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Abstract 

Proteins employ the information stored in the genetic code and translated into their sequences to 

carry out well-defined functions in the cellular environment. The possibility to encode for such 

functions is controlled by the balance between the amount of information supplied by the sequence 

and that left after that the protein has folded into its structure. We study the amount of information 

necessary to specify the protein structure, providing an estimate that keeps into account the 

thermodynamic properties of protein folding. We thus show that the information remaining in the 

protein sequence after encoding for its structure (the ‘information gap’) is very close to what 

needed to encode for its function and interactions. Then, by predicting the information gap directly 

from the protein sequence, we show that it may be possible to use these insights from information 

theory to discriminate between ordered and disordered proteins, to identify unknown functions, 

and to optimize artificially-designed protein sequences. 

 

Introduction 

Proteins have evolved to perform efficiently their biological functions within a complex 

environment where they coexist with myriad other molecules1. As a consequence, their amino acid 

sequences include information not only about their structures and functions but also about their 

interactions with a variety of cellular components, including in particular those required for their 

homeostasis.  

The interpretation of proteins as part of the flow of information from the genetic code to cellular 

metabolism dates back at least to Francis Crick’s central dogma of molecular biology2. Anfinsen’s 

experiments3 clarified one crucial step of this flow - that of going from the protein sequence to its 

native structure. Since then, information theory has been widely used to investigate protein 
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folding4-9. The general strategy has been to evaluate the number of bits necessary to describe the 

native state of a protein and compare it with that encoded by its sequence.  

In parallel, in the last several decades, many other aspects of the physics of protein folding have 

been understood. In particular, it became apparent that proteins are ‘frustrated’, as many 

potentially conflicting requirements, including their structures, functions, and the avoidance of 

misfolding and aggregation, enter in the stabilization of their ground states10-14. As a consequence, 

most proteins are stabilized cooperatively10,15,16, with a burden that is typically distributed among 

a minority of residues17. In addition, their folding follows a nucleation mechanism driven by a 

small subset of residues18-21, in which the correct placing of these few is sufficient to find rapidly 

the native state.  

The physical properties of proteins determine to a large extent the amount of information that 

should be stored in their sequences. For example, the polypeptide nature of these molecules allows 

one to describe the position of each triplet of backbone atoms essentially with two dihedrals instead 

that with nine Cartesian coordinates, thus making use of less sequence-encoded information. This 

is the core of the approach followed in ref. 5, where for a simple lattice model of proteins, the 

amount of information needed to specify the native structure was found to be 0.5 bit per residue.  

To elucidate quantitatively how proteins can be endowed with these properties, we calculated 

how the information content in their sequences is partitioned between their structural and 

functional properties and is thus optimized to confer them the ability to be functional in complex 

environments. 

The goal of the present work is to investigate the flow of information from sequence to structure, 

and eventually to function, of single-domain proteins. For a given protein, we calculated the 

amount of information Kseq 22 provided by its sequence and we compared it with the amount of 
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information Kstruct needed to define its structure, calculated from the minimum number of physical 

contacts that define univocally the native structure. With this procedure we built a isomorphism 

from sequence to structure space, and thus made the associated entropies comparable23. Following 

this strategy, we expressed Anfinsen’s hypothesis3, that the native structure of a protein is 

completely encoded in its sequence corresponds, as the simple rule: Kseq > Kstruct.  

We then investigated how proteins exploit the information gap (defined as DK = Kseq - Kstruct) 

between sequence and structure. This gap should be important as proteins, after folding into their 

native states, should perform their functions and should do so in a crowded and highly-regulated 

environment. Some residues on the surface of the protein should then be allocated as binding sites 

for other molecules; such residues are very specific, as suggested by the fact that they are highly 

conserved in orthologous proteins24, and thus they are expected to require a large amount of 

information to be carefully specified. Moreover, proteins should fit the cellular homeostasis, and 

consequently should avoid aggregation and should be eventually degraded. These processes 

require additional information. We define Kcell as the total information needed to account for all 

the requirements associated with the role of a protein in the cell homeostasis. In the Methods 

section below, we propose simple numerical estimates of the different terms that contribute to Kcell, 

based on the analysis of features that can be obtained straightforwardly for any known protein. 

Our main result, based on these estimates, is that Kseq ≈ Kstruct + Kcell (i.e. DK = Kcell) for all the 

proteins we studied, namely that the effect of evolution and obedience to physical laws25 seems to 

make the information content of protein sequences perfectly optimized to carry out their biological 

functions. Furthermore, we showed that it is possible to calculate the information gap of a protein 

given only its sequence. This calculation allowed us to distinguish ordered and disordered proteins 
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and could in principle be a measure to identify unknown functions in proteins and a further tool 

for sequence optimization in protein design. 

 

Methods 

Protein sequences {𝜎#}	 are stored in the genes of the organism and expressed through their 

transcription and translation; the amount of information necessary to specify a sequence is given 

by the self-information −log*	𝑓({𝜎#}), where 𝑓({𝜎#}) is the a priori probability26 of the sequence 

{𝜎#}, that is its measure in the space of the viable sequences (viable from the point of view of gene 

encoding, independently on their folding and function). The coding theorem27 states that for long 

sequences the self-information approximates the Kolmogorov complexity, that is the minimum 

number of bits necessary to encode for the sequence. 

To quantify the a priori probability, one can assume that amino acids are uncorrelated, and thus 

𝑓({𝜎#}) = ∏ f(σ2)# , where f(σ) is the cellular frequency of the residue of type s. This assumption 

follows from the fact that the a priori probability only accounts for how sequences are generated 

from the genome through transcription and translation (as from an Universal Turing Machine26), 

independently of how this information will be used. Indeed, protein sequences can display 

correlations28, but these arise a posteriori because only some of all the viable sequences are 

selected by evolution to have specific features (such as to fold to a unique structure), and do not 

contribute to the a priori probability, which only reflects genetic encoding, cellular transcription 

and translation.  

The amount of information associated with the sequence of each protein can thus be written as 

K456 = −∑ log* f(σ2)8
29: .       (1) 
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This is analogous to the quantification of the amount of information carried by sequences of letters 

that form words in natural languages29, with the important difference that words display 

correlations a priori, for example due to the need of alternating vowels and consonants. 

The amount of information needed to encode for the structure of a protein is defined from the 

minimum amount of (discrete) constraints that confine a protein in its native state, keeping its 

RMSD below a given threshold. It consists of two contributions, and is defined as  

K4;< = K;5< + K>?@.        (2) 

Kter is the entropy associated to the tertiary structure of the protein and is given by the sum of a 

statistical and a multiplicity term as 

K;5< = K4;A; + KBC>  	

									= 	−∑ log* p(σ, τ) + ∑ log*(nHnI)J
(H,I)9:

J
(H,I)9:   

									= 	−∑ log*
K(H,I)
LMLN

J
(H,I)9: ,      (3) 

where C is the minimum number of constraints to be set on the protein three-dimensional 

arrangement in order to keep it folded, p(σ, τ) is the probability to have a constraint between two 

residues of type σ and τ within the minimum set of constraints as obtained from contact statistics 

on the PDB30 and nH	is the number of residues of type s (the product nHnI is proportional to the 

information cost to be paid to select the correct constraint among all possible combinations).  

The calculation of the minimal set C of contacts that defines the native state is the most 

computationally intensive step of the procedure and is obtained with an iterative Monte Carlo 

algorithm (see Supplementary Information). Several minimization trajectories were computed 

using the algorithm (see Fig. S1 as an example for the villin headpiece). Although the value C 

obtained in the minimization is always the same, the individual contacts can be slightly different 

(typically in hairpins contact i-j can be substituted by i-(j±1), see Table S1). Since Kter depends 
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also on the kind of residues in the minimal set (cf. Eq. (3)), this gives some variability in the 

estimate of Kter . For example, in the case of villin we obtained 𝐾PQR = 111.34 ± 5.6	𝑏𝑖𝑡𝑠 (see caption 

of Table S1), corresponding to a relative error of »5%.  

The second contribution to the structural algorithmic entropy, the one associated with the 

secondary structure K>?@ is defined as 

K>?@ = 	−∑ log* p>?@
(2)J^_`

29: ,        (4) 

where C>?@ is the total number of local constraints imposed to the protein (see text and Fig. S2 

in the Supplementary Material), and p>?@
(2)  is the probability of each residue belonging to the 

sequence to populate a given secondary structure and is computed using PSIPRED software 31. 

In general, the algorithmic entropy associated with two different spaces cannot be compared 

with each other. However, in the present case the fact that the map between the sequence and the 

structure goes through restrains that can be interpreted as physical interactions builds an 

isomorphism from sequence to structure space, allowing the sequence entropy to be compared with 

the structural one23. 

Cells use the amount of information contained in the sequence to produce proteins with the 

needed features in terms not only of equilibrium structure, but also of presence of interaction with 

the cellular environment. In this respect, evolution selects and encodes in the genome only the 

subset of those sequences that display useful features for its functioning (using again the analogy 

of natural languages, only “meaningful” words). 

The amount of information contained in the sequence is then used to make the protein functional 

in the cellular environment. Giving a quantitative estimate of this amount of information is not 

trivial and can be done in several ways. In the following, we provide a particularly simple estimate 

for K@5>>, writing it as the sum of three contributions  
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K@5>> = K@>5Ab + K4?>Cc + KdCL.      (5) 

Here, K@>5Ab contains the information related to the probability of each residue to be the site of 

the proteolytic cleavage and is defined as 

K@>5Ab = 	−	∑ log* p@>5Ab
(2) 	8

29: ,      (6) 

where p@>5Ab
(2)  is the cleavage probability for each residue, and it is computed using MAPPP 

software 32 (for further detail see text in the Supplementary Material). 

The second term in eq. (5) K4?>Cc contains the information associated to the solubility and 

aggregation propensity of the protein and is given by 

K4?>Cc = 	−	∑ log* p4?>Cc
(2)8

29: ,      (7) 

where p4?>Cc
(2)  is the probability that each residue contributes to the overall solubility of the 

protein. The solubility profile is initially computed using CamSol software33, and the probability 

is obtained as the score of each soluble residue normalised over the maximum score of the profile.  

The last term KdCL in eq. (5) accounts for the biological function of each protein studied. It’s the 

information content related to the protein binding sites, obtained through a literature search, and 

is defined as 

KdCL = 	−∑ log* pc2Le(σ2)
8fghi
29: ,      (8) 

where Nc2Le is the total number of binding sites and pc2Le(σ2) is the probability of the binding 

site to be the residue of type σ. 

An important approximation associated with Eq. (5) is that that proteolytic cleavage, solubility 

and binding site are assumed as independent on each other.  As discussed in the Results Section 

below, the overlap between sites involved in the different terms in which we partitioned entropy 

are, in general, not statistically significant.  
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Results 

We calculated the amount of information needed for a protein sequence to encode most, if not 

all, the relevant information needed to be functional in an environment that, although described in 

a simplified way, retains the main cellular features. 

Sequence entropy. The amount of information required to specify the sequence of a given 

protein of length N out of the 20N possible amino acid sequences is quantified by the algorithmic 

entropy Kseq (Fig. 1). Kseq can be estimated from the frequencies of the 20 types of amino acids in 

proteins (see Materials and Methods and Table S2), exploiting the observation that they are 

essentially uncorrelated in protein sequences34. Kseq is thus the information available in a protein 

sequence to encode all its properties. 

Structure entropy. The amount of information needed to encode the structural features cannot 

be determined neglecting the cooperative nature of protein folding. If the structural information 

were calculated as the amount needed to constrain all the dihedrals of a protein, independently on 

each other, to define the native state within a given resolution (e.g. 4 Å), similarly to what was 

done in ref. 5, it would require an amount of information larger than that contained in the sequence. 

For example, this calculation would give for the native structure of B1 immunoglobulin-binding 

domain (pdb code 1PGB) an amount of information Kstruct to specify the structure of 363 bit (see 

caption of Fig. S2), which is more than 50% larger than the information available from its sequence 

(Kseq of 234 bit). This discrepancy would indicate that the sequence alone cannot determine the 

structure, and thus would not agree with Anfinsen’s thermodynamic hypothesis.  

Keeping into account the nucleated mechanism of protein folding, the value of Kstruct is much 

reduced. We calculated Kstruct as the sum of a term Kloc, accounting for the algorithmic entropy 

needed to constrain the chain to assume native secondary structures (a-helices and b-strands, 
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Table S3), and a term Kter associated with the formation of the tertiary structure. The latter is 

calculated from the minimum number of contact constrains (Figs. 1 and 2) which assures that the 

protein is in the native state within a given resolution. The algorithm to calculate Kter requires the 

knowledge of the native conformation of the protein and is computationally quite demanding, 

scaling as N3log N with the length N of the protein (see Methods). 

Both the local and the tertiary constraints are implemented in a way to mimic the physical 

interactions between residues, to reflect the very physical mechanism employed by the sequence 

to encode the structure. In this way, the isomorphism between sequence and conformational space 

needed to make the associated entropies comparable23 is realized by the physical mechanism of 

molecular interaction. 

The calculated values of Kstruct, Kloc and Kter for five structured proteins of different lengths are 

reported in Fig. 1 (see also Table S4). In all cases we found that the amount of information Kstruct 

needed to specify the structure of a protein is less than that, Kseq, provided by its sequence, in 

agreement with Anfinsen’s thermodynamic hypothesis. From Figs. 1 and 2 it is apparent that the 

information needed to specify the local structure of the chain, contributing to the definition of its 

secondary structure is a small fraction of the total structural information, being of the order of 5-

10% and reaching 25% only for lysozyme (pdb code 2LYZ).  

Furthermore, a small number of tertiary contacts (Table S5) is enough to determine, together 

with the former local constraints, the global structure of the 5 proteins. Interestingly, these pairs 

of tertiary contacts form a network of key interactions (Figs. 2 and S3) displaying a large diameter, 

comparable with that of the whole network of native contacts, and small transitivity (Fig. S4 and 

Table S6). Thus, the network of key interactions forms a sort of irregular lattice12, which is 

particularly economic to define the native structure.  
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The sites involved in the key interactions are not particularly conserved among sequences 

displaying the same native structure, compatibly with the idea that evolution could find different 

solutions to stabilize a protein fold35. However, the corresponding pairs display a significantly 

large amount of direct information (Table S8 and Fig. S5), meaning that the mutations in these 

sites tend to coevolve to maintain the stability of the native structure 28. Particularly interesting 

from this perspective is 2LYZ, for which the algorithm found two key contacts corresponding to 

the disulfide bridges which lock the native conformation (Fig. 2). 

Cellular entropy. In accordance with the sequence – structure – function paradigm, the observed 

excess of information in protein sequence with respect to protein structure, Kseq > Kstruct, could 

then be used to encode for other features. In the global context of cell homeostasis, proteins are 

evolved to be functional that also means soluble and disposable 36. We thus quantified the amount 

of information needed to specify the solubility of the proteins, the presence of proteolytic sites to 

control their metabolism in the cell, and the presence of active sites involved in catalytic activity 

or binding (see Materials and Methods). The overall functional information is then here termed 

Kcell. All these quantities are reported in Fig. 3 and compared with the size Kseq - Kstruct of the 

information gap between sequence and structure. Interestingly, in all cases they fill almost exactly 

the information gap, that is Kcell » Kseq - Kstruct (see also Table S9). In Fig. 2 is displayed how the 

information provided by the sequence is shared between the residues of the proteins to carry out 

the different tasks (functional sites, cleavage sites, solubility sites, sites responsible for local or 

tertiary structure). The overlap between the different roles is usually low and is statistically highly 

significant between cleavage and solubility sites, between functional and solubility sites and 

between cleavage sites and those responsible for tertiary structure (see horizontal bars in Fig. 3 

and Table S10). The histograms displayed in Fig. 2 indicate the amount of information necessary 
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to specify each role. Not unexpectedly, the information needed to specify tertiary structure, 

cleavage and, to some extent, solubility, is spread homogeneously over the sites of all studied 

proteins. That associated with function is not and, remarkably, also that associated with secondary 

structures is not, although secondary structures are distributed rather evenly in these proteins. 

A striking feature that we observed (Fig. 3) is that both Kseq and Kstruct, and consequently the 

information gap, increase linearly with the size of the protein up to ~150 residues, which is the 

approximately the average size of single-domain proteins in eukaryotes37. The amount of 

information required for solubility and cleavage is also approximately linear with protein size (see 

also Table S9), and consequently that left for activity also increases linearly with size. The linear 

behavior observed in Fig. 3 for Kstruct can be then in principle used to predict the information gap 

of proteins from their sequence, without any complex structural calculation, assuming the linear 

fit 

 K4;<C@; = −6.32 + 3.22	N.      (9) 

To test this hypothesis, we calculated Kseq – Ksol – Kcleav for 24 proteins of various length (see 

also Table S11), chosen with the only requirement of not being listed in the DisProt database38, 

and thus be, presumably, structured. The yellow and the purple dots in Fig. 4(a) indicate the value 

of Kseq and Kseq – Ksol – Kcleav, that is the amount of information which is available for structure 

and for function. In most cases, the purple dots lie well above the straight line which marks the fit 

of Kstruct (that is Eq. (9)), indicating that these proteins have information available for displaying 

specific functions. Exception is made for two proteins (Q9C010 and P56211, see Table S11), 

which apparently do not display any usable gap. However, the analysis of these two proteins with 

MobiDB39 and s2D40, show that they are actually disordered proteins. Consequently, the 
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corresponding points can lie below Kstruct simply because they do not need that amount of 

information to become structured.  

Disordered proteins. This finding suggests another possible use of Eq. (9), which is to look at 

the behavior of the information content in the case of intrinsically disordered proteins (IDPs). In 

Fig. 4(b) we analyzed the degree of information of 9 IDPs obtained from DisProt and confirmed 

by s2D; the associated value of Kseq – Ksol – Kcleav are there with purple triangles. Strikingly all of 

them are below, or anyway within the error bars (gray line) of the linear fit of Kstruct. This result 

suggests the fascinating hypothesis that IDPs have much greater freedom than ordered proteins to 

modulate their information content toward functions in place of structure. Such greater freedom is 

consistent with the observation that IDPs tend to have multiple partners, as required by their key 

roles in signaling and regulation. 

Designed proteins. Finally, one can wonder if designed proteins shown a different signature 

with respect to naturally evolved ones. We thus studied the information content of rationally 

designed proteins from two recent studies41,42. Interestingly, as shown in Fig. 5, all of them, with 

the exception of 1 protein from the older set (see Table S12), are within the error bars or well 

above the linear fit of the structural information. The presence of one designed protein in the “IDPs 

region” could be explained by analyzing its solubility profile (cf. Fig. S9). This protein looks 

highly soluble across the whole sequence, which in our context means that a great part of the 

information is assigned to the solubility, and that, in a broader biological perspective, this could 

affect its structural stability. This is also interesting with respect to the observation in refs. 41,42 

that improve in hydrophobic interactions was key to improve the design. Indeed, upon comparison 

between the two different designs, it can be noticed how the most recent iterative design approach 
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(red diamonds in Fig. 5) appears to give better results in terms of availability of structural 

information than the previous one (green diamonds). 

Discussion 

The genetic code stored in the DNA contains most of the information needed by proteins to 

generate and maintain cellular life. Part of this information is translated into protein sequences and 

can be readily quantified using information theory4-9. In turn, the information contained in protein 

sequences can be exploited to carry out function, through specific binding or catalytic sites, and 

regulation, hosting sites which permit proteolysis and avoid aggregation43. The information 

contents needed for these functions can be quantified as well. While the models we used for such 

a quantification, encoded in Eqs. 6-8, are not the only possible choices, they have the virtue of 

being particularly simple, and at the same time they lead to sensible results. 

Protein function is usually mediated by structural features, and we could quantify the amount of 

information necessary to generate local secondary structure and, for structured proteins, tertiary 

structure. The latter is encoded in the sequence in a complex way. In particular, the necessity that 

the protein obeys the laws of polymer physics makes the evaluation of Kstruct computationally 

uneasy but reduces largely the amount of information needed for its determination. In fact, we 

have shown that a way to verify quantitatively Anfinsen’s thermodynamic hypothesis is to keep 

into account the cooperativity of protein folding associated with its nucleation character (i.e. the 

need of few key interactions). 

The estimates we presented here for some structured proteins indicate that the amount of 

information stored in the sequence is approximately equal to that needed by structure and cellular 

functions. Although in the present treatment we have neglected the additional information 

provided through other cellular processes, including post-translational modifications and sub-
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cellular localization, this result suggests that structured proteins are highly optimized, exploiting 

essentially all the information they have from the genetic codes, and that there is little room for 

the addition of new functions without major changes in the protein 44. The width of the information 

gap available for cellular functions increases linearly with protein size. Thus, in principle, proteins 

experience evolutionary pressure towards larger sizes to increase their functionality. The evidence 

that single-domain structured proteins reaches up to lengths of ~150 residues 37 and larger proteins 

are multi-domain suggests a physical barrier against this tendency, most likely associated with the 

impossibility of maintain solubility45. Within this framework, we observed that the functional 

contributions systematically fill the information gap between sequence and structure regardless of 

the protein length (see Fig. 3). This is consistent with the idea that proteins’ intrinsic properties 

have been finely tuned by evolution to optimize protein functionality, solubility and turnover 

within the cell, in agreement with the hypothesis that proteins are expressed in the cellular 

environment at critical levels which maintain them functional, yet still soluble46.  

From our estimates, it is clear that most of the available information is used to build the tertiary 

structure, with only a small fraction devoted to stabilize secondary structures. Here IDPs can take 

advantage of the saved information, i.e. the lack of stable tertiary structure, to expand their 

functionality, without the need to introduce any special framework47. This result is in agreement 

with the accepted idea that IDPs tend to be more promiscuous than structural protein in protein-

protein interactions47,48 . 

From the evolutionary point of view, the existence of a very small gap in structured proteins 

between the amount of information provided by the sequence and that used by the protein is 

compatible with some key observations. For example, the coevolution of residues that stabilize 

tertiary structures 28 is what one expects if along evolution the protein is constrained in changing 
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the stabilizing pairs, not to increase Kter. Similarly, the tiny gap is compatible with the limited 

evolutionary divergence of proteins that perform the same function, and with the fact that structural 

divergence usually implies functional divergence but not vice versa, because the amount of bits 

necessary to specify the former is 1-2 orders of magnitude larger than the latter49. 

The existence of a simple, general expression for Kstruct as a function of protein length allows 

one to use the amount of information as a predictive tool. Since Ksol and Kcleav can be estimated 

easily, it is rather straightforward to estimate the number of sites which can potentially host binding 

or catalytic function. Moreover, the difference observed in Fig. 4 between structured proteins and 

IDPs can be used as predictor of disorder and/or as a score for unknown functions in the direction 

of developing new measures for proteins design (see Fig. 5).  

Overall, we have used information theory to investigate the consequences of the evolutionary 

balance between mutation and selection in proteins, which generates the information stored in their 

amino acid sequences. We found that this balance results in an almost perfect partitioning between 

structure and function of the information stored in the sequences themselves, which can be 

exploited to obtain relevant insights into the behavior of these molecules. 
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FIGURES 

 

Figure 1. The information content of proteins sequences is larger than that needed for 

proteins structures. (A) The primary structure of a protein of N amino acids is one out of 20N 
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possible realizations, where 20 is the number of amino acids. The quantity Kseq is the amount of 

information needed to specify it. (B) The overall information Kstruct needed to specify the structure 

is the sum of the two contributions, Kloc and Kter: (C) Kloc that is the amount of information needed 

to specify the local arrangement of the secondary structures, restraining its Ramachandran 

dihedrals, (D) Kter that is the information associated with the tertiary structure and depends on the 

minimum number of interactions needed to constrain the protein in its native conformation (dashed 

lines). (E) The comparison between Kseq and Kstruct for five widely-studied proteins, the villin 

headpiece (1VII), B1 immunoglobulin-binding domain (1PGB), src SH3 (1FMK), ACBP (2ABD) 

and hen-egg lysozyme (2LYZ).  
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Figure 2. The structural and functional information is unevenly distributed along the 

sequence. For the native structure of the five proteins under study the local structures, which define 

Kloc, are highlighted with a cartoon while the constraints on the tertiary structure, which define 

Kter, are indicated with red dashed lines. Atoms of each amino acid are colored according to their 

role (solubility, cleavage and function). The disulfide bonds of lysozyme are marked with orange 

lines. The same information is reported with colored stripes below each histogram. The histograms 

report the amount of information one needs to pay to assign to each amino acid its role. 

 

Figure 3. The gap between the information content of proteins sequences and structures can 

encode for their functions. The amount of information K provided by the sequence, Kseq (red 

circles) and that used to define the native state, Kstruct (cyan circles) as a function of its length for 

five protein domains of increasing length, labeled with their PDB code. The dashed lines indicate 

the linear fit. The bars indicate the amount of information employed for defining cleavage sites, 
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Kcleav, using MAPPP (47) (in black), solubility sites, Ksol, defined using CamSol (48) (in blue) and 

protein function, Kfun, as from Table S9 (in green). While the Kseq is linear by definition, Kstruct 

seems to increase linearly with the length of the sequence with a slope smaller than that of Kseq. 

The gap between the two thus increases linearly as well with protein length and is remarkably 

comparable to the sum of the contribution from cleavage, solubility and function. 

 

Figure 4. The linear relationship between structural information and protein length can be 

used to study protein function and structural disorder. A) Test set: Yellow dots indicate the 

value of Kseq for 24 proteins of variable length. The purple dots indicate the amount of information 

Kseq – Ksol – Kcleav that can be used for structure and for function. The straight line indicates the 

values of Kstruct extrapolated from Fig. 2 and the gray shadow the associated standard error. For 22 

out of 24 proteins the difference is above the linear fit suggesting that there is still information 

available to encode for the function. Two sequences fall below the fit and are indeed found to 

corresponds to intrinsically disordered proteins. B) Intrinsically disordered proteins set: Yellow 

triangles indicate the value of Kseq for 9 disordered proteins of variable length. Purple triangles 

indicate Kseq – Ksol – Kcleav. The straight line indicates the values of Kstruct extrapolated from Fig. 2 

and the gray shadow the associated standard error.  In all cases the IDPs fall below or within the 

error of the fit suggesting that by subtracting the information needed for solubility and proteolysis 
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there is not enough information left to encode a three-dimensional structure; indeed, all the 

information left is actually available for local structure and function. 

 

Figure 5. Comparison between the information content of naturally evolved and rationally 

designed proteins. All the designed proteins (solid colors), with one exception (pdb entry 2LTA) 

are well above - or within the errors - the linear fit. For comparisons are also reported the data 

from Fig. 4 (transparent colors), where the two disordered proteins from the test set of Fig. 4A are 

now reported as IDPs (triangles). 

 

 

 

 

 


