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Abstract 11 

The microbial community composition in three soil fractions (bulk soil, rhizosphere and rhizoplane) of the 12 

root-soil system of a thistle, Cirsium arvense, and of a tufted hair grass, Deschampsia caespitosa, was 13 

investigated. The two spontaneous wild plant species were predominant in two Italian lands contaminated since 14 

centuries by arsenic and at present show high levels of arsenic (from 215 to 12.500 mg kg−1). In order to better 15 

understand how the rhizobacterial ecosystem responds to a long-term arsenic contamination in term of 16 

composition and functioning, culture-independent techniques (DAPI counts, fluorescence in situ hybridization 17 

(FISH) and denaturing gradient gel electrophoresis (DGGE) analysis) along with cultivation-based methods 18 

were applied. 19 

Microbial community structure was qualitatively similar in the two root-soil systems, but some quantitative 20 

differences were observed. Bacteria of the α-, β-, and γ-subclasses of the Proteobacteria were dominant in all 21 

fractions, while the subdominant groups (Cytophagaceae, gram-positive spore-forming, and filamentous 22 

bacteria) were significantly more abundant in the root-soil system of D. caespitosa. As regards to arsenic 23 

resistant strains, Firmicutes, Actinobacteria, Enterobacteria and γ-Proteobacteria were isolated from soil 24 

system of both plants. Our results suggest that the response to a high level of arsenic contamination governed 25 

the rhizosphere microbial community structure together with the soil structure and the plant host type effects. 26 

Data from this study can provide better understanding of complex bacterial communities in metal-polluted soils, 27 

as well as useful information of indigenous bacterial strains with potential application to soil remediation.  28 

 29 
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 33 

Introduction 34 

 35 

The occurrence and accumulation of arsenic (As) in the environment, consequent to natural processes and 36 

anthropogenic activities, constitutes a diffuse environmental hazard all over the world. Arsenic has been 37 

classified in 2001 by the World Health Organization as one of the main problems of public health, due to its 38 

characteristics of toxicity and carcinogenicity (WHO 2001). 39 
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In the environment, As is present mainly as inorganic forms [arsenate, As(V) and arsenite, As(III)]. As(V) is 40 

found primarily in aerobic conditions mainly bounded to minerals in the solid phase and thus is less available 41 

by plants. On the contrary, As(III) is most common in the aqueous phase in soils and can be taken up by plants 42 

under most environmental conditions. 43 

Plants grown in arsenic-contaminated soils harbour in their rhizospheres unique As-resistant microflora that, 44 

through oxidation-reduction and methylation reactions, regulates the immobilization and solubilisation of As in 45 

soils (Páez-Espino et al. 2009). Bacteria strongly influence As environmental cycling through changes in pH, 46 

redox potential, solubilization of nutrients and minerals, and production of plant growth-promoting (PGP) 47 

compounds, thus alleviating metal toxicity or enhancing metal uptake by plants (Kamaludeen and Ramasamy 48 

2008). 49 

In the recent years, most published works on As effects on soil microbiology focused on impact of the 50 

microbial metabolisms on the As cycling in soils and plant rhizopshere (Pepi et al. 2007, Corsini et al. 2010, 51 

Cavalca et al. 2013) and on screening and isolation of PGP bacteria from rhizopshere of plants grown in As 52 

contaminated soils (Cavalca et al. 2010, Wevar Oller et al. 2013, Das et al. 2014). At present, the response in 53 

term of composition and functioning of the rhizobacterial communities to As contamination is a less active 54 

field of research in soil microbiology (Xiong et al. 2010). As one step towards a better understanding the 55 

effects of As long-term contamination on rhizobacterial communities, we examined the root-soil system of two 56 

spontaneous plants, a thistle, Cirsium arvense (L.) Scopoli and a tufted hair grass, Deschampsia caespitosa (L.) 57 

Beauv. These grasses were the predominant plant species in the two Italian sites considered in this study and 58 

contaminated since centuries by As. C. arvense fulfil the criteria of phytoremediation crop (Dhillon and Dhillon 59 

2009): is a sub-cosmopolite, sinanthropus, perennial species that usually grows on river and channel banks, in 60 

uncultivated grassland, in landfills and it can become a weed in cultivated fields. D. caespitosa is a metal-61 

tolerant graminaceous plant (Cox and Hutchinson, 1980) widely distributed in grasslands and woods over the 62 

temperate regions of the world. In the present work, dominant bacterial populations in bulk and rhizospheric 63 

soils and in rhizoplane were analysed by culture-dependent and culture-independent techniques.  64 

 65 

Materials and methods 66 

 67 

Sampling site and plant collection 68 

 69 
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The research was carried out on rhizospheric soil-systems of two spontaneous plant species collected in 70 

springtime from two different sites: Scarlino site (Tuscany, Italy), an intensive agricultural soil used for barley 71 

cropping at the time of sampling (May 2009); and Pestarena site (Piedmont, Italy) a forest soil with natural 72 

plant succession at the time of sampling (May 2010). Soils characteristics are reported in Table 1 (Cozzolino et 73 

al. 2010; Marabottini et al., 2013). As concentration at the two sites was above the law limit of 50 mg kg-1 74 

(DGL 152, 03.04.2006, n. 152, S.O. n. 96 Gazzetta Ufficiale 14 aprile 2006, n. 88) and the bioavailable As 75 

fractions represented 11.3 and 0.8% of total As at Scarlino and Pestarena sites, respectively. The causes of such 76 

a pollution are multiple: natural presence of high concentrations of the metalloid in rock substrates mixed to 77 

agricultural soil during centuries at Scarlino, and mining activity of iron and gold extraction being both 78 

elements associated to arsenopyrite at Pestarena.  79 

C. arvense was the dominant spontaneous species at Scarlino site, while D. caespitosa was dominant at 80 

Pestarena site. Only those plants that were surrounded by plants of the same species have been sampled. Thus, 81 

soil was highly impacted by the roots of the respective plant species. Nine individual plants of each species, 82 

chosen randomly at locations across the polluted areas, were collected using shovel and hand trowels. The 83 

plants have been excavated in points approximately 100 m apart. The uppermost 20 cm of the plant root system 84 

with undisturbed soil around the roots were manually removed, placed into plastic bags to avoid moisture loss, 85 

and transported in ice box to the laboratory on the same day. Recovery of soil fractions from roots was 86 

performed the following day. 87 

 88 

Separation of the rhizospheric soil fractions 89 

 90 

From the root system of C. arvense and D. caespitosa three fractions were separated: bulk and rhizospheric 91 

soils and rhizoplane. Bulk soil was obtained by carefully hand shaking the roots to remove not adhering soil. 92 

The bulk soils collected from 9 plants were pooled together, homogeneously mixed and then sieved (0.2 mm 93 

mesh width). Rhizospheric soil, defined as the root loosely bound soil, was removed by washing the root 94 

surface. Roots, separated from the bulk soil fraction, were grouped in three sets of about 10 g (ww), then 95 

washed (1/10, w/v) in 90 ml of tetrasodium pyrophosphate (PP) (Sigma-Aldrich Co., St. Louis, USA) 0.2 % 96 

(w/v), pH 7.0, and stirred (180 rev min-1) for 1 h at 4°C. After removal of the roots, the PP suspensions were 97 

centrifuged (10 000 g, 10 min, 4°C), and the resulting pellets were considered as the rhizosphere fraction. The 98 

PP-washed roots were then suspended in 45 ml of phosphate-buffered saline (PBS, 3 mmol l-1 NaH2PO4, 7 99 
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mmol l-1 NaHPO4, 130 mmol l-1 NaCl, pH 7.2), and sonicated with Ultrasonic Processor UP100H (100W, 100 

30kHz) (Hielscher Ultrasonics GmbH, Teltow, Germany) for 30 s at 50% speed for three times. The remaining 101 

roots were then removed and suspensions were centrifuged (10 000 g, 10 min, 4°C), thus yielding pellets which 102 

were considered the rhizoplane fraction. Dry weights of the different fractions were calculated based on the 103 

moisture content (at 105 °C until constant weight). 104 

 105 

Microscopic analysis 106 

 107 

The characterisation of the bacterial community of bulk and rhizospheric soils and of rhizoplane was performed 108 

by Fluorescence in situ hybridization (FISH) analysis (Bertaux et al. 2007) using 16S or 23S rRNA-targeted 109 

oligonucleotide probes, labelled with fluorochrome Cy3 (red signal) to the 5’extremity. Probe details and 110 

references are given in Table 2. For total counts of active eubacteria a mix of three EUB probes in equimolar 111 

mixture was used to detect most members of the domain Bacteria, including Planctomycetales and 112 

Verrucomicrobiales; NONEUB338 was used to determine the nonspecific binding. Aliquots of the three soil-113 

system fractions were separately fixed: six replicates (about 0.2 g wet weight) of each fraction were added to 2 114 

ml of 3% (w/v) particle free paraformaldehyde in PBS, mixed up completely, and then stored at 4°C for 3 h in 115 

horizontal position. The fixed samples were washed twice with PBS, and stored in PBS/ethanol (1/1, w/w) at 116 

−20°C until further processing. In order to detect more accurately Gram positive-cells, six replicates from each 117 

sample were fixed directly in 2 ml of 50% (v/v) ethanol-PBS and stored at -20°C. Defrosted samples were 118 

washed twice with PBS; each pellet was then added to 2 ml of Na2EDTA 5 mmol l-1 and 7 mg of 119 

polyvinylpolypyrrolidone (Sigma), and shaked at 300 rev min-1 for 1 h. After settlement for 5 min to remove 120 

large particles, 1 ml of supernatant was transferred on the top of 1 ml of Nycodenz (density 1.3 g ml-1, Gentaur, 121 

SanJose, CA, USA). The Nycodenz-cell suspension gradient was centrifuged at 16 400 g for 30 min at 18°C, 122 

and the upper 1800 µl of the gradient were collected for the analysis. Two replicate aliquots of each cell 123 

suspension were opportunely diluted with PBS, and bacteria were collected by filtration onto 0.2 μm pore-size 124 

black polycarbonate filters (diameter, 25 mm; Millipore) mounted in a glass holder (3 cm2 filtration area; 125 

Millipore) applying a vacuum of 30 kPa. The filters were rinsed with 3 ml of filter PBS, air dried, dehydrated 126 

by dipping them in 50, 80 and 96% aqueous ethanol subsequently, air dried, and stored in dark at room 127 

temperature until further processing. For the in situ hybridization 4 small sections of filters were cut out of the 128 

whole polycarbonate filters. Each filter section was aligned on silicon coated slides, covered with 96 µl of 129 
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hybridization buffer (900 mmol l-1 NaCl, 20 mmol l-1 Tris-HCl pH 8.0, 0.01% SDS, set to different formamide 130 

concentration according to different probes, see Table 2) and 4 ml of the labelled probe (50 ng µl-1) (MWG-131 

Biotech, Ebersberg, Germany). Each slide was placed in a 50ml plastic tube, which was humidified with the 132 

surplus of hybridization buffer, as a moisture chamber. Hybridization was performed at 46°C for 5 h. After 133 

hybridization each filters was transferred into 2ml of warmed washing buffer (20 mmol l-1 Tris-HCl pH 8.0, 5 134 

mmol l-1 EDTA, 0.01 % SDS, pH 8.0, with different NaCl concentration to achieve appropriate washing 135 

stringency, see Table 2) for 10 min at 48 °C and was then washed into 2 ml refrigerated Milli-Q water for few 136 

seconds. Finally, filters were dried at 65°C for 2 min, and stored at -20°C until fluorescence microscopy 137 

counting was performed. The filters were mounted on a microscope slide with anti-fading oil (Citifluor Ltd, 138 

London, United Kingdom) to prevent a fast bleaching of probe signals, and examined at epifluorescence 139 

microscope Axioskope (Zeiss, Oberkochen, Germany) equipped with a 50-W type HBO high-pressure mercury 140 

lamp (Osram, Munich, Germany) and the Zeiss 15 filter set. An eyepiece with a calibrated reticule was used for 141 

bacterial counting. At least 30 randomly selected microscopic fields with 10 x 10 square units of the reticule, 142 

with objectives 100× (Plan-Neofluar, Zeiss, Oberkochen, Germany) were inspected for each filter. Three 143 

replicates were used, and at least 300 cells were counted for each sample. When the probes have a very low cell 144 

densities, a total of 60 microscopic fields were inspected, which corresponded to 0.5% of the sample filter. 145 

Total microbial counts in the three fractions were also estimated by DAPI (4,6-diamidine-2-phenylindole) 146 

staining (Kepner and Pratt, 1994), starting from surnatants after Nycodenz gradient centrifugation as above 147 

described. Two replicate aliquots of cell suspensions were opportunely diluted with PBS, mixed with the stain 148 

at a final concentration of 5 µg ml-1 for 15 min at room temperature in the dark. Bacteria were collected by 149 

filtration through a 0.2 μm pore-size black polycarbonate filter (diameter 25 mm; Millipore). The filters, air 150 

dried, were mounted in citifluor on a microscope slide and counts were determined with the fluorescence 151 

microscope (Zeiss 01 filter set). 152 

 153 

Denaturing Gradient Gel Electrophoresis (DGGE) analysis 154 

 155 

Total DNA was extracted from the bulk and rhizospheric soils in duplicate samples by using Power Soil DNA 156 

extraction kit (MO BIO Laboratories, Carlsbad, CA, USA) and subjected to DGGE analysis. Rhizoplane 157 

fraction was not analysed due to technical constraints in the DNA recovery. Primer pair V3-GC clamped 158 

forward and V3 reverse (Muyzer et al. 1993) was used for PCR amplification of hyper-variable V3 regions of 159 
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bacterial 16S rRNA gene. PCR reactions were performed in a final volume of 50 μl containing the following: 160 

10 ng of DNA, 1.5 U of Taq polymerase, 0.3 μmol l-1 of each primer, 0.2 mmol l-1 of dNTPs, 1.75 mmol l-1 161 

MgCl2, and 1X PCR buffer. The samples were first denatured for 3 min at 94°C and then subjected to 19 cycles 162 

consisting of 1 min 20 s at 94°C, 1 min 30 s at 65°C, and 1 min 10 s at 72°C; the annealing temperature was 163 

reduced by 1°C every second cycle until touchdown at 55°C, at which temperature 7 additional cycles were 164 

carried out. The last step included an extension of 5 min at 72°C. V3-GC PCR amplicons were then loaded 165 

onto polyacrylamide gels (8%) in a D-Code Universal Mutation Detection System apparatus (Bio-Rad, Hemel 166 

Hempsted, UK). The linear denaturing gradient of urea and formamide ranged from 40% (top) to 60% (bottom) 167 

where 100% denaturant gels contained 7 M urea and 40% formamide. Electrophoresis was performed on 168 

samples (10 μl) at a constant voltage of 70 V for 16 h in Tris-acetate-EDTA (TAE) 1x (4.84 g l-1 of Tris base, 169 

1.14 ml l-1 of glacial acetic acid, 2 ml l-1 of 0.5 mol l-1 EDTA solution of pH 8.0) running buffer at 60°C. After 170 

completion of electrophoresis, gels were stained in SYBR Green 1 solution according to manufacturer’s 171 

instructions (Molecular probes, Eugene, Oregon USA) and documented with the GelDoc System (Bio-Rad). 172 

DGGE bands subjected to sequence analysis were excised with a sterile scalpel, suspended in sterile Milli-Q 173 

water, and used as template for V3 amplification by primers V3 forward without GC clamp and V3 reverse. All 174 

reagents were from Invitrogen (Foster City, CA, USA). 175 

 176 

Culturable bacteria counts 177 

 178 

Total, As(V)- and As(III)-tolerant aerobic heterotrophic bacteria were determined for bulk and rhizospheric 179 

soils. Three replicates of bulk (3 g each) and rhizospheric (0.2 g each) soils were suspended (1/10; w/v) in 0.2% 180 

(w/v) PP solution and shaken at 180 rev min-1 for 1 h. Then, bacterial suspensions were serially 10-fold diluted 181 

in saline solution (0.9% NaCl). Total heterotrophic bacteria were determined by plating 1 ml aliquots of the 182 

various dilutions, onto double sets of pour plates containing R2A medium (BD Difco, Franklin Lakes, New 183 

Jersey, USA). Heterotrophic As-tolerant bacteria were determined by plating 1 ml of the various dilutions onto 184 

R2A medium supplemented with 15 mmol l-1 of As(V), or 3 mmol l-1 of As(III). As(V) and As(III) solutions 185 

were prepared from Na2HAsO4·7H2O and NaAsO2 salts (Sigma) respectively. Cycloheximide (0.1 g l-1) was 186 

added to the media to inhibit fungal growth. Colony forming units (c.f.u.) were counted after incubation at 187 

28 °C for 10 days. The As resistance of the heterotrophs was expressed as percentage growth on R2A without 188 

the addition of As. 189 
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 190 

Isolation and characterization of As-resistant bacteria 191 

 192 

Colonies with different morphologies were isolated from plates of As(V)-tolerant bacteria of the bulk soil 193 

fractions of C. arvense and of D. caespitosa. Single colonies were streaked to purity on R2A medium amended 194 

with 15 mmol l-1 As(V). 195 

Resistance levels to As(V) (Na2HAsO4·7H2O, from 0 to 100 mmol l-1) or As(III) (NaAsO2, from 0 to 50 mmol 196 

l-1) were determined by growing the isolates in 20 ml liquid Tris Mineral Medium (TMM) with low phosphate 197 

content (Mergeay et al. 1985), supplemented with 0.6% (w/v) gluconate (TMMG) and with increasing 198 

concentrations of either As(V) or As(III).  Growth was checked after 72 h of incubation at 30°C kept shaken at 199 

180 rev min-1. Prior to use, the strains were grown to mid-exponential phase in liquid TMMG, at 30°C and kept 200 

shaken at 180 rev min-1. 201 

The ability to oxidize As(III) or to reduce As(V) was tested by inoculating As resistant strains in triplicate vials 202 

containing 20 ml of TMMG separately supplemented with 3 mmol l-1 As(V) or 1 mmol l-1 As(III) each. Three 203 

vials without As were inoculated in order to point out possible As toxic effects. Three vials were also prepared 204 

without inoculum as controls. At each sampling time, 2 ml of cell suspensions were removed. Cell growth, 205 

As(V) and As(III) concentrations were determined spectrophotometrically at OD620nm and OD865nm (Dhar et al. 206 

2004), respectively. Arsenic standards were prepared for concentrations ranging from 0–1 mmol l-1 for both 207 

As(V) and As(III) from Na2HAsO4·7H2O and NaAsO2 solutions respectively. 208 

Strains were identified by sequence analysis of PCR-amplified 16S rRNA gene, after total DNA extraction 209 

conducted by Ultraclean Microbial DNA extraction kit (MO BIO Laboratories). Strains were maintained in 210 

glycerol stocks at -70°C. 211 

 212 

Arsenic resistance gene amplification 213 

 214 

DNA extracted from pure strains were used as template for PCR amplification of As resistance genes for As(V) 215 

reductase (ArsC), As(III) oxidase (AioA) and for different As(III) efflux pumps (ArsB, ACR3(1) and ACR3(2)). 216 

Primers P52f and P323r were used to amplify ArsC according to Bachate et al. (2009). Primers aoxBM1-2F 217 

and aoxBM3-2R were used to amplify AioA according to Quéméneur et al. (2008). Primers darsB1F/darsB1R, 218 
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dacr5F/dacr4R and dacr1F/dacr4R were used to amplify ArsB, ACR3(1), and ACR3(2) according to Achour et 219 

al. (2007). 220 

 221 

Sequence analysis 222 

 223 

16S rRNA, As resistance genes and DGGE DNA bands were sequenced using the Taq Dye-Deoxy Terminator 224 

Cycle Sequencing kit (Applied Biosystems, Foster City, CA, USA) with the respective primers. The forward- 225 

and the reverse samples were run on a 310A sequence analyzer (Applied Biosystems, Grand Island, NY). 226 

Sequences were compared with the entire GenBank/EMBL nucleotide and amino acid databases using the 227 

BlastN and BlastX query programs (http://www.ebi.ac.uk/Tools/blastall/index.html). Nucleotide sequences 228 

obtained in the present study are present in GenBank under the accession numbers:  229 

 230 

 231 

Statistics 232 

 233 

Data of bacterial counts, after their logarithmic transformation, are expressed as mean ± SE, unless otherwise 234 

indicated. To compare mean values between the two different plant species in the three soil-system fractions, a 235 

one-way ANOVA was used. Differences between samples were assessed by Duncan test. Statistical analysis 236 

were performed using STATISTICA software Package for Windows (verion 10.0, StatSoft Inc., Tulsa, OK, 237 

USA). 238 

 239 

 240 

Results 241 

 242 

Bacterial community in the root-soil system 243 

 244 

DAPI staining and FISH analysis (Table 3) evidenced some similar characteristics among rhizobacterial 245 

communities of the tested plant species. Particularly, in all the three fractions of root-soil system, total bacterial 246 

counts determined by DAPI stain were about 1 order of magnitude higher than those obtained by FISH 247 

technique, as FISH shows only metabolically active microorganisms. Total bacterial counts both with DAPI or 248 
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FISH technique, were about 1 order of magnitude higher in the rhizospheric soil than in the bulk soil, 249 

confirming the rhizopshere as an environment of high microbial activity. In bulk fraction of both plant species, 250 

total bacterial counts determined with the combined EUB probes were about 1 order of magnitude higher 251 

compared to those of culturable heterotrophic bacteria (Table 4). Similar results were obtained in the 252 

rhizosphere of C. arvense, on the contrary this difference was less evident in the rhizosphere of D. caespitosa, 253 

whose bacterial counts determined by FISH were similar to the culturable ones (8.65 vs 8.45 log10 c.f.u. g dw-1 254 

respectively). 255 

FISH analysis evidenced a qualitative profile community, at the level of main phylogenetic studied groups, 256 

similar in all the three fractions of both plant species; in particular, Gram-negatives α-, β-, and γ-Proteobacteria 257 

were dominant, while the counts of Cytophaga-Flavobacterium cluster, Gram-positive filamentous and spore-258 

forming bacteria, were 1-2 orders of magnitude less abundant. These sub-dominant groups accounted 259 

individually for 0.1-2 % of total cells detected by the domain-specific EUB338 probe mix. It is to be pointed 260 

out that the lowest values are to be considered approximate because around the detection limit of the method.  261 

Despite the similarity in general microbial picture, significant differences in the composition of the bacterial 262 

community of the two studied sites were evidenced. Regarding the bulk fraction, the number of bacteria 263 

estimated by EUB338 probe mix, was significant higher in D. caespitosa than in C. arvense samples. Similar 264 

results were observed also for α-Proteobacteria, γ-Proteobacteria, Cytophagaceae and Gram-positive LGC 265 

bacteria. The β-Proteobacteria group was more represented in the Scarlino bulk soil obtained from C. arvense. 266 

Regarding the rhizospheric soil, D. caespitosa samples presented significantly higher counts of Cytophagaceae 267 

and Gram-positive LGC and HGC bacteria, compared to C. arvense. Even more marked differences were 268 

evidenced by comparison of the rhizoplane fractions: total counts, determined with EUB338 probe mix, as well 269 

as the counts of the different phylogenetic groups were significant higher in D. caespitosa than in C. arvense. 270 

The DGGE analysis evidenced different band patterns of the bacterial communities in the bulk soils, indicating 271 

that the reservoir of microbial biodiversity for the two plants was constituted by different bacterial species. 272 

Such differences were also present in the DGGE patterns (Fig. 1) of the bulk soil-associated vs. the rizosphere-273 

associated bacterial communities, evidencing that the plant was the driving force in shaping the structure of the 274 

rhizobacterial populations. Band richness was higher in rhizosphere soil (30 bands) than in bulk soil (26 bands) 275 

of C. arvense, whereas the opposite was evidenced in D. caespitosa (33 and 16 bands, respectively, for bulk 276 

and rhizospheric soils). The composition of bacterial community in the rhizosphere of C. arvense and of D. 277 

caespitosa was assessed by sequence analysis of 16S-V3 DNA bands separated by DGGE (Table 5). 278 



 11 

Bacteroidetes (Flavobacterium genus) were present in the bulk soils of both plants, whereas different 279 

Pseudomonas species were retrieved in the rhizopshere of C. arvense and Cupriavidus necators was dominant 280 

in the rhizosphere of D. caespitosa. Although other bands were visible, their sequence analysis did not resulted 281 

in any significant identification. 282 

 283 

Culturable total, As(V)- and As(III)-tolerant bacteria 284 

 285 

Culturable aerobic bacteria counts in bulk and rhizospheric soils of C. arvense and D. caespitosa are shown in 286 

Table 4. Total heterotrophic, As(V)- and As(III)-tolerant bacteria were generally 1 order of magnitude higher in 287 

rhizosphere of both the plants than in bulk soil in accordance with DAPI and FISH analysis, confirming a 288 

rhizosphere effect. On the contrary, bacterial counts of the bulk and of the rhizospheric soils were not 289 

statistically different between the two plants. A large fraction of the culturable bacteria were tolerant to As(V) 290 

in C. arvense and D. caespitosa respectively: 42% vs 66% in bulk soils, and 86% vs 51% in rhizosphere. Lower 291 

percentages of bacteria resistant to As(III), considered more toxic than As(V), were observed (10% vs 7% in 292 

bulk soils and 7% vs 4% in rhizosphere of C. arvense and D. caespitosa, respectively).  293 

 294 

Isolation and characterization of aerobic As-resistant bacteria 295 

 296 

Arsenic resistant bacteria were isolated from both sites (Table 6). Firmicutes species were isolated from the two 297 

soils, whereas Pseudomonas and Buttiauxella strains were peculiar of C. arvense and D. caespitosa 298 

respectively. All the isolates had moderate to high resistance levels to As. Particularly, isolates SI-1, SI-2, SI-3, 299 

PI-1 and PI-2 showed high As resistance (>300 mmol l-1 As(V) and >15 mmol l-1 As(III)),whereas the other 300 

isolates showed moderate resistance to As(V) (from 120 to 240 mmol l-1) and to As(III) (from 4 to 15 mmol l-1). 301 

All the isolates were able to reduce As(V) to As(III) (Table 6). Reduction of As(V) to As(III) was achieved via 302 

a detoxification mechanism, as isolates were not able to grow in anaerobic conditions in the presence of As(V) 303 

as final electron acceptor (data not shown). None of the isolates was able to oxidize As(III) to As(V). 304 

Accordingly, aioA gene for As(III) oxidase was absent in the strains, whereas As(V) resistance phenotype and 305 

reduction capability were confirmed by the positive amplification of arsC, arsB or acr3(1) genes. Only strain 306 

SII-1 lacked this correspondence, possibly due to primer sequence mismatch with strain sequences. None of the 307 

strain carried acr3(2) type As(III) efflux pump. 308 
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ArsB and acr3(1) genes of distinct types of As(III) efflux pump were simultaneously present in isolates SI-1 309 

and SI-3, while in the other isolates only arsB gene was amplified. The phylogenetic analysis of deduced amino 310 

acid sequences (Fig. 2) clustered ACR3(1) of SI-1 and SI-3 with those of members of Pseudomonas genus: the 311 

fragments were highly homologous (98% identity) to an As(III) efflux pump found in Pseudomonas sp. 312 

(CAY64635). The phylogenetic analysis of deduced amino acid sequences of ArsB clearly clustered the 313 

isolates in two distinct groups: strains SI-2 and PI-1 grouped with members of Firmicutes, whereas strains SI-314 

1,SII-2 and PI-3 grouped with Proteobacteria members of Enterobacteraceae family and Pseudomonas genus. 315 

Particularly, SI-2 and PI-1 possessed ArsB fragments from moderate to highly homologous to As(III) efflux 316 

pumps of Bacillus spp. (81-92% identical positions to CAK55207 and EWG11173 respectively). Isolates SI-1, 317 

SI-3 and SII-2 carried an ArsB-type highly homologous to the As(III) efflux pump retrieved in Pseudomonas 318 

vranovensis (WP_028945840), while in isolate PI-3 it was present an ArsB 92% homologous to As(III) efflux 319 

pump of Buttiauxella aegrestis ATTC 33320 (KFC81390). 320 

 321 

 322 

Discussion 323 

 324 

Microbial communities associated to the root-soil system of C. arvense and D. caespitosa, growing in soils 325 

with long history of high levels of As content, were investigated with the aim to better understand how a 326 

rhizobacterial community ecosystem responds to a long term As contamination. Culture independent 327 

techniques were used to analyze the structure of the total and of the metabolically active bacterial community 328 

present in the root-soil system of the plants, and cultivation-based methods were applied to characterize As-329 

resistant bacteria. 330 

Comparative analysis of the values of total bacterial counts, obtained with DAPI and FISH techniques and 331 

cultivation-based methods, evidenced that most root-system associated bacteria are viable but non culturable, 332 

and that the rhizosphere harbours the highest number of microorganisms compared to bulk soil and rhizoplane, 333 

irrespective of As-contamination level (142.3 mg kg-1 vs 31.1 mg kg-1 of bioavailable As in Pestarena and 334 

Scarlino sites respectively). The percentage of metabolically active microbial cells (total bacterial counts with 335 

combined EUB probes) varied depending on the plant species and on the considered soil fraction, ranging from 336 

3 to 20% of the DAPI counts. In particular, higher percentages were observed in Pestarena site compared to 337 

Scarlino site both in bulk (10 vs 3% respectively) and in rhizoplane (20 vs 9% respectively) fractions. Thereby, 338 
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it seems that the bioavailable As content didn’t adversely affect the size of metabolically active microbial 339 

community. 340 

Total and As-tolerant bacterial counts were similar in the bulk soils of Scarlino and Pestarena, and in the 341 

rhizosphere of the two plants indicating that bioavailable As content and plant species did not exerted a 342 

significant effect within the two soil. Nevertheless, the higher bacterial counts retrieved in the rhizospheres than 343 

in bulk soils envisaged a rhizosphere positive effect for both plants.  344 

FISH analysis showed a similar general picture at the level of main phylogenetic microbial groups in both soil-345 

plant system community: α-, β-, and γ-Proteobacteria were the dominant groups, whereas Cytophagaceae, 346 

Actinomycetales and spore-forming bacteria were 1-2 order of magnitude lower. These results were in 347 

agreements with literature data, obtained by culture-independent methods, regarding the composition of the 348 

microbial rizospheric community from different plant species (Stein et al. 2005; Kielak et al. 2008). However, 349 

total percentages of recovery, by group-specific probes all together compared to mix EUB probes were very 350 

different, ranging from 33% to 98%. In particular, they resulted higher in bulk soil of Scarlino site (50 %) 351 

compared to Pestarena site (32%) and in rhizoplane fraction of C. arvense (96%) than D. caespitosa (53%). It 352 

could be hypothesized that the selective pressure by As pollution, together with the plant-driven microbial 353 

selection, increased the growth of microbial populations belonging to not investigated phylogenic groups.  354 

Differences in the relative abundance of members of the phylum Proteobacteria were observed. In particular, 355 

the rhizoplane fraction of C. arvense and D. caespitosa contained higher percentage of α-Proteobacteria (13 – 356 

11 % respectively) compared to bulk soil (2 - 4 % respectively). Our data indicated that Gram-negative bacteria 357 

were not only relatively more numerous but also active. Soil Proteobacteria appeared to be tolerant towards As, 358 

while other groups of bacteria (Actinobacteria and Firmicutes) appeared to be more sensitive by As (Lorenz et 359 

al. 2006). Active Actinomycetes were more abundant in the rhizosphere of D. caespitosa that grows in the 360 

more polluted site, than that of C. arvense. These findings were in accordance with Gremion et al. (2003) 361 

which found Actinomycetes in the metabolically active bacteria present in heavy metals contaminated soils. 362 

DGGE analysis indicated intra and inter-samples related variations of bacterial community. Intra-samples 363 

variations between rhizosphere and bulk soil fractions could be explained by the effect exerted on soil physico-364 

chemical characteristics by the root system, providing evidence of the plant-driven microbial selection. This 365 

plant-driven selection, which preferentially stimulated microbial populations that were presumably well 366 

adapted to the associated rhizosphere, in turn resulted in decreased microbial diversity in this zone (Smalla et al. 367 

2001; Marschner et al. 2004). This may also indicate the effect of different root exudates which promote metal 368 
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bioavailability, thus exerting higher toxicity toward microorganisms in the rhizosphere (Gremion et al., 2004). 369 

The observed inter-sample variations confirmed that the type of plant metabolism exerted the major influence 370 

in shaping its associative bacterial community. 371 

The number of As(V) and As(III) tolerant culturable bacteria represented more than 50% of the heterotrophic 372 

cultivable population. In line with these findings, As(V)-resistant strains were isolated from both sites. They 373 

belonged to Firmicutes, Enterobacteria and γ-Proteobacteria, showing that As resistance was a common trait 374 

shared by different classes of soil Bacteria. Among these, isolate PI-3 was closely related to a species belonged 375 

to Buttiauxella genus, which has never been described in terms of As resistance. The strains varied in their As 376 

resistance pattern. The phylogenetic analysis of the As(III) efflux pumps clearly separated ACR3(1) and arsB 377 

in two different clusters, confirming that they are two distinct groups of efflux pumps. The isolates showing 378 

presence of two different genes for As(III) efflux pump also showed the highest As(V) reduction activity, 379 

suggesting that both genes coding for As(III) efflux pump could be functional in these isolates. The presence of 380 

more than one type of As(III) efflux pump in highly As resistant strains has been previously observed, 381 

suggesting that presence of more than one set of ars genes is common in the bacteria thriving in environments 382 

containing high As levels (Achour et al. 2007; Bachate et al. 2009; Cai et al. 2009). Ochrobactrum tritici 383 

SCII24 strain having two ars operon, one with arsB gene and other with ACR3 gene has been reported (Branco 384 

et al. 2008). This strain was resistant up to 200 mmol l-1 of As(V) and up to 50 mmol l-1 of As(III). Achour et al. 385 

(2007) reported a Pseudomonas sp. which has two genes coding for As(III) efflux pump, one arsB and other 386 

ACR3(2).  387 

The isolates were able to reduce As(V) to As(III) at different extent, whereas none of them was able to oxidise 388 

As(III) to As(V) nor presented aioA gene for As(III) oxidase. Reduction of As(V) to As(III) was achieved via a 389 

detoxification mechanism, as isolates did not appeared to gain energy from the reaction. Bacillus firums strain 390 

SI-2 showed highest As(V) resistance. In a similar study Pepi et al. (2007) isolated four Bacillus species which 391 

showed similar resistance level to AS(III) and As(V). The levels of As resistance were comparable with some 392 

of the highly As resistant bacterial strains, i.e. Corynebacterium glutamicum which shows resistance to 12 393 

mmol l-1 of As(III) and up to 400 mmol l-1 of As(V). This strain has been used to remove As from contaminated 394 

water (Mateos et al. 2006). Taking into account the resistance level of our isolates and the identification of 395 

functional biomarkers for As resistance, they can be considered for possible bioremediation strategies of As 396 

contaminated environments. Here they could cope up with high As level and could also be monitored by means 397 

of molecular probes. 398 
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Our results suggested that the response to a high level of As contamination governed the rhizosphere microbial 399 

community structure together with the soil structure and the plant host type effects. Data from this study can 400 

provide better understanding of complex bacterial communities in metal-polluted soils, as well as useful 401 

information of indigenous populations with potential application to soil remediation. 402 
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Figure legends 518 

Fig. 1 DGGE profiles of 16S rRNA gene fragments of the bacterial community in bulk and rhizosphere soil 519 

fractions of C. arvense (Scarlino site) and of D. caespitosa (Pestarena site) in duplicate samples. Excised bands 520 

are numbered according to sequence data present in table 5. 521 

 522 

Fig. 2 Phylogenetic relationships of deduced amino acid sequences of arsenite efflux pump genes ACR3(1) and 523 

ArsB retrieved from isolates from rhizopshere of C. arvense (Scarlino site) and D. caespitosa (Pestarena site) 524 

(in bold). The evolutionary history was inferred using the Neighbor-Joining method. 525 

 526 
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Table 1 Selected physical and chemical properties of the soils.  1 

Site Name Sampled plant 
species (L.) 

Texture pH Water 
Content 
(%) 

Total Arsenic 
(mg kg-1 of soil 
dw) 

Bioavailable 
Arsenic (mg kg-1 
of soil dw) 

Scarlino* Cirsium arvensae clay-loam 8.0 19.0 304 31.1 

Pestarena** Deschampsia 
caespitosa 

sandy-clay-
loam 

4.8 17.6 4358 142.3 

*, data from Cozzolino et al. (2010); **, data from Marabottini et al. (2013). 2 

 3 

Table 2 Probes used in FISH analysis performed on bulk, rhizosphere soils and on rhizoplane and target 4 

bacterial groups. 5 

Probes Sequence ( 5’-3’) References Target organisms FA 

(%) 

NaCl 

(mM) 

EUB338 GCTGCCTCCCGTAGGAGT Amann et al. 1995 Bacteria  30 102 

EUB338II GCAGCCACCCGTAGGTGT Daims et al. 1999 Planctomycetales 30 102 

EUB338III GCTGCCACCCGT AGGTGT Daimset al. 1999 Verrucomicrobiales 30 102 

NONEUB ACTCCTACGGGAGGCAGC Wallneret al. 1993 Negative control  30 102 

ALF968  GGTAAGGTTCTGCGCGTT Neef et al. 1999 D- Proteobacteria 20 215 

BET42a GCCTTCCCACTTCGT TT Manz et al. 1992 E- Proteobacteria 35 70 

GAM42a GCCTTCCCACATCGT TT Manz et al. 1992 J- Proteobacteria 35 70 

PSE227 AATCCGACCTAGGCTCATC Watt et al. 2006 Pseudomonas spp. 30 102 

CF319a TGGTCCGTGTCTCAGTAC Manz et al. 1996 Cytophaga-
Flavobacterium 
cluster of CFB 
phylum 

35 70 

HGC69a TATAGTTACCACCGCCGT Roller et al. 1994 Gram-positive 
bacteria with high 
DNA G+C  

25 149 

LGCb CGGAAGATTCCCTACTGC Meier et al. 1999 Gram-positive 
bacteria with low 
DNA G+C 

35 70 

Competitors were used for: BET42a (5’-GCCTTCCCACATCGTTT-3’), GAM42a (5’-6 
GCCTTCCCACTTCGTTT-3’) and HGC69a (5’-TATAGTTACGGCCGCCGT-3’) to improve in situ 7 
accessibility and specificity; FA, formamide in the hybridization buffer; NACl, concentration of NaCl in the 8 
washing solution 9 
 10 
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Table 3 Bacterial populations in the three fractions of the root-soil system from C. arvense grown in the site of 11 

Scarlino, and D. caespitosa grown in the site of Pestarena, by DAPI and FISH analysis. Results are expressed 12 

as Log of cell number (g dw-1) ± SE (n=6). Means within a probe of the same fractions with different 13 

superscripts differ significantly (Upper case letters p<0.01; lower case letters p<0.05). 14 

 Bulk Rhizosphere Rhizoplane 

 Scarlino Pestarena C.arvense D.caespitosa C.arvense D.caespitosa 

DAPI 9.14 ±0.17 8.99 ±0.07 9.93 ±0.13 9.90±0.02 7.30A±0.15 7.90B±0.07 

EUB338 7.65a±0.10 8.02b±0.12 8.94 ±0.18 8.65±0.09 6.29A±0.11 7.27B±0.05 
 3.2* 10.1* 8.6* 9,1* 8.8* 20.1* 

Bet42a 7.14a±0.10 6.80b±0.07 7.9 1±0.08 7.76±0.11 5.70A±0.09 6.46B±0.09 
 31.3** 5.7** 23.7** 14.3** 24.2** 16.9** 

Gam42a 6.86a±0.08 7.28b±0.16 8.05 ±0.15 7.92±0.08 6.03A±0.12 6.59B±0.07 
 16.2** 21.4** 32.7** 18.4** 55.7** 21.9** 

Pse227 6,96 ±0.08 7.28 ±0.16 8.13 ±0.17 7.84±0.10 5.95A±0.13 6.56B±0.07 
 20.8** 22.5** 39.7** 16.4** 49.9** 20.1** 

Alf968 5.89A±0.10 6.67B±0,09 7.67 ±0.09 7.37±0.10 5.36A±0.14 6.25B±0.11 
 1.8** 4.4** 13.7** 5.6** 13.3** 10.9** 

CF319a 4.62A±0.22 5.62B±0.09 5.96A±0.20 6.98B±0.15 3.99A±0.17 5.38B±0.09 
 0.1** 0.4** 0.3** 2.6** 0.6** 1.4** 

HGC69a 5.25 ±0.30 5.37 ±0.16 5.68a±0.40 6.78b±0.15 4.12A±0.20 5.41B±0.07 
 0.4** 0.3** 0.1** 1.8** 0.8** 1.4** 

LGCb 4.79A±0.21 5.53B±0.10 5.47A±0.13 6.53B±0.14 4.22A±0.21 5.40B±0.09 
 0.1** 0.3** 0.1** 0.8** 1.1** 0.8** 

       
* Percentage of EUB-positive cells related to DAPI count. ** Percentage group-specific cells related to EUB-15 
positive cell count. Probes used are listed in Table 2. 16 
 17 



Table 4 Culturable counts in bulk- and rhizospheric soil fractions of C. arvense grown in the site of Scarlino, 18 

and D. caespitosa grown in the site of Pestarena. Results are expressed as Log of cell number (g dw-1) ± SE 19 

(n=3). 20 

 21 

 Bulk Rhizosphere 

 Scarlino Pestarena C. arvense D. caespitosa 

Heterotrophic bacteriaa 6.90 ± 0.07 6.90 ± 0.17 8.03 ± 0.12 8.45 ± 0.27 

As(V)-Tolerantb 6.53 ± 0.06 6.66 ± 0.29 7.97 ± 0.13 8.08 ± 0.27 

As(III)-Tolerantc 5.92 ± 0.09 5.68 ± 0.25 6.89 ± 0.27 7.06 ± 0.13 

a, bacteria grown on R2A medium; b, bacteria grown on R2A supplemented with 15 mM arsenate; c, bacteria 22 
grown on R2A supplemented with 3 Mm As(III). 23 
 24 



Table 5 Sequence homology of DGGE bands from bulk and rhizospheric soil fractions of C. arvense and D. 25 

caespitosa. 26 

Plant Soil fraction Band 

number 

Identification Homology 

(%) 

C. arvense Bulk 1 Pseudoflavonifractor capillosus ATCC 29799(T) 97.2 

  4 Flavobacterium hercynium WB 4.2-33(T) 100 

 Rhizospheric 2 Pseudomonas mohnii Ipa-2(T) 99.6 

  3 Pseudomonas taetrolens 97.3 

  5 Pseudomonas fluorescens AJ971392 100 

  6 Uncultured Pseudomonas sp. AM232786 100 

  7 Pseudomonas rhodesiae CIP 104664(T) 97.5 

  8 Uncultured bacterium clone TF 88 98 

D. caespitosa Bulk 10 Flexibacteraceae bacterium JL007  98 

  11 Bacteroidetes bacterium ONB11  97 

  13 Pedobacter borealis G-1(T) 96 

 Rhizospheric 9 Sphingobacteriales bacterium TP524 96 

  12 Cupriavidus necator ATCC 43291(T) 100 

  14 Flavobacterium fluvii H7(T) 97.9 

  15 Flavobacterium pectinovorum DSM 6368(T) 97.7 



Table 6 C
haracterisation of bacterial isolates from

 C. arvense (S isolates) and D
. caespitosa (P isolates): A

s-resistance level and A
s-detoxification genes 

 Plant 
Isolates 

C
losest 16S rR

N
A

 G
enebank M

atch 
R

esistance level 
(m

M
) 

A
s(V

) a 
reduction 

(%
) 

A
s(III) b 

oxidation 
(%

) 

Presence of arsenic genes 

 
 

A
s(V

) 
A

s(III) 
 

 
arsC

 
acr3(1) 

acr3(2) 
arsB 

aioA 

C. arvense 

SI-1 
Pseudom

onas plecoglossicida (99%
 K

F285959) 
310 

16 
93 

0 
- 

+ 
- 

+ 
- 

SI-2 
Bacillus firm

us (100%
 FN

429099) 
>360 

16 
90 

0 
- 

- 
- 

+ 
- 

SI-3 
Pseudom

onas plecoglossicida (99%
 K

F285959) 
310 

16 
97 

0 
- 

+ 
- 

+ 
- 

SII-1 
Bacillus m

egaterium
 (100%

 K
J534462) 

150 
12.5 

90 
0 

- 
- 

- 
- 

- 

SII-2 
Pseudom

onas plecoglossicida (99%
 K

F285959) 
120 

12.5 
93 

0 
- 

- 
- 

+ 
- 

SII-3 
Bacillus idriensis (99%

 H
F585035) 

190 
7.5 

85 
0 

+ 
- 

- 
- 

- 

D. caespitosa 

PI-1 
Bacillus sim

plex (99%
 A

J628747) 
310 

15 
85 

0 
- 

- 
- 

+ 
- 

PI-2 
Bacillus sim

plex (99%
 A

J628747) 
310 

15 
80 

0 
- 

- 
- 

+ 
- 

PI-3 
Buttiauxella aegrestis (100%

 N
R

041968) 
240 

7 
70 

0 
- 

- 
- 

+ 
- 

PI-4 
Buttiauxella aegrestis (100%

 N
R

041968) 
240 

7 
70 

0 
- 

- 
- 

+ 
- 

PI-5 
Buttiauxella aegrestis (100%

 N
R

041968) 
240 

7 
90 

0 
- 

- 
- 

+ 
- 

a, A
s(V

) 3 m
M

 after 7 d incubation; b, A
s(III) 1 m

M
 after 7 d incubation 

 


