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A B S T R A C T

A dialkyl-1,1′-bibenzimidazolium salt, consisting of an atropisomeric dication (i.e. featuring a stereogenic axis
and thus “inherently chiral”) and an achiral counteranion, is employed as a chiral additive in three commercial
ionic liquids, providing successful enantiodiscrimination in voltammetry experiments on screen-printed elec-
trodes (SPEs) with the enantiomers of N,N′-dimethyl-1-ferrocenyl-ethylamine as model chiral probes. Significant
differences in redox potentials are observed for the probe enantiomers despite the low concentration (0.01M) of
the chiral additive. The nature of the achiral ionic liquid in which the additive is employed significantly affects
the peak potentials and potential differences, but does not alter the enantiomer sequence.

1. Introduction

The search for chiral media affording effective enantioselection in
analytical and preparative electron transfer processes on achiral elec-
trodes is an important issue in electrochemistry. Greater order at the
chiral medium|electrode interface should result in a more efficient
transmission of chiral information, with chiral supporting electrolytes
appearing to perform better than chiral cosolvents in early preparative
experiments, although enantiomeric excesses were not very high [1]. In
this respect, chiral ionic liquids appear ideal candidate media on ac-
count of their very well-ordered structure at the interface with a
charged electrode, which extends over many layers [2], even in the
presence of a considerable amount of water [3]. On the other hand, the
unprecedented enantiodiscrimination recently achieved on electrode
surfaces consisting of “inherently chiral” molecular materials (i.e. in
which the stereogenic element responsible for chirality coincides with
the functional group responsible for the specific property of the mate-
rial) [4–7], suggests that it is worth looking for “inherently chiral”
media. Combining the two strategies, two inherently chiral ionic liquids
(ICILs) consisting of atropisomeric dialkyl-bipyridinium salts have re-
cently been reported [8]. It was observed that these ICILs result in
outstanding discrimination of probe enantiomers in terms of peak po-
tentials in cyclic voltammetry experiments, even when these are em-
ployed as low-concentration additives. Furthermore, similar results

were obtained with smaller members of the same chemical family
(mono and diethyl-bipyridinium salts), which are solid at room tem-
perature [8]. This is extremely interesting, since highly enantioselective
working conditions can be obtained with a very small amount of the
inherently chiral compound; moreover, a melting point below room
temperature is no longer necessary, which greatly widens the range of
inherently chiral additives to be explored as chiral inductors, including
e.g. some which may be easily synthesized and/or belong to different
chemical families.

This prompted us to test for this task our recently introduced family
of inherently chiral 1,1′-bibenzimidazolium double salts [9], which
could not be synthesized with a sufficient number of long alkyl chains
to be liquid at room temperature, but which feature very high torsional
barriers in their atropisomeric cations, and therefore should exhibit
huge chirality effects. In particular, in this work we test the smallest
member of the family, with the highest melting point (208–210 °C), the
C2 symmetric dimethyl dimethanesulfonate salt 1, which has been
characterized previously [9], and is available as stable (R)-1 and (S)-1
enantiomers (Fig. 1a).

In this test we also wish to confirm the general validity of the in-
herent chirality strategy, by employing a chemically different, albeit
inherently chiral, molecular backbone.
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2. Materials and methods

Enantiopure (R)- and (S)-2,2′,3,3′-tetramethyl-bi[1,1′-(1H,1′H-ben-
zimidazolium)] dimethanesulfonate salts, (R)-1 and (S)-1 (Fig. 1a),
were obtained according to the protocol described in [9] from the
corresponding enantiopure enantiomers of 2,2′-dimethyl-bi[1,1′-
(1H,1′H-benzimidazole)] 2, synthesized as a racemic mixture (Fig. 1a)
and resolved by semi-preparative HPLC on a chiral stationary phase
[10].

The enantioselectivity tests were performed by cyclic voltammetry
at 0.05 V/s scan rate on screen-printed electrode (SPE) supports
(Dropsens, custom-made without paint), with Au working and counter
electrodes and an Ag pseudoreference electrode, resulting in good re-
producibility at constant conditions with the present working protocol.
The experiments were performed in air, depositing on the working
electrode a drop of achiral ionic liquid with 0.01M (R)-1 or (S)-1 as an
additive and 0.002M (R)-(+)- or (S)-(−)-N,N′-dimethyl-1-ferroceny-
lethylamine ((R)-3 and (S)-3, Fig. 1b; Aldrich, submitted to a further
chromatographic purification step) as the enantiopure probe. (R)-3 and
(S)-3 had been previously used as chemically and electrochemically
reversible model chiral probes to test inherently chiral electrode sur-
faces [4–7].

The bulk achiral ionic liquids employed were either 1-butyl-3-methy-
limidazolium tetrafluoroborate (BMIM)BF4 (CAS 174501-65-6; Aldrich for
catalysis>98.5%), or 1-butyl-3-methylimidazolium hexafluorophosphate
(BMIM)PF6 (CAS 174501-64-5; Aldrich ≥98.5%) or 1-butyl-3-methylimi-
dazolium bis(trifluoromethanesulfonyl)imidate (BMIM)NTf2 (CAS 174899-
83-3; Aldrich ≥98%).

For the sake of comparison, the tests were also carried out with the
same protocol, but in the absence of the chiral additives. Potentials
were referred to the formal potential of the ferrocene|ferrocinium

intersolvent reference redox couple, obtained by recording its CV under
the same conditions used in the enantioselection tests.

3. Results and discussion

The cyclic voltammograms (CVs) of the chiral ferrocenyl probes (R)-
3 and (S)-3 recorded on screen-printed gold electrodes in each bulk
ionic liquid are reported in Fig. 2 together with the CV of ferrocene,
which is used as a reference for intersolvent comparison of potentials as
well as currents. Key CV features are summarized in Table 1.

Chemically reversible CV peaks are obtained in all cases for ferro-
cene and the ferrocenyl probe enantiomers in the three tested ILs
(Fig. 1b), making it possible to estimate formal peak potentials in terms
of E°′=(Ep,a+ Ep,c) / 2. All E°′ values reported in Table 1 for the fer-
rocenyl probes as well as all CVs shown in Fig. 2 are referred to the E°′
of the ferrocene couple recorded under the same conditions. The fer-
rocene peak intensities may be explained by the viscosity of the
medium (in terms of I∝D1/2∝ η−1/2, with D=diffusion coefficient and
η=solvent viscosity), considering the intrinsic ionic liquid viscosities
(450, 219, 52 Cp for (BMIM)PF6, (BMIM)BF4, (BMIM)NTf2 respectively
[11]), which can be significantly modulated by the amount of trace
water, resulting in a decrease in viscosity [12]; this is particularly re-
levant for (BMIM)BF4, which is by far the most hydrophilic of the three
ILs tested (in fact, the only one miscible with water [11]).

In the absence of inherently chiral additives, the enantiomers of the
chiral ferrocenyl probes give, as expected, practically coincident CV
peaks, in terms of potential, current, and shape (Fig. 2, left side). The
inductive effect of the alkyl chain, according to Hammett parameters
[13], should result in a very small negative or null potential shift with
respect to ferrocene; however only in one case did the formal potentials
of the chiral probes nearly coincide with the ferrocene one (in (BMIM)

(R)-1 (S)-1 (±)-2
(a)

(S)-3 (R)-3
(b)

(c)
(BMIM)NTf2

Fig. 1. (a) The inherently chiral additives (R)-1, (S)-1 and the racemic neutral precursor 2; (b) (S)-(+)-3 and (R)-(−)-3 N,N′-dimethyl-1-ferrocenylethylamine employed as chiral probes;
(c) 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM)BF4, 1-butyl-3-methyl-imidazolium hexafluorophosphate (BMIM)PF6 and 1-butyl-3-methylimidazolium bis(trifluoro-methyl-
sulfonyl)imidate (BMIM)NTf2 employed as achiral bulk media.
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BF4), while in the other cases they are shifted to more positive poten-
tials (particularly in (BMIM)NTf2). This positive shift in the less hy-
drophylic ILs, as well as changes in peak height, might be explained by
significantly different coordination and/or ionic coupling effects in-
volving the ionic liquid anion and the ferrocene or the ferrocenyl probe
couple.

Repeating the same experiments under the same conditions but with
the addition of either the (R)-1 or the (S)-1 enantiopure additive en-
antiomer (electrochemically inactive in the potential window

considered here [9]) in a 5:1 ratio with respect to the chiral probe, the
CV peak of either probe enantiomer undergoes significant modifications
in peak potential and in many cases also in current and shape. Im-
portantly, peak potential differences are observed for the two probe
enantiomers (Fig. 2, right side) when inverting the additive config-
uration, as in the previously reported case of bicollidinium double salt
additives [8].

Notably:

(S)-probe

(R)-probe

ferrocene

(S)-probe

(R)-probe

ferrocene

(S)-probe

(R)-probe

ferrocene

(R)-probe, (S)-additive

(S)-probe, (S)-additive

(R)-probe, (R)-additive
(S)-probe, (R)-additive

(R)-probe, (S)-additive
(S)-probe, (S)-additive
(R)-probe, (R)-additive
(S)-probe, (R)-additive

(R)-probe, (S)-additive
(S)-probe, (S)-additive
(R)-probe, (R)-additive
(S)-probe, (R)-additive

(BMIM)PF6 (BMIM)PF6

(BMIM)BF4 (BMIM)BF4

(BMIM)NTf2 (BMIM)NTf2

Fig. 2. CVs recorded on a screen-printed Au electrode at 0.05 V/s in three ionic liquid bulk media. Left: model ferrocenyl probes (R)-3 (green) and (S)-3 (red) as well as redox intersolvent
standard ferrocene (grey) at a concentration of 0.002M. Right: CVs of either (R)-3 (green) or (S)-3 (red) probe in the presence of either (R)-1 or (S)-1 0.01M inherently chiral additives
(thin or thick lines, respectively). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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• Specular additive/probe combinations (i.e. [(R)-1,(R)-2] vs [(S)-1,
(S)-2]; or, [(R)-1,(S)-2] vs [(S)-1,(R)-2]), result in the same CV peak
(within experimental error);

• By contrast, energetically different diastereomeric additive/probe
combinations (i.e. [(R)-1,(R)-2] or [(S)-1,(S)-2] vs [(R)-1,(S)-2] or
[(S)-1,(R)-2]) result in significantly different CV peaks;

• The recognition sequence is the same in all ILs, which is quite reason-
able considering that enantioselectivity originates from the additive
cation, which is the only chiral selector present;

• In particular, the potentials of the (R,S) or (S,R) combinations are
consistently less positive than those of the (R,R) or (S,S) combina-
tions. It should be noted that the opposite sequence was observed
with bicollidinium double salts [8], but the additive was a chemi-
cally different one; and, although it might appear a bit trivial, it
must be underlined that absolute configuration descriptors (R,S) do
not in themselves account for chirality manifestations;

• The bulk ionic liquid anion significantly influences the enantiomer peak
potential shifts and difference, although it does not alter the en-
antiomer sequence;

• In particular, the largest peak potential shifts of the chiral probe
enantiomers (+0.13 V and +0.32 V, i.e. with the oxidation pro-
cesses becoming much more unfavourable), as well as the largest
enantiomer peak potential difference (~0.19 V), are observed in
(BMIM)NTf2. A much smaller peak potential difference between
probe enantiomers, ~0.08 V, is observed in both (BMIM)PF6 and
(BMIM)BF4; however, in the first case the difference originates from
one peak undergoing a negative shift with the other remaining
nearly unchanged, while in the second case both enantiomer peaks
are shifted in the positive direction, although less than in the
(BMIM)NTf2 case;

• Concerning peak height and shape, the combinations coming first,
i.e. [(R)-1,(S)-2] or [(S)-1,(R)-2] apparently result in smaller peaks
compared to the following [(R)-1,(R)-2] or [(S)-1,(S)-2] ones, which
might point e.g. to a significantly lower diffusion coefficient; the
difference in peak heights actually decreases in the sequence
(BMIM)PF6 > (BMIM)BF4 > (BMIM)NTf2, which is also the se-
quence of decreasing viscosity of the bulk ionic liquid.

Statistical tests on experiment repetitions with selected
probe+ selector combinations were carried out to check both the re-
producibility and the significance of the potential differences observed

for (R)-3 and (S)-3 probe enantiomers. It must be underlined that from
this perspective an even more important piece of evidence is the
specularity of the results observed i.e. when inverting either probe or
additive configurations.

Concerning rationalization of the phenomenon, bulk complexation
should be ruled out [8], consistent with the fact that the bibenzimi-
dazolium chiral cations have not been designed as specific ligands for
the probes concerned (inter alia, benzimidazolium cations have no free
N atom for coordination; instead, π interactions between aromatic rings
are more likely). However, specific additive/probe interactions pro-
moted by their simultaneous presence at the very compact and ordered
electrode|ionic liquid interface cannot be excluded. We have assumed
that, in analogy with the nematic to cholesteric transition that has re-
cently been reported to be induced in a bulk liquid crystal by an in-
herently chiral additive [14], a similar “chiral domino effect” could
take place at the very compact and ordered ionic liquid|electrode in-
terface [2,3,15–19], i.e. a chain reorganization induced by small
quantities of chiral additive, and modulated by the size and nature of
the involved species, as well as by the electrode potential. Further
studies are planned to investigate this possibility.

The results obtained so far are, however, important in themselves,
since they appear fully consistent with those recently obtained with a
different family of inherently chiral additives in the proof-of-concept
study reported earlier [8]. Thus, the general validity of the inherent
chirality strategy is supported, even when implemented in terms of
inherently chiral salt additives with biheteroaromatic atropisomeric
cations, employed at a low concentration in achiral ionic liquid media.
The next step, apart from rationalization of the mechanism, should
concern extension to different probes and, particularly, to preparative
experiments.
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