

From wheat sourdough to gluten-free sourdough: a nonconventional process for producing gluten-free bread

Journal:	International Journal of Food Science and Technology	
Manuscript ID:	Draft	
Manuscript Type:	Original Manuscript	
Date Submitted by the Author:	n/a	
Complete List of Authors:	Marti, Alessandra; Università degli Studi di Milano, DeFENS, Department of Food, Environmental and Nutritional Sciences Bottega, Gabriella; Università degli Studi di Milano, DeFENS, Department of Food, Environmental and Nutritional Sciences Franzetti, Laura; Università degli Studi di Milano, DeFENS, Department of Food, Environmental and Nutritional Sciences Morandin, Francesca; Università degli Studi di Milano, DeFENS, Department of Food, Environmental and Nutritional Sciences Quaglia, Lucio; Molino Quaglia, Pagani, M. Ambrogina; Università degli Studi di Milano, DeFENS, Department of Food, Environmental and Nutritional Sciences	
Keywords: Cereals and Grains, Pasta, Baking		
SCHOLARONE [™] Manuscripts		

1	From wheat sourdough to gluten-free sourdough: a non-conventional process for producing
2	gluten-free bread
3	
4	Alessandra Marti ¹ , Gabriella Bottega ¹ , Laura Franzetti ¹ , Francesca Morandin ¹ , Lucio
5	Quaglia ² , Maria Ambrogina Pagani ^{1,*}
6	
7	¹ Università degli Studi di Milano - Department of Food, Environmental and Nutritional
8	Sciences - via Giovanni Celoria 2, 20133 Milan, Italy
9	² Molino Quaglia S.p.A., 6, Via Roma, 35040 Vighizzolo D'Este, Italy
10	
11	*Corresponding author:
12	Prof. Maria Ambrogina Pagani
13	2, Via G. Celoria
14	20133 Milan, Italy
15	E-mail: ambrogina.pagani@unimi.it
16	Phone: +39 02 50316658
17	

18 Abstract

Gluten-free (GF) sourdough was prepared from wheat sourdough, and analyzed both in fresh (GFS) and dried forms (DGFS). The gluten content in each GF sourdough sample was less than 20 mg/kg. The dough leavening capacity and the properties of the bread samples were investigated and compared to those of bread prepared using bakery yeast (Saccharomyces cerevisiae). In GFS, Lactic Acid Bacteria (LAB) and yeasts were found in amounts corresponding to 10^8 and 10^7 CFU/g, respectively; whereas, both LAB and yeasts were detected in lower amounts (about 10⁶ CFU/g) in DGFS. When used in bread-making, both GFS types produced significant dough acidification and exhibited good dough development during proofing, resulting in loaves with specific volume values between 3.00 and 4.12 ml/g, values similar to those obtained for reference bread (3.05÷4.15 ml/g). The use of GFS was effective in lowering the bread staling rate during storage for up to 7 days. Keywords: gluten-free sourdough, gluten-free bread, dough leavening, rheofermentometer,

32 bread staling.

33 Introduction

Celiac disease is one of the most common lifelong disorders affecting approximately 1% of the world's population (Catassi and Fasano, 2008). Since the removal of gluten from the diet results in an improvement in the clinical symptoms of celiacs, the consumption of wheat, barley and rye-based products should be avoided in a gluten-free (GF) diet. The growing interest in GF foods has stimulated the creation of products that meet the needs of celiacs and their families, as well as those of a large number of consumers who have decided to exclude gluten from their diet for reasons of *health benefits*. Despite a wide variety of breads made from rice, corn, and other GF flours currently available on the market, most of these products are poor in quality (low specific volume, high crumb hardness and crumbling), particularly when compared with their wheat counterparts (Hager et al., 2012). Indeed, gluten is responsible for the unique viscoelastic properties (extensibility, resistance to deformation, mixing tolerance and gas-holding capacity) of wheat dough. Consequently bread represents the most challenging GF products to formulate and produce, as gluten is its *architectural key*. In the past decades, several approaches have been investigated - and recently reviewed by Houben *et al.* (2012) - for the development of GF baked products, such as the use of: i) different GF flours (rice, sorghum, oat, buckwheat, amaranth, quinoa, teff, corn); ii) ingredients/additives (starches, dairy products, egg proteins, dietary fibre, gum and hydrocolloids); *iii*) alternative technologies such as physical, enzymatic or microbic pre-processing. As regards the last approach, it has already been proved that the use of sourdough in GF bread improves bread texture, extends shelf life and is more flavorful (Zannini et al., 2012). Although the positive contribution of sourdough could produce high quality GF bread, only a few attempts have been made to produce GF sourdoughs and characterize their functional properties. To the best of our knowledge, all these studies investigated the development of sourdoughs from GF cereals or pseudocereals either using selected starter

Page 5 of 29

1

1
2
3
4
5
6
7
8
9
10
11
12
13
1/
14
10
10
17
18
19
2345678910123415678902222222222223333333333333333333333333
21
22
23
24
25
26
20
21
28
29
30
31
32
33
34
35
36
27
20
38
39
40
41
42
43
44
45
46
47
48
40 49
49
50
51
52
53
54
55
56
57
58
59
60
00

59	cultures (Sanni et al., 1998; Schober et al., 2007; Edema and Sanni, 2008) or by spontaneous
60	fermentation of strains isolated from the GF flours (Moore et al., 2007, 2008; Di Cagno et al.,
61	2008; Vogelmann et al., 2009). Exogenous starter cultures are less suitable for the
62	fermentation of GF materials, since the adaptability of the starter strains to the GF sourdoughs
63	is greatly influenced not only by technological parameters but also by the flour and the
64	interactions between starter microorganisms and natural microbiota (Vogelmann et al., 2009;
65	Moroni et al., 2010a, b). The second approach - fermentation of strains isolated from GF
66	flours – involves specific skills, difficult to be transferred to an industrial scale. Finally, Di
67	Cagno et al., (2002) showed that selected LAB, possessing proteolytic activities, could
68	efficiently hydrolyze the toxic peptides of gliadin in wheat sourdough. Breads produced with
69	this sourdough approach exhibited acceptable quality and resulted in no alterations to baseline
70	values of celiac individuals when consumed (Di Cagno et al., 2004). Even if prolonged
71	sourdough fermentation of wheat using specific LAB represents an interesting alternative
72	technology for baking good-quality breads that can be consumed by celiacs, food industries
73	will have to face the obstacle of winning the acceptance of consumers for GF products
74	containing detoxified wheat (Moroni et al., 2009).
75	Thus, considering the issues related to the current approaches used for sourdough
76	preparation, the aim of this study was: i) to propose a method for producing GF sourdough

preparation, the aim of this study was: i) to propose a method for producing GF sourdough /6 77 directly from a conventional and strengthened wheat sourdough, removing gluten and, at the 78 same time, maintaining the LAB and yeasts originally present in the wheat sourdough; *ii*) to 79 verify whether the use of the GF sourdough - either fresh or after drying - could improve the 80 characteristics of GF bread prepared without further addition of Saccharomyces cerevisiae. 81 To better understand the effects and the possible benefits of baking with sourdough, the 82 characteristics of GF bread samples were compared with those of a reference bread made with 83 commercial bakery yeast and the same GF flour mixture.

84

Page 6 of 29

85	Materials and Methods
86	
87	GF flours
88	
89	Two commercial GF blends, labeled Mix A and Mix B, differing in protein source, provided
90	by Molino Quaglia S.p.A. (Vighizzolo D'Este, Italy), were used for preparing GF bread. As
91	reported on their labels, Mix A was composed of rice flour, wheat starch, powder milk, sugar,
92	guar flour, and psyllium; Mix B contained rice flour, wheat starch, buckwheat flour (37%),
93	powder milk, sugar, guar flour, and psyllium.
94	The composite traits of GF flours are shown in Table 1. Starch and soluble sugars, proteins,
95	and total dietary fibre were determined according to the approved methods AACC 44-15, 76-
96	13, 46-12, and 32-05.01 respectively (AACC, 2001).
97	
98	GF Sourdough preparation
99	
100	Fresh Gluten free sourdough (GFS) was prepared using a GF inoculum obtained directly from
101	a conventional wheat sourdough (WS). WS was maintained in spring water for 24 hours at
102	room temperature; after that it was removed and the water was added to mix A or mix B
103	(water:flour ratio = 60 :100). After a first dough fermentation step (24 hours at 20°C), fresh
104	spring water and GF flour were added to the fermented dough, and the resultant dough was
105	fermented for 24 hours at 20°C. The refreshment step was daily repeated at least 5 times,
106	obtaining GF inoculum (GFI) and continued until use. GFI was used as such or after drying
107	(30°C for 36h), resulting in a dried GF inoculum (DGFI).
108	
109	GF bread-making

From fresh Gluten-Free Sourdough (GFS)

112	
113	GFI was mixed with GF flour (mix A or mix B; GFI: GF flour ratio of 100 :100) and to water
114	(GFI:water ratio of 100 : 70) (Fig. 1a). A first fermentation stage was carried out for 3 hours
115	in an proofing chamber at 30 °C and 85% RH. The refreshment step was carried out twice,
116	obtaining GFI2 which was added to flour (GFI2:GF flour ratio of 100 :500) and water
117	(GFI ₂ :water ratio of 100:400), and the fermentation stage was carried out for 15 hours at room
118	temperature (GF ₃). After that, the dough was added to GF mix A or GF mix B (GFI ₃ :GF flour
119	ratio of 100: 40) and water (GFI ₃ :water ratio of 100 :50), and mixed in an automatic spiral
120	mixer (Bomann, Clatronic s.r.l., Italy), for 9 min at low speed and for 3 min at high speed.
121	Immediately after mixing, the dough was left to rest for 20 min at room temperature. The final
122	sourdough was labeled as Gluten-Free Sourdough (GFS). The dough was divided into
123	portions of 80 g, moulded into cylinders, put into baking pans (8×4×3.5 cm) and left to rest in
124	a proofing chamber at 30 °C and 85% RH. The proofing time lasted 4 hours in the case of
125	GFS and DGFS; 45 min for BY. All the samples were baked for 1 hour at 185 °C in an oven
126	(Self Cooking Center [®] , Rational International AG), with vapour injection in the first 20 min
127	of baking (Fig. 1a). Two hours after /removal from the oven the samples were packaged in a
128	perforated OPP film and stored at controlled conditions (20 °C, 60% RH) for seven days.
129	
130	From Dried Gluten-Free Sourdough (DGFS)
131	
132	The dried gluten-free <i>inoculum</i> (DGFI) was pre-fermented in water (DGFI:water ratio 100:30)
133	for 19 hours in a proofing chamber at 30 °C and 85% RH (Fig. 1b). The resultant dough was

added to GF flour (mix A or mix B; DGFI₂:GF flour ratio of 200:100) and water

135 (DGFI₂:water ratio of 100:50) and the fermentation stage was carried out for 12 hours at room

136 temperature. The dough was added to GF flour (DGFI₃:GF flour ratio of 100:400) and water

3
4
5
0
6
7
8
9
9 10
10
11 12
12
13
14 15 16 17 18
15
16
17
17
18
19
20
21
21 22
23
20
24
25 26
26
27
27 28
29
20
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
50 57
58
59
60

137	(DGFI ₃ :water ratio of 100:100) and mixed in an automatic spiral mixer (Bomann, Clatronic		
138	s.r.l., Italy), for 9 min at low speed and for 3 min at high speed. Immediately after mixing, the		
139	dough was left to rest for 20 min at room temperature. The final dough was labeled as Dried		
140	Gluten-Free Sourdough (DGFS). It was transformed into GF bread by adopting the same		
141	conditions described for GFS and showed in Fig. 1b.		
142			
143	From Bakery yeast (BY)		
144			
145	Mix A or mix B were mixed with bakery yeast (3g/100g flour) previously dissolved in water.		
146	The GF blends/water ratio used for bread-making was 100:100 (Fig. 1c). As for GFS and		
147	DGFS, BY was left to rest for 20 min at room temperature after mixing. It was transformed		
148	into GF bread by adopting the same conditions described for GFS bread and showed in Fig.		
149	1c.		
150			
151	Sourdough characterization Chemical characterization		
152			
153	Chemical characterization		
154			
155	Total titratable acidity (TTA) was determined on 10 g of sample homogenized with 90 ml of		
156	distilled water and expressed as the amount (ml) of 0.1 M NaOH to get pH of 8.5. The pH		
157	value was determined by a Crison GPL22 pH-meter (Crison Instruments, Alella, Barcelona,		
158	Spain).		
159			

160 Microbial characterization

1

Ten grams of dough sample was aseptically weighed and suspended in a sterile bag, mixed

2
3
2 3 4
4
5
5 6 7 8
7
8
9
10
10
11
12
13
14
15
16
17
17
18
12 13 14 15 16 17 18 19
20
21
20 21 22 23 24 25 26 27 28
23
24
24
25
26
27
28
29
30
29 30 31 32 33
20
32
33
34
35
36
37
38
34 35 36 37 38 39 40
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
53 54
55
56
57
58
59
~~~

-	
163	with 90 mL of sterile 0.85% trypton salt solution and homogenized with a Stomacher
164	Calworth 400 Circulator (PBI International, Milan, Italy) at 230 rpm for 1min. Tenfold
165	progressive dilutions were prepared and the following microbiological determinations were
166	performed: i) Total Bacterial Count (TBC) by pour plates on Plate Count Agar (PCA) (VWR
167	GmbH, Darmstadt, Germany), incubation at 30 °C for 48 h (ISO, 2003); ii) Total Lactic Acid
168	Bacteria (LAB) by pour plates on de Man Rogosa Sharpe agar MRS (Merck, Darmstadt,
169	Germany) incubation under anaerobic conditions (gas pack) at 30 °C for 48 h (De Man et al.,
170	1960); iii) yeasts by spread technique on Yeast Glucose Chloramphenicole (YGC) incubation
171	at 30 °C for 48 h (ISO, 1992). All microbiological analyses were carried out in duplicate, and
172	the results were expressed as the mean CFU per gram.
173	
174	Gluten content
175	
176	The gliadin content measurement was carried out by using a monoclonal R5-antibody-based

177 sandwich enzyme-linked immunosorbent assay (ELISA), RIDASCREEN® Gliadin test kit

178 (R-Biopharm AG, Darmstadt, Germany). Assays were performed according to the standard

179 procedures suggested by the kit supplier. An aliquot of 0.25 g of dough was suspended in 2.5

180 mL cocktail solution (6 M guanidine chloride and 100 mM 2-mercaptoethanol) and shaken for

181 40 min at 50 °C. The suspension was then centrifuged at  $2500 \times g$  for 10 min. The clear

182 supernatant was directly used for immunoassay after 500-fold dilution with a proper dilution

183 buffer. Gliadin contents in all samples were detected in two duplicate and independent

184 measurements, using two different lots of the kit. The gluten content was expressed as the

185 duplicate of the detected gliadin value.

186

60

187 Dough characterization : rheofermentographic test

188		
189	The dough development and the gas volume produced by GFS, DGFS and BY activities we	re
190	assessed with a rheofermentometer (Chopin, Tripette & Renaud, Villeneuve La Garenne	
191	Cedex, France). Each dough was prepared as described in the "Bread preparation" section.	
192	The rheofermentographic test was performed on 315 g portion of the dough and carried out a	at
193	30 °C for 3 h when BY was used, and for 6 h when either GFS or DGFS was used. Maximum	m
194	dough height (Hm; mm), final height of dough (h; mm), maximum height of gaseous	
195	production (H'm; mm), time when the porosity of the dough developed (Tx; min), total CO ₂	
196	production (CO ₂ -TOT; ml), CO ₂ retained (CO ₂ -RET; mL), CO ₂ released (CO ₂ -REL; mL), and	nd
197	$CO_2$ retention coefficient (RC, %) were determined.	
198		
199		
200	Bread characterization	
201		
202	Weight, volume, and specific volume	
203		
204	The apparent volume (n=5) was determined by the rapeseed displacement method, two hour	S
205	after baking. The weight of the bread (n=5) was recorded and the specific volume was	
206	determined through the volume/mass ratio and expressed in mL/g.	
207		
208	Crumb moisture and water activity	
209		
210	The moisture of the crumb core was determined in triplicate using a single-stage drying	
211	process for 16 h at 105 °C. The crumb core water activity (aw) was measured in triplicate by	/
212	an electronic hygrometer (Aqua Lab, CX-2 – Decagon Devices, Pullman, WA).	
213		0
		9

Crumb texture

1 2 3 4	
5 6 7 8 9	
8 9 10 11 12 13 14 15 16	
15 16 17 18 19	
20	
20 21 22 23 24 25 26 27 28	
29 30 31 32	
33 34 35 36 37	
38 39 40 41 42	
43 44 45 46	
47 48 49 50 51	
52 53 54 55 56	
57 58 59 60	

214	Crumo texture
215	
216	Crumb texture characteristics were assessed using a dynamometer (Z005, Zwick Roell, Ulm,
217	Germany), equipped with a 100 N and 5 kN load cell. The three central slices (1.5 mm
218	thickness) of each loaf were compressed to 40% of their height to evaluate hardness, using a
219	cylindrical aluminum probe of 30 mm diameter and a test speed of 2 mm/s. Crumb hardness
220	was measured (n =6) after 0, 1, 2 and 7 storage days and expressed as the load (N) at $30\%$
221	strain. The rate of staling was calculated as follows: (Firmness after $n$ days - initial Firmness)/
222	initial Firmness; where <i>n</i> represents the storage days.
223	
224	Statistical analysis
225	
226	The data were processed by Statgraphic Plus for Windows v. 5.1. (StatPoint Inc., Warrenton,
227	VA, USA). A one-way analysis of variance (Anova) was performed using the Least
228	Significant Differences (LSD) test to compare the sample means; differences were considered
229	significant at P < 0.05.
230	
231	Results and Discussion
232	
233	Sourdough characterization
234	
235	According to European legislation (EC, 2009) "Foodstuffs may bear the term gluten-
236	free if the gluten content does not exceed 20 mg/kg in the food as sold to the final consumer".
237	The process proposed here for preparing a gluten-free inoculum (GFI) from wheat sourdough
238	(WS) was effective not only in having a final value for gluten content lower than the legal
239	maximum amount allowed for GF products, but also in maintaining low pH and high acidity
	10

2	
2	
1	
4 5	
5	
2 3 4 5 6 7 8 9 10 11	
7	
8	
9	
10	
11	
12	
12 13 14 15 16	
13	
14	
15	
16	
17	
18	
17 18 19	
20 21	
21	
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	
22	
2J 2∕	
24	
25	
26	
27	
28	
29	
30	
31	
32	
22	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
44 45	
46	
47	
48	
49	
50	
51	
52	
53	
51	
53 54 55 56	
00	
20	
57	
58	
59	
60	

240 values in the dough in both GF sourdough types (Table 2). In fact, in GFI the LAB and yeast 241 amount was about  $10^8$  UFC/g and  $10^7$  CFU/g, respectively, values very close with those 242 measured in WS (Table 2). The drying of GFI allowed the removal of more than 80% of the 243 water such as to guarantee the shelf-life of the product. As expected, drying of sourdough, 244 even if carried out at low temperatures (30 °C for 36 h) caused a lowering in microbial count 245 (Table 2) and, consequently, a lowering of its fermenting capacity. For this reason, when 246 dried starters are used for the sourdough process, the addition of S. cerevisiae is more and 247 more frequent in bread-making in order to promote dough development in an acceptable time 248 scale (Corsetti, 2013). 249 Dough leavening properties 250 251 252 The Rheofermentometer test provides information regarding the gas production and gas 253 holding capacity of dough, useful for predicting the fermentative properties of dough. The 254 rheofermentographic charts and indices of the GF dough samples are reported in Fig. 2 and

255 Table 3, respectively. In both GF mixtures, the presence of hydrocolloids (psyllium and guar 256 flour) assured the formation of a matrix with appropriate consistency for this type of dough 257 according to the farinographic test (150-175 BU). Indeed, a farinographic consistency equal to 258  $200 \text{ BU} \pm 20$  was evidenced as the adequate condition to properly form a GF dough able to 259 sustain further transformations, particularly during leavening (Mariotti et al., 2009). The 260 increase in viscosity of the liquid phase, prevented starch and yeast sedimentation and bubble 261 coalescence during fermentation (Mariotti et al., 2013). Nevertheless, the leavening trend 262 differed according to the leavening agent and the GF recipe. As expected, the gaseous 263 production and the amount of  $CO_2$  produced during the leavening phase were higher in BY 264 compared to those prepared with GFS or DGFS (Table 3). In particular, the development of 265 BY dough (Tx, i.e. the moment in which the structure is no longer able to retain the  $CO_2$ )

1

reached the maximum in 120 and 76 minutes, according to the type of GF flour used - A and

2
3
4
5
6
0
7
8
9
9 10
11
12
11 12 13 14 15 16 17 18
13
14
15
16
17
18
19
20
21
20 21 22 23 24
22
23
24
25
26
27 28
28
29
29
30
31
32
33
34
35
36
36 37
20
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
50
54
55
56
57
58
59
60

267 B, respectively (Fig. 2). Then, this index remained constant and subsequently tended to 268 decrease, following a physiological structural collapse of the dough, responsible for the 269 release of carbon dioxide into the environment. 270 The development associated with the use of gluten-free sourdough, both GFS and 271 DGFS, markedly differed from that observed in the control (Fig. 2). In particular, the increase 272 in height of the dough containing GFS or DGFS did not show signs of structural failure; on 273 the contrary, these samples were prone to a continuous upward trend even after six hours of 274 fermentation. To summarize: the leavening trend in both sourdough systems was not only 275 similar but also the same height was reached as in BY as long as an extension of proofing 276 time was provided. In fact, at the end of the leavening (360 min), the GFS and DGFS dough 277 exhibited higher (compared to BY)  $CO_2$  retention coefficients, indicating that significant 278 dough expansion is ensured by slow and gradual CO₂ formation. As is well-known, in gluten-279 based products, gas retention is strongly influenced by the viscoelastic properties of gluten 280 proteins (Cauvain, 2012). In the GF formulations considered in this study, the presence of 281 proteins from milk and/or buckwheat, as well as of hydrocolloids, positively affected CO₂ 282 retention ability. The absence of the Tx index in most of the GF dough samples - even after 283 six hours of fermentation – was the result of a fairly compact mass because the absence of 284 gluten which imparts viscoelastic properties to the dough. Hydrocolloids, in fact, provide 285 proper consistency and compactness to withstand physical stresses but these additives lack the 286 viscoelasticity typical of the gluten network (BeMiller, 2009). Our results agree with those 287 reported in other studies: the time of appearance of the porosity in mixtures containing 288 sourdough is superior to non-acid doughs (Dal Bello et al., 2007). 289 Regarding the recipe, the presence of buckwheat flour negatively influenced dough 290 leavening: 40% lower height in mix B compared to mix A. This result is likely due to a

291 weakening of the protein network in the presence of buckwheat flour (Torbica *et al.*, 2010).

3		
4		
5		
6		
7		
8		
9 1		
1	0	
1	1	
1	2	
1	_ ז	
1	123456780	
1	4	
1	5	
1	6	
1	7	
1	8	
1	9	
2	ñ	
~ へ	1	
2 2 2 2	1	
2	2	
2	3	
2	4	
2	5	
2	6	
2	7	
<u>^</u>	0	
2	0	
2	9	
3	0	
3	1	
222222333333	2	
3	3	
3	4	
3	5	
ე ი	0 c	
ა ი	0	
3 3 3	1	
3 3	8	
3	9	
4	0	
4	1	
4	-	
4	2 3	
4		
4		
4		
4	7	
4		
4		
5		
5		
5		
	3	
5	4	
5		
5		
	7	
ວ 5		
5		
6	0	

292 On the contrary, Mariotti et al. (2013) showed improvements in dough development with the 293 incorporation of buckwheat likely because of an increase in dough viscosity, as a consequence 294 of its high dietary fiber content.

295

1 2

> 296 **Bread characteristics**

297

298 The properties of GF breads obtained from the different leavening agents (BY, GFS, and 299 DGFS) are reported in Table 4. In agreement with the rheofermentometer data, the best bread-300 making performances were obtained with mix A, which exhibited higher height and specific 301 volume indices than mix B. The presence of buckwheat flour, indeed, could enhance the 302 nutritional value of the bread but at the expense of poor bread volume, as referred by Moore 303 et al. (2004) and Moore et al. (2009). Despite that, the bread characteristics obtained for mix 304 B products were in the range of acceptable loaf volume, and comparable to those reported in 305 the literature (Mezaize et al., 2009; Mariotti et al., 2013). 306 Regardless of the mixture composition, bread samples prepared using BY or GFS did 307 not show significant differences (p>0.05) in crumb moisture and water activity (Table 4). The 308 bread development indices were in agreement with literature data (Moore et al., 2007; 309 Schober et al., 2007; Mariotti et al., 2013) and suggested that the sole use of GFS resulted in 310 bread with a specific volume comparable to that obtained using S. cerevisiae (Table 4). The 311 improvement of GF bread by sourdough was less noticeable when DGFS was used, thus 312 suggesting the need to combine the type of sourdough with bakery yeast. 313 As regards to crumb firmness, samples from mix B were characterized by a higher 314 initial consistency than samples from mix A (Table 4), probably due to the presence of 315 buckwheat. However, the use of this raw material induced a decrease in crumb softness, due 316 to its richness in non starch polysaccharides (Biacs et al., 2002). At the same time, the high 317 hydrophilic characteristics of fibre components resulted in a lower staling of the product

2 3	318	over time (Fig. 3). The effect of using GFS on crumb texture during storage was more evident
4 5 6	319	when mix A was used. Although bread from sourdough fermentation exhibited higher initial
7 8	320	firmness compared to bread with S. cerevisiae, the use of either GFS or DGFS resulted in GF
9 10	321	breads characterized by longer shelf-life, in agreement with previous studies (Corsetti et al.,
11 12	322	1998; Corsetti et al., 2000; Schober et al., 2007).
13 14 15	323	
16 17	324	Conclusions
18 19	325	
20 21	326	The present study shows that it is possible to obtain GF sourdough from wheat sourdough,
22 23	327	suitable to produce bread without adding S. cerevisiae or selected cultures of LAB. It has been
24 25 26	328	proved that the use of the GF sourdough dried at low temperatures contains alive and vital
27 28	329	microbial strains (LAB and yeasts). The LAB and yeasts present in GF sourdough assured an
29 30	330	appropriate development of the dough during proofing, resulting in bread with a high specific
31 32	331	volume, similar to that observed when bread was prepared with BY only. Finally, the use of
33 34 35	332	GF sourdough, either as such or after partial dehydration, resulted in bread characterized by
36 37	333	better shelf-life over time, especially for the formulation composed mainly of starchy
38 39	334	material.
40 41	335	
42 43 44	336	Acknowledgements
45 46	337	
47 48	338	The Authors would like to thank Prof. Stefania Iametti and her team for gluten determination.
49 50	339	The Authors declare that there is no conflict of interest.
51 52	340	
53 54 55	341	References
56 57	342	American Association of Cereal Chemists (AACC). (2001). Approved methods of the
58 59 60	343	AACC. St Paul, MN, USA.

344	BeMiller, J. N. (2009). Hydrocolloids. In: Gluten-free cereal products and beverages
345	(edited by E. K. Arendt & F. Dal Bello). Pp. 203-215. London, UK: Academic Press.
346	Biacs, P., Aubrecht, E., Leder, I., & Lajos, J. (2002) Buckwheat. In: Pseudocereals
347	and less common cereals: grain properties and utilization (edited by P. S. Belton & J.R:N.
348	Taylor). Pp. 123-151. Berlin, Germany: Springer-Verlag.
349	Catassi, C, & Fasano A. (2008). Celiac disease. In: Gluten-free cereal products and
350	beverages (edited by E. K. Arendt & F. Dal Bello). Pp 1-22). London, UK: Academic Press.
351	Cauvain, S. (2012). Breadmaking: an overview. In: Breadmaking - Improving quality
352	(edited by S.P. Cauvain). Pp. 9-32. Cambridge, UK: Woodhead Publishing Limited.
353	Corsetti, A., Gobbetti, M., Balestrieri, F., Paoletti, F., Russi, L., & Rossi, J. (1998).
354	Sourdough lactic acid bacteria effects on bread firmness and staling. Journal of Food Science,
355	<b>63</b> , 347-351.
356	Corsetti, A., Gobbetti, M., De Marco, B., Balestrieri, F., Paoletti, F., Russi, L., &
357	Rossi, J. (2000). Combined effects of sourdough lactic acid bacteria and additives on bread
358	firmness and staling. Journal of Agricultural and Food Chemistry, 48, 3044-3051.
359	Corsetti, A. (2013). Technology of sourdough fermentation and sourdough
360	applications. In: Handbook on sourdough biotechnology (edited by M. Gobbetti, M. & M.
361	Ganzle). Pp. 85-103. New York, US: Springer.
362	Dal Bello, F., Clarke, C.I., Ryan, L.A.M., Ulmera, H., Schober, T.J., Strom, K., et al.
363	(2007). Improvement of the quality and shelf life of wheat bread by fermentation with the
364	antifungal strain Lactobacillus plantarum FST 1.7. Journal of Cereal Science, 45, 309-318.
365	De Man, J. C., Rogosa, M., & Sharpe, M. E. (1960). A medium for the cultivation of
366	lactobacilli. Journal of Applied Bacteriology, 23, 130-136.
367	Di Cagno, R., De Angelis, M., Lavermicocca, P., De Vincenzi, M., Giovannini, C.,
368	Faccia, M., Gobbetti, M. (2002). Proteolysis by sourdough lactic acid bacteria: effects on

2 3	369	wheat flour protein fractions and gliadin peptides involved in human cereal intolerance.
4 5 6	370	Applied Environmental Microbiology, 68, 623-633.
7 8	371	Di Cagno, R., De Angelis, M., Auricchio, S., Greco, L., Clarke, C., De Vincenzi, M. et
9 10	372	al. (2004). Sourdough bread made from wheat and nontoxic flours and started with selected
11 12	373	lactobacilli is tolerated in celiac sprue patients. Applied Environmental Microbiology, 70,
13 14	374	1088-1096.
15 16 17	375	Di Cagno, R., Rizzello, C.G., De Angelis, M., Cassone, A., Giuliani, G., Benedusi, A.,
18 19	376	et al. (2008). Use of selected sourdough strains of Lactobacillus for removing gluten and
20 21	377	enhancing the nutritional properties of gluten-free bread. Journal of Food Protection, 71,
22 23	378	1491-1495.
24 25 26	379	EC (European Union Legislations, Commission Regulation). (2009). Concerning the
20 27 28	380	composition and labelling of foodstuffs suitable for people intolerant to gluten. EC n.
29 30	381	41/2009, 20 January 2009. Official Journal of the European Union.
31 32	382	Edema, M. O., & Sanni, A. I. (2008) Functional properties of selected starter cultures
33 34 25	383	for sour maize bread. Food Microbiology, 25, 616-625.
35 36 37	384	Hager, A. S., Wolter, A., Czerny, M., Bez, J., Zannini, E., Arendt, E. K., & Czerny, M.
38 39	385	(2012). Investigation of product quality, sensory profile and ultrastructure of breads made
40 41	386	from a range of commercial gluten-free flours compared to their wheat counterparts.
42 43	387	European Food Research and Technology, 235, 333-344.
44 45 46	388	Houben, A., Hochstotter, A., & Becker, T. (2012). Possibilities to increase the quality
40 47 48	389	in gluten-free bread production: an overview. European Food Research and Technology, 235,
49 50	390	195-208.
51 52	391	International Organization for Standardization (1992) ISO 6611. Milk and milk
53 54 55	392	products - Enumeration of yeast and molds - Colony count technique at 25 °C.
56 57		
58 59		
60		16

2
3
4
5 6
6
7
8
ğ
9 10
10
11
12
13
13 14 15
15
16 17
17
18
10
19
20
21
20 21 22 23 24 25 26 27 28
23
24
25
26
27
28
20
29
30
31
31 32 33
33
34
35
36
37
20
30
34 35 36 37 38 39 40
40
41
42
43
44
45
46
40 47
47 48
49
50
51
52
53
54
55
56
57
58
58 59
59 60
60

393 International Organization for Standardization (2003). ISO 4833. Microbiology of 394 food and animal feeding stuffs. Horizontal method for enumeration of microorganisms. 395 Colony count technique at 30 °C. 396 Mariotti, M., Lucisano, M., Pagani, M. A., & Ng, P. K. W. (2009). The role of corn 397 starch, amaranth flour, pea isolate, and Psyllium flour on the rheological properties and the 398 ultrastructure of gluten-free doughs. Food Research International, 42, 963-975. 399 Mariotti, M., Pagani, M.A., Lucisano, M. (2013). The role of buckwheat and HPMC 400 on the breadmaking properties of some commercial gluten-free bread mixtures. Food 401 Hydrocolloids, **30**, 393-400. 402 Mezaize, S., Chevallier, S., Le Bail, A., & De Lamballerie, M. (2009). Optimization of 403 gluten-free formulations for french-style breads. Journal of Food Science, 74, E140–E146. 404 Moore, M. M., Schober, T. J., Dockery, P., & Arendt, E.K. (2004). Textural 405 comparison of gluten-free and wheat based doughs, batters and breads. *Cereal Chemistry*, 81, 406 567-575. 407 Moore, M. M., Juga, B., Schober, T. J., & Arendt, E.K. (2007). Effect of lactic acid 408 bacteria on properties of gluten-free sourdoughs, batters, and quality and ultrastructure of 409 gluten-free bread. Cereal Chemistry, 84, 357-364. 410 Moore, M., Dal Bello, F., & Arendt, E. (2008). Sourdough fermented by Lactobacillus 411 plantarum FST 1.7 improves the quality and shelf life of gluten-free bread. European Food 412 Research and Technology, 226, 1309-1316. 413 Moroni, A. V., Dal Bello, F., & Arendt, E. K. (2009). Sourdough in gluten-free bread-414 making: an ancient technology to solve a novel issue? Food Microbiology, 26, 676-684. 415 Moroni, A.V., Arendt, E.K., & Dal Bello, F. (2010a). Biodiversity of lactic acid 416 bacteria and yeasts in spontaneously fermented buckwheat and teff sourdoughs. Food 417 Microbiology, 28, 497-502.

Institute of Food Science and Technology

2 3	418	Moroni, A. V., Arendt, E. K., Morrissey, J. P., & Dal Bello, F. (2010b). Development
4 5 6	419	of buckwheat and teff sourdoughs with the use of commercial starters. International Journal
7 8	420	of Food Microbiology, <b>142</b> , 142-148.
9 10	421	Sanni, A. I., Onilude, A. A., & Fatungase, M. O. (1998). Production of sour-maize
11 12	422	bread using starter cultures. World Journal of Microbiology and Biotechnology, 14, 101-106.
13 14	423	Schober, T.J., Bean, S.R., & Boyle, D.L. (2007). Gluten-free sorghum bread improved
15 16 17	424	by sourdough fermentation: biochemical, rheological, and microstructural background.
18 19	425	Journal of Agriculture and Food Chemistry, 55, 5137-5146.
20 21	426	Torbica, A., Hadnadev, M., & Dapčević, T. (2010). Rheological, textural and sensory
22 23	427	properties of gluten-free bread formulations based on rice and buckwheat flour. Food
24 25 26	428	Hydrocolloids, <b>24</b> , 626-632.
20 27 28	429	Vogelmann, S. A., Seitter, M., Singer, U., Brandt, M. J., & Hertel, C. (2009).
29 30	430	Adaptability of lactic acid bacteria and yeasts to sourdoughs prepared from cereals,
31 32	431	pseudocereals and cassava and use of competitive strains as starters. International Journal of
33 34	432	Food Microbiology, <b>130</b> , 205-212.
35 36 37	433	Zannini E, Pontonio, E., Waters, D.M., & Arendt, E.K. (2012). Applications of
38 39	434	microbial fermentations for production of gluten-free products and perspectives. Applied
40 41	435	Microbiology and Biotechnology, 93, 473-485.
42 43	436	
44 45		
46 47		
48 49		
50		
51 52		
53		
54 55		
55 56		
57		
58		

## 437 Figure legends

439 Fig. 1. Dough and bread preparation using gluten-free sourdough *inoculum* (a), dried gluten-

440 free sourdough *inoculum* (b), and bakery yeast (c).

442 Fig. 2. Rheofermentographic curves of dough development of GF mix A (a) or mix B (b).

### 

- 444 Fig 3. Rate of staling of gluten-free doughs prepared from mix A (a) or mix B (b). The rate of
- 445 staling was calculated as [(Firmness after n days initial Firmness)/ initial Firmness], where n
- 446 represents the storage days. The detail in panel (b) represents an enlargement of the picture.

## International Journal of Food Science & Technology

1					
2 3	448		Table 1. Chemical composition of GF bl	ends (g/100 g d.)	b.)
4 5 6	449				
7 8	450			Mix A	Mix B
9 10 11	451		Starch and soluble sugars	82.4	79.0
12 13	452		Protein	5.8	7.0
14 15	453		Fibre	3.8	6.0
16 17	454				
18 19	455				
20 21 22	456	d.b. = dry basis			
22 23 24	457				
25 26					
27 28					
29 30					
31 32 33					
34 35					
36 37					
38 39					
40 41 42					
42 43 44					
45 46					
47 48					
49 50					
51 52 53					
54 55					
56 57					
58 59					
60			Institute of Food Science and T	achnology	

#### 458 Table 2. Gluten-free sourdough characterization.

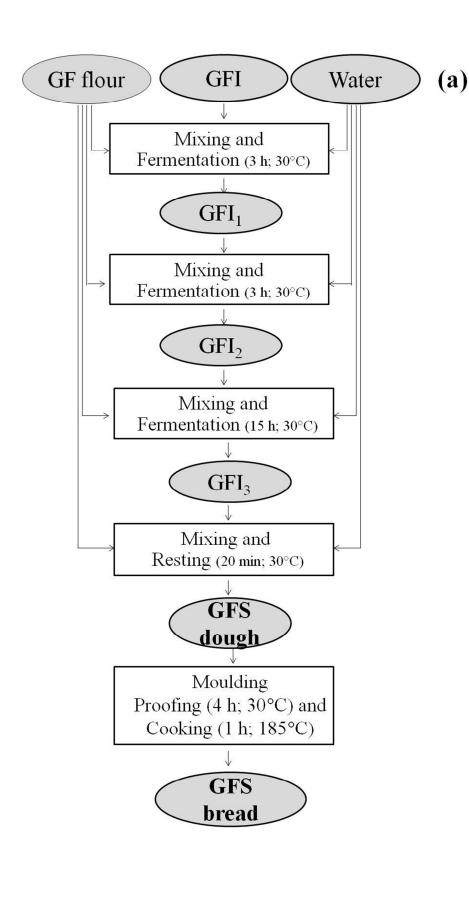
Moisture (g/100g) pH Total titratable acidity (ml NaOH 0.1M / 10g) Total Bacteria Count (CFU/g) LAB ( CFU/g) Yeast ( CFU/g) Gluten (mg/kg)	$53.0 \pm 0.06$ $3.81 \pm 0.02$ $8.78 \pm 0.32$ $8*10^{8}$ $7*10^{8}$ $8*10^{7}$	$49.1 \pm 0.41$ $4.11 \pm 0.04$ $7.73 \pm 0.57$ $9*10^{8}$ $8*10^{8}$	$9.0 \pm 0.05$ $4.37 \pm 0.02$ $7.20 \pm 0.52$ $8*10^7$ $9*10^6$
Total titratable acidity (ml NaOH 0.1M / 10g) Total Bacteria Count (CFU/g) LAB ( CFU/g) Yeast ( CFU/g)	$8.78 \pm 0.32$ $8*10^{8}$ $7*10^{8}$	$7.73 \pm 0.57$ $9*10^{8}$	$7.20 \pm 0.52$ $8*10^{7}$
(ml NaOH 0.1M / 10g) Total Bacteria Count (CFU/g) LAB ( CFU/g) Yeast ( CFU/g)	8*10 ⁸ 7*10 ⁸	9*10 ⁸	8*10 ⁷
LAB ( CFU/g) Yeast ( CFU/g)	7*10 ⁸		
Yeast ( CFU/g)		8*10 ⁸	9*10 ⁶
	8*10 ⁷		
Gluten (mg/kg)		<b>9*10</b> ⁷	9*10 ⁶
	>300	< 20	< 20

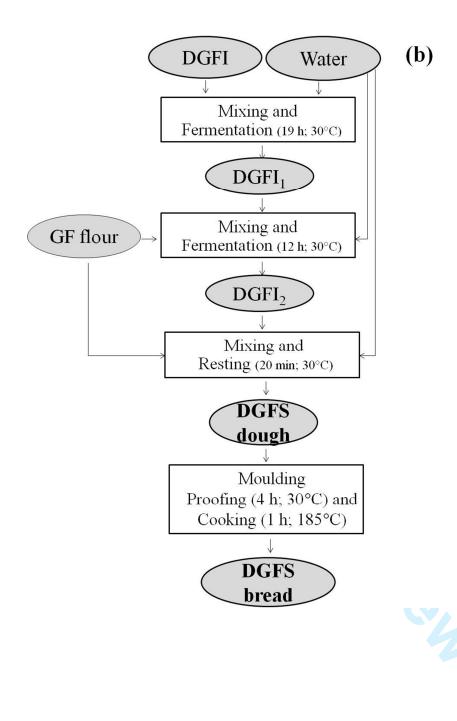
461	Table 3. Dough	rheofermentograph	nic indices.

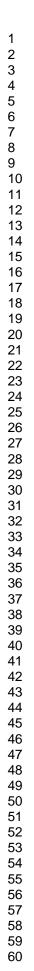
	Leavening agent	Hm (mm)	h (mm)	H'm (mm)	Tx (min)	CO ₂ -TOT (ml)	CO ₂ -RET (ml)	CO ₂ -REL (ml)	RC (%)
Mix A	BY	80.3	57.8	89.6	91	1688	1547	141	91.6
	GFS	69.6	69.6	31.9	-	1018	1011	7	99.3
	DGFS	59.9	59.6	47.0	-	618	612	6	99.0
Mix B	BY	48.3	35	85.9	76	1812	1509	303	83.3
	GFS	40.1	28.7	39.7	256	1237	1188	49	96.0
	DGFS	44.7	44.7	2.5	-	1051	1040	10	99.0

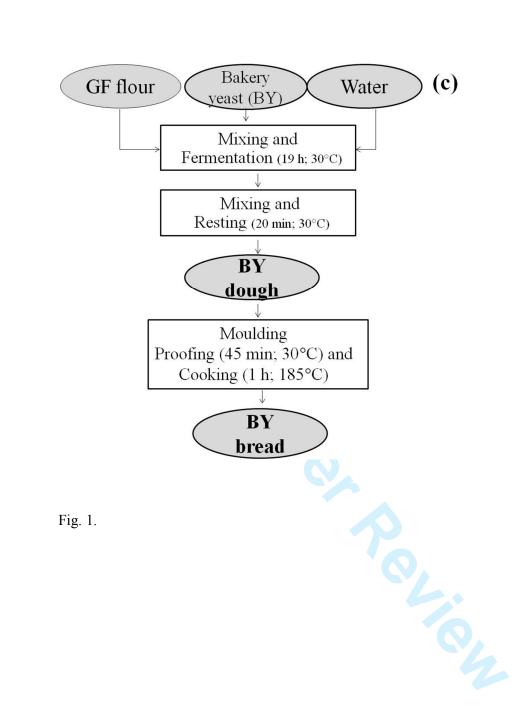
463 Hm = maximum dough height; h = final height of dough; H'm = maximum height of gaseous

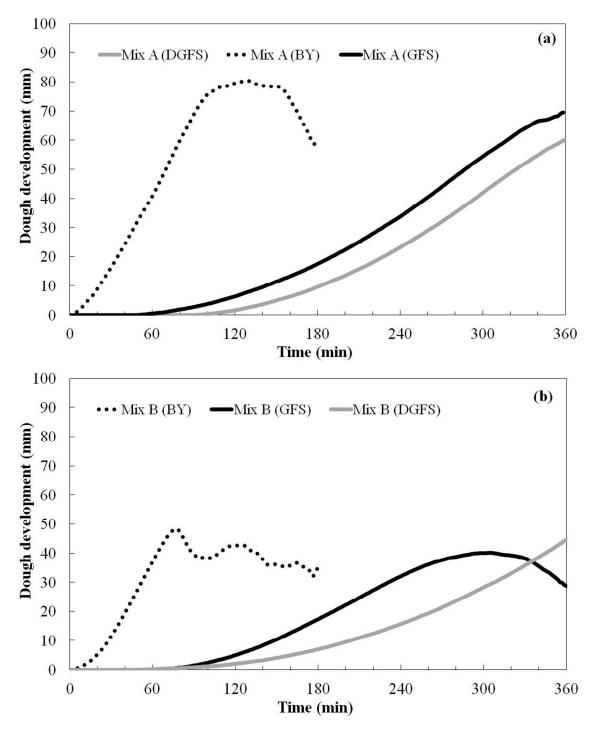
464 production;  $CO_2$ -TOT = total  $CO_2$  production;  $CO_2$ -RET =  $CO_2$  retained;  $CO_2$ -REL =  $CO_2$ 


465 released;  $RC = CO_2$  retention coefficient; Tx = porosity time


Table 4. Bread characteristics.


	Leavening agent	Weight (g)	Height (cm)	Specific volume (cm ³ /g)	Crumb moisture (g/100g)	Crumb a _w	Firmness (N)
Mix A	BY	55.9±1.3b	6.53±0.12e	4.15±0.22c	53.9±0.75a	0.98±0.001a	2.22±0.24a
	GFS	47.3±1.7a	5.57±0.12d	4.12±0.14c	54.1±2.7a	0.98±0.005a	4.86±1.51ab
	DGFS	54.5±0.6b	5.23±0.06c	2.97±0.07a	54.6±0.25a	0.99±0.002a	10.58±0.53d
Mix B	BY	54.8±0.9b	4.97±0.12b	3.22±0.10b	53.8±0.73a	0.99±0.006a	6.63±1.26bc
	GFS	55.9±0.2b	4.97±0.06b	3.10±0.08b	53.8±0.53a	0.98±0.005a	7.33±1.15c
	DGFS	58.1±0.7c	4.70±0.10a	2.95±0.06a	54.9±0.16a	0.98±0.004a	6.86±1.20c


Means and standard deviations followed by different letters in a column are significantly


different (LSD; p<0.05)



