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English 
Several epidemiological, clinical and experimental studies proposed non-steroidal 

antiinflammatory drugs (NSAIDs) as promising chemopreventive agents for many types of 

cancer. However, their use in chronic treatment is hampered by gastrointestinal, renal and 

cardiovascular side effects mainly due to the inhibition of cyclooxygenase (COX) isoenzymes. 

The development of NSAIDs as chemopreventive agents is prevented by the limited 

knowledge of the mechanism underlying the anti-cancer properties of these drugs. Inhibition 

of COX has been proposed as the mechanism underlying their anti-neoplastic activity; 

however, several lines of evidence challenged this simple view, among them the antitumor 

activity of non-COX inhibitory metabolites, enantiomers and derivatives are perhaps the most 

convincing.  

The aim of the present project was to investigate a novel direct target of NSAIDs, which may 

provide a biochemical explanation of the multiplicity of the COX-independent effects. For that 

reason, molecular biology, cellular and in vivo tools, including innovative in vivo imaging and 

classical biochemical assays were applied.  

Here we identify, for the first time sirtuin 1 (SIRT1) as a direct target of NSAIDs, showing that 

inhibition of this histone deacetylase may be responsible of their COX-independent 

antineoplastic activity. In particular, we demonstrated that many NSAIDs through SIRT1 

inhibition: increased acetylation and activation of tumour suppressor p53 and increase the 

expression of antiproliferative gene p21 through SIRT1 inhibition. We showed that the 

mechanism occurs selectively in tumour tissue in cells, animal models and also in clinical 

setting. Activation of the p53 signaling produces an anti-proliferative effect, which prevents 

the early transformation steps of the mammary gland in an animal model of early breast 

cancer transformation. Increased local proliferation is not the only hallmark of cancer 

modulated by NSAIDs, interestingly our results indicate that the local immunosuppression 

promoted in the mammary gland by the exposure to a genotoxic agent can be efficiently 

counteracted by NSAIDs.  

In conclusion, this thesis presents the discovery and characterization of the new target SIRT1 

as effector of NSAIDs mediated chemopreventive activity. Our data disjoin the NSAIDs COX-

dependent anti-inflammatory activity from the SIRT1-dependent anti-tumor activity, 

therefore suggesting a novel strategy to design molecules displaying anti-neoplastic 

chemoprevetinve activity without the COX-dependent side effects.   
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Italiano 
Numerosi studi epidemiologici, sperimentali e clinici hanno proposto i farmaci 

antinfiammatori non steroidei (FANS) come promettenti agenti chemopreventivi per molti tipi 

di cancro. Tuttavia, il loro uso nel trattamento cronico è impedito dagli effetti collaterali tra 

cui eventi avversi gastrointestinali, renali e cardiovascolari, dovuti principalmente 

all’inibizione degli isoenzimi della ciclo-ossigenasi (COX). Lo sviluppo di FANS come agenti 

antitumorali, è limitato dalla mancata conoscenza del meccanismo d’azione alla base delle 

loro proprietà anticancro. L’inibizione delle COX è stata proposta come meccanismo 

responsabile, tuttavia evidenze di letteratura mettono in discussione questa visione, 

proponendo in modo più convincente, i metaboliti dei FANS che non hanno effetto su COX 

oppure i loro enantiomeri e derivati.  

Lo scopo di questo progetto era quello di studiare un nuovo bersaglio molecolare per l’azione 

antitumorale dei FANS, fornendo così una spiegazione per tutti quegli effetti indipendenti 

dall’inibizione di COX. A questo proposito sono stati utilizzati metodi di biologia molecolare, 

cellulare e in vivo, tra cui l’imaging ottico in vivo.  

Grazie allo studio svolto durante il mio dottorato è stato indentificato un nuovo bersaglio dei 

FANS, la sirtuina 1 (SIRT1). L’inibizione di questo enzima infatti, potrebbe spiegare l’attività 

antineoplastica dei FANS indipendente dall’inibizione di COX. In particolare, è stato 

dimostrato, in linee cellulari di tumore mammario, che l’inibizione di SIRT1 mediata dai FANS 

induce l’aumento dell’acetilazione e attivazione dell’oncosoppressore p53 e il conseguente 

aumento di espressione del gene p21 con azione antiproliferativa. Inoltre, l’effetto 

dell’inibizione di SIRT1 è stato dimostrato esclusivamente nei tessuti tumorali di modelli 

animali e pazienti affetti da cancro alla mammella. Nei modelli animali di carcinogenesi 

chimica utilizzati, si osserva un’iper-proliferazione a livello del tessuto tumorale. I nostri dati 

dimostrano che l’attivazione del segnale di p53, specificatamente nel tessuto tumorale, ha un 

effetto antiproliferativo, il quale impedisce al tumore di svilupparsi a partire dalle prime fasi 

di trasformazione neoplastica. L’aumento della proliferazione non è l’unica caratteristica 

tumorale modulata dai FANS. I nostri risultati indicano che l’immunosoppressione locale 

promossa dal genotossico dimetilbenzantrace (DMBA) nella ghiandola mammaria, può essere 

contrastata in modo efficace dai FANS. 

In conclusione, questo lavoro di tesi ha portato alla scoperta e alla caratterizzazione di un 

nuovo target per l’attività chemopreventiva mediata dai FANS: SIRT1. I nostri dati separano gli 

effetti dei FANS tra l’attività antiinfiammatoria mediata dall’inibizione di COX, e l’attività 
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antitumorale mediata dall’inibizione di SIRT1. Questa scoperta suggerisce quindi una nuova 

strategia per lo sviluppo di nuove molecole che mantengano l’attività antitumorale dei FANS 

senza gli effetti collaterali COX dipendenti.  
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CANCER IMPACT 
 
Cancer is a generic term for diseases in which abnormal cells dived without control and can 

invade nearby tissues (PubMed Health Glossary). Despite significant advances in early 

diagnosis and the development of molecular targets, cancer remains the leading cause of 

mortality in the Western world1,2. 

In Italy prostate, lung, colorectal, bladder and kidney cancer are the most incident in men, 

while breast, colorectal, lung, corpus uteri and thyroid cancer are the most common among 

women3 (Figure 1).  

 

 
Figure1. Cancer incidence in Italy. World Health Organization – Cancer Country Profiles, 2014. 
 

Mortality rates are influenced by incidence rates, and by the success in early diagnosis and 

treatments. New cancer cases are projected to increase in 42.47% between 2014 and 2035 

(corresponding to an average annual increase of 1.63%). Moreover, this increase is 

disproportionately projected for males (48.42%) compared with females (36.41%). These 

massive changes in the absolute number of cancer cases are mainly a result of the growing 

and ageing population4. 

 

Hallmarks of cancer 
The progressive evolution of healthy cell into a tumor cell is due to the acquisition of specific 

hallmarks that reflect the cancer phenotype. Instead, tumor formation is not the result of a 

single cell transformation, but tumor is represented by a complex tissue composed by 

different cell types, that interact with each other resulting in the expression of new functions. 

Usually, the cell journey of a normal cell towards full cancer transformation lasts several years 

and leads to the progressive acquisition of various neoplastic functions. Hanahan and 
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colleagues in 2001 have proposed six hallmarks of cancer that enable tumor growth and 

metastatic dissemination5 (Figure 2), however during the following decade this notion has 

been solidified and extended, revealing that the biology of cancers must include the 

contributions of the tumor microenvironment to tumorigenesis5. 

 

 

 
 

Figure 2. The Hallmarks of Cancer. This illustration encompasses the six hallmark capabilities, figure 
adapted from Hanahan 2011. 
 
Sustaining proliferative signaling  

Independent division and proliferation are the main characteristics of the cancer cells. A 

normal tissue regulates growth factors production and release that promote the initiation of 

mitosis and the cell cycle progression. The growth factors mostly interact with membrane 

tyrosine kinase receptor resulting in activation of pathways like cell cycle progression and cell 

growth. This condition is suppressed in the transformed cells, in fact, tumor cells are able to 

autoregulate themselves for replication. They explicate this function through several ways, 

mostly due to the genomic dysregulation6: 

• By autocrine mechanism, tumor cells synthetize molecules that activates the growth 

factor receptors. Through this action, the cancer cell stimulates cell proliferation 

(Lemmon 2010); 
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• Tumour cells stimulate the surrounding cells to synthetize growth factors necessary 

for the tumour microenvironment7; 

• By increasing the number of the growth factor receptors on the surface of the tumour 

cells, this capability induces the cell to be more responsible for the increasing level of 

ligand; 

• Somatic mutations of the transformed cells may result in constitutive receptor 

activation. This feature makes them able to activate the growth factors’ pathways8; 

• Pathways that include cytoplasmic transduction and cell division are constitutively 

stimulated by eluding the ligand dependent activation9. 

Recent studies have underlined the importance of negative feedback loops that normally 

downregulate various types of signaling resulting in the homeostatic regulation of the flux of 

signals present through the intracellular circuity10–13. Enhanced proliferative signaling is 

permitted by defects in these feedback mechanisms. The model of this type of regulation 

involves the Ras oncoprotein: the oncogenic effects of Ras do not result from a 

hyperactivation of its signaling powers; conversely, the oncogenic mutations affecting Ras 

gene compromise Ras GTPase activity, which operates as intrinsic negative-feedback 

mechanism that usually certifies that active signal transmission is transitory5.  

Cell cycle division remains tight in check via regulatory proteins, even in the presence of 

growth signalling. For that reason, the deregulation of the cell cycle and checkpoint disruption 

are crucial for cancer cells to grow14. One key regulator is the retinoblastoma (RB) protein, 

that is usually inactivated in several tumours15,16. Another key regulator is the p53, whose 

gene is the most commonly mutated in care, with over 50% of sequenced tumours17,18. P53 is 

a stress detector, sensitive to a variety of stressor like genotoxic agents, nutrient deprivation, 

and hypoxia. Ones activated p53 induces cell cycle arrest and apoptosis, thus p53 mutation 

lead the tumour cells to the hyperproliferation state.  

 

Evading growth suppressor 

Besides sustaining proliferation, cancer cells must also contrast the regulated cell death; many 

of these programs depend on the actions of tumour suppressor genes. Thanks to cancer 

research several tumour suppressors have been discovered because of their function in 

limiting cell growth and proliferation. The two typical tumour suppressors encode the RB and 

p53 proteins; they operate as headquarter within key complementary cellular regulatory 
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pathways that manage the decisions of the cells to proliferate or activate senescence and 

apoptotic programs5. Cancer cell with defect in RB and p53 pathways are missing critical 

gatekeepers of cell-cycle progression whose absence permit persistent cell proliferation. 

Instead, during cell stress or irreparable damage to such cellular subsystem, p53 can induce 

apoptosis, however p53 is highly context dependent, changing by cell type as well as by the 

severity of cell stress conditions and genomic damage. 

 

Mechanism of contact inhibition and its evasion  

Confluent cell monolayers are allowed by cell to cell contacts formed by dense populations of 

normal cells propagated in two-dimensional culture operate to suppress further cell 

proliferation. Interestingly, “this contact inhibition” is abolished in various types of cancer cells 

in culture, suggesting that contact inhibition is an in vitro model of a mechanism that is present 

in vivo to ensure homeostasis in normal tissue, one that is abolished during carcinogenesis5. 

The mechanistic basis for this growth control is not clear yet however, mechanisms of contact 

inhibition are starting to emerge. One mechanism involves Merlin, the cytoplasmic product of 

NF2 gene that is the orchestrator of contact inhibition: this occurs via coupling molecules of 

cell surface adhesion like E-cadherin, to transmembrane receptor tyrosine kinases. Thus, 

Merlin intensify the adhesion of cadherin-mediated cell to cell interaction. Moreover, by 

sequestering growth factor receptors Merlin limits their ability to efficiently promote 

mitogenic pathways19,20. Another mechanism of contact inhibition involves LKB1 epithelial 

polarity protein, that helps the maintenance of tissue integrity by organizing epithelial 

structure. LKB1 has also been identified as an onco-suppressor since it can suppress 

hyperproliferation and it is lost in certain human cancer21. 

Finally, how often these two mechanisms of contact-mediated growth suppression are 

compromised in human cancer is yet to be discovered. 
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Resisting cell death 

In the last two decades the concept that programmed cell death by apoptosis serves as a 

natural barrier to cancer development has been established by functional studies2223,24. The 

mechanism of apoptosis is induced by signalling imbalance resulting from elevated levels of 

oncogene signal and DNA damages associated with hyperproliferation. Moreover, other study 

has revealed how apoptosis is attenuated in high grade cancer that are commonly resistant to 

therapy22,23. The apoptotic machinery is composed of upstream regulators, that receiving and 

processing extracellular death-inducing signals and downstream effector components sensing 

and integrating a variety of intracellular signal22. Stimulation of apoptotic machinery 

culminates with the activation of caspases cascade responsible for the execution phase of 

apoptosis, in which the cell undergo to a progressive self-distribution process and the cell 

debris are finally internalized by the closet cells and by phagocytic cells5. Despite the cellular 

conditions that induce apoptosis remains to be fully elucidated, several abnormality sensors 

that play key roles in carcinogenesis have been identified22,23. Furthermore, tumour cells 

evolve several strategies to limit apoptosis, in fact they may reach similar scope by increasing 

expression of antiapoptotic or survival regulators, by downregulating pro-apoptotic factors, 

or by short-circuiting the extrinsic ligand-induced death pathway. The numbers of anti-

apoptotic mechanism possibly reflect the diversity of signals that promote apoptosis in cancer 

cell population encounter during their evolution to the malignant state5,25. 

 

Inducing Angiogenesis 

Angiogenesis consists in the new blood vessels formation. Endogenous local or systemic 

chemical signals manage endothelial cells and smooth muscle cells function to repair damage 

vessels, although the generation of new blood vessels is from pre-existing blood cells via 

endothelial cells sprouting26,27 (Figure 3). 

 



 14 

 

Figure 3. Angiogenesis steps. New blood vessels formation from pre-existing vessels. Figure adapted 
from Rajabi 2017. 
 

Activated endothelial cells produce proteolytic enzyme which degrade the perivascular 

extracellular matrix (ECM) and the basement membrane. Then endothelial cells proliferate 

and migrate into perivascular area. Subsequent capillary loops are formed which is followed 

by synthesis of a new basement membrane and blood vessel maturation to compete tube-like 

structures through which blood can flow28. 

Among angiogenesis modulators, vascular endothelial growth factor (VEGF) is a powerful 

agent in neoplastic tissues, in fact secretion of VEGF leads the neighbour tissues to develop 

new blood vessels and the tumour cells will be able to feed27. 

Several drugs directed against VEGF signal have been developed in recent years. In addition, 

VEGF receptor tyrosine kinase inhibitors sorafenib and sunitinib have also been approved by 

the FDA for clinical use29. However, low-dose bevacizumab, a monoclonal antibody directed 

against VEGF, is associated with the increased risk of venous thromboembolism and some 

patients with a clinical response to VEGF blockade ultimately develop progressive disease. 

Therefore, numerous studies remain committed to a deep understating of the regulatory 

mechanism of VEGF, hoping to identify other synergistic agents able to inhibit excessive VEGF 

production observed in tumour cells30. 
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Enabling replicative immortality 

Cancer cells require unlimited replicative potential in order to generate macroscopic 

tumours5. In normal cells there are two distinct barriers to proliferation: senescence, a 

typically irreversible non-proliferative but viable state, and crisis, which involves cell death. 

Several studies indicate that telomeres protecting the ends of chromosomes are centrally 

involved in the capability for unlimited proliferation31,32. 

 

Activating invasion and metastasis 

In the last two decades, it was clear that solid tumour evolved to higher pathological grades 

of malignancy through local invasion and distance metastasis. Cancer cells developed 

modifications in their morphology as well as in their attachment to other cells and to the ECM. 

The best characterized alteration regards the loss of E-cadherin by carcinoma cells, a key cell-

to-cell adhesion molecule. Increased expression of E-cadherin leads the inhibition of invasion 

and metastasis, while reduced expression was known to potentiate these phenotypes. In 

human carcinomas, the observed downregulation and inhibitory mutation of E-cadherin 

provided strong support for its role as a key suppressor of this hallmark capability5,33,34. 

Invasion and metastasis multistep processes have been described as a consequence of 

different steps, called the invasion-metastasis cascade35,36. This process consists in a 

succession of cell biologic changes, starting with local invasion, then intravasation by cancer 

cells into nearby blood and lymphatic vessels, transit of cancer cells through the lymphatic 

and hematogenous systems, followed by outflow of cancer cells from the lamina of this vessels 

into the parenchyma of distant tissues, the formation of small nodules of cancer cells and 

finally the growth of micro-metastatic into macroscopic tumours, this last phase is termed 

“colonization”5. 

Moreover, the developmental of a specific regulatory program termed epithelial-

mesenchymal transition (EMT), has become prominently implicated during the process 

through which epithelial cells can acquire abilities to invade, to resist apoptosis and to 

disseminate37–41. Carcinoma cells can, in the same time, acquire multiple attributes that 

enable invasion and metastasis by co-opting a process involved in embryonic morphogenesis 

and wound healing steps. 
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Enabling characteristic and emerging hallmarks 
Hanahan and Weimberg have defined the hallmarks of cancer as acquired functional 

capabilities that allow cancer cells to survive, proliferate and disseminate; these functions are 

acquired in different tumour types at various time during the course of carcinogenesis. Their 

acquisition is made possible by two enabling characteristics (Figure 4): 

• Development of genomic instability that caused random mutations including 

chromosomal rearrangements. Among these are the rare genetic changes that can 

generate hallmarks capabilities. 

• Inflammatory state of preliminary malignant lesions that is driven by immune system 

cells, in this case tumour cells promote inflammation.  

Then other two emerging hallmarks of cancer cells have been proposed to be functionally 

important for the development of cancer5,42–44 (Figure 4). The first involves major 

programming of cellular energy metabolism in order to support continuous cell growth, 

replacing the metabolic program that operates in most normal tissues and fuels the 

physiological operations of the associated cells. The second involves active evasion by cancer 

cells from attack and elimination by immune cells; this capability highlights the dichotomous 

roles of an immune system that both antagonized and enhances tumor development and 

progression5. 

 

 
Figure 4. Emerging hallmarks and enabling characteristics. Figure adapted from Hanahan 2011. 
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Cancer immunoediting 

Cancer immunoediting is a multistep mechanism described for the first time by Dunn et al. in 

2004. Cancer immunoediting is a dynamic process by which the immune system attempts to 

destroy tumors, and it comprises three stages: elimination, equilibrium, and escape45,46. 

During the early stages of this process, immune-surveillance related lymphocytes (CD8+ T 

cells, CD4+ type-1 T-helper cells, and natural killer cells) are able to recognize and eliminate 

malignant cells, thus efficiently counteracting cancer proliferation. In the long-lasting 

equilibrium stage, tumor cells also begin to undergo a Darwinian selection which progressively 

favors the proliferation of the malignant clones that are more likely to evade immune 

recognition and elimination through the adoption of several biological strategies: tumor cells 

“become” invisible to host recognition and thus acquire the capacity to grow 

progressively45,47. Tumor cell escape may result from the establishment of an 

immunosuppressive state within the tumor microenvironment48. Tumor cells can promote the 

development of such a state by producing immunosuppressive cytokines such as VEGF, 

transforming growth factor-b(TGF-b), galectin, or indoleamine 2,3-dioxygenase (IDO) and/or 

by recruiting regulatory immune cells that function as the effectors of immunosuppression49. 

Regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) are two major types 

of immunosuppressive leukocyte populations that play key roles in inhibiting host-protective 

antitumor responses45. In addition, the overexpression of immune-checkpoint molecules, 

such as programmed cell death ligand-1/2 (PD-L1/PD-L2), vanishes the activity of immune cells 

which eventually still recognize transformed cells. The uncontrolled proliferation of Tregs and 

MDSCs as a consequence of the release of interleukin (IL)-10, IL-35, and TGF-β operated by 

cancer cells further contributes to the development of a strongly immunosuppressive 

microenvironment47,50. 

Solid tumors recruit also leukocytes and the major component of the infiltrate are 

macrophages, in all tumours51. Circulating precursors that are recruited into tumor tissues and 

subsequently differentiate into tumour-associated macrophages (TAMs) include conventional 

inflammatory monocytes and monocyte-related myeloid-derived suppressor cells 

(M-MDSCs). Chemoattractants involved in monocyte recruitment include chemokines (such 

as CCL2 and CCL5), and cytokines (for example, CSF-1 and members of the VEGF family), 

however TAMs themselves can be a source of CCL2 in cancer52,53. Indeed, such chemotactic 

factors act as more than attractants because they activate transcriptional programs that 
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contribute to the functional skewing of macrophages towards specific phenotypes54. CSF-1, in 

particular, is a monocyte attractant as well as a macrophage survival and polarization signal 

that drives TAM differentiation towards an immunosuppressive, tumour-promoting ‘M2-like’ 

phenotype51,55. Signals originating from tumour cells, T lymphocytes and B lymphocytes, and 

stromal cells influence TAM function and diversity. Classically activated ‘M1’ macrophages can 

kill tumour cells via extracellular mechanisms and thereby mediate tissue-destructive 

reactions involving the walls of blood56. 

TAMs can also promote the immunosuppressive activity of regulatory T (Treg) cells through a 

bidirectional interaction. With regard to the mechanisms underlying these effects, in the 

tumour context, macrophages produce immunosuppressive cytokines (IL-10 and TGFβ)51. In 

addition, the profile of amino acid metabolism by M2 or M2-like macrophages and TAMs 

results in metabolic starvation of T cells owing to the activity of arginase and/or the 

production of immunosuppressive metabolites via IDO pathway57. Moreover, prostaglandins 

produced by TAMs via arachidonic acid metabolism have immunosuppressive effects58. 

Finally, TAMs often express PD-L1 and PD-L2, which trigger the inhibitory PD-1-mediated 

immune checkpoint in T cells, as well as B7-H4 and VISTA, which might have similar 

functions59. 

Progress has been made in defining the molecular pathways involved in orchestration of 

tumorigenic mechanisms of both cancer cells lymphocytes and macrophages.  
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Breast cancer 

Breast cancer is the most common cancer in women worldwide, in 2017, an estimated 

252,710 new cases of invasive breast cancer will be diagnosed in US (American Cancer Society, 

Breast Cancer Facts and Figures 2017-2018). The latest census in Italy estimates 373 thousand 

cases that places breast cancer in the leading position among the most diffuse. 

Advanced age is the biggest risk factor for breast cancer, moreover reproductive factors that 

increase exposure to endogenous estrogen, such as early menarche and late menopause, 

increase the risk, as does the use of combination estrogen-progesterone hormones after 

menopause (PDQ Cancer Information Summaries 2018). Women with a family history or 

personal history of invasive breast cancer, ductal carcinoma in situ or lobular carcinoma in 

situ, or a history of breast biopsies that show benign proliferative disease have an increased 

risk of breast cancer60–63.  

Moreover, increased breast density in mammography images has been associated with 

increased risk. This is often a heritable trait but is also seen more frequently in nulliparous 

women, women whose first pregnancy occurs late in life, and women who use 

postmenopausal hormones and alcohol (PDQ Cancer Information Summaries 2018). There are 

several types of breast cancer, divided in two broad categories: invasive and noninvasive. 

Moreover, genomic approach led to a more specific classification of breast cancers, based on 

their genetic phenotype (Figure 5). 

 

 
Figure 5. Breast cancer characterization. According to the status of ER, PR, HER2, breast cancer is 
classified as luminal A, luminal B, HER2 positive, and triple negative.  
 

In situ carcinoma, are classified on the basis of the different site of tumor growth: 

• Ductal carcinoma in situ (DCIS) is the most common, with the 83% of in situ cases 

diagnosed during 2010-2014. It refers to a condition in which abnormal cells replace 

the normal epithelial cells that line the breast ducts and may greatly expand the ducts 
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and lobules. DCIS may or may not progress to invasive cancer; in fact, sometimes DCIS 

grows so slowly that even without treatment it would not affect a woman’s health. 

Long-term studies of women whose DCIS was untreated because it was originally 

misclassified as benign found that 20%-53% were diagnosed with an invasive breast 

cancer over the course of 10 or more years64–69. 

• Lobular carcinoma in situ (LCIS). This type of in situ breast cancer refers to abnormal 

cells growing within and expanding some of the lobules of the breast. LCIS is generally 

not thought to be a precursor of invasive cancer but is a strong risk factor for 

developing invasive cancers.  

Invasive breast cancers are the most representative (80%), they originated and growth in 

ducts or glands, then they acquire the capability to go into surrounding breast tissue. There 

are more than twenty distinct histological subtypes and at least four different molecular 

subtypes that differ in terms of risk factors, presentation, response to treatment, and 

outcomes69–71. Classification of breast cancer in different molecular subtypes have been 

achieved using biological markers, that include the presence or absence of hormone (estrogen 

or progesterone) receptors (HR+/HR-) and high expression levels of human epidermal growth 

factor receptor 2 (HER2, a growth-promoting protein) and/or the presence of extra copies -

measured by gene amplification- of the HER2 gene (HER2+/HER2-) 69,72: 

• Luminal A (HR+/ HER2-). Luminal A tumors are more responsive to hormone therapy, 

thus they are associated with the most favorable prognosis in the short term73,74. 

• Triple negative (HR-/ HER2-). They are estrogen receptora (ERa) negative, 

progesterone receptor (PR) negative and HER2 negative and are also common in 

premenopausal women whom express BRCA1 gene mutation75. About 75% of triple 

negative breast cancers fall in to the basal-like subtype defined by gene expression 

profiling. They have a poorer short-term prognosis than other subtypes, unfortunately 

there are currently no targeted therapies for these tumors76. 

• Luminal B (HR+/ HER2+). This type of breast cancers is positive to the hormone receptor 

and are further classified as being highly positive for ki67 (marker for actively dividing 

cells) or HER2. Luminal B breast cancers are associated with poorer survival than 

luminal A cancer74. 

• HER2 positive (HR-/ HER2+). HER2-enriched cancers tend to grow and spread more 

aggressively than other subtypes and are associated with poorer short-term prognosis 
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compared to hormone positive breast cancers74. However, the introduction of 

Trastuzumab, a very powerful targeted therapies for HER2-enriched cancers has 

improved outcomes for these patients. 

Breast cancer treatment is addressed to the specific subtype, although highly needed and still 

lacking is a targeted therapy for breast cancer chemoprevention. 

 

Breast cancer prevention 

There is not a sure way to prevent cancer, certainly keeping a healthy life style might lower 

this risk.  For women with a higher risks of breast cancer, chemopreventive drugs are available 

for the prevention of relapses after surgery, but the balance between benefits and harms is 

not in favoring their use in healthy patients at high risk of developing a mammary neoplasia. 

The most used drugs for breast cancer prevention and treatment are selective estrogen 

receptor modulators (SERMs), they have features that can act as estrogen agonist or 

antagonist, depending on the target tissue77.  Tamoxifen is the pioneering medicine78 because 

is the precursors of the targeted treatments for cancer acting as ERa inhibitor in mammary 

cancer cells79. Initially, it was found to have a low affinity for estrogen receptor in vitro80, 

however tamoxifen acts as a prodrug and is rapidly converted in the liver to a metabolite with 

high affinity and efficiently inhibiting ERa 79,81. 

Several clinical trials were carried out to test the tamoxifen chemopreventive applications, the 

two most relevant are: The National Surgical Adjuvant Breast and Bowel Project (NSABP) 

initiated the Breast Cancer Prevention Trial (P-1) in 199382 and The International Breast Cancer 

Intervention Study (IBIS-I), was an international phase III chemoprevention trial comparing 

tamoxifen vs. placebo (IBIS investigator 2002).  Taken together they reported that tamoxifen 

was able to lower the risk of developing ER-positive breast cancer in patients without a 

personal history of breast cancer, however the chemopreventive activity on breast cancer 

comes at the expense of well documented side effects, including an approximately 2-5 fold 

increase in uterine cancer83,84, and 2–3 fold increase in thromboembolic disease but only in 

postmenopausal women. In addition, increased menopause symptoms, vaginal discharge and 

ocular abnormalities were reported in tamoxifen groups. All together the results suggested 

that chemoprevention with tamoxifen for high risk premenopausal women79,85. 
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Non Steroidal Anti-inflammatory Drugs (NSAIDs) 

As previously mentioned, despite emerging discovery in diagnosis and the development of 

specific molecular targeted drugs, cancer still remain the leading cause of mortality in the 

western world2,86. Individuals with precancerous lesions and high-risk populations are 

recommended to follow pharmaceuticals or dietary intervention in order to inhibit disease 

progression, however, the increasing chemopreventive strategies mandates safety and 

efficacy. NSAIDs are among the most promising chemopreventive agents for different cancer 

types and could give an important contribution to the control of neoplasia development 

especially in high risk groups87; a number of in vivo preclinical data demonstrated the cancer-

protective activity of these drugs88–92 and clinical studies assessed the protective effects of 

chronic or transient intraoperative treatments93–96. However, the use of NSAIDs in the 

treatment of a relatively healthy, at risk population is limited by the potentially serious 

adverse gastrointestinal and cardiovascular events.  

 

NSAIDs classification 

Non steroidal anti-inflammatory drugs are a chemically diverse family of drugs commonly 

used clinically to treat a variety of inflammatory conditions. A number of these drugs possess 

antipyretic activity in addition to having analgesic and anti-inflammatory action, and thus have 

utility in the treatment of pain and fever. Their anti-inflammatory activity is attributed to the 

cyclooxygenase (COX) inhibition97, the enzyme that catalyze the arachidonic acid conversion 

into prostaglandin H2, the precursor for the synthesis of eicosanoids that include 

prostaglandins (PG), prostacyclin, and thromboxane A2. Inflammation, pain and fever are 

promoted by the three major PG products of COX activity, PGE2, PGD2, and PGF2a
86

 . As first, 

Vane showed that aspirin inhibits inflammation by suppressing PG synthesis98, however its 

COX inhibitory action responsible of this effect was later shown99. Eicosanoids, besides the 

role in inflammation, are critically involved in the homeostatic maintenance of gastrointestinal 

mucosa, blood clotting, regulation of blood flow, and kidney function. There are two isoforms 

of COX, COX-1 and COX-2 (Smith 1996, book), the first one is constitutively expressed in most 

tissues, whereas COX-2 is induced by inflammatory stimuli, mitogens, or growth factors, and 

is usually related with pathologic processes100. Usually NSAIDs inhibit both COX-1 and COX-2, 

however most of them are selective inhibitor of COX-1 such as aspirin, ketoprofen, 

indomethacin, sulindac, ibuprofen, diclofenac, while some others may be considered slightly 
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selective for COX-2 as etodolac, nabumetone and meloxicam101. The identification of COX-2 

as the main mediator of inflammation, led to development of a new class of COX-2 selective 

inhibitors (coxibs) to elude gastrointestinal and renal toxicities associated with nonselective 

NSAIDs86. However, coxibs were later found to increase the risk of heart attack and 

stroke102,103, resulting in the concept that all NSAIDs have risks of cardiovascular side effects.  

In general, NSAIDs structurally consist of an acidic moiety (carboxylic acid, enols) attached to 

a planar, aromatic functionality (Figure 5). Moreover, some analgesics also contain a polar 

linking group, which attaches the planar moiety to an additional lipophilic group.  

 

 

 

Figure 5. NSAIDs general structure. Figure adapted from DeRuiter 2002. 
 

NSAIDs are characterized by chemical and pharmacologic properties and can be classified in: 

• Salicylates 

• Propionic Acids (Profens) 

• Aryl and Heteroarylacetic Acids 

• Oxicam (Enolic Acids) 

• Phenylpyrazolones 

• Anilides 

 

Salicylates 

This subclass are derivates of 2-hydroxybenzoic acid (salycilic acid) that was replaced 

therapeutically in the late 1800s by the acetylated derivate, acetylsalicylic acid (ASA) or 

aspirin. Therapeutic utility is enhanced by esterification of the phenolic hydroxyl group in 

aspirin, and by substitution of a hydrophobic/lipophilic group at C-5 as in diflunisal (Figure 6): 
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Figure 6. Salicylates Structure. Figure adapted from DeRuiter 2002. 
 

The salicylates have potent anti-inflammatory activity with mild analgesic and antipyretic 

activities. These compounds are selective COX-1 inhibitor. Their toxicity includes 

gastrointestinal irritation, hypersensitivity reactions, inhibition of platelet aggregation. 

Therapeutic and toxic effect of aspirin could be ascribed to the COX irreversible inhibition in 

several tissues and to its ability to participate in trans-acetylation reaction in vitro104.   

 

Propionic Acid Derivates (Profens) 

Propionic acid derivatives are often referred as “profens” based on the suffix of the prototype 

member, ibuprofen. Arylpropionic acids are characterized by the general structure Ar-

CH(CH3)-COOH, the a-CH3 substituent present in the profens increases COX inhibitory activity 

and reduce the toxicity.  
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Figure 7. Propionic acid derivatives structure.  
 
These compounds are anti-inflammatory agents with analgesic and antipyretic activity. 

Naxoprofen appears to be more selective for COX-2 than other members of the series. They 

are indicated for the treatment of rheumatoid arthritis, osteoarthritis and as analgesics and 

antipyretics. They should not be used during pregnancy or nursing because they can enter in 

fetal circulation and breast milk. They may cause thrombocytopenia, headache, dizziness, fluid 

retention edema.  

 

Aryl and Heteroarylacetic Acids 

Heterocyclic acetic acids are acetic acid derivatives with the substituent at the 2-position is a 

heterocycle or related carbon. 

Indomethacin inhibit both COX-1 and COX-2 and it has produces anti-inflammatory, analgesic 

and antipyretic activity. It is used for rheumatic disease105, to suppress uterine contraction 

(preterm labor)106, and in premature infants with patent ductus arteriosus107. 
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Figure 8. Indometacin structure.  

 

Another compound of this class is Sulindac, a prodrug (Figure 9), that is converted in vivo in 

the liver to an active sulfide compound by liver enzymes108. Sulindac is reduced to sulindac 

sulfide (S-sulfide) (Figure 9) which has analgesic and anti-inflammatory activities. Then 

sulindac sulfide is converted back to sulindac and further to sulindac sulfone, which is inactive 

on COXs but it has been recognized as a promising antiproliferative agent in colon cancer109–

112. Sulindac is also indicated for acute or long-term use for osteoarthritis, rheumatoid 

arthritis, ankylosing spondylitis, acute painful and acute gouty arthritis.  

 
Figure 9. Chemical structure of Sulindac, Sulindac sulfide and Sulindac sulfone. Figure adapted from 

Gurpinar 2013. 
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Ketorolac is a synthetic pyrrolizine carboxylic acid derivative with anti-inflammatory, analgesic 

and antypiretic activities. It inhibits both COX-1 and COX-2, however the effect on COX-2, that 

is up-regulated at inflammation sites, prevents conversion of arachidonic acid to 

proinflammatory prostaglandins. The inhibition of COX-1 is correlated with gastrointestinal 

toxicity, nephrotoxicity, and the inhibition of platelet aggregation (DrugBank). 

Diclofenac is a phenylacetic acid, its structure is composed by two chlorine atoms, produce 

maximal twisting of the phenyl ring resulting in a well fit in the binding pocket of COX 

enzyme113,114. Diclofenac is a COX-1 and COX-2 inhibitor and it has potent analgesic and anti-

inflammatory properties115–118.  

 

                         
 

Figure 10. Ketorolac and Diclofenac structures.  
 

Oxicam 

Oxicams are a class of NSAIDs related to the enolic acid class of 4-hydroxy-1,2-bezothiazine 

carboxamides, the first member of this class is piroxicam (Feldene), introduced by Pfizer in 

1982119. After piroxicam, other oxicams were introduced including isoxicam, meloxicam, 

tenoxicam and lornoxicam. They are indicated to the treatment of acute and chronic 

inflammation by inhibiting both COX-1 and COX-2 enzymes.  
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Figure 11. Piroxicam and Meloxicam structures.  
 

Phenylpyrazolones 

Phenylpyrazolones are a class of compounds characterized by the 1-aryl-3,5-

pyrazolidinedione structure. Phenylbutazone and oxyphentobutazone are NSAIDs, antypiretic 

compounds useful in the management of inflammatory conditions (PubChem, DrugBank). 

 

 

 
Figure 12. Phenylbutazone and Oxyphenbutazone structures.  
 

COX-2 Selective inhibitors 

To avoid the side effects due to the COX-1 inhibition, COX-2 selective inhibitors were 

developed120.  

Celecoxib is a COX-2 selective inhibitors with anti-inflammatory, analgesic and antipyretic 

properties. It is also indicated for the treatment of osteoarthritis, rheumatoid arthritis, 

ankylosing spondylitis and acute pain121–123. Interestingly, celecoxib has shown 

chemopreventive activity as an adjunct to surgery to reduce the number of adenomatous 

colorectal polyps in patient with familial adenomatous polyposis124–126. 
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Figure 13. Celecoxib chemical structure. 

 

Anilides 

The most representative compound of this class is N-acetyl-para-aminophenol also called 

acetaminophen or paracetamol (Figure 14). It has analgesic and antipyretic properties, 

however despite the typical NSAIDs it does not possess anti-inflammatory activity127. Years of 

studies reveal that paracetamol is a preferential inhibitor of COX-2 enzyme, however, its effect 

depends to a great extent on the state of environmental oxidation and reduction128,129. 

 
Figure 14. Acetaminophen (Paracetamol) chemical structure. 

 

Nimesulide 

Nimesulide is a 4-nitro-phenoxymethane-sulfonanilide (Figure 15) and for this reason, it 

belongs to the class of compounds sulfonanilide, unique for anti-inflammatory drugs. 

Nimesulide has good anti-inflammatory, analgesic and antipyretic properties. In addition, it is 

prescribed for arthritic disorders, musculoskeletal diseases, headache, gynecological and 

urological problems, post-surgical and cancer pain, vascular disease and airways 

inflammation130. 
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Figure 15. Nimesulide chemical structure 

 

NSAIDs chemopreventive activity 

In the last decades epidemiological and preclinical studies suggested that prolonged 

exposition to NSAIDs prevents the onset of cancer90–92,94,96,131. Clinical studies reported that in 

several types of cancer, NSAIDs protect high-risk group after long-term treatment or even 

after short-term exposition during operative analgesia87,93–96,132. Although these compelling 

evidence of NSAIDs anti-tumor activity, their use for cancer prevention in not recommended 

because of gastrointestinal, renal and cardiovascular side effects due to the COXs inhibition. 

Moreover, NSAIDs chemopreventive mechanism has not been fully elucidated, because of its 

complexity that involve multiple effects on cancer cells and their microenvironment86. Several 

mechanisms of action have been proposed to explain the antitumor properties of this 

structurally heterogeneous class of compounds: first of all, inhibition of COX-2 enzyme was 

proposed, however several studies have concluded that alternative targets may be 

involved1,133–135. The new targets that has been proposed include the modulation of cancer-

related pathways (e.g. WNT/b-catenin or cGMP/PDE), the activity of transcription factors (e.g. 

p53, PPARg, PPARd, SP1, NFkB, RXR) and enzyme (AMPK, carbonic anhydrase, Ca++ ATPase, 

MMPs) involved in carcinogenesis. The hypothesis of COX-independent mechanism 

responsible of NSAIDs chemopreventive activity is supported by studies showing that NSAID 

metabolite or derivative that lack COX-inhibitory activity can retain antitumor activity. 

Sulindac sulfone (exisulind) is a protoptypical example of a non-COX-inhibitory NSAIDs 

derivative able to induce adenoma regression in familial and sporadic adenomatous polyposis, 

and to inhibit the formation of multiple tumor types in several preclinical studies1,92,136–139.  
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Intraoperative Ketorolac delay breast cancer recurrence 

One of the most intriguing clinical evidence of NSAIDs’ chemopreventive action was reported 

by Forget and collaborators for Ketorolac93. They analysed the follow up of breast cancer 

patients treated with ketorolac or opiates as analgesic protocol during surgery. In this 

epidemiological study the showed that intraoperative administration of ketorolac was 

associated with significantly superior disease-free survival in the first 24 months after surgery. 

The expected prominent early relapse risk peak was completely absent in the ketorolac group 

(Figure 16). The few events in the ketorolac group showed a small bump in the first 10 months 

and then slowly rising until the 4th year when follow-up of this series end-up. After 24 months, 

the ketorolac group hazard rate pattern was indistinguishable from the corresponding pattern 

for the no-ketorolac group.  

 
 
Figure 16. Data from Universite catholique de Lou-vain in Brussels, Belgium93. Relapse hazard is shown 

for mastectomy patients given ketorolac or not. Figure adapted from Retsky et al. 2013. 

These data and other epidemiological studies demonstrated the association of intraoperative 

ketorolac with a dramatic reduction of the recurrences and overall survivals140. 

More recently, Desmedt and colleagues validate these findings. The results of their study 

showed that the reduction of distance recurrences of breast cancer significantly correlated 

with ketorolac intra-operative administration especially in those patients with increased body 

mass index (BMI)132. All these data are identifying ketorolac as a promising molecule for cancer 

prevention. However how ketorolac prevents the early relapses pick is not clear yet. 
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Understanding the mechanism underlying the keotorolac anti-tumour effects will reveal new 

pharmacological targets for the development of safer chemopreventive therapies.   

 

Aspirin increase P53 acetylation in breast cancer cell line 

Several mechanisms for NSAIDs chemopreventive activity alternative to COX inhibition were 

proposed: Alfonso and collaborators104 showed that aspirin treatment in breast cancer cell 

line MDAMB-231, promotes p53 acetylation at residue K382 in a dose dependent manner 

(Figure 17).  

 

Figure 17. Aspirin acetylates p53 protein. Cells were left untreated or treated for 8 h with different 
concentrations of aspirin as indicated, lysates prepared and immunoblotted with anti-acetyl p53; anti-
p53 antibody and anti-ß-actin antibodies. Figure adapted from Alfonso et al. 2009. 

Moreover, they published that the increased acetylation induced by aspirin correlated with 

increasing transcriptional activity of p53, increase expression of its target gene p21 and 

increased p53-mediated apoptosis104. These observations were the starting point of our 

current work leading us to hypothesized that increased acetylation of p53 was actually a 

common mechanism shared by ore anti-inflammatory drugs.  
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Sirtuin 1 role in cancer 

Sirtuins are class III histone deacetylase enzyme NAD+ dependent141,142. These proteins have 

been shown to play a role against aging in a broad range of organism, from yeast to 

mammals143. Sirtuins activation is known to counteract the progression of ageing related 

disease, including neurodegeneration, diabetes, cardiovascular diseases and cancers142,144. 

The most studied member of sirtuins is the sirtuin 1 (SIRT1), which is activated during 

starvation and deacetylate various substrates, including histones, transcription factors, DNA-

repair factors and signalling proteins145,146. SIRT1 has an important role in cell fate by 

deacetylating key regulators of inflammation, apoptosis and hypoxia such as NFkB, p53 and 

HIFs147–149.  

However, several studies reported a dual role of SIRT1 in cancer. It was shown to have both 

tumor-suppressor and oncogenic activity with somewhat controversial findings on different 

tumours and in different contexts. Indeed, SIRT1 expression is significantly different 

depending on tumour type150. In leukemia and lung cancer SIRT1 expression is significantly 

higher150–152, while in prostate, bladder, ovarian cancers and glioblastoma present had a lower 

SIRT1 expression compared with normal tissues153 . On the contrary, Huffman and colleagues 

found that the expression was higher in prostate cancer compared to a control group 

(Huffman 2007). The controversial role and expression of SIRT1 on the different type of cancer 

has been proposed to be dependent on the microenvironment150. 

Interestingly, by studying SIRT1 in breast cancer cells Jin and colleagues showed that the 

protein level was significantly increased in breast cancer tissues in comparison to adjacent 

normal breast tissues. They also reported that SIRT1 was up-regulated in breast cancer cell 

lines compared to normal breast epithelium cell line MCF10A, suggesting SIRT1 as oncogenic 

factor in breast cancer. 
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Tumour suppressor P53 

The tumour suppressor p53, is a key transcription factor activated in response to several 

cellular stress resulting in inducing cell apoptosis and senescence. Functional inactivation or 

mutation of p53 is a common feature of human cancers154,155. Activation of p53 has been 

proposed as attractive cancer therapeutic strategy156, mediated by DNA damage drugs or 

through regulation of protein expression and acetylation. Several p53 regulators have been 

identified, including the mouse double minute 2 homolog (MDM2), a negative regulator of 

p53 acting through degradation of the p53 protein via the ubiquitin-proteasome pathway or 

by directly blocking the p53 transactivation domain155. Many cancer therapies have been 

designed for p53 activation, through prevention of MDM2 mediated degradation or by 

inhibiting SIRT1 catalysed p53 deacetylation155,156 (Figure 18). SIRT1 can strongly deacetylate 

and inhibit p53 in vitro and in vivo. SIRT1 mediated inhibition of p53 was shown to control the 

transcriptional activity of the oncosuppressor and the consequent activation of apoptosis in 

response to DNA-damage. In particular SIRT1, in presence of NAD, deacetylates the lysine 382 

situated in the C-terminal regulatory domain of p53 protein155. 

 

 
 

Figure 18. p53 activator scheme. A general scheme for p53 activator via reduction of MDM2 
expression and SIRT1 inhibitors. New inhibitors could have double effect on SIRT1 and MDM2: inhibit 
SIRT1 and permit p53 increasing acetylation and activation, and they could also increase p53 by 
reducind MDM2 expression. Figure adapted from Park 2016.  

 

1 



 35 

 

 

 

 

 

AIM 
  



 36 

Cancer incidence is projected to increase worldwide particularly in view of the ever-increasing 

population lifespan; novel strategies for prevention are therefore needed to decrease the 

personal, social and economic burden of this disease.  

Non steroidal anti-inflammatory drugs are a chemically heterogeneous class of drugs 

commonly used clinically to treat a variety of inflammatory conditions. Several 

epidemiological, clinical and experimental studies established NSAIDs as the most promising 

chemopreventive agents87. A number of in vivo preclinical data demonstrated the cancer 

protective activity of ketorolac in chronic or transient intraoperative treatments94,132. 

Anticancer activity of NSAIDs is commonly attributed to COX-2 because of its higher 

expression in tumour tissues however, several lines of evidence challenged this simple view, 

including metabolites, enantiomers and derivatives1 of NSAIDs that retain the anti-tumor 

activity without COX inhibition. In particular, the most characterized molecule of this type is 

sulindac sulfone (exisulind), a sulfone metabolite of sulindac. Exisulind lacks inhibitory activity 

on the two isoforms of cyclooxygenase, while displaying the ability of inducing a significant 

adenoma regression in familial or sporadic adenomatous polyposis, when evaluated in clinical 

trials124. Notwithstanding these positive clinical data, exisulind did not receive FDA approval 

because of its hepatotoxicity. Presently, the development of novel safer chemopreventive 

NSAIDs or derivatives is hampered by the lack of a clear picture concerning the mechanism of 

their anti-neoplastic effects.  

Previous data showed that aspirin treatment promotes p53 acetylation at residue K382, 

increases the expression of p21 and induces apoptosis in the MDAMB-231 breast cancer cell 

line104. Aspirin treatment mediates activation of p53 through the increased acetylation of 

lysine 382 residue, which is deacetylated and negatively regulated by SIRT1. On the basis of 

these literature data, we hypothesized that NSAIDs could have a similar activity of aspirin on 

p53, thus we decided to study the interplay between these drugs, SIRT1 and p53 in the onset 

of breast cancer.  

The aim of my PhD project was to investigate SIRT1 as novel potential target of NSAIDs, which 

could provide a biochemical explanation of the multiplicity of the COX-independent effects 

ascribed to NSAIDs and their metabolites, enantiomers and derivatives. This study, indeed 

identified SIRT1 as a direct target of NSAIDs, therefore disjoining the COX-dependent anti-

inflammatory from the chemo-preventive activity of these drugs. This finding may contribute 
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to design novel molecules displaying anti-neoplastic activity without the COX-dependent side 

effects, which are currently hampering the use of NSAIDs as chemopreventive agents. 
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MATERIALS AND METHODS  
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Reagents 
Unless otherwise specified reagents were purchased from Sigma-Aldrich. 

 

Cell lines 
MDAMB-231 and MCF-7 breast cancer cell lines were purchased from the American Type 

Culture Collection (ATCC) and grown in RPMI 1640 medium (Life Technologies) supplemented 

with 10% Fetal Bovine Serum (FBS) (Sigma-Aldrich) and streptomycin-penicillin (50,000 IU plus 

50 mg/l) (Gibco, Life Technologies). 

hTERT-HME1 breast cancer cell lines were purchased from ATCC and grown in Dulbecco’s 

Modified Eagle’s Medium (Life Technologies) supplemented with 10% FBS (Sigma-Aldrich), 0.5 

ng/ml hydrocortisone (Sigma-Aldrich), 0.1% insulin (Sigma-Aldrich), 100ng/µl Endothelial 

Growth Factor (EGF) (Sigma-Aldrich) and streptomycin-penicillin (50,000 IU plus 50 mg/l) 

(Gibco, Life Technologies). 

 

P300, Sirt1 and COXs activity assay 
The enzymatic activity of rhP300 was measured in the presence of increasing concentration 

(4.4-13.3-40-120 μM) nimesulide by using a commercial kit (Perkin-Elmer Life Sciences) based 

on the transfer of a radioactive 3H-acetyl from 3H-acetyl-CoA to a histone peptide; after the 

transfer the peptides are separated by a paper chromatography according to the 

manufacturer instructions. The amount of radioactivity incorporated by the peptides was 

determined with a β-counter. 

The effect of increasing concentrations of NSAIDs, nicotinamide and exisulind on SIRT1 

deacetylase activity was studied by using SIRT1 Activity Assay Kit (Fluorometric) (ab156065).  

In addition, SIRT1 activity was also measured with a bioluminescent assay157  (SIRT1-GLO 

assay, Promega) according to the manufacturer’s instructions. Briefly, rhSIRT1 was incubated 

in the presence of NAD and of an acetylated SIRT1 substrate peptide covalently linked to 

luciferin (GLO). SIRT1 deacetylates the substrate peptide unmasking a site for a subsequent 

peptidase reaction, which can thus release free luciferin from the substrate: the amount of 

luciferin in the mixture is proportional to the deacetylase enzymatic activity and can be 

quantified by measuring the photon emission upon addition of the luciferase enzyme to the 

reaction mixture. 

The effect of increasing concentrations of the new compounds RB2, RB4 and RB7 on COX1 and 

COX2 activity was studied by using COX Fluorescent Activity Assay Kit (Cayman 700200). 
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Quantitative measurement of SIRT1 activity in 5 μg of MDAMB-231 cell lysate cell lysates was 

carried out with a commercial kit (ab156065, Abcam) according to the manufacturer’s 

protocol (Dell’Omo 2018 under revision). 

 

Western blotting 
Protein extracts were obtained by suspending pellet of cells in lysis buffer (10 mM Tris-Hcl, pH 

7.4, 150 mM NaCl, 15% glycerol, 1% Triton-X-100, 1 mM sodium orthovanadate, 10 μg/ml 

leupeptin, 10 μg/ml aprotinin, 1 mM NaF, protease inhibitor cocktail and 1 mM PMSF), 

disrupting cell membranes by freezing and thawing and collecting supernatant after 30 min 

minifuge centrifugation at the maximal speed. 15 μg of protein extracts were separated in a 

PAGE. After transfer, nitrocellulose membranes were incubated with specific antibodies 

overnight at 4°C and then with the secondary antibody conjugated with peroxidase for 1 h, at 

room temperature. Immunoblot assays were carried out using specific antibodies. The 

primary antibodies used were: acetylated p53 (Lys379 Cell Signaling 2570S), total p53 (Ab-7 

Abcam), HIF1α (BD Bioscience 610958), β-actin (Sigma). Immunoreactivity was detected with 

an ECL Western Blotting Analysis System (Amersham) according to the manufacturer's 

instructions (Amersham).  

 

P53 deacetylation assay 
The SIRT1 deacetylase activity was tested on the K382 residue of native p53 present in the 

protein extract of MDAMB-231 cells pre-treated with 20 μM etoposide. rhSIRT1 (final dilution 

1:60 from ab156065), 200 μM NAD and 270 μM inhibitors (NSAIDs or exilusind) were added 

to 15 μg protein extract of MDAMB-231, incubated for 30 min at room temperature and 

stopped with the addition of Laemmli’s sample buffer. The entire reaction was loaded on a 

PAGE for immunoblot analysis; immunodetection was carried out using specific antibodies 

recognizing acetylated p53 (K382 residue) or total p53.  

 

Stable transfection  
MDAMB-231 cell clones that stably express a siRNA targeting human SIRT119 was generated 

by co-transfecting 1 μg pBABE SIRT1 siRNA (kindly provided by Prof. D.A. Sinclair) or 1 μg 

pBABE empty vector as a control, together with 1 μg renilla luciferase pRL-TK (E2241 Promega) 

and 0.1 μg pSV2Neo carrying the neomycin resistance for clone selection. Cells were 

transfected with Lipofectamine 2000 (Thermo Fisher) according to the manufacturer's 
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protocol. 48 hours after transfection different dilution (from 1*106 to 1*105/petri) of cells 

were seeded in petri dishes. After 3 weeks in selection medium containing 600 μg/ml G418, 

single clones were picked and tested for Renilla luciferase expression with an enzymatic assay 

on protein extract carried out according to manufacturer’s protocol (Renilla-Glo Luciferase 

Assay System, Promega). Clones with higher levels of luciferase expression were further 

expanded and tested for SIRT1 expression by western blot analysis. Two clones displaying the 

lowest SIRT1 expression and two control clones (transfected with the empty vectors) were 

chowen for testing the effects of NSAIDs (Dell’Omo 2018 under revision).  

 

Hypoxia 
MCF7 and MDAMB-231 breast cancer cell lines were used were maintained in DMEM 25 g/l 

glucose (Life Technology) plus 10% FBS (Sigma-Aldrich). The day before the experiment were 

seeded in DMEM 1 g/l (low glucose) plus 10% FBS. Then the cells were treated with increasing 

concentration of ketorolac and nimesulide in normoxia or hypoxia condition (0.1% O2) for 9 

or 24 hours.  

 

qPCR 
Cells or breasts were homogenized in TRIzol® (Life Technologies, Carlsbad, CA) 6% (w/v). Total 

hepatic RNA was purified using RNeasy Mini Kit(QIAGEN, Milan, Italy), following the 

manufacturer’s instructions and then was reverse transcribed to cDNA according to this 

procedure: 500 ng RNA was denatured at 75°C for 5 min in the presence of 0.75 μg of random 

primers (Promega) in 7.5 μl final volume. Deoxynucleotide triphosphate (GE Healthcare) and 

Moloney Murine Leukaemia Virus Reverse Transcriptase (MMLV-RT, Promega) were added at 

0.25 mM and 4 U/μl final concentrations respectively, in a final volume of 12.5 μl. The reverse 

transcriptase reaction was performed at 37°C for 1 h and the enzyme was inactivated at 75°C 

for 5 min. Real-Time PCR experiments were performed SYBR Select Master Mix (Thermo 

Fisher) and the levels of mRNA transcripts were normalized on the constitutively expressed 

gene 36b4 or for hypoxia experiment with RPL11. The reactions were carried out according 

the manufacturer’s protocol using 7900HT standard real-time PCR system (Applied 

Biosystems) and the thermal profiles used were: 2 min 50°C, 2 min 95°C, 40 cycles (15 sec at 

95°C, 30 sec 55-60°C, 1 min 72°C). Data were analyzed using the Sequence Detection System 

Software v2.3 (Applied Biosystems) and the 2-ΔΔCt method167. 

The following primers were used for each gene:  
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Mouse genes: 

36B4 mouse forward 5’-GGCGACCTGGAAGTCCAACT-3’, reverse 5’-

CCATCAGCACCACAGCCTTC-3’;  

P21 mouse forward 5'-GCCTGAAGACTGTGATGG-3', reverse 5’-GCCCTCAGCAAGAGTAAG-3’.  

Human genes: 

PUMA forward 5’-GAGCAGGGCAGGAAGTAACA-3’ reverse 5’-CCTGGGGCCACAAATCTGG-3’  

RPL11 forward: 5’-GCAAACTCTGTTCAACATCTG-3’ reverse: 5’-CATACTCCCGCACTTTAGAC-3’ 

CA9 forward: 5’-CCTTTGCCAGAGTTGACGAG-3’ reverse: 5’-GCAACTGCTCATAGGCACTG-3’. 

 

Ethical approval animal experimentation 
All animal experimentation was carried out in accordance with the Guide for the Care and Use 

of Laboratory Animals in accordance with the European Guidelines for Animal Care and Use 

of Experimental Animals, approved by the Italian Ministry of the Research and University 

(MIUR) and controlled by the panel of experts of the Department of Pharmacological and 

Biomolecular Sciences (University of Milan, 20133 Milan, Italy). For the experiments before 

2014 the MIUR authorization was DM 295/2012-A dated 20.12.2012 n. 10/2012, afterward 

experiments were done under MIUR authorization n. 611/2015 PR. All animal 

experimentation was carried out in the full observation of the Directive 2010/63/UE.  

In vivo studies 
Nimesulide, exisulind and ketoprofen and nicotinamide were dissolved in DMSO (270 mM 

stock solution); after appropriate dilution in water, they were given per os 15 mg/Kg/day and 

for nicotinamide 15mg/kg/day. DMBA was dissolved in acetone (12 mM solution). Sixteen 

female repTOPmitoIRE reporter mice (2-4 month old)158 were divided in four groups and 

treated with nimesulide, ketoprofen, exisulind or vehicle (DMSO) for 8 days. At day 5, mice 

were subjected to a single s.c. intra-fat pad injection of 12 mM DMBA solution (left mammary 

gland) or acetone (vehicle, in the right mammary gland); at day 8, mice were sacrificed, the 

mammary glands explanted for ex vivo imaging and fixed for immunohistochemistry analysis 

or frozen for total RNA extraction.  

 
Bioluminescence in vivo and ex vivo imaging 
The procedure has been previously described159. Briefly, anesthetized animals were i.p. 

injected with 65 mg/Kg D-Luciferin (beetle luciferin potassium salt, Promega) before each in 

vivo imaging session. After 15 min luciferin distribution, photon emission was measured over 
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5 min-exposure time using a CCD camera (Night Owl Imaging Unit, Berthold Technologies, 

Germany). After the last in vivo imaging acquisition, animals were sacrificed, the mammary 

glands were excised and placed in a light-tight chamber for the ex vivo measurement. 

Pseudocolor images representative of photon emissions were generated by a Night Owl LB981 

image processor and transferred via video cable to a PCI frame grabber using WinLight32 

software (Berthold Technologies); grayscale and pseudocolor images were finally merged 

using WinLight version 32 software (color code from low to high photon emission: blue, green, 

red, yellow, and white). Light emission was expressed as integration of photon counts per time 

and per area unit (p/s/cm2/sr). Normalization was performed using an external source of 

photons enabling to measure the instrumental efficiency of photon counting (Glowell 

Luxbiotech, Edinburgh, UK).  

 

Immunohistochemistry 
Mammary fat pads were fixed in 10% neutral buffered formalin, routinely processed and 

embedded in paraffin blocks. Four μm thick sections obtained from these blocks were then 

immunostained with a primary rabbit monoclonal antibody against Ki-67 antigen (#RM-9106-

S, LabVision) using a standard immunoperoxidase protocol (BA-1000 Biotinylated Goat Anti-

Rabbit IgG Antibody and PK-6100 Vectastain Elite ABC kit, Vector Laboratories) followed by 

diaminobenzidine chromogen reaction (SK-4100 Peroxidase substrate kit DAB, Vector 

Laboratories). Serial sections incubated with normal goat serum instead of the primary 

antibody served as negative control. 

 

Statistical Analysis 

Data analyses were performed using GraphPad 5 Instat software® (GraphPad Prism Inc. San 

Diego, CA, USA), we have applied Bonferroni’s and Student’s t test analysis for determining 

statistical significance.  

IC50 was calculated according to GraphPad 5 Curve Fitting Guide (GraphPad Software), with 

log(inhibitor) versus response–variable slope equation. 

Ethics Approvals Human Material  
All human tumor specimens were obtained in accordance with the Ethic Committee of the 

“European Institute of Oncology”, Milan, Italy and the main tumor features are listed in 

Table1.  
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Table 1. Patients: diagnosis, treatments and tumour features. n.d. not detected 
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SIRT1 AS A NEW TARGET OF NSAIDS 

NSAIDs and exisulind increase P53 acetylation in breast cancer cell line 
In order to investigate the existence of a common mechanism for the chemopreventive 

activity of NSAIDs, we focussed our attention on the p53 signalling, based on the study by 

Alfonso et al reporting the ability of aspirin to increase the level of p53 acetylation at the K382 

site, induce p21 expression and inhibit proliferation of MDAMB-231 breast cancer cells104. The 

level of K382 acetylation was initially measured by western blot analysis carried out on protein 

extracts obtained from MDAMB-231 cells treated with 90 μM of nimesulide, diclofenac, 

ketoprofen and exisulind at several time points.   
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Figure 19. Treatment with nimesulide, diclofenac and exisulind, but not ketoprofen increase p53 
acetylation at K382 residue. MDAMB-231 cells were treated with 90μM for each compound in the 
time course experiment. 30ug of protein extracts were analysed, confirmed by ponceau staining, 
immunoblot analysis was carried out using anti-acetyl (K382) p53 and anti-total p53 antibodies. Data 
are represented as mean ± SEM. Bars in the graphs represents densitometry quantifications of the 
autoradiographic signals (acetylated p53 vs total p53); *P< 0.05 **P< 0.01 ***P<0.001 ****P<0.0001 
versus the baseline level; P values were calculated by one-way ANOVA. Figure adopted from Dell’Omo 
2018 under revision. 
 

Ketoprofen was included in the study as negative control since a clear anti-proliferative 

activity of this drug has never been demonstrated160. The experiments showed that all 

compounds, but ketoprofen, significantly increased p53 acetylation 3-6 hours after exposure 

to the drugs (Figure 19). Interestingly, the sulindac metabolite exisulind, displaying anti-cancer 

properties, but unable to inhibit COXs and to produce an anti-inflammatory response, was 

increasing the p53 acetylation at the K382 site similarly to what observed for diclofenac and 

nimesulide. After these experiments, the analysis was extended by testing the effects of 

increasing concentration of NSAIDs belonging to different chemical classes including 

arylacetics (diclofenac, ketorolac), arylpropionics (ibuprofen, ketoprofen), arylsulfonamide 

(nimesulide), arylalkanoic acids (exisulind, sulindac sulfide) and NS-398 a COX-2 inhibitor used 

in the study of function of cyclooxigenases (PubChem); the effects on K382 acetylation was 

assayed by western blot analysis on MDAMB-231 protein extracts obtained after 3 hours of 

treatment.   
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Figure 20. Treatment with NSAIDs and exisulind, but not ketoprofen increase p53 acetylation at K382 
residue in dose dependent manner. MDAMB-231 cells were treated with increasing concentrations of 
each compound for 3 hours. 30ug of protein extracts were analysed, immunoblot analysis was carried 
out using anti-acetyl (K382) p53 anti-total p53 antibodies and b-actin as loading control. Data are 
represented as mean ± SEM. Bars in the graphs represents densitometry quantifications of the 
autoradiographic signals (acetylated p53 vs total p53); *P< 0.05 **P< 0.01 versus the baseline level; P 
values were calculated by one-way ANOVA. Figure adopted from Dell’Omo 2018 under revision. 
 
The immunoblot analysis indicated that NSAIDs with different chemical structures and 

exisulind, shared the ability to increase the K382 acetylation of P53 in a concentration-

dependent manner (figure 20). This activity was not observed when cells were treated with 

the negative control ketoprofen, suggesting that this property was independent form the 

cyclooxygenase inhibition activity.  

 

NSAIDs directly inhibit SIRT1 deacetylase without affecting p300 activity 
The experiments reported in Figures 19 and Figure 20 suggested that the increase of p53 

acetylation was likely COX-independent for several reasons: i) ketoprofen, a COX-1/COX-2 

inhibitor, was not able to increase p53 acetylation; ii) on the contrary, exisulind, a metabolite 

of sulindac without COX-inhibitory activity, was able to increase p53 acetylation; iii) the fast 

dynamic of p53 acetylation after NSAIDs treatment (the effects could be seen 1 h after 

treatment) was not compatible with an indirect mechanism involving several biochemical 

steps. These observations led us to hypothesize a COX-independent mechanism modulating 

the activity of enzymes able to deacetylate or acetylate the K382 residue; thus, we tested the 

effects of NSAIDs on the two enzymes known to add (P300) or remove (SIRT1) the acetyl 



 50 

residue at the K382 site of p53. The study was done in vitro by using recombinant human P300 

(rhP300) acetylase and the recombinant human SIRT1 deacetylase (rhSIRT1). 

As first P300 was tested in vitro asking if nimesulide was able to increase the acetyl-transferase 

action. The assay was based on the ability of the enzyme rhP300 to transfer the radioactive 
3H-acetyl from 3H-acetyl-CoA to a substrate histone peptide. 

 

Figure 21. Nimesulide didn’t increase rhP300 activity. The enzymatic activity of rhP300 was measured 
in the presence of nimesulide (4.4-13.3-40-120 μM) with a commercial kit (Perkin-Elmer Life Sciences) 
based on the transfer of a radioactive 3H-acetyl from 3H-acetyl-CoA to a histone peptide; after the 
transfer the peptides are separated by a paper chromatography according to the manufacturer 
instructions. The amount of radioactivity incorporated by the peptides was determined with a β-
counter. The assay was carried out in duplicates and repeated twice. Figure adopted from Dell’Omo 
2018 under revision. 

The results indicated that rhP300 activity was not affected by nimesulide (Figure 21), 

suggesting that the NSAIDs-dependent increase of p53 acetylation was not caused by P300 

regulation. Next, the attention was focused on the NSAIDs influence on rhSIRT1156. In order to 

assay the rhSIRT1 activity I measured the fluorescence produced by a two-step reaction: the 

first step is based on the presence of fluorophore and quencher coupled at the amino- and 

carboxyl-terminals, respectively, of the substrate peptide. In the presence of the SIRT1 

deacetylase, the acetyl residue is removed from the substrate peptide that will become 

substrate to the action of a protease added simultaneously in the reaction; the proteolytic 

activity will separate quencher from fluorophore, generating a fluorescent emission whose 

intensity can be quantified by a fluorimeter. The assay has been carried out with a rhSIRT1 

deacetylase in the presence of NAD+ (the physiological activator) and of increasing 

concentrations of different NSAIDs. 
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Figure 22. NSADs and exisulind inhibit SIRT1 in dose dependent manner. The enzymatic activity of 
rhSIRT1 was measured with a fluorescent assay according to the manufacturer instruction; the assay 
was carried out in the presence of increasing concentrations of the indicated NSAIDs. Bars represent 
the average values of rhSIRT1 activity measured in three independent experiments. Statistical analysis 
was done using two-way ANOVA followed by Bonferroni’s analysis: *P<0.05 **P<0.01 ***P<0.001, 
rhSIRT1 activity in the presence of NAD versus rhSIRT1 activity in the presence of NAD and of increasing 
concentration of the indicated NSAIDs. Figure adopted from Dell’Omo 2018 under revision. 

 

Compounds IC50 

Nicotinamide 374 

Sulindac 969 

Sulindac Sulfide 376 

Exisulind 397 

NS-398 862 

Nimesulide 344 

Ketoprofen no activity 

Ibuprofen 2152 

Ketorolac 602 

Diclofenac 554 

 

Table 2. IC50 of NSAIDs and exisulind mediate SIRT1 inhibition. IC50 calculated according to GraphPad 
5 Curve Fitting Guide (GraphPad Software), with log(inhibitor) versus response–variable slope 
equation. Table adopted from Dell’Omo 2018 under revision. 

The results of these assays showed that all NSAIDs tested and exisulind, but not ketoprofen 

inhibited the rhSIRT1 activity in a concentration dependent manner (Figure 22) in line with the 

p53 acetylation activity observed in cells by the same compounds. Interestingly, for almost all 

the drugs tested, the calculated IC50 were in the same potency of the physiological inhibitor 

nicotinamide (Table 2).  

 

Due to some possible limitations of the SIRT1 fluorescence-based assay161,162 that could create 

potential artefact, we further tested the inhibitory action of nimesulide on rhSIRT1 using a 

bioluminescent assay157. Briefly, rhSIRT1 was incubated in the presence of NAD and of an 

acetylated SIRT1 substrate peptide covalently linked to luciferin (GLO). In the bioluminescent 
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reaction, SIRT1 deacetylated the substrate peptide unmasking a site for a subsequent 

peptidase reaction, which can thus release free luciferin: the amount of luciferin in the mixture 

is proportional to the deacetylase enzymatic activity and can be quantified by measuring the 

photon emission with a luminometer upon addition of the luciferase enzyme to the reaction 

mixture.  

 

 
Figure 23. Nimesulide inhibit SIRT1 deacetylase activity. The deacetylase activity of rhSIRT1 was 
evaluated after treatment with 200 μM NAD and in the presence of the indicated nimesulide 
concentrations with a bioluminescent assay. The amount of photon emission was quantified with a 
luminometer and expressed as relative light units (RLU). Bars represent average value of two 
experiments carried out in triplicates. ***P<0.001, **P<0.01 * P<0.05 rhSIRT1 activity in the presence 
of NAD versus rhSIRT1 activity in the presence of NAD and of increasing concentrations of nimesulide. 
Statistical analysis was done using two-way ANOVA followed by Bonferroni’s analysis. Figure adopted 
from Dell’Omo 2018 under revision. 
 
The results obtained with the bioluminescent and fluorescent assays were superimposable 

(Figure 23), confirming the inhibitory effect of nimesulide on SIRT1 activity.  

To confirm that the effects of NSAIDs on the recombinant SIRT1 could be observed also on the 

endogenous SIRT1, the fluorescent assay was used for testing the effects of the compounds 

on MDAMB-231 protein extracts.  
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Figure 24. Nimesulide, diclofenac and exisulind, but not ketoprofen, inhibit rhSIRT1 activity in vitro. 
The SIRT1 activity was tested in MDA-MB-231 protein extracts treated with nimesulide, exisulind and 
ketoprofen at increasing concentrations (300, 900, 2700 μM). Data are represented as mean ± SEM. 
*P< 0.05 **P< 0.01 ***P<0.001 ****P<0.0001 versus the value of the NAD treated sample; P values 
were calculated by two-way ANOVA followed by Bonferroni’s test. Figure adopted from Dell’Omo 2018 
under revision. 

The inhibitory activity of the NSAIDs and exisulind could be observed also using the MDAMB-

231 protein extract as a source of SIRT1, suggesting that the observed activity on the 

deacetylase was not an artefact of the SIRT1 biochemical assay (Figure 24).  

 

p53 acetylation at the K382 site is increased by the NSAIDs-mediated inhibition 
of SIRT1  
As an evidence of the direct effect of the NSAIDs-mediated inhibition of SIRT1 on the K382 

residue of p53, we investigated the deacetylation potential of rhSIRT1 on the acetylated p53 

present in MDAMB-231 cells. Protein extract from this cell line was used as a source of native 

P53 and tested, by immunoblot analysis, whether NSAIDs were able to inhibit K382 

deacetylation promoted by rhSIRT1 added to the reaction mix (procedure on materials and 

methods).  
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no rhSIRT1

rhSIRT1

  

Figure 25. Deacetylation assay on native p53 protein. Picture shows a representative immunoblot 
analysis of native acetylated and total p53 present in the extracts of MDAMB231 6h before harvesting, 
cells were treated with etoposide 20μM to obtain sufficient amount of p53 acetylation; the same batch 
of protein extract was divided in 15μg aliquots and treated either with vehicle (dmso) or with 300 μM 
nimesulide, exisulind and ketoprofen, the extract was then treated with rhSIRT1 or with saline buffer. 
Quantification of the immunoblot signals are reported in the graph: acetylated p53 signal was 
normalized on the corresponding total p53 signal and referred to the control (no rhSIRT1/dmso). Bars 
represents the average ± SEM normalize values of three independent experiments. *P < 0.05 **P< 0.01 
***P<0.001 ****P<0.0001 P values were calculated by Student’s t-test. Figure adopted from Dell’Omo 
2018 under revision. 

Data showed that the presence of rhSIRT1 alone significantly decreased by 64% the 

acetylation of P53. Interestingly, the activity of the enzyme was significantly inhibited by the 

addition of 300µM nimesulide or exisulind (Figure 25); once more, ketoprofen was inactive on 

SIRT1 activity. These results supported the notion that the effect of NSAIDs and exisulind on 

K382 acetylation is directly mediated by SIRT1. 

Next, to further strengthen this conclusion, a loss of function approach using siRNA was 

adopted, generating stably transfected clones with an expression vector encoding for a siRNA 

directed against SIRT1 mRNA163. MDAMB231 transfection was carried out with lipofectamine 

technologies; after 21 days of G418 selection, siRNA expressing clones were initially identified 

with a coelenterazine-based procedure (details can be found in the Material and Methods 

section); the identified clones were amplified and the effective knock down of SIRT1 

expression was demonstrated by western blot analysis; as expected from literature data164, in 

the SIRT1 knocked down clones, a constitutive increment of the p53 basal acetylation at the 

K382 residue was observed in comparison with the cells transfect with the empty vector 
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(Figure 26).These knock down clones were used to firmly identify SIRT1 as the direct mediator 

for NSAIDs activity on P53 acetylation; to this aim, I treated the cells with 270 μM of each 

NSAIDs for 3 hours and measured the p53 acetylation by western blot analysis. 

 

 

Figure 26. SIRT1 mediated NSAIDs effect on p53 acetylation. MDAMB231 stable transfected with 
pBABE or pBABEshSIRT1 were treated for 3 hours with dmso, MDAMB231 SIRT1 negative were also 
treated with 270μM of the reported compounds. Then 15 µg of protein lysate were analysed by 
western blot. SIRT1, acetylated p53 (Lys382), total p53 and b-actin were measured using specific 
antibody reported on materials and methods session. Figure adopted from Dell’Omo 2018 under 
revision. 

 

After treatments with NSAIDs and exisulind (Figure 26), the basal acetylation remained 

unchanged providing a compelling demonstration of the direct role of SIRT1 in mediating the 

K382 acetylation induced by these compounds in breast cancer cells.  

These in vitro data strongly indicate SIRT1 as a novel common target of NSAIDs with different 

chemical structures. Interestingly, this inhibition correlates with the anti-proliferative activity 

of these drugs previously reported other laboratories, thus indicating SIRT1 inhibition as a 

possible mechanism underlying the anticancer properties of NSAIDs. This prompted us to 

further characterize this mechanism in breast cancer cell line, in animal model and in clinical 

samples.  
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Functional role of the NSAIDs-mediated SIRT1 inhibition 

p53 is activated upon the NSAIDs-mediated SIRT1 inhibition  
During this part of my thesis, I studied and characterized the potential effect on the hallmarks 

of cancer of the NSAIDs-mediated SIRT1 inhibition. Since SIRT1 inhibition led to the increase 

P53 acetylation at the K382 site, it could be postulated that this might led to the activation of 

p53 transcriptional activity and to the increased expression of the anti-proliferative p21, a 

well-known p53 target gene165, thus triggering an anti-proliferative pathway. This hypothesis 

was tested first in non-transformed cells, the hTERT-HME1, human mammary epithelium cell 

line 

 

Figure 27. Nimesulide and exisulind increase p53 target gene expression. hTERT-HME1 are 
immortalized cells carrying wild type p53 and were treated with increasing concentrations of 
nimesulide (nim) and exisulind (exi) for 6 hours. The expression of p21 was measured by qPCR, bars 
represent average normalized values (quantified with the 2-∆∆Ct method) of two independent 
experiments. Figure adopted from Dell’Omo 2018 under revision. 

The hTERT-HME1 cells were treated with increasing concentration of nimesulide and exisulind 

for 6 h and the level of p21 mRNA was measured by qPCR. Results showed that upon 

treatment p21 expression increased in a concentration-dependent manner after treatment 

(Figure 27), suggesting that the oncosuppressor is indeed transcriptionally activated by these 

drugs.  
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NSAIDs-mediated SIRT1 inhibition results in the p53 activation in vivo, in a 

mouse model of the early steps of carcinogenesis 

Based on the results obtained in vitro, the effect of the anti-inflammatory drugs was 

investigated in an animal model of the early transformation steps consisting in the topical 

treatment of the mammary gland with the carcinogen 7,12-Dimethylbenz(a)anthracene 

(DMBA). As showed in the Figure 28, mice were treated for 8 days per os with vehicle or 15 

mg/Kg/day nimesulide, 15 mg/kg/day ketoprofen, 3.75-7.5-15 mg/Kg/day exisulind, 15 

mg/Kg/day nicotinamide. Five days after the NSAIDs treatment, the left inguinal mammary 

gland was injected with DMBA, while the contralateral mammary gland was treated with 

acetone (vehicle). Three days after the genotoxic injection, mice were sacrificed and breast 

collected for gene expression analysis. In particular, p53 activation was quantified by the 

increased expression of its target gene p21, through a semiquantitative qPCR analysis carried 

out on the mRNA obtained from the breast tissue166. 
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Figure 28. NSAIDs exisulind and nicotinamide treatment, but not ketoprofen increases p53 activity 
in vivo. (A) Five female mice per group were treated per os (gavage) with a daily dose of 3.75, 7.5, 15 
mg/Kg exisulind (exi), 15 mg/Kg nimesulide (nim), 15 mg/Kg ketoprofen (ket), 15 mg/Kg nicotinamide 
or Dimethyl sulfoxide (DMSO, vehicle). Treatment was carried out for eight days; at day 5 a single dose 
of an acetone solution of 12mM DMBA (left mammary gland) or acetone (right mammary gland) was 
injected in the mammary fat pad of the animals. (B) p21 mRNA expression was determined by real 
time PCR; bars in the graph are the average ± SEM values quantified with the 2-∆∆Ct method. * P < 0.05; 
** P < 0.01 DMBA versus acetone treated breast. P values were calculated by Student’s t-test. Figure 
adopted from Dell’Omo 2018 under revision. 

 

The in vivo results showed that in the left mammary gland injected with DMBA, p21 mRNA 

expression was clearly induced in mice treated with nimesulide or exisulind (Figure 28B), 

however, this increment was not observed in mice treated with vehicle and ketoprofen. These 

experiments confirmed that NSAIDs (but not ketoprofen) and exisulind were able to increase 

p53 activity also in vivo; interestingly, the exisulind active dose (15 mg/Kg) was in the same 

order of magnitude of the dose reported to obtain polyp regression in humans167.  To verify 

whether p53 activation in vivo could be indeed mediated by SIRT1 inhibition, the same 

experiment (figure 28A) was carried out with nicotinamide, the SIRT1 physiological inhibitor. 

The results showed that in the DMBA mammary gland, p53 activation increased in mice 

treated with nicotinamide (Figure 28B), suggesting that the NSAIDs-mediated p53 activation 

may occur in vivo through SIRT1 inhibition. 

 

B 
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NSAIDs-mediated SIRT1 inhibition in early phases of Breast Cancer: 

functional effects on proliferation, immunosuppression and hypoxia 

Once discovered and characterized SIRT1 as a new target for NSAIDs, we put our attention on 

the phenotypic consequences of SIRT1 inhibition in the tumour progression. For this reason, 

three of the major hallmarks of cancer were studied: increased proliferation, 

immunosuppression and hypoxia. 

Proliferation 
The effects on cell proliferation was investigated in vivo on the hyperproliferation produced 

by a genotoxic treatment; to this aim, we carried out the DMBA treatment as before (figure 

28A). Thanks to the past expertise and tools developed by my lab, I was able to include in this 

thesis, the transgenic reporter mouse called MITO-Luc (for mitosis-luciferase), in which an 

NFY–dependent promoter controls luciferase expression. In these mice, bioluminescence 

imaging of NF-Y activity correlate with physiological cell proliferation and regeneration during 

response to injury158. With this tool, we had the opportunity to measure the effect of NSAIDs 

on the increased proliferation occurring upon treatment with a genotoxic agent, a condition 

that mimic the hyperproliferation during the early step of carcinogenesis. To this aim, we 

treated group of 5 MITO-Luc mice with an identical protocol reported in Figure 28 and 

measured the bioluminescent emission from the mammary gland in vivo and ex vivo by 

bioluminescence imaging (Figure 29) 
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Figure 29. NSAIDs exisulind, nicotinamide treatment, but not ketoprofen decrease tissue 
proliferation in vivo. Five female repTOPmitoIRE mice/group were treated with nimesulide, 
nicotinamide, exisulid and ketoprofen following an identical protocol described in Figure 28A. (A) 
Pictures show the bioluminescence emission marking the proliferative activity in the repTOPmitoIRE 
reporter mouse or in the dissected mammary glands. (B) Quantification of the photon emission as a 
measure of tissue proliferation from the dissected mammary glands; bars are the average ± SEM values 
of the photon emission normalized over the area of the acquisition surface (p/s/cm2/sr). *P<0.05 
mammary glands treated with DMBA and NSAIDs versus DMSO treated animals; P values were 
calculated by Student’s t-test. Figure adopted from Dell’Omo 2018 under revision. 
 
Results showed that DMBA was able to increase the proliferation in breast tissue when 

compared to the contralateral breast, in DMSO treated mice (Figure 29), suggesting that cell 

hyperproliferation was induced by the treatment with the genotoxic agent. Interestingly, 

bioluminescent analysis of the photon emission demonstrated that cell proliferation was 

significantly influenced by NSAIDs treatment, in particular we were able to measure less signal 

in animals treated with nimesulide, nicotinamide and exisulind (Figure 29) compared to 

vehicle and ketoprofen (DMSO). Positively, results fitted with the previous p53 activations and 

increasing expression of p21 that triggers cell cycle arrest. Previous data of the lab 

demonstrated that the bioluminescent signal of the MITO-Luc reporter mice perfectly 

correlated with the Ki67 immunostaining158. This was confirmed by the 

immunohistochemistry staining of the breasts analyzed by ex vivo imaging with the Ki67 

proliferation marker (Figure 30).  
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Figure 30. NSAIDs exisulind, nicotinamide treatment, but not ketoprofen decrease tissue 
proliferation in vivo. The bioluminescent signal reported in (figure 29) correlates with the Ki-67 
immunostaining in the tissue of repTOPmitoIRE reporter mice. Pictures show the correlation between 
the bioluminescence emission and Ki67 staining in the same mammary glands (central and external set 
of pictures, respectively). After ex vivo imaging, mammary fat pads were fixed in 10% neutral buffered 
formalin and embedded in paraffin blocks. 4μm thick sections obtained from these blocks were then 
immunostained with a primary antibody against Ki67 antigen. Figure adopted from Dell’Omo 2018 
under revision. 
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The Ki67 staining was mirroring the bioluminescent analysis (Figure 29 and Figure 30).  

These experiments indicated that the treatment with NSAIDs or exisulind attenuated the 

tissue hyperproliferation produced by the exposition to a genotoxic agent, a model 

recapitulating the initial hyperproliferation occurring during the initial stage of tumor 

transformation. Similar protective effects were observed for NSAIDs and nicotinamide, thus 

reinforcing the concept that they were mediated by SIRT1 inhibition (Figure 29 and Figure 30). 

Once more, ketoprofen did not have the same effect of NSAIDs. 

Immunosuppression 

Increased proliferation is not the only effect produced by the exposition to genotoxic agents: 

previous studies showed that local and systemic immunosuppression occurs after this 

exposure and is likely to participate in the early mechanism of neoplastic transformation168. 

Moreover, emerging data showed that sulindac mediated breast cancer inhibition as an 

immune modulator, by reducing the M2 macrophage influx in vivo 169. To evaluate the effects 

of NSAIDs on the immune suppression induced by a genotoxic agent, the expression of 

cytokines and chemokines was measured in the mammary tissues of obtained from the same 

mice treated in the previous in vivo experiments (Figure 28A).  
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Figure 31. NSAIDs and exisulind treatment, but not ketoprofen counteract the genotoxic-induced 
immunosuppression. Quantification of the mRNA production of cytokines/chemokines in the 
mammary tissue of mice treated as reported in the text; mRNA level of expression of immune response 
markers (IL1β, CCL2, MIP2 and IL6) obtained by qPCR; bars in the graph are the average ± SEM values 

(quantified with the 2-∆∆Ct method) of the relative amount of each specific mRNA. ** P<0.01 
mammary gland treated with DMBA versus contralateral glands treated with vehicle; P values were 
calculated by Student’s t-test.  

 

In line with the previous literature data, qPCR demonstrated that DMBA was significantly 

decreasing the mRNA levels of several cytokines and chemokines involved in the immune 

response, including Il1b, Il6, CCL2, MIP2, mRNAs (Figure 30). Treatments with nimesulide and 

exisulind, but not with the vehicle (DMSO) and ketoprofen were efficiently counteracting this 

inhibitory effect of DMBA on the chemokine/cytokine expression (Figure 31), suggesting that 

SIRT1 inhibition was able to contrast the immunosuppression caused by the genotoxic 

injection. The effect of NSAIDs and exisulind on cytokine/chemokine expression could be 

explained, at least in part, by the reported SIRT1 ability to inhibit the NFkB-mediated 

transcription151.  
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Hypoxia 

Angiogenesis is one of the most relevant hallmarks of cancer and it is deregulated during early 

phases of breast cancer growth. Increasing evidence suggesting that NSAIDs treatment and 

consequently tumor cell death92 was due to the inhibition of angiogenesis. However, 

molecular mechanism responsible for antiangiogenic actions of NSAIDs has not been defined. 

A major initiator of angiogenesis is hypoxia, which induces the activation of HIF1a. For these 

reasons we were asking if NSAIDs could have a role in hypoxia inducible response. 

Furthermore, SIRT1 inhibition impairs the transcriptional activity of HIF1α under hypoxia 

conditions170 and it is induced by HIF1α in hypoxia, producing a positive feedback loop171.  

Overall these studies suggested the hypothesis that NSAIDs could influence hypoxia through 

SIRT1 modulation and HIF1α activity.  

For this reason, I spent three months in the laboratory of Professor Adrian Harris at WIMM 

Department of Molecular Medicine, University of Oxford. His lab has a very long experience 

in hypoxia and breast cancer biology, thus I joined that lab to elucidate the interplay among 

NSAIDs, SIRT1 and HIF1α in breast cancer cell lines. As first experiment, I studied the NSAIDs 

effect on HIF1α target genes in breast cancer cell lines during hypoxia. Human breast 

carcinoma cells MCF7 ERα+ and MDAMB-231 triple negative cell lines were cultivated for 24 

hours in normoxia (21% oxygen) or hypoxia (1% oxygen) atmosphere172 using an in vivo 

Hypoxia Work Station (Ruskinn Technology).  

 

 
 

Figure 32. Hypoxia response in MCF7 and MDAB231 breast cancer cell lines. MCF7 and MDAMB-231 
breast cancer cell lines were cultivated for 24 hours in either normoxia (21% oxygen) or hypoxia (0.1% 
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oxygen) atmosphere172 using an in vivo Hypoxia Work Station (Ruskinn Technology). mRNA level of CA9 
and FUT11 hypoxia responsible genes was obtained by qPCR; lines in the graph represent the average 
± two biological replicates. Values were quantified with the 2-DDCt method and they are normalized on 
normoxia values. 

 

Results from Figure 32 indicated that in both breast cancer cell lines, 24 hours at 0.1% oxygen 

induced hypoxia response, with different intensity between the two cell lines. MDAMB-231 

seemed to be less activated than MFC7, a different response reflecting the more aggressive 

phenotype of the triple negative breast cancer cells that were shown to have the hypoxia 

genes already induced at the normal growth conditions173. Then I started to study the NSAIDs 

effect on hypoxia inducible response, I treated the two cell lines for 24 hours with increasing 

concentration of nimesulide and ketorolac in normoxia and hypoxia conditions. 

 

Figure 33. NSAIDs treatment and hypoxia response in MCF7 and MDAB231 breast cancer cell lines. 
MCF7 and MDAMB231 breast cancer cell lines were cultivated for 24 hours in either normoxia (21% 
oxygen) or hypoxia (0.1% oxygen) atmosphere and treated with 0, 10, 30 µM of nimesulide and 
ketorolac, doses in the same range of human plasma level174. mRNA level of CA9 and FUT11 hypoxia 
responsible genes was obtained by qPCR; bars in the graph represent the average ± SEM. Values were 
quantified with the 2-DDCt method and they are normalized on normoxia values. Data are from three 
independent experiments.  

Results showed that the samples treated with vehicle were comparable with the data 

obtained from the pilot experiments, confirming the different response of the two cell lines 

Veh
icl

e

Ket
oro

lac
 10

Ket
oro

lac
 30

Nim
es

ulid
e 1

0

Nim
es

ulid
e 3

0

Veh
icl

e

Ket
oro

lac
 10

Ket
oro

lac
 30

Nim
es

ulid
e 1

0

Nim
es

ulid
e 3

0
0

25

50

75

100

Fo
ld

 in
du

ct
io

n 
vs

 n
or

m
ox

ia

CA9

MCF7
MDAMB231



 68 

after hypoxia (Figure 33). However, no effect was measured after treatment with NSAIDs in 

both cell lines (Figure 33). To test the hypothesis whether NSAIDs could modulate the hypoxia 

response, at post-transcriptional level, I measured the protein level of HIF1α by western blot 

analysis and as control of NSAIDs activity I checked the level of P53 acetylation. 

 

Figure 34. NSAIDs effects on hypoxia inducible response in breast cancer cell lines at post-
transcriptional level. MCF7 and MDAMB-231 breast cancer cell lines were cultivated for 24 hours in 
either normoxia (21% oxygen) or hypoxia (0.1% oxygen) and treated with 0, 10, 30 µM of nimesulide 
and ketorolac, doses in the same range of human plasma level174. Protein level of HIF1a, acetyl P53 
K382, total P53 were detected by western blot, b-actin represent loading control. Figure is 
representative of two independent experiments. 

 

Data from the blot showed how HIF1⍺ is upregulated after 24 hours of hypoxia in MCF7 and 

MDAMB-231 (Figure 34), however NSAIDs treatment did not modulate HIF1⍺ expression. P53 

was not detectable in MCF7, this observation was accord with the fact that in MCF7 breast 

cancer cell line the protein expression of P53 is very low175. In MDAMB-231 p53 expression 

was evaluable; however, p53 was not acetylated by the treatment. These negative results 

could have been due to several reasons: i) because of the low-concentration of the 

treatments, Palayoor and colleagues176 report decreased expression of HIF1⍺ protein after 

treatment with ibuprofen at 2mM, 70x than the dose used in my hypoxia experiments and I 

have detected p53 acetylation at higher concentration (>90uM); ii) because of the time-point, 

in fact the maximum effect of NSAIDs on P53 acetylation occurred after 3-6 hours (Figure 19), 

thus the NSAIDs effect could be lost at 24 hours in normoxia and hypoxia; iii) glucose could 
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influence the response during hypoxia, Harris lab experience reported that at high glucose 

concentration (25mM) the hypoxia response could be affected. 

In order to answer to these hypotheses, I treated MDAMB-231 cell line at higher concentration 

of nimesulide, however I used 90 µM because is in the same range of human plasma level174 

(21 µM), in contrast with ibuprofen concentration of 2000 µM reported by Palayoor and 

colleagues. Furthermore, I decided to treat the cells for 9 hours according with the reported 

increased HIF1⍺ expression in cancer cells after 9 hours of hypoxia177. Finally, the cells were 

treated in low glucose and high glucose condition to understand if glucose influenced the 

response to NSAIDs treatment in normoxia and hypoxia. 

 

Figure 35. NSAIDs effects on hypoxia inducible response in MDAMB-231. MDAMB-231 breast cancer 
cell lines were cultivated in low (10mM) or high (25mM) glucose concentration for 9 hours in normoxia 
(21% oxygen) or hypoxia (0.1% oxygen) and treated with 0, 30, 90 µM of nimesulide. Protein level of 
HIF1a, acetyl P53 K382, total P53 were detected by western blot, b-actin represent loading control. 
Figure is representative of two independent experiments. 

Results showed that in hypoxia condition nimesulide had no effect on HIF1⍺ expression and 

P53 acetylation (Figure 35), however in normal condition, P53 acetylation increased in dose 

dependent manner after 9 hours of treatment. In particular p53 acetylation was more 

sensitive to nimesulide treatment under high glucose concentration (Figure 35), this effect 

could be explained by downregulation of SIRT1 expression in high glucose condition in vitro178 

and in vivo in diabetes rat model179. Thus, low expression of SIRT1 in high glucose condition 

could have enhanced the NSAIDs effect on SIRT1 resulting in higher acetylation of p53 after 

treatment with nimesulide.  
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All together these experiments showed that NSAIDs did not modulate the hypoxia response 

in breast cancer cells. However, the NSAIDs activity on angiogenesis is well described in 

literature, suggesting an effect of this drugs on different cell types like endothelial cells, 

stroma cells or inflammatory cells. In the next future this question could be unravel by 

studying the NSAIDs effect on tumour microenvironment, using in vitro and in vivo model. 
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NSAIDs mediated p53 acetylation in clinical samples 

In a previous epidemiological study, Forget and collaborators suggested that an intraoperative 

treatment with the NSAID ketorolac was associated with a reduced relapse likelihood in the 

first 24 months, improved disease-free survival and overall survival in patients undergoing 

mastectomy93; interestingly, these beneficial effects were particularly relevant for high-body 

mass index group of patients132. Moreover, a recent report demonstrated the positive effects 

on survival of the intraoperative ketorolac also in the treatment in ovarian cancer94; 

interventional trials are underway to test the beneficial effects of this procedure. To 

investigate the potential clinical relevance of the mechanism described in our study, we 

verified whether this treatment could induce p53 acetylation at K382 site. Thanks to a 

collaboration with the European Institute of Oncology in Milan, the acetylation of p53 was 

measured in tumor samples of breast cancer patients treated with 20 mg ketorolac two hours 

before mastectomy. 

 

 

 

Figure 36. Intraoperative ketorolac induces p53 acetylation at the K382 site in clinical settings. 
Immunoblot analysis was carried out using anti-acetyl (K382) p53 and anti-total p53 antibodies and 
protein extracts obtained from 13 patients: six were treated with ketorolac (20 mg per os) 2 hours 
before surgery and seven with opiates for intraoperative analgesia. Bars in the graphs represents 
densitometry quantifications of the autoradiographic signals (acetylated p53 vs total p53); ***P< 0.001 
versus the level of control; P values were calculated by Student’s t-test.  
 

The immunoblot analysis showed a significant increase of K382 acetylation in breast tumors 

obtained from patients (Table1 in material and methods session) treated with ketorolac as 
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compared to controls (opiates) indicating that SIRT1 inhibition could activate p53 by a single 

NSAID treatment during surgery (Figure 36).  This result indicated that the NSAIDs-SIRT1-p53 

pathway could be triggered in a clinical setting previously reported to have beneficial 

preventive effects against tumor relapse.  
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NEW NSAIDs DERIVATIVES FOR SIRT1 INHIBITION 

 
During my PhD thesis we demonstrated that SIRT1 is a new molecular target for NSAIDs 

chemoprevention, then we would like to study the molecular interaction in order to develop 

new molecules that retain the ability to inhibit SIRT1 without effect on COXs. For these 

reasons, we collaborated with the laboratory of Computational Biochemistry and Biophysics 

(Ivano Eberini Group at the Department of Biomolecular and Pharmacological Sciences, 

University of Milan) and with the laboratory of Medicinal Chemistry (Professor Paola Conti 

Group at the Department of Pharmaceutical Sciences, University of Milan).  

As the first step, in collaboration with Computational Biochemistry and Biophysics, we carried 

out a molecular docking on human SIRT1 (PDB ID: 4I5I) complexed with the NAD cofactor and 

EX-243 (EX-527 analog) inhibitor180–182.  

 
Figure 37. Best docking poses for selected SIRT-1 inhibitors. The enzyme is shown as ribbon, inhibitors 
are shown in stick representation. Ibuprofen, diclofenac, ketorolac and EX-527 overlap the EX-527-
analog binding site.  

The docking data showed that all tested compounds were able to bind the inhibitor pocket of 

SIRT1, most of them as EX-527 inhibitor. EX-527 inhibits SIRT1 by inducing an extended NAD 



 74 

conformation and blocking the access to the channel of the acetylated lysine substrate180.  

Thus, we hypothesized a similar NAD-dependent inhibitory mechanism for the NSAIDs tested 

(Figure 37). In particular docking analysis for sulindac, sulindac sulfide and exisulind and 

energy evaluations -7.58 kcal/mol, -7.08 kcal/mol e -7.82 kcal/mol respectively, suggested 

that these compounds bind SIRT1 with high affinity and that exisulind is more active on SIRT1 

than the others (Figure 38). Moreover, data from energy evaluation were comparable with 

EX-527 analog best docking conformation (-7.94 kcal/mol) (Figura 26) indicating sulindac and 

its metabolites as good SIRT1 inhibitors. 

 
Figure 38. Best docking poses for selected SIRT-1 inhibitors. The enzyme is shown as ribbon, inhibitors 
are shown in stick representation, EX-527 analog in purple. Sulindac, sulindac sulfide and sulindac 
sulfone (exisulind) overlap the EX-527-analog binding site. Sulindac metabolites scheme on right 
bottom panel. 

Altogether, docking data indicated that NSAIDs directly inhibit SIRT1 activity through the 

interaction with the NAD cleft, resulting in the stabilization of NAD non-productive 

conformation.  
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Our aim was to develop new NSAIDs like molecules that maintain SIRT1 inhibition activity 

without effect on cyclooxygenases, for this reason we set up a molecular docking assay 

between NSAIDs and COX for understanding which part of the molecular structure we can 

modify in order avoid the inhibitory activity of COX (Figure 39). COX1 crystal with 

indomethacin inhibitor has been used because COX1 is the constitutive isoform of 

cyclooxygenases and indomethacin is the sulindac precursor. 

 
Figure 39. Best docking poses for selected COX-1 inhibitors. The enzyme is shown as ribbon, inhibitors 
are shown in stick representation, indomethacin in green. Sulindac, sulindac sulfide overlap the 
indomethacin binding site with the exception of sulindac sulfone (exisulind). 

Data showed that the lowest energy poses for sulindac (-8.28 Kcal/mol) and its active 

metabolite sulindac sulfide (-8.03 Kcal/mol) were comparable with the best docking 

conformation for indomethacin indicating that, this conformation was necessary for COX1 

inhibition. In contrast with these observations, sulindac sulfone molecular docking matched 

with a lowest energy (-5.27) than sulindac and sulindac sulfide (Figure 39). These results were 

in line with published evidences that indicate exisulind as inactive metabolite on COX183. 

Moreover, our collaborators suggested that a greater steric hindrance on the sulindac phenyl 

substituent corresponds to a reduction in the COX inhibitory activity. Thus we used these 

conclusions as starting point for design new NSAIDs derivatives. 

Liedtke and colleagues184 demonstrated that E-2ʹ-des-methyl-sulindac analogs, with opposite 

conformation of double binding than sulindac, were able to inhibit proliferation in cancer cell 

line. However, the molecular mechanism of these new molecules wasn’t clear yet. 

Interestingly in silico data demonstrated that the structural analogs of E-2ʹ-des-methyl-

sulindac maintained SIRT1 affinity but they interact less with COX1 than precursors (Data not 

shown). Thus, in collaboration with Medical Chemistry laboratory we decided to synthetize 
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three compounds from Liedtke library184, which correlated with our mechanism of NSAIDs 

chemopreventive action. 

 

 
Figure 40. 2D structure of sulindac, rb2, rb4 and rb7. 

From in silico studies these compounds should have a greater activity on SIRT1 with a 

decreased affinity for COX1. Thanks to the laboratory of Medicinal Chemistry we were able to 

test in vitro the effect of selected compounds on SIRT1 and COXs activity. We start with testing 

the activity of E-2ʹ-des-methyl-sulindac analogs on SIRT1 through the enzymatic fluorescence 

assay previously used (Figure 22). 
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Figure 41. SIRT1 assay for sulindac, rb2, rb4, rb7. The enzymatic activity of rhSIRT1 was measured with 
a fluorescent assay according to the manufacturer instruction; the assay was carried out in the 
presence of increasing concentrations of the indicated compounds. Bars represent the average values 
of rhSIRT1 activity measured in three independent experiments. Statistical analysis was done using 
two-way ANOVA followed by Bonferroni’s analysis: *P<0.05 **P<0.01 ***P<0.001, rhSIRT1 activity in 
the presence of NAD versus rhSIRT1 activity in the presence of NAD and of increasing concentration of 
the indicated compounds.  
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The results of these assays showed that RB2 was able to inhibit rhSIRT1 activity in a 

concentration dependent manner (Figure 41) and without NAD we didn’t see any modulation 

of SIRT1 activity, in line with the in silico prediction. Instead we find a very interesting data 

from RB4 and RB7 because they were able to activate SIRT1 in the presence or absence of 

NAD, suggesting their possible role as acetyl acceptors. However these results were slight in 

contrast with in silico prediction. 

Finally we tested the new compounds activity on COX1 and COX2. For that reason we set up 

in vitro assay allowed us to measure the activity of COXs by fluorescence (Figure 42, details on 

material and methods sessions). Interestingly, we find that RB2 lost the activity on COXs 

despite high concentration, confirming the in silico studies for which a greater steric hinder 

and E-sulindac isomer induce a reduction on COXs inhibitory activity (Figure 42). Also RB4 and 

RB7 showed a less inhibitory effect on COX than the precursor. Altogether COXs data 

validating the in silico predictions for the new synthetized compounds.  

In conclusion, thanks to the collaboration, we design develop and synthetized new molecules 

that have a reduced activity on cyclooxygenases. Otherwise, differently from in silico 

evaluation we found a slight SIRT1 inhibitor (RB2) and two activators (RB4 and RB7). We are 

now working on the characterization of RB4 and RB7 mode of action that could mimic NAD 

cofactor resulting in the activation of SIRT1. If they are acetyl acceptors will be interesting to 

understand their implication on other sirtuins, which are involved in cancer prevention185. 
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Figure 42. SIRT1 assay for sulindac solfuro, rb2, rb4, rb7. Fluorimetric assay that measure in vitro the 
activity of ovine recombinant COX1 and human recombinant COX2 in the presence of increasing 
concentration (0.0032 μM, 0.016 μM, 0.08 μM, 0.4 μM, 2 μM, 10 μM, 50 μM, 250 μM) of the indicated 
compounds. Bars represent the average values of recombinant enzymes activity measured in three 
independent experiments. Statistical analysis was done using two-way ANOVA followed by 
Bonferroni’s analysis: *P<0.05 **P<0.01 ***P<0.001, rhSIRT1 activity in the presence of NAD versus 
rhSIRT1 activity in the presence of NAD and of increasing concentration of the indicated compounds.  
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Despite new discoveries and advances in diagnosis and therapies, cancer remains the leading 

cause of death in the modern age2. For this reason, it is essential to find novel strategies in 

order to decrease the health and economic burden of this disease. Epidemiologic, clinical and 

experimental studies point to non steroidal anti-inflammatory drugs as promising 

chemopreventive agents for many cancer types86,87. However, their use in chronic treatment 

is limited by side effects mainly due to COX inhibition (Dell’Omo 2018 under revision). The 

molecular and cellular mechanisms involved in the chemopreventive activity of NSAIDs are 

complex and likely include multiple effects on cancer cells and their microenvironment86. 

Thus, the identification of a master mediator of their antitumor properties will provide a 

strong starting point for the development of safer and more efficacious molecules, such as 

NSAIDs derivatives or new drugs.  

My PhD project was focused on the identification of a new target for NSAIDs action, which 

could provide a biochemical explanation to their chemopreventive activity.  

Starting from the observation published by Alfonso and colleagues104 showing that aspirin 

increased the acetylation and activation of the onco-suppressor p53, we found that the ability 

to increase p53 acetylation in MDAMB-231 breast cancer cell line was shared by all the NSAIDs 

tested and by exisulind, with the only exception of ketoprofen (Figure 19 and Figure 20). 

However, this observation is in line with reports indicating that ketoprofen doesn’t have 

chemopreventive activity160. Moreover, we demonstrate in vitro that NSAIDs treatment 

induced the expression of p21 (Figure 27), whose transcriptional upregulation by p53 results 

in a transient cell cycle arrest or cellular senescence186. Interestingly, the same pattern of 

activation of p53 was observed in a mouse model of chemical carcinogenesis, pointing to 

NSAIDs preventive effect during the initial stage of breast cancer (Figure 28B) (Dell’Omo 2018 

under revision). 

During my PhD we discovered a new target for NSAIDs chemoprevention: SIRT1. We showed, 

for the first time, that NSAIDs were able to inhibit SIRT1 activity in vitro (Figure 22). Moreover, 

through in vitro assays including stable transfection experiments, we demonstrate that SIRT1 

is the mediator of NSAIDs effect on p53 acetylation (Figure 25 and Figure 26). Data presented 

in this thesis link the NSAIDs chemopreventive activity with the well-known SIRT1/p53/p21 

anti-oncogenic pathway, suggesting a novel strategy for the design of tumor protective drugs. 

This finding supports the hypothesis that safer chemopreventive agents could be developed 

from NSAIDs derivatives specifically acting on SIRT1 without the COX-inhibitory activity. For 
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these reasons my laboratory started a collaboration with the laboratory of Computational 

Biochemistry and Biophysics and with the laboratory of Medicinal Chemistry at University of 

Milan. We are working for design and synthetize NSAIDs like molecules with improving SIRT1 

inhibitory activity and reduced COX inhibition. Avoiding COXs inhibition, we are trying to 

nullify the side effects while preserving anti-cancer properties. 

Studying the functional role of NSAIDs-mediated SIRT1 inhibition we demonstrate that in 

chemical murine models of cancer transformation, SIRT1 inhibition could prevent 

hyperproliferation and immunosuppression, two hallmarks of cancer. 

In MITO-Luc model NSAIDs inhibit the hyperproliferation induced by the genotoxic agent 

DMBA (Figure 29 and Figure 30); this observation correlates with the increase in 

transcriptional activity of p53 occurring in mice treated with NSAIDs and nicotinamide, a 

physiological SIRT1 inhibitor now on phase III for skin cancer187 (Figure 28B). Taken together, 

these data suggest that NSAID-mediated SIRT1 inhibition could be responsible for the 

activation of p53, with a consequent inhibition of hyperproliferation during the early phase 

on carcinogenesis.  

We also found that, in in vivo model of early stage of breast cancer, pretreatment with NSAIDs 

increased the expression of immune-response genes (Figure 31). This suggests that a pro-

inflammatory activation occurs after treatment with NSAIDs. Interestingly, this provocative 

observation is supported by literature, in which is reported that sulindac reduces the anti-

inflammatory macrophage influx in vivo169. The NSAIDs pro-inflammatory action suggests an 

additional feature of NSAIDs chemopreventive activity, that could be further investigate in the 

next future.  

Several studies demonstrate the ability of NSAIDs to inhibit188 through a direct 

downregulation of pro-angiogenic factors and effectors189,190. However, our in vitro 

experiments revealed that NSAIDs were not able to modulate hypoxia response in MDAMB-

231 breast cancer cell line (Figure 33, Figure 35), a model of an advanced stage of the disease. 

In addition, NSAIDs effect could be ascribed not directly to the tumour cells but to the tumour 

microenvironment. Thus, in the next future NSAIDs anti-angiogenic function should be studied 

in vitro on breast cancer cell line that are not fully transformed, such as DCIS like cells, and in 

in vivo models of early stage of breast cancer.  
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Results from clinical sample, demonstrate the ability of ketorolac to increase p53 k382 

acetylation in mastectomy patients (Figure 36) suggesting a link between SIRT1 inhibition and 

the decreased relapses and increased survival associated with the treatment93,132. Thus, our 

results provide the rational basis for more prospective clinical trials aimed at demonstrating 

the beneficial effect of intraoperative ketorolac, as well as to assess the effect of the chronic 

nicotinamide administration to mastectomy patients. Both treatments eliciting SIRT1 

inhibition with the potential of significantly improving management of breast cancer patients 

(Dell’Omo 2018 under revision). 

In conclusion, the demonstration of a new target for NSAIDs chemoprevention provides a 

possible novel solution for an important medical need. In the last decades, prognostic markers 

characterizing populations at higher risk for several types of cancer were discovered, thus 

developing new preventive drugs for treating subjects at high risk of cancer is the future 

challenge. 
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