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The Generalized Langevin Equation (GLE) can be derived from a particle-bath Hamiltonian, in
both classical and quantum dynamics, and provides a route to the (both Markovian and non-
Markovian) fluctuation-dissipation theorem (FDT). All previous studies have focused either on
particle-bath systems with time-independent external forces only, or on the simplified case where
only the tagged particle is subject to the external time-dependent oscillatory field. Here we extend
the GLE and the corresponding FDT for the more general case where both the tagged particle
and the bath oscillators respond to an external oscillatory field. This is the example of a charged
or polarisable particle immersed in a bath of other particles that are also charged or polarizable,
under an external AC electric field. For this Hamiltonian, we find that the ensemble average of
the stochastic force is not zero, but proportional to the AC field. The associated FDT reads as
〈FP (t)FP (t′)〉 = mkBTν(t − t′) + (γe)2E(t)E(t′), where Fp is the random force, ν(t − t′) is the
friction memory function, and γ is a numerical prefactor.

The theory of Brownian motion is so far the simplest
approximation to the dynamics of nonequilibrium
systems. The Langevin equation, and its equivalent
counterpart, the Smoluchowski diffusion equation, de-
scribe the motion of a Brownian particle in an external
force field and under the action of thermal agitation from
the bath of solvent molecules, in which the Brownian
particle is immersed. At steady-state, the thermal
fluctuations that cause rapid changes in the particle
velocity are dissipated by viscous drag.

This is a manifestation of the fluctuation-dissipation
theorem (FDT), as was originally formulated in different
contexts by Einstein and by Nyquist, and generalized
by Onsager [1] and by Callen and Welton [2]. Later,
the theorem has been further elaborated in many
different contexts [3–12]. FDT stipulates that the
response of a system in thermodynamic equilibrium
to a small applied force is the same as its response to
a spontaneous fluctuation, thus connecting the linear
response relaxation of a system to equilibrium, from
a prepared nonequilibrium state, with its statistical
fluctuation properties in equilibrium. FDT applies to
both classical and quantum mechanical systems [13, 14]
and has been generalized to non-Markovian processes
for classical systems by Zwanzig [15]. In the latter case,
the noise is no longer uncorrelated in time, and the
time correlation of the stochastic force is dictated by
the time correlation of the friction which plays the role
of the memory function in the Generalized Langevin
Equation (GLE). The non-Markovianity arises from the
dynamical coupling of the tagged Brownian particle
with many particles (harmonic oscillators) forming the
heat bath. This coupling, which in physical systems
may be provided by long-range molecular interactions,
is thus responsible for both the thermal agitation and

the damping experienced by the tagged particle.

All versions of the GLE, and of the associated FDT
which can be derived from it, that have been consid-
ered in the past are limited to either systems in the ab-
sence of external time-dependent forces or, if an external
time-dependent force is present, its action is restricted
to the tagged Brownian particle, leaving the bath oscilla-
tors unaffected by the external field [5, 16]. Harada and
Sasa considered time-dependent driving forces being ex-
erted on the tagged particle and they found a violation
of the fluctuation-response relation in driven nonequi-
librium systems [17, 18]. More recently, Maes and co-
workers derived FDT for nonequilibrium systems by im-
plementing mutual interactions between bath particles
and also the effect of stochastic white-noise force on the
bath particles dynamics [19, 20].

This limitation is obviously artificial and not realistic,
because in many systems there is no reason to justify
why the tagged particle is subjected to the external AC
field whereas the bath oscillators remain unaffected by
the field. This limitation clearly leaves out a number of
important physical problems, where not only the tagged
particle is subjected to the AC field, but also the par-
ticles that constitute the heat bath are subjected to it.
This situation is clearly encountered in dielectric mat-
ter under a uniform AC electric field E(t). In this case,
every building block (atom, molecule, ion) is polarisable
or charged such that it is subjected to a force from the
electric field. Hence, if the bath is constituted by polar-
isable or charged particles, these will also respond to the
AC field and it is unphysical to neglect the effect of the
AC field on the dynamics of the bath oscillators. This
situation is schematically depicted in Fig. 1.

A similar situation arises in the field of microrheol-
ogy [21] where not only the probe Brownian particle, but
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also the building-blocks of the medium do respond to the
oscillatory mechanical field.

In this contribution, we provide a solution to this
problem by formulating a Caldeira-Leggett particle-bath
Hamiltonian where both the particle and the bath os-
cillators are subjected to the external AC electric field,
which is explicitly accounted for in both the Hamiltonian
of the particle and the Hamiltonian of the bath. The two
Hamiltonians are then connected via a bi-linear coupling
as is standard in this type of models. We analytically
solve the coupled Hamiltonian for the tagged particle to
find a new Generalized Langevin Equation, which, for
the first time, accounts for the effect of the polarization
of the bath under the AC field on the dynamics of the
tagged particle.

We also derive the associated FDT and find a surpris-
ing result: the time-correlation of the stochastic force is
not just equal to the memory function for the friction,
but there is an additional term which is proportional to
the time-correlation of the AC field, and hence to the
amplitude of the AC field squared. This term is absent
in all previously studied versions of the FDT. This result
shows that the strength of the fluctuating force can be
controlled by the external force field in the limit of suf-
ficiently strong external driving. This framework opens
new avenues to understanding the macroscopic response
of complex liquids, plasmas, colloids and other condensed
matter under oscillatory fields.

We study the classical version of the Caldeira-Leggett
coupling between the tagged particle and a bath of har-
monic oscillators, which was actually proposed already
in 1973 by Zwanzig [15], and add a new term, HE , which
contains the force due to the applied AC electric field
acting on both the tagged particle and the harmonic os-
cillators:

H = HS +HB +HE (1)

where HS = P 2/2m + V (Q) is the Hamiltonian of
the tagged particle without external field. The second
term is the standard Hamiltonian of the bath of har-
monic oscillators that are coupled to the tagged particle,

HB = 1
2

∑N
α=1

[
P 2

α

mα
+mαω

2
α

(
Xα − Fα(Q)

ω2
α

)2]
, consisting

of the standard harmonic oscillator expression for each
bath oscillator α, and of the coupling term between the
tagged particle and the α-th bath oscillator, which con-
tains the coupling function Fα(Q).

The new term

HE = −zeΦ(Q, t)−
∑
α

eαΦ(Xα, t)

= −E0 sin (ωt)(zeQ+
∑
α

eαXα) (2)

FIG. 1. Schematic example of system of charged (solid circles)
or polarisable molecules. In the former case the particles could
be ions in a plasma or ions and electrons in a liquid metal.
In the latter case, pairs of negatively and positively charged
particles represent the electron cloud and the molecular ion of
a polarised neutral molecule as in e.g. dielectric relaxation of
molecular liquids. A particle-bath Hamiltonian like the one
of Eqs.(1-2) can be applied to these systems where a tagged
particle (coloured, green) interacts with the local environment
via an interaction potential V (Q), which may represent the
interaction potential with neighbours. The tagged particle
interacts also with all other degrees of freedom in the system
which can be effectively represented as a bath of harmonic
oscillators to which the tagged particle is coupled via a set of
coupling constants cα, where α runs over all other bath oscil-
lators in the system. In traditional models of bath-oscillator
dynamics, only the tagged particle is subjected to the exter-
nal AC field, see e.g. [5], whereas the other particles are not.
In the proposed model, both the tagged particle and also all
the other particles (forming the bath) are responding to the
AC electric field, which leads to new physics.

represents the influence of electric field on both the
tagged particle (first term on the RHS) and the bath os-
cillators (second term on the RHS). Here, e is the unit
charge and hence ze is the total charge of tagged parti-
cle, where e.g. z = ±1 for monovalent ions/electrons in
a plasma or z = −1 for the case of molecular dielectrics
where a molecule polarizes into a negatively charged elec-
tron cloud which oscillates about a positively charged
molecular ion; eα is the net charge of bath particle α
which is subjected to the same polarization. Here, we
only consider motion along the direction of electric field.

In the Caldeira-Leggett Hamiltonian, the coupling
function is taken to be linear in the particle coordinate
Q, Fα(Q) = cαQ, where cα is known as the strength
of coupling between the tagged atom and the α-th bath
oscillator.

This Hamiltonian leads in a straightforward manner to
the following system of differential equations:
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dQ

dt
=
P

m
;

dP

dt
= −V ′(Q) +

∑
α

mαcα(Xα −
cαQ

ω2
α

) + zeE0 sin (ωt) (3)

dXα

dt
=
Pα
mα

;
dPα
dt

= −mαω
2
αXα +mαcαQ+ eαE0 sin (ωt)

From the second line, upon solving the second-order
inhomogeneous ODE with the Green’s function method
(or alternatively with the Wronskian method), we get

Xα(t) = Xα(0) cos (ωαt) +
Pα(0) sin (ωαt)

mαωα

+

∫ t

0

[cαQ(s) +
eα
mα

E0 sin (ωs)]
sin (ωα(t− s))

ωα
ds

(4)

The integral
∫ t
0
cαQ(s) sin (ωα(t−s))

ωα
ds can be evaluated

via integration by parts. Upon further denoting Eα(t) =

∫ t
0
eαE0 sin (ωs) sin (ωα(t−s))

ωα
ds, we obtain

Xα(t)− cαQ(t)

ω2
α

=

(
Xα(0)− cαQ(0)

ω2
α

)
cos (ωαt)

+ Pα(0)
sin (ωαt)

mαωα
−
∫ t

0

cαP (s) cos (ωα(t− s))
mω2

α

ds+
Eα(t)

mα

(5)

Substituting Eq. (5) into the equation for P (t) in Eq.
(3), we derive the following Generalized Langevin Equa-
tion for the tagged particle motion, which accounts for
the AC electric field acting on both the tagged particle
and the bath oscillators:

dP

dt
= −V ′(Q(t))−

∑
α

∫ t

0

mα cos (ωα(t− s))
mω2

α

c2αP (s)ds+ zeE0 sin (ωt)

+
∑
α

{mαcα

[
Xα(0)− cαQ(0)

ω2
α

]
cos (ωαt) + cαPα(0)

sin (ωαt)

ωα
+ cαEα(t)}

= −V ′(Q(t))−
∫ t

0

ν(s)
mαP (t− s)

m
ds+ zeE0 sin (ωt) + FP (t). (6)

We have introduced the noise or stochastic force FP (t)
which is equal to the second line after the first equality,

Fp(t) =
∑
α

{mαcα

[
Xα(0)− cαQ(0)

ω2
α

]
cos (ωαt)

+ cαPα(0)
sin (ωαt)

ωα
+ cαEα(t)}. (7)

One should note that this expression for the stochastic
force is identical with the one derived by Zwanzig for
a particle-bath system without external field, except for
the important term cαEα(t), which is new and contains
the effect of the external AC field on the bath oscillators
dynamics. This is a crucial point because the dynamical
response of the bath oscillators to the external AC field
in turn produces a modification of spectral properties of
the bath fluctuations, and thus leads to a new form of
the stochastic force which is different from those studied
in previous works.

The memory function for the friction ν(t) =

∑
α
mαc

2
α

mω2
α

cos (ωαt) is identical to the memory function

of systems without external time-dependent forces such
as the one derived by Zwanzig [15].

The integral in the function Eα(t) =∫ t
0
eαE0 sin (ωs) sin (ωα(t−s))

ωα
ds, can be evaluated us-

ing trigonometric identities which leads to

Eα(t) =
eαE0(ω sin (ωαt)− ωα sin (ωt))

ωα(ω2 − ω2
α)

. (8)

As for the case without external time-dependent fields,
we find that our FP (t) is defined in terms of initial po-
sitions and momenta of bath oscillators, but in our case
it now also depends on the sinusoidal electric field at
time t. Note that, by shifting the time origin, it can be
easily verified that the statistical average is stationary.
Following Zwanzig [15], we assume the initial conditions
for the bath oscillators can be taken to be Boltzmann-
distributed ∼ exp(−HB/kBT ), where the bath is in ther-
mal equilibrium with respect to a frozen or constrained
system coordinate X(0).
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Then for the average of X and P we find:

〈Xα(0)− cαQ(0)

ω2
α

〉 = 0, 〈Pα(0)〉 = 0. (9)

The second moments are〈(
Xα(0)− cαQ(0)

ω2
α

)2
〉

=
kBT

mαω2
α

, 〈Pα(0)2〉 = mαkBT.

(10)
Both these results are consistent with what one finds
for systems without external time-dependent fields, since
obviously they descend directly from the assumption of
Boltzmann-distributed degrees of freedom at the initial
time.

As for
∑
α cαEα(t), we first note that there is no sin-

gularity when ωα → ω and ωα → 0:

lim
ωα→ω

ω sin (ωαt)− ωα sin (ωt)

ωα(ω2 − ω2
α)

= −ωt cos (ωt)− sin (ωt)

2ω2

lim
ωα→0

ω sin (ωαt)− ωα sin (ωt)

ωα(ω2 − ω2
α)

=
ωt− sin (ωt)

ω2
. (11)

Focusing on ions, atoms or molecules, ωα is at least
in the THz regime or higher, which is orders of mag-

nitude larger than the frequency of the applied field ω
(this assumption of course may not hold for THz spec-
troscopy, which deserves a separate treatment in future
work). Hence, the first term in the numerator in the RHS
of Eq. (8) can be neglected along with the first term in
the bracket in the denominator, and we can approximate
as follows:∑

α

cαEα(t) ≈
∑
α

cαeα
ω2
α

E0 sin (ωt) ∝ eE(t). (12)

We now take the Boltzmann average of the stochastic
force, Eq. (7), and we find:

〈FP (t)〉 = γeE(t), (13)

for some constant γ. That is, the average of the stochas-
tic force FP is not zero, unlike in all previously studied
GLEs of particle-bath systems and, remarkably, is di-
rectly proportional to the AC field.

Now, by direct calculation, using Eqs. (9) and (10)
and standard trigonometric identities, we can get the
fluctuation-disspation theorem (FDT) for our particle-
bath Hamiltonian under a uniform AC field:

〈FP (t)FP (t′)〉 =
1

ZN

∫
FP (t)FP (t′) exp

(
− HB

kBT

)
dX(0)dP(0)

=
∑
α

(
mαc

2
α

kBT

ω2
α

cos (ωαt) cos (ωαt
′) +mαc

2
α

kBT

ω2
α

sin (ωαt) sin (ωαt
′)

)
+ (γe)2E(t)E(t′)

= kBT
∑
α

mαc
2
α

ω2
α

cos (ωα(t− t′)) + (γe)2E(t)E(t′)

= mkBTν(t− t′) + (γe)2E(t)E(t′) (14)

where ZN is the canonical partition function

ZN =

∫
exp (− HB

kBT
)dX(0)dP(0) (15)

and X(0) = {X1(0), X2(0), ...}, P(0) =
{P1(0), P2(0), ...}.

Equation (14) is a key result of this paper and is the
FDT associated with the GLE given by Eq. (6). This is a
remarkable result which shows that in the presence of an
external AC field which affects the microscopic dynamics
of both the tagged particle and the bath oscillators, the
strength of the noise is no longer proportional to thermal
energy only, but also has an important deterministic con-
tribution proportional to the AC field amplitude squared.

The implications of this result for statistical mechan-
ics and its applications in condensed matter are vast and

profound and will be explored in future works, includ-
ing experimental verifications and extension to nonequi-
librium enviornments [17–20]. We can however notice
that the presence of the external AC field makes it im-
possible for the noise to be white noise. This is true
even if the memory function is delta-correlated, because
of the second term controlled by the AC field in Eq. (14),
which inevitably introduces a deterministic temperature-
independent correlation into the noise.

In conclusion, we have introduced a more general ver-
sion of the classical particle-bath Hamiltonian, which is
used as a starting point to derive Generalized Langevin
Equations, for systems subjected to an external time-
dependent (oscillating) field. Unlike in previous models
where the bath oscillators were always taken to be un-
affected by the external field, here we added the time-
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dependent force due to the field to both the Hamiltonian
of the particle and the Hamiltonian of the bath oscilla-
tors. The resulting Hamiltonian has been solved analyt-
ically and the resulting GLE and fluctuation-dissipation
theorem have been found. The formal structure of the
GLE is still formally identical to that of standard GLE
with external field acting on the particle only [5] (and
the memory function for the friction is the same), but
the stochastic force is very different. Its ensemble aver-
age is non-zero and directly proportional to the AC field.
The associated fluctuation-dissipation theorem, remark-
ably, has an additional term given by the time-correlation
of the AC field, and is thus quadratic in the field ampli-
tude.

An immediate application of this result is to dielec-
tric relaxation and dielectric spectroscopy of liquids and
glasses. The Debye model treats each molecule as fully
independent from all other molecules in the material and
describes it with a Langevin equation for the orientation
of the molecule in the field [22, 23]. More refined models,
e.g. Mode-Coupling Theory, are able to account for the
coupling of each molecule to collective degrees of free-
dom [24, 25], but do not resolve the combined effect of
the AC field on the dynamics of both the single molecule
and the other molecules which provide the memory ef-
fect in dielectric relaxation. The GLE derived here will
open the possibility of describing both these effects at the
same time, within the GLE picture that has been pro-
posed more recently for the dielectric response of liquids
and glasses [26–28]. Furthermore, the GLE derived here
can be used as the starting point for a more microscopic
description of nonlinear effects in dielectric relaxation of
supercooled liquids under strong fields [29, 30].

In the context of microrheology of soft and biological
matter, the FDT is the starting point to derive the key
relationship (generalized Stokes-Einstein relation, GSE)
that is used to infer the viscoelastic response of the
medium to an oscillatory mechanical field from the op-
tically monitored dynamics of a probe particle [21, 31–
34]. This method based on FDT has found widespread
application in biophysics, to measure the viscoelasticity
of cytoskeleton and other biological matters. However,
all these works, including the most recent ones (see e.g.
Ref. [35]) always neglect the effect of the oscillatory field
on the dynamics of the medium (the bath). Clearly, the
system as a whole is composed of many building blocks
(molecules, filaments) which also respond dynamically to
the oscillatory shear field and behave as the bath for the
probe particle. Therefore, the same effect described in
our paper is certainly present also in all those systems,
and yet it has always been neglected in all the literature
so far.

Further applications of the proposed framework in-
clude quantum dissipative transport and Josephson tun-
nelling with dissipation [16, 36, 37], driven dynamics of
colloids in soft matter systems [38–40], molecular dynam-

ics simulations of liquids [41] and of amorphous solids in
oscillatory shear [42].
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