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Abstract This paper investigates the use, in practical financial problems, of the Mixed Tempered Stable
distribution both in its univariate and multivariate formulation. In the univariate context, we study the
dependence of a given coherent risk measure on the distribution parameters. The latter allows to identify
the parameters that seem to have a greater influence on the given measure of risk.
The multivariate Mixed Tempered Stable distribution enters in a portfolio optimization problem built con-
sidering a real market dataset of seventeen hedge fund indexes. We combine the flexibility of the multivariate
Mixed Tempered Stable distribution, in capturing different tail behaviors, with the ability of the ARMA-
GARCH model in capturing the time dependence observed in the data.
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1 Introduction

The seminal approach of Markowitz in [21] changed the direction of research on portfolio selection. Assump-
tions within his framework do not hold in practice. For instance, the Markowitz approach considers only the
first two moments of the distribution and therefore implies that the utility of the investor is quadratic or
alternatively that the asset returns are jointly elliptical symmetric distributed with finite second moment.
Classical examples for the latter distributions are the multivariate Normal and the multivariate t with more
than two degrees of freedom. The general concept that the wealth allocation should be based on the statisti-
cal properties of assets and the risk return trade-off is well accepted. Starting from this trade-off, a number of
frameworks appeared with less restrictive requirements and more realistic assumptions. Two main streams
of research can be identified. One is the extension of the utility function to higher moments (see among
others [11,12,15]), while the other considers alternative risk measures to variance in the objective function
such as Value-at-Risk (V aR) and Conditional Value-at-Risk (CV aR). Artzner in [1] introduced the concept
of a coherent risk measure and showed that the VaR is not coherent as it does not satisfy the subadditivity
property. The increasing attention given to the efficient frontier obtained from the mean-CV aR optimiza-
tion problem proposed in [28] is justified with the need of a risk measure that is influenced from extreme
losses and implementation simplicity of the optimization routine.
Different distributions have been proposed in literature to capture skewness and heavy-tails of asset re-
turns. Normal Variance Mean Mixtures represent a large family of distributions that include the Normal
Inverse Gaussian [3], the Variance Gamma [19], the Normal Tempered Stable [16,26] and the Generalized
Hyperbolic [6]. A new distribution called Mixed Tempered Stable (MixedTS) has been introduced in [29] as
a generalization of the Normal Variance Mean Mixtures. In the same paper, it is shown to be more flexible
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than Normal Variance Mean Mixtures in modeling skewness and kurtosis observed in asset returns. The
MixedTS distribution has been used for portfolio selection in [13] where the dependence structure is cap-
tured using the Independent Component Analysis. Recently, the multivariate MixedTS has been proposed
in [10] where the number of parameters increases linearly with the number of components. The idea in this
paper is to consider an ARMA-GARCH model where the dependence structure of innovations is described
through the multivariate MixedTS in order to obtain a more parsimonious framework compared to that
proposed in [13], since we do not need to estimate the mixing matrix of the Independent Components for
reproducing asset returns.
We first study the impact of the parameters of the MixedTS on the CV aR risk measure, following the same
idea as in [30]. This study is helpful in scenario stressing since it gives an intuition of the model parameters
contribution on the risk measure. Moreover, we perform a sensitivity analysis of the multivariate MixedTS
parameters on the mean-CV aR efficient frontier.
In the empirical analysis, we consider a portfolio of hedge fund indexes and model asset returns using the
multivariate MixedTS distribution. Well known portfolio benchmarks are constructed and compared in an
out-of-sample perspective.
The paper is organized as follows. Section 2 recalls the definition of the univariate MixedTS and its mul-
tivariate extention. Section 3 is a review of the risk measures and properties that it must satisfy in order
to be a coherent risk measure. This section illustrates also the sensitivity analysis of the parameters of the
MixedTS on CV aR. Section 4 describes the portfolio selection strategies taken into account in this paper.
Section 5 describes the dataset used for a sensitivity analysis on the mean-CV aR efficient frontier and the
out of sample results of different portfolio strategies. Section 6 draws some conclusions.

2 Mixed Tempered Stable distribution

In this section, we review the univariate Mixed Tempered Stable distribution (MixedTS) introduced in [29]
and its multivariate extension proposed in [10]. In particular, we focus on those results that are useful for
the construction of optimal portfolio strategies and the risk measure sensitivity analysis.
The univariate MixedTS is a generalization of the Normal Variance Mean Mixture (NVMM) where the
normality assumption is substituted by the standardized Classical Tempered Stable (CTS). The resulting
distribution preserves the infinitely divisible property when the mixing r.v. is itself infinitely divisible and
is more flexible in modeling tails and skewness than the NVMM with the same mixing random variable.
Applications in finance can be found in [23] for option pricing purpose, in [13] for portfolio selection with
CARA utility function and in [24] for a risk parity portfolio selection.
Here we focus on the MixedTS with Gamma mixing density (MixedTS − Γ ). Following notation in [10], Y
is a MixedTS (µ, β, α, λ+, λ−)− Γ (a, b) if we have:

Y = µ+ βV +
√
V X (1)

where parameters µ, β ∈ R, V is a Gamma r.v. with shape parameter a > 0 and scale parameter b > 0.

The r.v. X given V is a Classical Tempered Stable with parameters
(

α, λ+

√
V , λ−

√
V
)

with α ∈ (0, 2] and

λ+, λ− > 0. For this distribution it is possible to obtain analytically the first four moments. The mixture
representation becomes very clear for cumulant generating functions. Indeed, let

ΦY (u) = logE[euY ], ΦV (u) = logE[euV ], (2)

and

ΦH(u) =
(λ+ − u)α − λα

+ + (λ− + u)α − λα
−

α(α− 1)(λα−2
+ + λα−2

− )
+

(λα−1
+ − λα−1

− )u

(α− 1)(λα−2
+ + λα−2

− )
, (3)

where ΦH(u) is the cumulant generating function of a random variable H ∼ CTS (α, λ+, λ−). Then we have

ΦY (u) = µu+ ΦV (βu+ ΦH(u)). (4)

As shown in [29], we get some well-known distributions used for modeling financial returns as special cases.
For instance if α = 2 the Variance Gamma distribution is obtained. Fixing b = 1

a
and letting a go to infinity

leads to the Standardized Classical Tempered Stable [17].
The study of the left tail behavior for a MixedTS with Gamma mixing density has been presented in [10].
We briefly review the results that will be investigated more in details in the empirical analysis presented in
the paper.
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Proposition 1 1. If max {−βλ− + ΦH(−λ−), βλ+ + ΦH(λ+)} < b or −βλ− + ΦH(−λ−) < b < βλ+ +
ΦH(λ+) then logF ((−∞,−y]) ∼ −yλ−.

2. If −βλ− + ΦH(−λ−) > b > βλ+ + ΦH(λ+) then u− is the unique real solution of βu+ ΦH(u) = b and

logF ((−∞,−y]) ∼ −yu−.

3. If b < min {−βλ− + ΦH(−λ−), βλ+ + ΦH(λ+)} u− < u+ are the two real solutions of βu+ ΦH(u) = b

and logF ((−∞,−y]) ∼ −yu−.

The generalization of the MixedTS in a multivariate context is not unique. Here following [10], we discuss
a Multivariate MixedTS model where the number of parameters grows linearly as the components.

Proposition 2 A random vector Y ∈ RN follows a multivariate MixedTS-Γ distribution if the ith compo-

nent is defined as:

Yi = µi + βiVi +
√
ViXi,

where Vi is the ith component of multivariate Gamma random vector V , defined as:

Vi = Gi + ai Z,

where Gi ∼ Γ (li,mi) and Z ∼ Γ (n, k), with {Gi}Ni=1 and Z independent, while

Xi|Vi ∼ stdCTS
(

αi, λ+,i

√
Vi, λ−,i

√
Vi

)

.

In order to ensure that the components of vector Y are MixedTS-Γ distributed we have to impose the
following restrictions:

ai =
k

mi
→ aiZ ∼ Γ (n,mi) ∀i = 1, . . . N.

Proposition 3 The characteristic function ϕY (u) = E [exp (iuY )] of the multivariate MixedTS is:

ϕY (u) = e
i

N
∑

h=1

uhµh+ΦZ

(

N
∑

h=1

(i ahuhβh+ahLstdCTS(uh;λ+,h,λ−,h,αh))
)

N
∏

h=1

e
ΦGh(i uhβh+LstdCTS(uh;λ+,h,λ−,h,αh)),

(5)
where the LstdCTS (u;α, λ+, λ−) is the characteristic exponent of a standardized Classical Tempered Stable

r.v. defined as:

LstdCTS (u; λ+, λ−, α) =
(λ+ − iu)α − λα

+ + (λ− + iu)α − λα
−

α (α− 1)
(

λα−2
+ + λα−2

−

) +
iu
(

λα−1
+ − λα−1

−

)

(α− 1)
(

λα−2
+ + λα−2

−

) .

The joint characteristic function in (5) gives us the possibility to estimate the multivariate MixedTS using
the Generalized Method of Moment in [9].

2.1 COVARIANCE MixedTS

The characteristic function of the multivariate MixedTS has a closed form formula as reported in the
following proposition (for the derivation see Appendix ??).

Proposition 4 The characteristic function of the multivariate MixedTS is:

ϕY (u) = E [exp (iuY )]

= e
i

N
∑

h=1

uhµh

e
ΦZ

(

N
∑

h=1

(i ahuhβh+ahLstdCTS(uh;λ+,h,λ−,h,αh))
)

∗
N
∏

h=1

eΦGh(i uhβh+LstdCTS(uh;λ+,h,λ−,h,αh)),

(6)

where the LstdCTS (u;α, λ+, λ−) is the characteristic exponent of a standardized Classical Tempered Stable

r.v. defined as:

LstdCTS (u; λ+, λ−, α) =
(λ+−iu)α−λα

+
+(λ−+iu)α−λα

−

α(α−1)(λα−2

+
+λ

α−2

−
)

+
iu(λα−1

+
−λ

α−1

−
)

(α−1)(λα−2

+
+λ

α−2

−
)
.

Proposition 5 Consider a random vector Y where the distribution of each component is Yi ∼ MixedTS−
Γ (li + n,mi) for i = 1, . . . , N . The formulas for the moments are:
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– Mean of the general ith element:

E [Yi] = µi + βi
li + n

mi
. (7)

– Variance σ2
i of the ith element:

σ
2
i =

(

1 +
β2
i

mi

)

(li + n)

mi
. (8)

– Covariance σij between the ith and jth elements:

σij =
βiβj

mimj
n. (9)

– Third central moment of the ith component:

m3 =

[

(2− αi)
λαi−3
+,i − λαi−3

−,i

λαi−2
+,i + λαi−2

−,i

+

(

3 + 2
β2
i

mi

)

βi

mi

]

(li + n)

mi
. (10)

– Fourth central moment of the ith element:

m4 = β
4
i

(

3 +
6

li + n

)

(li + n)2

m4
i

+ 6β2
i

li + n

m3
i

(li + n+ 2)+

+ 4βi (2− αi)

(

λαi−3
+,i − λαi−3

−

λαi−2
+,i + λαi−2

−,i

)

li + n

m2
i

+ (3− αi) (2− αi)

(

λαi−4
+,i + λαi−4

−,i

λαi−2
+,i + λαi−2

−,i

)

li + n

mi
. (11)

See Appendix ?? for details on moment derivation. From (??) and (??) is evident that the multivariate
MixedTS − Γ overcomes the limits of the multivariate Variance Gamma distribution in capturing the
dependence structure between components (see [?]). Indeed, the relation that exists between the sign of the
skewness of two marginals and the sign of their covariance in the multivariate Variance Gamma, is broken
up by the tempering parameters in the multivariate MixedTS − Γ .

In particular the following result determines the existence of upper and lower bounds for the covariance
depending on the tempering parameters. Here we consider the cases that the Semeraro model is not able to
capture.

Theorem 1 Let Yi and Yj be two components of a multivariate MixedTS-Γ , the following results hold:

1 σij :=
β∗

i
β∗

j

mimj
n ≤ σij where σij is defined in (??) and σij < 0 if skew (Yi) ≥ 0, skew (Yj) ≥ 0 and

λ+,i ≷ λ−,i ∧ λ+,j ≶ λ−,j .

2 σij :=
β∗

i
β∗

j

mimj
n ≥ σij and σij < 0 if skew (Yi) ≤ 0, skew (Yj) ≤ 0 and λ+,i ≷ λ−,i ∧ λ+,j ≶ λ−,j .

3 σij = −∞ and σij = +∞ if skew (Yi) ≤ 0, skew (Yj) ≥ 0 or skew (Yi) ≥ 0, skew (Yj) ≤ 0.

Proof Let us first discuss the case where both components have positive skewness. In this case the lower
bound of the covariance exists if the following problem admits a solution:

σij := min
βiβj

βiβj

mimj
n

skew (Yi) ≥ 0
skew (Yj) ≥ 0

. (12)

The sign of skewness depends on the sign of the following quantities:

(2− αi)

(

λ
αi−3

+,i
−λ

αi−3

−,i

λ
αi−2

+,i
+λ

αi−2

−,i

)

+ 3 βi

mi
+ 2

β3

i

m2
i

≥ 0

(2− αj)

(

λ
αj−3

+,j
−λ

αj−3

−,i

λ
αj−2

+,j
+λ

αj−2

−,j

)

+ 3
βj

mj
+ 2

β3

j

m2
j

≥ 0
.

The feasible region Sa of the minimization problem in (??) depends on the difference between tempering

parameters. We observe that the cubic function g (βi) := (2 − αi)

(

λ
αi−3

+,i
−λ

αi−3

−,i

λ
αi−2

+,i
+λ

αi−2

−,i

)

+ 3 βi

mi
+ 2

β3

i

m2
i

is strictly

increasing and satisfies the following limits:

lim
βi→+∞

g (βi) = +∞

lim
βi→−∞

g (βi) = −∞.
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Therefore exists only one β∗
i such that g (β∗

i ) = 0. The sign of β∗
i is determined by the following implications:

λ+,i = λ−,i =⇒ g (0) = 0 =⇒ β
∗
i = 0

λ+,i > λ−,i =⇒ g (0) < 0 =⇒ β
∗
i > 0

λ+,i < λ−,i =⇒ g (0) > 0 =⇒ β
∗
i < 0.

The feasible region can be written as:

Sa =
{

(βi, βj) : βi ≥ β
∗
i ∧ βj ≥ β

∗
j

}

and the lower bound is σij =
β∗

i
β∗

j

mimj
n while the upper bound is σij = +∞. In this case the lower bound is

negative when
λ+,i > λ−,i ∧ λ+,j < λ−,j

or
λ+,j > λ−,j ∧ λ+,i < λ−,i.

Now we consider the case when both skewnesses are negative. Following a similar procedure the feasible
region becomes:

Sa =
{

(βi, βj) : βi ≤ β
∗
i ∧ βj ≤ β

∗
j

}

.

The σij = −∞ and the upper bound is σij =
β∗

i
β∗

j

mimj
n. The upper bound is negative when

λ+,i > λ−,i ∧ λ+,j < λ−,j

or
λ+,j > λ−,j ∧ λ+,i < λ−,i.

The last case refers to the context when the skewnesses have different signs and following the same procedure
as above we have σij = −∞ and σij = +∞.

3 Univariate MixedTS and Risk Measures

3.1 Review of risk measures

Let χ be a family of r. v.’s defined on the same probability space (Ω,F ,P) describing the profit and loss
(or return) of a given portfolio (or asset). The risk measure associated to X ∈ χ is defined as a map
ρ : χ → R meaning that ρ(X) ∈ R. From a theoretical point of view, the class of coherent risk measures is
very appealing. Following the axiomatic approach introduced in [1], ρ (X) is a coherent risk measure if it
satisfies the following properties:

– Translation Invariance For all λ ∈ R and for all X ∈ χ we have ρ(X − λ) = ρ(X)− λ.
– Monotonicity For all X,Y ∈ χ such that X ≤ Y we have ρ(X) ≤ ρ(Y ).
– Positive Homogeneity For all λ ≥ 0 and for all X ∈ χ we have ρ(λX) = λρ(X).
– Subadditivity For all X,Y ∈ χ we have ρ(X + Y ) ≤ ρ(X) + ρ(Y )

We assume Y to be a continuous r.v. with characteristic function φY . The distribution function is computed
using the Inverse Fourier Transform (IFT) as follows:

FY (y) =
1

2
− 1

2π

∫ +∞

−∞

[

e−ityφY (t)
]

it
dt.

Consequently the most used risk measures, Value at Risk (V aRζ) at the confidence level ζ and Conditional
Value at Risk (CV aRζ) used in [27], are obtained respectively as:

V aRζ(Y ) = −F
−1
Y (ζ), (13)

CV aRζ(Y ) = −E [Y | Y ≤ −V aRζ(Y )] . (14)

Notice that if Y has an analytical expression for the characteristic function φY both measures (6) (7) can
be evaluated efficiently through the IFT, see for instance [18].
The choice of the CV aR as a risk measure in this paper comes out from the following observations: V aR is
not subadditive, its estimators are stable and backtesting is straightforward. On the other side we have that
CV aR is coherent, is sensitive to extreme values but its estimators are less stable than the V aR estimators
as shown in [31]. In the following we will study the behaviour of the CV aRζ(Y ) when the r.v. Y is a
MixedTS (µ, β, α, λ+, λ−)− Γ (a, b).
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3.2 Risk measure sensitivity

In this section we present a sensitivity analysis of the CV aR on the parameters of the univariate Mixed
Tempered Stable distribution. We notice that for the parameters µ and β, it is possible to exploit the
results presented in [30] for the Normal Variance Mean Mixtures while CV aR’s dependence on the other
parameters that control tail behavior is more complex and it is based on the study of the fundamental strip
of a MixedTS presented in [10].

Proposition 6 For a univariate MixedTS r.v. Y , defined as in (1), and given a coherent risk measure ρ

we have:

– µ 7→ ρ(Y ) is decreasing in R;

Proof: Observe that ρ(Y ) = ρ(βV +
√
V X)− µ.

– β 7→ ρ(Y ) is non-increasing in R;

Proof: For ∆β ≥ 0 we have:

ρ((β +∆β)V +
√
V X) ≤ ρ

(

βV +
√
V X

)

+ ρ (∆βV ) .

Since ∆βV ≥ 0 a.s. we have

ρ((β +∆β)V +
√
V X) ≤ ρ

(

βV +
√
V X

)

+ ρ(0).

The influence of the scale parameter b in the Gamma r.v. V and of the tempering parameter λ− is still to be
investigated. Here, we perform a sensitivity analysis in order to get insights of possible theoretical results.
In particular, we first fix the parameters in the MixedTS as µ = 0, β = 0, b = 1, a = 1, α = 1.2, λ+ = 1,
λ− = 1 and then investigate the changes in the CV aR value for small variation of parameters. Figure 1
clearly reproduces the results stated in Proposition 4 for the monotonicity of CV aR with respect to µ and
β.
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(a) Sensitivity CV aR for varying µ
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(b) Sensitivity CV aR for varying β

Fig. 1: CV aR sensitivity w.r.t µ and β.

In Figure 2 we focus mainly on the parameters that influence left tail behavior. From Proposition 1, we
have that logF ((−∞,−y]) ∼ −yq⋆ where for specific restriction on parameters we can have either q⋆ = λ−

or q⋆ = u−. In Figure 2 are presented sensitivity results for both cases from where it seems that CV aR

is a decreasing function of λ− and an increasing function of b. The monotonicity w.r.t λ−, although not
straightforward analytically, goes in line with financial interpretation. In fact, a lower value for the tempering
parameter λ− suggests a heavier left tail for return distributions that implies a higher value for the CV aR

computed on this distribution. Monotonicity of the CV aR on the scale parameter b comes out numerically
but it does not seem to have a direct financial intuition.
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(b) Sensitivity of CV aR for varying b with λ+ < λ−.
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(c) Sensitivity of CV aR for varying b with λ+ > λ−.

Fig. 2: CV aR sensitivity w.r.t λ− and b.

4 Portfolio optimization problem

We consider an investor who selects his portfolio from N risky assets, where there are no transaction costs
and short selling is not allowed. Let us denote with r = (r1, r2, ..., rN ) the return vector, where ri indicates
the returns of asset i and N is the number of assets available; by w = (w1, w2, ..., wN ) the vector of weights,
where wi is the fraction of the initial endowment invested in the i-th asset. Any portfolio strategy based on
an optimization problem requires a feasible region defined as follows:

A :=
{

w ∈ R
N |∑N

i=1 wi = 1 ∧ lb ≤ wi ≤ ub
}

,

where lb and ub stand respectively for the lower and upper bound of each weight. lb and ub are usually set
in [0, 1] to avoid short selling and concentrated portfolios. In particular, to ensure A 6= ∅, lb belongs to the
interval

[

0, 1
N

]

. Choosing lb = 1
N
, set A is a singleton and contains only the equally weighted portfolio

(EW). In this case, the strategy ignores completely the data and does not require any optimization or
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estimation procedure. In the empirical part we use lb = 0, meaning that we do not allow for short selling,
and ub = 1. Therefore the feasible region becomes:

A0 :=
{

w ∈ R
N |∑N

i=1 wi = 1 ∧ 0 ≤ wi ≤ 1
}

.

In the following we review the optimization problems in the alternative strategies considered in the empirical
analysis.

4.1 Global minimum variance portfolio (GMV )

The GMV portfolio minimizes the overall variance and is not focused on the expected return of the portfolio.
Mathematically the investor’s problem can be written as:

{

min
w

σ2 = w′ M2 w

s.t. w ∈ A0

where M2 is the covariance matrix of the portfolio components.

4.2 Equal risk contribution portfolio (ERC)

Equal risk contribution strategy, proposed by [25], introduces a risk budget in portfolio allocation, where
weights are such that each asset provides the same contribution to portfolio risk. The properties of an
unconstrained analytical solution of the ERC are analyzed by [20].
If we consider volatility σ as the portfolio risk measure, the marginal risk contribution of asset i is defined
as:

∂wi
σ =

∂σ

∂wi
=

(M2 w)i√
w′ M2 w

.

Let σi(w) = wi∂wi
σ denote the risk contribution of the ith asset, the portfolio risk can be seen as the sum

of risk contributions σ =
∑N

i σi(w) (see [20]). A feature of this strategy is that:

wi ∂wi
σ = wj ∂wj

σ ∀ i, j where i, j = 1, . . . , N.

The algorithm used for the identification portfolio’s weights can be written as:
{

min
w

∑N
i=1

∑N
j=1 (wi(M2 w)i − wj(M2 w)j)

2

s.t. w ∈ A0

4.3 Maximum diversified portfolio (MDP )

The basic idea behind the maximum diversification approach is to construct a portfolio that maximizes the
benefits from diversification. [5] proposed the so-called diversification ratio (DR), which is the ratio of the

weighted average asset volatility to portfolio actual volatility, defined as DR =
∑

N
i=1

wiσi√
w

′M2w
. Since different

asset classes are not perfectly correlated to each other, this ratio in general is greater than 1. The investor
problem when the MDP approach is used is:

{

max
w

DR =
∑

N
i=1

wiσi√
w

′M2w

s.t w ∈ A0

4.4 Global minimum CV aR portfolio

Global minimum CV aR portfolio optimization problem follows the same idea as the GMV considering as
a risk measure the CV aR. Therefore the investor problem reads:

{

min
w

CVaR

(

∑N
i=1 wiri

)

s.t w ∈ A0
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5 Multivariate analysis

This section is composed of two parts. The first part is devoted to the sensitivity analysis of the mean-CV aR

efficient frontier obtained in a ARMA-GARCH model where residuals are generated from a multivariate
MixedTS. Indeed, from the generation of scenarios for residuals we are able to generate also future log
returns for the assets in our portfolio. In the second part we present some out-of-sample performance results
obtained selecting different portfolio strategies.

5.1 Joint modeling and portfolio optimization

In order to analyze the efficient frontier resulting from an optimization problem that considers the Multi-
variate MixedTS distribution for modeling the joint dynamics of asset returns we consider a portfolio of
seventeen hedge funds indexes1. The observations are daily log-returns and span the period April 2012 to
June 2017. Table 1 reports general statistics and Jarque-Bera test for the components of the portfolio. As
we can observe, most of hedge fund indexes are negatively skewed. The kurtosis values are well above 3 (the
lowest value is around 5.2) for all components, indicating deviations from the normal distribution and the
presence of fat tails. This is also confirmed by the JB test, which rejects the normality assumption at 1%
significance level for all the hedge fund indexes under investigation. Therefore, we can conclude that returns
of our portfolio components are not normally distributed.

Hedge fund name abbr Annual mean Annual std Skewness Kurtosis p-value JB-Test
HFRX Absolute Return Index HF1 0.025 0.038 0.339 10.851 0.001 2639.197
HFRX ED: Distressed Restructuring Index HF2 0.043 0.020 0.422 9.264 0.001 1698.140
HFRX ED: Merger Arbitrage Index HF3 0.012 0.031 -0.450 5.219 0.001 243.660
HFRX EH: Equity Market Neutral Index HF4 0.005 0.026 -0.854 8.305 0.001 1320.040
HFRX Equal Weighted Strategies EUR Index HF5 0.015 0.025 -0.788 6.055 0.001 502.205
HFRX Equal Weighted Strategies Index HF6 0.007 0.056 -0.668 6.171 0.001 503.154
HFRX Equity Hedge EUR Index HF7 0.017 0.056 -0.719 6.471 0.001 599.973
HFRX Equity Hedge Index HF8 0.011 0.049 -0.743 5.596 0.001 380.103
HFRX Event Driven EUR Index HF9 0.021 0.048 -0.715 5.569 0.001 367.360
HFRX Event Driven Index HF10 0.010 0.036 -0.756 6.059 0.001 494.877
HFRX Global Hedge Fund CAD Index HF11 -0.003 0.035 -0.681 6.109 0.001 489.666
HFRX Global Hedge Fund EUR Index HF12 0.007 0.035 -0.692 5.596 0.001 367.834
HFRX Global Hedge Fund Index HF13 -0.010 0.047 -0.415 5.546 0.001 304.743
HFRX Macro/CTA EUR Index HF14 -0.002 0.047 -0.480 5.890 0.001 394.043
HFRX Macro/CTA Index HF15 -0.019 0.028 -0.344 16.485 0.001 7748.255
HFRX Relative Value Arbitrage EUR Index HF16 -0.0092 0.0263 0.0014 11.8893 0.001 3358.314
HFRX Relative Value Arbitrage Index HF17 0.0039 0.0491 -1.7714 23.2866 0.001 18024.13

Table 1: Statistics of the portfolio components in the out-of-sample period

To the log-returns of each portfolio component i we fit an ARMA(1,1)-GARCH(1,1) model, defined as
follows:

rt,i = µ̄i + θ1,i (rt−1,i − µi) + θ2,izt−1,i + zt,i

zt,i = σt,iǫt,i

σ
2
t,i = ω0,i + α1,iz

2
t−1,i + β1,iσ

2
t−1,i

and employ the multivariate MixedTS for the joint dynamics of the sequences of residuals ǫt,i.
In practice, we consider a two-step procedure. In the first step we estimate the ARMA-GARCH(1,1) pa-
rameters and the residual ǫt,i using the quasi-likelihood method (see [8]). In the second step we estimate
the parameters of a multivariate MixedTS on the sequences of residuals ǫt,i. Due to the lack of an explicit
formula for the joint density function of residuals, the classical maximum likelihood procedure is cumber-
some since it involves a multidimensional Fourier Transform. In order to avoid these numerical issues, we
apply the GMM proposed in [9] where the score function is defined as the difference between empirical and
theoretical multivariate characteristic function. In Figure 3 are given both empirical and fitted marginal
distributions for the 17 hedge funds.

We report in Table 2 the estimated parameters of the Multivariate MixedTS with the respective standard
errors obtained using the bootstrap methodology, see [7].

1The dataset is taken from www.hedgefundresearch.com.
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Fig. 3: Empirical and fitted MixedTS distributions for the innovations of the seventeen hedge funds. These
densities are obtained estimating the multivariate MixedTS distribution through the GMM procedure.

We conclude this section by showing the behaviour of the mean-CV aR frontier when, for each asset,
some additive shifts in the same parameters analyzed in the univariate case are considered.
First, we assume that, in the market, there are no assets dominated according the mean-CV aR criterion
i.e. an asset with a higher expected return has also an higher level of risk in term of CV aR.
The construction of the frontier is very intuitive and mimics the Markowitz efficient frontier. Indeed, we
need to solve a sequence of optimization problems where the minimization of the portfolio variance is sub-
stituted by the minimization of the portfolio CV aR. More precisely, problems have the same mathematical
formulation of the Global minimal CV aR described above with an additional constraint that ensures a
minimal expected portfolio return r̄p. r̄p varies from the expected portfolio return of the GV CV aR to the
expected return of the asset with the highest CV aR.
In Figure 4 we report the behavior of the mean-CV aR efficient frontier when, for each asset, we consider
an additive shift for µ, β, λ− and b parameters. We get an upward shifted frontier when, ceteris paribus, b
decreases. For the remaining parameters we have an upward shift of the frontier for increasing parameter
values. These numerical results seem to be coherent with the movements in Figures 1 and 2.
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µi βi mi li αi λ+,i λ−,i

HF1 -0.391 0.172 3.149 5.45 1.659 0.42 0.007
(0.034) (0.034) (2.986) (0.239) (0.034) (0.368) (0.082)

HF2 -0.107 0.045 9.233 6.492 1.779 0.004 0.006
(0.054) (0.024) (3.409) (0.175) (0.838) (0.734) (0.036)

HF3 0.544 -0.448 3.889 4.322 1.898 0.001 18.012
(0.023) (0.135) (2.905) (0.481) (0.024) (0.025) (0.043)

HF4 0.454 -0.526 4.272 3.31 2 0.391 1.408
(0.013) (0.085) (3.254) (0.175) (0.076) (0.434) (0.024)

HF5 0.565 -0.657 5.519 4.424 2 10.879 27.573
(0.034) (0.01) (3.108) (1.417) (0.038) (3.434) (0.034)

HF6 0.262 -0.315 3.56 2.848 2 2.272 2.044
(0.096) (0.073) (1.767) (0.912) (0.434) (0.356) (0.034)

HF7 -1.931 2.54 20.147 14.502 0.749 9.309 1.186
(0.021) (0.186) (0.771) (0.477) (0.076) (0.054) (0.094)

HF8 2.794 -1.295 5.612 11.198 1.228 0.018 5.752
(0.998) (0.034) (1.017) (0.992) (0.034) (0.734) (0.343)

HF9 2.365 -0.983 4.499 10.041 1.5 0.005 1.911
(1.067) (0.032) (1.259) (0.787) (0.053) (0.034) (0.334)

HF10 0.733 -0.893 5.992 4.551 1.556 65.064 9.407
(0.134) (0.156) (2.186) (0.484) (0.015) (14.343) (0.134)

HF11 0.635 -0.758 5.591 4.323 1.833 231.946 42.972
(0.126) (0.096) (2.987) (0.176) (0.034) (10.034) (1.034)

HF12 -1.485 1.614 30.535 27.127 1.279 15.099 0.846
(0.846) (0.734) (1.447) (1.259) (0.073) (1.143) (0.234)

HF13 0.117 -0.082 15.244 3.095 1.979 0.157 2.725
(0.047) (0.014) (3.647) (0.253) (0.075) (0.134) (0.934)

HF14 0.339 -0.314 9.675 3.214 0.054 7.331 15.327
(0.168) (0.084) (3.734) (0.451) (0.062) (0.037) (1.034)

HF15 0.557 -0.332 2.456 3.519 1.815 0.001 2.443
(0.267) (0.021) (1.871) (0.266) (0.186) (0.034) (0.538)

HF16 1.157 -1.79 6.903 4.08 1.265 0.711 96.078
(0.985) (0.281) (1.986) (0.302) (0.038) (0.034) (5.034)

HF17 -0.275 0.193 4.681 5.185 1.844 6.297 0.018
(0.0125) (0.086) (2.111) (1.549) (0.043) (2.273) (0.008)

Table 2: Parameters of the Multivariate MixedTS fitted to a dataset of 17 hedge funds, n = 0.512 with
standard deviation (0.121). In brackets is reported the standard deviation for each parameter.
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Fig. 4: Efficient mean-CV aR frontier sensitivity when the same additive shift, in a given parameter of the
MixedTS, is considered for each asset.
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5.2 Performance measurement

We use a buy and hold rolling window strategy with in-sample period of one year and out-of-sample period
of one month. We find the optimal weights in each in-sample period and keep these constant until a new re-
balance takes place. Given the time series of the out-of-sample returns generated for each portfolio strategy,
presented in Section 4, we compute two different Risk Adjusted Performance Measures (RAPM), the Omega
ratio and the Information ratio. For general review on different risk adjusted performance measure see [2].

The Omega Ratio (Ω) is defined as:

Ω(τ) =
E (rp − τ)+

E (τ − rp)
+ ,

where τ is a fixed threshold value and rp is the portfolio return. For a given level of τ the number Ω(τ) is
the probability-weighted ratio of gains to losses relative to the chosen threshold, as for any investor returns
above the threshold are considered as gains and returns below as losses. For an investor the choice of the
threshold reflects a particular risk preference, therefore no threshold level is “better” than another.

Information Ratio (IR) is defined as:

IR =
rp − rref

σrp−rref

.

where rref is the average return of the reference portfolio. In the empirical part we use as reference portfolio
the five strategies explained in Section 4 and compare the renaming portfolios. Once the reference portfolio
is fixed, managers seek to maximize IR, i.e. to reconcile a high residual return and a low tracking error.
This ratio allows us to check that the risk taken by the manager in deviating from the reference portfolio is
sufficiently rewarded.
In Figure 5 we report the out-of-sample performances in terms of portfolio wealth for each considered
strategy while synthetic statistics are given in Table 3.
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Fig. 5: Out-of-sample performance obtained using different strategies for portfolio selection.

It is well known that an investor will prefer the portfolio with the highest mean and skewness and lower
variance and kurtosis [15]. From the results in Table 3 we can observe that the portfolios with the highest
mean are the GMV and GMCV aR, the portfolio with the lowest variance is the GMV . The portfolio with
the highest skewness is the ERC while the lowest kurtosis is reached, in our analysis, with the EW strategy.
From the statistics in Table 3 is not evident which portfolio is preferred, thus we compare portfolios in an
out-of-sample perspective considering the two RAPM measures: Information Ratio and the Omega Ratio.
In Table 4 the Out-of-sample Information ratio is reported using as reference portfolio one of the strategies
considered in Section 4. For example, the first column indicates the IR obtained using as reference portfolio
the EW . Results, based on IR, clearly show that the EW strategy is outperformed by the others, as the IR
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Annual mean Annual std Skewness Kurtosis p-value JB-Test

EW 0.009 0.028 -0.738 5.829 0.001 432.72
MDP 0.011 0.024 -0.777 5.912 0.001 463.09
ERC 0.012 0.025 -0.625 5.925 0.001 430.03
GMV 0.015 0.023 -0.823 6.182 0.001 545.54
GMCV aR 0.015 0.024 -0.681 5.831 0.001 419.48

Table 3: Statistics of the out-of-sample portfolios.

P
P
P
P
P

P
P

rp

rref
EW MDP ERC GMV GMCV aR

EW . . . -0.025 -0.040 -0.040 -0.049
MDP 0.025 . . . -0.031 -0.052 -0.032
ERC 0.040 0.031 . . . -0.024 -0.017
GMV 0.040 0.045 0.027 . . . 0.001
GMCV aR 0.042 0.044 0.025 -0.001 . . .

Table 4: Out-of-sample Information ratio for different reference portfolios.

obtained if EW is used as a reference portfolio, is always positive. The second column reports the IR using
as reference portfolio the MDP . Based on IR we observe that ERC, GMV and GMCV aR, perform better
than the MDP . From the results in the third column is evident that GMV and CV aR perform better than
the ERC. Summarizing all results, we have that based on the IR the GMV and GMCV aR provide better
out-of-sample results.

τ = 0.001 τ = 0.0015 τ = 0.002

EW 0.190 0.084 0.036
MDP 0.169 0.066 0.027
ERC 0.181 0.075 0.033
GMV 0.145 0.052 0.020
GMCVaR 0.212 0.092 0.041

Table 5: Out-of-sample Omega ratio for all the portfolios considering different threshold levels.

Since the Omega Ratio considers the whole distribution of assets returns, we decided to use it as an
alternative to the IR. In Table 5 the out-of-sample Omega ratio is reported for different thresholds (τ =
0.001, τ = 0.0015 and τ = 0.002). From these results is clear that for the considered threshold levels the best
out-of-sample Omega Ratio is obtained for the GMCVaR. The ranking of the portfolios according to the
Omega Ratio is GMCV aR ≻ EW ≻ ERC ≻ MDP ≻ GMV where ≻ denotes preference ordering.
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6 Conclusions

In this paper, we considered two main topics. First we performed a sensitivity analysis on the Mixed
Tempered Stable distribution parameters with particular attention devoted to those parameters that in
previous literature were suggested to control tail behavior. In particular, we investigated the sensitivity of
univariate MixedTS parameters on CV aR. Then we presented a portfolio optimization problem based on
the use of the Multivariate Mixed Tempered Stable distribution for the joint modeling of univariate residuals
obtained by fitting an ARMA(1,1)-GARCH(1,1) to the log return series of each hedge fund index in the
dataset. We plotted the mean-CV aR efficient frontier and showed its sensitivity to some parameters of the
multivariate distribution. The out-of-sample results for competing portfolio strategies seem to suggest that
Global minimum CV aR portfolio presents better and more stable performances in all the time framework
considered.
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