.34 <.0001 

7 TWI 0.2141 0.2126 -3783.8233 -3783.7723 -7324.7143 223.2476 -7276.4483 447.2117 0.126 77.96 <.0001 

8 SAND 0.2278 0.226 -3843.726 -3843.6637 -7384.4245 160.2904 -7330.1791 439.8175 0.124 62.29 <.0001 

9 usda_SANDY 

CLAY LOAM 

0.2303 0.2284 -3853.625 -3853.55 -7394.335 149.9343 -7333.906 438.594 0.123 11.89 6E-04 

10 LU_31(SU_NAT) 0.236 0.2338 -3877.6594 -3877.5709 -7418.2833 125.043 -7351.7687 435.5983 0.122 26.05 <.0001 

11 VDCN 0.2412 0.2388 -3899.86 -3899.7568 -7440.3798 102.2229 -7367.7974 432.8857 0.121 24.2 <.0001 

12 CEF 0.2442 0.2417 -3912.0549 -3911.9358 -7452.5154 89.7433 -7373.8204 431.4712 0.121 14.17 0.0002 

13 usda_SILT 0.2467 0.244 -3921.848 -3921.7118 -7462.2519 79.7578 -7377.4417 430.2842 0.121 11.77 0.0006 

14 Temp 0.2541 0.2511 -3954.6666 -3954.5122 -7494.8067 46.6033 -7404.0884 426.0997 0.119 34.84 <.0001 

15 usda_SILT LOAM 0.2563 0.2531 -3962.8418 -3962.668 -7502.8995 38.3951 -7406.0917 425.1494 0.119 10.14 0.0015 

16 LS 0.2581 0.2548 -3969.8009 -3969.6066 -7509.7762 31.4312 -

7406.8789* 

424.4394 0.119 8.93 

0.0028 
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17 usda_SANDY 

LOAM 

0.2588 0.2553* -

3971.2317* 

-

3971.0158* 

-

7511.1707* 

30.0045* -7402.1378 424.3775* 0.119 3.42 

0.0647 
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 126 

Supplementary Fig. 4. Coefficient of progression of each Standardised coefficient of the logSOC 127 

modelling at increasing the step of model building (i.e. inclusion of new variables) with no covariate 128 
selection procedure for the optimized dataset. See Supplementary Material Tab. 1 for codes. 129 

 130 
 131 
Supplementary Fig. 5. Coefficient of progression of each Standardised coefficient of the logSOC 132 

modelling at increasing the step of model building (i.e. inclusion of new variables) with no covariate 133 
selection procedure for the non-optimized dataset. See Supplementary Material Tab. 1 for codes. 134 
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 135 
Supplementary Fig. 6. Coefficient of progression of each Standardised coefficient of the logSOC 136 
modelling at increasing the step of model building (i.e. inclusion of new variables) with LASSO 137 

covariate selection procedure for the optimized dataset. See Supplementary Material Tab. 1 for codes. 138 

 139 
Supplementary Fig. 7. Coefficient of progression of each Standardised coefficient of the logSOC 140 
modelling at increasing the step of model building (i.e. inclusion of new variables) with LASSO 141 

covariate selection procedure for the non-optimized dataset. See Supplementary Material Tab. 1 for 142 
codes. 143 
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Chapter 4- Modelling the topsoil carbon stock of agricultural lands with the Stochastic 

Gradient Treeboost in a semi-arid Mediterranean region 

 

Slightly modified from a paper Published in Geoderma 2017 Schillaci, C., Lombardo, L., Saia, S., 

Fantappiè, M., Märker, M., Acutis, M., 2017b. Modelling the topsoil carbon stock of agricultural lands with 
the Stochastic Gradient Treeboost in a semi-arid Mediterranean region. Geoderma 286, 35–45. 
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Abstract 

Efficient modelling methods to assess soil organic carbon (SOC) stocks have a pivotal importance as 

inputs for global carbon cycle studies and decision-making processes. However, laboratory analyses 

of SOC field samples are costly and time consuming. Global-scale estimates of SOC were recently 

made according to categorical variables, including land use and soil texture. Remote sensing (RS) 

data can contribute to the better modelling of the spatial distribution of SOC stock at a regional scale. 

In the present study, we used Stochastic Gradient Treeboost (SGT) to estimate the topsoil (0–30 cm) 

SOC stock of a Mediterranean semiarid area (Sicily, Italy, 25,286 km2). In particular, our study 

examined agricultural lands, which represent approximately 64% of the entire region. An extensive 

soil dataset (2202 samples, 1 profile/7.31 km2 on average) was acquired from the soil database of 

Sicily. The georeferenced field observations were intersected with remotely sensed environmental 

data and other spatial data, including climatic data from WORLDCLIM, land cover from CORINE, 

soil texture, topography and derived indices. Finally, the SGT was compared to published global 

estimates (GSOC) and data from the International Soil Reference and Information Centre (ISRIC) 

Soil Grids by comparing the pseudo-regressions of the SGT, GSOC and ISRIC with soil observations. 

The mean SOC stock across the entire region that was estimated by GSOC and ISRIC was 3.9% 

lower and 46.2% higher compared to the SGT. The SGT efficiently predicted SOC stocks that were 

70 t ha−1 (corresponding to the 90th percentile of the observed values). On average, the coefficient of 

variation of the SGT model was 3.6% when computed on the whole dataset and remained lower than 

23% when computed on a distribution basis. The SGT mean absolute error was 14.84 t ha−1, 18.4% 

and 36.3% lower than GSOC and ISRIC, respectively. The mean annual rainfall, soil texture, land 

use, mean annual temperature and Landsat 7 ETM+ panchromatic Band 8 were the most important 

predictors of SOC stock. Finally, SOC stocks were estimated for each land cover class. SGT predicted 

SOC stock better than GSOC and ISRIC for most data. This resulted in a percentage of data in the 

prediction confidence interval ± 50% compared to the observed values of 71.4%, 65.8%, and 50.7% 
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for SGT, GSOC, and SGT, respectively. This consisted of a higher R2 and a slope (β) that was closer 

to 1 for the pseudo-regression constructed with SGT compared to GSOC and ISRIC. In conclusion, 

the results of the present study showed that the integration of RS with climatic and soil texture spatial 

data could strongly improve SOC prediction in a semi-arid Mediterranean region. In addition, the 

panchromatic band of Landsat 7 ETM+ was more predictive compared to the conventionally used 

NDVI. This information is crucial to guiding decision-making processes, especially at a regional scale 

and/or in semi-arid Mediterranean areas. The model performance of the SGT could be further 

improved by adopting predictors with greater spatial resolutions. The results of the present 

experiment yield valuable information, especially for assessing climate change or land use change 

scenarios for SOC stocks and their spatial distribution. 

  

Graphical abstract 

4.1 Introduction 

Agricultural land plays a pivotal role in terms of carbon sequestration ability due to soil organic 

carbon (SOC) being in both topsoil and subsoil. SOC is recognized as the most important indicator 

of soil quality and determines plant productivity (Lal, 2004) through a wide range of mechanisms, 

including its activity as a main source of energy for microbial processes (Hudson, 1994); soil cation 

exchange capacity (Chan et al., 1992; Riffaldi et al., 1994); the effect on water holding capacity and 

infiltration rate through the soil profile (Macrae and Mehuys, 1985); and the reduction of the soil bulk 

density and cohesion (Soane, 1990). In addition, SOC is one of the most important CO2 sequestration 

sources (Post et al., 1982). Rules and regulations were established by a number of countries to change 

the existing carbon balance, including the reduction of CO2 emissions in the atmosphere from both 

soil and other sources. To achieve this, the CO2 sequestration abilities of soils also need to be 

increased. The creation of a CO2 accounting system, in which CO2 levels are counted as C credits and 

Soil organic carbon  
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debits, is presently a key agenda point in Europe and around the world. However, the creation of such 

accounting systems relies on correct knowledge of the C content of soils at the regional (Martin et 

al., 2010) or farm level (de Gruijter et al., 2016). In turn, such knowledge is fundamental to 

monitoring changes in the C stocks and a better understanding of the global C cycle (Martin et al., 

2014). Different global or regional estimates were produced (Batjes, 2009, 1996; Hiederer and Köchy, 

2012; Nachtergaele et al., 2008; Viscarra Rossel et al., 2016) based on various modelling and data-

mining algorithms (see Minasny et al., 2013 and reference therein). Based on these efforts, various 

global estimates of SOC stock in the soil were provided, including the International Soil Reference 

and Information Centre (ISRIC) Soil Grids (Batjes, 2016, 2009; Hengl et al., 2014) and the Global 

Soil Organic Carbon Estimates (GSOC) (Hiederer and Köchy, 2012) by the Joint Research Centre 

(JRC) of the European Commission. 

De Brogniez et al. (2015) created a topsoil organic carbon map using Generalized Additive Models 

(GAM) for the entire European Union (EU). In this study, topography and land use were recognized 

as key indicators to assess SOC stock and its distribution. In addition, Novara et al. (2013, 2014) also 

highlighted that some Mediterranean soils see increases in SOC levels when they are no longer 

cultivated. This suggests that soil cultivation can play a major role in affecting SOC under 

Mediterranean conditions. However, SOC dynamics also depend on other factors, including climate, 

soil type and texture, soil moisture, temperature regimes, lithology, morphology, land use history and 

management (Fantappiè et al., 2010, 2011b; Pisante, M.et al, 2015). The knowledge of soil quality is 

a priority to support agricultural productivity and environmental quality. However, field sampling 

and laboratory analyses of SOC are costly and time consuming. Remote sensing (RS) data can 

contribute to modelling SOC information on a large scale (Gomez et al., 2008). In addition, RS 

predictors can also reduce uncertainties in SOC mapping through geographical soil unit classification 

(Köchy et al., 2015b). However, in complex terrain, the high number of ecological determinants of 

the topsoil organic carbon can reduce the outcomes of the prediction (Yao et al., 2013), especially if 

samples from some areas are lacking. Nonetheless, the use of a high number of topographic and other 

ecological indices as predictors can increase the ability of the models to explain large parts of the 

amount of plant residues that were returned to the soil as well as SOC variation (Ferrara et al., 2009; 

Grimm et al., 2008). 

Strategies for modelling SOC for large areas, e.g., at a regional scale, often rely on data mining 

approaches. However, these methodologies require a correction for spatial heterogeneity, outliers or 

correct sampling design to achieve a highly precise estimation of SOC stocks (Brus, 2015; Friedman 

et al., 2000; Schapire and Freund, 2012; Viscarra Rossel et al., 2016). The Stochastic Gradient 
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Treeboost (SGT; Friedman, 2002), which is also referred to as Boosted Regression Trees (BRT; Elith 

et al., 2008), is an improvement of the classification and regression trees (CART; Breiman et al., 

1984). The SGT aims at identifying group membership to classes (the SOC stock value at a given cell 

or pixel) by sequentially partitioning the predictors’ hyperspace into random trees (Lombardo et al., 

2015). In particular, the SGT binary-splits the observations in homogeneous groups of the target 

variable as a function of combined explanatory variables and afterward combines several additive 

regression models in a forward stepwise procedure (Elith et al., 2008). The SGT was previously 

applied to an SOC model at a regional scale in organic soils (Bou Kheir et al., 2010) and in temperate 

environments (Martin et al., 2014). However, little information is available concerning SOC 

modelling in Mediterranean areas.  

The Italian peninsula is characterized by a complex terrain with a high incidence of hilly and 

mountainous areas. As mentioned above, this can limit the accuracy of interpolations if the 

availability of data in the region is low. Conversely, the use of machine learning approaches allows 

for the recognition of causative relationships between SOC, topographic attributes and RS indices 

(e.g., McBratney et al., 2003). Lugato et al. (2014) provided an SOC stock estimation on a European 

scale using modelling techniques and validated them using the European Environment Information 

and Observation Network for Soil (EIONET-SOIL data by Panagos et al., 2013a, b). However, no 

specific regional modelling examples were provided for semi-arid Mediterranean regions. 

The aim of the present work was to estimate the SOC stock through the SGT using a set of 

topographical and environmental covariates. Sicily was chosen for the model application since more 

than half of its surface is extensively cultivated and extensively sampled. In addition, across the 

island, there is a strong heterogeneity of agro-ecosystems in terms of soil type, texture, land use and 

microclimates. In the present study, we also compared the SGT results to those obtained from the 

GSOC estimate (Hiederer and Köchy, 2012; Panagos et al., 2012) and to those obtained from the 

International Soil Reference and Information Centre (ISRIC) Soil Grids (Batjes, 2016, 2009; Hengl 

et al., 2014). In particular, the SGT implemented in the present study was constructed using a 3-arcsec 

spatial resolution, whereas GSOC and ISRIC are freely available for scientific purposes as a spatial 

layer with a 30-arcsec spatial resolution and offer a benchmark regarding the overall SOC stock 

pattern in the agro-ecosystems.  
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4.2 Material and methods 

4.2.1 Study area 

Sicily is an Italian island in the middle of the Mediterranean Sea and has an area of 25,286 km² (36.64° 

to 38.30° N; 12.42° to 15.66° E), excluding its 37 ancillary islands. According to the CORINE land 

cover 2000 (CLC2000; Bossard et al., 2000), 64.1% of its territory is cropped. The remaining 35.9% 

encompasses non-agricultural ecosystems, including urban areas, Mediterranean maquis, dunes, 

coastal systems, forests, and industrial complexes. Sicily has several sub-climatic zones, all of which 

are included in the temperate Mediterranean belt, with mean annual temperatures usually higher than 

15.8 °C, where summer is the driest period of the year. According to the climate classification of the 

Italian territory (E.A.C. Costantini et al., 2013), most of Sicily has a Mediterranean to subtropical 

climate that is partly semi-arid and is characterized by low rainfall, high air temperatures and high 

evapo-transpiration. Mediterranean subcontinental to continental climates, which are partly semi-arid 

to arid, typify the hinterland of the island. The mountain areas (Madonie, Sicani, Nebrodi and 

Peloritani ridges) are barely cultivated and are characterized by Mediterranean sub-oceanic to 

Mediterranean subtropical climates that are influenced by mountains. The continentality index, which 

is determined by the difference between the mean air temperature of summer and winter, is similar in 

all climatic regions. According to the World Reference Base for soils (IUSS Working Group WRB, 

2014), the dominant soils in Sicily are Calcaric Regosols, Haplic Calcisols, Calcic Vertisols, Vitric 

or Silandic Andosols, Calcaric and/or Mollic Leptosols, Calcaric Phaeozems, and Fluvic Cambisols 

(Fantappiè et al., 2011a). 

4.2.2 SOC stock analysis and database 

The soil database of Sicily was the source of information for SOC (dag kg-1, Fig. 1) and bulk density 

(BD; g cm-3). It stores information for approximately 5,658 georeferenced observations (soil profiles 

and minipits), of which 2,891 are analysed for SOC following Walkley-Black (1934) and on fine-

earth fraction (FEF); 1,049 of them were also analysed for BD. Missing BDs were estimated with the 

following pedotransfer function (Pellegrini et al., 2007): 

SOCsandclayBD *235085.0000448.00000116.0677601.1 2            (1) 
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Fig. 1. Locations of the sampling sites in the area under study (Sicily). The mean annual rainfall is shown in mm/year. 

where the clay and sand content is expressed as dag kg-1, respectively. This formula was computed 

from data from the same and similar environments and presently represents one of the most accurate 

BD estimation formulas (Pellegrini et al., 2007). 

A total of 2,891 sites were sampled and analysed for more than one horizon. Therefore, we selected 

all A and Ap horizons up to 0.3 m depth from the mineral soil surface and from any other type of soil 

horizon except of O, Oh, Of, Oi and C, with a lower boundary within 0.3 m from the mineral soil 

surface. The SOC stock (t ha-1) for each of the resulting 3,674 horizons was calculated with this 

formula:  

BDFEFSOCTCS *** )ha(t -1            (2)  

where CS is the SOC stock (t ha-1), T is the horizon thickness in meters, SOC is the soil organic 

carbon content (dag kg-1), FEF is the fine-earth fraction in volumetric percentage (daL m-3) and BD 

is the bulk density (g cm-3) analysed when the data were available and estimated by the pedotransfer 

function when the data were missing. The SOC stock values of the 3,674 horizons were summarized 

to obtain a unique value for each of the 2,891 observations. 
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The dataset used in the modelling procedure initially included all the aforementioned 2,891 sampled 

locations. To constrain the modelling procedure to the locations that mostly represent agricultural 

land cover, the SOC stock field measurement vector layer was intersected with the available CORINE 

land cover 2000 map (Fig. 2). Only the points falling into the CORINE agricultural areas were 

included in the modelling to train and validate the model. Based on this procedure, 2202 locations 

were selected after excluding 689 samples from semi-natural areas, meadows, and woods. The whole 

dataset and the model are considered representative for the year 2000. 

4.2.3 SGT for SOC stock estimation  

The SGT combines CART together with the Stochastic Gradient Boosting algorithm (Friedman, 

2002). The algorithm was described as an additive regression approach in which many weak learners 

are added to the basic tree structure to minimize the negative gradient of a Huber-M loss function 

(Friedman, 2001). The first step of this procedure consists of a CART analysis that recursively screens 

the observations in matched datasets that are composed of a dependent variable, either categorical 

(classification) or continuous (regression), and one or many explanatory variables. The SGT 

iteratively generates trees of a fixed dimension. Each tree is based upon the previous one, minimizing 

the loss function to improve the predictive performance. The procedure ceases when the creation of 

trees produces overfitting effects, which are evaluated by scoring the prediction residuals over a 

random independent sub-sample. In the present research, 10 replicates were randomly generated and 

modelled from the original SOC stock dataset. Each replicate was randomly built, extracting 75% of 

the SOC stock data for calibration purposes. The remaining 25% was kept for model validation. The 

model was actually built with a 3-arcsec spatial resolution; however, since both Wordclim-derived 

predictors and the reference models (GSOC and ISRIC) were available at a 30-arcsec spatial 

resolution, the SGT was re-sampled at a 30-arcsec spatial resolution to compare its performance 

with that of GSOC and ISRIC.  

SGT modelling was performed by means of TreeNet® (Salford Systems), with a maximum of 200 

trees and six nodes. The set of independent covariates comprised DEM-derived topographic 

attributes, RS indices, and thematic layers, including that from CORINE land cover 2000. The 

predictive skills were evaluated by the difference measured against predicted SOC stock (as both 

absolute values and percentage misfits) and the coefficient of variation of the modelling procedure. 

The role of the predictors was assessed through the predictor importance (PI) and response curve 

(RC) plots (Friedman, 2002). PI represents the strength with which each predictor affects the 

outcome, which is normalised to the greatest contributor. RCs link the domain of each predictor to 

the deviation from the mean SOC stock value that the given covariate is able to produce, keeping all 
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the other explanatory variables constant.  The SGT was constructed with a spatial resolution of 3 

arcsec to exploit the maximum resolution of the predictors. In a subsequent phase, we downscaled 

the SGT predictive map to 1-km2 spatial resolution to compare it to the GSOC and ISRIC maps. 

Finally, an uncertainty map (as prediction confidence map) displaying the ‘SGT-predicted to 

observed values’ ratio was built. 

 

Fig. 2. CORINE land cover 2000 coverage of samples in the area under study (Sicily). The codes are drawn from CORINE 

2000. a) 211, non-irrigated arable; b) 221, vineyards; c) 222, fruit and berry, 223; d) olive groves; e) 241, annual with 

permanent crops; f) 242, complex cultivation patterns; g) 243, land principally occupied by agriculture, with significant 

areas of natural vegetation; h) all land classes previously showed. 
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4.2.4 Covariates used in the modelling procedures. 

Texture: The soil texture after the USDA classification (Schoeneberger et al., 2012) was derived 

from the soil map of Sicily (Fantappiè et al., 2011a). Texture was used as a categorical covariate that 

was classified following the USDA system. The texture codes are provided in Table 1. 

Bioclimatic data: Worldclim bioclimatic data (Hijmans et al., 2005) were used as climatic covariates. 

This climatic dataset is currently the most detailed data on a global scale (delivered at 1 km2 cell size). 

The global dataset was derived with the thin-plate smoothing spline algorithm, where latitude, 

longitude, and elevation were used as independent variables. This interpolative methodology uses 

different data sources. These climatic records belong to the time window between the years 1950 and 

2000 and ensure the depiction of environmental variability that is otherwise lost at lower resolutions. 

In the present study, monthly average temperature (layer BIO1) and precipitation (BIO12) were used.  

Topographic covariates: morphometric independent variables were constructed within an open 

source GIS environment (SAGA GIS). We derived all the topographic attributes from the Shuttle 

Radar Topography Mission SRTM-C DEM with a 3-arcsec (85 meter) spatial resolution. Eight terrain 

attributes were calculated and included 1) slope (Zevenbergen and Thorne, 1987); 2) aspect (Wilson, 

J.P. , Gallant, 2000); 3) plan curvature; 4) profile curvature (Shary et al., 2002); 5) Topographic 

Wetness Index (Moore et al., 1993, 1991); 6) length-slope factor (Behrens et al., 2010); 7) catchment 

area (Zevenbergen and Thorne, 1987); and 8) landform classification (Weiss, 2001). Categorical 

predictor codes are provided in Table 1. 

RS-derived covariates: The Landsat ETM7+ imagery was used to derive vegetation and soil-specific 

indexes, which were also included as explanatory variables in the modelling phase. We used 

geometrically corrected images L1G. The multi-temporal mosaic required normalization to adjust for 

inconsistencies between images because of the proximity of the sun, earth and zenith angle. The 

procedure involved the conversion of the digital number to radiance in the sensor and then to 

reflectance. The calibration coefficient was provided in the imagery metadata (Guyot and Gu, 1994). 

The images were obtained by mosaicking four Landsat 7 ETM+ scenes (east:

 p188r0347k19990926z33nn1/8; centre: p189r034_7k20010501z33nn 1/8; west: 

LE71900342001160EDC00; and south-eastern: LE71880352000256SGS00). Two RS datasets were 

calculated and imported as predictors: Normalized Difference Vegetation Index (NDVI; Rouse Jr. et 

al., 1974) and the panchromatic band 8 (0.5 – 0.9 µm). This latter band has an original spatial 

resolution of 14.25 meters and was subsequently downscaled to an 85 m resolution. This predictor 

was chosen due to its strong link to the soil colour and, thus, the C content. In particular, the 

panchromatic channel is sensitive to reflected light energy across a broad range of wavelengths, 
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including blue, green, red and near. The Landsat imagery was freely acquired from the United States 

Geological Survey catalogue (http://earthexplorer.usgs.gov).  

Land cover: The CORINE land cover from the year 2000 was used to both address the analysis only 

for the agricultural lands and as a predictor. The land cover for a small (<1,000 ha) area was merged 

with the most similar land cover types used in the analysis. According to the CORINE level 3, the 

land cover types used in the modelling stage were 1) non-irrigated arable land, 2) vineyards, 3) fruit 

trees and berry plantations, 4) olive groves, 5) annual crops associated with permanent crops, 6) 

complex cultivation patterns, 7) land principally occupied by agriculture with significant areas of 

natural vegetation. The CORINE codes are provided in Table 1. 

Landforms* Aspects Land Use*/CORINE code Texture USDA 

Internal 

Code 
Class 

Internal 

Code 
Class 

Internal 

Code 
Class 

Internal 

Code 
Class 

0 Canyons  0   0   0 No soil 

1 Midslope drainage 1 5.5-0.5 = N 1 
Non-irrigated arable 

/ 211 
1 Clay 

2 Upland drainage 2 0.5-1=NE 2 Vineyards / 221 2 Silty-Clay 

3 U-shape valleys  3 1-2=E 3 Fruit and berry / 222 3 Loam 

4 Plains 4 2-2.5=SE 4 Olive groves/ 223 4 Clay-Loam 

5 Open slopes 5 2.5-3.5= S 5 

Annual with 

permanent crops / 

241 

5 Silty-Loam 

6 Upper slopes 6 3.5-4= SW 6 
Complex cultivation 

patterns / 242 
6 Silty-Clay-Loam 

7 
Local ridges-hills 

in valleys  
7 4-5 =W 7 

Land principally 

occupied by 

agriculture, with 

significant areas of 

natural vegetation / 

243 

7 Sandy-Loam 

8 

Midslope ridges, 

small hills in 

plains  

8 5-5.5= NW   8 
Sandy Clay 

Loam   

9 
Mountain tops, 

high ridges 

 
  

 
 9 Sand 

        10 Sandy-Loam 

*Landforms from Weiss (2001); land cover from CORINE 2000. 
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Table 1. Landform, aspect, land use and texture classes used in the present work. Internal codes of each variable are 

referred to those used in Fig. 4. 

4.2.5 Global Soil Organic Carbon (GSOC) and International Soil Reference and Information Centre 

(ISRIC) Soil Grids Estimates  

Two global SOC stock estimates, GSOC and ISRIC, were drawn up by the JRC-IES (Hiederer and 

Köchy, 2012) and ISRIC (http://soilgrids1km.isric.org/; Batjes, 2016, 2009; Hengl et al., 2014), 

respectively. The aim of these estimates was to provide scientific-technical support for the protection 

and sustainable development of the environment at regional and global scales. The generation of the 

data layer in GSOC relied on the use of different Pedo-Transfer Functions (PTF). The structure of the 

PTF has been revised from the PTF Pedo Transfer Rule Database of the European Soil Database 

(distribution version v2.0) (http://eusoils.jrc.ec.europa.eu/esdb_archive/esdbv2/fr_intro.htm) to 

accommodate special environmental conditions such as peatland and other organic soils. Some 

features, such as temperature differences, were used in these procedures for the PTF to produce a 

SOC content response. The GSOC model was validated using field sample data from soil profiles 

across Europe. The PTF conditions and the derived GSOC estimates are applicable to the topsoil 

layer. We used the GSOC of the agricultural land cover types (CORINE mask) by resampling the 

original spatial resolution (from 30 arcsec to 3 arcsec) without modifying the original information.  

The generation of the data layer of the ISRIC soil grids was made by 2D or 3D regression with splines 

to model soil properties and to create a multinomial logistic regression for the soil classes (see also 

http://www.isric.org/content/faq-soilgrids#How_were_the_spatial_predictions_generated for further 

information). 

The SGT estimate of SOC stock was compared to those of the GSOC and IRSIC after extracting the 

estimates with each methodology on the same location of the samples analysed and thus computing 

the mean absolute error (n=2202), as suggested by Bennett et al. (2013). This comparison was also 

carried out at a land cover class level to show a general pattern of SOC stock by SGT, GSOC and 

ISRIC.  
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4.3 Results 

4.3.1 SGT modelling 

We predicted the SOC stock and its distribution across Sicily, including an assessment of the 

prediction error. The latter was performed using a multi-fold technique by randomly resampling the 

original dataset into ten replicates. We also estimated the SOC stock for different land covers. The 

mean SOC with SGT for the whole area under study was 37.44 t ha-1 using the total pixel estimates 

(n=2228754, 7225 m2 per pixel) and 38.88 t ha-1 by means of the pixel estimates at the sampling 

points (n=2202, 1 profile/7.31 km2 on average). 

The five most relevant contributors from the initial 14 predictors (Fig. 3) were 1) annual rainfall, 2) 

soil texture, 3) land cover (CORINE), 4) mean annual temperature, and 5) Band 8. In particular, soil 

texture, land use, temperature and band 8 showed 28.2%, 32.0%, 49.3% and 49.6% less importance 

compared to annual rainfall in the prediction step. The mean RCs in decreasing importance (from left 

to right and from up to down) is shown in Fig. 4. The influence of rainfall on mean SOC stock 

estimates were maximised when the rainfall was in the range of 600-650 mm y-1 (up to +26%) and 

was negative in this range. In particular, the dependence of the model upon mean rainfall decreased 

due to the decreasing rainfall from 600 to 400 mm y-1 (up to −5%). Similarly, the positive and 

relatively strong influence of soil texture on SOC stock estimate was found for the clay, silty clay 

loam and sandy loam textures. These textures represented 13.3%, 4.0% and 16.2% of the total SOC 

dataset, respectively. The CORINE land cover classes with the highest positive influence on SOC 

stock were the complex cultivated pattern (CORINE code 242) and lands principally occupied by 

agriculture with significant areas of natural vegetation (CORINE code 243). Non-irrigated lands 

(CORINE code 211, mostly field crops including legumes, durum wheat and other cereals) negatively 

correlated with the SOC stock content. The CORINE land covers 242, 243, 211, accounting for 8.5%, 

4.4% and 39.6%, respectively, of the total SOC stock in the observed value dataset.  

The effect of the mean annual temperature on SOC stock estimate was high and positive up to 15 °C, 

whereas its contribution strongly decreased from 15 °C to 16 °C and was mildly negative for the 

higher temperatures (+18 °C, −2% RC). Similarly, the Landsat ETM+7 panchromatic Band 8 

positively affected the SOC stock estimate at values lower than 50 W (m2 sr µm)-1 and negatively 

affected the estimate at values higher than 60 W (m2 sr µm)-1. 

Fig. 5 shows each realization of the model (Fig. 5A, upper panel), the coefficient of the variation of 

the 10 models constructed from the 2202 data for the SGT on the sampling location (Fig. 5B) and the 
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standard deviation of the models on all pixel estimates (n=2228754, Fig. 5C). On average, the whole 

suite robustly fitted the range between 20 and 70 t ha-1. Values lower than 20 t ha-1 and higher than 

70 t ha-1 (19.1% and 10.0% of the observed values, respectively) were poorly estimated, which is 

likely due to the low number of data points in these ranges. The model robustness was also evaluated 

by plotting the coefficient of variation of the 10 realizations of SGT that was extracted on the 2202 

sampling locations (Fig. 5B). The coefficient of the variation of the SGT model was lower than 11.2% 

in the 0-0.1 percentile, lower than 13.6% in the 0.1-0.5 percentile, lower than 23.0% in the 0.5-0.9 

percentile, and lower than 12.2% in the 0.9-1.0 percentile. In addition, the standard deviation of the 

model realizations against the predicted SOC (Fig. 5C) was always lower than 11 t ha-1 and was, on 

average, lower than 5 t ha-1. 

 

Fig. 3. The importance of each of the 14 predictors within the stochastic gradient treeboost model to estimate the soil 

organic carbon stock of the agricultural land of Sicily, Italy. 
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4.3.2 SGT output and comparison with GSOC and ISRIC 

The SOC stock predicted by SGT, GSOC and ISRIC were plotted against the observed SOC stock 

(Fig. 6; see supplementary material for a map of the prediction of the SOC stock in the area under 

study by means of SGT, GSOC, and ISRIC). Overall, SGT R2 was 0.470, GSOC R2 was 0.034 and 

ISRIC R2 was 0.127 (Table 2). This mostly depended on the better prediction of the samples by SGT 

compared to GSOC and ISRIC (Table 2). The SGT resulted in better prediction compared to GSOC 

and ISRIC for most of the data, which resulted in SGT-predicted SOC stock values in the range of 

±50% higher than GSOC and SGT (65.8% and 50.7%, respectively) compared to the observed value 

(71.4%). The mean absolute error of SGT was 14.84 t ha-1, whereas those of the GSOC and ISRC 

were 18.19 t ha-1 and 23.28 t ha-1. The intercept of SGT was 21.6% and 45.5% lower than GSOC and 

ISRIC (Table 2), respectively. On the contrary, the slope (β) of the pseudo-regression for SGT was 

closer to 1 and, in particular, were 459% higher than GSOC and 64% higher than ISRIC. On average, 

the SOC stock per unit area estimated by SGT was 2.10 t ha-1 (+5.9%) more than GSOC (Table 3) 

and 17.31 t ha-1 (31.6%) less than ISRIC. The standard deviation of the SOC stock estimate per unit 

area (n=2228754) by means of SGT was 29.0% and 91.5% less than GSOC and ISRIC, respectively. 

The differences between SGT and GSOC or SGT and ISRIC in terms of the prediction within each 

land use class varied between 39.0% (corresponding to 31.3 t SOC stock ha-1 in land, principally 

agriculture with natural vegetation in ISRIC, which is 4.6% of the area under study) to +42.4% 

(corresponding to +14.8 t SOC stock ha-1 in land principally occupied by agriculture with significant 

areas of natural vegetation) in SGT compared to GSOC. Notably, ISRIC strongly overestimated the 

C stock on all land uses (on average, +46.2%). Such differences lead to a 5.9% higher SOC stock 

estimation in SGT compared to GSOC (+3401 Mt) and a 30.6% lower SOC estimation in SGT 

compared to ISRIC (26973 Mt). In general, the standard error within each land use class obtained 

through SGT modelling was lower than those obtained by GSOC or ISRIC and ranged from −15.9 t 

ha-1 (land, principally agriculture with natural vegetation in SGT, as compared to ISRIC) to +3.4 t ha-

1 (vineyards, 9.6% of the area under study, in SGT compared to GSOC). This also resulted in 31.8% 

and 87.5% lower coefficients of variation, on average, in SGT compared to GSOC and ISRIC, 

respectively, when estimating the mean SOC of each land use class. 
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Fig. 4. Partial dependence (response curve plots) of the model on the 14 predictors included in the 

stochastic gradient treeboost model of soil organic carbon stock of the agricultural land of Sicily, 

Italy. See Table 1 for Texture Class, Land Use and Landform codes. 

4.4 Discussion  

The mean prediction of SOC stock by SGT amounted to 37.44 t ha-1. Values below 20 t ha-1 were 

predicted in a limited number across the ten replicates but similarly occurred in each replicate. On 

the contrary, SOC stock values higher than 70 t ha-1 frequently occurred among replicates, and their 

variance was high. This resulted in R2=0.47 of the SGT model. Similar or lower fit statistics were 

found when other BRT algorithms were applied at a regional scale in France (Martin et al., 2014), 

Indiana (Mishra, U., et al., 2009), Nigeria ( Akpa et al., 2016), or Western Ghats (India) (Seen et al., 

2010).  

The general pattern of SOC stock obtained by SGT was similar to those of the GSOC and ISRIC 

estimates. However, both GSOC and ISRIC pseudo-regressions resulted in lower βs and higher 

intercepts than STG. In addition, the SGT classification of samples in the range comprised ±50% 

compared to those observed, which occurred +5.7% and +20.7% more than GSOC and ISRIC. This 

suggest that these databases may be unsuitable for structural decision-making measures to increase 

SOC stock in soils with low SOC stock when applying rules and decisions using a Mediterranean 

scale. The SGT individuated annual average rainfall and temperature as fundamental factors. It has 

been argued that the importance of temperature on SOC stock is high when the mean rainfall is 

adequate to sustain the microbial activity dealing with C turnover and when the variation of 

temperature is high (Ma et al., 2014). In such conditions, lower temperatures could constrain the SOC 
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turnover (Davidson and Janssens, 2006; Phachomphon et al., 2010). However, in the present study 

area, such conditions mostly occurred in mountainous areas, which were scarcely sampled due to the 

lack of cultivation. In addition, Davidson and Janssens (2006) also showed that other environmental 

constraints, including the SOC fixing in clay and nitrogen and the lignin content of both plant-derived 

and soil organic carbon, can strongly impair the temperature sensitivity of the soil organic carbon. 

This can explain why we found high partial dependence of SGT on  areas with more than 650 mm 

annual rainfall. Areas with less than 650 mm are mostly non-irrigated lands and account for 51.2% 

of the entire area included in the model. Indeed, soils in these areas frequently have high clay content 

and are cultivated with durum wheat, whose plant residue has a very high C:N ratio. This agrees with 

the relatively high partial relationship of SOC with clay and loamy textures (Clay, Silty-Clay-Loam, 

Sandy-Loam). Moreover, it also agrees with other studies highlighting the strong SOC protection 

ability of clays (Six and Paustian, 2014; Velthof et al., 2002; Wei et al., 2014). In addition, Martin et 

al. (2011, 2014) suggested that the clay content is a crucial trait for the outcome of the BRT modelling. 

This explains why the SGT strongly took into account the texture information to draw the model.  

Despite the importance of topographic indexes in determining soil erosion and thus the removal of 

the high C layers, we did not find a high partial dependence of the model on slope, aspect, landform, 

or the catchment area (with PIs <35%). Other experiments showed that topographic indexes are likely 

to explain most of the variation of SOC stock in the topsoil (0-10 cm depth) layer, whereas they are 

less important in the subsoil (10-50 cm depth) (Grimm et al., 2008). It was also suggested that SOC 

variation mostly depends on climatic variations, which in turn vary in large rather than short-scale 

covariates, including soil depth and texture (Vaysse and Lagacherie, 2015). In the present experiment, 

the ‘Landsat panchromatic band 8’ was more predictive compared to NDVI, which was also included 

as explanatory variables in the model. This could be due to both a higher resolution and range across 

the visible band of the band 8 compared to NDVI. Indeed, the band 8 includes data from the red, 

green, and blue portions of the electromagnetic spectrum, whereas NDVI only takes into account of 

the ratio of band 3 and 4, which span across the red and near IR portions, respectively. In other 

experiments, the contribution of the NDVI in the variable importance was lower than other Landsat  

bands ( Akpa et al., 2016), where the NDVI explained less than 5% of the SOC stock variation. The 

influence of the land use on SOC stock could be attributed to the different disturbance level associated 

with the agricultural management (Söderström et al., 2014) and the potential to have high erosion 

rates due to the climate or management (Nadeu et al., 2015). 
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Fig. 5. Replications of the model and uncertainty. Panel A: each scatter represents the outcome of each model replicated. 

Red vertical and horizontal thick lines represents means that are observed and predicted by the stochastic gradient 

treeboost, respectively. Dashed lines are means ± standard deviations. Panel B: Scatter plot of the coefficient of variation 

(grey line) of the models (%) against the SGT-predicted mean. Dashed vertical bold lines represent the 10th, 50th and 90th 

percentiles of the distribution of the SGT-predicted values; the dashed black line interpolating the CV represents the 

mobile media at n=22. Panel C: Scatter plot of the mean SOC stock prediction against its own standard deviation among 

pixel replicates (n=2.3 x106 pixels). 

4.5 Conclusions 

Monitoring and modelling spatial distribution of SOC, as input for global carbon cycles studies and 

guiding decision-making processes, is presently a global challenge that needs to involve 

environmental scientists, socio-economists and policy makers for the coming decades (Galati et al., 

2016). The Mediterranean climatic context plays an important role in the decay processes of organic 

residue, and climate change in the Mediterranean area is likely to affect SOC distribution and, 

consequently, both the potential yield of crops and the biodiversity of natural and cultivated areas. 

Thus, a fine estimation of the SOC stock is crucial to structure efficient public supporting measures. 

We showed that such an estimation relies on accessible data (including rainfall, temperature and RS 

data) and detailed information on soil texture and land cover. These features should be coupled with 

a geo-referenced model that is able to correct for spatial traits that, if ignored, can mislead the 
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estimation (including Catchment Area, Slope and LS-factor) (Phachomphon et al., 2010). A limit to 

developed well-fitting models is represented by the lack of sufficient soil data, their non-Gaussian 

distribution among the predictors, the spatial resolution of the predictors and a correction for outliers. 

Nonetheless, when correctly integrated, such as in the SGT model of the present study, such data can 

yield a reliable estimation of SOC stock. 

 

Fig. 6. Scatter plot of the predicted against observed SOC stock values by means of a stochastic gradient treeboost (SGT, 

black circles) and Global Soil Organic Carbon Estimates (GSOC, grey crosses) (Hiederer and Köchy, 2012). The R2 for 

SGT, GSOC, and ISRIC were 0.47 (y = 0.32x + 25.81), 0.034, and 0.127, respectively. Vertical dashed lines represent 

the 10th, 50th, and 90th percentiles of the distribution of the observed values (13.7 t ha-1, 36.2 t ha-1, and 69.7 t ha-1, 

respectively). Horizontal dashed lines represent the 10th, 50th, and 90th percentile of the distribution of the SGT-predicted 

SOC stock (31.5 t ha-1, 34.5 t ha-1, and 50.6 t ha-1, respectively). The bold dashed line represents the y=x function. Please 

note that observed unit in abscissa is double that in the ordinate axis. 

 

Further improvements are expected when adopting predictors with greater spatial resolution. The 

results of the present experiment also yield valuable information for assessing the effect of a climate 

change scenario on SOC stocks and their spatial distribution. 
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Fig. 7. Prediction confidence map. Each point represents the ratio between SGT-predicted and observed values. The 

closer the ratio is to 1, the higher its representation of the observed value is. The number of points (compared to the total 

point, n=2202) enclosed in the 0.5-1.5 range (predicted SOC corresponding to ±50% compared to the observed value) 

were 71.4%, 65.8%, and 50.7% for SGT, GSOC, and ISRIC, respectively. 
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  Obs SGT GSOC ISRIC 

intercept - 25.811 32.917 47.318 

β - 0.323 0.058 0.197 

R2 - 0.470 0.034 0.127 

% of points classified in the following 'predicted to observed' ratios 

<0.5 - 2.6 9.7 1.2 

0.5-1.0 - 46.0 43.5 20.3 

1.0-1.5 - 25.4 22.3 30.4 

1.5-2.0 - 10.3 10.0 17.4 

2.0-2.5 - 4.6 4.4 8.8 

2.5-10 - 9.3 9.4 20.4 

>10 - 0.0 0.8 1.5 

  

  percentiles 

0.05 9.50 30.11 30.00 37.71 

0.10 13.68 31.48 30.00 41.65 

0.25 23.28 32.95 31.00 46.57 

0.50 36.33 34.57 34.00 52.21 

0.75 49.54 38.00 35.00 59.70 

0.90 70.01 50.67 45.00 73.85 

0.95 91.51 69.62 50.00 84.39 

1.00 242.57 109.77 124.00 137.72 

Table 2. Intercept, β, and R2 of the pseudo-regression of the modelled (by SGT, GSOC, and ISRIC) data 

against the observed (Obs) data, % classification of sampled points according to the 'predicted to observed' 

ratio of each model and main percentiles of the observed and modelled distributions.  
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Table 3. SOC stock per unit 

  

Mean ± SD Mean ± SD Mean ± SD SGT GSOC ISRIC

[ha × 1000] [% ] [t ha
-1

] % [t ha
-1

] % [t ha
-1

] % [t ha
-1

] % [Kt] % [Kt] %

Non-irrigated 

arable
211 791.97 48.9 34.9 ± 5.90 35.6 ± 10.90 49.6 ± 9.42 27.62 28.22 39.28 -0.8 -2.1 -14.7 -29.7 -5.0 -45.9 -3.5 -37.4 -602 -2.1 -11665 -29.7

Vineyards 221 155.54 9.6 39.7 ± 4.20 35.3 ± 0.80 52.7 ± 8.94 6.17 5.49 8.20 4.4 12.5 -13.0 -24.7 3.4 425.0 -4.7 -53.0 687 12.5 -2029 -24.7

Fruit and 

berry
222 154.58 9.5 39.1 ± 11.10 36.2 ± 15.50 57.8 ± 17.81 6.04 5.59 8.94 2.9 8.0 -18.8 -32.4 -4.4 -28.4 -6.7 -37.7 448 8.0 -2901 -32.4

Olive groves 223 219.35 13.6 39.1 ± 6.50 34.3 ± 6.90 58.1 ± 12.77 8.58 7.52 12.74 4.8 14.0 -19.0 -32.7 -0.4 -5.8 -6.3 -49.1 1055 14.0 -4166 -32.7

Annual with 

permanent 

crops

241 108.24 6.7 41.1 ± 7.90 40.1 ± 11.37 57.3 ± 11.90 4.45 4.34 6.20 1.0 2.6 -16.2 -28.2 -3.5 -30.5 -4.0 -33.6 113 2.6 -1749 -28.2

Complex 

cultivation 

patterns

242 114.33 7.1 41.1 ± 9.40 35.8 ± 7.90 59.7 ± 15.87 4.70 4.09 6.83 5.3 14.9 -18.6 -31.2 1.5 19.0 -6.5 -40.8 611 14.9 -2126 -31.2

Land 

principally 

occupied 

byagriculture 

with natural 

vegetation

243 74.68 4.6 49.0 ± 11.10 34.4 ± 8.80 80.3 ± 27.01 3.66 2.57 6.00 14.6 42.4 -31.3 -39.0 2.3 26.1 -15.9 -58.9 1089 42.4 -2337 -39.0

total 1618.69 37.44 ± 1.24 35.97 ± 1.74 54.75 ± 14.54 61.21 57.81 88.19 1.47 4.1 -17.31 -31.6 -0.51 -29.0 -13.31 -91.5 3401 5.88 -26973 -30.59

Corine 

Code

[t ha
-1

] [t ha
-1

] [t ha
-1

] [Mt]

SGT SOC GSOC ISRIC Total SOC Stock

Land Use 

Classes

Area 

Difference in total SOC Stock
Difference in SOC Standard 

Deviation
Difference in mean SOC

SGT-GSOC SGT-ISRIC SGT-GSOC SGT-ISRIC SGT-GSOC SGT-ISRIC
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Fig.1 Suppmat, Prediction map of the soil organic carbon Stock by means of the SGT (a, d), GSOC (b, e), 

and ISRIC (c, f) in the agricultural areas of the whole area under study, Sicily, Italy (a, b, c) and on a sub-

area within the area under study (d, e, f). Outputs of each model are shown at a 1-km2 spatial resolution. 
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Chapter 5-Spatio-temporal topsoil organic carbon mapping of a semi-arid Mediterranean 

region: the role of land use, soil texture, topographic indices and the influence of remote sensing 

data to modelling  

 

From: Schillaci, C., Acutis, M., Lombardo, L., Lipani, A., Fantappiè, M., Märker, M., Saia, S., 2017a. Spatio-temporal 

topsoil organic carbon mapping of a semi-arid Mediterranean region: The role of land use, soil texture, 

topographic indices and the influence of remote sensing data to modelling. Sci. Total Environ. 601–602, 821–832. 

doi:10.1016/j.scitotenv.2017.05.239 

Keywords: SOC mapping, Space-time SOC variation, Agro-ecosystems, R programming 

Abstract 

SOC is the most important indicator of soil fertility and monitoring its space-time changes is a 

prerequisite to establish strategies to reduce soil loss and preserve its quality. Here we modelled the 

topsoil (0-0.3 m) SOC concentration of the cultivated area of Sicily in 1993 and 2008. Sicily is an 

extremely variable region with a high number of ecosystems, soils, and microclimates. We studied 

the role of time and land use in the modelling of SOC, and assessed the role of remote sensing (RS) 

covariates in the boosted regression trees modelling. The models obtained showed a high pseudo-R2 

(0.63-0.69) and low uncertainty (s.d. < 0.76 g C kg-1 with RS, and < 1.25 g C kg-1 without RS). These 

outputs allowed depicting a time variation of SOC at 1 arcsec. SOC estimation strongly depended on 

the soil texture, land use, rainfall and topographic indices related to erosion and deposition. RS indices 

captured one fifth of the total variance explained, slightly changed the ranking of variance explained 

by the non-RS predictors, and reduced the variability of the model replicates. During the study period, 

SOC decreased in the areas with relatively high initial SOC, and increased in the area with high 

temperature and low rainfall, dominated by arables. This was likely due to the compulsory application 

of some Good Agricultural and Environmental practices. These results confirm that the importance 

of texture and land use in short-term SOC variation is comparable to climate. The present results call 

for agronomic and policy intervention at the district level to maintain fertility and yield potential. In 

addition, the present results suggest that the application of RS covariates enhanced the modeling 

performance.  

  

Keywords: SOC mapping, Space-time SOC variation, Agro-ecosystems, R programming, Digital 

soil mapping, Legacy dataset.  
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graphical abstract 

5.1 Introduction 

Agricultural lands play a major role in the storage of soil organic carbon (SOC) and 

sequestration/release of atmospheric CO2  (Bradford et al., 2016; Filippi et al., 2016; W M Post, 2000). 

SOC is directly linked with a number of ecosystem services and agronomical benefits and is the main 

driver of soil fertility. However, agricultural soils have been depleted from their original SOC stock  

due to cultivation, which also negatively affected soil aggregation status, water infiltration rate, soil 

fertility and biota (Bruun et al., 2015; Parras-Alcántara et al., 2016; Saia et al., 2014). The 

preservation of soil quality is a priority to maintain agricultural productivity and environmental 

quality. In this framework, monitoring SOC concentration and stock changes through space and time 

is important to establish strategies to reduce soil loss and preserve its quality. SOC monitoring at 

regional scale relies on sparse sampling and application of an estimation process. Such a process 

should take into account the spatial interdependence of samples and abundance of predictors (Martin 

et al., 2014); and the distribution heterogeneity in space and among determinants (predictors) of SOC 

accumulation (Lacoste et al., 2014). With regards to the latter, the relationship in the domain of each 

predictor with SOC and the resolution of the predictors is particularly relevant for any spatial 

estimation ( Miller et al., 2016; Miller et al., 2015a,b). The spatial estimation of SOC concentration 

and stocks is commonly performed by statistical approaches (Meersmans et al., 2009; Orton et al., 

2014)  with different interpolation methods and machine learning predictive models (Henderson et 

al., 2005; Yang et al., 2015). The former is better suited to areas with dense SOC measurements, 

whereas the second is more appropriate for non-regularly sampled regions, since its outcome does 

not rely on the sample proximity to extract functional (ecological) relationships between dependent 

and independent variables.  

SOC dynamics under different land uses are still poorly understood (Francaviglia et al., 2017b; 

Meersmans et al., 2008; Purton et al., 2015), especially when deriving data from wide areas and with 
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different climates. In Mediterranean environment, lack of knowledge on SOC dynamic is further due 

to variable climatic and erratic meteorological conditions. It has been shown that cultivation exerts a 

negative role on SOC accumulation in various environments (Francaviglia et al., 2017b; Kämpf et 

al., 2016; Novara et al., 2013) and this likely depends on both soil tillage and reduction of biomass 

return to the soil. In particular, a reduction of the tillage intensity can favor SOC accumulation 

irrespective of aridity (from semi-arid to humid) and can be up to 1 t SOC ha−1 yr−1 (Conant et al., 

2001; Kämpf et al., 2016; Kurganova et al., 2014; W M Post, 2000). The SOC dynamic also depends 

on other factors such as soil genesis and type, land use history and management and useful 

information could be gained from SOC spatial models (Badagliacca et al., 2017; Martin et al., 2014;; 

Schillaci et al., 2017b, 2015; Vereecken et al., 2016).  

In the last two decades the integration of physical, chemical, and biological information derived from 

different covariates in the models has boosted the studies on soil properties (Bui et al., 2009; 

Henderson et al., 2005) and also for SOC mapping from global or continental (Hengl et al., 2014; 

Lugato et al., 2014a) to regional and plot scales ( Akpa et al., 2016; de Gruijter et al., 2016; Martin et 

al., 2014; Schillaci et al., 2017b). SOC mapping attempts at giving an image of the spatial distribution 

despite it is costly (Minasny et al., 2013 and reference therein).   

The most recent developments in the digital soil mapping include machine learning (Forkuor et al., 

2017; Gasch et al., 2015; Hengl et al., 2017) to study space-time variation of soil properties and use 

of remote sensing (RS) covariates (Castaldi et al., 2016a). Thanks to their high accessibility, 

resolution and availability for wide areas, RS data gained importance for spatial prediction of the 

topsoil organic C (Bou Kheir et al., 2010; Poggio et al., 2013). For example, Bou Kheir et al. (2010) 

found that the construction of SOC maps with a classification-tree analysis by the sole RS parameters 

gave the same accuracy of a model built with sole digital elevation model (DEM) parameters, and 

both of them had sole ca. 10% less accuracy that a full RS+DEM+soil parameters model built. Poggio 

et al. (2013) found that integration of RS with terrain attribute data increased the predictive ability 

comparing to the model built with only terrain parameters. However, some of the SOC estimates lack  

uncertainty analysis and this compromises the reliability of predictions for decision making  (Maia et 

al., 2010; Minasny et al., 2013; Ogle et al., 2010). In addition, Conant et al. (2011) highlighted the 

limitation to document time changes in SOC because of the spatial variability in the factors that 

influence SOC distribution. 

In a regularly-spaced data collection, SOC samples are taken from representative or random sampling 

sites in a given study area. Legacy data comes from a mixture of sampling campaign resulting in data 

collected for different aims (Chartin et al., 2017), which frequently allow to make predictions for 

areas with sampling limitations (Rial et al., 2017b). Depending on the scope of each survey (e.g. 
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regional soil characterization or precision agriculture) sample density can change abruptly. This can 

consist in drawbacks including their non-regular distribution in space, which call for the use of 

particular modelling method and predictors. Due to these difficulties, only few examples on mapping 

at regional extent with legacy data are available. For example, Ross et al. (2013) and Grinand et al. 

(2017) carried out a space-time assessment of SOC in subtropical regions of south-eastern United 

States and Madagascar, respectively.  

Little information is available on SOC dynamics in semi-arid Mediterranean areas due to the 

unavailability of consistent databases. Nonetheless, time dynamic of SOC storage in the soil is highly 

dependent to the climatic zone of the area under study (Doetterl et al., 2015b). In addition, spatial and 

time change of SOC can respond to different determinants at varying the climate of area under study. 

The present work fits within the big picture of spatial SOC mapping and time change. This was made 

by means of a legacy dataset and use of remotely sensed data. In particular, we used legacy data of 

two sampling campaigns 15 years apart (1993-2008,), coupled with climate (from Worldclim data 

Bio1,12), and land use information (from CORINE 1990-2006) to map the topsoil SOC variation 

across time in the agricultural area of a semi-arid Mediterranean region (Fig. 1). Such aim was 

achieved by applying a machine learning method, namely boosted regression trees (BRT), to each 

sampling campaign dataset using land use, soil texture, topographic and remote sensing predictors. 

We also tested the role of remote sensing covariates in the spatial SOC prediction and predictors’ 

importance by running each model either with or without the implementation of the RS covariates. 

In the area under study, i.e. cropped field in which plants (mostly field crops) have limited or no 

growth during summer and early fall, the inclusion of remote sensed variables could capture part of 

the SOC variation due to biomass return to the soil. 

 

5.2 Material and methods 

5.2.1 Study area 

The study area, Sicily (Italy), is a semiarid region located in middle of the Mediterranean Sea (Fig. 

1). Its area is about 25,286 km2. Approximately 60% of the Sicilian territory is cultivated. The 

macroclimate of the region is Mediterranean with three main bioclimatic areas: thermo-, meso-, and 

supra-Mediterranean. Mean annual temperatures in the cropped area range from 7 °C to 15 °C and 

mean annual precipitation from 350 to 1000 mm, whereas mean annual temperatures and rainfall in 

the natural, uncropped area can be 1.8 °C and up to 1300 mm (Cannarozzo et al., 2006; Viola et al., 

2014). The main annual crops are durum wheat, winter-seeded barley, pulses and forage legumes and 

a wide range of horticultural crops; the main perennial crops are olive groves, vineyards and fruit 

trees such as citrus, almonds, and stone fruits. Woodlands and secondary forests are not targeted by 
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the SOC concentration mapping in the present work, except those areas in which agriculture 

abandonment occurred.  

 

Fig. 1. Locations of the sampling sites in the 1993 and 2008 in the area under study (Sicily). Land 

use groups used in the study are displayed. 

Adoption of conservation soil management techniques is almost absent (Ruisi et al., 2014). In the 

region, different soil survey campaigns were undertaken between 1968 and 2008. The criteria for the 

selection of the locations of the soil sampling are explained in the next section. The island has a great 

pedoclimatic variability: dominant soils according to the World Reference Base for soils are Calcaric 

Regosols, Haplic Calcisols, Calcic Vertisols, Vitric or Silandic Andosols, Calcaric and/or Mollic 

Leptosols, Calcaric Phaeozems, and Fluvic Cambisols. Hence it can be considered quite 

representative of most of the Mediterranean countries. A number of ecological and anthropic traits 

make Sicily unique for ecological studies. These traits include a relatively high population density 

and degree of cultivation, an ancient environmental history, climatic variability, land uses and several 

dominations from different populations, which introduced various plant species and management 

techniques. All these factors made Sicily an open and extremely variable laboratory for the study of 

the impact of anthropic pressure and environmental variation at microscale, land cultivation and 

management on other environmental traits, including SOC distribution and dynamics. Such 



97 
 

characteristics strongly help in the exportation of the results of environmental studies to other similar 

and different environments and scale, such as also suggested by others (Legendre and Legendre, 

1998; Novara et al., 2017; Schmolke et al., 2010).  

 

Fig.1 Supplementary material. Physiographic map of the area under study.  

The region under study, Sicily (see Supplementary material Fig. 1 for a physiographic map of the 

area with orography and toponymy information used), is a setting of different agro-ecosystems and 

natural environments though it is mainly semi-arid and with few incidence of forestlands. The island 

has three main, almost continuous, mountain chains: Peloritani from the north-eastern corner moving 

to west few km down the northern coast, followed by the Nebrodi and then by the Madonie. In the 

western/central part of the island there is an irregular mountain area: the Sicani, somehow continuing 

the ridge formed by the previous mountain chains. Mean height of the mountain chains decreases 

from east to west. These chains were formed as part of the Apennines, which span across the island 

as a geological bridge between peninsular Italy (on the east end) and Tunisia (on the west end). The 

highest mountain of Sicily is the Etna Volcano (about 3600 m above sea level [a.s.l.]), located in the 

northeastern part of the region, south of the Peloritani. To the south of the Etna Volcano, a wide plain 

(the Catania plain) is formed by the alluvium of the Simeto River, south of which there is the 

expansion of a hilly to mountainous area: the Hyblaean mountains/plateau. The rest of the core of the 

island, from the plain of Catania to the Erei Mountains and cities of Enna, Caltanissetta and Agrigento 
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is a mostly hilly area with clayey, high pH, seldom gipsic saline soils. Such as for the main mountain 

chains, mean height of this latter ridge decreases from east to west. Other minor plains can be 

retrieved all along the coasts. All the rivers, with the exception above-mentioned Simeto, have a 

strong seasonal flow. This is due to the low rainfall south of the Apennines ridge, or low basin extent 

north of it. 

5.2.2 SOC dataset 

The Regional Bureau for Agriculture, Rural Development and Mediterranean Fishery, the 

Department of Agriculture, and Service 7 UOS7.03 provided the legacy dataset used in this study. 

The surveys that produced the legacy dataset had different aims (such as redaction of suitability or 

pedological maps). SOC, soil texture, actual land use, GPS positioning and relative metadata were 

measured in every survey and provided for the present work. From the complete record of observation 

(about 2700 different locations in a timespan of 30 years), we selected the years with the most of 

samplings, which were 1993 (685 points) and 2008 (337 points) (Fig.1). The 1993 database is a 

regional subset of the national soil survey performed in the framework of the AGRIT project of the 

Italian Ministry of Agriculture and Forestry (MIPAAF), all over Italy in the years 1993 to 1994. The 

2008 campaign (undertaken in the frame of the project “Soil Map of Sicily at 1:250,000 scale”) was 

aimed at closing the gap of previous campaigns basing on a GIS oriented pedo-landscape sampling 

design (Fantappiè et al., 2011b). Only SOC data sampled in agricultural fields were taken into account 

for further modelling procedures.  

In both the 1993 and 2008 campaigns, soil-sampling scheme was designed to collect samples from 

various pedo-landscape (combinations of physiographies, lithologies and land uses) delineations as 

representative at a 1:250,000 scale. Samples of the 1993 campaign were taken following a specific 

guide for soil sampling and description, and consisted of minipits excavated up to a 50 cm depth to 

represent the top-soil, and sampled with the auger for the subsoil. The 2008 campaign consisted of 

soil profiles described according to the official methods of Italian Ministry of Agriculture (Paolanti 

et al., 2010). Soils from each campaign were sampled at various depths (maximum depth sampled up 

to 2.80 m). For the present study, the topsoil layer (up to 0.3-m depth) was taken into account. As 

stated above, soil layers were sampled according to the pedological description and thus upper and 

lower limit of each depth sampled varied among sampling points. Thus, to standardize the SOC 

concentration value, SOC was considered to decrease linearly with depth within each layers. In 

particular, soil layer in the depth 0-0.3 m were selected and those deeper than 50 cm were not used 

for the present experiment. The soil samples were passed through a 2 mm sieve, air dried, then 

analyzed for organic C content following Walkley-Black procedure.  
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5.2.3 Predictors 

Climatic data were drawn from Worldclim (Hijmans et al., 2005). The original resolution of the 

Climatic data is about 1 km and were resampled to the desired 100 m mapping unit for the modelling 

process. Worldclim offers different datasets including bioclimatic data. Mean yearly rainfall and 

temperature of the 1950-2010 period were used.  

Soil texture was obtained by the sedimentation method of the samples and reported according to the 

USDA classification. Soil texture for the whole area was provided by the Regional Bureau for 

Agriculture, Rural Development and Mediterranean Fishery, the Department of Agriculture, Service 

7 UOS7.03 Geographical Information Systems, Cartography and Broadband Connection in 

Agriculture, Palermo.  

The CORINE land cover maps of the years 1990 and 2006 at 100-m spatial resolution were used in 

order to identify the agricultural land uses for the model built for the year 1993 and 2008, respectively 

(http://land.copernicus.eu/pan-european/corine-land-cover). 

The analysis was carried out according to the CORINE level 3, the Land cover type used in the 

modelling stage were: i) non-irrigated arable land (CORINE code 2.1.1, grid code 12, hereafter 

referred as ARA), ii) vineyards (CORINE code 2.2.1, grid code 15), fruit trees and berry plantations 

(CORINE code 2.2.2, grid code 16), and olive groves (CORINE code 2.2.3, grid code 17) (hereafter 

grouped in VFO), iii) annual crops associated with permanent crops (CORINE code 2.4.1, grid code 

19), complex cultivation patterns (CORINE code 2.4.2, grid code 20), land principally occupied by 

agriculture, with significant areas of natural vegetation (CORINE code 2.4.3, grid code 21) (hereafter 

grouped in CCP). The land uses within the groups VFO and CCP were grouped since the SOC stock 

and relationship between SOC-predictors and SOC stock in these land uses is very similar due to 

similarities in plant density and soil management, as observed in Schillaci et al. (2017). CORINE 

codes are provided in Supplementary material Table 1.  

Remote sensing-derived predictors consisted of the LANDSAT 5 spectral bands. The imagery was 

also used to derive the Normalized Difference Vegetation Index (NDVI), which was included as 

explanatory variables in the modelling phase. We used geometrical corrected images L1G. Multi-

temporal mosaic required normalization to adjust for inconsistencies between images because of the 

proximity of the sun, earth and zenith angle. The procedure involved the conversion of the digital 

number to radiance at sensor. Calibration coefficient were provided in the imagery metadata (Guyot 

and Gu, 1994). The images used for the study were obtained by mosaicking the following five 

LANDSAT 5 scenes using the only cloud free scenes belonging to the path 188 row 33 (East), path 

198 row 33 and 34 (middle) and path 190 row 33 and 34 (West) from the 1987 and 2003 for modelling 

data of 1993 and 2008, respectively. This time differences (1987 for the 1993 and 2003 for the 2008) 
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were needed since the regional extent of the study area requires at least 3 LANDSAT path to make a 

complete mosaicking of the region and these years were the closer to those of the sampling periods, 

in which the satellites scenes close each other in time had no or very few clouds, thus allowing a 

homogeneous dataset.  LANDSAT imagery was freely acquired from the United States Geological 

Survey  catalogue (USGS, http://earthexplorer.usgs.gov) and coincided with summer period (Rouse 

Jr et al., 1974), when most of the field crops have stubble or bare soil and very few or no crop growth 

occurs in other crops  due to extremely high temperature and low water availability . All the RS 

predictors had an original spatial resolution of 30 meters and they have been subsequently resampled 

to the desired 100 m mapping unit. The choice of such predictor is due to their strong linkage to 

vegetation and other soil traits, and thus, to SOC.  

 

Topographical indices 

Shuttle Radar Topography Mission (SRTM-C) digital elevation model (DEM) released in September 

2014 with a 1-arcsec (30 meter) spatial resolution (resampled to 100 meter to fit the land use 

classification) was used for the calculation of the morphometric spatial predictors by means of SAGA 

GIS (Conrad et al., 2015). DEM was downloaded from the earthexplorer.com website, then pre-

processing such as mosaicking and fill sink was applied to the 10 SRTM DEM tiles covering the 

regional extent. Eleven terrain attributes were calculated: 1) slope 2) catchment area, 3) aspect, 4) 

plan curvature; 5) profile curvature, 6) length-slope factor, 7) channel network base level, 8) 

convergence index, 9) valley depth, 10) topographic wetness index, 11) landform classification. See 

http://www.saga-gis.org/saga_tool_doc/2.1.3/a2z.html for details on the computation of these 

covariates. Categorical predictor codes are provided in Supplementary material Table 1. 

5.3.4 Boosted regression trees and map comparison 

Boosted Regression Trees (BRT, Elith et al., 2008) was used to identify the relationships between 

SOC and its predictors and to regionalize the SOC prediction. This method and other decision trees-

based models have already been used as DSM techniques to deal with SOC concentration and stock 

mapping (Bou Kheir et al., 2010; Grimm et al., 2008; Martin et al., 2011; Schillaci et al., 2017b). 

BRT is based on the integration of weak learners (or tree-based rules). In a data mining context, a 

weak learner is defined as a models that performs just slightly better than random guessing (Freund 

and Schapire, 1997). In this sense, the BRT algorithm combines multiple weak learners into a single 

strong learner (Lombardo et al., 2015). This allow the algorithm to progressively increases the 

accuracy of the prediction by reducing the chance of obtaining outliers since weak learners also 

produces weak outliers. This additive structure allows for capturing the variance of a dependent 

variable in a way where the deeper the tree is grown, the more fitting segments are obtained and added 

http://earthexplorer.usgs.gov/
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to the initial tree, to accommodate the SOC concentration at each mapping unit. The first step of this 

procedure consist of a Classification And Regression Trees (CART) analysis which recursively 

screens the observations in matched datasets made up by a dependent variable, either categorical 

(classification) or continuous (regression), and one or many explanatory variables. Explanatory 

variables can be either categorical or continuous. Differently from a classic CART approach, where 

a single tree can grow only to be finally pruned to get a readable model, the application of the BRT 

(second step) iteratively generates trees of a fixed dimension. Each tree is based upon the previous, 

and BRT gradually minimizes a loss function in order to improve the predictive performance. The 

adoption of the Huber-M loss function instead of a more common square loss function reduces the 

noise when iteratively measuring the difference between estimated and actual values for SOC 

concentration data. The procedure ceases when the creation of trees produces overfitting effects. The 

evaluation of the overfitting is performed by measuring the prediction residuals or deviance for each 

of the consecutive trees over a random independent sample that was kept separate from the calibration 

phase. Typically, the testing error quickly decreases the more trees are generated and subsequently 

slows down reaching an inflection point from where it starts to increase. This behavior is recognized 

as overfitting, determining the choice of the best model before the tree starts fitting the noise of the 

training data instead of revealing ecological relationships.  

In the present research, 100 replicates were randomly generated and modelled from each of the 

original SOC concentration dataset. Relationships between variables are explained through response 

curves (Lombardo et al., 2015). We used R (R Development Core Team, 2008), with the ‘dismo’ 

package developed by Elith et al. (2008). The package allows for the customization of: i) learning 

rate (lr), which is set to determine the contribution of each tree to the final tree architecture; ii) tree 

complexity (tc), which controls the number of splits; iii) bag of fraction (bg), the proportion of data 

selected at each step of the modelling procedure. Following Hashimoto et al. (2016) we performed  

the 10-fold cross-validation procedure to determine the optimal number of trees (maximum numbers 

of trees 10,000) and a tc value of 20. Regarding each single run, model performances was assessed 

using the coefficient of determination of the scatter plot of the predicted against the observed values 

(pseudo-R2) and root mean square error (RMSE). Standard deviation maps of the 100 runs were also 

constructed. 

The maps of organic carbon generated for the 1993 and 2008 were compared and a difference 

(SOC08SOC93) in which an increase of SOC was displayed as positive and a decrease as negative. 

An error map of the difference was built by adding the standard error of the 1993 and 2008 maps and 

highlighting those pixel which SOC difference (as absolute value) was higher than the sum of the 

standard errors. In such pixels, SOC difference was considered as reliable. 
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5.3 Results 

Distributions of observed and predicted data with and without remote sensing (RS) predictors were 

log shaped (Table 1 and Supplementary material Fig. 2).  

 

Supplementary material Fig. 2. Frequency distributions of observed and predicted data with and 

without remote sensing (RS) predictors in 1993 and 2008 as both raw data (upper panels) and log-

transformed data (lower panels). See table 1 for the descriptive statistics and main percentiles of 

each distribution. 

Distribution of predicted data showed similar skewness than observed data in 1993 and lower, but 

always positive, kurtosis in 1993 and kurtosis and skewness than observed data in 2008, which 

suggest that this method better estimates SOC in the central values of the distribution. All models had 

pseudo-R2 higher than 0.693 for the 1993 model and 0.634 for 2008 model. The accuracy of the 

models with and without RS predictors was similar (Supplementary material Fig. 3).  
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Supplementary material Fig. 3. Scatter plots of the boosted regression trees models of SOC 

performed with (upper panels) and without (lower panels) RS covariates by means of the data of 1993 

(left) and 2008 (right).The function, pseudo-R2 and root mean square error (RMSE) of each pseudo 

regression is also shown. 

The removal of the RS predictors had a negligible effect on both the variation of the pseudo-R2 and 

angular coefficient of the pseudo regression lines of both models, which was 0.43-0.45 in the 1993 

and 0.33-0.34 in the 2008. Similarly, the intercepts were from 6.59 to 10.13 g organic C kg-1, thus the 

predictions overestimated the observed value when SOC is low and down-estimated it when SOC is 

high. 
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1993 

 

2008 

with                                    

RS 

without 

RS 

fold 

variation 

with                                    

RS 

without 

RS 

fold 

variation 

Non-remote sensed (RS) 

predictors 
      

  

      

Soil Texture 16.18 16.17 1.00 22.64 24.14 1.07 

Land use 12.02 14.37 1.20 6.79 8.56 1.26 

Valley depth 9.24 10.21 1.10 2.38 3.24 1.36 

Rainfall 5.91 9.27 1.57 4.21 5.93 1.41 

Channel network base level 4.97 6.96 1.40 9.05 10.35 1.14 

LS factor 4.61 5.65 1.23 3.35 4.27 1.28 

Landforms 4.19 5.04 1.20 4.44 5.34 1.20 

Aspect 3.88 4.89 1.26 4.54 5.84 1.29 

Elevation 3.38 4.65 1.38 3.12 3.90 1.25 

Temperature 3.07 4.00 1.30 4.63 5.57 1.20 

Cross sectional curvature 2.55 3.25 1.27 2.40 3.33 1.39 

Slope 2.24 2.84 1.27 2.64 3.65 1.38 

Vertical distance to channel 
network 

2.00 2.62 1.31 2.78 3.74 1.35 

Relative slope position 1.97 2.42 1.23 2.02 2.58 1.28 

Catchment area 1.93 2.63 1.36 2.33 2.87 1.23 

Convergence index 1.88 2.42 1.29 3.70 4.59 1.24 

Topographic wetness index 1.85 2.60 1.40 1.60 2.09 1.31 

RS predictors 
       

NDVI 7.11 - n.a.* 

  

2.45 - n.a. 

Landsat 1 1.98 - n.a. 2.33 - n.a. 

Landsat 2 1.45 - n.a. 1.45 - n.a. 

Landsat 3 1.80 - n.a. 1.18 - n.a. 

Landsat 4 2.31 - n.a. 2.73 - n.a. 

Landsat 5 1.91 - n.a. 1.28 - n.a. 

Landsat 6 0.00 - n.a. 3.93 - n.a. 

Landsat 7 1.57 - n.a. 2.04 - n.a. 

 * remote sensing; ** non applicable 

Table 2. The importance of each of the 25 predictors used in the boosted regression trees model to 

estimate the soil organic carbon performed on the 1993 and 2008 samples in Sicily, Italy. The role 

of the remote sensed (RS) predictors on the contribution to the total variance explained by the non-

RS predictors and fold variation after removal of the RS predictors is shown. 

 

Removal of the RS predictors slightly changed the ranking of the predictors in terms of contribution 

to the total variance explained (Table 2). Among the RS predictors, only NDVI in the 1993 model 

showed a relatively high contribution to the variability explained (7.11%, the 4th strongest predictor), 

whereas its importance was negligible in the 2008 model (2.45%, the 15th predictor). 

In general, the removal of the RS predictors resulted in an increase of the contribution to the total 

variance of the lowest contributing predictors (Table 1), with the exception of rainfall (5.91% in the 

1993 model and 4.21% in the 2008 model). Rainfall contribution to the total variance explained was 
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1.57 and 1.41 fold after removal of the RS predictors. In total, the removal of the RS predictors from 

the modelling procedure increased the total contribution to the total variance explained of the six most 

important non-RS predictors by 9.71% in 1993 and 8.08% in 2008. The most important predictor of 

SOC content in both the 1993 and 2008 models was texture (19.18% and 22.64%, respectively, in the 

models with RS predictors). The six most important non-RS predictors across all 4 models were soil 

texture, land use, valley depth, rainfall, channel network base level (that is correlated with the height 

above the see level [a.s.l.] of the basin upon each pixel and thus to the chance of receiving SOC by 

erosion) and LS factor. 
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Table 1. Descriptive statistics of the observed soil organic carbon (SOC) concentration values and that of the distributions of the predicted SOC values 1 

modelled extracted on the same locations of the observed values. RS if for remote sensing covariates. Descriptive statistics were produced for both 2 

row and log-transformed data. Unit of measure for row data is % SOC.   3 

  

 raw data  log-transformed data 

 1993   2008  1993   2008  
 observed predicted  

with                               

RS 

predicted 

without 

RS 

 
 observed predicted  

with                               

RS 

predicted 

without 

RS 

 
 observed predicted  

with                               

RS 

predicted 

without 

RS 

 

 observed predicted  

with                               

RS 

predicted 

without 

RS 

Mean  1.2219 1.2246 1.2246  1.4881 1.4959 1.4965  0.0080 0.0687 0.0693 0.0743 0.1536 0.1546 

Standard error  0.0273 0.0146 0.0143  0.0567 0.0249 0.0244  0.0098 0.0044 0.0044 0.0146 0.0065 0.0064 

Minimum  0.1000 0.6821 0.6665  0.0300 0.8027 0.7774  -1.0000 -0.1661 -0.1762 -1.5229 -0.0955 -0.1093 

Percentile 1%  0.2000 0.7322 0.7231  0.2000 0.8523 0.8889  -0.6990 -0.1354 -0.1408 -0.6990 -0.0694 -0.0512 

Percentile 2.5%  0.2000 0.7779 0.7811  0.2533 0.9137 0.9222  -0.6990 -0.1091 -0.1073 -0.5965 -0.0392 -0.0352 

Percentile 25%  0.8000 0.9599 0.9611  0.8325 1.1294 1.1416  -0.0969 -0.0178 -0.0172 -0.0796 0.0529 0.0575 

Median  1.0000 1.1125 1.1148  1.1450 1.3573 1.3480  0.0000 0.0463 0.0472 0.0588 0.1327 0.1297 

Percentile 75%  1.5000 1.3453 1.3392  1.7575 1.6973 1.7033  0.1761 0.1288 0.1268 0.2449 0.2298 0.2313 

Percentile 97.5%  3.2475 2.4201 2.3855  4.4638 2.9182 2.8322  0.5115 0.3838 0.3776 0.6497 0.4651 0.4521 

Percentile 99%  4.2000 2.7196 2.7162  5.6966 2.9813 3.0149  0.6232 0.4345 0.4340 0.7556 0.4744 0.4793 

Maximum  5.4000 2.9830 3.0140  10.9500 3.4762 3.3565  0.7324 0.4746 0.4791 1.0394 0.5411 0.5259 

Mode  1.0000 1.0554 1.0151  0.9900 0.8205 0.7774  0.0000 0.0234 0.0065 -0.0044 -0.0859 -0.1093 

Standard deviation  0.7648 0.4074 0.4002  1.1530 0.5074 0.4968  0.2751 0.1237 0.1218 0.2972 0.1318 0.1294 

Kurtosis  5.1596 3.4557 3.4879  14.9722 1.5478 1.5422  1.3897 0.7781 0.8042 2.1546 -0.0729 -0.0682 

Skewness  1.8570 1.7964 1.7953   2.9695 1.3679 1.3563  -0.6215 0.9741 0.9742   -0.3757 0.6848 0.6774 

  4 
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In the models both with and without RS predictors, a discrepancy in the association between soil 

texture levels and relative importance for SOC prediction was found between the 1993 and 2008 

models (Supplementary material Fig. 4).  

 

 

Supplementary material Fig. 4. Partial dependence (response curve plots) of the model on the 8 

most important predictors included in the boosted regression trees. Models were built for 1993 and 

2008 data and with or without remote sensed (RS) predictors. The importance of each predictor is 

shown in parentheses. 

 

In the 1993 model, only Silty-Clay-Loam (texture 6) and Sandy-Loam (texture 7) showed a positive 

association to the SOC, whereas in the 2008 model, such a positive association was also found for 

Clay (texture 1), Sandy Clay Loam (texture 8), and Sandy soils (texture 9). In both models, CCP 

contributed more than VFO to SOC estimation and VFO more than ARA. Channel network base level 

negatively correlated with SOC estimation in the first half of its range in both the 1993 and 2008 

models (up to 660 and 330 m a.s.l., respectively), after which its contribution to the function of SOC 

estimation was always positive and constant. Similar trends were observed for the SOC to rainfall 

relationship. The role played by valley depth was strong in the 1993 model, only. Valley depth, which 

is inversely correlated with the deposition process, positively associated with SOC only in the lowest 

SOC concentration samples. 
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As expected, the highest SOC concentrations were mostly found in sites with relatively low mean 

temperature and high rainfall, which, in this area, are conducive for C accumulation in soil (see 

Cannarozzo et al., 2006; and Viola et al., 2014 for maps of rainfall and temperatures). In our study 

area, these sites are mainly located at the boundaries of the mountain chains (Fig. 2 and 3): the 

northern mountain chains (Madonie, Nebrodi and Peloritani), the Volcano Etna in the eastern part of 

the island, the Sicani Mountains in the western part of the island, the Hyblaean area in the south-

eastern corner. In general, the higher the SOC concentration, the higher the standard error of the 

model. The models with RS showed a lower standard error than the models without RS, especially in 

1993. 

 

Fig. 2. One-hundred meters resolution maps of the SOC (expressed in g C kg1, a, b) and uncertainty 

maps (c, d) of the boosted regression trees models built with data from 1993 with (a, c) or without (b, 

d) remote sensed covariates. Please note that range vary among classes. 

 

Classification of the predicted samples in the range ±50% than the observed was high for both the 

1993 and 2008 models (81% and 72% of the estimated data extracted on the same location of the 

entry data; Fig. 4) and well distributed in the area. Samples classified in the ranges < or >50% than 

the observed were also well distributed.   
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The removal of the RS predictors did not exert an effect on the SOC prediction (Fig. 5), which was 

on average 11.9 g organic C kg1 in ARA, 12.6 g organic C kg1 in VFO, and 14.4 g organic C kg1 

in CCP. Irrespective of the presence of the RS covariates in the model, such amount increased by 

1.9%, 1.9% and 0.9% in ARA, VFO, and CCP, respectively, from 1993 to 2008 and such increase 

occurred in all land use groups considered in a similar extent (Supplementary material Fig. 5). 

 

Supplementary material Fig. 5. Distribution function of the SOC (expressed in g C kg1) from data 

estimated by boosted regression trees extracted on the same location of the observed values. In the 

lower panel, the same distribution of the upper panel is shown with data divided per land use for 
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readability purposes. ARA is for non-irrigated arable land; VFO is for vineyards, fruit trees and 

berry plantations, and olive groves; CCP is for annual crops associated with permanent crops, 

complex cultivation patterns, land principally occupied by agriculture, with significant areas of 

natural vegetation. Data of frequency of VFO were added arbitrarily +0.1 and data of CCP were 

arbitrarily added +0.2 to help in the comparison among land use groups and year of sampling. The 

number of data in each sub-dataset and area (expressed in km2) covered by each group is shown in 

parentheses. 

The variation of the SOC in the area under study strongly depended on the subarea within the region 

and did not match the SOC map at the baseline (1993) (Fig. 6) In contrast, the reliability of this 

difference [measured as |SOC0893|(STDEV08+STDEV93)] did not depend on the area and was 

positive in almost all pixels. An increase of SOC concentration (up to +17.0 g SOC kg1 in the right 

end of the difference distribution, +10.1 g SOC kg1 in the 99th percentile, i.e +0.67 g SOC kg1 yr1, 

Supplementary material Fig. 6) was frequently found in the Hyblaean area, especially in the 

mountains and hilly environments, in the western hilly to plains areas, and, unexpectedly, on the 

central area located on the south of the northern mountain ridge.  

 

Supplementary material Fig.6. Distribution function of the SOC differences (expressed in g C 

kg1) resampled from a 1-km resolution map. Vertical lines indicate, from the left to the right, the 

quantile 0.01, 0.025, 0.05, 0.25, 0.50 (median, as a continuous line), 0.75, 0.95, 0.975, 0.99 of the 

distribution. 

A loss of SOC (up to 13.0 g C kg1 in the left end of the difference distribution, 6.6 g SOC kg1 in 

the 1st percentile, i.e 0.44 g SOC kg1 yr1) was observed in the areas surrounding the other 
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mountains ridge, the areas between the eastern slope of Etna Volcano and the sea and the Catania 

plain to the south of Etna, the Hyblaean plains on the south of the Hyblaean Mountains, and in part 

of the far-western plains, near the western corner of the island.   

 

Fig. 3. One-hundred meters resolution maps of the SOC (expressed in g C kg1, a, b) and uncertainty 

maps (c, d) of the boosted regression trees models built with data from 2008 with (a, c) or without (b, 

d) remote sensed covariates. Please note that range vary among classes. 

5.4 Discussion 

The understanding of the space-time variation of SOC is a prerequisite to hypothesize future scenarios 

and the outcome of any policy on crop yield, yield potential and ecosystem service (Dono et al., 2016; 

Elith et al., 2008; Luo et al., 2015; Novara et al., 2017). Thus SOC should be primarily managed to 

increase (agro)-ecosystem resilience to anthropic pressure and climate change. However, the mutual 

relationship of SOC and climate change depends on several variables (e.g. soil texture or tillage) and 

have wide variation (Kirschbaum, 1995; Stockmann et al., 2013). In this framework, the integration 

of short and long term comparisons (Conant et al., 2001; Kämpf et al., 2016; Kurganova et al., 2014; 

W M Post, 2000) can strongly boost the accuracy of SOC prediction (Luo et al., 2015). However, 

single-point comparisons, even when analyzed for a wide timespan, have the drawback of being 

uncorrected for position in the stochastic population of the data and are thus not representative of 

wide areas. 
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In the present study, the integration of DSM and BRT modelling allowed us produce maps of probable 

agricultural topsoil SOC distribution (along with reliability and error maps) for two sampling 

campaigns performed 15 years apart (1993 and 2008). This allowed us to estimate how SOC varied 

through space and time at each land use group (arables [ARA], tree-like crops [VFO], and cropped 

areas with semi-natural vegetation [CCP]) and the importance of some ecological characteristics on 

space-time SOC variation. 

 

Fig. 4. Prediction confidence map of the boosted regression trees (BRT) models of 1993 (a, c) and 

2008 (b, d) built with (a, b) or without (c, d) remote sensed predictors. Each point represents the ratio 

between BRT-predicted and observed values. The closer the ratio is to 1, the better its representation 

of the observed value is. 

 

The study period was selected according to the highest availability of data within each campaign and 

its timespan (15 years) allowed us to depict a short-term variation of SOC within a well-characterized 

period. Its beginning (1993) luckily fell soon before a number of European and worldwide policy 

measures which profoundly impacted agriculture, including the Regulation EEC 1272/88 on set-aside 

(compulsory from the 1992); the United Nations Framework Convention on Climate Change of 1993 

(into force from 1994); and the World Trade Organization Marrakesh Agreement of 1994. Similarly, 

its end (2008 campaign) fell soon after the abolishment of the compulsory set-aside in the EU 
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(Common Agricultural Policy [CAP] health check 2008) and the decoupled CAP EU payments to 

agriculture in 2005 (Regulation EEC 1782/2003). This collocates our research study in a period of 

low agricultural dynamic in term of land use change and management techniques, the latter of which 

were dominated by deep plowing. 

 

 

Fig. 5. Estimates of the soil organic carbon in each of the land use groups used in the present study 

as affected by the presence of the remote sensed (RS) covariates in the model. ARA is for non-irrigated 

arable land; VFO is for vineyards, fruit trees and berry plantations, and olive groves; CCP is for 

annual crops associated with permanent crops, complex cultivation patterns, land principally 

occupied by agriculture, with significant areas of natural vegetation. Data are means ± standard 

error. Number of sampling points falling into an area of each land use group is shown. 

Indeed, we found that the area covered by ARA and that by VFO were almost constant during the 

study period (1993 to 2008), whereas the area covered by CCP increased by 55%, which was likely 

due to the temporarily conversion of grassland to pastures. As expected, we found that SOC of ARA 

was predicted as lower than VFO and that of VFO lower than CCP. The increase in the SOC stock 

during the study period was however partly unexpected. From the one hand, we expected to find an 

increase in the ARA and VFO due to many conditions. These include the application of Good 

Agricultural and Environmental Conditions (Borrelli et al., 2016), which effects on ARA were 

directly elucidated in similar environments (Ventrella et al., 2011); the high clay content in the soils 

cropped with these species, as directly addressed by Zinn et al. (2005); massive recourse to the set-

aside (partly compulsory); the minor role of climate change in agricultural areas (Cannarozzo et al., 
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2006; Fantappiè et al., 2011b); and ease of SOC increase in low-SOC soils (Kämpf et al., 2016), such 

as those in the present study (<12.6 g kg1 ± 0.21 g kg1). From the other hand, such an increase was 

expected to occur in the northern, rainy, part of Sicily thanks to the presence of conditions conducive 

to a SOC accumulation, rather than in the southern, more arid parts, whereas we found an opposite 

pattern. Nonetheless, these results agree with those of other lower resolution studies in the same area 

(Chiti et al., 2012; Fantappiè et al., 2011b; Freibauer et al., 2004; Hashimoto et al., 2016; Lugato et 

al., 2014a) or studies conducted in similar environments (Farina et al., 2016; Rodríguez Martín et al., 

2016), where soil management exerted an important role in the percentage or reduction of SOC in 

relatively humid areas.  

Climate change effect on Sicily are under debate: no change in the rainfall in most of ARA and VFO-

dominated areas is expected (Cannarozzo et al., 2006), and a temperature increase is likely to occur 

(Viola et al., 2014). However, the interaction between water availability and temperature with the 

effect of soil traits and land use on potential and actual mineralization and C inputs are yet to be 

clarified (Badagliacca et al., 2017; Bogunović et al., 2017b; Davidson and Janssens, 2006; Purton et 

al., 2015). For example, in a high organic C area (Galapagos), Rial et al. (2017) suggested that the 

increase in the amount of rainfall and in general water availability (through occult precipitations, too) 

will likely consist in an increase of the SOC stock. 

During this 15-years study (1993-2008), mean increase in SOC in the agricultural area of the region 

(median = + 1.62 g C kg1 soil; lower confidence interval 95%:  4.86 g C kg1; upper confidence 

interval 95%: + 8.40 g C kg1) appeared similar to the time trends in temperature and rainfall observed 

in the region (Cannarozzo et al., 2006; Viola et al., 2014) and the degree of lithological and soil 

diversity (Costantini and L’Abate, 2016; Fantappiè et al., 2015). This occurred despite the most 

important predictors of SOC at any pixel were soil texture, land use and topographic covariates, as 

also found elsewhere (Bogunović et al., 2017b), whereas rainfall and temperature only contributed 

by 8.98% and 8.94% of the total variability explained in the 1993 and 2008 model, respectively.  

Grinand et al. (2017), by means of an algorithm similar to the one we used, found that SOC change 

modelled in a 20-years timespan was likely negative in humid and not different than zero in arid areas 

and that such variation strongly depended on both the climatic predictors and degree of deforestation. 

However, in contrast to Grinand et al. (2017), we found an increase of the CCP, which effect on SOC 

is more similar to that of forests compared to ARA and VFO. 

A matching between SOC and climatic gradient was observed by Vaysse and Lagacherie (2015) in 

southern France, a colder and more rainy environment than Sicily. In addition, in the ‘Vaysse and 

Lagacherie (2015)’ modelling of soil traits, a similarity among maps of SOC, soil pH and soil clay 

content can be observed. It is likely that in our environment, the variability of some important traits 
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related to soil erosion and deposition (such as valley depth and channel network base level) and thus 

C movements by erosion and deposition across pixel was better related to trends in rainfall and 

temperature, than their long-term mean.  
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Fig. 6. One-hundred meters resolution map of the difference in the SOC (expressed in g C kg1) during 

the study period (a, b). Reddish pixels indicates a loss and greenish pixels a gain in the SOC in 2008 

compared to 1993. Please note that range vary among classes. Reliability (c, d) of the maps in A and 

B panels, respectively, computed as the difference between the SOC difference and the sum of the 

standard errors (in lower panels of Fig. 2 and 3). Green points indicate those pixel in which the 

difference of SOC is reliable. Maps of the sum of the standard deviations of the ‘map of SOC’ (e, f). 

Each computation and mapping was made for models built with (a, c, and e) and without (b, d, and 

f) remote sensing (RS) predictors.  

Nevertheless, the present results only partly fitted the erosion risk map published soon before the 

beginning (Ferro et al., 1991) or the end (Fantappiè et al., 2015) of the present experiment. This latter 

discrepancy can depend on both the difference in the spatial resolution between the present map and 

those of Ferro et al. (1991) and Fantappiè et al. (2015) and the lack in these of the information about 

the deposition of the eroded soil and C (Adhikari et al., 2014). Indeed, we found that catchment area, 

landforms, valley depth and channel network base level, which are related to soil deposition, 

contributed by 20.3% and 18.2% of the total SOC variability explained in 1993 and 2008, 

respectively. Topographic indices can strongly affect SOC concentration through erosion and 

deposition, whereas their role in SOC stock can be minimal (Grimm et al., 2008; Schillaci et al., 

2017b). In the present work, we found that RS indices minimally increased the pseudo-R2 of the 

fitting functions and mostly affected both the variance explained by each covariate and the variability 

among model replicates. In particular, the RS covariates captured on their whole 18.1% and 17.4% 

of the total variance explained in the 1993 and 2008, respectively. Bou Kheir et al. (2010) found that 

removal of RS indices can increase the total variance explained by the less important predictors and, 

in contrast to the present study, also the overall accuracy of the model.  

Other studies indicated that the importance of RS indices in SOC mapping can depend on a range of 

factors, including the variable mapped, the resolution of the measured and ancillary variables, the 

extent of the study and the importance of the processes of SOC accumulation in relation to the study 

area (Castaldi et al., 2016b; Grinand et al., 2017; Poggio et al., 2013; Priori et al., 2016). It is thus 

likely that the high number of non-RS covariates in this work and their ability to explain a high degree 

of variability reduced the ability of the RS data to explain an additional amount of variability. In 

addition, the need of using more than one Landsat image (each of which took 13-32 days apart from 

each other) could have reduced the importance of RS indices for the whole area and impaired their 

contribution to the prediction. Similarly, some experiments with fewer input points and or coarser 

covariates than the present found a high percentage of variance explained by the RS indices in either 

SOC or other environmental traits (Stephen I.C. Akpa et al., 2016; Castaldi et al., 2016b; Wang et al., 

2016). 
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5.5 Conclusions 

In the present work, two legacy sub-datasets of SOC concentration were integrated in a DSM 

procedure to estimate the SOC variation along a 15-years period (1993-2008). This results was 

possible since the application of the covariates produced a pseudo-R2 of SOC representation of 0.63-

0.69, which allowed a time comparison of SOC at the pixel level. Texture and land use classes showed 

the highest predictor importance, around one third of the variance explained. Yigini and Panagos 

(2016) indicated these traits as capable of having a short-term impact on the SOC higher than climate-

driven processes. 

The integration of RS indices used in this study did not increase the pseudo-R2, but captured about 

one fifth of the total variance explained by the covariates and strongly reduced the modelling 

variability. This suggests that their integration in the models can overcome problems related to 

erroneous attribution of some samples to the other covariate levels.  

Finally, the present results can imply both agronomic and policy consequences at the district level 

and call for an intervention on soil fertility to maintain agriculture productivity (Dono et al., 2016). 

These results can help in calibrating models of SOC dynamic under various management or climate 

change scenarios, especially at regional extent, by removing the noise in the modelling phase by a 

correction with RS or other soil traits and geographical covariates, as already shown with other 

disturbing covariates in SOC modelling (Bogunović et al., 2017a, 2017b; Zinn et al., 2005a), which 

provide measures of covariates with a unique resolution in broad areas. 
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Abstract 

In recent years, the environmental modeling community has moved away from kriging as the main 

mapping algorithm and embraced machine learning (ML) as the go-to method for spatial prediction. 

The drawback of this shift has been a gradual decline in the number of papers in which uncertainty is 

presented and mapped alongside estimates of the target variables because in some ML algorithms, 

computing the local uncertainty can be challenging. This drawback has been recently identified in the 

literature as one of the key areas in DSM where progress is most needed. The main objective of this 

work is to compare geostatistical techniques, ML methods and hybrid methods, e.g., regression 

kriging, in terms of not only their overall accuracy but also their precision in providing useful 

confidence intervals at unsampled locations. We aim to provide clear application guidelines for future 

mapping exercises. 

For this experiment, we used a legacy soil dataset (n=414) of topsoil observations from the semi-

arid Mediterranean region of Sicily. This dataset was collected in a 2008 survey with a pedo-

landscape sampling design; hence, it is ideal for comparing geostatistics and ML. In the comparison, 

we included algorithms that have been widely adopted in the literature: ordinary and universal 

kriging, linear regression, random forest (RF), quantile regression forest, boosted regression trees 

(BRT) and hybrid forms of kriging (e.g., regression kriging with RF and BRT used as regressors). 

To evaluate the accuracy of each algorithm, a validation test that was based on the random 

exclusion of 25% of the samples was repeated 100 times. In addition, we performed a test of the 

transferability, in which the locations with the largest nearest-neighbor distances were excluded from 

training and re-predicted. The validation results demonstrate that ordinary and universal kriging are 

the best performers, followed closely by random forest (RF) and quantile regression forest (QRF). In 

terms of local uncertainty, RF and QRF provide confidence intervals that most often include the 

observed values of SOC. However, they both provide very wide confidence intervals, which may be 

problematic in some studies. Other algorithms, such as boosted regression trees and boosted 

regression kriging, performed slightly worse (on this dataset), but produced narrower ranges of 
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uncertainty. Hence, they may be more attractive since their estimates are very robust against changes 

and noise in the predictors. 

 

Keywords: boosted regression trees, digital soil mapping, machine learning, kriging, local 

uncertainty, random forest, regression kriging. 

6.1 Introduction 

Spatial prediction is the process of estimating a target variable at unsampled locations and can be 

realized by applying a wide range of models, including the very popular kriging model, which is still 

heavily used in the digital soil mapping (DSM) and ecological modeling communities.  

In recent years, with the spread of remote sensing and the open sharing by many public organizations 

of high-resolution weather and climate data, ecological modelers have become increasingly interested 

in using ancillary data, which has fundamentally changed the way in which spatial prediction is 

realized, with practitioners relying less on interpolation and more on machine learning (ML), which 

has become very popular.  

From the literature, it is unclear which class of algorithms performs the best overall for soil organic 

carbon (SOC) mapping. Vermeulen and Van Niekerk (2017) tested several algorithms for predicting 

soil salinity in a region of South Africa and demonstrated that kriging with an external drift was 

outperformed all the ML algorithms that they tested. Rhee and Im (2017) compared ML and kriging 

for drought forecasting in South Korea and concluded that ML yielded more promising results. 

Recently, ecosystem service analyses of the soil carbon and its spatial distribution were conducted 

for various environments: i) forest environment (Ottoy et al., 2017). In Beguin et al., (2017), the 

authors compared eight algorithms, including random forest, boosted regression trees and kriging, 

and reported that kriging outperformed the others; ii) coastal ecosystems (Carranza et al., 2018; S. 

Wang et al., 2018); iii) agro-ecosystems (Chen et al., 2018; Schillaci et al., 2017; Song et al., 2017; 

B. Wang et al., 2018); iv) Tibetan plateau (Dai et al., 2014; Yang et al., 2016); and v) Afromontane 

ecosystems, for which (Were et al., 2015) tested ML algorithms and ordinary and regression kriging 

to estimate soil organic matter and concluded that regression kriging realized the highest level of 

accuracy. Nussbaum et al (2018) reported that RF outperformed the other algorithms used in their 

experiment. Performances are evaluated to identify the best algorithm and the best fitting statistics. 

Prediction performances are highly dependent on not only the algorithm but also the environment, 

data and predictors that are used in a study. Hence, it is unsurprising that no “one-size-fits-all 

algorithm” exists.   
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The essential concern for the scientific community is that in recent years, a shift from geostatistics to 

ML seems to have occurred, despite the lack of evidence that the level of accuracy differs 

significantly. To examine this, we performed a bibliographic search on SCOPUS (constraining the 

search to journal papers and conference proceedings in agricultural and biological sciences, earth and 

planetary sciences, and environmental sciences). According to the search results, in the last 10 years 

(from 2007 to 2017), an average of 500 documents that reported the use of kriging were published 

each year. Moreover, since 2000, there has been a rapid increase in the number of documents in which 

ML is specified as a topic, with kriging being overtaken in 2014.  

 

 

 

Figure 1: Results from a bibliographic search in SCOPUS. This figure shows the number of 

documents per year in which the word “kriging” or “machine learning” appeared as a topic. 

 

These results clearly demonstrate that ML is quickly becoming the first and only choice for many 

researchers who are interested in ecological modeling, which poses a new and important challenge. 

Kriging has a “built-in” ability to provide researchers with not only a predicted value for each 

unsampled location but also a robust measure of uncertainty. This situation is often not the case for 

ML. Due to this inherent difficulty, many authors simply avoid discussing local uncertainty in their 

work (Verrelst et al., 2013). Arrouays et al. (2017) identifies the “evaluation of uncertainty of soil 

predictions” as “an aspect where most progress is needed” and laments that in many cases, “prediction 

intervals [...] have little practical use”. However, this should be a priority for every mapping exercise, 
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where stakeholders must be sure that what is presented on the map is an accurate prediction that has 

a robust confidence interval.  

The main objective of this work is to compare popular algorithms for SOC in terms of not only the 

overall accuracy but also the way in which they compute the local uncertainty. This comparison is of 

crucial importance for the scientific community because if we are only able to produce an average 

figure that is related to the overall uncertainty (i.e., cross-validation error), we may provide end-users 

with soil maps that are, in some areas, completely unreliable and unusable for practical purposes, 

such as designing remediation strategies. 

To evaluate each method, we employed the same validation strategy as was implemented by 

Vaysse & Lagacherie (2017). We randomly excluded 25% of the samples from training and used 

them to test the accuracy of each algorithm. This operation was repeated 100 times.  

Moreover, we evaluated the transferability. In this case, we split the dataset into calibration and 

test sets based on nearest-neighbor distances. This test attempts to mimic a realistic scenario in which 

practitioners must use a model that has been trained in one area to estimate locations that may be 

farther afield. We assessed each method in terms of the uncertainty and the confidence intervals it 

provides if it is used in areas that are far away from where it was trained.  

After providing technical descriptions of the algorithms that are included in this comparison, we 

present a general overview of their advantages, disadvantages and limitations. We hope readers will 

better appreciate the differences among the methods and understand how and in what scenarios each 

method is more suitable than the others. Geostatistical interpolation, which includes ordinary and 

universal kriging, has the main advantages of being widely available across multiple software 

applications and relatively easy to perform. There are many applications that require users to have 

very little knowledge of the mathematical details of kriging because the complete interpolation 

process is partially or entirely automated; examples include the Geostatistical Analyst in ArcGIS 

(ESRI, 2011) and the automap package in R (Hiemstra et al., 2009). These applications enable users 

to automatically de-trend data, fit the variogram model and interpolate points to create the final map, 

which is a substantial advantage; however, it is also a concern because it may allow people to use a 

method they do not fully understand. Kriging, like many statistical models, requires data to be 

normally distributed; if this assumption is not satisfied, transformation and back-transformation are 

required (as in this work with SOC, which follows a log-normal distribution). Another extremely 

important assumption of kriging is that 100 points are necessary for modelling the variogram 

(Webster and Oliver, 2008). If this assumption is violated, kriging would still be possible, for 

example, by modelling the variogram using maximum likelihood (Kerry and Oliver, 2007); however, 

many commercial software packages do not include this advanced option. The main disadvantages 
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of kriging are that it is sometimes regarded as a method that does not perform as accurately as more 

complex methods and that it tends to produce smooth map surfaces (Veronesi et al., 2012) because 

kriging tends to reduce the variance of the estimates, in relation to the variance of the observed data, 

to reduce the impact of outliers. When dealing with a complex dataset, this may become an issue 

because it may hamper the ability of kriging to accurately estimate locations that are poorly 

represented in the dataset (e.g., when various land types are underrepresented because they are 

difficult to sample). Linear modelling or linear regression is another method that is relatively simple 

to apply and featured in many commercial software applications. Since it is one of the first statistical 

models to be taught at universities, it is also well accepted and understood. The main disadvantage of 

linear modelling is that it is a biased method. To facilitate understanding of this concept, we introduce 

the variance/bias trade-off, which is important for understanding the differences among models. 

Predictive algorithms model the dependent variable (i.e., SOC) as a function of several predictors. 

According to James et al. (2013), the error of the function that models the variable is the sum of two 

quantities: its bias and its variance. Bias refers to the approximation error of a function that can 

accurately fit only data that follow a strict pattern; for example, a linear model can only fit lines and 

will not chance shape to accommodate other data patterns. The linear model creates an error that is 

intrinsic to the inability of the function to change shape.  

On the other end of the spectrum, we have algorithms that can change the way they fit data 

according to the pattern of the data, such as a spline that can adapt its curvature. These algorithms 

have more variance and include models such as random forest and boosted regression trees, which 

are used in this experiment. The main advantage of these algorithms is that they can model complex 

interactions between dependent and independent variables and non-linear patterns in the data, which 

can potentially increase the accuracy with which they can predict SOC at unsampled locations. Their 

main disadvantage is that they may also tend to overfit the data. Environmental data are affected by 

random variation or noise, which may decrease the accuracy of complex algorithms. These algorithms 

try to fit all points as closely as possible; with a noisy dataset, they may fit the noise along with the 

real signal. Overfitting can substantially decrease the accuracy of ML algorithms, which require 

robust validation to be successfully implemented for environmental modeling. 

 

6.2 Materials and Methods 

6.2.1 Study Area and Dataset 

The study area, namely, Sicily, is a semiarid island that is located in the middle of the 

Mediterranean Sea. Sicily is the largest Italian region, with a surface area of 25.000 km2, of which 
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approximately 60% is cultivated. The geology of Sicily reflects tertiary and quaternary modifications 

of parent materials such as clayey flysch, limestone, sandstone and gypsum, and coastal plains. Due 

to the complex geomorphology, there are a variety of soil families, which are mainly represented by 

Cambisol, Luvisol, Vertisol, Leptosols and Regosols (Costantini et al., 2013). 

For this experiment, we used a dataset that was collected by the Sicilian Regional Bureau for 

Agriculture, Rural Development and Mediterranean Fishery. This dataset is part of the legacy soil 

data of Sicily (Lombardo et al., 2018, Schillaci et al., 2018a,2018b,2017b) and the selected sampling 

campaign is particularly suitable for this study because it is the most recent widespread sampling 

(2008). This dataset was collected within the project “Soil Map of Sicily at 1:250,000 scale”, which 

employed a pedo-landscape sampling design (Fantappiè et al., 2011), which should be optimized for 

geostatistics. The 2008 campaign collected 414 topsoil samples from various land-uses and measured 

the SOC concentration and texture of each sample. In this work, we focus on SOC concentrations of 

cultivated soils, which are vulnerable to soil losses due to the erosion and consequent decrease in soil 

fertility, particularly in Mediterranean semi-arid regions such as Sicily.  

The campaign, which was conducted in 2008, recorded mostly soil samples according to the 

horizon-based approach: surveyors dug small trenches, identified soil horizons and collected bulk 

samples for each of these. Since pedological processes may substantially vary in space, the depth of 

each horizon also changes spatially. However, the soil volume typically does not change under the 

effect of tillage; therefore, it is the volume that is most in danger of losing precious organic carbon. 

The first 30 cm of soil is typically referred to as top-soil. Since the purpose of this experiment is to 

compare various modeling algorithms, we homogenize the dataset by applying a power depth 

function, as suggested by Veronesi et al. (2014), and compute the average SOC content of the first 

30 cm of soil. A mathematical function that is represented by a power curve was fitted to each soil 

profile. Via this approach, we estimated the SOC continuously with depth in each location. Then, the 

estimates from the first 30 cm were averaged to obtain SOC values for only the top-soil.  

6.2.2 Validation and Transferability 

As discussed in the introduction, this research has two main objectives; these objectives require 

different methodologies and validations. To accomplish the first objective, we relied on the robust 

validation technique that was suggested by Vaysse & Lagacherie (2017). A percentage of the samples 

(25%) were randomly selected from the dataset to form the validation set. Then, each algorithm was 

trained using the remaining 75% of the samples and used to predict the validation set. This operation 

was repeated 100 times to account for random variations. The root mean squared error (RMSE), mean 

absolute error (MAE) and the concordance correlation coefficient (CCC; Lin, 1989) were calculated. 
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The results are also presented in bar-charts, where the error bars represent 95% confidence intervals 

around the mean values. This graphical presentation allows readers to visually assess the differences 

among the models. Confidence intervals provide a robust approach to evaluating whether samples are 

significantly different without the need for a formal inferential test (Hector, 2015). 

To fulfill the second objective, we conducted an experiment in which we tried to mimic a realistic 

scenario in which soil samples are used to estimate SOC in areas that may be distant from where we 

have direct observations. For this, we created a test set that is based on nearest neighbor (NN) 

distances. First, we calculated the NN distance for each point, thereby obtaining a distribution of 

distances. Then, we calculated the 95th percentile of the NN distribution and included in the test set 

the points with NN distances that are greater than or equal to this value. In total, the calibration set 

includes 393 samples, while the test set includes 21 randomly selected samples, which have an 

average distance from their nearest neighbor of approximately 9.8 km (the average NN distance in 

the calibration set is 3.8 km). Although the sample size of 21 is not large, it is sufficient for the second 

part of the experiment, in which we simply compare algorithms in terms of the way in which they 

represent the local uncertainty.  

The rationale behind this choice was to simulate a real scenario in which a professional is asked to 

provide SOC estimates in arable fields that are far away from locations where soil samples are 

available. In addition, we opted for this approach because it enables us to compare the local 

uncertainties that are obtained via several algorithms in areas that are as far away as possible from 

other observations, which simulates a realistic scenario. Although Sicily provides a complex case 

study, its wide range of soils and changes in elevation and gradient should provide satisfactory testing 

ground for this comparison. Our objective is to identify the differences among the algorithms in 

estimating SOC outside the training area (transferability) and to assess whether ML algorithms can 

provide the same robust confidence intervals as kriging. 
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Figure 2: Locations of soil samples from the 2008 survey in Sicily, divided into calibration and 

test sets. The entire dataset was used for validation, while a set of 21 soil samples was used for the 

transferability test. 

6.2.3Predictors 

In the ML model, we included all the climatic variables that were produced for WoldClim v2 (Fick 

and Hijmans, 2017); Landsat optical satellite images (Chander and Markham, 2003); CORINE land-

cover maps from 1990, 2000, 2006 and 2016 (Bossard et al., 2000); and all the MERRAclim climatic 

variables (Vega et al., 2017). In addition, we included the Shuttle Radar Topography Mission (SRTM) 

digital elevation model (Farr et al., 2007), from which we calculated additional geomorphometric 

derivatives: slope, relative slope, aspect, topographic position index, topographic wetness index, 

convergence index, cross-sectional curvature, diurnal anisotropic heating, flow accumulation, 

longitudinal curvature, length and steepness (LS) factor, valley depth, vertical distance to the channel 

network and channel network base level (using SAGA GIS, Conrad et al., 2015).  

3.2.4 Algorithms 

We tested the following algorithms because they are some of the most popular algorithms in the 

literature for soil mapping: ordinary kriging (OK), kriging with an external drift (KED), random forest 
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(RF), quantile regression forest (QRF), linear regression (LM), boosted regression trees (BRT), 

regression kriging based on random forest and boosted regression trees. 

Ordinary Kriging (OK)  

The ordinary kriging algorithm was selected because ordinary kriging is likely the most common 

form of kriging. This algorithm only requires the variable of interest; hence, it is a simple method to 

use and explain. OK performs well with this dataset (because of the sampling design) and produces 

readily available measures of local uncertainty. Hence, for a spatial location where we do not have 

direct observations, we can obtain an estimate for the variable of interest, along with a range of 

uncertainty where the true value for that location should lie.   

Kriging is based on the variogram model, which provides a quantitative representation of the 

autocorrelation pattern in the study area (Webster and Oliver, 2008). The variogram is created by 

averaging the semi-variances, which are calculated as follows, of all pairs of points over distance 

bins: 

 

𝛾(ℎ) =
1

2
 𝐸[{𝑍(𝑥) − 𝑍(𝑥 + ℎ)}2] 1 

 

In this equation, 𝛾(ℎ) is the semi-variance between pairs of points that are separated by the vector 

ℎ (referred to as the lag distance). By definition, the semi-variance is half the expected square 

difference between two values of the variable 𝑍, namely, 𝑍(𝑥) and 𝑍(𝑥 + ℎ), that are separated by 

the vector ℎ. Sampling design is extremely important for kriging. To obtain a robust representation 

of the autocorrelation structure, this algorithm requires samples to be separated by a range of lag 

distances, from short to very large, so that the variogram can well depict the spatial complexity of the 

area, which is important for obtaining a variogram model that is reliable and allows kriging to realize 

its optimal accuracy. The dataset that was sampled during the 2008 surveys presents exactly this 

characteristic, with areas where samples are clustered and areas where samples are farther apart. 

Hence, it is ideal for kriging and for this comparison. 

Kriging is highly sensitive to skewed distributions because extreme positive values have a large 

impact on semi-variance calculations and, therefore, may render kriging estimates unstable (Webster 

and Oliver, 2007). For this reason, we examined the dependent variable SOC distribution and 

summary statistics (Section 3.1). Since we concluded that this distribution was highly skewed, we 

applied lognormal OK (Cressie, 1993), which interpolates the log-transformed values of the variable 

SOC. The back-transformed estimate for each interpolated location is obtained as follows (Laurent, 

1963): 
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𝑍̂𝑖 = exp (𝑍𝑖 +
𝜎𝑖

2

2
), 2 

 

where 𝑍̂𝑖 is the back-transformed estimated value for location 𝑖, 𝑍𝑖 is the estimated value that is 

obtained via lognormal kriging for location 𝑖, and 𝜎𝑖
2 is the local lognormal kriging variance.  

Similarly, the back-transformed local variance can be obtained via the following equation (Laurent, 

1963): 

 

𝜎̂𝑖
2 = exp(2 ∙ 𝑍𝑖 +  𝜎𝑖

2) × [exp(𝜎𝑖
2) − 1], 3 

 

where 𝜎̂𝑖
2 is the back-transformed kriging variance for location 𝑖. This value provides the range of 

uncertainty around the kriging prediction. 

 

Multivariate Kriging 

Other popular forms of kriging can include external factors, e.g., environmental predictors, into the 

model. These predictors can be used to model a trend; in this case, we consider kriging with an 

external drift. Another popular form of kriging is regression kriging, where kriging is used in 

combination with another algorithm. Regression kriging uses a regression (which may be ML) to 

compute estimates for each predicted location, followed by ordinary kriging to interpolate the 

residuals. 

This method is well described in Hengl et al. (2003), where the authors remark that the additive 

nature of regression kriging (since residuals are added into the ML model) is transmitted to the local 

variance estimates, via the following equation: 

 

𝜎𝑅𝐾
2 (𝑖) =  𝜎2{𝑍̂𝑀𝐿(𝑖)} +  𝜎2{𝑒̂𝐾(𝑖)} 4 

 

where 𝜎𝑅𝐾
2 (𝑖) is the local variance for location 𝑖, 𝜎2{𝑍̂𝑀𝐿(𝑖)} is the local variance from the ML model 

and 𝜎2{𝑒̂𝐾(𝑖)} is the variance from the interpolation of the residuals. According to this equation, 

without a proper uncertainty estimate from the ML part of the equation, obtaining a reliable 

uncertainty map would be extremely difficult.  

Kriging with an external drift was applied with a preliminary backward and forward stepwise 

feature selection approach that is based on the Akaike information criteria (Venables et al., 2013). 
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This kriging should increase the accuracy of the algorithm. Regression kriging was applied in the 

same way as by Vaysse & Lagacherie (2017). RF can compute a local uncertainty as a function of 

the spread of the values that are predicted by each tree in the forest (Veronesi & Hurni, 2014; Veronesi 

et al., 2016). Hence, it can be employed in regression kriging to estimate SOC values in test locations. 

The same procedure was also applied using boosted trees (Elith et al., 2008) as regressors. However, 

in this case, the standard algorithm was not employed, but the modified version, in which 

bootstrapping and random selection of predictors enable the algorithm to estimate the local 

uncertainty. As discussed previously, standard BRT does not provide local uncertainty by default; 

thus, it would be difficult to solve Eq. 4. 

Random Forest  

The random forest algorithm, which was developed by Breiman (2001), is very popular in the 

modeling community. In the past 10 years, more than 3000 environmental science papers in SCOPUS 

listed it as a topic. RF is based on ensembles of regression trees, which are classes of algorithms that 

partition the training set based on series of if-then rules that define classes of probabilities. RF is 

based on CART (Breiman, 1984), which fits a single tree using the entire training set. This method is 

well established and easy to interpret, but not highly accurate (James et al., 2013). RF overcomes the 

accuracy issue by fitting multiple trees and using their median value as the final predicted value. To 

realize this, RF employs a simulation that is based on bootstrapping (Hastie et al., 2001) as a 

resampling technique to generate multiple random realizations of the original training dataset. 

Moreover, not all the predictors are used to fit individual trees; RF randomly selects a specified 

number of predictors for each tree, which is a third of the total number of predictors by default and 

increases the accuracy of the algorithm because the trees are not correlated with one another (James 

et al., 2013). A schematic representation of the RF algorithm is presented in Fig. 3. 
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Figure 3: Graphical representation of the random forest algorithm. At each iteration, a slightly 

different training set is used, which is generated by bootstrapping, and only a specified proportion of 

the predictors (p) are included. 

 

Since multiple trees are fitted to slightly different training set and the trees are not correlated with 

one another, RF is appealing to the spatial modeling community. Even though the final predicted 

value for a test location is the median value over all regression trees, the standard deviation of the 

estimated values of the forest can also be useful for assessing the local uncertainty.  

RF was tested with a preliminary feature selection approach that is implemented using the recursive 

feature elimination algorithm (Guyon et al., 2002). This algorithm uses internal three-fold cross-

validation and applies RF, which provides a measure of variable importance, to rank and extract only 

the most important predictors for the model, which reduces the noise in the predictors, thereby 

increasing the accuracy of the RF model. Then, the algorithm was trained on the calibration set using 

only the best predictors and fitting 1000 trees.  

Linear Regression 

This linear regression algorithm was included as a baseline method, particularly for the ML 

algorithms. However, since there are strong linear correlations between predictors and target variables 

in many environmental datasets, satisfactory performances from linear models are not surprising. 

Moreover, it is generally recognized in the statistics community that model simplicity is an important 

aspect to consider (Samulesson et al. 2017). Simple models are typically easier to explain and 

understand; therefore, if two algorithms perform with similar levels of accuracy, the simplest should 

be preferred. This algorithm was applied by including a preliminary backward and forward stepwise 
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feature selection method that is based on the Akaike information criteria (Venables et al., 2013). This 

algorithm is also one of the algorithms we modified, by employing the RF framework to compute its 

confidence intervals.  

We created a simulation when bootstrapping and a random selection of predictors were employed 

to train the algorithm on various datasets at each run so that we would be able to assess the consistency 

of the estimates in relation to changes in the training set. This process was repeated 1000 times to 

obtain the same number of results as with RF and QRF. From this distribution of equiprobable values, 

we computed the median and standard deviation, which provide an estimate and confidence interval 

for each test location.  

Boosted Regression Trees 

Boosted regression trees is a relatively new method (developed by Elith et al., 2008); the first entry 

in the SCOPUS database is from 2005. However, it is rapidly gaining momentum and in the past 10 

years, it was discussed in approximately 600 environmental science publications. This algorithm 

operates in a fundamentally different way compared to RF. Boosting is initialized by fitting a single 

regression tree to a subset of the entire dataset and evaluating its performance on the remaining data. 

The next iteration fits another tree; however, in this iteration, the objective is to decrease the error 

from the previous step. This process continues until adding more trees does not provide any 

improvement in accuracy (Elith et al. 2008). Hence, each successive tree is strongly correlated to the 

previous tree and, therefore, computing the variance of their estimates makes little sense. For a 

thorough explanation of this algorithm, please refer to Hastie et al. (2001); a schematic representation 

of BRT is presented in Fig. 4. 

 

 

 

Figure 4: Graphical representation of boosted regression trees. 
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Since the trees are correlated, BRT cannot be used in RF; thus, it is not possible to extract any 

measure of uncertainty. Hence, BRT is another promising candidate for modification using the RF 

framework. The procedure that we followed is the same as for linear regression.  

The R code for the modified versions of linear regression with feature selection and BRT is 

available on GitHub at: https://github.com/fveronesi/ModifiedGBM_LM  

  

6.3 Results  

6.3.1 Summary Statistics  

Table 1 lists the summary statistics of the SOC data. The results demonstrate a skewed distribution 

with a wide range, which may create issues in computing the variogram and is the main reason why 

we apply the lognormal ordinary kriging. 

 

Table 1: Summary statistics of soil organic carbon for the 2008 sampling campaign in Sicily. 

Summary Statistic SOC Value in % 

Mean 1.51 

Median 1.26 

Standard Deviation 0.88 

Interquartile Range 0.67 

Range 0.22 – 8.79 

Skewness 3.02 

Kurtosis 18.46 

6.3.2 Validation 

The results of the cross-validation are presented in numerical format in Table 1 and in graphical 

format in Fig. 5. 

 

Table 2: Results of the validation in which 25% of the samples were excluded and the process was 

repeated 100 times. The results are presented as average values, along with their standard deviations 

over the 100 replicates. The methods are ordinary kriging (OK), kriging with an external drift (KED), 

random forest (RF), quantile random forest (QRF), boosted regression trees (GBM), linear model 

(LM), regression kriging with random forest (RF_RK), and regression kriging with boosted 

regression trees (GBM_RK). 

 OK KED RF QRF 

RMSE 0.68±0.27 0.67±0.28 0.73±0.35 0.74±0.35 

https://github.com/fveronesi/ModifiedGBM_LM
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MAE 0.48±0.13 0.48±0.16 0.48±0.16 0.48±0.15 

CCC 0.4±0.17 0.43±0.26 0.33±0.22 0.31±0.21 

     

 GBM LM RF_RK GBM_RK 

RMSE 0.72±0.28 1.01± 1.26 0.74±0.36 0.75±0.3 

MAE 0.51±0.13 0.65±0.33 0.49±0.13 0.52±0.14 

CCC 0.35±0.2 0.32±0.2 0.32±0.23 0.31±0.2 

 

Figure 5: Bar chart that shows the mean values of RMSE, MAE and CCC with 95% confidence 

intervals. The bars are ordered according to increasing mean.  

The results demonstrate that ordinary and universal kriging performed better than the other 

methods that were evaluated in this work. From the confidence intervals in Fig. 5, we conclude that 

OK and UK yield significantly lower values of RMSE and significantly higher values of CCC 

compared to tree-based ML methods, which rank second best. For MAE, the picture is more complex 

because several methods (QRF, RF, OK, UK and RK) present overlapping confidence intervals; 
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therefore, statistically, their accuracies cannot be distinguished. Methods QRF and RF are ranked first 

and second, respectively, in terms of MAE, but only fifth and forth in terms of RMSE. Therefore, the 

residual distributions for these two algorithms feature extreme values, namely, very large positive or 

negative residuals. Because the root-mean-square error squares the residuals, it is highly affected by 

extremes; that is the reason for these differences. Hence, RF and QRF might be accurate on average; 

however, in locations where they are not accurate, their errors can be much larger compared to other 

methods. 

6.3.3 Transferability - Estimating the Test Set 

We divide the original dataset into a calibration set, which will be used for training, and a test set, 

which consists of locations that are at least 9.8 km away from their nearest neighbor. Each algorithm 

will be discussed separately in this section. To facilitate the interpretation of the plots, in Fig. 6, we 

present the locations of the test samples with a numerical ID that can be traced back to the residuals 

plots that we show below, along with the SOC values to facilitate the interpretation of areas of 

higher/lower accuracy for each algorithm. 

 

 

Figure 6: Locations of the test samples. Each is identified by a numerical ID and the local SOC 

measurement is specified. 
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Ordinary Kriging and Kriging with an External Drift 

Traditionally, kriging has been considered the only DSM algorithm that can provide realistic and 

robust confidence intervals for each estimated location. This technique remains highly popular among 

environmental modelers and widely used in research. Moreover, both ordinary kriging and kriging 

with an external drift scored very well in the cross-validation. Therefore, these algorithms will 

provide a solid basis for understanding how ML deals with local uncertainty and reports confidence 

intervals. 

For both algorithms, the SOC concentration was log-transformed to comply with the assumption 

of normality and Eq. 2 and 3 were used to compute the estimated (back-transformed) values and the 

standard deviations for the test locations. The results are presented in Fig. 7, where the residuals at 

each of the 21 test locations are plotted. This plot shows the 21 locations, which are ordered by ID 

and plotted one on top of the other along the Y-axis; on the X axis, the residuals are plotted. The red 

line represents the line of perfect fit, when the residuals are equal to 0 (units are SOC %). The empty 

dots represent the residuals for each point, which are normalized by the observed values. Hence, a 

dot on the left side of the red line corresponds to a negative residual and, thus, the estimated value 

exceeds the observed value; the opposite applies to dots on the right side of the red line. Also shown 

on the plot are the MAE, which is computed by comparing estimates and observed values for the test 

locations, and the average width of the confidence intervals. The number of times that confidence 

intervals cross the line of perfect fit is also specified on the plot, which is useful for evaluating the 

usefulness of these ranges of uncertainty in practice. Practitioners, including agronomists and 

advisors, need to know that the values they are getting from a map are the true values of SOC 

concentration; otherwise, the map would be useless for practical purposes. 

 

Figure 7: Residuals for the 21 test locations, which were computed from the estimates that were 

obtained via ordinary kriging and kriging with an external drift. The red line corresponds to the 

residuals being equal to 0.  



135 
 

Since these two methods were identified as the best predictors in the standard validation test, we 

consider their results as our baseline, with which we will compare to all results from the other 

algorithms. Ordinary Kriging yields an MAE of 0.36%, an RMSE of 0.47% and a CCC of 0.3, while 

UK yields an MAE of 0.37%, an RMSE of 0.46% and a CCC of 0.23. Therefore, in terms of the 

average error, both models yield satisfactory results; however, in terms of correlation, they perform 

worse than validation. In terms of confidence intervals, on average, the standard deviations around 

the estimate are ±0.5%; hence, the estimated values that are provided by kriging are typically very 

close to the real observations, or at least within an acceptable margin of error. There are cases where 

the confidence interval is large, for example, samples 16 and 17 for OK and sample 14 for KED. 

According to the map above, samples 16 and 17 have higher values compared to sample 18 (0.38% 

SOC), which is relatively close. This result may create difficulties for kriging, which estimates an 

average value for the whole area. KED performs better in dealing with this scenario, but is unable to 

estimate sample 14, which is on the coast but has similar values to nearby observations. There may 

be something in the predictors that reduces the accuracy in this area. In terms of reliability of the 

confidence intervals, 13 confidence intervals for OK and 14 for KED cross the line of perfect fit; 

hence, in approximately 66% of the cases, the range of uncertainty that is provided by the map is 

reliable.  

Random Forest and Quantile Regression Forest 

As discussed previously, RF and QRF operate similarly by fitting ensembles of regression trees; 

thus, they can assess local uncertainty. In this experiment, the two algorithms are compared by 

estimating the test set and examining the results, which are presented in Fig. 8. This figure was created 

in the same format as the previous figure so that the results can be compared easily. The confidence 

intervals are computed as the standard deviation of the distribution of the values that are estimated 

by each tree in the forest for RF and by extracting the 25th and 75th percentiles from QRF. 
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Figure 8: Residuals for the 21 test locations, which were computed from the estimates that were 

obtained via random forest and quantile regression forest. The red line corresponds to the residuals 

being equal to 0.  

RF yields an MAE of 0.34%, an RMSE of 0.45% and a CCC of 0.11, while QRF yields an MAE 

of 0.33%, an RMSE of 0.44% and a CCC of 0.16. These results are similar to those that were reported 

in the general validation. However, from this work, we can also assess the way these algorithms report 

their local uncertainty, namely, the way in which they represent their confidence that what they are 

reporting is the true value of the SOC in a specified location. 

In total, 17 confidence intervals cross the line of perfect fit; hence, in approximately 80% of the 

unsampled locations, both algorithms can provide reliable (meaning the true value of the sample is 

included in the confidence interval) uncertainty ranges. However, the downside is that, on average, 

the confidence intervals have ranges of ±0.7% SOC, which may not seem like a large difference 

compared with kriging, but according to Fig. 8, there are samples for which the potential range of 

confidence is large. For example, sample number 15 for both algorithms has a confidence interval of 

approximately ±1% SOC, which is a large uncertainty for an observation of 0.8% SOC. The range of 

confidence should be considered when using these methods because it can negatively affect the way 

in which SOC is represented and evaluated. 

Linear Modelling 

The linear modelling algorithm is the first algorithm for which we employed the RF framework to 

compute its confidence intervals. According to the cross-validation, linear regression is the least 

accurate of the algorithms that were evaluated in this experiment. However, it provides a satisfactory 

baseline for the other methods since it is widely considered the simplest mapping technique.  

In terms of accuracy, LM yielded an MAE of 0.4%, RMSE of 0.51% and CCC of 0.09. The average 

standard deviation around the estimates is close to that computed via kriging. In terms of the reliability 

of the confidence intervals, linear regression outperforms kriging, with 16 confidence intervals 

crossing the line of perfect fit, which is only one less compared to RF and QRF.  
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Figure 9: Residuals for the 21 test locations, which were computed from the estimates via the 

bagged linear regression algorithm. The red line corresponds to the residuals being equal to 0. 

From Fig. 9, it is difficult to conclude that this method outperforms the method that was evaluated 

above. For example, numerous residuals are above or below 1% SOC and its correlation coefficient 

is low; according to the image, various values are predicted with very low accuracy, which must be 

carefully considered since a difference of 1% SOC may become significant when the soil map is 

employed for agricultural management purposes. Sample 10 has a particularly low residual value. 

This sample has the highest percentage of SOC among the samples that were selected for testing, 

which may demonstrate that LM is unable to estimate relatively high values of the variable of interest 

in cases where these values are at the extremes of the distribution of the values that are employed for 

training. Thus, LM is unsuitable for use as a reliable and robust estimator for heterogeneous datasets 

of this type. 

Boosted Regression Trees 

BRT is the other algorithm of which we proposed a modified form that incorporates a local 

uncertainty estimation into the RF simulation that is described above. The results of applying this 

modified implementation of the BRT algorithm to the test set are presented in Fig. 10.  
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Figure 10: Residuals for the 21 test locations, which are computed via the bagged boosted 

regression tree algorithm. The red line corresponds to the residuals being equal to 0. 

The results were an MAE of 0.4%, an RMSE of 0.5% and a CCC of -0.01. Therefore, BRT is not 

capable of estimating, with any degree of confidence, data that are far from the area where it was 

trained (at least for this dataset). This inability to estimate distant data is clear from the image, in 

which large discrepancies between observed and predicted values are observed. 

However, despite the application of the same technique as was used by RF and QRF, the estimates 

from BRT tend to have a very small spread. In other words, the confidence intervals are highly precise 

but not highly accurate, which should be considered carefully when mapping SOC. It may be that for 

some datasets, BRT performs well, and in such cases, its estimates would be close to the real values 

at any unsampled location because of the narrow confidence intervals. However, in cases where BRT 

does not perform as well, we must be careful when using its estimates because we may be providing 

practitioners estimates that are not as reliable and robust as we might believe. Only 2 confidence 

intervals crossed the line of perfect fit and most of them have residuals that exceeded 0. Thus, in most 

cases, a soil map that is created with BRT will provide SOC values that are too optimistic. 

Regression Kriging 

Regression kriging with full estimation of the local uncertainty of the map is now possible, even 

with BRT. In this section, we present the results for regression kriging that is applied using both RF 
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and BRT as regressors to estimate the test set. The results are presented in Fig. 11. As discussed 

previously, the confidence intervals are computed by solving Eq. 4; thus, they are the sum of the error 

from RF and BRT, which is computed as the standard deviation of the estimates for each tree in the 

forest, and the kriging variance from the residual interpolation.  

 

Figure 11: Residuals for the 21 test locations, which are computed via regression kriging based on 

RF (left) and BRT (right). The red line corresponds to the residuals being equal to 0. 

RF produces relatively accurate estimates, but computes very wide confidence intervals, which 

does not change when kriging is employed in a regression kriging framework; instead, the widths of 

the confidence intervals increase. With regression kriging, all the confidence intervals have the lower 

value on the left side of the plot; thus, if we only consider the lower bound, we will always 

underestimate and, therefore, be conservative, for example, when planning soil management 

practices. There may be scenarios in which this is not optimal; however, there are datasets for which 

being conservative is appropriate. 

Regarding BRT-based regression kriging, kriging of the residuals can partially overcome the issues 

that were identified previously. Regression kriging increased the widths of the error bars (by an 

average of 0.45% SOC), with 12 of them crossing the line of perfect fit. In terms of accuracy, for this 

dataset, BRT, even with kriging of the residuals, still performs worse than the other approaches. 

However, for sampling designs that are optimized for this method, the increased reliability of the 

error bars renders this algorithm more attractive for DSM than the standard version of BRT.  

Averaging over All ML models 

To complete our comparison, we evaluate the performance of a model that averages the estimates 

from all the algorithms. Several authors (Huang et al., 2012; Zhang, 2014; Zhang et al., 2017a; Zhang 

et al., 2017b) used this approach to incorporate uncertainty into ML modelling. We estimated the test 

locations using all the algorithm that are presented above. Then, we averaged their values; this 
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provides the new predicted value for each test location. The uncertainty was computed by calculating 

the standard deviation of the estimates from all the models. The results are presented in Fig. 12. 

 

Figure 12: Residuals for the 21 test locations, which were computed by averaging the results over 

all ML methods that were evaluated in this experiment. The red line corresponds to the residuals 

being equal to 0. 

The results are similar to those of RF and QRF, with MAE of 0.33%, RMSE of 0.44% and CCC 

equal to 0.17. However, the results are also erratic, with some locations badly misrepresented and 

confidence intervals that are probably too narrow to be used in practice. 

The average width of the error bars is just 0.18% SOC; hence, in cases of relatively high or low 

residuals, the range of uncertainty crosses the line of perfect fit and, thus, is not reliable for practical 

purposes. Overall, these results demonstrate that averaging the results of multiple ML algorithms may 

be a satisfactory approach to realizing high accuracy and providing a measure of local uncertainty.  

6.3.4 Discussions 

Since the sampling design was based on geostatistics, kriging performing best is not surprising. 

The sample requirements for kriging and ML are fundamentally different: kriging requires a sampling 

design that is optimized for fitting the variogram (i.e., good mix of small, medium and large lag 

distances), whereas ML requires a sampling design that is optimized for predictor coverage, along 

the lines of the Latin hypercube (McKay et al., 1979), and extensively used for soil mapping (Ballabio 

et al., 2016; Ließ, 2015; Minasny and McBratney, 2006; Mulder et al., 2013). Therefore, this dataset 

may not be optimized for ML, which is the main driver of the lower performances of these methods.  
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The main issue with standard validation frameworks, such as the one that we employed or the 

standard cross-validation, where the dataset is randomly divided into non-overlapping folds (James 

et al., 2013), is the random sampling of the test set. Therefore, in areas with a high sample density, 

the test set may include samples that are very close to samples that are used to train the algorithm 

(Veronesi et al., 2017). This sample proximity may inflate the performance of kriging-based methods. 

Moreover, this is not a realistic approach to evaluating the accuracy of the algorithms; soil samples 

are not often used to estimate locations that are close to where we sampled since we may assume a 

degree of spatial similarity, but are used to estimate locations that may be farther afield and for which 

we do not have any information. To robustly evaluate each algorithm, we must construct a more 

realistic validation framework that accounts for DSM being employed to estimate areas for which no 

direct observations exist. We tried to realize this objective in the second part of the experiment 

(Section 3.3). 

According to the main cross-validation, OK and UK obtained significantly more accurate results 

compared to all the other algorithms. The rankings of the algorithms differ among accuracy indices. 

In terms of only RMSE and CCC, OK and UK performed best; however, the MAE results appear to 

be less diverse. RMSE is more strongly affected by large residuals because of the squaring; therefore, 

it is a useful index for identifying algorithms that are accurate, on average, but produce large residuals. 

This situation is probably what occurs here, with OK and UK being capable of reducing the impact 

of extreme values. Since the 2008 sampling campaign was carried out using a sampling design that 

was developed via geostatistical techniques, this result is not surprising and demonstrates that the 

selection of the estimation method must be based on careful considerations. It is good practice to test 

algorithms that have already been used in the literature for similar purposes; however, it may be 

counterproductive to only consider an algorithm because it is new and has never been used before in 

a specified field. This situation sometimes occurs in science, where methods are selected only because 

they are fashionable and not based on real and tested experiments. In this case, for example, since the 

sampling design was based on geostatistics, very advanced methods such as deep-learning could be 

useful, but still less accurate than kriging, which can also provide robust and well-tested uncertainty 

estimations. In summary, even though we now have access to advanced algorithms, we should not 

use them blindly without fully considering what we are trying to achieve. 

The ranking from the main cross-validation is reproduced almost exactly in the second part of the 

experiment, where algorithms were tested in locations that are far from the training area. This ranking 

demonstrates that even though we are only estimating 21 samples, the results that we obtained in 

terms of confidence intervals are reliable. However, this part of the experiment was not designed to 

evaluate the accuracy of the algorithms, only the way they represent uncertainty. This experiment 
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enabled us to obtain extremely useful information about the way error is reported by each algorithm. 

Soil maps are not produced only for the sake of creating beautiful geographical visualizations; they 

provide accurate and reliable information on soil properties that decision makers can use to plan 

interventions. When we perform a cross-validation, which is a method that is widely used to test 

mapping algorithms, we can only provide a measure of the overall accuracy of our map. The indices 

that we used in Table 2 only provide an average value of the residuals, which is suitable for comparing 

methods but provides little information on the accuracy of the map. We could better evaluate the 

residuals by either plotting them in a histogram or creating a map that shows the residuals in each 

sampled location using a color scale, which would present a more precise picture of the geographical 

distribution of the error of our model. However, it will provide almost no information about the error 

that would be generated when estimating the value at a location that was not encountered by the 

algorithm during training.  

Several authors (Guio Blanco et al., 2018; Poggio and Gimona, 2015) interpolate the residuals that 

are computed after cross-validation to develop an uncertainty map for ML algorithms that are not 

capable of generating one. For example, in Song et al. (2016), the authors applied a deep-learning 

neural network to model the spatio-temporal pattern of soil moisture; the uncertainty was computed 

via sequential Gaussian simulation using the residuals. This approach is suggested in Kanevski et al. 

(2009); however, it may be too optimistic. The problem is related to the way in which cross-validation 

works, which is through a random selection of locations that does not account for spatial auto-

correlation, but assumes samples to be independent. This validation approach enables algorithm 

testing in areas and locations that are very close to the area and locations that are used during training, 

as demonstrated in Veronesi et al. (2016). This validation approach may produce results that are too 

optimistic; therefore, it is not suitable for constructing a reliable uncertainty estimation map. The only 

way ensure that the uncertainty map we provide to the end user is reliable is to use an algorithm that 

has been thoroughly tested and is known to produce reliable error maps.  

According to the literature, kriging provides a robust standard deviation around its estimates. In 

this example, it performs well in terms of accuracy; therefore, we used this algorithm as a baseline 

model and everything was compared with it. RF is the only ML algorithm that can report a measure 

of uncertainty for each value it estimates. According to our results, its standard deviation values are 

similar to those that are produced by kriging; even though the interval is slightly wider, it has eco-

physiological meaning for the studied indicator and the climate (Lombardo et al., 2018, Schillaci et 

al., 2018a, 2017a). Hence, RF can be used to replace kriging in scenarios in which the latter is 

unsuitable. Since its confidence intervals cross the line of perfect fit most of the time, RF can be 

employed when we need to create maps of areas that are far away from where we trained the model. 
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QRF generated the most reliable confidence intervals. This result is consistent with findings of 

Szatmári and Pásztor (2018) which also found that QRF outperformed other kriging-based models. 

These confidence intervals enable practitioners to select an optimal safeguarding level. For example, 

users can decide to only plan management practices using the most conservative estimates, namely, 

the lower values. In the image, most confidence intervals have lower bounds that are above -1, which 

should provide an acceptable safeguarding level for planning, without being over-conservative. With 

RF, all the lower bounds have values that are below the true SOC concentration for a specified 

predicted location.  

In this research, we also demonstrated how the RF framework can be used successfully to 

incorporate an uncertainty estimation into other algorithms. Furthermore, we developed modified 

versions of BRT and linear models; theoretically, the same code can be used to modify any currently 

used algorithm. Linear modelling was included to represent the lower end of the accuracy spectrum 

because we assumed that it would be the least accurate method. BRT is becoming popular in the 

environmental modelling community. Despite being included in a simulation where samples were 

bootstrapped and predictors were randomly excluded, BRT produced very consistent estimates. Thus, 

its performance is only slightly affected by changes in the predictors or the training dataset, which is 

very interesting because we sometimes create soil maps with samples that we did not collect ourselves 

and that are likely affected by errors that are difficult to assess. In such cases, BRT could be the best 

option since its estimates will not be strongly affected by these issues. However, we must be very 

careful when using BRT because the uncertainty estimates that it provides may not be reliable.  

 

6.4 Conclusions 

Agro-ecosystems are the pillar of our economy; however, their health closely depends on 

satisfactory soil management and factors such as parent materials and the weather regime. Knowledge 

of SOC and its stock requires detailed information. Moreover, the development of an accurate 

mapping methodology is very important for avoiding soil degradation and optimizing the crop yield. 

The main objective of this work was to compare SOC mapping algorithms in terms of not only their 

average accuracy but also their ability to provide reliable confidence intervals in unsampled locations 

that may be far away from the training area. Since many ML algorithms do not have a “built-in” 

function for computing local uncertainty, in this work, we propose to adapt the RF framework and 

modify existing algorithms to incorporate local uncertainty estimation.  

In terms of validation, OK and UK were the most accurate mapping methods, which is not 

surprising since the sampling design was optimized for geostatistics. However, in terms of local 
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uncertainty, RF and QRF generated the most reliable confidence intervals, namely, intervals that 

included the observed value of SOC most of the time (even when estimating areas that are far away 

from their training locations), which is potentially important for practical uses; however, they must 

be handled carefully since the confidence intervals are also very wide. BRT, which did not perform 

well on this dataset, has a much lower variance compared to RF; hence, its estimates are much more 

robust against changes in the predictors, which is a desirable property in environmental and soil 

modelling. However, computing confidence intervals that, in many cases, do not include the true 

value of the unsampled location must be considered when employing BRT for mapping. In cases 

where BRT is highly accurate, its uncertainty map will be extremely useful. However, in other 

scenarios where BRT is not as accurate, we must be careful because its uncertainty map may be 

practically useless.  
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4. Dissertation conclusions   

 

Soil data and quantitative models based on spatial covariate are growing in number and quality across 

the world. Share the knowledge among public management needs, stakeholders and others is still a 

challenge for the management of the environment. This especially occurs when there is a need to 

manage highly heterogeneous areas. The health of agroecosystems is due to many factors, one upon 

all anthropic control, while preserving the income of the area and reducing land degradation. 

Agricultural compartment has been often a weak chain of the economy; however, it has recently 

become easier to monitor, and to manage, thanks to the impressive earth observation programmes. 

Soil properties, especially SOC and SOC stock, are extremely important for crop production, and 

they can be used as a metric of ecological services. With this work, a particular aspect of regional 

assessment of soil resources was studied to enhance cropland soils monitoring. The results of this 

dissertation are: (i) an improvement of the modelling procedures to estimate SOC in Mediterranean 

areas; (ii) the production high detailed and accurate maps of SOC distribution; (iii) the quantification 

of the change in SOC over time. These maps can be used at a regional extent for management 

purposes. The link between soil managers and policy makers have improved the way to face land 

degradation and today subsidization, especially in U.E., is not only limited to sustain commodities 

production but also to support the implementation of best management practices with the aim to 

preserve the environment and yield potential in time and space. Interesting results about the SOC 

dynamics in the cropland were observed in the study. Knowing the space-time variation of this trait 

(both in term of SOC concentration and stock) is a prerequisite for sustainable land management, 

where sustainability includes 

- the increase of soil C stock, which is directly related to the reduction of greenhouse gas 

concentration in the atmosphere and indirectly to land susceptibility to soil loss;the 

maintenance of yield potential, since SOC acts as an easily-accessible soil reservoir of 

nutrients for plants and soil biota and provides a wealth of ecosystem services to plant growth 

outliers is to be performed when the amount of data is high and from different sampling 

campaigns. 

 

This can lead in individuating error in reporting the unit of measurements (e.g. g kg-1 confounded 

with %) or affected by a systematic error. Some of the cases were highlighted, and it has been 

demonstrated that their deletion can lead to a reduction of modelling error in the estimation and/or 

relative uncertainty. 
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Part of the database from the chapter 3, in particular those related to the 0-30 cm soil layer, were used 

for an estimation process of the SOC stock in Sicily (chapter 4). Since the database included data of 

samples collected from 1968 to 2008, the most of which in 1993 and 2008, the SOC stock 

computation was made referring to the year 2000 as an average of the historical records of the legacy 

data. In addition, soil bulk density was estimated with an in-situ pedo-transfer function. The model 

built showed a high reliability and clearly highlighted main predictors of the SOC stock. Part of these 

regressors, as expected, were the same of those found in the SOC mapping experiment, which was 

conducted using data collected in 1993 and 2008 and allowed for an analysis of SOC dynamic 

(chapter 5). The experiment shown in chapter 5 also yielded valuable information for assessing the 

effect of a climate change scenario on SOC stocks and their spatial distribution in semiarid areas, 

where low rainfall and high temperatures limit SOC accumulation. Notably, the models of the 1993 

and 2008 showed very high reliability, with R2 above 0.68. These results can help in understanding 

how internal (i.e. soil texture) and external variables (e.g. climate, land use and land use change, and 

those measured as remote sensing variable) influence models of SOC dynamic under various 

management or climate change scenarios. Furthermore, it will be crucial to make sure that the training 

and deployment datasets mirror have similar characteristics for the covariates.  

The methodology implied in chapter 5 also highlighted that the estimated yearly variation of SOC 

(but see fig. Supplementary material Fig.6 in chapter 5) is on average 0.108 g kg-1 y-1. A rough 

calculation of the SOC stock (using a hypothetic BD reference value for croplands of 1.4 kg dm-3) 

multiplied by the average SOC sequestration rate found, would result in a gain of 0.48 t ha-1 yr-1. This 

is as double as the theoretical value given by the 4*1000 project and other current published values. 

However, applying a bulk density of 1.4 kg dm-3 appear as excessively high in the area under study. 

Indeed, from the lass than one thousand data available of measured bulk density in the layer under 

study, we have found that bulk density in the few non-tilled conditions were 1.47±0.02 kg dm-3 in 

2008 and 1.08±0.01 kg dm-3 in 1993. This partly explain the increase in the SOC. Also, most of sites 

were tilled and shown a bulk density measured around 0.5-0.7 g dm-3, which low values were indeed 

due to the tillage itself. This strongly resizes the estimation of the SOC stock to values that are less 

than a half than those previously computed. Unfortunately, the strong lack of BD measurements and 

especially the difference in abundance of data per year impaired us to use a PTF as made in the 

previous work. 

Thus, although the chapter in question demonstrated the usefulness of the DSM approach, it has 

opened some questions on the reliability of the legacy sample design and maybe we can further 

hypothesize that the different analysis protocols followed during the time make it difficult to 
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assimilate data into a single frame. In the light of these agronomic considerations, it is useful to 

remind that the data used in Chapter 5 for the DSM were taken in different places, as it is the nature 

of a legacy data, with no one single sample overlapping in the two periods. Such lack will be clarified 

in further work of sampling on coinciding locations.Further work will be needed to understand SOC 

dynamics under certain conditions, such as under extremely high carbonate content, or under hyper-

arid areas. It is useful to scale up to the whole Mediterranean region in order to gain an increased 

understanding of how machine-learning models are able to map soil properties with their uncertainties 

and to verify whether similar outcomes from this study are confirmed. This is needed since many 

Mediterranean environments share similar micro-climatic traits but contrasting land use history. 

Nonetheless, the procedure requires checking the reliability of original data and identifying a model 

able to handle data with given distribution among predictors and space (such as unevenness, scarce 

resolution and presence of extreme values in both feature space and field data). This is particularly 

frequent when legacy information are used. Thus, a test of models with contrasting properties was 

performed (chapter 6) for providing evaluation indices. Future planned works include a quantitative 

analysis of the international and grey literature and a test of the direct difference in resampled location 

after 25 years from the first sampling. This study will allow for the analysis of SOC sequestration 

potential in the Mediterranean Basin. This can be done, along with a sampling design optimization 

for detecting dynamics of soil properties, including SOC, in cropland (mainly cereals/legumes 

rotation) using data collected in sites where previous sampling campaigns were conducted. The 

number of these sites will be defined with a power analysis design and randomly chosen within the 

examined area. This procedure based on the direct results of SOC differences between two sampling 

times at the same site can test the efficacy of the indirect results obtained from modelling analysis. 
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Useful links 
Agriforecast MARS 

http://agri4cast.jrc.ec.europa.eu/DataPortal/Index.aspx 

https://g4aw.spaceoffice.nl/en/projects/international/international-initiatives/monitoring-

agricultural-resources-mars/ 

Centro nazionale cartografia pedologica 

http://www.soilmaps.it/en/downloads.html 

TIMESAT 

http://web.nateko.lu.se/timesat/timesat.asp?cat=0 

MODIS  

https://newsroom.gsfc.nasa.gov/sdptoolkit/HEG/HEGHome.html 

CORINE 

https://www.eea.europa.eu/data-and-maps/data#c0=5&c11=&c5=all&b_start=0&c12=land+cover 

Examples of country Agriculture department sites and level of information offered 

http://www.abs.gov.au/Agriculture 

Environmental information data centre 

http://eidc.ceh.ac.uk/citing-data 

Environmental monitoring 

http://agri4cast.jrc.ec.europa.eu/DataPortal/Index.aspx
https://g4aw.spaceoffice.nl/en/projects/international/international-initiatives/monitoring-agricultural-resources-mars/
https://g4aw.spaceoffice.nl/en/projects/international/international-initiatives/monitoring-agricultural-resources-mars/
http://web.nateko.lu.se/timesat/timesat.asp?cat=0
https://newsroom.gsfc.nasa.gov/sdptoolkit/HEG/HEGHome.html
https://www.eea.europa.eu/data-and-maps/data#c0=5&c11=&c5=all&b_start=0&c12=land+cover
http://www.abs.gov.au/Agriculture
http://eidc.ceh.ac.uk/citing-data
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http://www.openforis.org/home.html 

Github - 4geocomPP Lovelace 

https://github.com/geocomPP/sdvwR/blob/master/Section4_Final_Example_Conclusions.md 

Basemaps 

http://www.naturalearthdata.com/downloads/ 

Metadata 

https://geonetwork-opensource.org/ 

NOAA 

https://www.nesdis.noaa.gov/JPSS-1 

Open data Europe 

https://www.europeandataportal.eu/elearning/it/#/id/co-01 

Esdac ecopedological maps 

https://esdac.jrc.ec.europa.eu/Library/Data/250000/Italy/MapRegions.htm 

European soil database 

https://esdac.jrc.ec.europa.eu/ESDB_Archive/ESDBv2/fr_thema.htm 

European regional data 

https://esdac.jrc.ec.europa.eu/content/regional-data 

European land observation  

https://land.copernicus.eu 
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