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Abstract: The physics that governs quantum monitoring
may involve other degrees of freedom than the ones ini-
tialised and controlled for probing. In this context we ad-
dress the simultaneous estimationof phase anddephasing
characterizing a dispersive medium, and we explore the
role of frequency correlations within a photon pair gen-
erated via parametric down-conversion, when used as a
probe for the medium. We derive the ultimate quantum
limits on the estimation of the two parameters, by calcu-
lating the corresponding quantum Cramér-Rao bound; we
then consider a feasible estimation scheme, based on the
measurement of Stokes operators, andaddress its absolute
performances in terms of the correlation parameters, and,
more fundamentally, of the role played by correlations in
the simultaneous achievability of the quantum Cramér-
Rao bounds for each of the two parameters.

Quantum light provides a gentler touch when observ-
ing fragile samples [1–3]. While typically all the informa-
tion needed can be e�ciently collected through a single
parameter [4, 5], there are instances in which two param-
eters or more are necessary to capture the physical pro-
cess under study [6–8]. Such parameters might not be as-
sociated to compatible observables, hence trade-o� may
appear in attempts at simultaneously measuring them at
the ultimate quantum precision, especially when restric-
tions are imposed on the resources or, in other words, to
the available Hilbert space [7, 9–15].
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These trade-o� can be interpreted, and often circum-
vented, by understanding the estimation process under
the geometrical standpoint by identifying the physical car-
rier of information with their state vectors [13]; however,
quantum probes only partly approximate such geometric
entities, since these typically describe one degree of free-
dom at the time. The interactionwith the samplemight ac-
tually depend on other degrees of freedom, on which we
might have limited control. A relevant example is given by
dispersion e�ects in phase estimation: if the phase under
observation depends on the optical frequency of a pho-
tonic probe, the adoption of broad bandwidths would re-
sult in dephasing [13, 17–19]. An e�cient way to tackle this
is a joint estimation of the mean phase together with the
characteristic width of the dephasing.

Single photons from down-conversion are often em-
ployed as buildingblocks of quantum light probes [20–24].
These are produced in pairs that, under standard condi-
tions, share frequency entanglement as a consequence of
energy conservation in the generation process [25–33] .
In this article we calculate what impact such frequency
correlation might have on the joint estimation of phase
and dephasing in dispersive elements. Our study found
that di�erences arise if one considers correlated and anti-
correlated photon pairs, particularly showing how anti-
correlated photons result as more interesting resources to
be employed in such noisy phase estimation problem.

The manuscript is organized as follows: in Sec. 1 we
brie�y review quantum estimation theory, in Sec. 2 we in-
troduce our physical setting, i.e. photon pairs generated
via parametric down-conversion. In Secs. 3 and 4 we re-
spectively present the ultimate limits on the estimation of
phase and dephasing via correlated photons, and the per-
formances of a feasiblemeasurement schemebased on the
measurement of Stokes operators. Sec. 5 concludes the pa-
per with some �nal remarks and discussion.
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1 Multi-parameter quantum
estimation theory

Let us consider a quantum state ϱϕ characterized by a vec-
tor of d unknownparametersϕ = {ϕ1, ϕ2, . . . , ϕd}. In or-
der to estimate their value, a quantummeasurement is per-
formed, described by POVM operators {Πx}; the whole es-
timation process is then purely classical, described by the
conditional probability distribution p(x|ϕ) = Tr[ϱϕΠx]
and the ultimate limits on the estimation are posed by the
(multi-parameter) classical Cramér-Rao bound

Covϕ̃ ≥ 1
MF−1(ϕ) . (1)

We have introduced the covariance of any unbiased esti-
mator Covϕ̃jk = E[(ϕ̃j − ϕj)(ϕ̃k − ϕk)], whereE[·] denotes
the average over the probability distribution p(x|ϕ), and
F(ϕ) the Fisher information (FI) matrix, whose elements
are evaluated as

Fjk(ϕ) = E
[(
∂j log p(x|ϕ)

) (
∂k log p(x|ϕ)

)]
(2)

with ∂j denoting the partial derivative respect to the pa-
rameter ϕj. The bound above is always achievable, as un-
biased optimal estimators exist allowing to saturate the in-
equality (1) in the limit of large number of measurements
M.
In the quantum setting the following more fundamental
bound holds,

Covϕ̃ ≥ 1
MF−1(ϕ) ≥ 1

MQ−1(ϕ) (3)

where Q(ϕ) is the quantum Fisher information (QFI) ma-
trix, with elements

Qjk(ϕ) = Tr[ϱϕ(LjLk + LkLj)]/2 , (4)

where {Lj} denote the symmetric logarithmic deriva-
tive (SLD) operators, implicitly de�ned by the equation
2∂jϱϕ = Ljϱϕ + ϱϕLj. We remark that the inequalities in
(3) should be understood as matrix inequalities, but they
can be straightforwardly translated to standard inequali-
ties involving only variances for each parameter as∑

j
Var(ϕj) ≥

1
MTr[F−1(ϕ)] ≥ 1

MTr[Q−1(ϕ)] . (5)

Moreover, the following bounds hold for each single pa-
rameter, Var(ϕj) ≥ 1

MF
−1
jj (ϕ) ≥ 1

MQ
−1
jj (ϕ).

In the single-parameter scenario the ultimate quantum
bound is always achievable, i.e. the existence of POVM
such that the corresponding Fisher information is F(ϕ) =

Q(ϕ), is guaranteed; in particular this POVM can be eas-
ily identi�ed as the eigenbasis of the SLD operator Lϕ. On
the other hand, in the multi-parameter case, the quan-
tum Cramér-Rao boundmay not be achievable, as optimal
measurements for di�erent parameters may correspond to
non-commuting observables. A necessary and su�cient
condition for simultaneous achievability of the quantum
Cramér-Rao bound (3) is formulated in terms of the follow-
ing weak-commutativity condition [8]

Tr[ϱϕ[Lj , Lk]] = 0 ∀ {ϕj , ϕk} . (6)

This, however could imply that the optimal estimation
is obtained by performing collective measurements on n
copies of the input states ϱ⊗nϕ [13, 34].
In order to better study the trade-o� in simultaneous es-
timation of quantum parameters, the following �gure of
merit has been introduced and studied in detail [9, 13, 34,
35]:

Υ = Tr[F(ϕ)Q−1(ϕ)] ≤ d , (7)

where the upper bound is a consequence of the quantum
Cramér-Rao inequality (3). Notice that, for diagonal classi-
cal andquantumFImatrices, the quantityΥ canbewritten
in the simple form Υ =

∑
j Fjj(ϕ)/Hjj(ϕ).

If one considers single-qubit states, and only separable
measurements (that is acting separately on each copy of
the input state ϱϕ), one proves that Υ ≤ 1, no matter the
number of parameters to be estimated [9, 13, 35]. In order
to violate this inequality one is then left with two possible
options: either consider non-separable (entangling) mea-
surements, as suggested above and investigated in [34], or
to consider states de�ned in a larger Hilbert space [7], as,
for instance, correlated two-qubit probes that we will con-
sider in the following.

2 The physical setting
The starting point of our analysis is the quantum state that
describes a pair of photons generated during a parametric
down-conversion process:

|Ψ0〉 =
∫
dω1dω2 Φ(ω1, ω2)|ω1, D〉 ⊗ |ω2, D〉 (8)

where Φ(ω1, ω2) is the spectral wavefunction, and |ω, D〉
identi�es a photon at frequency ω with diagonal polari-
sation. Since we are interested in monitoring a dispersive
medium with both copies, we consider the case where the
two photons have nearly-degenerate frequencies; follow-
ing the passage in the sample, the state is transformed as:
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|Ψ〉 =
∫
dω1dω2 Φ(ω1, ω2)|ψ1〉 ⊗ |ψ2〉 , (9)

where

|ψi〉 =
eih(ωi)|ωi , H〉 + eiv(ωi)|ωi , V〉√

2
, (10)

while h(ω) and v(ω) are the phases acquired respectively
by the horizontal |H〉 and vertical |V〉 components.

Since the detection is frequency-insensitive, one
needs to trace out the spectral part, and only consider the
polarisation subspace:

ρϕ =TrΩ[|Ψ〉〈Ψ |]

=
∫
dω1dω2|Φ(ω1, ω2)|2ϱ1(ω1)⊗ ϱ2(ω2) (11)

where

ϱi(ωi) =
|Hi〉〈Hi| + |Vi〉〈Vi| + ei∆i |Vi〉〈Hi| + e−i∆i |Hi〉〈Vi|

2
= 1
2
(
I + cos ∆i σ̂x + sin ∆i σ̂y

)
. (12)

In the formula above we have used the shortcut nota-
tion |Hi〉 = |ωi , H〉, |Vi〉 = |ωi , V〉, and ∆i = ∆(ωi) =
v(ωi) − h(ωi) with i = 1, 2, introducing the Pauli opera-
tors σ̂x =

( 0 1
1 0
)
, σ̂y =

( 0 −i
i 0
)
. We notice from Eq. (11) that,

by acting with the trace, we are only sensitive to classi-
cal correlations in frequency, hence oblivious of the pres-
ence of coherence. Based on this decomposition, the rele-
vant parameter to be assessed is the phase di�erence ∆i,
which is typically inferred bymeasuring the Stokes opera-
tors X̂i = 2|Di〉〈Di|−I, and Ŷi = 2|Ri〉〈Ri|−I (|R〉 is the right-
circular polarisation), on each photon of the pair. Hence,
we can write the expectation values for the Stokes opera-
tors, for instance as:

〈X̂1X̂2〉 =
∫
dω1dω2|Φ(ω1, ω2)|2 cos(∆(ω1)) cos(∆(ω2)) .

(13)
In this manuscript we will restrict to spectral wavefunc-
tions of the form

|Φ(ω1, ω2)|2 =
e−(ω1−ω2)2/(2σ2−)e−(ω1+ω2−2ω0)2/(2σ2+)

πσ+σ−
(14)

where
σ2± = 2σ2(1 ± ϵ) , −1 ≤ ϵ ≤ 1 . (15)

Even if these functions do not constitute the most general
expression for correlated photons, they are su�cient to
capture the basic features of our problem while allowing
for simple analytical expression. For ϵ = 0 the two pho-
tons are uncorrelated, i.e.

|Φ(ω1, ω2)|2 =
2∏
j=1

e−(ωj−ω0)/(2σ2)√
2πσ2

, (16)

while for ϵ = ±1 the spectral wavefunction in Eq. (14) con-
verges to a Gaussianmultiplied by a delta function, i.e. the
photons are perfectly correlated or anti-correlated in fre-
quency, respectively.
We can now Taylor expand the phase di�erence ∆(ω)
around the central frequency of the photons ω0 up to �rst
order

∆(ω) ≈ ϕ0 + ϕ1(ω − ω0) . (17)

Here ϕ0 is the average value normally considered in phase
estimation problems, while ϕ1 is the �rst term that ap-
pears due to dispersion in the medium, and is typically re-
sponsible for phase di�usion on the qubit state. In the fol-
lowing we will focus on the joint estimation of these two
parameters, studying in detail the role played by the cor-
relations between the two photons.

3 Ultimate quantum bounds on
phase and dephasing estimation
with correlated pair of photons

In this section we will discuss the ultimate bounds posed
by the QFI matrix for the parameters ϕ = {ϕ0, ϕ1}, con-
sidering the input state ρ in Eq. (11). The SLD operators Lϕ0

and Lϕ1 can be evaluated (at least numerically) by means
of the formula [6]

Lϕj = 2
∑
s,t

〈λs|∂jϱϕ|λt〉
λs + λt

|λs〉〈λt| , (18)

where {|λs〉} and {λs} are eigenvectors and correspond-
ing eigenvalues of the quantum state ϱϕ. The QFI matrix
elements are straightforwardly evaluated as in Eq. (4).
We numerically obtain that the o�-diagonal elements are
zero, so that the diagonal elements directly quantify the
ultimate precision achievable on each of the two param-
eters. We remind that these limits may be achieved in the
single-parameter scenario, that is if the value of the other
parameter characterizing the quantum state is already
known.

We start by focusing on the estimation of the phase
ϕ0: in Fig. 1 we plot the QFI element Q0,0(ϕ) as a func-
tion of ϵ for di�erent values of ϕ1 (notice that we nu-
merically checked that Q0,0 is independent on the value
of ϕ0). We observe how the value of the corresponding
QFI is, as expected, monotonically decreasingwith the de-
phasing parameter ϕ1. Remarkably we also conclude that
the QFI is monotonically decreasing with ϵ, that is anti-
correlated photons are more sensitive to small variations
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Figure 1: QFI matrix element Q0,0(ϕ) as a function of the correla-
tions parameter ϵ, for σ2 = 1 and for di�erent values of dephasing.
From top to bottom ϕ1 = {0.1, 0.5, 1, 2}. We checked numerically
that Q1,1(ϕ) is indipendent on the value of the phase ϕ0.

of ϕ0, whenever some dephasing due to the dispersive
medium acts on them. One also obtains that, for a maxi-
mally anti-correlated state (i.e. for ϵ = −1) the QFI seems
to be independent on ϕ1, and equal to its maximum value
Q0,0 = 2.

We now address the estimation of the dephasing pa-
rameter ϕ1 at �xed (and known) values of ϕ0. In Fig. 2
we plot as above the corresponding QFI element Q1,1 as a
function of the correlation parameter ϵ for di�erent values
of ϕ1. Also in this case the QFI matrix element monoton-
ically decreases, as we expected, with the noisy parame-
ter ϕ1. However the behaviour as a function of ϵ depends
on the particular value of the dephasing: for small values
of ϕ1, uncorrelated states result to be the optimal state,
that is Q1,1 is maximized for ϵ = 0. On the other hand, for
ϕ1 larger than a critical value ϕ*1, twomaxima appears for
symmetric values of ϵ, showing how correlation may en-
hance the estimation of the parameter.

4 A feasible measurement scheme:
single-parameter and
multi-parameter estimation

We now consider a feasible estimation scheme, based on
the measurement of the Stokes operators X̂ and Ŷ on each
photon. Mathematically it is described by (multi-indexed)
POVM operators {Πjk = πj ⊗ πk}, where

{πj} =
{
|D〉〈D|
2 , |A〉〈A|2 , |R〉〈R|2 , |L〉〈L|2

}
(19)
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Figure 2: QFI matrix element Q1,1(ϕ) as a function of the correla-
tions parameter ϵ, for σ2 = 1 and for di�erent values of dephasing.
From top to bottom ϕ1 = {0.1, 0.5, 1, 2}. We checked numerically
that Q1,1(ϕ) is indipendent on the value of the phase ϕ0.

is a POVM acting on the single photon, physically corre-
sponding to measuring half of the times X̂ and half of the
times Ŷ. From the conditional probabilities p(jk|ϕ) =
Tr[ϱΠjk] one can straightforwardly evaluate the corre-
sponding classical Fisher Information matrix. In the fol-
lowing we will restrict ourselves to the case ϕ0 = kπ/4,
where we numerically obtain that the o�-diagonal matrix
are equal to zero. Other schemes based on theuse of entan-
glingmeasurements can o�er in principle an advantage in
the joint parameter estimation, however their usefulness
is limited to the low-dephasing regime [34]. We start by
discussing, as in the previous section, the estimation of
each single parameter, assuming that the other parame-
ter is known. Given the nature of the POVM, designed in
order to gain information on both ϕ0 and ϕ1, the single
Cramér-Rao bounds will not be saturated, however we are
interested in studying inmore detail the role played by the
correlations for this particular estimation strategy, start-
ing from the single-parameter scenario.
In Fig. 3 we plot the FImatrix element F0,0(ϕ) correspond-
ing to the estimation of the phase ϕ0, as a function of ϵ
and for di�erent values of dephasing. As for the QFI, we
obtain that F0,0(ϕ) is monotonically decreasing both with
the dephasing ϕ1 and with the correlation parameter ϵ,
showing how anti-correlated photons are more sensitive
to small variation of the phase, as predicted also by the
QFI calculations.
Similarly, in Fig. 4 we plot the FI F1,1(ϕ) corresponding
to the estimation of the dephasing parameter ϕ1; while,
as we expected also in this case the Fisher information is
monotonically decreasing with ϕ1, its behaviour is sym-
metric for positive or negative values of ϵ and three dif-
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Figure 3: FI matrix element F0,0(ϕ) for the Stokes-operators based
POVM {Πjk}, as a function of the correlations parameter ϵ, for σ2 =
1, ϕ0 = kπ/4, and for di�erent values of dephasing. From top to
bottom ϕ1 = {0.1, 0.5, 1, 2}.
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Figure 4: FI matrix element F1,1(ϕ) for the Stokes-operators based
POVM {Πjk}, as a function of the correlations parameter ϵ, for σ2 =
1, ϕ0 = kπ/4, and for di�erent values of dephasing. From top to
bottom ϕ1 = {0.1, 0.5, 1, 1.5, 2}.

ferent regimes can be identi�ed: for small values of ϕ1
optimality is achieved for maximally correlated or anti-
correlated photons (i.e. for ϵ = ±1); for intermediate de-
phasing, uncorrelated states are optimal, while for larger
ϕ1 two symmetric maxima appeared for the FI, in corre-
spondence of two values of ϵ = ±ϵ̃, with 0 < ϵ̃ < 1.

We now address themore fundamental problem of the
joint estimation of the twoparameters via the POVM {Πjk},
studying the behaviour of the �gure of merit Υ de�ned in
Eq. (7). The behaviour of Υ as a function of ϵ for di�erent
values of ϕ1 is plotted in Fig. 5. For ϵ = 0 the two qubits
are uncorrelated and we are left with the same situation
described in [13], such that Υ = 1. On the other hand we
observe that for correlated photons, in particular for ϵ > 0

-��� -��� ��� ��� ���

���

���

���

���

���

���

ϵ

Υ

Figure 5: Joint-estimation �gure of merit Υ , as a function of the
correlations parameter ϵ, for σ2 = 1, ϕ0 = kπ/4, and for di�erent
values of dephasing: red-solid line, ϕ1 = 0.1; green-dashed line,
ϕ1 = 1; blue-dotted line, ϕ1 = 2.

it is possible to surpass the single-qubit bound, and that
in particular the largest values of Υ are obtained for ϵ = 1.

5 Conclusion
Phase estimation in dispersive samples is a�ected by fre-
quency correlations introducing non-classical coupling.
This has consequences on the precision limit achievable
with the quantum metrological scheme. The estimation
strategy usually aims at �nding the optimal measurement
to saturates the corresponding Cramér-Rao bound. How-
ever, when dealing with multi-parameter scenarios, the
situation is further complicated and one should study the
behaviour of all the interested �gures ofmerit (i.e.F,Q and
Υ ).
The results we have presented illustrate how both the FI
matrix and the QFI matrix depend on the input state ϱϕ,
and in particular on the correlation parameter ϵ. Our anal-
ysis reveals that there exist cases in whichmaximising the
estimability by maximising Υ does not necessarily corre-
spond to achieving maximal information. In fact in Fig.
5 we show that values of Υ larger than the single photon
bound are observed for ϵ > 0; however, we previously
showed that the Fisher Information on the phase ϕ0 is im-
proved for anti-correlated pairs, i.e. for ϵ < 0.

This increase can be related to the capabilities of dis-
persion cancellation in optical coherence tomography us-
ing the Hong-Ou-Mandel e�ect [37–41]; in these case as
well, more information, in the form of improved spatial
resolution can be achieved when using frequency anti-
correlated photon pairs, although in an interferometric
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setup. Remarkably, the advantage relies on frequency an-
ticorrelation rather than on entanglement, as recently
demonstrated in experiments [37]. In general, we remark
that it is typically advantageous to consider the most in-
formative state regardless the saturability of the associated
QCRBs for each single parameter.

From an alternative perspective, we can consider that
frequency correlations in the initial photon pair results in
correlated noise on the two photons during the estima-
tion. The improvement we predict is consistent with the
capability of correlated noisy channels to bring about non-
classical features, as in [36]. In conclusion we have dis-
cussed how a physical property of photon pairs, namely
their frequency correlations, should be taken into account
when one studies their use for phase estimation. This ex-
ample highlights how the presence of correlations in the
probe states determines not only the saturability of the
QCRB, but also, independently, the amount of information
on the individual parameters.
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