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di Milano, 20122 Milan, Italy

ARTICLE HISTORY

Compiled May 1, 2018

Abstract

In this paper, we propose a new bivariate geometric model, derived by linking two

univariate geometric distributions through a specific copula function, allowing for

positive and negative correlations. Some properties of this joint distribution are pre-

sented and discussed, with particular reference to attainable correlations, conditional

distributions, reliability concepts, and parameter estimation. A Monte Carlo simu-

lation study empirically evaluates and compares the performance of the proposed

estimators in terms of bias and standard error. Finally, in order to demonstrate its

usefulness, the model is applied to a real data set.
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1. INTRODUCTION

In recent years, the construction of bivariate (and multivariate) discrete distributions

has attracted much interest, since stochastic models for correlated count data find

application in many fields (Kocherlakota and Kocherlkota 1992; Johnson et al. 1997;

Sarabia and Gómez-Déniz 2011). For example, in marketing modeling the number of

purchases of different products is of special interest for predicting sales in the future or

examining the behavior of different types of buyers. In insurance risk applications, the
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numbers of claims in different customers’ classes are frequently statistically dependent.

In health economics, different components of health care demand, such as the number

of consultations with a doctor or specialist and the number of consultations with

non-doctor health professionals can be jointly modeled.

Many authors have discussed the problem of constructing a bivariate version of

a given univariate distribution, although there is no universally accepted criterion

for producing a unique distribution which can unequivocally be called the bivariate

version of a univariate distribution. Here we focus on the geometric distribution, which

along with the Poisson is perhaps the most popular distribution used for modeling

counts, especially in the reliability context. The probability mass function (p.m.f.) of

a geometric distribution with “success” parameter θ ∈ (0, 1) is px(x) = θ(1 − θ)x,

for x = 0, 1, . . . ; its cumulative distribution function (c.d.f.) is Fx(x) = P (X ≤ x) =

1− (1− θ)x+1; its survival function is F̄x(x) = P (X > x) = 1−F (x) = (1− θ)x+1; its

failure rate function, defined as rx(x) = px(x)/P (X ≥ x), is constant and equal to θ.

There have been several proposals for constructing a bivariate version of the ge-

ometric distribution. Among them, Paulson and Uppuluri (1972) introduced a five-

parameter geometric bivariate distribution whose p.m.f. can be computed only through

recursive formulas. This distribution allows also for negative correlations and comprises

the product of two independent geometrics as a special case. Phatak and Sreehari

(1981) introduced a two-parameter bivariate geometric distribution with an easy ex-

pression of its p.m.f., allowing for positive correlations only; it was also studied later

by Krishna and Pundir (2009). Roy (1993) extended the univariate concept of failure

rate for non-negative integer valued discrete variables in two dimensions, by introduc-

ing a new definition of bivariate failure rates, and proposed a three-parameter bivariate

geometric distribution enjoying an analogous property to its univariate version, i.e.,

locally constant bivariate failure rates. In Basu and Dhar (1995), a bivariate geometric

distribution is proposed by a discrete analog of the continuous bivariate distribution

of Marshall and Olkin (1967); in Dhar (1998) another bivariate geometric model,

which is a discrete analog to Freund’s model (Freund 1961), is introduced. In Omey

and Minkova (2016), a two-parameter bivariate geometric distribution with negative

correlation is studied; it assigns zero probability to the event that the two margins

assume a same integer value. Gómez-Déniz et al. (2017) used an Archimedean copula

to link generalized geometric margins together allowing for both positive and negative

correlations. Ng et al. (2010) introduced a class of bivariate negative binomial distri-
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butions based upon an extension of the method of trivariate reduction, which have

different marginal distributions.

In Barbiero (2017a), a bivariate distribution with discrete Weibull components and

Farlie-Gumbel-Morgenstern (FGM) copula was proposed. A particularization of this

model (Barbiero 2017b), obtained by setting the marginal shape parameters equal to 1,

leads to a new bivariate geometric distribution. This model indeed belongs to a wider

class of bivariate discrete distributions (the so called extended FGM class) introduced

in Piperigou (2009); here we provide more specific results than those reported there,

with a special focus on dependence and reliability concepts and estimation issues.

The rest of the paper is structured as follows. In Section 2, the proposed distribution

is formally introduced and its properties are presented and discussed. Section 3 is

devoted to parameter estimation; Section 4 presents a simulation study assessing the

performance of the proposed point estimators; whereas in Section 5 an application to

real data is provided. In Section 6 conclusive remarks and research perspectives are

outlined.

2. THE PROPOSED BIVARIATE GEOMETRIC DISTRIBUTION

In this section, we introduce the new bivariate distribution, by specifying its c.d.f. and

p.m.f., and then derive some mathematical properties.

2.1. Definition

A bivariate geometric distribution can be obtained by linking together two geometric

distributions with parameters θ1 and θ2 via the Farlie-Gumbel-Morgenstern (FGM)

copula (Farlie 1960) with parameter α ∈ [−1,+1]. The bivariate FGM copula is given

by C(u, v) = uv [1 + α(1− u)(1− v)], u, v ∈ [0, 1], and can be seen as a “perturbation”

of the independence copula Π(u, v) = uv, via the parameter α; if α is greater than

zero, the FGM copula provides positive dependence; if α is smaller than zero, it returns

negative dependence; when α is zero, it reduces to the independence copula. FGM

copula is able to model only a slight level of dependence; in other terms, it is not

able to cover the whole dependence spectrum, from perfect positive dependence (i.e.,

comonotonicity) to perfect negative dependence (i.e., countermonotonicity), as done,

for example, by the Gauss copula. In particular, we have that ρuv = cor(U, V ) = α/3,

implying that the linear correlation between the two uniform random components of

3



the FGM copula, given the bounds for α, cannot exceed in absolute value 1/3. More

importantly, it has been shown that Pearson’s correlation coefficient between two

continuous marginal distributions with FGM copula can never exceed 1/3 (Schucany

et al. 1978). This feature has limited its use; however, its easy analytical expression

and other nice properties still make it a basic tool for bivariate modeling.

A bivariate distribution with geometric margins X ∼ Fx(x; θ1) and Y ∼ Fy(y; θ2),

linked by the FGM copula can be built by simply defining its bivariate c.d.f. as

F (x, y) = C (Fx(x), Fy(y)), x, y = 0, 1, 2, . . . , from which we get:

F (x, y) = Fx(x)Fy(y)[1 + α(1− Fx(x))(1− Fy(y))]

= [1− (1− θ1)x+1][1− (1− θ2)y+1][1 + α(1− θ1)x+1(1− θ2)y+1]. (1)

The corresponding bivariate p.m.f. is then given (see also Barbiero 2017b) by recalling

the relationship between bivariate p.m.f. and c.d.f.: p(x, y) = F (x, y)− F (x− 1, y)−

F (x, y − 1) + F (x− 1, y − 1), x, y = 0, 1, 2, . . . , from which it follows that

p(x, y) = θ1(1− θ1)xθ2(1− θ2)y {1 + α [(2− θ1)(1− θ1)x − 1] [(2− θ2)(1− θ2)y − 1]}

(2)

with 0 < θ1, θ2 < 1. Due to the discrete nature of the margins, the dependence

parameter α can now take values in a wider interval than in the case of continuous

margins: we have −1 ≤ α ≤ min {1/(1− θ1), 1/(1− θ2)} (see, e.g., Cambanis 1977;

Piperigou 2009). The proposed bivariate geometric model defined by Eq. (1) or (2),

which is then characterized by the parameter vector (θ1, θ2, α), can be regarded as a

particular case of the model presented in Barbiero (2017a), with the shape parameters

β1 and β2 set equal to 1, and scale parameters q1 = 1− θ1 and q2 = 1− θ2.

2.2. Survival function and failure rate

If we define the bivariate survival function as F̄ (x, y) = P (X > x, Y > y), we can

easily derive its expression for the proposed model:

F̄ (x, y) = 1− Fx(x)− Fy(y) + F (x, y)

= (1− θ1)x+1(1− θ2)y+1[1 + α[1− (1− θ1)x+1][1− (1− θ2)y+1]

= F̄x(x)F̄y(y)[1 + αFx(x)Fy(y)]. (3)
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Comparing Eqs.(1) and (3) one can note that joint distribution and survival functions

have a specular expression. This is ensured by the radial symmetry property of the

FGM copula.

For a continuous r.v. (X,Y ) with joint density function f(x, y), the bivariate failure

rate was defined by Basu (1971) as r(x, y) = f(x, y)/F̄ (x, y). Adapting this formu-

lation, for a bivariate discrete r.v. (X,Y ) one can define the bivariate failure rate

as r(x, y) = p(x, y)/F̄ (x, y), which assumes the following expression for the bivariate

geometric r.v., for x = 0, 1, . . . ; y = 0, 1, . . . :

r(x, y) =
θ1

1− θ1

θ2

1− θ2

1 + α [(2− θ1)(1− θ1)x − 1] [(2− θ2)(1− θ2)y − 1]

1 + α[1− (1− θ1)x+1][1− (1− θ2)y+1]

If α = 0 (independence case), r(x, y) is constant and equal to r0 = θ1
1−θ1

θ2
1−θ2 . Moreover,

if x and y are let go to∞ with x = y, the failure rate r(x, y) tends to r0 for any value of

α 6= −1; it tends to r0 ·min
{

2−θi
1−θi ; i = 1, 2

}
if α = −1. The first order partial derivative

of r(x, y) with respect to x is given by:

∂r(x, y)

∂x
=
r0 ln(1− θ1)α(1− θ1)x · [a1(θ2, y)(2− θ1) + a2(θ2, y)(1− θ1) + αa1(θ2, y)a2(θ2, y)]

{1 + α[1− (1− θ1)x+1][1− (1− θ2)y+1]}2

where a1(θ2, y) = [(2 − θ2)(1 − θ2)y − 1], a2(θ2, y) = [1 − (1 − θ2)y+1]. Note that

a1(θ2, 0) = 1 − θ2, a2(θ2, 0) = θ2, limy→∞ a1(θ2, y) = −1, and limy→∞ a2(θ2, y) = 1.

Then, if α > 0 the function x 7→ r(x, y) is decreasing in x for a fixed value of y when

y < y∗(θ1, θ2, α); it is increasing in x for a fixed value of y when y ≥ y∗(θ1, θ2, α),

with y∗(θ1, θ2, α) ∈ N a proper threshold. If α < 0, the function x 7→ r(x, y) is

increasing in x for a fixed value of y when y < y∗(θ1, θ2, α); it is increasing in x

for a fixed value of y when y ≥ y∗(θ1, θ2, α). If α = −1 and θ2 ≥ θ1, the function

x 7→ r(x, y) is increasing in x for every fixed y. Analogous argument holds exchanging

x with y. We cannot state that for given parameters θ1, θ2, α, the failure rate is

increasing/decreasing in both x and y; for example, with θ1 = 1/3, θ2 = 2/3, α = 1/2,

we have r(0, 0) = 1 > r(1, 1) = 0.7772 < r(2, 2) = 0.8294 (see Figure 1).

2.3. Probability Generating Function

Due to the easy analytical expression of the joint p.m.f., it is straightforward to derive

the probability generating function (p.g.f.) for the bivariate vector (X,Y ) following

the proposed bivariate geometric distribution. By definition, for a pair of r.v.s X and
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Figure 1.: Bivariate failure rate function for some values of x and y, with θ1 = 1/3,
θ2 = 2/3, α = 1/2 (left) and α = −1/2 (right)
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Y defined each on non-negative integers only, the p.g.f. is equal to g(t1, t2) = E(tx1t
y
2);

for the proposed model, we have then:

g(t1, t2; θ1, θ2, α) = θ1θ2

{
1 + α

[1− t1(1− θ1)][1− t2(1− θ2)]
− α 1− θ1

[1− t1(1− θ1)(2− θ1)][1− t2(1− θ2)]

−α 1− θ2

[1− t2(1− θ2)(2− θ2)][1− t1(1− θ1)]
+ α

(1− θ1)(1− θ2)

[1− t1(1− θ1)(2− θ1)][1− t2(1− θ2)(2− θ2)]

}

2.4. Conditional distributions

The conditional distribution of Y given X = x is

py|x(y;x) = θ2(1− θ2)y {1 + α [(2− θ1)(1− θ1)x − 1] [(2− θ2)(1− θ2)y − 1]} . (4)

If α has the same sign of [(2− θ1)(1− θ1)x − 1], the p.m.f. in (4) can be regarded

as a mixture of two geometric distributions with parameters θ2 and 1 − (1 − θ2)2,

with weights 1 − α [(2− θ1)(1− θ1)x − 1] and α [(2− θ1)(1− θ1)x − 1], respectively.

The conditional expected value of Y given X = x can be then easily computed and is

equal to

E(Y |X = x) =
1− θ2

θ2

[
1 + α · 1− (2− θ1)(1− θ1)x

2− θ2

]
.

Note that E(Y |X = x) is greater than the unconditional moment E(Y ) if α > 0 and

1−(2−θ1)(1−θ1)x > 0, i.e., if α > 0 and x > − log(2−θ1)/ log(1−θ1); or if α < 0 and

x < − log(2 − θ1)/ log(1 − θ1). From Eq.(4), the conditional c.d.f. of Y given X = x
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can be easily derived and written as:

P (Y ≤ y|X = x) = Fy(y) + αFy(y)[1− Fy(y)][1− px(x)− 2Fx(x− 1)] (5)

Symmetrical results hold for the conditional distribution and expected value of X

given Y = y.

2.5. Simulation

In order to simulate a sample from the bivariate geometric distribution with param-

eters θ1, θ2, and α, one can resort to the algorithm described in Barbiero (2017a),

properly adapted to the geometrically distributed margins with parameters θ1 and θ2.

The algorithm is based on the conditional c.d.f. in (5). The steps to be implemented

are the following:

(1) Simulate a random pair (v1, v2) from two independent uniform r.v.s in (0, 1),

V1 ∼ Unif(0, 1) and V2 ∼ Unif(0, 1);

(2) Set u = v1 and x = F−1
x (u), where F−1

x denotes the quantile functions of ge-

ometric distribution with parameters θ1, i.e., x =

⌈
ln(1− u)

ln(1− θ1)
− 1

⌉
, with d·e

indicating the ceiling function.

(3) Set v = 2v2/(a + b), where a = 1 + α(1 − px(x) − 2Fx(x − 1)) and b =[
a2 − 4(a− 1)v2

]1/2
. Set y =

⌈
ln(1− v)

ln(1− θ2)
− 1

⌉
.

(4) (x, y) is a random pair from the proposed bivariate distribution.

2.6. Attainable correlations

Pearson’s correlation coefficient ρxy between the two margins can be easily calculated.

In fact, since for a geometric distribution with parameter θ1 the expected value is

equal to (1 − θ1)/θ1 and the variance is equal to (1 − θ1)/θ2
1, for the mixed moment

E(XY ) the following expression can be derived after some calculations:

E(XY ) =
1− θ1

θ1

1− θ2

θ2
+ α · 1− θ1

θ1(2− θ1)
· 1− θ2

θ2(2− θ2)

and then

ρxy = α ·
√

1− θ1

2− θ1
·
√

1− θ2

2− θ2
.

7



If α = 0, X and Y are clearly uncorrelated and independent (the joint p.m.f. (2)

factorizes into the product of two univariate geometric p.m.f.s); if α > 0, we have

positively correlated marginal distributions, conversely, if α < 0, we have nega-

tively correlated marginal distributions. Since the parameter α is constrained in

[−1,min {1/(1− θ1), 1/(1− θ2)}], its range is

−
√

(1− θ1)(1− θ2)

(2− θ1)(2− θ2)
≤ ρxy ≤ min {1/(1− θ1), 1/(1− θ2)}

√
(1− θ1)(1− θ2)

(2− θ1)(2− θ2)

and we can observe that ρxy can never be smaller than−1/4. For identically distributed

margins with common parameter θ, the lower bound for ρxy is ρmin = −(1−θ)/(2−θ)2,

whereas the upper bound ρmax = 1/(2−θ)2 (see also Figure 2). Although the proposed

model can then yield positive as well as negative correlations, however their range is

not the largest attainable and strongly depends on the marginal parameters; this

may pose some limits on its application. In fact, we remark that for two identically

distributed geometric margins with common parameter θ, the maximum attainable

linear correlation is 1, which is achieved by linking them through the comonotonicity

copula M(u, v) = min {u, v}, whereas the minimum attainable correlation is equal to

θ − 1, if θ ≥ 1/2, whereas for θ < 1/2 it is smaller than −1/2 and can be numerically

computed by resorting to the algorithm provided in Huber and Maric (2014).

Figure 2.: Bounds of Pearson’s correlation between the margins (here supposed iden-
tically distributed with common parameter θ) of the bivariate geometric model
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2.7. Reliability parameter

The probability R = P (X ≤ Y ) has been often investigated in the literature. If Y is the

strength of a component or system which is subject to a stress X, and if the system

regularly operates unless the stress exceeds the strength, then R is the probability

that the system works, i.e. a measure of system performance. The majority of pa-

pers studying the computation and estimation of R deal with independent continuous

probability distributions. However, in some real life situations, stress or strength can

have discrete distribution. For example, when the stress is the number of the products

that customers want to buy and the strength is the number of the products that fac-

tory produces (Jovanović 2017). Furthermore, X and Y may be non-independent; this

may happen because a system that has to resist to higher levels of stress is designed to

have higher level of strength (thus implying a positive dependence/correlation between

stress and strength).

For the proposed bivariate geometric distribution, the stress-strength parameter

R = P (X ≤ Y ) can be computed as R = P (X ≤ Y ) =
∑∞

y=0

∑y
x=0 p(x, y) with

p(x, y) given by Eq.(2), and has the following expression:

R =
θ1

1− (1− θ1)(1− θ2)
+ αθ1θ2

{
(2− θ1) · (2− θ2)

[1− (1− θ2)2] [1− (1− θ1)2 · (1− θ2)2]
+

− (2− θ1)

θ2 [1− (1− θ1)2 · (1− θ2)]
− (2− θ2)

[1− (1− θ2)2] [1− (1− θ1) · (1− θ2)2]

+
1

θ2 [1− (1− θ1) · (1− θ2)]

}
, (6)

which boils down to the expression reported in Maiti (1995) for the independence case

θ = 0 – there, however, the parameters θ1 and θ2 represent the complements to 1 of the

success probabilities of the two marginal geometric distributions. If we let θ1 = θ2 = θ,

i.e., if we consider two identically distributed geometric margins, then the expression

of R in (6) becomes:

R =
1

2− θ
+ αθ2

{
(2− θ)

θ[1− (1− θ)4]
− 2− θ
θ[1− (1− θ)3]

− 1

θ[1− (1− θ)3]
+

1

θ2(2− θ)

}
=

1

2− θ
+ α

θ(1− θ)2

(θ2 − 2θ + 2)(θ2 − 3θ + 3)(2− θ)
,

which shows that R is an increasing linear function of α, once θ is fixed. For example,

if θ1 = θ2 = 0.5, then R = 2/3 in case of independence (α = 0), whereas we would have
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Rmax = 0.7429 and Rmin = 0.6286 if α = αmax = 2 and α = αmin = −1, respectively.

The range of R looks quite short (0.1143); this is a direct consequence of the already

mentioned fact that FGM copula does not interpolate between perfect negative and

perfect positive dependence. It can be shown that the maximum value of the difference

Rmax −Rmin (≈ 0.1388) is obtained for θ ≈ 0.6858; its minimum value, 0, is obtained

letting θ go to the boundary values 0 and 1, see Figure 3.

Figure 3.: Stress-strength parameter R for the bivariate geometric model with identical
distributed margins with parameter θ. The two solid lines correspond to the values
α = −1 (lower curve) and α = 1/(1− θ) (upper curve) and represent lower and upper
bounds for R at a given value θ; the dashed line corresponds to the values of R when
α = 0.
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2.8. Convolution

It may be interesting to compute the distribution of the sum S = X + Y of the two

random components of the bivariate geometric distribution. Its p.m.f. can be calculated

as

ps(s) = P (S = s) =

s∑
x=0

P (X = x, Y = s− x) =

=

s∑
x=0

θ1(1− θ1)xθ2(1− θ2)s−x
{

1 + α [(2− θ1)(1− θ1)x − 1]
[
(2− θ2)(1− θ2)s−x − 1

]}
(7)
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If θ1 6= θ2, the expression of the p.m.f. of S becomes:

ps(s) = θ1θ2

[
(1− θ2)s+1 − (1− θ1)s+1

θ1 − θ2
(1 + α) + α

(1− θ2)2(s+1) − (1− θ1)2(s+1)

(1− θ2)2 − (1− θ1)2
(2− θ1)(2− θ2)

−α(1− θ2)s+1 − (1− θ1)2(s+1)

1− θ2 − (1− θ1)2
(2− θ1)− α(1− θ2)2(s+1) − (1− θ1)s+1

(1− θ2)2 − (1− θ1)
(2− θ2)

]
;

(8)

whereas if θ1 = θ2 = θ, we have:

ps(s) = θ2(1− θ)s
{

(s+ 1)[1 + α+ α(2− θ)2(1− θ)s]− 2α
2− θ
θ

[1− (1− θ)s+1]

}

The expectation of S, being the two margins geometrically distributed with param-

eters θ1 and θ2, is obviously given by E(S) = E(X) + E(Y ) = 1−θ1
θ1

+ 1−θ2
θ2

, whatever

the value of α is. The variance of S is given by

Var(S) = Var(X)+Var(Y )+2Cov(X,Y ) =
1− θ1

θ2
1

+
1− θ2

θ2
2

+2α· 1− θ1

θ1(2− θ1)
· 1− θ2

θ2(2− θ2)
,

and thus, for fixed θ1, θ2 it increases with α. If θ1 = θ2 = θ and α = 0 (independent

and identical margins) then S is distributed as a negative binomial with parameters 2

and θ and p.m.f. P (S = s) = (s+1)θ2(1−θ)s, and then E(S) = 21−θ
θ , Var(S) = 21−θ

θ2 .

Figure 4 displays the p.m.f. of S for θ1 = θ2 = 1/3 and the three values of α, −1, 0,

3/2.

Figure 4.: P.m.f. of the sum S = X+Y for the bivariate geometric r.v. with θ1 = θ2 =
1/3 and three meaningful values of α.
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2.9. Regression model

The bivariate geometric distribution proposed here easily allows for the introduction

of covariates. By considering the marginal means µ1 = E(X) and µ2 = E(Y ) of the

bivariate geometric r.v., we have θt = (1 + µt)
−1, t = 1, 2, and then by introducing

two vectors of covariates z and w, we can model θ1 and θ2 assuming a log-linear

relationship between marginal means and covariates:

logE(Xi|zi) = z′iβββ = zi0β0 + zi1β1 + · · ·+ zi,k−1βk−1 for i = 1, . . . , n

logE(Yi|wi) = w′iγγγ = wi0γ0 + wi1γ1 + · · ·+ wi,k−1γk−1 for i = 1, . . . , n (9)

The regression functions (9) relate the logarithm of the marginal means with the

explanatory variables; the correlation between Xi and Yi is clearly specified in terms

of the dependence parameter α. The values of the elements of βββ and γγγ, and the value

of α can be simultaneously estimated by maximizing the log-likelihood function of the

model. Among others, Famoye (2010) has already proposed an analogous regression

model for a bivariate negative binomial distribution allowing for positive, negative,

or null correlation. To simplify the analysis, one can assume that the same covariates

affect X and Y , i.e., zi = wi ∀i = 1, . . . , n.

3. ESTIMATION

Several methods for estimating the parameters θ1, θ2, and α of the proposed bivariate

distribution of Eq.(2) can be envisaged, given a random sample, (xi, yi), i = 1, 2, . . . , n.

Two versions of the method of moments are here considered as well as the standard

maximum likelihood method and a modified version thereof.

3.1. Method of Moments

A method of moments (MoM) is suggested, derived by equating the two marginal

moments with the mixed moment to the corresponding sample quantities. Denoting

with µ̂xy = 1
n

∑n
i=1 xiyi the sample mixed moment, it can be easily shown that the

estimates of the marginal parameters are θ̂1,MoM = 1/(1 + x̄) and θ̂2,MoM = 1/(1 + ȳ),
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whereas for the dependence parameter α, after some algebraic passages, we have:

α̂MoM = (µ̂xy − x̄ȳ) · 2x̄+ 1

x̄(x̄+ 1)
· 2ȳ + 1

ȳ(ȳ + 1)
.

Though very easy to derive, the method of moments cannot always ensure a fea-

sible value for the estimate of α, i.e., α̂MoM may lie outside its natural interval

[−1,min
{

1/(1− θ̂1,MoM ), 1/(1− θ̂2,MoM )
}

].

3.2. Modified Method of Moments

Alternatively, by keeping the same estimators for the marginal parameters θ1 and θ2

as for the original method of moments, and following similar arguments used in Li

and Dhar (2013), one can resort to a different estimator of α, obtained by equating

the expected value of the maximum between X and Y , M = max(X,Y ), with its

sample version. This option gives raise to a variant that we call “modified method

of moments”. We know that the c.d.f. of M can be written as FM (m) = P (M ≤

m) = P (X ≤ m,Y ≤ m) = F (m,m) and then its p.m.f. is given by pM (m) =

FM (m)−FM (m−1) = F (m,m)−F (m−1,m−1). After some calculations, we derive

the expression of pM (m), given by

pM (m) = [1− (1− θ1)m+1][1− (1− θ2)m+1][1 + α(1− θ1)m+1(1− θ2)m+1]+

− [1− (1− θ1)m][1− (1− θ2)m][1 + α(1− θ1)m(1− θ2)m]

= [(1− θ1)(1− θ2)]m[(1− θ1)(1− θ2)− 1] + (1− θ1)mθ1 + (1− θ2)mθ2+

+ α
{

[(1− θ1)(1− θ2)]m[(1− θ1)(1− θ2)− 1] + (1− θ1)2m(1− θ2)m[1− (1− θ1)2(1− θ2)]

+(1− θ1)m(1− θ2)2m[1− (1− θ1)(1− θ2)2]− [(1− θ1)(1− θ2)]2m[1− (1− θ1)2(1− θ2)2]
}

and then the expected moment of M , provided by:

E(M) =

∞∑
m=0

mpM (m) =
1− θ1

θ1
+

1− θ2

θ2
− (1− θ1)(1− θ2)

1− (1− θ1)(1− θ2)
+

+ α

[
(1− θ1)2(1− θ2)

1− (1− θ1)2(1− θ2)
+

(1− θ2)2(1− θ1)

1− (1− θ1)(1− θ2)2
− (1− θ1)(1− θ2)

1− (1− θ1)(1− θ2)
− (1− θ1)2(1− θ2)2

1− (1− θ1)2(1− θ2)2

]
.
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Equating it to its sample analog m̄ =
∑n

i=1 max(xi, yi)/n, and substituting to the

unknown θ1 and θ2 their MoM estimates, we can solve for α and obtain:

α̂MoM2 = (m̄− c)/d,

with c = x̄ + ȳ − x̄ȳ
1+x̄+ȳ and d = − x̄ȳ

1+x̄+ȳ + x̄2ȳ
(1+x̄)2(1+ȳ)−x̄2ȳ + x̄ȳ2

(1+x̄)(1+ȳ)2−x̄ȳ2 −
x̄2ȳ2

(1+x̄)2(1+ȳ)2−x̄2ȳ2 . Though very easy to derive, even this method of moments cannot

ensure a feasible value for the estimate of α.

3.3. Maximum Likelihood

From (2), the log-likelihood function `(θ1, θ2, α) is given by

`(θ1, θ2, α) = n ln θ1 + n ln θ2 +
∑n

i=1 xi ln(1− θ1) +
∑n

i=1 yi ln(1− θ2) +

+
∑n

i=1 ln {1 + α [(2− θ1)(1− θ1)xi − 1] [(2− θ2)(1− θ2)yi − 1]} . (10)

Maximum likelihood estimates (MLEs) of θ1, θ2, and α are simultaneously obtained

as the parameter values maximizing (10) over the parameter space and are denoted

as θ̂1,ML, θ̂2,ML, α̂ML. MLEs can be derived as the solutions of the normal equations,

obtained by equating the partial derivatives of the log-likelihood function (10) to zero;

however, they are not reported here as they cannot be solved explicitly. MLEs can

be thus computed either by numerical methods or by directly maximizing the log-

likelihood function. One can use the optim, mle2, or maxLik functions under the R

programming environment (R Core Team 2017).

3.4. Two-Step Maximum Likelihood

Since the “exact” maximum likelihood method discussed above can be computation-

ally burdensome, the literature has suggested a “two-step maximum likelihood” ap-

proach. According to this method, which has been proposed in Joe and Xu (1996)

and Joe (1997) and which is also termed “inference functions for margins” (IFM), uni-

variate parameters are first estimated based on individual univariate log-likelihoods

and then multivariate parameters are estimated from the multivariate log-likelihood

or lower-dimensional log-likelihoods with univariate parameter estimates held fixed.

While asymptotically less efficient than the one-step estimator (see again Joe (1997)),
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this approach has the obvious advantage of reducing the dimensionality of the problem,

which is particularly useful when one has to resort to a numerical maximization. For

the bivariate distribution at study, the two-step maximum likelihood method, similarly

to the case presented in Barbiero (2017a), consists in computing first the maximum

likelihood estimates of the parameters of the two marginal geometric distributions as

if they were independent. In this case, we easily get the estimates of θ1 and θ2 as

θ̂1,TSML = (1 + x̄)−1, θ̂2,TSML = (1 + ȳ)−1

(they coincide with the MoM estimates). Plugging them into the expression of the log-

likelihood (10), one can then maximize it with respect to the only remaining parameter

α (again, numerically), obtaining the estimate α̂TSML.

3.5. Interval estimation

Besides point estimation, asymptotic confidence intervals for each of the three param-

eters can be built based on Fisher information matrix, defined as

I(ηηη)ij = E
(
−∂

2 log p(x, y;ηηη)

∂ηi∂ηj

)
(11)

with ηηη = (θ1, θ2, α). The second order derivatives inside Eq.(11) are cumbersome

but quite easy to compute. On the contrary, calculating their expected value is

complicated. If a bivariate sample of size n is available from the r.v. (X,Y ), one

can compute the observed Fisher Information matrix, based on the MLE of ηηη, η̂ηη:

Î(η̂ηη)ij =
∑n

i=1−
∂2 log p(xi,yi;η̂ηη)

∂ηi∂ηj
. Asymptotic confidence intervals can be constructed by

using the standard errors se(ηi) that can be derived by computing the inverse matrix

Î(η̂ηη)−1. Such intervals have the usual form (η̂i − z1−α/2se(η̂i), η̂i + z1−α/2se(η̂i)), with

se(η̂i) =

√
[Î(η̂ηη)−1]ii. Since the parameters ηi are bounded over a finite support, such

symmetric confidence intervals may have a poor performance in terms of coverage and

average length. For this reason, computing confidence intervals directly based on the

log-likelihood or profile log-likelihood may represent a much better choice; they often

have better small-sample properties than those based on asymptotic standard errors

computed from the full likelihood (Venzon and Moolgavkar 1988). In the statistical

environment R, the package bblmle (Bolker 2016) easily allows the user to compute

confidence intervals based on profile likelihood.
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4. MONTE CARLO STUDY

In order to study the behaviour of the parameters’ estimators in terms of unbiased-

ness and variability, one would like to obtain their expectations and variances (or

standard errors). Finding them is almost impossible, especially for methods involving

maximum likelihood, which provide estimates in a numerical form only. Therefore,

we study numerically the expressions for expected values and standard errors with a

Monte Carlo simulation study. We consider several representative combinations of the

three parameters characterizing the proposed bivariate geometric distribution; in par-

ticular, we consider all the “distinct” combinations arising from the following choice

of parameters: θ1, θ2 = 0.25; 0.5; 0.75; α = −0.8;−0.4; 0; +0.4,+0.8,+1.2 (thus leading

to negative, null or positive dependence between the margins). “Distinct” here means

that given the symmetrical nature of the problem, if the combination corresponding

to the ordered parameter vector ηηη = (θ1, θ2, α) is considered, the combination asso-

ciated to the “symmetrical” parameter vector ηηη∗ = (θ2, θ1, α) will be skipped. This

means that 6× 6 = 36 combinations for ηηη are considered. For each of these scenarios,

the Monte Carlo simulation study is performed by generating 2, 000 samples of size

n = 100. For each sample, the four types of estimators of θ1, θ2, and α, described in

Section 3, are calculated as well as 95% confidence intervals. Then, over all the 2, 000

simulations, the means (expected values) and standard errors of these estimates are

obtained along with coverage and average length of confidence intervals. Here we will

focus on the results related to the estimates of the dependence parameter α, which are

expected to be the most meaningful, since the dependence parameter is intuitively the

most difficult to be estimated. The bivariate geometric model has been implemented

and the whole simulation study has been carried out in the R statistical environment.

Results on point estimation are reported in Tables 1 to 6. We will briefly discuss

the performance of the estimators comparatively, underlying how the dependence and

marginal parameters’ values affect it. We first remark that all four estimators are

positively biased under all the scenarios examined, except for a few scenarios with

α = 1.2; the bias magnitude is however rather small. The ML and TSML estimators

of α always have a very similar behaviour in terms of both bias and standard error

and, quite surprisingly, for positive or null values of α, TSML should be even preferred

to ML estimator, since it shows a smaller bias in absolute value and a smaller standard

error. Their performance is overall better than that of MoM estimator, except when α

is −0.8: in this case, both ML and TSML estimators show a very large bias in absolute
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value, and in this sense MoM may be preferable; however, the standard errors of the

latter are always larger than those of the former and a significant proportion of MoM

estimates are unfeasible (smaller than−1). MoM2 estimator is overall more biased than

MoM, even if sometimes (namely, for α = 0.4; 0.8; 1.2) it presents a smaller variability.

In more detail, letting α fixed and varying the marginal parameters θ1 and θ2, one can

note that the behaviour of the four estimators (especially in terms of standard error

and to a larger extent for ML and TSML) deteriorates moving towards large values;

in particular, the scenarios characterized by θ1 = θ2 = 0.75 are the worst ones. This is

quite reasonable, since in this case the sample marginal distributions are concentrated

on the first integer numbers, with an average proportion of zeros equal to 75% for

both margins, and estimates of α are thus characterized by a large uncertainty. For a

fixed pair of values (θ1, θ2), the behavior of the standard errors of the four estimators

as a function of α is much more difficult to depict. For example, focusing on the ML

estimator, if (θ1, θ2) = (0.25, 0.25), its standard error decrease with the absolute value

of α; if (θ1, θ2) = (0.75, 0.75), the standard error is an increasing function of α.

Table 1.: Monte Carlo simulation study: mean and standard error of the estimates of
α when α = 1.2

θ1 = 0.25 θ1 = 0.5 θ1 = 0.75
mean se mean se mean se

θ 1
=

0.
25 ML 1.193 0.203 1.186 0.234 1.173 0.268

TSML 1.184 0.215 1.180 0.234 1.169 0.268
MoM 1.197 0.425 1.198 0.450 1.203 0.550

MoM2 1.226 0.397 1.225 0.379 1.222 0.378

θ 1
=

0.
5 ML 1.217 0.334 1.221 0.428

TSML 1.203 0.333 1.215 0.426
MoM 1.201 0.484 1.209 0.594

MoM2 1.229 0.431 1.235 0.485

θ 1
=

0.
75 ML 1.219 0.605

TSML 1.213 0.602
MoM 1.217 0.748

MoM2 1.237 0.663

In figure 5, the Monte Carlo distributions of the four point estimators of α for the

bivariate geometric model are displayed, when θ1 = θ2 = 0.5 and α = 0.8. At a first

glance, one can note that the two method of moments (MoM and MoM2) yield to

estimators characterized by a larger variability with respect to the ML and TSML

competitors. In particular, due also to the presence of many “outliers” (the isolated

points beyond the whiskers of the boxplot; most of them are unfeasible values for α),

MoM, as confirmed by the results of Table 2, presents a larger variability than MoM2.
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Table 2.: Monte Carlo simulation study: mean and standard error of the estimates of
α when α = 0.8

θ1 = 0.25 θ1 = 0.5 θ1 = 0.75
mean se mean se mean se

θ 1
=

0.
25 ML 0.812 0.290 0.813 0.321 0.813 0.382

TSML 0.806 0.288 0.808 0.319 0.810 0.381
MoM 0.801 0.428 0.803 0.450 0.809 0.544

MoM2 0.832 0.417 0.830 0.420 0.832 0.473

θ 1
=

0.
5 ML 0.811 0.352 0.815 0.446

TSML 0.806 0.350 0.811 0.444
MoM 0.805 0.479 0.811 0.580

MoM2 0.832 0.445 0.834 0.507

θ 1
=

0.
75 ML 0.818 0.594

TSML 0.814 0.591
MoM 0.817 0.714

MoM2 0.836 0.650

Table 3.: Monte Carlo simulation study: mean and standard error of the estimates of
α when α = 0.4

θ1 = 0.25 θ1 = 0.5 θ1 = 0.75
mean se mean se mean se

θ 1
=

0.
25 ML 0.410 0.319 0.409 0.341 0.411 0.421

TSML 0.407 0.317 0.406 0.339 0.409 0.419
MoM 0.406 0.421 0.404 0.446 0.410 0.537

MoM2 0.434 0.429 0.433 0.447 0.432 0.534

θ 1
=

0.
5 ML 0.406 0.365 0.408 0.457

TSML 0.404 0.362 0.407 0.455
MoM 0.405 0.472 0.411 0.570

MoM2 0.432 0.453 0.430 0.516

θ 1
=

0.
75 ML 0.410 0.585

TSML 0.409 0.583
MoM 0.414 0.692

MoM2 0.428 0.638
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Table 4.: Monte Carlo simulation study: mean and standard error of the estimates of
α when α = 0

θ1 = 0.25 θ1 = 0.5 θ1 = 0.75
mean se mean se mean se

θ 1
=

0.
25 ML 0.008 0.326 0.006 0.346 0.010 0.422

TSML 0.008 0.324 0.006 0.344 0.010 0.420
MoM 0.010 0.406 0.009 0.425 0.010 0.502

MoM2 0.037 0.432 0.034 0.464 0.036 0.570

θ 1
=

0.
5 ML 0.005 0.368 0.007 0.447

TSML 0.005 0.366 0.007 0.445
MoM 0.010 0.448 0.010 0.531

MoM2 0.035 0.448 0.034 0.512

θ 1
=

0.
75 ML 0.009 0.546

TSML 0.009 0.543
MoM 0.011 0.636

MoM2 0.024 0.597

Table 5.: Monte Carlo simulation study: mean and standard error of the estimates of
α when α = −0.4

θ1 = 0.25 θ1 = 0.5 θ1 = 0.75
mean se mean se mean se

θ 1
=

0.
25 ML -0.393 0.308 -0.389 0.324 -0.380 0.393

TSML -0.390 0.306 -0.387 0.322 -0.378 0.391
MoM -0.385 0.376 -0.383 0.392 -0.385 0.460

MoM2 -0.364 0.427 -0.360 0.467 -0.354 0.601

θ 1
=

0.
5 ML -0.390 0.342 -0.380 0.410

TSML -0.388 0.340 -0.378 0.408
MoM -0.383 0.412 -0.385 0.484

MoM2 -0.362 0.431 -0.363 0.502

θ 1
=

0.
75 ML -0.371 0.481

TSML -0.370 0.479
MoM -0.386 0.568

MoM2 -0.374 0.546
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Table 6.: Monte Carlo simulation study: mean and standard error of the estimates of
α when α = −0.8

θ1 = 0.25 θ1 = 0.5 θ1 = 0.75
mean se mean se mean se

θ 1
=

0.
25 ML -0.758 0.230 -0.753 0.246 -0.730 0.291

TSML -0.754 0.231 -0.750 0.246 -0.727 0.290
MoM -0.780 0.329 -0.780 0.339 -0.781 0.384

MoM2 -0.762 0.413 -0.760 0.463 -0.752 0.615

θ 1
=

0.
5 ML -0.748 0.258 -0.726 0.302

TSML -0.745 0.258 -0.724 0.302
MoM -0.780 0.353 -0.781 0.400

MoM2 -0.764 0.407 -0.764 0.467

θ 1
=

0.
75 ML -0.709 0.344

TSML -0.706 0.358
MoM -0.785 0.454

MoM2 -0.772 0.470

Figure 5.: Boxplots of the Monte Carlo distributions of the four point estimators of α
for the bivariate geometric model, with θ1 = θ2 = 0.5, and α = 0.8.
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Table 7 shows how coverages and average length of confidence intervals are affected

by the values of the marginal parameters θ1, θ2, and by the dependence parameter α.

As to the latter, the extreme negative value examined here (α = −0.8) always leads

to over-coverage and often, holding fixed θ1 and θ2, to the shortest average length;

whereas the other values (with a few exceptions for α = 0.8; 1.2) overall produce

under-coverage and wider intervals. Keeping α fixed, larger values of θ1 and θ2 (in

our study, 0.75), i.e., parameter values leading to larger proportions of zeros in both

sample components, always yield wider intervals (which turn out to be very little
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Table 7.: Coverage and average length of 95% confidence intervals for α

θ2 = 0.25 θ2 = 0.5 θ2 = 0.75
α coverage length coverage length coverage length

θ 1
=

0.
25

-0.8 0.978 0.784 0.974 0.829 0.972 0.981
-0.4 0.939 1.063 0.944 1.119 0.941 1.278

0 0.936 1.159 0.938 1.214 0.937 1.389
0.4 0.942 1.132 0.938 1.232 0.936 1.442
0.8 0.932 0.883 0.936 0.924 0.928 1.047
1.2 0.974 0.684 0.972 0.770 0.974 0.924

θ 1
=

0.
5

-0.8 0.978 0.872 0.976 1.028
-0.4 0.943 1.174 0.946 1.354

0 0.943 1.312 0.946 1.550
0.4 0.946 1.332 0.934 1.618
0.8 0.945 1.266 0.934 1.503
1.2 0.945 1.194 0.940 1.514

θ 1
=

0.
75

-0.8 0.975 1.219
-0.4 0.959 1.593

0 0.941 1.869
0.4 0.930 2.044
0.8 0.940 2.142
1.2 0.940 2.193

informative), whereas the effect on the coverage is not sharp.

The analysis of simulation results about standard errors and confidence intervals’

length highlights how estimation of the dependence parameter for the proposed bi-

variate geometric model is critical; it is characterized by a high level of uncertainty

even if the chosen sample size is moderately large. This may be partially explained by

the discrete nature of the data, but more importantly by the meaning of the depen-

dence parameter itself: although taking both negative or positive values, it does not

encompass the whole range of dependence, from perfect negative to positive negative

dependence and this fact may translate into an “inflation” of the variability of the

estimates. Large asymptotic variance of estimators of parameter α for the FGM cop-

ula, though limited to the continuous case, has been already acknowledged in Genest

(2013).

5. APPLICATION TO REAL DATA

In this section, a numerical example is provided to illustrate the application of the pro-

posed bivariate geometric distribution. The data, considered in Mitchell and Paulson

(1981), consist of the number of aborts by 109 aircrafts in two consecutive semesters
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Table 8.: Bivariate distribution of the data taken from Mitchell and Paulson (1981):
number of flight aborts by 109 aircrafts in two consecutive periods. Theoretical fre-
quencies for the bivariate geometric model fitted to these data are reported between
brackets in italic. Cell borders highlight a possible aggregation of cells into 9 groupings
with frequencies’ sum greater than 5, where the chi-square goodness-of-fit statistic is
computed.

x, y 0 1 2 3 ≥ 4 total

0
34 20 4 6 4 68

(34.82) (17.98) (8.22) (3.60) (2.70) (67.32)

1
17 7 0 0 0 24

(16.63) (5.57) (2.10) (0.84) (0.60) (25.74)

2
6 4 1 0 0 11

(6.84) (1.94) (0.65) (0.24) (0.17) (9.84)

3
0 4 0 0 0 4

(2.69) (0.71) (0.23) (0.08) (0.06) (3.76)

4
0 0 0 0 0 0

(1.04) (0.27) (0.08) (0.03) (0.02) (1.44)

≥ 5
2 0 0 0 0 2

(0.65) (0.17) (0.05) (0.02) (0.01) (0.89)
total 59 35 5 6 4 109

(62.67) (26.64) (11.32) (4.81) (3.56) (109)

(number of aborts in the first period = x, in the second period = y), see Table 8. Sum-

mary statistics for the dataset are x̄ = 0.624, ȳ = 0.725, var(x) = 1.024, var(y) = 1.062,

ρ̂xy = −0.161. Looking at the empirical marginal distributions of x and y, one can

assume they come from two geometric r.v.s. Through a proper univariate goodness-

of-fit test one can check this hypothesis; by resorting to Kolmogorov-Smirnov test, see

Bracquemond et al. (2002), we accept the null hypotheses that x and y come from two

geometric distributions (bootstrapped p-values 0.7989 and 0.2984, respectively). Then,

we can further assume and check whether the bivariate sample (x, y) comes from the

bivariate geometric model with FGM copula. Fitting it to these data and estimating

its parameters through each method presented in section 3 lead to the results reported

in Table 9. Note that the estimates of θ1 and θ2 computed through ML are very close

to the corresponding estimates of TSML, MoM, and MoM2. The estimates of α com-

puted through MoM and MoM2 are quite sensibly different (in opposite directions)

from the ML and TSML estimates, which are instead quite close to each other.
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Table 9.: Parameter estimates for the bivariate geometric model applied to Mitchell
and Paulson (1981) data.

method θ1 θ2 α
ML 0.6176 0.5749 -0.6174

TSML 0.6158 0.5798 -0.6091
MoM 0.6158 0.5798 -0.7293
MoM2 0.6158 0.5798 -0.4548

The observed Fisher Information Matrix is given by:

Î(η̂ηη) =


0.001341 −0.000183 −0.000737

−0.000183 0.001313 0.002217

−0.000737 0.002217 0.158698


from which the asymptotic standard errors of the three MLEs can be easily derived:

se(θ̂1) = 0.036618, se(θ̂2) = 0.036238, se(α̂) = 0.398370. Note the large uncertainty

associated to the dependence parameter α. 95% confidence intervals for the three

parameters based on profile log-likelihood are provided as (θ1L, θ1U ) = (0.5445, 0.6873),

(θ2L, θ2U ) = (0.5034, 0.6446), (α1L, α1U ) = (−1, 0.1730).

The value of the log-likelihood function computed at the MLEs is `max = −244.63

and the corresponding value of the Akaike Information Criterion (AIC = 2k − 2`max,

with k = 3 being the number of parameters) is 495.26. The bivariate negative binomial

distribution proposed in Mitchell and Paulson (1981) showed an AIC equal to 498.54,

thus indicating a worse fit to the data; the bivariate discrete Weibull distribution

proposed in Barbiero (2017a), though obviously providing a greater value of the log-

likelihood function (−243.966), provides a greater value of the AIC (497.93), thus

denoting again a worse fit than the proposed bivariate geometric model. The bivariate

geometric distribution proposed by Roy (1993) yields a better fit: the AIC is equal to

494.0382, being the maximum value of the log-likelihood function −244.0191. In order

to obtain an “absolute” measure of fit of the proposed bivariate model, we can resort

to the standard chi-square goodness-of-fit test. We computed the theoretical absolute

joint frequencies, by using the p.m.f. in (2) with the MLEs of the parameters θ1, θ2

and α; they are displayed between brackets in Table 8. Then we aggregated cells in

order to obtain for each grouping an aggregate frequency larger than 5; we computed

the chi-square statistic as χ2 =
∑G

g=1(n̂g − ng)2/n̂g, where ng is the observed count

for grouping g, n̂g is its theoretical analog, G is the number of groupings (in this case
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G = 9). Under the null hypothesis that the bivariate sample comes from the proposed

distribution, χ2 is approximately distributed as a chi-square r.v. with 9 − 3 − 1 = 5

degrees of freedom. The empirical value of χ2 is 5.434; its p-value is 0.365 and being

far larger than 0 it denotes a satisfactory fit of the model to the data.

Plugging in the MLEs of the three parameters into (6), one derives the MLE of

R as R̂ = 0.7123997, which represents the estimated probability that the number of

aborts in the second period is not smaller than the number of aborts in the first one.

By the way, the MLE of R is very close to the standard non-parametric estimate

R̃ = 1
n

∑n
i=1 1xi≤yi = 76/109 = 0.6972477.

6. CONCLUSION

The bivariate geometric model proposed in this work is able to handle correlated ge-

ometrically distributed counts with a moderate level of dependence, regulated by the

unique parameter of the Farlie-Gumbel-Morgenstern (FGM) copula linking its uni-

variate margins. It can be employed in several fields where discrete data arise, such

as industrial quality control, insurance, health economics, marketing, an so on. The

easy form of the joint probability mass function allows to derive interesting analytical

results for the bivariate failure rate, attainable correlations, conditional distributions

and moments, reliability parameter, and, partially, estimation. Moreover, the parame-

ter components have a clear interpretation. An application to a real dataset, reporting

the number of failures occurred to a group of aircrafts in two consecutive periods,

has shown how the model can be easily fitted. However, we are aware that the use

of this bivariate discrete model may lead to some problems when modeling real data

(the natural space of the dependence parameter depends on the values of the marginal

parameters; the model can allow only for a moderate linear correlation, whose lower

and upper bounds depend again on the values of the marginal parameters) and in the

estimation step (even for moderately large sample size, estimators of the dependence

parameter can be little precise). Further research will investigate possible extensions

of the model accommodating a wider range of dependence, by resorting to generalized

FGM copulas, and thus possibly tackling also drawbacks in estimation. We hope that

the proposed model will be a viable alternative to the existing models dealing with

the kind of data sets considered here.
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