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Università degli Studi di Trieste

Dipartimento di Matematica e Informatica

via Valerio, 12/1

34127 Trieste, Italy

rondi@units.it

Abstract

We treat the inverse problem of determining material losses, such as
cavities, in a conducting body, by performing electrostatic measurements
at the boundary. We develop a numerical approach, based on variational
methods, to reconstruct the unknown material loss by a single boundary
measurement of current and voltage type.

The method is based on the use of phase-field functions to model the
material losses and on a perimeter-like penalization to regularize the other-
wise ill-posed problem. We justify the proposed approach by a convergence
result, as the error on the measurement goes to zero.
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1 Introduction

In many inverse or optimal shape problems arising in the applications, the aim
is to reconstruct the shape of an object, usually represented by an unknown
open set, satisfying certain requirements. If we restrict ourselves to a variational
formulation, for the sake of simplicity, we look for the shape minimizing a given
functional F among all the admissible shapes. The shape is often modeled as
a binary function, that is the open set is described through its characteristic
function.

Two of the main issues for a satisfactory numerical resolution of this kind
of problems are the following. First of all, and especially for inverse problems,
the problem may be ill-posed, that is stability is missing or, in other words,
F is not continuous. Second, numerically handling shapes or sets is not an
easy task from the implementation point of view. The first issue is usually
tackled by a regularization method, namely by adding to the functional a term
penalizing the binary function with respect to some BV -related norm. For most
applications, this should be enough for ensuring a regularization without being
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restricting on the class of admissible unknowns. Often the BV -related norm is
simply a perimeter-like penalization. About the handling of shapes or sets in
computations, in many cases this is performed by associating to the open set
a smooth function describing it. For example, one way of doing it is to replace
the characteristic function of an open set D with a smooth function, referred to
as a phase-field function, which is close to 0 outside D, close to 1 inside D, and
has a quick transition from 0 to 1 across the boundary of D. Another way is the
so-called level-set method, where D is identified with the sublevel set {ψ < 0}
of a smooth function ψ.

We are interested in using perimeter-like regularizations and phase-field func-
tions for solving inverse or optimal shape problems, in particular those that are
not well-posed. We aim to prove in a rigorous way that this kind of approach
provides a good approximation of the original problem, allowing us at the same
time to tame the ill-posedness and to have a formulation amenable to be easily
implemented. A cornerstone of this method is the approximation, in the sense of
Γ-convergence, of the perimeter functional by functionals defined on phase-field
functions, due to Modica and Mortola, [16]. Since [15] such a result has found
innumerable applications. In fact, whenever the functional F is continuous in a
suitable way, the invariance of Γ-convergence by continuous perturbations per-
mits to obtain an analogous Γ-convergence result if we add to F the perimeter
penalization. Whenever the problem is ill-posed, that is F is not continuous,
a corresponding convergence result is not straightforward any more. Since we
believe that the method is valuable also in the ill-posed case, it would be im-
portant to justify it in a rigorous way, in general through a convergence result
inspired by Γ-convergence techniques, for various interesting applications.

In this paper we perform such an analysis for the following inverse problem,
arising from non-destructive evaluation. We aim to determine perfectly insu-
lating defects in a homogeneous and isotropic conducting body by performing
electrostatic measurements of voltage and current type at the boundary. The
conducting body is contained in Ω, a bounded domain of RN , N ≥ 2. The de-
fects may have different geometrical properties, for instance we may have at the
same time cracks (either interior or surface breaking), or material losses (either
interior, that is cavities, or at the boundary). We denote with K the union of
the boundaries of these defects, whereas γ̃ is a part of the boundary of Ω which
is accessible, known and disjoint from K. If a current density f ∈ L2(γ̃), with
zero mean, is applied on γ̃, then the electrostatic potential u = u(f,K) is the
solution to the following Neumann boundary value problem

(1.1)

 ∆u = 0 in Ω\K,
∇u · ν = f on γ̃,
∇u · ν = 0 on ∂(Ω\K)\γ̃.

We call GK the connected component of Ω\K which is reachable from γ̃ and we
say that a defect is a material loss if GK is equal to the interior of its closure,
that is if no crack-type defect is present.

The value of u, that is the voltage, may be measured on another part of
the boundary of Ω, say γ, which we assume to be accessible, known, disjoint
from K and belonging to ∂GK . We call g such a measurement, that is g = u|γ .
For simplicity, we may also assume that γ coincides with γ̃. If the defect K is
unknown, we aim to recover its shape and location, that is GK , by prescribing
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one or more current densities f and measuring the corresponding voltage on γ,
g = u|γ , where u solves (1.1). In mathematical words, we are given one or more
pairs of Cauchy data (g, f) on a known part of the boundary and we aim to
reconstruct the domain of validity of the elliptic equation.

Here we are interested in the reconstruction only of material losses, that is
cavities or material losses at the boundary, and for simplicity we refer to it as
the inverse cavity problem. It is well-known that, in every dimension, a single
boundary measurement is enough to reconstruct a material loss, thus providing
uniqueness for the inverse problem, see for instance [21] for a proof with minimal
regularity assumptions on the unknown material loss. Stability results have been
proved in [1] for the three dimensional case and in [2] for the planar case, where
also the instability character of the problem has been explicitly shown.

We notice that u, the electrostatic potential solution to (1.1), is constant
on any connected component of Ω\K different from GK . The key observation
is that its jump set in Ω is essentially contained in K. The uniqueness result
recalled before actually allows us to say more, in fact the jump set of u uniquely
determines GK , that is the unknown material loss. Therefore we are interested in
the reconstruction of the electrostatic potential u and especially of its (unknown)
jump set. This suggests the possibility to set up a reconstruction procedure by
solving a free-discontinuity problem related to the function u.

The main difficulty for the reconstruction is due to the ill-posedness of the
problem. In fact, since they are measured, the Cauchy data that are available
are not exact. Since the problem is severely ill-posed, such an error on the
measurements may lead to a much greater error on the reconstructed defect.
Furthermore, the inverse problem is nonlinear. In fact, even if the direct prob-
lem (1.1) is linear, the dependence of the electrostatic potential u, and of its
values on γ, from the defect K is nonlinear. Finally, from a numerical point of
view, the fact that the unknown is a set, namely GK , introduces an additional
complication for the implementation.

We propose a variational method to tackle at the same time these difficulties.
The idea is to use a perimeter-like penalization to regularize the problem and
to replace the unknown set GK with its characteristic function and, in turn,
with a phase-field function, to obtain a formulation that may be implemented
numerically. Namely, the regularization we propose is related to the so-called
Modica-Mortola functional, an approximation of the perimeter when phase-field
functions are used. We might construct a family of functionals, depending on
the noise level on the measurements ε, to be minimized with respect to the
variable u (the reconstructed potential) and the phase-field variable v. However,
to simplify the implementation we would rather have a functional depending on
the phase-field variable v only. Thus, we take u depending on v, u = u(v), as
a solution to an almost degenerate elliptic problem whose coefficient is given
by a slight modification of v, depending on ε. In other words, we replace the
direct cavity problem with an elliptic problem in Ω where the coefficient of the
equation is close to 1 in GK , close to 0 outside GK , with a quick transition across
the boundary GK . The method consists then of minimizing the so-obtained
functionals, depending on ε, with respect to the phase-field variable v only.
We remark that the reconstructed material loss may be simply computed by a
suitable thresholding of the minimizing phase-field and that an approximation
of the looked-for electrostatic potential is given by u = u(v) where v is the
minimizing phase-field.

3



The main result of the paper, Theorem 4.2, is that the corresponding min-
imizers vε converge, as ε → 0+, to the characteristic function of GK , thus
identifying the looked-for material loss, and that uε = u(vε) converge to the
looked-for potential u. Such a convergence result, whose proofs is obtained by
techniques borrowed by Γ-convergence, provides a rigorous justification of the
method. About the material loss to be reconstructed, this is assumed to satisfy
a Lipschitz type regularity. We finally remark that the method makes use of
a single measurement and that is enough to reconstruct the whole unknown
material loss K.

If we instead allow the unknown defect not to be a material loss, that is it
may include crack-type defects, for simplicity we refer to this problem as the
inverse crack problem. About uniqueness, stability and reconstruction results on
the inverse crack problem, we refer to [7] and the references therein. The main
difference between the two cases is that for the determination of cracks one mea-
surement is not enough, however, at least in the planar case, two suitably chosen
measurements are sufficient. In [22, 23] a corresponding variational approach for
the inverse crack problem has been developed. Again such an approach makes
use of a penalization on the (N − 1)-dimensional measure of the defects and of
phase-field functions. Namely, it was constructed a family of functionals, again
depending on the noise level on the measurements ε, to be minimized with re-
spect to the variable u (the reconstructed potential) and the phase-field variable
v. Instead of the perimeter functional and the Modica-Mortola functional, the
Mumford-Shah functional [18] and its approximation, in the sense of Γ conver-
gence, due to Ambrosio and Tortorelli [4, 5] were used, respectively. Also in this
case a convergence result guaranteed a justification of the method. In Section 5
we recall the results obtained in [23] for the inverse crack problem and we com-
pare with those obtained here for the inverse cavity problem. The main difficulty
in the implementation of the method of [23] is that the functional to be mini-
mized depends on two variables, the variable u, which should approximate the
electrostatic potential, and the variable v, which is the phase-field variable that
should approximate the jump set of the potential and hence the defect. It would
be desirable to formulate the problem depending on one variable only, for in-
stance only on the phase-field variable. Unfortunately such a formulation, which
is proved here for the material loss case, may not be feasible. In fact, Section 5
is devoted to show that the result in [23] is essentially optimal, through several
counterexamples. Moreover, more regularity is needed for the unknown defects
of crack-type, namely a regularity assumptions of C1 type, instead of Lipschitz,
have to be imposed. Thus, we show that restricting ourselves to the reconstruc-
tion of material losses allows us to gain the following advantages. First, we may
lower the a priori assumptions on the unknown defect to ones which are more
suited for applications. More importantly, we obtain and justify a formulation
which looks more natural and quite simpler to be implemented.

We finally wish to mention that a numerical implementation, based on the
results of this paper and on those of [23], may be found in [20]. The corresponding
numerical experiments show the validity of these methods also from a practical
point of view.

The plan of the paper is the following. After a preliminaries section, Sec-
tion 2, we describe the setting of the direct and inverse problem in Section 3.
We treat the material loss case in in Section 4, where there is the main result
of the paper, Theorem 4.2. In Section 5, we recall the results for the inverse
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crack problem proved in [23] and we compare the crack and material loss cases
and discuss their differences. In particular we show the optimality of the result
of [23]. Finally, in Section 6 we deal with the differentiability of the functionals
involved. Such differentiability is crucial for developing the algorithm used in
[20].
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2 Preliminaries

Throughout the paper the integer N ≥ 2 will denote the space dimension. We
remark that we shall sometimes drop the dependence of any constant upon
N , the space dimension. For every x ∈ RN , we shall set x = (x′, xN ), where
x′ ∈ RN−1 and xN ∈ R, and, for any r > 0, we shall denote by Br(x) the open
ball in RN centred at x of radius r. Usually we shall write Br instead of Br(0).
For any subset E ⊂ RN and any r > 0, we denote Br(E) =

⋃
x∈E Br(x).

For any non-negative integer k we denote by Hk the k-dimensional Hausdorff
measure. For Borel subsets of RN the N -dimensional Hausdorff measure coin-
cides with LN , the N -dimensional Lebesgue measure. Furthermore, if γ ⊂ RN
is a smooth manifold of dimension k, then Hk restricted to γ coincides with its
k-dimensional surface measure. For any Borel E ⊂ RN we let |E| = LN (E).

We recall that a bounded open set Ω ⊂ RN is said to have a Lipschitz
boundary if for every x ∈ ∂Ω there exist a Lipschitz function ϕ : RN−1 → R
and a positive constant r such that for any y ∈ Br(x) we have, up to a rigid
transformation,

y ∈ Ω if and only if yN < ϕ(y′).

We observe that in this case the boundary of Ω has finite (N − 1)-dimensional
Hausdorff measure, that is HN−1(∂Ω) < +∞.

We say that a function ϕ : A → B, A and B being metric spaces, is bi-
Lipschitz if it is injective and ϕ and ϕ−1 : ϕ(A) → A are both Lipschitz func-
tions. If both the Lipschitz constants of ϕ and ϕ−1 are bounded by L ≥ 1, then
we say that ϕ is bi-Lipschitz with constant L.

We recall some basic notation and properties of functions of bounded varia-
tion and sets of finite perimeter. For a more comprehensive treatment of these
subjects see, for instance, [3, 11, 13].

Given a bounded open set Ω ⊂ RN , we denote by BV (Ω) the Banach space
of functions of bounded variation. We recall that u ∈ BV (Ω) if and only if
u ∈ L1(Ω) and its distributional derivative Du is a bounded vector measure. We
endow BV (Ω) with the standard norm as follows. Given u ∈ BV (Ω), we denote
by |Du| the total variation of its distributional derivative and we set ‖u‖BV (Ω) =
‖u‖L1(Ω) + |Du|(Ω). We recall that whenever u ∈W 1,1(Ω), then u ∈ BV (Ω) and
|Du|(Ω) =

∫
Ω
|∇u|, therefore ‖u‖BV (Ω) = ‖u‖L1(Ω) + ‖∇u‖L1(Ω) = ‖u‖W 1,1(Ω).

We say that a sequence of BV (Ω) functions {uh}∞h=1 weakly∗ converges in
BV (Ω) to u ∈ BV (Ω) if and only if uh converges to u in L1(Ω) and Duh weakly∗

5



converges to Du in Ω, that is

(2.1) lim
h

∫
Ω

vdDuh =

∫
Ω

vdDu for any v ∈ C0(Ω).

By Proposition 3.13 in [3], we have that if a sequence of BV (Ω) functions
{uh}∞h=1 is bounded in BV (Ω) and converges to u in L1(Ω), then u ∈ BV (Ω)
and uh converges to u weakly∗ in BV (Ω).

Let Ω be a bounded open set with Lipschitz boundary. A sequence of BV (Ω)
functions {uh}∞h=1 such that suph ‖uh‖BV (Ω) < +∞ admits a subsequence con-
verging weakly∗ in BV (Ω) to a function u ∈ BV (Ω), see for instance Theo-
rem 3.23 in [3]. As a corollary, we infer that for any C > 0 the set {u ∈ BV (Ω) :
‖u‖BV (Ω) ≤ C} is a compact subset of L1(Ω).

Let E be a bounded Borel set contained in BR ⊂ RN . We shall denote by χE
its characteristic function. We notice that E is compactly contained in BR+1,
which we shall denote by E b BR+1. We say that E is a set of finite perimeter
if χE belongs to BV (BR+1) and we call the number P (E) = |DχE |(BR+1) its
perimeter.

Let us further remark that the intersection of two sets of finite perimeter
is still a set of finite perimeter. Moreover, whenever E is open and HN−1(∂E)
is finite, then E is a set of finite perimeter, see for instance [11, Section 5.11,
Theorem 1]. Therefore a bounded open set Ω with Lipschitz boundary is a set
of finite perimeter and its perimeter P (Ω) coincides with HN−1(∂Ω).

For any bounded open set Ω, we define the following perimeter functional
P : L1(Ω)→ [0,+∞] such that

(2.2) P (u) =


c|Du|(Ω) if u ∈ BV (Ω) and u ∈ {0, 1} a.e.,

+∞ otherwise,

where c is a positive constant to be chosen later. We observe that P (u) = cP (E)
if u = χE and E is a set of finite perimeter compactly contained in Ω.

We denote by SBV (Ω) the space of special functions of bounded variation.
For any u ∈ SBV (Ω), the density of the absolutely continuous part of Du
with respect to LN will be denoted by ∇u, the approximate gradient of u. The
singular part, with respect to LN , of Du is concentrated on J(u), J(u) being
the approximate discontinuity set (or jump set) of u in Ω. We further say that a
function u ∈ GSBV (Ω), the space of generalized functions of bounded variation,
if u ∈ L1(Ω) and for any T > 0 its truncation uT = (−T ) ∨ (T ∧ u) ∈ SBV (Ω).
Let us recall that the approximate gradient ∇u of u ∈ GSBV (Ω) is defined
almost everywhere and coincides with ∇uT almost everywhere on {u = uT },
and that J(u) =

⋃
T>0 J(uT ).

The special functions of bounded variation have important compactness and
semicontinuity properties, see for instance [3, Theorem 4.7 and Theorem 4.8].

We remark that if u ∈ BV (Ω) and u ∈ {0, 1} almost everywhere in Ω, then
u ∈ SBV (Ω) and P (u) = c|Du|(Ω) = cHN−1(J(u)).

Let us define the so-called Mumford-Shah functional, introduced in [18] in
the context of image segmentation. Let us fix positive constants b and c. Let
MS : L1(Ω)→ [0,+∞] be given by

(2.3) MS(u) = b

∫
Ω

|∇u|2 + cHN−1(J(u)) if u ∈ GSBV (Ω),
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whereas MS(u) = +∞ otherwise.
Let us introduce the following Γ-convergence results concerning the approxi-

mation of the perimeter functional and the Mumford-Shah functional by phase-
field functionals. For the definition and properties of Γ-convergence we refer to
[8]. The perimeter approximation is due to Modica and Mortola, [16], whereas
the Mumford-Shah functional approximation is due to Ambrosio and Tortorelli,
[4, 5]. We shall follow the notation and proofs contained in [6].

Throughout the paper, for any p, 1 ≤ p ≤ +∞, we shall denote its conjugate
exponent by p′, that is p−1 + (p′)−1 = 1. Let W : R→ [0,+∞) be a continuous

function such that W (t) = 0 if and only if t ∈ {0, 1}. Let cW =
∫ 1

0

√
W (t)dt.

In the definition of the perimeter functional we pick c = 2cW . For instance, we
may choose W (t) = 9t2(t− 1)2 for any t ∈ R, whence c = 2cW = 1.

The following approximation result is due to Modica and Mortola, [16], see
also [6, Theorem 4.13].

Theorem 2.1. Let Ω ⊂ RN be a bounded open set with Lipschitz boundary.
For any η > 0 we define the functional Pη : L1(Ω)→ [0,+∞] as follows

(2.4) Pη(v) =


1

η

∫
Ω

W (v) + η

∫
Ω

|∇v|2 if v ∈W 1,2(Ω, [0, 1]),

+∞ otherwise.

Then we have that, with respect to the metric of L1(Ω), Pη Γ-converges to
P as η → 0+.

Here W 1,2(Ω, [0, 1]) = {v ∈ W 1,2(Ω) : 0 ≤ v ≤ 1 a.e. in Ω}. We note that
the result does not change if in the definition of Pη we omit the constraint

0 ≤ v ≤ 1 a.e. in Ω.

Also the following result, due to Modica, [15], will be useful.

Proposition 2.2. For any C > 0 and any η > 0, let us define

AC = {v ∈ L1(Ω) : 0 ≤ v ≤ 1 a.e. and Pη(v) ≤ C}.

Then AC is precompact in L1(Ω).

Remark 2.3. With the same proof, we can show the following. Let us consider
any family {vη}0<η≤η0 such that, for some positive constant C and for any η,
0 < η ≤ η0, we have 0 ≤ vη ≤ 1 almost everywhere and Pη(vη) ≤ C. Then
{vη}0<η≤η0

is precompact in L1(Ω).

Let us fix q, 1 < q < +∞. Let V : R→ [0,+∞) be a continuous function such

that V (t) = 0 if and only if t = 1 and let cV =
∫ 1

0

√
V (t)dt. Let ψ : R→ R be a

continuous non-decreasing function such that ψ(0) = 0, ψ(1) = 1 and ψ(t) > 0
if t > 0. For any η > 0, let us fix oη = oη(q) ≥ 0 such that limη→0+ oη/η

q−1 = 0.
Finally, we define ψη = (1 − oη)ψ + oη. Provided oη < 1, we have that ψη is a
continuous, non-decreasing function such that ψη(0) = oη and ψη(1) = 1.

For instance, we may choose V (t) = (t − 1)2/4 for any t ∈ R, whence
4cV = 1. About ψ, we may take ψ(t) = tγ , γ > 0, if t ≥ 0, while ψ(t) = 0 if
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t < 0 Alternatively, we may choose ψ(t) = 0 if t < 0, ψ(t) = −2t3 + 3t2 for any
t ∈ [0, 1], and ψ(t) = 1 for any t > 1. We may finally take oη(q) = ηq.

Then, for any η > 0, we define the following functional AT qη : L1(Ω) ×
L1(Ω)→ [0,+∞] by

(2.5) AT qη(u, v) = b

∫
Ω

ψη(v)|∇u|q +
1

η

∫
Ω

V (v) + η

∫
Ω

|∇v|2

if u ∈W 1,q(Ω) and v ∈W 1,2(Ω, [0, 1]),

whereas AT qη(u, v) = +∞ otherwise. We shall refer to AT qη as the Ambrosio-
Tortorelli functional.

Let us define the following variant of the Mumford-Shah functional. The
main difference is that we allow the exponent q to be different for 2, requiring
only that 1 < q < +∞. For reasons which will appear evident soon, we also
add a formal variable v and we pick c = 4cV . We define the functional MSq :
L1(Ω)× L1(Ω)→ [0,+∞] by

(2.6) MSq(u, v) = b

∫
Ω

|∇u|q + 4cVHN−1(J(u))

if u ∈ GSBV (Ω) and v = 1 a.e. in Ω,

whereas MSq(u, v) = +∞ otherwise.
The Ambrosio-Tortorelli functional approximates the Mumford-Shah func-

tional, in the sense of Γ-convergence. Such an important approximation result
is due to Ambrosio and Tortorelli, [4, 5], see also [6].

Theorem 2.4. With respect to the metric of L1(Ω)× L1(Ω), we have that, as
η → 0+, AT qη Γ-converges to MSq.

Let us review some regularity results which will be needed in the sequel.
Most of these results are a consequence of a theorem by Meyers, [17], see also
[12], and of standard regularity estimates, and we shall omit the proofs. Let
Ω ⊂ RN be a bounded open set with Lipschitz boundary. Let A = A(x), x ∈ Ω,
be an N × N matrix whose entries are measurable and such that, for some
0 < λ < 1, we have

(2.7)
A(x)ξ · ξ ≥ λ|ξ|2 for any ξ ∈ RN and for a.e. x ∈ Ω,
‖A‖L∞(Ω) ≤ λ−1.

We remark that for any matrix A, by ‖A‖ we denote the norm of the matrix as
a linear operator.

Let f ∈ Ls(∂Ω), with s > 1 if N = 2 or s ≥ 2(N − 1)/N if N ≥ 3,
be such that

∫
∂Ω
f = 0 and let F ∈ Lp(Ω,RN ), with p ≥ 2. Let us denote

W 1,2
∗ (Ω) = {u ∈W 1,2(Ω) :

∫
Ω
u = 0}. Then, there exists a unique u ∈W 1,2

∗ (Ω)
such that

(2.8)

∫
Ω

A∇u · ∇v =

∫
Ω

F · ∇v +

∫
∂Ω

fv for any v ∈W 1,2(Ω).

This is the weak formulation of{
div(A∇u) = div(F ) in Ω
A∇u · ν = f on ∂Ω.

The following regularity result holds true.
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Proposition 2.5. Under the previous assumptions, the following regularity
properties hold.

First of all, we have, for a constant C0 depending on N , λ, p, s and Ω only,

(2.9) ‖u‖W 1,2(Ω) ≤ C0

(
‖F‖Lp(Ω) + ‖f‖Ls(∂Ω)

)
.

If p > N and s > N − 1, there exist a constant C1 > 0 such that

(2.10) ‖u‖L∞(Ω) ≤ C1

(
‖F‖Lp(Ω) + ‖f‖Ls(∂Ω)

)
.

Here C1 depends on N , λ, p, s and Ω only.
There exists a constant Q > 2, depending on N , λ and Ω only (Q → 2 if

λ→ 0+), such that if p satisfies 2 < p < Q and s ≥ (N − 1)p/N , then

(2.11) ‖∇u‖Lp(Ω) ≤ C2

(
‖F‖Lp(Ω) + ‖f‖Ls(∂Ω)

)
.

Here C2 depends on N , λ, p, s and Ω only.
We conclude that if s > N − 1, there exists a constant q(λ) > 2, depending

on N , λ, s and Ω only, such that for any p, 2 ≤ p ≤ q(λ), we have

(2.12) ‖∇u‖Lp(Ω) ≤ C3

(
‖F‖Lp(Ω) + ‖f‖Ls(∂Ω)

)
,

in particular, if p = q(λ)

(2.13) ‖∇u‖Lq(λ)(Ω) ≤ C4

(
‖F‖Lq(λ)(Ω) + ‖f‖Ls(∂Ω)

)
.

Here C3 depends on N , λ, p, s and Ω only, whereas C4 depends on N , λ, s and
Ω only.

Remark 2.6. Let us observe that Q and q(λ) converges to 2 as λ→ 0+, whereas
all the constants C0–C4 might tend to +∞ as λ→ 0+. Let us also remark that
the same kinds of estimates hold true if we replace W 1,2

∗ (Ω) with, for instance,

W 1,2
E (Ω) =

{
u ∈W 1,2(Ω) :

∫
E

u = 0

}
where E is a Borel subset of ∂Ω with non-empty interior, clearly with respect
to the induced topology of ∂Ω. In this case, the constants C0–C4 might depend
on E as well.

We conclude this section with the following lemma, in which we state a
Caccioppoli inequality.

Lemma 2.7. Let us assume that A = A(x), x ∈ B2R, is a symmetric N ×
N matrix whose entries belong to L∞(B2R). We also assume that, for some
constants 0 < λ < Λ, we have

λ|ξ|2 ≤ A(x)ξ · ξ ≤ Λ|ξ|2 for every ξ ∈ RN and for a.e. x ∈ B2R.

Let w ∈ L∞(B2R) be a weight satisfying 0 < ε ≤ w ≤ 1 almost everywhere in
B2R. If u solves in a weak sense

div(wA∇u) = 0 in B2R,

then

(2.14)

∫
BR

w|∇u|2 ≤ C

R2

∫
B2R

wu2

where C depends on λ and Λ only.
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Proof. In order to prove (2.14) it is enough to take a cutoff function χ such
that χ ∈ C∞0 (B2R), 0 ≤ χ ≤ 1 on B2R, and χ ≡ 1 on BR. We may also assume
that for an absolute constant C we have |∇χ| ≤ C/R on B2R. Then we use
the test function uχ2 in the equation and with simple computations we obtain
(2.14). �

3 The direct problem and setting of the inverse
problem

Let Ω, Ω1 and Ω̃1 be three bounded domains contained in RN , N ≥ 2, with
Lipschitz boundaries such that Ω1 ⊂ Ω̃1 ⊂ Ω and the following properties are

satisfied. First, Ω\Ω̃1 is not empty and dist(Ω1, ∂Ω̃1 ∩Ω) > 0. Then, there exist
γ and γ̃, closed subsets of ∂Ω, which are contained in the interior of ∂Ω ∩ ∂Ω1

and whose interiors, with respect to the induced topology of ∂Ω, are not empty.
We assume that Ω, Ω1, Ω̃1, γ and γ̃ are fixed throughout the paper.
Let K0 be an admissible defect, that is K0 is a non-empty compact set

contained in Ω such that dist(K0, Ω̃1) > 0. We denote with GK0 the connected
component of Ω\K0 such that Ω̃1 ⊂ GK0 . We observe that γ ∪ γ̃ ⊂ ∂GK0 . We
remark that if K0 ⊂ ∂Ω then GK0

= Ω, that is no defect is present in the
conductor.

We say that an admissible defect K0 is a material loss defect, or material loss
for short, if GK0 is equal to the interior of its own closure (that is no crack-type
defect is allowed).

Remark 3.1. If the defect K0 to be reconstructed is compactly contained in
Ω and ∂Ω is connected, then we may take γ and γ̃ equal to ∂Ω. Furthermore,
if ∂Ω is regular enough and we a priori know that dist(K0, ∂Ω) > δ, for some
δ > 0 small enough, then we may choose Ω1 = {x ∈ Ω : dist(x, ∂Ω) < δ/2} and
Ω̃1 = {x ∈ Ω : dist(x, ∂Ω) < 3δ/4}.

Let us fix a number s, s > N − 1, which shall be kept fixed thorughout
the paper. Let us prescribe f0 ∈ Ls(∂Ω) such that

∫
∂Ω
f0 = 0, f0 6≡ 0 and

supp(f0) ⊂ γ̃.
Let the electrostatic potential u0 = u(f0,K0) be the weak solution to the

following Neumann boundary value problem

(3.1)

 ∆u0 = 0 in Ω\K0,
∇u0 · ν = f0 on γ̃,
∇u0 · ν = 0 on ∂(Ω\K0)\γ̃,

with the normalization conditions

(3.2)

∫
γ

u0 = 0,

and

(3.3) u0 = 0 almost everywhere in Ω\GK0 .

Let us recall that our measured additional information is g0 ∈ L2(γ) where
g0 = u0|γ . By (3.2), we have

∫
γ
g0 = 0.

10



We observe that there exists a unique solution u0 to (3.1)-(3.2)-(3.3) and
that it satisfies the following regularity properties, see [22] for further details.

There exists a constant C1 > 0, depending on s, Ω, Ω1, Ω̃1, γ and γ̃ only,
such that

‖∇u0‖L2(Ω\K0) ≤ C1‖f0‖Ls(γ̃),(3.4)

‖u0‖L∞(Ω) ≤ C1‖f0‖Ls(γ̃).(3.5)

The estimate (3.5) guarantees that u0 belongs to W 1,2(Ω\K0). Furthermore,
under the additional assumption that HN−1(K0) < +∞, or equivalently that
HN−1(∂GK0

) < +∞, we have that u0 belongs to SBV (Ω), its approximate
discontinuity set J(u0) satisfies HN−1(J(u0)\∂GK0) = 0 and, finally, ∇u0, the
weak derivative of u0 in Ω\K0, coincides almost everywhere in Ω with the ap-
proximate gradient of u0, see for instance [3, Proposition 4.4].

For any r, 1 < r < +∞, and any Borel set E ⊂ ∂Ω whose interior, in the
induced topology, is not empty, we define

W 1,r
E (Ω) =

{
u ∈W 1,r(Ω) :

∫
E

u = 0

}
.

We observe that, by a generalized Poincaré inequality, on W 1,r
E (Ω) the usual

W 1,r(Ω) norm and the norm ‖u‖W 1,r
E (Ω) = ‖∇u‖Lr(Ω) are equivalent. Therefore,

we shall set this second one as the natural norm of W 1,r
E (Ω).

Let us consider a weight w in Ω satisfying the following properties. We
assume that w ∈ L∞(Ω) and that w ≥ ε almost everywhere in Ω, for some
ε > 0.

For any such weight w, and any u1, u2 ∈ W 1,2(Ω), we define the bilinear
form

〈u1, u2〉w =

∫
Ω

w∇u1 · ∇u2

and we denote the seminorm

|u1|w = 〈u1, u1〉1/2w =

(∫
Ω

w|∇u1|2
)1/2

.

We denote, for any u1 ∈W 1,2(Ω),

‖u1‖w =
(
‖u1‖2L2(Ω) + |u1|2w

)1/2

.

We have that ‖ · ‖w is an equivalent norm for W 1,2(Ω), and 〈·, ·〉w is a scalar
product on W 1,2

E (Ω) whose corresponding norm, | · |w, is an equivalent norm for

W 1,2
E (Ω), for any set E as before.

For any such weight w and any f ∈ Ls(∂Ω) such that
∫
∂Ω
f = 0 and

supp(f) ⊂ γ̃, let u = u(w) be the solution to the following Neumann type
boundary value problem

(3.6)


div(w∇u) = 0 in Ω
w∇u · ν = f on ∂Ω∫
γ
u = 0.

11



The weak formulation of (3.6) is the following. We look for a function u ∈
W 1,2
γ (Ω) such that∫

Ω

w∇u · ∇u1 =

∫
γ̃

fu1 for any u1 ∈W 1,2(Ω).

Obviously we have existence and uniqueness of such a solution. Furthermore,
the following regularity result holds for u.

Proposition 3.2. Under the previous notation and assumptions, let u solve
(3.6) for some weight w. We assume that

‖w‖L∞(Ω) ≤ A

and
w(x) = 1 for a.e. x ∈ Ω̃1.

Then there exists a constant C2, depending on s, Ω, Ω1, Ω̃1, γ, γ̃ and A
only, such that

|u|w ≤ C2‖f‖Ls(γ̃)(3.7)

‖u‖L∞(Ω) ≤ C2‖f‖Ls(γ̃).(3.8)

We notice that the constant C2 does not depend on w or on ε.

Proof. We sketch the proof of this proposition. Inequality (3.7) follows from an
application of Poincaré inequality in Ω1. The L∞ bound (3.8) is a consequence
of the maximum principle and may be proved following the same arguments
used to prove (3.5), see [22] for details. �

Let us fix the notation for our inverse problem. Let K0 be the unknown
defect, which for the time being we assume to be just an admissible defect.

We assume that f0 belongs to Ls(∂Ω) and satisfies supp(f0) ⊂ γ̃ and∫
∂Ω
f0 = 0. We recall that s is a fixed constant such that s > N − 1.
The unknown electrostatic potential is u0 = u(K0, f0), solution to (3.1)-

(3.2)-(3.3), and the additional measured data is g0 = u0|γ . We observe that
g0 ∈ L2(γ) and

∫
γ
g0 = 0.

Let us fix a noise level ε, 0 < ε ≤ 1, then the noisy Cauchy data are given by
fε and gε. Here fε belongs to Ls(∂Ω) and satisfies supp(fε) ⊂ γ̃ and

∫
∂Ω
fε = 0,

whereas gε belongs to L2(γ) and satisfies
∫
γ
gε = 0. We assume that

(3.9) ‖f0 − fε‖Ls(γ̃) ≤ ε and ‖g0 − gε‖L2(γ) ≤ ε.

For any 0 < ε ≤ 1, let η = η(ε) > 0 and aε > 0 be such that limε→0+ η(ε) = 0
and limε→0+ aε = 0. Further assumptions on η(ε) and aε will be imposed later.

Let us fix a constant c1, 0 < c1 < 1. We recall that ψ : R→ R is a continuous,
non-decreasing function such that ψ(0) = 0, ψ(1) = 1, and ψ(t) > 0 if t > 0.
In particular ψ(c1) > 0. Provided oη ≤ 1/2, we have that ψη is a continuous,
non-decreasing function such that ψη(0) = oη and ψη(1) = 1. Furthermore,
ψη(c1) ≥ ψ(c1)/2 > 0.

In the sequel we shall always assume that

0 < oη ≤ 1/2 for any η > 0.
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Without loss of generality, we also assume that ψ, W , and V are bounded all
over R, for instance by a constant A. For any η > 0, again without loss of
generality, we assume that ψ is such that ψη ≥ oη/2 all over R.

To any function ṽ ∈ L1(Ω) we associate the function v = 1− ṽ. We observe
that, provided 0 ≤ ṽ ≤ 1 almost everywhere in Ω, we also have 0 ≤ v ≤ 1 almost
everywhere in Ω.

For any η > 0 and for any ṽ ∈ L1(Ω), let wη = wη(ṽ) = ψη(v), where
v = 1− ṽ. We observe that wη is such that ‖wη‖L∞(Ω) ≤ A+1/2 and wη ≥ oη/2
almost everywhere in Ω. Therefore we define, for any ṽ ∈ L1(Ω) and any ε,
0 < ε ≤ 1, the function ũε ∈ W 1,2

γ (Ω) where ũε = ũε(ṽ) is the solution to the
following boundary value problem

(3.10)

{
div(wη(ṽ)∇ũε) = 0 in Ω
wη(ṽ)∇ũε · ν = fε on ∂Ω,

where as usual η = η(ε).
We finally fix positive constants a1, a2, q̃, β̃, and c2, 0 < c1 < c2 < 1. We

also define the following space W (Ω) = {ṽ ∈ W 1,2(Ω) : ṽ = 0 a.e. in Ω̃1}. To
any ṽ ∈W (Ω) we associate the function v = 1− ṽ. We remark that v ∈W 1,2(Ω)
and v = 1 almost everywhere in Ω̃1. All these constants and the notation will
be kept fixed throughout the paper.

4 Determination of material losses

In this section, the main of the paper, we shall consider the problem of deter-
mining material losses. We begin by defining suitable classes of material losses.

Definition 4.1. Let us fix a positive constant δ. We say that B is an admissible
class of material losses if the following holds. First, any K ∈ B is an admissible

defect such that dist(K, Ω̃1) ≥ δ and GK is a domain with Lipschitz boundary.
Second, we assume that, for some constant C, we have HN−1(∂GK) ≤ C for
any K ∈ B. Finally, we assume that the set {GK : K ∈ B} is compact with
respect to the Hausdorff distance.

In the remaining part of this section, let us fix B, an admissible class of
material losses in the sense of Definition 4.1. We assume that the unknown
defect K0 belongs to B. We observe that, as in Proposition 2.5, we have there
exist a constant q > 2 and a constant C > 0, not depending on f0, such that
∇u0 ∈ Lq(Ω,RN ), in particular

‖∇u0‖Lq(Ω) ≤ C‖f0‖Ls(γ̃).

Here the constants q and C depend also on s and on K0. In the sequel of the
section, we shall fix q > 2 as such a constant, which depends on K0, among
other things. We define q1 = (q−2)/(2q) and we observe that 0 < q1 < 1/2. We
also define the following set. For any positive constant a, we say that v ∈ H(a) if
v ∈W 1,2(Ω, [0, 1]), v = 1 almost everywhere in Ω̃1 and there exists K ∈ B such
that v ≥ c2 almost everywhere in Ω\Ba(Ω\GK) and v ≤ c1 almost everywhere
in Ω\Ba(GK). We observe that, by the compactness of the class B with respect
to the Hausdorff distance, such a set H(a) is closed with respect to the weak
W 1,2(Ω) convergence.
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For any ε, 0 < ε ≤ 1, we define G̃ε : W (Ω)→ R as follows. For any ṽ ∈W (Ω),
recalling that v = 1− ṽ, we set

(4.1) G̃ε(ṽ) =
a2

εβ̃

∫
γ

|ũε − gε|2 + b

∫
Ω

wη(ṽ)|∇ũε|2 +
1

η

∫
Ω

W (v) + η

∫
Ω

|∇v|2.

Here η = η(ε), oη = oη(2), wη = wη(ε)(ṽ) = ψη(ε)(v) and ũε = ũε(ṽ) is the
solution to (3.10). Here and in the sequel of this section, we may also set the
constant b = 0, that is we may drop the second term of the functional.

Then, for any ε, 0 < ε ≤ 1, we define Gε : L1(Ω) → [0,+∞] as follows. For
any ṽ ∈ L1(Ω) we set

(4.2) Gε(ṽ) = G̃ε(ṽ) if ṽ ∈W (Ω) and v = (1− ṽ) ∈ H(aε),

whereas Gε(ṽ) = +∞ otherwise.

Theorem 4.2. Besides the previous notation and assumptions, let us further
assume that the following constants satisfy 0 < β̃ ≤ q̃ ≤ 2, and that

lim sup
ε→0+

η(ε)2q1

εq̃
< +∞,

and, finally, that aε ≥ 2η(ε).
Let u0 = u(f0,K0). For any ε, 0 < ε ≤ 1, let

mε = inf{Gε(ṽ) : ṽ ∈ L1(Ω)}.

Then we have that, for some constant C, mε ≤ C for any ε, 0 < ε ≤ 1.
Furthermore, if ṽε ∈ L1(Ω) is such that

Gε(ṽε) ≤ C for any ε, 0 < ε ≤ 1,

the following holds. For any ε, let vε = 1−ṽε and ũε = ũε(ṽε). Then we have that
ψη(ε)(vε)ũε → u0 strongly in Lp(Ω) for any p, 1 ≤ p < +∞, and ψη(ε)(vε)∇ũε
converges to ∇u0 weakly in L2(Ω).

Furthermore, for any constant c, c1 < c < c2, the sets {vε > c} converge, as
ε→ 0+, to GK0 in the Hausdorff distance.

Remark 4.3. We remark that the theorem in particular hold for a family
ṽε ∈ L1(Ω) of minimizers or quasi-minimizers, that is satisfying

lim
ε→0+

(Gε(ṽε)−mε) = 0.

Proof. By Proposition 3.2, we infer that there exists a constant C such that
for any ε, 0 < ε ≤ 1, and for any ṽ ∈W (Ω), we have∫

Ω

wη(ṽ)|∇ũε(ṽ)|2 ≤ C and ‖ũε(ṽ)‖L∞(Ω) ≤ C.

By a construction pretty similar to the one used in Proposition 4.5 in [23],
we may construct ṽε ∈W (Ω) and uε ∈W 1,2(Ω), for any ε, 0 < ε ≤ 1, such that
the following properties hold. For any ε, 0 < ε ≤ 1, first vε = (1− ṽε) ∈ H(aε)
and

1

η

∫
Ω

W (vε) + η

∫
Ω

|∇vε|2 ≤ C.
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Second, on γ we have uε|γ = u0|γ = g0. Finally,∫
Ω

wη(ṽε)|∇(uε − ũε(ṽε))|2 ≤ Cεq̃.

By Poincaré inequality in Ω1, we conclude that

(4.3)

∫
γ

|ũε(ṽε)− gε|2 ≤ 2

(∫
γ

|ũε(ṽε)− uε|2 +

∫
γ

|g0 − gε|2
)
≤ C(εq̃ + ε2).

We immediately conclude that for a constant C we have mε ≤ C for any ε,
0 < ε ≤ 1.

For any n ∈ N, let εn > 0 be such that limn εn = 0 and let Gn = Gεn . Let
ṽn be such that Gn(ṽn) ≤ C, for any n ∈ N. Then by Remark 2.3, we obtain
that, up to a subsequence, vn converges in L1(Ω), and actually in Lp(Ω) for any
p, 1 ≤ p < +∞, and almost everywhere in Ω, to a function v. Such a function
v is such that P (v) is finite. Furthermore, by the definition of H(a) and the
compactness properties of B, we may also assume that there exists K ∈ B such
that v = 1 almost everywhere in GK and v = 0 almost everywhere in Ω\GK . In
other words, v = χGK .

Let us call wn = wη(εn)(ṽn) and ũn = ũεn(ṽn). Let us notice that
√
wn∇ũn

is uniformly bounded in L2(Ω,RN ), therefore, up to a subsequence,
√
wn∇ũn

converges to V ∈ L2(Ω,RN ) weakly in L2(Ω,RN ).
Since vn → χGK almost everywhere in Ω, we conclude that also wn and

√
wn

converge to χGK almost everywhere in Ω and in Lp(Ω) for any p, 1 ≤ p < +∞.
For any B2R(y) ⊂ (Ω\GK), we have that wn converges to zero almost every-

where in B2R(y). By the uniform L∞ bound on ũn and by the dominated con-
vergence theorem, we conclude that

∫
B2R(y)

wnũ
2
n → 0 as n→∞. By the Cac-

cioppoli inequality described in Lemma 2.7, (2.14), we conclude that
√
wn∇ũn

converges to 0 strongly in L2(BR(y),RN ), consequently V = 0 almost every-
where in Ω\GK . We conclude that wn∇ũn weakly converges to V in L2(Ω,RN )
as well. On the other hand, again up to subsequences and by using the property
of H(a), we may follow the arguments of the proof of Proposition 4.3 in [23] in
order to find a function ũ with the following properties. First,

√
wnũn converges

to ũ almost everywhere in Ω and consequently in Lp(Ω) for any p, 1 ≤ p < +∞.
Second, by the same reasoning above, we conclude that ũ = 0 almost every-
where in Ω\GK and that also wnũn converges to ũ almost everywhere in Ω and
in Lp(Ω) for any p, 1 ≤ p < +∞. Then, we have that ũ ∈ W 1,2(GK), ũ is
harmonic in GK and ∇ũ = V in GK . We also have that on γ and on γ̃, ũn
converges to ũ strongly in Lp(γ ∩ γ̃) for any p, 1 ≤ p < +∞. As a consequence,
ũ = g0 on γ.

Let us take any function ϕ ∈ W 1,2(GK). Since GK is a domain with Lip-
schitz boundary, therefore it is an extension domain, we can find a function
ϕ̃ ∈W 1,2(Ω) such that ϕ̃ = ϕ on GK . We conclude that for any n ∈ N we have∫

Ω

wn∇ũn · ∇ϕ̃ =

∫
γ̃

fεn ϕ̃.

Since, as n→∞, ∫
Ω

wn∇ũn · ∇ϕ̃→
∫
GK

∇ũ · ∇ϕ̃
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and ∫
γ̃

fεn ϕ̃→
∫
γ̃

f0ϕ̃,

we conclude that∫
GK

∇ũ · ∇ϕ =

∫
γ̃

f0ϕ for any ϕ ∈W 1,2(GK).

Then ũ solves (3.1)-(3.2)-(3.3) with K0 replaced by K. Then, since ũ = u0

on γ, we conclude by using Theorems 3.3 and 3.6 in [21] that ũ = u0 almost
everywhere in Ω and that GK = GK0

. The rest of the proof easily follows. �

We conclude this section with the following existence results, which may be
easily proved by the direct method.

Proposition 4.4. The following problems admit a solution.

(i) min G̃ε on W (Ω), with constraint 0 ≤ ṽ ≤ 1.

(ii) min G̃ε on W (Ω), with constraints 0 ≤ ṽ ≤ 1 and v ∈ H(aε) (that is there
exists the minimum of Gε over L1(Ω)).

5 The crack case

In this section we shall deal with the determination of general defects, in par-
ticular of cracks. We begin by recalling results proved in [23]. We include them
here for the convenience of the reader and to compare them with the new results
devoted to the determination of material losses, in particular of cavities, which
we treated in Section 4. For what concerns the classes of admissible defects we
shall use in this section, let us begin with the following definition. We limit
ourselves to the two or three-dimensional case, however it is not difficult to see
how these definitions can be generalized to higher dimensions.

If N = 2, fixed a positive constant L ≥ 1, we say that Γ is an L-Lipschitz,
or L-C0,1, arc if, up to a rigid transformation, Γ = {(x, y) ∈ R2 : −a/2 ≤
x ≤ a/2, y = ϕ1(x)}, where L−1 ≤ a ≤ L and ϕ1 : R → R is a Lipschitz map
with Lipschitz constant bounded by L and such that ϕ1(0) = 0. For any α,
0 ≤ α ≤ 1, we say that Γ is an L-C1,α arc if ϕ1 is C1,α and its C1,α norm is
bounded by L. The points (a/2, ϕ1(a/2)) and (−a/2, ϕ1(−a/2)) will be called
the vertices or endpoints of the arc Γ.

Let us consider now the case N = 3. Let T be the closed equilateral triangle
which is contained in the plane Π = {(x, y, z) ∈ R3 : z = 0} with vertices
V1 = (0, 1, 0), V2 = (−

√
3/2,−1/2, 0) and V3 = (

√
3/2,−1/2, 0) and T ′ ⊂ R2

be its projection on the plane Π. Fixed a positive constant L ≥ 1, we call
an L-Lipschitz, or L-C0,1, generalized triangle a set Γ such that, up to a rigid
transformation, Γ = {(x, y, z) ∈ R3 : (x, y) ∈ ϕ(T ′), z = ϕ1(x, y)}, where
ϕ : R2 → R2 is a bi-Lipschitz function with constant L such that ϕ(0) = 0 and
ϕ1 : R2 → R is a Lipschitz map with Lipschitz constant bounded by L and such
that ϕ1(0) = 0. For any α, 0 ≤ α ≤ 1, we say that Γ is an L-C1,α generalized
triangle if ϕ1 is C1,α and its C1,α norm is bounded by L.

In both cases, the image through ϕ of any vertex or side of T ′ will be called
a generalized vertex or generalized side of ϕ(T ′), respectively. The image on
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the graph of ϕ1 of one of the generalized vertices of ϕ(T ′) will be called a
generalized vertex of Γ, whereas the image of one of the generalized sides of
ϕ(T ′) will be called a generalized side of Γ. We also remark that there exists a
constant L1 > 0, depending on L only, such that we can find ϕ2 : R3 → R3, a
bi-Lipschitz function with constant L1, such that Γ = ϕ2(T ).

Definition 5.1. Let us assume that Ω ⊂ BR ⊂ RN , with R ≥ 1 and N = 2, 3.
For any positive constants L ≥ 1, δ and c, c < 1, any k = 0, 1 and α, 0 ≤ α ≤ 1,
such that k + α ≥ 1, we define B(N, (k, α), L, δ, c) in the following way. We say
that A ∈ B(N, (k, α), L, δ, c) if and only if A ⊂ B2R, there exists a positive
integer n, depending on A, such that A =

⋃n
i=1 Γi, Γi an L-Ck,α arc (if N = 2)

or generalized triangle (if N = 3) for any i = 1, . . . , n, such that the following
conditions are satisfied:

i) for any i, j ∈ {1, . . . , n} with i 6= j, we have that either Γi∩Γj is not empty
or dist(Γi,Γj) ≥ δ;

ii) for any i, j ∈ {1, . . . , n} with i 6= j, if Γi ∩ Γj is not empty then Γi ∩ Γj is
a common endpoint V if N = 2 and either a common generalized vertex
V or a common generalized side γ if N = 3. Furthermore, in such a case,
for any x ∈ Γi we have dist(x,Γj) ≥ c|x − V | or dist(x,Γj) ≥ cdist(x, γ),
respectively.

Let us remark that there exists an integer M , depending on N , R, L, δ and
c only, such that for any A ∈ B(N, (k, α), L, δ, c) we have that n ≤M .

More importantly, we have that any of the classes B described in Defini-
tion 5.1 is non-empty, is composed of non-empty compact sets and it is compact
with respect to the Hausdorff distance. Finally, if A belongs to any of these
classes, then HN−1(A) is bounded by a constant depending on the class only.

For the time being, let us fix B as one of the classes of Definition 5.1. We
call the constant k, α, L, δ and c the a priori data related to B. For any such

class B we call B′ the class of admissible defects K such that dist(K, Ω̃1) ≥ δ,
HN−2(K ∩∂Ω) < +∞ and there exists A ∈ B such that K ⊂ A and HN−2(K ∩
A\K) < +∞.

Moreover, we say that K ∈ B′ satisfies Assumption A if the following holds.

Assumption A. We assume that, for any x0 ∈ K ∩ Ω, there exists r > 0,
depending on x0, such that for any U connected component of (Ω\K)∩Br(x0)
we can find r1 > 0, an open set U1, such that U ∩ Br1(x0) ⊂ U1 ⊂ U , and a
bijective map T : U1 → (−1, 1)N such that the following properties hold. The
maps T and T−1 are locally Lipschitz and there exists a constant C such that
‖DT‖ and ‖DT−1‖ are bounded by C almost everywhere. By the regularity of
Q = (−1, 1)N , T−1 can be actually extended up to the boundary and we have
that T−1 : [−1, 1]N → RN is a Lipschitz map with Lipschitz constant bounded
by C. Furthermore, if we set Γ = [−1, 1]N−1 × {1}, we require that T−1(Γ) =
∂U1 ∩K0, T−1(0, . . . , 0, 1) = x0 and T−1(y) ∈ Ω\K for any y ∈ [−1, 1]N\Γ.

We assume that, for any x0 ∈ K ∩ ∂Ω, there exists r > 0, depending on
x0, such that for any U connected component of (Ω\K) ∩ Br(x0) we can find
r1 > 0, an open set U1, such that U ∩ Br1(x0) ⊂ U1 ⊂ U , and a bijective
map T : U1 → (0, 1)× (−1, 1)N−1 such that the following properties hold. The
maps T and T−1 are locally Lipschitz and there exists a constant C such that
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‖DT‖ and ‖DT−1‖ are bounded by C almost everywhere. By the regularity of
Q1 = (0, 1) × (−1, 1)N−1, T−1 can be actually extended up to the boundary
and we have that T−1 : Q1 → RN is a Lipschitz map with Lipschitz constant
bounded by C. Furthermore, if we set Γ1 = [0, 1] × [−1, 1]N−2 × {1} and Γ2 =
{0} × [−1, 1]N−1, we require that T−1(Γ1) = ∂U1 ∩ K, T−1(Γ2) = ∂U1 ∩ ∂Ω,
T−1(0, . . . , 0, 1) = x0 and T−1(y) ∈ Ω\K for any y ∈ Q1\(Γ1 ∪ Γ2).

In the sequel we shall fix positive constants L ≥ 1, δ and c, c < 1, and α,
0 ≤ α ≤ 1. We also assume that Ω ⊂ BR, for some fixed constant R ≥ 1. Let
B = B(N, (1, α), L, δ, c). We assume that the unknown defect K0 belongs to B′
and that it satisfies Assumption A. We recall that examples of defects satisfying
Assumption A are described in [22, 23].

The next proposition states that the gradient of u0 satisfies a higher inte-
grability property.

Proposition 5.2. Under the previous assumptions, there exist a constant q > 2
and a constant C > 0, which do not depend on f0, such that ∇u0 ∈ Lq(Ω,RN ),
in particular

‖∇u0‖Lq(Ω) ≤ C‖f0‖Ls(γ̃).

Proof. See the proof of Proposition 4.5 in [22]. �

We remark that the constants q and C in Proposition 5.2 depend also on s
and on K0.

For any a > 0, we call H1(a) the set of functions v ∈ W 1,2(Ω, [0, 1]) such
that v = 1 almost everywhere in Ω̃1 and for some A ∈ B we have v ≥ c1 almost
everywhere in Ω\Ba(A), where again c1 is a constant such that 0 < c1 < 1.

For any 0 < ε ≤ 1 and any q ≥ 2, let us define F̃qε : W 1,q
γ (Ω) ×W (Ω) → R

as follows. For any (u, ṽ) ∈W 1,q
γ (Ω)×W (Ω), recalling that v = 1− ṽ, we set

(5.1) F̃qε (u, ṽ) =
a1

εq̃
|u− ũε|2wη +

a2

εβ̃

∫
γ

|u− gε|2+

b

∫
Ω

ψη(v)|∇u|q +
1

η

∫
Ω

V (v) + η

∫
Ω

|∇v|2.

Here η = η(ε), oη = oη(q), wη = wη(ε)(ṽ) = ψη(ε)(v) and ũε = ũε(ṽ) is the
solution to (3.10). We also recall that

|u− ũε|2wη =

∫
Ω

ψη(ε)(v)|∇(u− ũε)|2 =

∫
Ω

ψη(ε)(v)|∇u|2 − 2

∫
γ̃

fεu+

∫
γ̃

fεũε.

Then, for any 0 < ε ≤ 1 and any q ≥ 2, we define Fqε as the following
functional on L1(Ω)× L1(Ω). For any (u, ṽ) ∈ L1(Ω)× L1(Ω) we set

(5.2) Fqε (u, ṽ) = F̃qε (u, ṽ)

if (u, ṽ) ∈W 1,q
γ (Ω)×W (Ω) and v = (1− ṽ) ∈ H1(aε),

whereas Fqε (u, ṽ) = +∞ otherwise.
Now we shall fix the constant q > 2 as the one defined in Proposition 5.2,

which depends on K0, among other things. Again we set q1 = (q − 2)/(2q) and
we observe that 0 < q1 < 1/2. The following convergence result is the main
result of [23].
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Theorem 5.3. Besides the previous notation and assumptions, let us further
assume that the following constants satisfy 0 < q̃ ≤ 2, 0 < β̃ ≤ 2, and that

lim sup
ε→0+

η(ε)2q1

εq̃
< +∞,

and, finally, that aε ≥ 2η(ε).
Let u0 = u(f0,K0). Then there exists a constant E0, E0 depending on s, Ω,

Ω1, Ω̃1, γ and γ̃ only, such that for any E, E0 ≤ E < +∞, the following holds.
For any 0 < ε ≤ 1, let

mε = inf{Fqε (u, ṽ) : (u, ṽ) ∈ L1(Ω)× L1(Ω) and ‖u‖L∞(Ω) ≤ E}.

Then we have that, for some constant C, mε ≤ C for any 0 < ε ≤ 1.
For any n ∈ N, let εn > 0 be such that limn εn = 0 and let (un, ṽn) ∈

L1(Ω)× L1(Ω) be such that ‖un‖L∞(Ω) ≤ E and

Fqεn(un, ṽn) ≤ C for any n ∈ N.

Then, up to a subsequence, un → u strongly in Lp(Ω) for any p, 1 ≤ p < +∞,
and ψη(εn)(vn)∇un → ∇u strongly in Lp(Ω) for any 2 ≤ p < q, where u = u0

almost everywhere in GK0
and ∇u = ∇u0 almost everywhere in Ω.

Furthermore, there exist compact sets Ã ⊂ Ω and A ∈ B, such that Ã ⊂ A
and HN−1(J(u)\Ã) = 0, satisfying the following property. For any constant c,
0 < c ≤ c1, the sets {vn < c} converge, as n → ∞, to Ã in the Hausdorff
distance.

An analogous to Proposition 4.4 holds true, again easily proved by the direct
method.

Proposition 5.4. Let E0 be as in Theorem 5.3. Then for any p, 2 ≤ p ≤ q,
and any E, E0 ≤ E ≤ +∞, the following problems admit a solution.

(i) min F̃pε on W 1,p
γ (Ω)×W (Ω), with constraints 0 ≤ ṽ ≤ 1 and ‖u‖L∞(Ω) ≤

E.

(ii) min F̃pε on W 1,p
γ (Ω)×W (Ω), with constraints 0 ≤ ṽ ≤ 1, v ∈ H1(aε) and

‖u‖L∞(Ω) ≤ E (that is there exists the minimum of Fpε over L1(Ω)×L1(Ω)
with the same L∞ bound on u).

Let us now consider the main differences between the cracks and material
losses cases. Our aim is to show the optimality of Theorem 5.3, by showing that
a reduction to a functional depending on the phase-variable only, with similar
convergence properties, may not be feasible. As we have shown in the previous
section such a reduction is instead possible in the material loss case.

By Proposition 2.5 and Proposition 3.2, we infer that there exists a constant
C such that for any ε, 0 < ε ≤ 1, and for any ṽ ∈W (Ω), we have∫

Ω

wη(ṽ)|∇ũε(ṽ)|2 ≤ C and ‖ũε(ṽ)‖L∞(Ω) ≤ C.

Furthermore, there exists q(ε) > 2, depending on N , Ω, s and ε only, such that
ũε(ṽ) belongs to W 1,q(ε)(Ω). We can also find a constant C1, depending on N ,
Ω, γ, s, ‖f0‖Ls(∂Ω) and ε only, such that for any ṽ ∈W (Ω)

‖∇ũε(ṽ)‖Lq(ε)(Ω) ≤ C1.
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We remark that the dependence of q(ε) on ε is through oη(ε) and that, unfortu-
nately, it might happen that q(ε)→ 2+ and C1 → +∞ as ε→ 0+.

Let us consider the following operator. For any ε, 0 < ε ≤ 1, we define
Hε : W (Ω)→W 1,2

γ (Ω) as follows

Hε(ṽ) = ũε(ṽ) for any ṽ ∈W (Ω).

We recall that for any r, 1 < r < +∞, we endow W 1,r
γ (Ω) with the norm

‖u‖W 1,r
γ (Ω) = ‖∇u‖Lr(Ω) for any u ∈W 1,r

γ (Ω). We observe that Hε is continuous

with respect to the weak-W 1,2(Ω) convergence in W (Ω) and strong convergence
in W 1,2

γ (Ω).
We obtain that for any q, 2 ≤ q ≤ q(ε), we have that Hε : W (Ω)→W 1,q

γ (Ω)
and that for any q, 2 ≤ q < q(ε), Hε is continuous again with respect to the
weak-W 1,2(Ω) convergence in W (Ω) and strong convergence in W 1,q

γ (Ω).

Then for any q ≥ 2, let us define F̂qε : W (Ω) → [0,+∞] as follows. For any
ṽ ∈W (Ω) we set

(5.3) F̂qε (ṽ) = F̃qε (Hε(ṽ), ṽ) =

a2

εβ̃

∫
γ

|ũε(ṽ)− gε|2 + b

∫
Ω

ψη(v)|∇ũε(ṽ)|q +
1

η

∫
Ω

V (v) + η

∫
Ω

|∇v|2.

Let us notice that for any q ≥ 2, we have that there exists min F̂qε on W (Ω) with
the constraint 0 ≤ ṽ ≤ 1, and with the constraints 0 ≤ ṽ ≤ 1 and v ∈ H1(aε) as
well.

We investigate whether, for some q ≥ 2, we may have convergence properties
for F̂qε as we have for F̃qε . We observe that G̃ε is equal to F̂2

ε but to replace the
single-well potential V with the double-well potential W . It would be desirable
to have a convergence result for F̂2

ε , or at least for F̂qε with some q > 2, as we
have for G̃ε, Theorem 4.2. By counterexamples we show that difficulties arise in
both cases. We begin with the case q = 2 and then we deal with the case q > 2.

By the construction used in [23, Proposition 4.5] the next proposition im-
mediately follows.

Proposition 5.5. Under the assumptions of Theorem 5.3 and if 0 < β̃ ≤ q̃ ≤ 2,
we can find ṽε for any ε, 0 < ε ≤ 1, such that the following holds. For any ε,
0 < ε ≤ 1, we have, first, that

F̂2
ε (ṽε) ≤ C.

Second, {vε < 1/2} = {x ∈ Ω : dist(x,K0) < ξη + η/2} where ξη =
√
ηoη.

Finally, for any n ∈ N, let εn > 0 be such that limn εn = 0 and let ṽn = ṽεn
and ũn = ũεn(ṽn). Then, up to a subsequence, ũn → u strongly in Lp(Ω) for
any p, 1 ≤ p < +∞, and ψη(εn)(vn)∇ũn → ∇u strongly in L2(Ω), where u = u0

almost everywhere in GK0
and ∇u = ∇u0 almost everywhere in Ω.

In terms of Γ-convergence, we have obtained a kind of Γ-limsup inequality.
What is missing is the corresponding Γ-liminf inequality, because taking q = 2
does not guarantee enough compactness. In fact the solutions to the correspond-
ing weighted elliptic problems may converge to a function which is not a solution
to a material loss direct problem, as we shall show in Example 5.6 where we use
the instability of the Neumann problem with respect to boundary variations.
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In any case, trying to solve the inverse problem by minimizing F̂2
ε on W (Ω)

with the constraints 0 ≤ ṽ ≤ 1 and v ∈ H1(aε), might be a good strategy. We
recall that in this case the assumption 0 < β̃ ≤ q̃ ≤ 2 should be adopted. In
fact, minimizing F̂2

ε is numerically simpler than minimizing F̃qε and still leads
to good numerical reconstructions. In fact this method is adopted in [20] and
the numerical simulations presented there show its efficacy.

Example 5.6. Let us consider the following example. Let D be a smooth
bounded domain of RN−1, N ≥ 2, and let λ2 > 0 be a Neumann eigenvalue
for −∆ on D and let f be a corresponding eigenfunction, that is{

−∆f = λ2f in D
∇f · ν = 0 on ∂D.

We notice that
∫
D
f = 0 and we may normalize f in such a way that

∫
D
|f |2 = 1.

For some constant T > 2, to be fixed later, let Ω = D × (0, T ) and let
GK0 = D × (0, 2), that is K0 = D × {2}. Let γ = γ̃ = D × {0}. Then let u0 be
a solution to 

∆u0 = 0 in Ω
∇u0 · ν = f on D × {0}
∇u0 · ν = 0 on K0

∇u0 · ν = 0 on ∂D × (0, T ).

We normalize u0 in such a way that
∫
γ
u0 = 0 and, by separation of variables,

we have that

u0(x, y) =
f(x)

λ

[
cosh(2λ)

sinh(2λ)
cosh(λy)− sinh(λy)

]
, x ∈ D, y ∈ (0, 2),

whereas u0 may be chosen identically equal to 0 in D × (2, T ).
By a simple computation, again by separation of variables, we may find T > 2

and µ > 0 and two functions u− and u+ such that the following conditions hold.
First, u− = u0 in D × (0, 1) and u+ solves ∆u+ = 0 in D × (1, T )

∇u+ · ν = 0 on D × {T}
∇u+ · ν = 0 on ∂D × (1, T ).

Second, the following transmission condition holds true on D × {1}

u−y (x, 1) = u+
y (x, 1) = µ(u+(x, 1)− u−(x, 1)), x ∈ D.

By following [19], we may then construct a Neumann sieve Kδ ⊂ K0, δ > 0,
such that if uδ solves 

∆uδ = 0 in Ω\Kδ

∇uδ · ν = f on γ
∇uδ · ν = 0 on ∂(Ω\Kδ)\γ∫
γ
uδ = 0,

the following holds. We have that, as δ → 0+, uδ converges to u− = u0 weakly
in H1(D×(0, 1)), and strongly in L2(D×(0, 1)), and uδ converges to u+ weakly
in H1(D× (1, T )), and strongly in L2(D× (1, T )) . Therefore, the Cauchy data
of uδ on γ converges, for instance in L2(γ), to the Cauchy data of u0 on γ.
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By using Proposition 5.5 to approximate Kδ and uδ, for any n ∈ N we can
find εn > 0, ηn > 0 and ṽn such that

F̂2
εn(ṽn) ≤ C for any n ∈ N,

and that, as n→∞, the following holds. First, εn → 0+ and ηn → 0+. Second,
if ũn = ũεn(ṽn), n ∈ N, then we have that ũn converges to u− = u0 strongly in
L2(D× (0, 1)) and ũn converges to u+ strongly in L2(D× (1, T )). Furthermore,
∇ũn · ν|γ = ∇u0 · ν|γ for any n ∈ N and

‖ũn − u0‖L2(γ) → 0 as n→∞.

Therefore, even if the Cauchy data of u0 on γ are well approximated by
those of ũεn(ṽn), we have that vn = 1 − ṽn is small in a region close to the
corresponding Neumann sieve which is far away from the actual location of
the looked-for defect K0. This example shows also the difficulty in proving a
convergence result without imposing any further condition on the region where
v is small.

On the other hand, one might try to minimize F̂qε on W (Ω) for some q > 2.
If we take q > 2, then compactness and convergence would follow as a simple
consequence of Theorem 5.3, but we may not guarantee that we can find a
sequence of phase-field functions ṽn such that F̂qεn(ṽn) is uniformly bounded.

Again we use the constraints 0 ≤ ṽ ≤ 1 and v ∈ H1(aε). If one would be able
to find ṽε, 0 < ε ≤ 1, such that F̂qε (ṽε) ≤ C for any 0 < ε ≤ 1 for some constant
C, then by Proposition 4.3 in [23], we would obtain the results of Theorem 5.3,
replacing F̃qε with F̂qε , even allowing E to be equal to +∞.

We believe that constructing such functions ṽε for some q > 2 is a difficult
task and that minimizing F̂qε for some q > 2 might lead to a not correct recon-
struction. In Proposition 5.7 below we show the difficulty of obtaining such a
uniform bound.

In order to have higher integrability of the gradient of ũε(ṽ), we need to
guarantee that wη(ṽ) = ψη(v) is a weight satisfying certain properties, for in-
stance those described by Stredulinsky in [25]. An important class of weights
for which these properties are satisfied is the so-called Muckenhoupt class A2.

We recall that w, a non-negative measurable function over RN , is a weight
if 0 < w < +∞ almost everywhere and w is locally integrable. We say that a
weight w belongs to the Muckenhoupt class A2 if there exists a constant C such
that for any ball B ⊂ RN we have

(5.4)

(
1

|B|

∫
B

w

)(
1

|B|

∫
B

w−1

)
≤ C.

The best constant C for which (5.4) holds is usually referred to as the A2-
constant of w. We observe that the A2-constant of w is always greater than
or equal to 1. For more details about the Muckenhoupt weights and weighted
elliptic equations, we refer for instance to [14].

Therefore, a reasonable assumption is to take w = wη(ṽ) belonging to the
Muckenhoupt class A2 and such that its A2-constant is bounded by C, for some
fixed C. Without loss of generality we can assume that 0 ≤ w ≤ 1 almost
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everywhere and that w = 1 outside a given ball B2R. Consequently, we infer
that there exists a constant C1, depending on C and R only, such that∫

BR

w−1 ≤ C1.

Proposition 5.7. Let us fix q > 2. Let εn, n ∈ N, be a sequence of positive
numbers such that limn εn = 0. For any n ∈ N, let F̂qn = F̂qεn and let ṽn ∈W (Ω)
be such that the following holds. For any n ∈ N, we assume that 0 ≤ ṽn ≤ 1 and
we set ηn = η(εn), vn = (1 − ṽn) ∈ H1(aεn), wn = wη(ṽn) and ũn = ũεn(ṽn).
For any n ∈ N, we assume

(5.5)

∫
Ω

w−1
n ≤ C1

and ∫
Ω

wn|∇ũn|q +
1

ηn

∫
Ω

V (vn) + ηn

∫
Ω

|∇vn|2 ≤ C.

Let us consider ũ as the solution to

(5.6)

{
∆ũ = 0 in Ω
∇ũ · ν = f0 on ∂Ω.

We assume that K0 satisfies the assumption of Theorem 5.3 and that ũ 6= u0, in
particular that ũ|γ 6= u0|γ = g0. We also assume, for the time being, that Ω and
f0 are regular enough to guarantee that ũ ∈ L∞(Ω) and ∇ũ ∈ L∞(Ω,RN ). We
may also assume that actually ṽn provides a good approximation of K0, namely
that {vn < 1} ⊂ Ban(K0) where an = aεn .

Then we have that, as n → ∞, wn∇ũn converges to ∇ũ weakly in L2(Ω).
Consequently, as n → ∞, we also have that

∫
γ
|ũn − gεn |2 →

∫
γ
|ũ − g0|2 6= 0

and F̂qεn(ṽn)→ +∞.

Proof. Let us compute∫
Ω

wn|∇ũn −∇ũ|2 =

∫
∂Ω

(fεn − f0)(ũn − ũ) +

∫
Ω

(1− wn)∇ũ · ∇(ũn − ũ).

By the uniform bound on ũn, we easily obtain that∫
∂Ω

(fεn − f0)(ũn − ũ)→ 0 as n→∞.

Let us evaluate the other term. We have∫
Ω

(1− wn)∇ũ · ∇(ũn − ũ) =

∫
Ω

(1− wn)
q
√
wn

q
√
wn∇ũ · ∇(ũn − ũ).

We apply Hölder inequality with coefficients q, p and r such that q−1 + p−1 +
r−1 = 1 and we obtain∫

Ω

(1− wn)∇ũ · ∇(ũn − ũ) ≤(∫
Ω

w−r/qn

)1/r (∫
Ω

wn|∇(ũn − ũ)|q
)1/q (∫

Ω

|1− wn|p|∇ũ|p
)1/p

.
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We use our assumptions to infer∫
Ω

(1− wn)∇ũ · ∇(ũn − ũ) ≤ C
(∫

Ω

w−r/qn

)1/r (∫
Ω

|1− wn|p
)1/p

,

with C independent of n. We may choose r such that 0 < r/q < 1, therefore,

since 0 ≤ wn ≤ 1, we have w
−r/q
n ≤ w−1

n . Hence, by (5.5), we conclude that∫
Ω
wn|∇ũn −∇ũ|2 goes to zero as n→∞. We obtain that

∫
γ
|ũn − ũ|2 goes to

zero as well. We then apply Theorem 4.4 in [23] and the proof is concluded. �

Therefore, even if vn is a good phase-field approximation of K0, ũn is not a
good approximation of u0. In order to have that ũn approximates u0, we need
to require that vn is very small close to K0, in such a way that violates (5.5).
In turn, this might suggest the fact that higher integrability and the correct
approximation might in some sense oppose each other.

Let us conclude by observing that (5.5) is a kind of minimal condition to have∫
Ω
wn|∇ũn|q uniformly bounded. We wish to point out that potential theory for

weights whose inverse is not integrable has been developed, see for instance [10]
for the case of weights w = ω1−p/N , 1 < p < N , where ω is a so-called strong
A∞-weight. Strong A∞-weights have been introduced in [9]. Following [24], an
important example of strong A∞-weights is given by

ω(x) = min{1,dist(x,A)s}, x ∈ RN ,

where s > 0 and A is a suitable compact set. In [24, Proposition 4.4] it is shown
that ω is a strong A∞-weight for any s > 0 provided A is uniformly disconnected.
On the other hand, no strong A∞-weight may vanish on a rectifiable curve,
therefore this class of weights seems to be not apt to approximate hypersurfaces
as we require in our application.

6 Differentiability of the functionals

In this last section, we investigate the differentiability properties of F̃qε , G̃ε and
F̂qε , for a fixed ε, 0 < ε ≤ 1, and any q ≥ 2. For this purpose, we further assume
that the functions ψ, V and W are actually of class C1 and such that their
derivatives are bounded and uniformly continuous all over R.

We define the following spaces. For any p, 2 ≤ p ≤ +∞, let us call Lp(Ω) =

{ṽ ∈ Lp(Ω) : ṽ = 0 a.e. in Ω̃1} and Wp(Ω) = W 1,2(Ω) ∩ Lp(Ω), with norm
‖ṽ‖Lp(Ω) = ‖ṽ‖Lp(Ω) and ‖ṽ‖Wp(Ω) = ‖ṽ‖Lp(Ω) + ‖∇ṽ‖L2(Ω). To any ṽ ∈ L2(Ω)
we as usual associate the function v = 1− ṽ. If ṽ belongs either to Lp(Ω) or to

Wp(Ω), then v ∈ Lp(Ω), v = 1 almost everywhere in Ω̃1, and, provided 0 ≤ ṽ ≤ 1
almost everywhere in Ω, we also have 0 ≤ v ≤ 1 almost everywhere in Ω. We
observe that W2(Ω) = W (Ω) as previously defined. We also recall that W 1,q

γ (Ω)
is equipped with the norm ‖u‖W 1,q

γ (Ω) = ‖∇u‖Lq(Ω) for any u ∈W 1,q
γ (Ω).

We recall that for any ε, 0 < ε ≤ 1, we define Hε : L2(Ω) → W 1,2
γ (Ω) as

follows
Hε(ṽ) = ũε(ṽ) for any ṽ ∈ L2(Ω).

It can be shown that for any ṽ0 ∈ L2(Ω) such an operator Hε is differentiable
in ṽ0 with respect to the L∞(Ω) norm. Let DHε(ṽ0) : L∞(Ω) → W 1,2

γ (Ω) be
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the differential in ṽ0. Then for any ṽ in L∞(Ω) we have

DHε(ṽ0)[ṽ] = Uε(ṽ0, ṽ)

where Uε = Uε(ṽ0, ṽ) ∈W 1,2
γ (Ω) solves the following problem

(6.1)

{
div(ψη(v0)∇Uε) = div(ψ′η(v0)ṽ∇(Hε(ṽ0))) in Ω,
ψη(v0)∇Uε · ν = 0 on ∂Ω.

Here, obviously, v0 = 1− ṽ0.
We recall that for any vector valued function G ∈ L2(Ω,RN ), div(G) defines

a functional on W 1,2(Ω) in the following way

div(G)[φ] = −
∫

Ω

G · ∇φ for any φ ∈W 1,2(Ω).

Therefore, the weak formulation of (6.1) is looking for a function Uε ∈W 1,2
γ (Ω)

such that∫
Ω

ψη(v0)∇Uε · ∇ϕ =

∫
Ω

ψ′η(v0)ṽ∇(Hε(ṽ0)) · ∇ϕ for any ϕ ∈W 1,2(Ω).

Here, and analogously in the sequel, the differentiability has to be understood
in the following sense. For any ṽ in L∞(Ω)

Hε(ṽ0 + ṽ) = Hε(ṽ0) +DHε(ṽ0)[ṽ] +R(ṽ)

where

lim
‖ṽ‖L∞(Ω)→0

‖R(ṽ)‖W 1,2
γ (Ω)

‖ṽ‖L∞(Ω)
= 0.

For any q ≥ 2, let us consider the functional F̃qε : W 1,q
γ (Ω)×W (Ω)→ R. For

any (u0, ṽ0) ∈W 1,q
γ (Ω)×W (Ω), F̃qε is differentiable in (u0, ṽ0), with respect to

the W 1,q
γ (Ω)×W∞(Ω) norm. Let DF̃qε (u0, ṽ0) : W 1,q

γ (Ω)×W∞(Ω)→ R be the
differential in (u0, ṽ0). Then, for any (u, ṽ) ∈W 1,q

γ (Ω)×W∞(Ω), we have

(6.2) DF̃qε (u0, ṽ0)[(u, ṽ)] =

a1

εq̃

∫
Ω

(
2ψη(v0)∇u0 · ∇u− ψ′η(v0)|∇u0|2ṽ

)
+

a1

εq̃

∫
γ̃

(fεUε(ṽ0, ṽ)− 2fεu) +
2a2

εβ̃

∫
γ

(u0 − gε)u+

b

∫
Ω

(
qψη(v0)|∇u0|q−2∇u0 · ∇u− ψ′η(v0)|∇u0|q ṽ

)
+

1

η

∫
Ω

(−V ′(v0)ṽ) + 2η

∫
Ω

∇ṽ0 · ∇ṽ.

With the same computation, we infer that the functionals F̂2
ε : W (Ω) → R

and G̃ε : W (Ω)→ R are differentiable in ṽ0 for any ṽ0 ∈W (Ω), with respect to
the W∞(Ω) norm. Let DF̂2

ε (ṽ0) : W∞(Ω) → R and DG̃ε(ṽ0) : W∞(Ω) → R be
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the differentials in (u0, ṽ0). Then, for any ṽ ∈W∞(Ω), we have

(6.3) DF̂2
ε (ṽ0)[ṽ] =

2a2

εβ̃

∫
γ

(Hε(ṽ0)− gε)Uε(ṽ0, ṽ)+

b

∫
Ω

(
2ψη(v0)∇Hε(ṽ0) · ∇Uε(ṽ0, ṽ)− ψ′η(v0)|∇Hε(ṽ0)|2ṽ

)
+

1

η

∫
Ω

(−V ′(v0)ṽ) + 2η

∫
Ω

∇ṽ0 · ∇ṽ

and

(6.4) DG̃ε(ṽ0)[ṽ] =
2a2

εβ̃

∫
γ

(Hε(ṽ0)− gε)Uε(ṽ0, ṽ)+

b

∫
Ω

(
2ψη(v0)∇Hε(ṽ0) · ∇Uε(ṽ0, ṽ)− ψ′η(v0)|∇Hε(ṽ0)|2ṽ

)
+

1

η

∫
Ω

(−W ′(v0)ṽ) + 2η

∫
Ω

∇ṽ0 · ∇ṽ.

It might be useful to have differentiability properties with respect to the
Wp(Ω) norm, with p finite. In fact in this case Wp(Ω) is a strictly convex real
reflexive Banach space and this is useful when we need to apply a gradient
method in a numerical implementation, see [20] for details on the use of this
information. In order to obtain such differentiability, let us now assume that ψ′,
V ′ and W ′ are Hölder continuous for some exponent α, 0 < α ≤ 1, all over R.

We recall again that, by Proposition 2.5 and Proposition 3.2, there exists a
constant C such that for any ε, 0 < ε ≤ 1, and for any ṽ ∈ L2(Ω), we have∫

Ω

wη(ṽ)|∇ũε(ṽ)|2 ≤ C and ‖ũε(ṽ)‖L∞(Ω) ≤ C.

Furthermore, there exists q(ε) > 2, depending on N , Ω, s and ε only, such that
ũε(ṽ) belongs to W 1,q(ε)(Ω). We can also find a constant C1, depending on N ,
Ω, γ, s, ‖f0‖Ls(∂Ω) and ε only, such that for any ṽ ∈ L2(Ω)

‖∇ũε(ṽ)‖Lq(ε)(Ω) ≤ C1.

We remark that the dependence of q(ε) on ε is through oη(ε) and that, unfortu-
nately, it might happen that q(ε)→ 2+ and C1 → +∞ as ε→ 0+.

However, we may conclude that Hε : L2(Ω) → W
1,q(ε)
γ (Ω) and its image is

bounded in W
1,q(ε)
γ (Ω). Furthermore, again by Proposition 2.5, we infer that for

any ṽ0 ∈ L2(Ω) we may define as before DHε(ṽ0) and prove that DHε(ṽ0) :

Lq(ε)(q(ε)+2)/(q(ε)−2)(Ω)→W
1,(q(ε)+2)/2
γ (Ω) is a bounded linear operator.

Let p(ε) = q(ε) q(ε)+2
q(ε)−2 . Then, straightforward but lengthy computations allow

us to show that for any ṽ0 ∈ L2(Ω), Hε is differentiable in ṽ0 with respect to
the Lp(ε)(Ω) and the W 1,2

γ (Ω) norms. The differential is still given by (6.1). We

immediately infer that for any p, p ≥ p(ε), G̃ε is differentiable in ṽ0, for any
ṽ0 ∈ W (Ω), with respect to the Wp(Ω) norm, with the differential given by
(6.4).

By an interpolation inequality, we may find q1(ε), 2 < q1(ε) < (q(ε) + 2)/2,
depending on q(ε) and α only, such that for any q, 2 ≤ q ≤ q1(ε), and any
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p, p ≥ p(ε), we have that, for any ṽ0 ∈ L2(Ω), Hε is differentiable in ṽ0 with
respect to the Lp(Ω) and the W 1,q

γ (Ω) norms. Obviously the differential is still
given by (6.1).

We conclude that for such q and p, and any ṽ ∈ W (Ω), we have that F̂qε is
is differentiable in ṽ0, for any ṽ0 ∈ W (Ω), with respect to the Wp(Ω) norm. Its
differential is given by the following formula. For any ṽ ∈Wp(Ω) we have

(6.5) DF̂qε (ṽ0)[ṽ] =
2a2

εβ̃

∫
γ

(Hε(ṽ0)− gε)Uε(ṽ0, ṽ)+

b

∫
Ω

(
qψη(v0)|∇Hε(ṽ0)|q−2∇Hε(ṽ0) · ∇Uε(ṽ0, ṽ)− ψ′η(v0)|∇Hε(ṽ0)|q ṽ

)
+

1

η

∫
Ω

(−V ′(v0)ṽ) + 2η

∫
Ω

∇ṽ0 · ∇ṽ.

An important final remark is the following. If N = 2, then we may actually
choose p(ε) = 2, and we observe that W2(Ω) is a Hilbert space, with the scalar
product

∫
Ω
∇ṽ1 · ∇ṽ2 for any ṽ1, ṽ2 ∈ W2(Ω). If N > 2, then it might happen

that p(ε) > 2 and therefore Wp(ε)(Ω) has not a Hilbert space structure anymore.
However, since p(ε) is finite, Wp(ε)(Ω) is still a strictly convex real reflexive
Banach space.
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[14] J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of
Degenerate Elliptic Equations, Clarendon Press, Oxford New York Tokyo,
1993.

[15] L. Modica, The gradient theory of phase transitions and the minimal inter-
face criterion, Arch. Rational Mech. Anal. 98 (1987) 123–142.

[16] L. Modica and S. Mortola, Un esempio di Γ−-convergenza, Boll. Un. Mat.
Ital. B (5) 14 (1977) 285–299.

[17] N. G. Meyers, An Lp-estimate for the gradient of solutions of second order
elliptic divergence equations, Ann. Scuola Norm. Sup. Pisa (3) 17 (1963)
189–206.

[18] D. Mumford and J. Shah, Optimal approximations by piecewise smooth
functions and associated variational problems, Comm. Pure Appl. Math.
42 (1989) 577–685.

[19] F. Murat, The Neumann sieve, in Nonlinear Variational Problems, Pitman,
Boston, 1985, pp. 24–32.

[20] W. Ring and L. Rondi, Reconstruction of cracks and material losses by
perimeter-like penalizations and phase-field methods: numerical results,
preprint (2010).

[21] L. Rondi, Unique continuation from Cauchy data in unknown non-smooth
domains, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 5 (2006) 189–218.

[22] L. Rondi, A variational approach to the reconstruction of cracks by bound-
ary measurements, J. Math. Pures Appl. (9) 87 (2007) 324–342.

[23] L. Rondi, Reconstruction in the inverse crack problem by variational meth-
ods, European J. Appl. Math. 19 (2008) 635–660.

[24] S. Semmes, On the nonexistence of bi-Lipschitz parameterizations and ge-
ometric problems about A∞-weights, Rev. Mat. Iberoamericana 12 (1996)
337–410.

[25] E. W. Stredulinsky, Weighted Inequalities and Degenerate Elliptic Partial
Differential Equations, Springer-Verlag, Berlin Heidelberg, 1984.

28


