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Abstract8

The structure and vibrational density of states (VDOS) of polymer glasses are investigated using9

numerical simulations based on the classical Kremer-Grest bead-spring model. We focus on the10

roles of chain length and bending stiffness, the latter being set by imposing three-body angular po-11

tentials along chain backbones. Upon increasing the chain length and bending stiffness, structural12

reorganisation leads to volumetric expansion of the material and build-up of internal stresses. The13

VDOS has two dominant bands: a low frequency one corresponding to inter- and intra-chain non-14

bonding interactions and a high frequency one corresponding principally to vibrations of bonded15

beads that constitute skeletal chain backbones. Upon increasing the steepness of the angular po-16

tential, vibrational modes associated with chain bending gradually move from the low-frequency17

to the high-frequency band. This redistribution of modes is reflected in a reduction of the so-called18

Boson peak upon increasing chain stiffness. Remarkably, the finer structure and the peaks of the19

high-frequency band, and their variations with stiffness, can, for short chains, be explained using20

an analytical solution derived for a model triatomic molecule. For longer chains, the qualitative21

evolution of the VDOS with chain stiffness is similar, although the distinct peaks observed for22

short chains become increasingly smoothed-out. Our findings can be used to guide a systematic23

approach to interpretation of Brillouin and Raman scattering spectra of glassy polymers in future24

work, with applications in polymer processing diagnostics.25
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I. INTRODUCTION26

Raman spectroscopy can detect vibrational and electronic properties of materials over27

a broad range of temperatures and pressures, and is a well-established and widely-used28

non-destructive measurement technique [1, 2]. Comprehensive predictive models for Raman29

and Brillouin spectra are important for many applications involving amorphous carbon-30

based materials, from nanotechnology to polymer reaction engineering [3–6]. Of particular31

interest is emulsion polymerisation [7], a common manufacturing route for many rubbers32

and plastics. The complexity of this process hinders characterisation of product quality by33

traditional methods [8], and it is increasingly being probed by Raman spectroscopy.34

The vibrational density of states (VDOS) of solids is the main input for the prediction of35

the Raman and Brillouin scattering spectra. For glasses, the Shuker-Gammon formula gives36

the Raman intensity as a function of the VDOS as [9]37

I(ω) =
n(ω) + 1

ω
C(ω)D(ω), (1)38

where n(ω) + 1 is the Bose-Einstein occupation factor, D(ω) is the VDOS, and C(ω) is the39

photon-phonon coupling coefficient. Since C(ω) is a simple function of frequency, possibly40

quadratic [10], it is clear that most of the structure of the Raman spectrum is directly related41

to the D(ω) spectrum. While the VDOS of crystals can be obtained by a straightforward42

exercise in Fourier analysis, the same problem for amorphous solids, such as glasses, is43

analytically intractable and presents a rich phenomenology. This phenomenology is yet44

more complex when the building blocks are polymer chains, which, in the disordered glassy45

state, can have a considerably larger variety of conformations.46

There have been numerous studies into the vibrational properties of polymeric sys-47

tems [11, 12], starting from theoretical determinations of the single-chain backbone vibra-48

tional spectra in seminal works by Kirkwood [13] and Pitzer [14], followed by the powerful49

combination of Wilson’s GF-method with group theory by Higgs [15]. These methods are50

not applicable to polymer glasses, however, where the chain conformation does not pos-51

sess any periodicity that can allow the application of group theoretical methods. Further52

advances in numerical techniques have focused on reducing the computational time of the53

diagonalization problem [16].54

While signatures of individual monomers and their constituent bonds are very well char-55

acterized in the vibrational bands of highest energy in the spectrum, the relation between56
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coarse-grained polymer structures and vibrational properties in the low frequency part of57

the spectrum is relatively unexplored. In the contemporary literature, the use of coarse-58

grained systems as model materials for studying the vibrational properties of amorphous59

solids has become a standard approach [17–20]. In this direction, coarse-grained simulations60

based on the classical Kremer-Grest model [21] for bead-spring polymers can enable direct61

calculation of the VDOS. With a suitable procedure for coupling the VDOS to the Raman62

spectra [18], such numerical approaches will be able to offer a systematic approach to link-63

ing vibrational properties to coarse-grained structures for polymers of arbitrary length and64

monomer-monomer interactions.65

Here, we report the structural properties and the VDOS for coarse-grained polymer66

glasses as functions of the chain length and the chain bending stiffness. We identify clear67

trends in the vibrational spectra that derive from microstructural rearrangements as the68

chain length and chain stiffness increase. Through these quantities, it will be possible in69

future work to make predictions about how the experimentally observed vibrational spectra70

will evolve during the course of an emulsion polymerisation, for example, guiding the devel-71

opment of noninvasive industrial process monitoring techniques. This work can further serve72

as the basis for quantitative understanding and modelling of Raman and Brillouin spectra73

at the atomistic level, particularly by coupling to atomistic simulation techniques.74

In the following, we first describe the numerical method used, then go on to study the75

structural and volumetric changes as functions of varying chain length and stiffness. We76

then analyze the VDOS as a function of chain length and stiffness, providing a mechanistic77

interpretation informed by an analytical argument.78

II. SIMULATION DETAILS79

Our model uses a coarse-graining approach that treats polymer chains as linear series80

of monomer ‘beads’ on an elastic string. In a harmonic approximation, monomeric scale81

physics dominate the region of the VDOS of interest to this work, and indeed govern the82

viscoelastic response of the material [22]. For each bead in the system we use LAMMPS [23]83

to solve the Langevin equation84

m
dv

dt
= −m

ξ
v − dU

dr
+ fB(t), (2)85
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FIG. 1. Sketch of simulated polymer system showing two interacting chains (blue and pink).

Shown are the LJ rest position of 21/6σ between non-bonded beads, the FENE rest position of

0.96σ between beads along a single linear chain, and the angle θ formed between three consecutive

beads (forming a triplet) along chains.

for uniform beads of mass m and velocity v, coefficient of friction m/ξ and random forces86

fB(t) satisfying 〈fB(t)fB(t′)〉 = 2mkBTδ(t − t′)/ξ. Beads interact with each other through87

a potential U , given by the Kremer-Grest model [21] with the addition of angular potentials88

that impose bending constraints on triplets of three consecutive beads along the chain back-89

bones. Overall, the model for the potential energy U comprises three terms: [i] A truncated9091

and shifted Lennard-Jones (LJ) potential of form92

ULJ(r) = 4εLJ

[(σ
r

)12
−
(σ
r

)6
−

((
σ

rc

)12

−
(
σ

rc

)6
)]

, (3)93

acting between all bead pairs within a cut-off range rc = 2.5σ, where r is the bead-bead94

separation, σ is the zero-crossing distance for the potential and the prefactor εLJ sets the95

LJ energy scale. Setting dULJ(r)
dr

= 0 leads to an energy minimum and corresponding LJ rest96

position at 21/6σ. The LJ potential effectively acts as an excluded volume, as illustrated97

in Figure 1; [ii] A finitely extensible nonlinear elastic (FENE) potential acting between98

sequential bead pairs along each linear chain99

UFENE(r) = −0.5εFENER
2
0 ln

[
1−

(
r

R0

)2
]

, (4)100

where R0 is the maximum FENE bond length and εFENE is the bonding energy scale. Ad-101

jacent beads along polymer chains have an overall interaction that represents the sum of102

the Lennard-Jones and FENE potentials, giving a rest position for bonded beads (obtained103

by setting d
dr

(ULJ(r) + UFENE(r)) = 0) as ≈ 0.96σ for the parameters used throughout this104

work. This discrepancy relative to the LJ rest length gives sufficient bidispersity to suppress105
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crystallisation throughout, and we set εFENE/εLJ = 30; [iii] An energy associated with chain106

bending, given by107

Ubend(θ) = εbend[1− cos(θ − θ0)] (5)108

for energy scale εbend. The angle θ is formed between three consecutive beads (a triplet) along109

the length of the linear chains (Figure 1), and the characteristic rest angle is θ0 = 109.5◦.110

The resistance to bending of the polymer chains is thus set by εbend, which is related to the111

persistence length lp of the chain via the standard relation: lp = εbendσ/kbT .112

The relative importance of the three potentials in setting the overall structure and dy-113

namics of the polymers is determined by their prefactors εLJ, εFENE and εbend. Since each114

of the potentials has a different form, it is difficult to compare the values of these pref-115

actors directly. In order to render the different interaction strengths more comparable,116

therefore, we find it convenient to take a harmonic approximation about the rest position117

of each potential and consider the resulting spring constants κ. We find κLJ ≈ 57.1εLJ/σ
2,118

κFENE ≈ 32.7εFENE/σ
2 and κbend = εbend/σ

2. To characterize our systems we use two con-119

trol parameters κbend/κLJ and κbend/κFENE that compare the bending stiffness to the LJ120

and FENE bond strength, respectively. The strength of FENE bonds is fixed such that121

κFENE/κLJ ≈ 17.2 throughout (recalling that εFENE/εLJ = 30). We explore bending stiff-122

nesses in the range κbend/κLJ = 0→ 20. A sketch of two interacting polymer chains is shown123

in Figure 1, highlighting the angle θ on which Ubend acts as well as the rest positions for LJ124

(21/6σ) and FENE (0.96σ) interactions.125

With reference to fundamental units of mass µ, length d, and energy ε, we set σ = 1,126

R0 = 1.5, m = 1 and εLJ = 1, giving a time unit of τ =
√
mσ2/εLJ, and we set ξ = 100τ .127

The system volume V has units d3. A dissipative timescale emerges as mσ2/ξεLJ, and a128

thermal timescale emerges as mσ2/ξkBT (where kB := 1 [units energy/temperature]). The129

state of our system, i.e. whether it is in the melt or glassy state, is simply given by the130

ratio of these timescales, as T ∗ = kBT/εLJ. Two additional rescaled temperatures could be131

defined using εFENE or εbend as the reference energy, but we find that the most convenient132

description and characterisation of the transition to glassy behavior is obtained using εLJ.133

Initial loose polymer configurations are generated within a cubic periodic domain using134

a non-overlapping random-walk algorithm. We use a system of Np = 5 × 103 beads, in135

chains of uniform length L, which we vary from 2 to 50. The value of Np is chosen following136

the entanglement critical of Ref [24], and moreover we demonstrate the sensitivity to Np in137
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Figure 9. For each value of L we generate 5 realisations of the system for the purposes of138

ensemble averaging. We comment on the variation between realisations elsewhere [22]. The139

system is first equilibrated in a melted state at T ∗ = 1.2, maintaining zero external pressure140

using a Nose-Hoover barostat with damping parameter of 100τ . The system is subsequently141

cooled to T ∗ = 0.1 by decreasing T ∗ at rate 1/τc, with τc ∼ O(105)τ . Since T ∗ = 0.1 is below142

the glass transition for all of the polymers considered in this work, this cooling procedure143

allows us to measure Tg. For determining the vibrational properties, though, it is necessary144

to go to lower temperatures. To reach temperatures closer to T ∗ = 0, we subsequently145

relax the system further by applying the gradient method to the simulation configuration146

at constant volume. We used the fluctuation of net forces acting on beads 〈f 2
i 〉 ∼ T ∗ as a147

measure for temperature. By comparing the forces with the reference value from T ∗ = 0.1148

we get the temperature of the relaxed configuration by T ∗ = 0.1〈f 2
i 〉/〈f 2

i (T ∗ = 0.1)〉. By149

this protocol, a target temperature of T ∗ = 10−4 was reached for each realization. Further150

decreasing the temperature does not lead to changes in the VDOS or structural quantities.151

III. STRUCTURE OF COARSE-GRAINED POLYMER GLASSES152

A. Changes in Tg with chain length and stiffness153

Ensuring that the external pressure remains zero, the system undergoes a decrease in154

volume V as it is cooled, Figure 2. In Figure 2a, a change of gradient is identified at155

T ∗ = T ∗g , corresponding to the glass transition [25, 26]. As reported in Figures 2a-b, the156

model predicts that T ∗g increases with the chain length [27], consistent with the classical free-157

volume result of Flory and Fox [28], and with the more recent criterion based on generalized158

Born melting for glasses [29]. This is the case for both fully flexible (κbend/κLJ = 0) and159

very stiff (κbend/κLJ = 17.5) chains. As expected [30], we further find that T ∗g increases160

with κbend/κLJ (Figure 2c-d), with apparent limiting values occurring for κbend/κLJ → 0 and161

κbend/κLJ > 4. The increase is significantly more pronounced as L is increased. We reported162

the increase of T ∗g with κbend/κLJ and provide further details in our earlier article [31].163

We find that T ∗g varies between ≈ 0.4 and ≈ 0.9 for all values of L and κbend/κLJ, and164

that in all cases the system is well within the glassy state at T ∗ = 0.1. When we increase165

κbend/κLJ above 20 (corresponding to κbend/κFENE ≈ 1), we find that the angular potentials166
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FIG. 2. Volume-temperature curves for polymer cooling as functions of chain length and chain

stiffness. The volume is rescaled with bead number Np and size σ3. a) Increasing chain length for

κbend/κLJ = 0. Highlighted is the glass transition temperature T ∗g , where the polymer transitions

from a melt to a glassy state; b) Increasing chain length for κbend/κLJ = 17.5; c) Increasing chain

stiffness for chain length 3; d) Increasing chain stiffness for chain length 50. Colors in (a) and (b)

refer, from blue to red, to chain lengths 2, 3, 4, 5, 20 and 50. Colors in (c) and (d) refer, from blue

to red, to chain stiffnesses κbend/κLJ = 0.0175, 0.0525, 0.175, 0.525, 1.75, 5.25 and 17.5.

are large enough to stretch the FENE bonds beyond their maximum length R0 at which167

point the chains break and the simulation becomes unstable due to the divergence of the168

ln(1− (r/R0)
2) term in the FENE expression. We therefore treat this as a limiting value of169

κbend/κLJ and do not explore stiffer chains.170

B. Changes in density with chain length and chain stiffness171

It is evident from Figure 2 that the value of V/Npσ
3 at T ∗ = 0.1 is sensitive to both172

chain stiffness and length. In our earlier article [31], we showed that differences in V/Npσ
3

173

persist even at fixed T ∗/T ∗g (rather than fixed T ∗), demonstrating that there are robust174

changes in density as chain bending and length are varied. We present in Figure 3 a contour175

map of polymer glass density, quantified as the number of beads per unit volume Np/V ,176

rescaled by the characteristic bead excluded volume σ3, measured at T ∗ = 0.1. Since our177
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FIG. 3. Contour plot of polymer glass density (enumerated as Npσ
3/V at kbT/εLJ = 0.1) as func-

tions of chain length and chain stiffness. We note that increasing chain length leads to compaction

for flexible chains but expansion for stiff chains.

subsequent minimization protocol conserves volume, the map also applies at T ∗ = 10−4.178

With respect to the density at L = 3, it is interesting to note that increasing chain length179

leads to compaction for flexible chains but expansion for stiff chains.180

For very flexible chains (κbend/κLJ � 1), the key effect of increasing chain length is to181

move bead pairs from the LJ rest position at 21/6σ to the FENE rest position at 0.96σ,182

while maintaining a purely central-force system with minimal explicit bending constraints.183

As a result, the density increases with increasing chain length as illustrated in Figure 3 and184

similarly by the decreasing value of V/Npσ
3 at T ∗ = 0.1 in Figure 2a.185

For less flexible chains, the roles of stiffness and chain length are more subtle. In order to186

achieve mechanical stability at, and below, T ∗g , approximately monodisperse beads in central187

force networks require six pairwise interactions to fully constrain their translational degrees188

of freedom, in agreement with Maxwell’s criterion for isostaticity. As bending stiffness is189

increased, the translational motions of beads along chain backbones become increasingly190

constrained by three(and many)-body interactions. This means that as κbend/κLJ increases,191

the translational degrees of freedom of individual beads can be fully constrained with fewer192

than six pairwise interactions per bead [29, 32]. We quantified this effect using the coordina-193

tion number Z in another contribution [31]. Since we operate at fixed external pressure, this194

lower coordination further implies that marginal stability can be achieved at lower density195

as stiffness is increased. This is the result observed in Figure 3 for L > 3 and indeed in196
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Figure 2c-d (inverse density V/Npσ
3 at T ∗ = 0.1 increases with increasing κbend/κLJ), with197

the effect becoming more evident for longer chains, which permit many-body interactions.198

As we deviate from the short chain limit, it is interesting to note that there is a contin-199

uous transition from very weak dependence to rather strong dependence on stiffness with200

increasing chain length. This can be interpreted by considering again the coordination argu-201

ment above, which argued that bending constraints impose many-body effects along chains202

such that marginal stability can be achieved with fewer pairwise contacts than otherwise.203

For shorter chains, the maximum number of beads than can be correlated with one another204

in this way is small, so many-body interactions only have a weak contribution to the overall205

stability of the material. As such, when the stiffness is increased in short chains where there206

aren’t many angular potentials defined (in relative terms), most of the interactions remain207

as central force and as such the density varies only weakly. Conversely, for long chains, the208

increased stiffness allows many-body bending constraints to affect a higher proportion of the209

overall number of interactions, so the density decrease becomes exaggerated. Interestingly,210

at L = 50, the variation of density with chain stiffness is not linear, but rather it has an211

inflection around κbend/κLJ ≈ 1.212

C. Deviations from rest positions and the resulting internal stresses213

It is likely that steric constraints will play a role within our densely packed systems,214

meaning that beads will not typically be situated at their minima with respect to all three215

potentials (LJ, FENE, bending) even when the temperature is considerably less than T ∗g .216

Such deviations from minima will lead naturally to internal stresses in the material. As chain217

length and bending stiffness are increased, it is likely that the extent to which beads deviate218

from their respective rest positions, and hence the total internal stress in the material, will219

change. It was shown recently [33] that properly accounting for internal stresses in jammed220

emulsions is crucial to correctly obtaining the VDOS. Here we give a description of the221

source of internal stresses, which will help to guide our interpretation of the VDOS below.222

To illustrate the deviation of beads from their rest positions, we present in Figure 4 an223

example bead-bead radial distribution function g(r) and angular distribution function p(θ)224

for chains with L = 10 and κbend/κLJ = 0.175 in the minimized configuration, highlighting225

the specified rest positions for LJ, FENE and bending potentials as well as the LJ cut-off226
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FIG. 4. (a) Radial distribution function g(r) and (b) angular distribution function p(θ) for chains

with L = 10 and κbend/κLJ = 0.175. Shown are the FENE rest position, LJ rest position and the

resting angle, as well as the force cut-off beyond which we do not compute LJ interactions. (c) and

(d) illustrate the implicit angular resting positions that arise due to two different configurations of

the excluded volumes of beads.

distance. There is a clear deviation from each of the rest positions. In particular, LJ-227

bonded beads lie, on average, closer than their rest positions dictate, while FENE bonds228

are typically stretched, Figure 4a. Although the FENE bonds have a steeper potential than229

their LJ counterparts, the LJ bonds are far more widespread in the system, being both230

longer range and inter-chain. Thus it is likely that the mean positions of FENE-bonded231

pairs can be dictated by the LJ bonds in their immediate vicinity. Deviations of both LJ232

and FENE naturally lead locally to internal stresses and thus to a net storage of potential233

energy in the system.234

Furthermore, Figure 4b shows peaks in the angular distribution at around θ = 70◦ and235

θ = 120◦ that are not related to the potential minimum at θ0 = 109.5◦. Rather, implicit236

angular constraints that generate energetically favorable configurations arise in the material237

due to the LJ and FENE potentials. We illustrate such configurations in Figures 4c-d. These238

configurations nonetheless lie far from their bending potential minima, thus accumulating239

additional potential energy in the system. The broad p(θ) distribution steadily narrows as240

the value of κbend/κLJ is increased, as we showed in an earlier article [31].241

To quantify the potential energy in the system, we compute the mean displacement of242
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FIG. 5. Structural origin of internal stresses in the polymer glasses as a function of chain length and

stiffness. Shown are a) Mean deviation of LJ pairs from their rest position; b) Mean deviation of

FENE bonds from their rest position; c) Mean deviation of angles from their rest position, showing

approximate independence of chain length; d) Total potential energy per unit volume, equivalent

to the internal stress of the material.

beads from their rest positions as a function of chain length and stiffness. At any time,243

there are NLJ Lennard-Jones interactions (including those up to the cut-off rc = 2.5σ),244

which we label with the index α (so the bead-bead distance is rα). We take the average245

magnitude of the deviation of rα from the LJ rest position. Analogous calculations are done246

for FENE interactions and bending interactions. Overall, we compute: 1
NLJ

∑
α |rα− 21/6σ|,247

1
NFENE

∑
β |rβ − 0.96σ| and 1

Nbend

∑
γ |θγ − θ0|. The results are given in Figure 5a-c for LJ,248

FENE and bending interactions respectively.249

As bending stiffness κbend/κLJ increases, the chains increasingly conform to θ0 indepen-250

dently of chain length (Figure 5c). This requires changes in structure that must be accom-251

modated by small additional deviations of LJ and FENE bonds from their resting positions.252

For LJ interactions (Figure 5a) the deviations increase steadily with stiffness. This effect is253

more marked for long chains, which have a larger number of bending constraints per bead.254
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For FENE bonds (Figure 5b), meanwhile, the behavior is more subtle. The primary effect255

is similar to that observed for LJ interactions: increasing bending stiffness increases the256

deviation of FENE bonds from their rest positions. For short and flexible chains, however,257

there is an anomalous secondary effect: for κbend/κLJ < 1, the deviation of FENE bonds258

increases with decreasing chain length. As discussed above, the ubiquity of LJ interactions259

means they may dictate the positions of FENE bonded beads regardless of their consider-260

ably weaker potential. As chain length decreases, the average number of FENE bonds per261

bead decreases steadily, while the number of LJ interactions per bead remains unchanged.262

This means that LJ interactions can have more influence on FENE positions as chain length263

decreases, thus leading to additional stretching. This effect is stronger for flexible chains,264

which don’t have the additional effect of angular constraints.265

We further show that deviations from rest positions lead directly to potential energy266

being stored in the system in each case. The potential energy is calculated by summing267

ULJ, UFENE and Ubend over every interaction in the minimized configuration, and is given268

as a function of chain length and stiffness in Figure 5d. The main effect is that increasing269

chain length introduces more FENE bonds into the system, whose individual deviations of270

∼ 0.02σ (Figure 5b) contribute significantly to increasing stored potential energy. There is271

an additional effect whereby stored potential energy increases with increasing stiffness. This272

has contributions from LJ and FENE, in line with their deviations shown in Figures 5a-b,273

and also from bending potentials. Although the triplet configurations increasingly conform274

to their rest positions with increasing stiffness, remaining deviations become progressively275

more costly as κbend/κLJ increases, leading to a contribution to the stored potenital energy.276

D. Overview of structural changes277

The evolution of density and internal stresses (as parameterized by deviations from inter-278

action energy minima) are strong functions of the bending stiffness and chain length. Upon279

increasing the stiffness, all angles between adjacent bonds tend to approach the minimum of280

the bending potential at θ0. However, this effect competes with the tendency of neighboring281

beads to stay close to the minima of LJ and FENE interactions. This competition leads to282

an increase of potential energy due to pairs of beads drifting subtly away from LJ and FENE283

minima. The effect of increasing the chain length is to insert more FENE bonds into the284

12



system. Since these are typically ∼ 0.02σ from their resting positions, this leads to a sharp285

increase in stored potential energy. We have checked that increasing chain length further286

above L = 50 does not bring any further evolution, and we can safely conclude that chain287

length has a non-negligible effect only for L < 50.288

IV. VIBRATIONAL DENSITY OF STATES289

We next investigate the connection between chain length, angular potential and the290

VDOS. Importantly, changes in the spectrum due to increasing the angular potential are not291

only related to the associated increase in angular forces, but also to the structural changes292

that arise as discussed above. In what follows, we first outline our formalism for obtain-293

ing the VDOS, including a description of how we decompose it into various contributions.294

We then give an overview of the generic features of the VDOS of polymeric glasses, before295

focussing specifically on the behavior with respect to chain length and bending stiffness.296

A. Formalism for obtaining the VDOS297

Since we prepared the glasses well below T ∗g , we can ignore any effects of thermal noise298

and hence work in the harmonic approximation, where the displacements of the system299

around energy minima are small. The equation of motion can therefore be written with the300

Hessian H of our system:301

m ü = −Hu. (6)302

Here m is the mass of the constituent beads of our polymer chains (which we take to be303

uniform) and u is the displacement field. We can convert this equation into an eigenvalue304

problem by performing a Fourier transform, which gives:305

mω2 û = H û, (7)306

where ω are the eigenfrequencies of our system and û are the eigenvectors (displacement307

fields). Arranging the eigenfrequencies in a normalized histogram gives us the vibrational308

density of states (VDOS) of our system. To obtain ω, we first need the explicit expressions309

for the elements of the Hessian, after which we can solve Equation (7) numerically. The310

elements of the Hessian are defined as second derivatives of the potential energy of the311
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system:312

Hab
nm =

∂2U(z)

∂ran ∂r
b
m

, (8a)313

314

∂2U(z)

∂x ∂y
=

∂2U(z)

∂z2
∂z

∂x

∂z

∂y
+
∂U(z)

∂z

∂2z

∂x ∂y

= c
∂z

∂x

∂z

∂y
+ t

∂2z

∂x ∂y
.

(8b)315

Here, U represents the overall potential, consisting of the sum of ULJ, UFENE and Ubend, z316

is a generic argument, and a and b label the Cartesian components. As one can see, the317

entries in the Hessian consist of two parts: one proportional to the spring constant c between318

two beads, and another one proportional to the tension t (precise definitions are given in319

Appendix A). The latter contribution vanishes if all bonds are at their energy minimum at320

the same time. In reality this would require perfect crystallisation of the system, which is321

often not possible or would take a very long time. In this case, crystallisation is inhibited322

even for fully flexible chains by the disparity in rest positions of LJ and FENE interactions.323

Another source of tension is thermal noise, though this is not addressed in the present324

work since we work sufficiently below T ∗g . The main source of tension terms in our simulations325

is thus the angular potential and its competition with the LJ and FENE potentials, as326

discussed above. This combination of potentials creates two competing effects: the stronger327

angular potential forces all angles closer to the rest angle θ0, but also increases the strength328

of the tension for a given deviation, and generates additional tensions due to increased329

deviations from the LJ and FENE minima. Including them in the Hessian, we can now330

solve Equation (7) and get the eigenvalues ω and displacement fields û(ω). The units of ω331

are
√
εLJ/mσ2.332

A particularly instructive quantity is the ratio at which different vibration patterns con-333

tribute at certain frequencies [17]. We are especially interested in the internal-coordinate334

directions shown in Figure ??. These motions correspond to out-of-plane “rocking” mo-335

tions (red, âi,1), perpendicular (to the chain) motions that remain in the plane of the chain336

(blue, âi,2), and “along-chain” motions (green, âi,3). To obtain each of these contributions337

separately, we project the displacement vector ûi(ω) of each bead onto the orthogonal basis338

formed by the three unit vectors (âi,1, âi,2, âi,3) (see Figure 6), generating a new representa-339
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a

κbend/κLJ = 0.525
Length = 50 rocking modes ai,1

along-chain modes ai,3
perpendicular modes ai,2

total

b

rocking modes

along-chain modes
perpendicular modes

LJ sea

FENE

bonds

FIG. 6. (a) Important motions of bead i along the polymer chains. âi,1, red circle denotes the

motion perpendicular to the plane spanned by the two bonds (black lines) also referred to as rocking

motion. The other two planar motions are perpendicular (âi,2, blue arrows) and along the chain

(âi,3, green arrows); (b) Example VDOS for chain length L = 50 and stiffness κbend/κLJ = 0.525,

displaying a lower-frequency band corresponding to collective LJ-dominated motions, and a higher-

frequency band corresponding to skeletal motions, which include FENE bonds. The dashed line

(red) represents rocking motions, the dashed-dotted (blue) line represents perpendicular skeletal

motions, while the dotted line (green) represents along-chain skeletal motions.

tion v̂i(ω):340

v̂i(ω) =


ûi(ω) · âi,1
ûi(ω) · âi,2
ûi(ω) · âi,3

 =


v̂i,1

v̂i,2

v̂i,3


Xj(ω) =

N∑
i=1

v̂2i,j j = {1, 2, 3}

(9)341

Xj(ω) is a weight function which measures the contribution of each of the three different342

motions discussed above, from which we get a partial VDOS showing the contribution of343

each of these three motions to the full VDOS. This decomposition provides insights into the344

dynamics of the chains at different frequencies in the spectrum.345
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B. The vibrational spectrum: results and interpretation346

1. Collective Lennard-Jones ‘sea’ and higher frequency skeletal modes347

An example VDOS is given in Figure 6, for chain length L = 50 and stiffness κbend/κLJ =348

0.525, while in Figure 9 we present the VDOS across the full range of stiffnesses and chain349

lengths. A common feature of this work is a distinct splitting of the VDOS into low and350

high frequency parts, particularly evident for low bending stiffness. The low frequency part351

occupies the interval ω = [0,∼ 40], while the high frequency part extends up to ω ≈ 70 in352

most cases, and up to ω ≈ 100 when κbend/κFENE & 1. The low and high frequency bands353

are separated by a trough, whose depth and precise location in ω is subtly dependent on354

κbend/κLJ. This generic splitting of the VDOS into two bands was shown previously by Jain355

and de Pablo [34], who considered fully flexible chains only. Moreover, experimental works356

in polymerisation have demonstrated that during periods of chain growth a single peak in357

the Raman intensity transforms into two peaks [35, 36]. These may be related to the two358

distinct bands predicted here, though a quantitative link between the Raman spectra and359

the VDOS reported here remains challenging and is the subject of ongoing work. We ex-360

pect, furthermore, that imposing pressures greater than zero will increase the vibrational361

energy of both bands, thus shifting the spectrum to higher frequencies as observed experi-362

mentally [37]. By considering the relative prefactors of the LJ and FENE potentials, we find363

it instructive to interpret the low frequency part as a Lennard-Jones ‘sea’, that comprises364

weak but ubiquitous inter-chain LJ interactions, while the high frequency part represents365

FENE bonds that are fewer in number and follow specific paths along chain backbones.366

Within this picture, the contributions to the VDOS coming from bending interactions are367

highly sensitive to κbend/κLJ. In particular, when κbend/κLJ is small, we expect bending in-368

teractions to contribute frequencies comparable to, or even lower than, the LJ interactions.369

By contrast, when κbend/κFENE → 1 we expect the bending interactions to contribute fre-370

quencies comparable to the FENE interactions. We anticipate a redistribution, therefore, of371

the bending contributions from the low to the high frequency band as κbend/κLJ is increased.372

By analysing the motion patterns with respect to the geometry outlined in Figure ??, we373

can see in Figure 6 that for flexible chains out-of-plane (rocking) motions are predominantly374

apparent in the low frequency peak, while the more energetic modes mainly contain motions375
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FIG. 7. VDOS for L = 3 with (a) κbend/κLJ = 0.001; (c) κbend/κLJ = 0.306; (e) κbend/κLJ = 1.019.

(b) Analytical solution for the three non-zero eigenfrequencies of a chain with L = 3 (pictured in

Inset) as a function of κbend/κLJ (see Appendix B). (d,f) Contribution weights for along-chain and

perpedicular motion for ω1 and ω3 from analytical model. The weights of ω2 are inverted compared

to ω3. Vertical dashed lines in (b,d,f) indicate sample values of κbend/κFENE for which the VDOS

are shown in (a,c,e). As we can, see the qualitative behavior of our simulated systems with L = 3

is well-captured by the analytical model, both in terms of frequency and motion weight evolution.

The frequencies measured by simulation differ slightly in magnitude due to the large number of LJ

interactions that collectively push the bond energy, and therefore frequency, to higher values.
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in the plane (skeletal vibrations). This is consistent with the low frequency band being376

mainly due to LJ interactions, since they are the only interactions in the system which are377

not contained in the plane defined by two adjacent bonds. Consequently, the high frequency378

part is mostly caused by the FENE bonds, which point along the chain backbones.379

For high bending stiffness we can see a separation between along chain and perpendicular380

motion, of which the latter one occupies the high frequency part. Hence, the three-body381

bending interaction is mostly associated with perpendicular motion, whereas the FENE382

interaction is rather associated with along-chain motions. This makes sense as our chains383

have a rest angle φ0 > π/2, meaning the FENE bonds point mostly along the chain direction.384

For longer chains we see rocking motion arising at higher frequencies. The reason for this385

is that perpendicular in-plane motion caused by one triplet in the chain causes out-of-plane386

motion from the perspective of neighboring triplets, since they most likely do not lie in the387

same plane (as would be the case for a completely flat chain). As our chains are freely388

rotating, having a completely flat chain is very unlikely, which explains why strong bending389

interaction causes rocking motion at high frequencies.390

2. Short chain behavior391

For chains with L = 3, we use the analytical form of the eigenvalues, including both bend-392

ing and stretching interactions, to provide insights into the behavior of the VDOS measured393

in the simulation. The analytical derivation is reported with full details in Appendix B, with394

the expressions for the eigenvalues given in Equation (B2). We present both the analytical395

and numerical results in Figure 7.396

The analysis predicts three non-zero eigenmodes, whose characteristic eigenfrequencies as397

a function of κbend/κLJ are given in Figure 7b. The splitting of their associated motions into398

along-chain and perpendicular components are given in Figures 7d,f. Since L = 3 chains are399

planar, rocking motions are not part of this analysis. We have seen that rocking motions400

contribute mostly to the lower LJ-sea band and not so much to the high-frequency skeletal401

band which is our main focus here.402

In Figure 7a,c,e we can see the VDOS for three different values of κbend/κFENE as de-403

termined from the simulation at L = 3. Aside from the LJ-peak (which is not part of the404

analytical model), we can see that the VDOS follows closely the analytical prediction of405
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increasing 
stiffness κbend/κLJ

Length = 50
a

b

FIG. 8. (a) Vibrational density of states for L = 50 upon increasing the stiffness, κbend/κLJ. The

arrow points in the direction of increasing bending stiffness; (b) Same data as (a) with the VDOS

D(ω) rescaled by ω2 to highlight the behavior of the Boson peak.

the frequencies. In particular, the peak ω1 remains dominated by along-chain motions and406

also remains rather independent of κbend/κLJ throughout. ω2 is initially at zero (meaning407

that it is a soft mode) but becomes stiffer and moves to the right as κbend/κLJ is increased.408

Meanwhile, ω3 is initially slightly lower than ω1 but progressively increases also, eventually409

crossing over and becoming the higher of the three eigenvalues and at the same time becomes410

dominated by perpendicular motion.411

While the analytical model predicts delta peaks at eigenvalues ω1, ω2, ω3, in practice412

the peaks are broadened due to the distribution of rest angles, even for very high bending413

stiffness. At around κbend/κFENE = 0.3 the two peaks ω1 and ω3 start to overlap and to414

merge into a single high peak. By looking at the evolution of eigenfrequencies and the415

associated motions for bending stiffness larger thanκbend/κFENE = 0.3 we can also verify the416
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interpretation that high frequency modes ω3 are dominated by perpendicular motions for417

high κbend/κFENE, whereas the mode that only depends on the backbone interaction ω1 is418

dominated by along-chain motions independently of κbend/κFENE. The mode ω2 has weights419

for along-chain and perpendicular motion which are the specular opposite to the ω3 case420

and hence presents a growing along-chain character upon increasing κbend/κFENE.421

VDOS for additional values of κbend/κFENE are shown in Figure 9. We can clearly see the422

continuous shift of modes according to the analytical result given in Equation (B2), reflected423

also in the motion pattern associated with those modes as shown in Figure 7.424

3. Dependence on bending stiffness for L > 3425

For longer chains we can see the same general features as for L = 3, Figure 8 and Figure 9.426

Higher bending stiffness leads to redistribution of modes from the lower part of the FENE427

regime towards higher frequencies with an overlap happening at κbend/κFENE ≈ 0.3, where428

they form a single peak. Above that value the bending interaction shifts modes associated429

with perpendicular motions towards higher frequencies, while the modes associated with430

along-chain motion stay relatively unchanged.431

The strong bending interaction also causes high frequency out-of-plane motions to appear,432

as discussed above. The gap between the LJ-sea and the FENE band is filled by modes in433

the same way as the third peak arises for L = 3. We can relate the peak at ω = 60 to ω1 from434

the L = 3 model system by looking at a second toy model, the freely rotating chain with435

constant bond angle but no bending potential, as described in Appendix C, Equations (C1)-436

(C8). The VDOS is given by Equation (C7), and is U-shaped spectrum with two divergent437

peaks at the van-Hove singularities (similar to the textbook example of completely straight438

linear chains with all angles at 180o). Since ω1 does not change with the bending stiffness439

it is natural that a remnant of this peak related to this frequency appears stationary for all440

bending stiffness. The lower peak, however, would correspond to ω3, which depends heavily441

on the bending stiffness and can therefore not be fully captured by a toy model without442

bending interaction.443

We further studied the so-called Boson peak, defined as the excess of low-frequency444

modes above the Debye ∼ ω2 law, which is a paradigmatic and defining feature of glasses.445

In Figure 8b the VDOS normalized by the Debye law is shown, and it is evident that446
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increasing the bending stiffness causes a significant decrease of the Boson peak. This is447

due to the fact that, since the VDOS is a normalized distribution, if vibration modes are448

shifted to high frequency due to the stiffening of skeletal vibrations involving bending, then449

necessarily the density of modes has to decrease in lower-frequency parts of the spectrum.450

From the point of view of mechanical response, a decrease of the Boson peak is linked with451

a decrease of the nonaffine component of elastic [19, 20] and viscoelastic [38] response which452

contributes negatively to the shear modulus.453

Hence, increasing the bending stiffness has a twofold effect on the elasticity: it increases454

the affine part of the shear modulus (which is a positive contribution to rigidity) by increasing455

the stiffness constant, and it decreases the Boson peak and therefore decreases (in absolute456

value) the nonaffine part of the shear modulus (which is a negative contribution to rigidity),457

as explained in previous work [19, 20]. This, however, does not account for the structural458

effect brought about by increasing stiffness, which leads to volumetric expansion and, under459

certain conditions (as discussed by Ness et al. [31]) may lead to a decrease of shear modulus460

upon increasing bending stiffness, thus giving rise to a non-monotonic dependence of the461

shear modulus on chain stiffness. Clearly this mechanism by which the Boson peak is changed462

in polymer glasses, is very different from other mechanisms discussed in the literature for463

small-molecule or atomic glasses [39, 40].464

To summarize, we can separate the spectrum into four distinct parts:465

i) the lowest-frequency band of LJ-sea which gets lowered as, with higher bending stiffness,466

more modes are shifted to higher frequencies;467

ii) a stationary peak around ω = 60 strongly associated with along-chain motion/vibration468

and with characteristic frequency ω1;469

iii) modes associated with vibrations perpendicular to the chain axis, that resemble the470

behavior of ω3 and the frequencies of which diverge with the bending stiffness;471

iv) modes associated with along-chain vibrations that resemble the behavior of ω2 filling the472

regime between the LJ-sea and the ω1-peak.473

474
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Np =

L = 50

FIG. 9. Vibrational density of states for a range of parameters explored in this work. Shown are

the overall result in black, as well as the decomposition into rocking (red), perpendicular (blue)

and along-chain (green) motions as we defined in figure 6. Given in the legend of each panel are

the chain length and stiffness. Results for various system sizes are shown in the bottom left panel,

demonstrating that the features discussed here are independent of Np.

4. Dependence on length L475

By increasing the chain length we introduce more high-energy FENE bonds into the sys-476

tem, which leads to a shift or redistribution of modes from the low to the high frequency477

band, causing a lowering of the LJ peak (Figure 9). This is particularly evident for fully478

flexible chains. Additionally, the number of possible polymer configurations increases dras-479

tically with chain length. In the VDOS this leads to a loss of distinct features (i.e. sharp480
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peaks become broadened), especially in the high frequency band. The effect is best visible481

for fully flexible short chains of L = 3, 4, 5, whereas the difference between L = 10 and482

L = 50 is only marginal. The total number of additional FENE bonds per chain n decreases483

as the chains become longer n/N = L−1
L
, ∆n/N = 1

L(L+1)
and therefore the change in total484

bond energy becomes smaller. As such, the averaged spectrum of sufficiently long (L > 5)485

chains already approximates the spectrum of an infinitely long chain quite well. A sample486

of chains with L = 10 consequently shows the same shape as for L = 50 (or even L = 1000).487

We thus limited our analysis to systems with those lengths, as there is no new physics to488

see in the spectrum of chains longer than L = 50. The distributions of motion patterns489

do not change much with the chain length, aside from the adjusting to the overall shape of490

the spectrum described above. An analytical derivation for fully flexible linear chains with491

L = 2, 3, 4, 5, with stretching interactions, is reported with full details in Appendix C.492

V. CONCLUDING REMARKS493

We presented a systematic analysis and interpretation of the structure, internal stresses494

and vibrational spectra of glassy polymers from coarse-grained simulations, based on the495

Kremer-Grest bead-spring model with an energy minimum for angular bending interaction.496

Varying the angular stiffness and the chain length leads to rich phenomenology: an increase497

in both these parameters causes a build-up of internal stresses due to the competition be-498

tween bending and stretching degrees of freedom, both of which want to minimize their499

energy at the same time. This leads to increased deviations from the minima of LJ and500

FENE interactions, an effect amplified for longer chains.501

For flexible chains with κbend/κFENE < 0.3 there are two bands in the VDOS spectra,502

corresponding to LJ-dominated interactions at low frequency (the LJ-sea), and to skeletal503

modes dominated by FENE bonds at high frequency (the high-frequency skeletal band). For504

chains with higher bending stiffness this separation breaks down as modes associated with505

angular interactions appear, filling the gap between the two bands and creating additional506

high frequency modes. The latter of these are mostly made up from vibrations perpendicular507

to the chain, while the gap is filled by along-chain motions, creating a new separation between508

vibrational regimes in the spectrum.509

For short chains, the spectra feature sharp peaks whose behavior as a function of stiffness510
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correspond very well with our analytical prediction. For longer chains this structure loses511

its sharp features and tends to a more continuous spectrum in which the various peaks are512

broadened by the averaging over many different chain conformations.513

This framework and concepts can be applied in future work to molecular and atomistic514

simulations of realistic materials [41, 42], possibly in combination with Kernel Polynomial515

Methods [43] which can greatly speed up the evaluation of the VDOS using the Hessian516

as input. We anticipate that the generic features of the VDOS predicted in this work will517

be robust to the introduction of more specific chemical interactions (including those that518

break the isotropic interaction symmetry), since the features of the vibrational spectrum519

are related essentially to the energy and the relative strength of interactions. For example,520

hydrogen bonds (which have typical energy (4-13kJ/mol) an order of magnitude less than521

covalent C-C bonds (346kJ/mol)) would be expected to add to the part of the spectrum that522

is already dominated by the LJ sea. The same can be stated about stacking interactions,523

which have typical energies of 8-12 kJ/mol.524

Finally, our results may open up the possibility of quantitatively linking the Raman and525

Brillouin spectra of glassy polymers with their viscoelastic response, since the VDOS is a526

key input to calculate viscoelastic moduli within recent developments in the nonaffine linear527

response of amorphous solids [17, 38].528
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Appendix A: Explicit form of the Hessian534

Here we show the explicit form of the entries to the Hessian for each potential. First we535

recall the general form:536

Hab
nm =

∂2U(r)

∂ran ∂r
b
m

, (A1a)537
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538

where a and b label the Cartesian components, and the entries are given, for a generic539

argument z, as:540

∂2U(z)

∂x ∂y
=

∂2U(z)

∂z2
∂z

∂x

∂z

∂y
+
∂U(z)

∂z

∂2z

∂x ∂y

= c
∂z

∂x

∂z

∂y
+ t

∂2z

∂x ∂y
.

(A1b)541

For the two central-force potentials (FENE und Lennard-Jones) we have z = |rj − ri| = rij.542

It should be noted that all derivatives are evaluated at the actual configuration from the543

simulation. For central forces we get:544

Hab
nm =

∂2U(rij)

∂ran ∂r
b
m

= cij
∂rij
∂ran

∂rij
∂rbm

+ tij
∂2rij

∂ran ∂r
b
m

,

cij =
∂2U(rij)

∂r2ij
; tij =

∂U(rij)

∂rij
,

∂rij
∂ran

= (δnj − δni) n̂aij,

∂2rij
∂ran ∂r

b
m

=
1

rij
(δnj − δni) (δmj − δmi) (1− n̂aijn̂bij).

(A2)545

Here n̂ij = rij/rij denotes the unit bond vector between bead i and j. The above expressions546

are valid both for FENE and Lennard-Jones bonds with the only difference being the stiffness547

cij and tension tij that have to be evaluated depending on the potential. For the angular548

potential we have a slightly different situation as our variable is now the angle between the549

two bonds rj − ri and rk − ri:550

z = θijk = arccos
(rj − ri) · (rk − ri)

|rj − ri| |rk − ri|
= arccosAijk. (A3)551

To make the calculation easier we rewrite the first line of (A2) to give:552
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Hab
nm =

∂2U(θijk)

∂ran ∂r
b
m

= c̃ijk
∂θijk
∂ran

∂θijk
∂rbm

+ t̃ijk
∂2θijk
∂ran ∂r

b
m

=
c̃ijk

sin2 θijk

∂Aijk
∂ran

∂Aijk
∂rbm

− t̃ijk
sin θijk

(
tan θijk
sin θijk

∂Aijk
∂ran

∂Aijk
∂rbm

+
1

sin θijk

∂2Aijk
∂ran ∂r

b
m

)
,

∂Aijk
∂ran

=
1

rij
(δnj − δni)

(
n̂aik − n̂aij cos θijk

)
+

1

rik
(δnk − δni)

(
n̂aij − n̂aik cos θijk

)
,

∂2A

∂ran ∂r
b
m

=
δnjiδ

m
ji

r2ij

[(
3 n̂aijn̂

b
ij − δab

)
cos θijk −

(
n̂aijn̂

b
ik + n̂aikn̂

b
ij

)]
+
δnjiδ

m
ki

rijrik

[
δab + n̂aijn̂

b
ik cos θijk −

(
n̂aijn̂

b
ij + n̂aikn̂

b
ik

)]
+
δnkiδ

m
ji

rijrik

[
δab + n̂aikn̂

b
ij cos θijk −

(
n̂aijn̂

b
ij + n̂aikn̂

b
ik

)]
+
δnkiδ

m
ki

r2ik

[(
3 n̂aikn̂

b
ik − δab

)
cos θijk −

(
n̂aijn̂

b
ik + n̂aikn̂

b
ij

)]
.

(A4)553

These formulae were derived in a slightly different but substantially equivalent fashion554

by Van Workum et al. [44].555

Appendix B: Analytical solution for triatomic molecule with bending stiffness556

We next write down the Hessian for an isolated oligomer with L = 3 (a triatomic molecule557

model), accounting for both stretching and bond-bending interactions. As the eigenvalues558

of the Hessian are invariant under spatial rotations, we can chose the chain lying flat in the559

x-y plane with beads P1 = −r(ς, 0), P2 = r(0, υ), P3 = r(ς, 0) and ς = sin θ/2, υ = cos θ/2:560

H =
κ

m



ς2 + γ′υ2 −(1− γ′) ς υ −ς2 (1− 2γ′) ς υ −γ′ς2 γ′ ς υ

−(1− γ′) ς υ ς2 + γ′ς2 ς υ −υ2 − 2γ′ς2 −γ′ ς υ γ′ς2

−ς2 ς υ 2ς2 0 −ς2 −ς υ

(1− 2γ′) ς υ −υ2 − 2γ′ς2 0 2υ2 + 4γ′ς2 −(1− 2γ′) ς υ −υ2 − 2γ′ς2

−γ′υ2 −γ′ς υ −ς2 −(1− 2γ′) ς υ ς2 + γ′υ2 (1− γ′) ς υ

γ′ς υ γ′ς2 −γ′ς υ −υ2 − 2γ′ς2 (1− γ′) ς υ υ2 + γ′ς2


.

(B1)561

Here we used the dimensionless bending stiffness γ′ = γ/(κ r2) for bond length r, where γ562

(which has units of energy) is the second derivative of the angular bending potential with563

respect to the angle, while κ is the spring constant of the bond for central-force stretching564
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of the bond. The above matrix has three non-zero eigenvalues, leading to the following565

eigenfrequencies:566

ω2
1 =

κ

m
(2− cos θ),

ω2
2 =

κ

2m

(
2(1 + 2γ′) + (1− 2γ′) cos θ −

√
(2(1 + 2γ′) + (1− 2γ′) cos θ)2 − 24γ′

)
,

ω2
3 =

κ

2m

(
2(1 + 2γ′) + (1− 2γ′) cos θ +

√
(2(1 + 2γ′) + (1− 2γ′) cos θ)2 − 24γ′

)
.

(B2)567

As we can see, one eigenfrequency ω1 is independent of the bending stiffness, while ω2 shows568

a convergent behavior against ω →
√

3κ/m/(2− cos θ) and ω3 diverges like ∼
√
γ′.569

Appendix C: Analytical solutions for fully-flexible chains570

In this Appendix we consider a toy model for the determination of the skeletal vibration571

modes of a single polymer chain. The following assumptions are made: (i) the chain is572

fully flexible (vanishing angular stiffness); (ii) only in-plane motions are considered (rocking573

or other out-of-plane vibrations are neglected). These assumptions are needed to obtain574

analytical results. We will start with the simplest case of a zig-zag regular chain with a575

single fixed value θ of the angle between two adjacent bonds, and we will subsequently576

consider the case of a distributed θ. We consider two variations of this model, first for a zig-577

zag chain with fixed value of the angle, and subsequently for a uniform (random) distribution578

of the angle.579

The Hessian has the following block structure:580

H =



A12 −A12 0 0 0 0

−A12 A12 + A23 −A23 0 0 · · · 0

0 −A23 A23 + A34 −A34 0 0

0 0 −A34 A34 + A45 −A45
...

...
. . . −AL−1L

0 0 0 0 · · · −AL−1L AL−1L


(C1)581

with blocks given by:582

Aij =
κ

m


nxijn

x
ij n

x
ijn

y
ij n

x
ijn

z
ij

nyijn
x
ij n

y
ijn

y
ij n

y
ijn

z
ij

nzijn
x
ij n

z
ijn

y
ij n

z
ijn

z
ij

 , (C2)583
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where the unit vector nij which goes from bead i to a nearest-neighbor j, and spring con-584

stant κ = 1. To get the characteristic polynomial p(λ), one has to evaluate the determinant585

|H − λ1|. We can iteratively solve this by using the standard formula for block matrices:586 ∣∣∣∣∣∣A B

C D

∣∣∣∣∣∣ =
∣∣∣D∣∣∣ ∣∣∣A−BD−1C∣∣∣, (C3)587

where the entries are matrices and the relation for our 3× 3 blocks:588

A ·B · A =
κ2

m2
cos2 θABA, (C4)589

where θAB is the angle between the bonds belonging to A and B. After some calculation we590

get the following recursion formula (omitting the 2L + 1 trivial eigenvalues λ = 0) for the591

above matrix:592

p0(x) = 1,

p1(x) = x,

pn(x) = x pn−1(x)− cos2 θn−1n−2 pn−2(x),

(C5)593

where x = m
κ
λ − 2. The recursive relation for pn(x) can also be derived on more formal594

grounds [8].595

Note that n denotes the number of bonds in a chain, and not the number of beads in the596

chain (n = L− 1).For arbitrary angles between the bonds it is not possible to describe the597

roots of this polynomial, except for oligomers (see below). But, if all angles are the same598

we can bring (C5) into the form of the Chebyshev polynomials of the second kind Un(x) by599

substituting x̃ = x/2 cos θ:600

pn(x̃) = cosn θ Un(x̃),

x̃ =
x

2 cos θ
=

m
κ
λ− 2

2 cos θ
.

(C6)601

602

The roots of Un(x) are xk = cos
(

k
n+1

π
)

; k = 1, ..., n, which gives us the eigenvalues of the603

linear chain with constant angle as:604

λk = ω2
k =

2κ

m

(
1 + cos θ cos

[
kπ

n+ 1

])
,

D(ω) =
2

π

ω√
4κ2

m2 cos2 θ − (ω2 − 2κ
m

)2
(θ 6= π/2),

ρ(ω) = δ

(
ω −

√
2κ

m

)
(θ = π/2).

(C7)605
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This result can also be derived using a different approach which exploits the periodicity of the606

chain with constant angle, as was done by Kirkwood [13]. If we assume that the chain points607

along the x-axis we can identify the previously introduced along-chain and perpendicular608

motion as A and B in Eq. 6 of Kirkwood [13]. By using the dispersion relation found in609

this work, we can solve for those two quantities and find the weight functions:610

Xl(ω) =
|A|2

|A|2 + |B|2
=

cos θ + 1

cos θ

ω2 + 2ω
m

(cos θ − 1)

2ω2
,

Xt(ω) =
|B|2

|A|2 + |B|2
=

cos θ − 1

cos θ

ω2 − 2κ
m

(cos θ + 1)

2ω2
.

(C8)611

As mentioned before, for the flexible case with distributed angles an analytical solution is612

not accessible for a chain of arbitrary length. But we can give the eigenvalues in the case of613

short chains with L = 2, 3, 4, 5:614

L = 2 :
m

κ
ω2 = 2,

L = 3 :
m

κ
ω2 = 2± cos θ1,

L = 4 :
m

κ
ω2 = 2, 2±

√
cos2 θ1 + cos2 θ2,

L = 5 :
m

κ
ω2 = ± 1√

2

√
cos2 θ1 + cos2 θ2 + cos2 θ3 ±

√
(cos2 θ1 + cos2 θ2 + cos2 θ3)2 − 4 cos2 θ1 cos2 θ3.
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