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Abstract 

Twenty-five years ago Mesozoic Oceanic Anoxic Events (OAEs) were 

documented and formalized as intervals of widespread to global deposition of organic 

matter. The Toarcian, early Aptian (OAE1a) and latest Cenomanian (OAE2) OAEs are 

truly global in nature, commonly carbonate-poor, and typically represented by organic 

carbon-rich black shales. In some areas, these OAEs are also characterized by abundant 

radiolarian-sands and silts. They are associated with negative and positive excursions in 

the 87Sr/86Sr record, in addition to large global carbon-isotope anomalies in carbonate 

and/or organic matter, caused by a major perturbation of the global carbon budget. 

Increased rates of volcanism during the formation of the Ontong Java (and Manihiki) 

and Caribbean Plateaus, and the Karoo-Ferrar Traps, are believed to have caused the 

geological responses associated with OAE1a, OAE2, and the Toarcian OAE, 

respectively. Excess volcanogenic CO2 in the atmosphere most probably turned the 

climate into a greenhouse mode, accelerating continental weathering and increasing 

nutrient content in oceanic surface-waters via river run-off. Higher fertility in the global 

ocean was also probably triggered directly by submarine igneous events that introduced 

enormous quantities of biolimiting metals within hydrothermal plumes. 

Because Mesozoic OAEs are often represented by carbonate-poor sediments, 

quantitative studies of calcareous nannofossils have been applied to explore (a) the 

causes and effects of igneous/tectonic events and climate changes, relative to 

nannofloral increases and crises, as well as (b) dissolution events and (c) diagenetic 

modifications. Characterization of calcareous nannofloras in OAE intervals can improve 
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our understanding of the marine ecosystem and biological processes such as 

photosynthesis (biological pump) and biomineralization (carbonate pump) that affect 

the organic and inorganic carbon cycle, as well as adsorption of atmospheric CO2 in the 

oceans.  

Types and rates of nannoplankton production and evolution are interpreted to 

trace the impact of major palaeoceanographic and palaeoclimatic events. In selected 

sections, it has been documented that calcareous nannofloras rapidly reacted to new 

conditions of fertility and higher pCO2 by drastically reducing calcification. As in the 

modern oceans, during OAEs the increase of nutrients and atmospheric CO2 induced 

higher abundances of nannoplankton producing small placoliths and inhibited the deep-

photic zone nannoconids and schizosphaerellids.  

Similarly to the ’nannoconid crisis‘ preceding deposition of the early Aptian 

OAE1a black shales, a ’schizosphaerellid crisis‘ is detected prior to the Toarcian OAE. 

Both OAEs are further characterized by a rapid nannofloral speciation, beginning 

approximately 1.5 my before OAE, but without extinctions. Global changes during the 

latest Cenomanian OAE 2 exerted different influences on calcareous nannoplankton that 

experienced a turnover due to most extreme environmental conditions. This event, in 

fact, was a time of extinctions followed by originations within calcareous nannofossils. 
Precise timing of the events before, during and after OAE1a, OAE2 and the Toarcian 

OAE indicate that they were intervals of enhanced oceanic productivity and that 

anoxia/dysoxia postdated biotic changes. 

   

 

1. Introduction 

In the early phases of ocean exploration, sediments exceptionally rich in organic 

carbon (Corg) were recovered from Cretaceous successions in the Pacific, Atlantic and 

Indian Oceans.  Several of such black shales were proved coeval with similar lithologies 

outcropping in the Tethyan domain, suggesting widespread to global deposition of Corg 

– rich sediments during time-intervals named Oceanic Anoxic Events (OAEs) by 
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Schlanger and Jenkyns (1976). The original definition was based on lithological criteria, 

and applied to two time-intervals, namely the Aptian-Albian (OAE1) and Cenomanian-

Turonian (OAE2). Subsequent investigations on land and in the oceans have identified 

the occurrence of the Coniacian-Santonian OAE3 (Jenkyns, 1980) and of the Toarcian 

OAE (Jenkyns, 1988). 

Advances in stratigraphy have allowed a more precise dating of individual Corg-

rich black shales, resulting in the subdivision of the long OAE1 interval into subevents, 

and a better dating of OAE2, OAE3, and the Toarcian OAE (Arthur et al., 1990; 

Jenkyns, 1999). Of all the OAEs, three are certainly global in nature, whereas other 

OAEs (OAE1b, OAE1c, OAE1d) have regional significance. The truly global Toarcian 

OAE, early Aptian OAE1a and latest Cenomanian OAE2 are represented by Corg-rich 

black shales, with extremely low or absent carbonate and locally abundant radiolarian 

layers (Jenkyns, 1999). The most spectacular sedimentary expression of the early 

Aptian and latest Cenomanian events are the Livello Selli and Livello Bonarelli, 

respectively. For both, the type-area is the Umbria-Marche Basin (central Italy), where a 

continuous hemipelagic to pelagic succession was deposited in the Jurassic to Paleogene 

interval.  

Multidisciplinary investigations of pelagic sections representing OAE1a, OAE2 

and the Toarcian OAE have resulted in the characterization of these episodes on the 

basis of sedimentology, palaeontology, as well as organic, inorganic and isotopic 

geochemistry. The Toarcian OAE, OAE1a and OAE2 are associated with large carbon-

isotope excursions in carbonate and/or organic matter, caused by a major perturbation of 

the global carbon budget (Jenkyns, 1980; Jenkyns & Clayton, 1986, 1997; Weissert, 

1989; Arthur et al., 1990; Bralower et al., 1993, 1994, 1999; Jenkyns et al., 1994; 

Erbacher et al., 1996; Menegatti et al., 1998; Weissert et al., 1998; Erba et al., 1999; 

Leckie et al., 2002). The temporal link between these events and major volcanic/tectonic 

episodes is testified to by large, positive and negative excursions in the 87Sr/86Sr curve 

reconstructed for the Jurassic and Cretaceous (see synthesis in Bralower et al., 1997; 

Jones & Jenkyns, 2001; Leckie et al., 2002). 
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Due to the biogenic nature of pelagic sediments representing OAEs, particular 

attention has been devoted to the biotic variations in planktonic communities associated 

with such episodes (Jarvis et al., 1988; Coccioni et al., 1992; Bralower et al., 1993, 

1994; Larson et al., 1993; Erba, 1994; Claps et al., 1995; Erbacher et al., 1996, 2001; 

Bucefalo Palliani et al., 1998, 2002; Salvini & Marcucci Passerini, 1998; Hochuli et al., 

1999; Paul et al., 1999; Premoli Silva et al., 1999; Leckie et al., 2002) to identify a 

sequence of palaeobiological changes before, during and after OAEs, and model the 

reactions of marine ecosystems to global changes. 

In the Jurassic and Cretaceous oceans, the calcareous nannoplankton was the most 

efficient rock-forming group, whereas radiolarians were only temporarily important for 

lithogenesis under specific palaeoceanographic conditions (e.g. during the Middle 

Jurassic; Racki & Cordey, 2000). Planktonic foraminifers evolved in the Early 

Cretaceous and reached abundances relevant for lithogenesis only in the Late 

Cretaceous (Premoli Silva & Sliter, 1999). Although the appearance of diatoms is dated 

as Early Jurassic, this siliceous phytoplankton was never an important component in 

Jurassic and Cretaceous sediments (Fenner, 1995). Dinoflagellates were common and 

widely-distributed, but their preservation and abundance is strictly controlled by 

sedimentary facies and characteristics of bottom-waters, especially oxygen content 

(Tyson, 1995). 

  Jurassic and Cretaceous micrites mainly consist of coccoliths and nannoliths, in 

addition to variable amounts of diagenetic carbonate. Consequently, pelagic carbonates 

offer the opportunity of characterizing variations in abundance and composition of 

calcareous nannofloras, in addition to their relationships with changes in non-

mineralizing phytoplankton and siliceous phytoplankton, as well as in calcareous and 

siliceous zooplankton (planktonic foraminifers and radiolarians). Because calcareous 

nannoplankton contribute to biological processes such as photosynthesis (biological 

pump) and biomineralization (carbonate pump), their increases in abundance and/or 

crises affect the inorganic and organic carbon cycle and adsorption of atmospheric CO2 

in the oceans. By analogy with living calcareous nannoplankton (Young, 1994), 
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morphology, size and ultrastructure of Jurassic and Cretaceous coccoliths and 

nannoliths can be used to trace ecological affinities and adaptations to temperature, 

chemistry and fertility of surface-waters (Erba and Tremolada, 2004). 

This paper is focused on changes in calcareous nannofloral abundance and 

composition associated with the Toarcian OAE, OAE1a and OAE2. Published data and 

new results are integrated to propose a summary of nannofloral changes associated to 

OAEs. Analogies and differences will be discussed, and palaeoceanographic models 

will be proposed, in an attempt to unravel the preservation versus productivity enigma 

still debated for Jurassic and Cretaceous OAEs. 

 

2. The Cretaceous OAEs 

The mid-Cretaceous was a time of extreme climatic conditions, marked by a 

prolonged greenhouse mode (e.g. Jenkyns, 1999, 2003). The entire ocean/atmosphere 

system experienced a ’revolution‘ that is recorded in sedimentary successions at a 

global scale. It is not surprising that OAEs are concentrated in the Aptian-Turonian 

interval, when paroxysmal volcanic activity certainly affected the climate  and the 

physico-chemical structure of the oceans (Larson, 1991a, 1991b; Kerr, 1998; Larson & 

Erba, 1999; Jenkyns, 1999; Leckie et al., 2002). 

An overview of Cretaceous OAEs plotted against integrated stratigraphy, 

simplified δ18O and δ13C curves, and major submarine and subaerial volcanic events 

implicated in the constructions of Large Igneous Provinces (LIPs) is given in Figure 1. 

The early Aptian OAE1a and latest Cenomanian OAE2 correlates with the onset and 

climax of the mid-Cretaceous greenhouse climate, the most extreme warm episode in 

the past 150 My. Both OAEs are marked by a major decrease in the 87Sr/86Sr record 

(Bralower et al., 1997; Jones & Jenkyns, 2001), interpreted as the response to submarine 

volcanism during emplacement of the Ontong Java (and Manihiki) and Caribbean 

Plateaus, respectively. The large, positive excursions in the carbon-isotopes (up to 2‰ 

higher than background values) for both OAE1a and OAE2, are generally interpreted as 

due to accelerated burial of organic matter during episodes of enhanced productivity 
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(Weissert, 1989; Arthur et al., 1990; Weissert & Lini, 1991; Erba, 1994; Erbacher et al., 

1996;Weissert et al., 1998; Jenkyns, 1999, 2003; Larson & Erba, 1999; Leckie et al., 

2002). 

Quantitative studies of pelagic successions reveal a major shift in the biogenic 

component, from carbonate-dominated to siliceous- and organic matter-dominated 

(Premoli Silva et al., 1999). Usually, calcareous nannofossils and foraminifers are 

abundant below and above black shales representing OAE1a and OAE2, when 

radiolarians and organic-walled microrganisms become overwhelming. Palaeontological 

evidence of meso- to eutrophic conditions support the productivity model forwarded for 

both OAE1a and OAE2 (Coccioni et al., 1992; Erba, 1994; Erbacher et al., 1996; 

Premoli Silva & Sliter, 1999; Salvini & Marcucci Passerini, 1998; Premoli Silva et al., 

1999; Leckie et al., 2002). Changes in calcareous nannofossil assemblages are discussed 

below for the early Aptian OAE1a and latest Cenomanian OAE2, separately. 

 

 

2.1 The early Aptian OAE1a 

Within calcareous nannofossils, the ’nannoconid crisis‘ is the global event 

marking the early Aptian OAE1a (the Livello Selli; Erba, 1994). An earlier decrease in 

abundance of the rock-forming nannoconids has been documented slightly before 

magnetic chron CM0 and culminates with the crisis shortly, but unequivocally, 

preceding the deposition of black shales representing OAE1a (Figure 2). Such a change 

in nannofloral assemblages is documented worldwide (Bralower et al., 1993, 1994, 

1999; Erba, 1994; Aguado et al., 1997, 1999; Channell et al., 2000; Bellanca et al., 

2002; Bersezio et al., 2002; Erba & Tremolada, 2004) indicating that phytoplankton 

communities simultaneously reacted to a perturbation of the ocean/climate system. The 

nannoconid crisis is a typical example of the’Lazarus effect‘ (Flessa & Jablonski, 1983) 

that terminated when more favourable conditions allowed re-occupation of nannoconid 

ecological niches. No extinctions within nannoconids, or nannofossils in general, have 

been documented in the OAE1a interval that is characterized by accelerated 
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evolutionary rates of nannoplankton. In fact, the onset of a nannofossil speciation 

episode starts approximately 1.5 my before OAE1a and continues through the late 

Aptian (Figure 2). 

In the million years preceding OAE1a, planktonic foraminifers and radiolarians 

also increased in abundance, and assemblage composition gradually changed due to 

increasing percentages of Globigerinelloides and the Nassellaria (Coccioni et al., 1992; 

Premoli Silva et al., 1999). In the Livello Selli interval, representing OAE1a, 

Leupoldinids and Nassellaria dominate planktonic foraminiferal and radiolarian 

assemblages, respectively (Premoli Silva et al., 1999). 

Leckie et al. (2002) describe OAE1a as a turnover, but I do not agree with this 

interpretation since calcareous plankton was not affected by extinctions. Late Aptian 

assemblages differ from early Aptian ones only because several new species (or 

morphotypes) of both calcareous nannoplankton and planktonic foraminifers appear 

(Premoli Silva et al., 1999). Also radiolarians are not affected by a typical turnover, 

because the sequence of first and last occurrences is diluted in a 1 my interval (Premoli 

Silva et al., 1999). 

The changes in phytoplankton assemblages in the late Barremian – Aptian interval 

can be modelled using a three-fold subdivision as sketched in Figure 3. Phase one (124 

to 121.5 M.a.) corresponds to phytoplankton assemblages in the Barremian ocean. 

Extending the interpretation of Erba (1994), it is here hypothesized that narrow-canal 

nannoconids lived in the lower photic zone, the wide-canal nannoconids inhabited the 

intermediate photic zone and coccolithophorids thrived in the upper photic zone. This 

model is based on size and weight of each group and supposed relationship between 

nannofossil mass and water depth: the heaviest forms were presumably adapted to the 

lower photic zone, while the lightest to the very surface. Because wide-canal 

nannoconids are smaller and lighter than the narrow-canal ones, perhaps their ecological 

niche was intermediate in the photic zone. 

In the latest Barremian (phase 1; Figure 3) narrow-canal nannoconids were still 

the dominant forms, with minor proportions of wide-canal nannoconids and 
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coccoliths.The beginning of phase two is marked by the early changes within calcareous 

nannoplankton. Approximately 0.5 my before magnetic chron CM0 a coccolith 

speciation and a first decline in nannoconid relative and absolute abundance is detected 

(Erba, 1994; Erba et al., 1999; Larson & Erba, 1999;Premoli Silva et al., 1999; Channell 

et al., 2000; Erba & Tremolada, 2004). If the paleoecological interpretation of Erba 

(1994) is correct, then during the Barremian the nutricline was centered at the base of 

the thermocline favouring nannoconids in the deep photic zone. At magnetic chron 

CM0 time, a decrease in relative and absolute abundance of nannoconids coincided with 

a shift in dominance between the narrow- and the wide-canal forms (Erba, 1994; Erba et 

al., 1999; Larson & Erba, 1999;Premoli Silva et al., 1999; Channell et al., 2000; Erba & 

Tremolada, 2004). The latter become, for the first time, more abundant than the narrow-

canal nannoconids, while coccolith abundance gradually increases upwards. The shift in 

dominance within nannoconids is interpreted as a response of calcareous nannoplankton 

to a rise of the nutricline accompanying a weakening of the thermocline due to initial 

warming of intermediate-waters in the early phase of the Ontong Java LIP. Based on 

carbon and oxygen isotopes on individual species of benthic and planktonic 

foraminifers, a similar scenario has been recently proposed for latest Albian OAE1d 

(Wilson & Norris, 2001). Submarine volcanism possibly further affected the trophic 

level of the oceans, by introducing iron and other biolimiting metals that are capable of 

triggering higher productivity, especially in oligotrophic areas (Larson & Erba, 1999; 

Leckie et al., 2002). Metal peaks were detected in magnetic chron CM0 suggesting a 

direct influence of igneous events on (calcareous) phytoplankton productivity (Larson & 

Erba, 1999; Leckie et al., 2002). 

Phase three corresponds to the ‘nannoconid crisis’ characteristic of OAE1a. 

During the nannoconid crisis, coccoliths and peculiar nannoliths (Assipetra and 

Rucinolithus) were abundant within the calcareous nannoflora (Erba, 1994: Tremolada 

& Erba, 2002; Erba & Tremolada, 2004), and dinoflagellates and cyanobacteria became 

the dominant phytoplankton forms (Hochuli et al., 1999; Torricelli, 2000; van Bruegel 

et al., 2002) (Figure 3). At the onset of OAE1a, igneous/tectonic activity related to 
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emplacement of the giant Ontong Java and Manihiki Plateaus, and construction of the 

Nova Canton Trough, disrupted the thermal structure of the oceans by warming deep-, 

intermediate- and surface-waters, thus weaking and eventually eliminating the 

thermocline. Under such uniformly warm conditions, upwelling could have triggered 

and maintained high primary productivity (Wilson & Norris, 2001; Bice & Poulsen, 

2002), further stimulated by continuous introduction of biolimiting metals at 

hydrothermal fields (Sinton & Duncan, 1997; Larson & Erba, 1999; Leckie et al., 2002) 

in addition to nutrient supply in coastal areas as river/eolian input. Oligotrophic 

nannoconids temporarily ’disappeared‘, but coccoliths continued to flourish, although 

dinoflagellates and cyanobacteria became dominant within phytoplankton (Hochuli et 

al, 1999; Larson & Erba, 1999; van Bruegel et al., 2002; Bralower et al., 2002; Figure 

3). 

Just after the OAE1a, the return of nannoconids has been documented worldwide 

(Erba, 1994; Bralower et al., 1994, 1999; Erba et al., 1999; Larson & Erba, 1999; 

Channell et al., 2000; Leckie et al., 2002; Erba & Tremolada, 2004), suggesting the 

restoration of the thermocline, deepening of the nutricline, and a general lowering of 

trophic levels. However, nannoconids never became as abundant as before OAE1a, 

although wide fluctuations in abundance characterize the late Aptian (Erba, 1994; 

Herrle, 2002; Leckie et al., 2002; Herrle & Mutterlose, 2003; Erba & Tremolada, 2004). 

A synthesis of geological and biotic events that occurred in the latest Barremian-

Aptian interval is illustrated in Figure 4. Changes in nannofossil assemblages testify to 

global perturbations in the ocean/atmosphere system during times of LIP formation. 

Prior, during and after OAE1a, the abundance and composition of calcareous 

nannoplankton as well as the dominance of various phytoplanktonic groups, seem 

strictly related to the thermal structure of the oceans (presence/absence and strength of 

the thermocline), trophic levels (oligo-, meso-, and eutrophic conditions), and 

atmospheric CO2. Recently, nannofossil palaeofluxes have been estimated for the 

OAE1a interval in a well-dated section (Erba & Tremolada, 2004). A total decrease of 

approximately 90% in nannofossil paleofluxes occurred in a 1.5 m.y. long interval, at 
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the onset of the early Aptian C isotopic anomaly and OAE1a. Above the Selli Level, 

nannofossil paleofluxes recovered with an increase of approximately 60%.  The 

nannoconid crisis might represent a combination of higher fertility and excess CO2 that 

would both induce reduced biocalcification in calcareous nannoplankton (Erba and 

Tremolada, 2004). 

Increasing percentages up to 60% of Assipetra and Rucinolithus, represented by 

normal- and large-sized morphotypes during OAE1a, are puzzling, because these 

nannoliths are quite big and heavily calcified (Tremolada & Erba, 2002) and contradict 

the biocalcification crisis hypothesis (Figure 4). Moreover, the volumes/mass and 

ultrastructure of Assipetra and Rucinolithus are totally different from those of the 

generally-accepted nannofossil indicators of higher surface water fertility. An 

alternative explanation might be that Assipetra and Rucinolithus are not fossil remains 

of coccolithophores, as further suggested by the lack of documentation of their 

coccospheres/xenospheres. I speculate that these peculiar nannoliths might represent 

CaCO3 precipitates and/or biocalcification by bacteria under extreme 

palaeoenvironmental conditions, including massive methane release into the oceans 

(Opdyke et al., 1999, submitted; Tremolada & Erba, 2002; Bellanca et al., 2002; 

Beerling et al., 2002; Jenkyns, 2003). 

 

2.2 The latest Cenomanian OAE2 

Although the Cenomanian/Turonian OAE2 has been exhaustively studied in the 

past three decades, relatively little attention has been paid to changes in calcareous 

nannofossil assemblages. Since the pioneering work of Bralower (1988), quantitative 

investigations of nannofloras have been applied to a few sections, mostly from southern 

England (Jarvis et al., 1988; Lamolda et al., 1994; Paul et al., 1999; Gale et al., 2000). 

Changes in calcareous nannofloras are also documented for sections representing OAE2 

in the Tethys Ocean (Paul et al., 1994; Lamolda & Gorostidi, 1996; Luciani & 

Cobianchi, 1999; Nederbragt & Fiorentino, 1999; Premoli Silva et al., 1999). 
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In Figure 5, the most significant changes in nannofossil assemblages in the well-

studied Eastbourne section (southern England) are plotted against integrated 

stratigraphy, lithostratigraphy and carbon isotope stratigraphy. In the OAE2 interval, a 

relative decrease in total abundance and species richness was documented, but the 

striking feature is the major decrease in abundance of the fertility indicator Biscutum 

constans. This taxon is absent in the upper part of OAE2 and the immediately overlying 

sediments, whereas Zeugrhabdotus erectus is present throughout OAE2 (Jarvis et al., 

1988; Lamolda et al., 1994; Paul et al., 1999). A similar trend was documented by Gale 

et al. (2000) for a fertility-index, based on the ratio between Zeugrhabdotus + Biscutum 

and Watznaueria. 

Abundance peaks of Eprolithus floralis are documented at Eastbourne (Paul et al., 

1999) and in other sections (Bralower, 1988; Lamolda & Gorostidi, 1996), suggesting 

cooler surface-waters in the late phase of OAE2 and immediately after it (Figure 5). 

This is in agreement with oxygen isotopic evidence for a reversed greenhouse effect 

after the thermal maximum coinciding with OAE2 (Clarke & Jenkyns, 1999; Jenkyns, 

1999). 

The OAE2 interval has also been studied for calcareous nannofossils at Gubbio 

(central Italy), considered the type-locality of the Livello Bonarelli (Erba, this study). 

Here, the whitish, pelagic limestones of the Scaglia Bianca are sharply interrupted by an 

approximately 1 m-thick black shale interval extremely enriched in organic matter, with 

abundant radiolarian layers, and carbonate-free (Figure 6; Arthur & Premoli Silva, 

1982). Both nannofossil total abundance and species richness show a marked decrease 

in the interval preceding the Livello Bonarelli, where radiolarian layers and chert 

become the dominant lithology, and at the onset of the δ13C positive excursion (Figure 

6). Above the Livello Bonarelli, nannofloral abundance and species richness resumed, 

although values remain lower than in the interval preceding OAE2. The fertility 

indicators Zeugrhabdotus (Z. erectus and Zeugrhabdotus spp.) and Biscutum constans 

display different abundance distributions. While Zeugrhabdotus is present below and 

above the Livello Bonarelli, Biscutum constans has not been observed in the limestones 
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above the event (Figure 6). Both taxa are absent in the carbonate-free black shale 

interval, but Zeugrhabdotus is also absent in the limestones representing the latest phase 

of OAE2 as defined by C isotopes and then is present in the interval above OAE2, 

contrary to Biscutum that was not observed in the studied interval above the Livello 

Bonarelli. 

In the latest Cenomanian, the gradual decrease in abundance of Biscutum is 

comparable to the trend at Eastbourne, although at Gubbio the absence of carbonates in 

the Livello Bonarelli prevents the documentation of the final decrease during the δ13C 

maximum. A decrease in abundance of the fertility indicators B. constans and 

Discorhabdus, but not Zeugrhabdotus, in the OAE2 interval is also documented by 

Nederbragt & Fiorentino (1999) from Tunisia. These findings from distant localities 

suggest that the observed patterns are not induced by type of nannofloral preservation, 

and confirm the palaeoecological affinities of Zeugrhabdotus and Biscutum (as well as 

Discorhabdus) for different degrees of fertility, as previously hypothesized based on 

differential abundance patterns under meso- to eutrophic conditions (Watkins, 1989; 

Erba, 1992a, 1992b; Erba et al., 1992). 

As observed at Eastbourne, abundance peaks of Eprolithus floralis (up to 40%) 

characterize the late phase of OAE2, suggesting cooler surface-waters reaching the 

Tethys Ocean. In the lower Turonian, nannoconids are present and their abundance 

fluctuates, reaching values as high as 10% (Figure 6).  

The geological events and nannofossil changes associated with OAE2 are 

synthesized in Figure 7. Recent revision of radiometric dates for the Caribbean Plateau 

(Figure 6-1by Larson et al. in Duncan & Bralower, 2002) confirms that a major 

submarine volcanism occurred in the Cenomanian/Turonian boundary interval (Arthur 

et al., 1985, 1987; Schlanger et al., 1987; Arthur et al., 1990; Sinton & Duncan, 1997; 

Kerr, 1998; Jenkyns, 1999; Wignall, 2001). The drop in the 87Sr/86Sr record, coincident 

with the beginning of the δ13C excursion, strongly suggests a causal  relationship 

between Caribbean LIP formation and the perturbation in the global carbon cycle. A 

direct link between submarine volcanism and changes in planktonic communities is 
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further supported by the occurrence of metal peaks just below and within sediments 

representing OAE2 at several localities (Brumsack, 1980; Arthur et al., 1990; Snow & 

Duncan, 2002; Turgeon et al., 2002). Although the decrease in abundance and species 

richness of calcareous nannofossils can be explained as the response of phytoplankton 

to higher concentrations of biolimiting metals (e.g., Fe, Zn) and nutrients, favouring 

siliceous and organic-walled groups (diatoms, dinoflagellates and cyanobacteria), the 

decline of nannofossil fertility indicators is puzzling. In fact, various independent 

parameters concur in the characterization of OAE2 as a high-productivity episode at 

global scale (Jenkyns, 1999). The Biscutum decline might represent trophic conditions 

above threshold values, and/or toxicity of specific metals, and/or inability to thrive in 

very warm waters. Previous studies on mid Cretaceous nannofloras indicated that 

Biscutum is indicative of mesotrophic, but not eutrophic conditions inducing increases 

in abundance of Zeugrhabdotus within calcareous nannoplankton (Erba, 1992a). It is 

unlikely that high water-temperature during the OAE2 thermal maximum (Clarke & 

Jenkyns, 1999; Jenkyns, 1999) inhibited Biscutum, because other species with a boreal 

affinity, such as Zeugrhabdotus, are present in the interval without Biscutum. Moreover, 

during the cooling episode at the end of OAE2, this taxon is not observed (Fig. 6).  

The effects of metal toxicity are known for some extant nannoplankton species. 

For example cadmium inhibits calcification and copper is not tolerated by several 

coccolithophorid species (Brand, 1994). Perhaps in the Cretaceous, Biscutum suffered 

the presence of toxic metals introduced in large quantities via hydrothermal plumes 

(Sinton & Duncan, 1997; Duncan & Bralower, 2002; Erba & Duncan, 2002; Leckie et 

al., 2002). Metal toxicity might also explain the turnover affecting calcareous 

nannofossils, as expressed by a sequence of extinctions in a short time-interval 

(approximately 500 kyr), while originations start at the end of OAE2 and continue 

through the Turonian (Figure 7). Extreme palaeoenvironmental conditions possibly 

excluded the less well-adapted taxa, since most last occurrences affected short-ranging 

species. The origination of Turonian nannofossils is expressed mainly by appearance of 

new groups such as Quadrum. It is curious that these new genus is represented by 
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nannoliths that somehow resemble the Aptian Assipetra and Rucinolithus morphotypes, 

characteristics of OAE1a. In fact, although the ultrastructure of the individual genera is 

different, nannoliths of Quadrum, Assipetra and Rucinolithus are all blocky and highly 

calcified, when compared to common Cretaceous coccoliths. 

 

3. The Toarcian OAE 

Evidence for a Toarcian OAE (Jenkyns, 1985, 1988, 1999, 2003; Jenkyns & 

Clayton, 1986, 1997; Jenkyns et al., 2001) is limited to the boreal and tethyan areas, 

where Corg-rich black shales have been deposited in the falciferum and serpentinus 

ammonite Zones (see Bucefalo Palliani et al., 2002 for discussion of boreal and tethyan 

ammonite zonation). As for the Cretaceous OAEs, the Toarcian episode is marked by a 

pronounced decrease in carbonates, paralleled by an increase in organic matter and 

locally biosiliceous sedimentation (Gaetani & Poliani, 1978; Getani & Erba, 1990; 

Bucefalo Palliani et al., 1998; Jenkyns, 2003). The isotopic anomaly associated with the 

Toarcian OAE is marked by a negative δ13C shift (exaratum ammonite Subzone) 

interrupting a positive carbon-isotope excursion dated as tenuicostatum to falciferum 

ammonite Zones (Hesselbo et al., 2000; Jenkyns, 2003).   The negative shift has been 

interpreted as the result of methane release caused by global warming under greenhouse 

climatic conditions (Hesselbo et al., 2000; Beerling et al., 2002) caused by emplacement 

of the Karoo-Ferrar igneous province (Hesselbo et al., 2000; Wignall, 2001; Jenkyns, 

2003). The Corg-rich black shales deposited during the Toarcian OAE have been 

interpreted as the result of increased primary productivity triggered by higher fluxes of 

nutrient from continents and intensified upwelling under greenhouse conditions 

(Jenkyns, 1999, 2003). Accelerated hydrological cycle and continental weathering is 

supported by the rise in 87Sr/86Sr and 187Os/188Os (Jones & Jenkyns, 2001; Cohen & Coe, 

2002). 

Quantitative studies of nannofossil assemblages through the Toarcian OAE 

interval are still limited (Mattioli, 1993; Bucefalo Palliani et al., 1998, 2002; Mattioli & 

Pittet, 2002), but a number of investigations can be used to trace a general picture of 
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calcareous nannoplankton changes during the Carixian to Aalenian interval (Noël et al., 

1994; Claps et al., 1995; Picotti & Cobianchi, 1996; Mattioli, 1997; Cobianchi & 

Picotti, 2001). In pelagic sections from the Southern Alps a major lithologic change 

marks the lowermost Toarcian (lower part of the tenuicostatum ammonite Zone), 

namely a shift from Pliensbachian carbonate-rich lithologies to Toarcian marly 

lithologies (e.g.Gaetani & Erba, 1990; Cobianchi, 1992; Mattioli & Erba, 1999). 

Semiquantitative analyses and relative abundances (percentages) of nannofossil 

assemblages indicate that such a lithologic change corresponds to a drop in abundance 

of the rock-forming Schizosphaerella (Figures 8 and 9) (Picotti & Cobianchi, 1996; 

Cobianchi & Picotti, 2001; Erba, this study). This decrease in relative abundance is 

regarded here as a ’schizosphaerellid crisis’, similar, although not as dramatic, to the 

nannoconid crisis described for OAE1a. Quantitative analyses of nannofossil 

assemblages indicate that absolute abundances of schizosphaerellids do not correlate to 

carbonate content (Mattioli & Pittet, 2002), and that Schizosphaerella is still dominant 

in the Toarcian (Bucefalo Palliani et al., 1998, 2002; Mattioli & Pittet, 2002).  

As in the interval preceding the ‘nannoconid crisis’, the drop in schizosphaerellid 

relative abundance is anticipated by a nannoplankton speciation event that determined a 

general increase in abundance of coccoliths, as well as in species richness during the 

early Toarcian. The most striking variations in nannofossil assemblages occured before 

the OAE. In fact, the nannoplankton speciation event is documented in both tethyan and 

boreal sections starting in the latest Pliensbachian margaritatus ammonite Zone (Figure 

10) (Cobianchi et al., 1992; Bown et al., 1995; Bown & Cooper, 1998; Baldanza & 

Mattioli, 1999; Mattioli & Erba, 1999). Accelerated rates in nannofossil origination 

correlate with a decrease in the 87Sr/86Sr curve, and precede the onset of the C-isotope 

anomaly (Figure 10). It’s worth mentioning that this speciation event mainly consists of 

appearances of various species of placoliths, possibly suggesting increasing surface 

water productivity conditions by analogy with Cretaceous findings.  

The inverse correlation in relative abundances of coccoliths versus 

schizosphaerellids has also been documented at high frequencies in Toarcian-Aalenian 
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sections (Noël et al., 1994; Claps et al., 1995; Mattioli, 1997). This relationship, by 

analogy with extant and Cretaceous nannofossil assemblages, has been used to speculate 

that Schizosphaerella perhaps inhabited the lower part of the photic zone (Claps et al., 

1995). In fact, the changes in schizosphaerellid/coccolith ratios in the Lower Jurassic 

are very similar to changes in nannoconid/coccolith ratios in the Lower Cretaceous and 

to changes in Florisphaera profunda /coccolith ratios in recent sediments. 

Consequently, schizosphaerellids have been interpreted as oligotrophic forms 

flourishing in the lower part of the photic zone and reflecting a deep nutricline (Claps et 

al., 1995). A palaeocologic affinity of Schizosphaerella for oligotrophic conditions has 

been confirmed by Picotti & Cobianchi (1996) and Cobianchi & Picotti (2001) based on 

pelagic as well as marginal sections close to carbonate platforms. 

 At both boreal and tethyan locations, the black shales representing the Toarcian 

OAE are usually depauperate in calcareous nannofossils and locally contain a peculiar 

palynological assemblage, dominated by Tasmanites (Bucefalo Palliani et al., 1998; 

2002). In the Brown Moor section the temporary absence of calcareous nannofossils and 

dinoflagellate cysts in the interval corresponding to the negative δ13C spike has been 

interpreted as a “disappearance event”, followed by a “repopulation event” (Bucefalo 

Palliani et al., 2002). Alternatively, the absence or extreme rarity of calcareous 

nannofossils during the negative δ13C shift is here interpreted as the dissolution phase 

caused by clathrate melting (Hesselbo et al., 2000). This interpretation is also supported 

by the absence of extinctions. Very similar patterns are documented for calcareous 

nannofossil distributions in OAE1a. The negative spike at the base of the Livello Selli 

is, in fact, characterized by the absence-scarcity of nannofossils (and planktonic 

foraminifers) due to carbonate dissolution induced by methane release and oxidation of 

CO2, inducing CCD shallowing in the global ocean (Opdyke et al., 1999; submitted). 

The Toarcian OAE is correlatable with formation of the Karoo-Ferrar Traps 

(Duncan et al., 1997; Palfy et al., 1997; Palfy & Smith, 2000; Wignall, 2001; Jenkyns, 

2003), as also testified by the 87Sr/86Sr curve (Figure 11). This subaerial volcanism 

probably introduced high amounts of CO2 in the atmosphere that triggered global 
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warming and increased continental weathering as well as nutrient transport into the 

oceans via river run-off (see Jenkyns, 2003 for a synthesis).  

Changes in phytoplankton assemblages (Picotti & Cobianchi, 1996; Mattioli, 

1993, 1997; Bucefalo Palliani et al., 1998, 2002; Cobianchi & Picotti, 2001; Mattioli & 

Pittet, 2002; Jenkyns, 2003; Erba, this study) are suggestive of higher fertility, enhanced 

primary productivity and consequent expansion of the oxygen minimum zone producing 

anoxia/dysoxia, as sketched in Figure 11.  

If morphology, size and weight of calcareous nannoplankton reflect adaptation to 

specific ecological niches  (Young, 1994), Early Jurassic nannofossils were probably 

distributed according to the physico-chemical and trophic characteristics of surface 

water-masses. As previously discussed for the Cretaceous, the heaviest forms were 

presumably adapted to the lower photic zone, intermediate forms to the middle photic 

zone, while the lightest to the very surface. Accordingly, it is here proposed that within 

the photic zone schizosphaerellids were the deepest forms, Mitrolithus and Calyculus 

inhabited the intermediate portion, and that placolith-bearing coccolithophores were the 

most superficial forms. Abundance of each group was dependent on the depth of the 

nutricline. 

Based on the above interpretations, a regional model is here presented to explain 

nannofloral changes. In the late Pliensbachian (spinatum ammonite Zone), the presence 

of a deep nutricline centered at the thermocline favoured increases in abundance of 

Schizosphaerella and low relative abundance of all other nannofossils. An expanded and 

shallower nutricline at the beginning of the Toarcian (tenuicostatum ammonite Zone) 

favoured nannoplankton living in the intermediate (Mitrolithus and Calyculus) and 

upper (placoliths) photic zone, while opposing the deep schizosphaerellids. The 

nutrification episode persisted and intensified in the falciferum ammonite Zone as 

testified to by the positive δ13C excursion, and global deposition of Corg-rich sediments 

characterized by organic walled and siliceous plankton (Jenkyns, 2003). The negative 

δ13C shift, interrupting the positive excursion (Hesselbo et al., 2000; Jenkyns, 2003), 

represents extremely hostile paleoenvironmental conditions due to methane release that 
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hampered biocalcification and favoured tasmanitids (Bucefalo Palliani et al., 2002) and 

bacteria (Schouten et al., 2000; Jenkyns et al., 2001) (Figure 11). Dominance of 

Tasmanites in anoxic sediments and “marine peats” suggests that these cysts can survive 

in restricted and/or anaerobic habitats, even when all or most other organisms do not 

survive (Williams, 1978). At the same time, massive release of methane and oxygen 

consumption in the water-column altered the alkalinity of the ocean and strongly 

affected the benthic communities that experienced a mass extinction (see Wignall, 2001 

for a synthesis). 

 

4. Discussion and conclusions 

Calcareous nannofossil assemblages display analogies and differences during the 

early Aptian OAE1a, latest Cenomanian OAE2 and the Toarcian OAE (Table 1). In 

these three cases, changes in abundance and composition precede the δ13C anomaly and 

deposition of Corg-rich sediments (Erba, 1993). Therefore, nannoplankton responded to 

the early phases of palaeoenvironmental variations and continued to trace the 

perturbation in the ocean/atmosphere system during OAEs. Phytoplankton (and 

zooplankton) changes are here interpreted as the response of the biosphere to increasing 

fertility, culminating in the high-productivity event coincident with OAEs. A shift to 

meso- and eutrophic conditions in surface waters is supported by crises of the 

oligotrophic schizosphaerellids and nannoconids during the Toarcian OAE and OAE1a, 

respectively. Patterns of Biscutum and other nannofossil fertility indicators apparently 

contradict the productivity model proposed for OAE2. As stressed above, perhaps 

fertility became so high that only the most opportunistic nannoplankton taxa continued 

to thrive. Another explanation for the temporary absence of Biscutum and extinctions of 

several nannofossil taxa, might be excess quantities of toxic metals that affected specific 

coccolithophores. Because the nannoconid decline and crisis correlate with metal peaks, 

perhaps toxic metals might also have inhibited nannoconids in the late Barremian-early 

Aptian interval.  
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Since enhanced primary productivity is the most accepted explanation for OAE1a, 

OAE2 and the Toarcian OAE (see Jenkyns, 1999 for a synthesis), a mechanism capable 

of triggering eutrophism at a global scale must be found. Coastal nutrification due to 

increased continental weathering and run-off and/or local upwelling cannot explain high 

productivity documented in remote parts of large oceans during the early Aptian and 

latest Cenomanian. High-resolution studies of sedimentary successions representing 

OAE1a and OAE2 show trace-metal peaks coincident with major biotic changes 

reported before and during these events (Brumsack, 1980; Arthur et al., 1990; Larson & 

Erba, 1999; Snow & Duncan, 2002; Turgeon et al., 2002). Thus, increasing geological 

evidence suggests that OAE1a and OAE2 were mainly oceanic productivity events, 

largely controlled by submarine eruptions (Figure 12). Higher trophic levels were 

essentially induced and maintained by hydrothermal inputs of biolimiting metals (e.g., 

Fe, Zn) during the construction of the Ontong Java and Caribbean Plateaus, that also 

affected the ocean dynamics by warming deep- and intermediate-waters, causing more 

efficient nutrient cycling (warm upwelling) (Wilson & Norris, 2001; Bice & Poulsen, 

2002).  

Because there is no oceanic record in situ of the Toarcian OAE, high primary 

productivity might have occurred only in marginal environments due to coastal 

upwelling and nutrient transport by rivers into the oceans. This is the expected scenario 

during times of subaerial volcanism such as the formation of the Karoo-Ferrar Traps 

(Jenkyns, 1999). However, Monaco et al. (1999) report peculiar enrichments of trace 

metals in black shales representing the Toarcian OAE in central Italy. Such findings are 

possibly suggestive of metals resedimented from continents and/or a coeval submarine 

igneous event that might have introduced biolimiting metals causing changes in 

plankton productivity similar to those that occurred in the early Aptian and 

Cenomanian/Turonian boundary intervals. A drop in the 87Sr/86Sr curve close to the 

Pliesbachian/Toarcian boundary interval is consistent with the second hypothesis. 

The three global OAEs are characterized by a carbonate crisis, both in pelagic and 

neritic environments, during times of extreme greenhouse conditions (Figure 12) 
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(Weissert et al., 1998; Cobianchi & Picotti, 2001; Herrle & Mutterlose, 2003). By 

analogy with extant communities, excess volcanogenic CO2 most probably inhibited 

biocalcification in calcareous nannoplankton (see Riebesell et al., 2000) and planktonic 

foraminifers (Barker & Elderfield, 2002), as well as in reef communities (see Langdon 

et al., 2000). Carbonate sedimentation resumed after excess CO2 was drawn down by 

accelerated weathering and burial of organic matter, and perhaps nutrient supply slowed 

down as well. 

The negative spike at the base of the δ13C excursion, documented for both OAE1a 

and the Toarcian OAE, is interpreted as a massive methane release due to global 

warming (see Beerling et al., 2002 for a synthesis). In both cases, absence or rarity of 

calcareous nannofossils in sediments corresponding to the negative δ13C spike is 

interpreted as the dissolution event caused by methane melting and change in alkalinity 

hampering biocalcification and shallowing the CCD. 

A negative δ13C shift has not been documented for OAE2, and consequently gas-

hydrate melting did not concur with the perturbation of marine ecosystems in the 

Cenomanian/Turonian boundary interval, suggesting that methane release is not 

necessary for oceanic anoxia. The global carbonate decrease, expressed as deposition of 

large quantities of organic matter and temporarily biosiliceous sediments, was possibly 

caused by a combination of excess volcanogenic CO2, preventing biocalcification in 

nannoplankton (and foraminifers), and eutrophic conditions favouring organic-walled 

and siliceous plankton. 

Nannofossil evolutionary patterns are similar for the Toarcian OAE and OAE1a, 

which are both preceded by a speciation event and are not characterized by extinctions. 

On the contrary, a turnover characterizes nannofossil assemblages during OAE2, when 

several species disappeared, one after the other and then new species originated. The 

environmental perturbations during the Toarcian and the Aptian had, therefore, positive 

effects on calcareous nannoplankton and stimulated speciation. Perhaps much more 

extreme conditions during OAE2 negatively affected nannofloras. 
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FIGURE and TABLE  CAPTIONS 
 
Fig. 1. Cretaceous OAEs plotted against magneto-, bio- and chemo-stratigraphy. 

Nannofossil and planktonic foraminiferal biostratigraphy after Bralower et al. 

(1995), Erba et al. (1995), Premoli Silva & Sliter (1999). Simplified δ18O and 

δ13C curves after Lini (1994), Erbacher (1994), Jenkyns et al. (1994), Menegatti 
et al. (1998), Weissert et al. (1998), Clarke & Jenkyns (1999), Erba et al. 
(1999), Herrle (2002). Timescale after Gradstein et al. (1995). Duration of 
OAEs: Weissert OAE after Erba et al. (2004), OAE1a after Opdyke et al. 
(submitted), OAE1b after Herrle (2002), OAE1c after (Herbert & Fischer, 
1986), OAE1c after Wilson & Norris (2001), OAE2 after Kuypers et al. 
(2002). 

 
Fig. 2. Synthesis of major biotic and geological events in the late Barremian-Aptian 

interval. Nannofossil speciation: 1= FO of F. oblongus, 2 = FO of R. 
irregularis, 3 = FO of R. gallagheri, 4 = FO of N. truittii, 5 = FO of A. 
infracretacea larsonii, 6 = FO of R. terebrodentarius youngii, 7 = FO of R. 
angustus, 8 = FO of F. varolii, 9 = FO of E. floralis, 10 = FO of R. planus, 11 
= FO of C. acutum, 12 = FO of B. hockwoldensis, 13 = FO of B. africana, 14 = 
FO of D. striatus (after Bralower et al., 1995; Erba, 1996; Bown et al., 1998; 
Herrle, 2002). 

  
Fig. 3. Phytoplankton changes in the latest Barremian – early Aptian interval 

(OAE1a). 
 
Fig. 4. Synthesis of nannofossil changes across the early Aptian OAE1a. Timescale 

after Gradstein et al. (1995); δ13C curve after Erba et al. (1999) and Weissert et 
al. (1998); 87Sr/86Sr curve after Jones & Jenkyns (2001); ages of Ontong Java 
Plateau (=OJP) and Kerguelen LIP after Larson & Erba (1999) and Duncan 
(2002); Metal peaks after Larson & Erba (1999) and Duncan (pers.comm.); 
nannofossil paleofluxes and pCO2 after Erba & Tremolada (2004); other 
nannofossil events after Erba (1994) and Tremolada & Erba (2002). 

 
Fig. 5. Changes in nannofossil total abundance and species richness, percentages of 

Biscutum, variations of the fertility index and abundance peaks of E. floralis in 
the OAE2 interval of the Eastbourne area (southern England) (after Lamolda et 
al., 1994; Paul et al., 1999; Gale et al., 2000), plotted against litho, bio-, and C 
isotopic stratigraphy. Lithostratigraphy (chalk intervals are shown as white, 
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marls as stippled) and ammonites after Gale et al. (2000);. δ13C curve, 
nannofossil and planktonic foraminiferal biostratigraphy after Tsikos et al. (in 
press). 

 
Fig. 6. Changes in nannofossil abundance and species richness and percentages of 

Biscutum, Zeugrhabdotus, Nannoconus and E. floralis in the OAE2 interval at 
Gubbio (central Italy), plotted against litho, bio-, and C isotopic stratigraphy. 

δ13C curve, nannofossil and planktonic foraminiferal biostratigraphy after 
Tsikos et al. (in press) 

 
 
Fig. 7. Synthesis of nannofossil changes across the latest Cenomanian OAE2. 

Nannofossil and planktonic foraminiferal biostratigraphy after Bralower et al. 
(1995) and Erba et al. (1995). Timescale after Gradstein et al. (1995); 87Sr/86Sr 
curve after Jones and Jenkyns (2001); age of Caribbean Plateau after Duncan & 
Bralower (2002); metal peaks after Turgeon et al. (2002) and Turgeon 
(pers.comm.); nannofossil events after Paul et al. (1999), Gale et al. (2000), 
and Erba (this study). 

 
Fig. 8. Nannofossil changes in the Pliensbachian-Aalenian interval of the Breggia 

section (after Picotti & Cobianchi, 1996).  
 
Fig. 9. Nannofossil changes in the Pliensbachian-Aalenian interval of the Colle di 

Sogno section (Erba, this paper). δ13C and δ18O curves after Jenkyns & Clayton 
(1986). 

Fig. 10. Synthesis of nannofossil changes across the Toarcian OAE. Nannofossil 
speciation: 1= FO of B. finchii, 2 = FO of L. hauffii, 3 = FO of L. barozii, 4 = 
FO of Calyculus spp., 5= FO of L. sigillatus, 6 = FO of C. poulnabronei, 7 = 
FO of C. cantaluppii, 8 = FO of C. crucicentralis, 9 = FO of C. superbus, 10 = 
FO of L. velatus, 11 = FO of D. ignotus, 12 = FO of W. colacicchii, 13 = FO of 
W. fossacincta, 14 = FO of D. striatus (after Mattioli and Erba, 1999). 
Timescale after Gradstein et al. (1995); age of Karoo-Ferrar Traps after 
Duncan et al. (1997), Palfy et al. (1997) and Wignall (2001). 

 
Fig. 11. Phytoplankton changes in the late Pliensbachian-early Toarcian interval  

(Toarcian OAE). 
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Fig. 12 . Processes that might relate igneous events to biological and geological 
responses eventually recorded in marine sediments. Modified after Larson & 
Erba (1999). 

 
 
 
Table 1. Comparison of OAE2, OAE1a and the Toarcian OAE. Duration of OAEs: 

OAE1a after Opdyke et al. (submitted), OAE2 after  Kuypers et al. (2002), 
Toarcian OAE after Hesselbo et al. (2000). 
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