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Preface	
	

The	human	locomotion	can	be	adapted	to	different	conditions	according	

to	 the	 environment.	 Walking	 on	 gradients	 and/or	 carrying	 (heavy)	 loads	 are	

some	challenges	 that	different	population	 faced	 since	 long	 time	ago	and	 in	 the	

last	decades	they	were	studied	by	many	researchers	around	the	world	(Heglund	

et	al.,	1995;	Bastien	et	al.,	2005;	Minetti	et	al.,	2006).	

Since	 the	pioneering	paper	of	Margaria	 (1938)	on	gradient	walking	 it	 is	

well	known	that	the	metabolic	cost	(the	energy	necessary	to	move	one	kilogram	

of	 body	 mass	 along	 one	 meter)	 keeps	 the	 same	 parabolic	 behaviour	 vs.	 the	

progression	speed	when	walking	on	level	and/or	on	gradient	(Margaria,	1938).	

It	is	also	known	that	minimum	metabolic	cost	of	walking	occurs	at	a	gradient	of	

about	 -10%	 whereas	 it	 is	 higher	 steeper	 the	 (positive	 or	 negative)	 gradient	

(Minetti	 et	 al.,	 1993).	 The	 explanation	 of	 this	 finding	 was	 found	 on	 the	

partitioning	 of	 the	 positive	 and	 negative	 work	 that	 muscles	 have	 to	 perform	

when	 facing	gradients	 (Minetti	et	al.,	1993).	All	 those	results	refer	 to	unloaded	

walking.	When	subjects	are	loaded	the	metabolic	cost	increases	proportionally	to	

the	extra	load	in	all	population,	even	if	Nepalese	porters	are	able	to	carry	loads	

with	 a	 lower	 extra	 cost	 due	 to	 their	 long	 specialisation	 (Bastien	 et	 al.,	 2005).	

From	a	mechanical	point	of	view	data	are	scanty:	it	is	known	that	the	pendulum-

like	mechanical	advantage	of	walking	 is	 impaired	on	gradient,	whereas	 it	could	

be	 enhanced	 when	 load	 are	 carried	 on	 the	 head	 (Heglund	 et	 al.,	 1995).	 An	

exhaustive	 description	 of	 mechanical	 changes	 due	 to	 both	 gradient	 and	 extra	

load	 and	 its	 implication	 on	 metabolic	 cost	 and	 efficiency	 deserve	 a	 new	 and	

accurate	approach.				

	 Furthermore,	 in	 the	 last	years	 the	 interest	 in	new	 technologies	 to	assist	

the	human	health	has	grown	also	with	the	exercise	monitoring.	New	useful	and	

practical	 devices	 support	 this	 constant	 search,	 but	 a	 more	 precise	 control	 of	

physiological	variables	is	still	needed.	In	fact,	along	with	this	increasing	number	

of	 devices,	 some	 issues	 about	 their	 functionality	 have	 been	 raised.	 This	 thesis	

will	 propose	 and	 discuss	 a	 new	 test	 to	 evaluate	 physical	 fitness	 by	 using	 the	

potential	output	of	a	smart	watch	in	order	to	test	both	pros	and	cons	of	this	new	

technology	when	applied	in	the	field	setting.	Thus	my	main	project	was	entitled	
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“A	 'wearable'	 test	 for	 maximum	 aerobic	 power:	 real-time	 analysis	 of	 a	 60-m	

sprint	performance	and	heart	rate	off-kinetics”	and	was	published	in	the	journal	

Frontiers	in	Physiology.	The	proposed	evaluation	relies	on	a	maximal	sprint	test	

(60-m)	 followed	by	a	short	recovery	(5	min).	Our	aim	was	to	define	a	multiple	

regression	 including	 sprint	 performance	 and	 physiological	 variables	 (as	 the	

heart	 rate	 off-kinetics)	 that	 could	 predict	 the	 aerobic	 fitness	 assessed	 in	 a	

standard	 laboratory	 test.	 According	 with	 these	 two	 focus,	 the	 thesis	 was	

subdivided	in	two	chapters.		

Chapter	 one	 presents	 the	 first	 topic	 of	 the	 thesis:	 muscle	 efficiency	 in	

heavily	 loaded	gradient	walking.	The	 effects	 of	 loads	 (10,	 20	 and	40%	of	body	

weight),	speeds	(0.27	to	1.67	m/s)	and	gradients	(15-25%	uphill	and	downhill)	

on	walking	cost,	mechanical	work	and	efficiency	were	analysed.		

Chapter	two	reports	the	findings	of	the	second	topic:	heart	rate		

off-kinetics	as	a	predictor	of	𝑉O2max.	A	new	test	for	maximal	aerobic	power	was	

developed	 based	 on	 the	 heart	 rate	 kinetics.	 This	 test	 consisted	 of	 only	 one	

maximal	60-m	sprint	where	heart	rate	was	recorded	before,	during	and	after	the	

exercise.	
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CHAPTER	1	

Muscle	efficiency	in	heavily	loaded	gradient	walking	
	

Introduction	
	

The	 human	 locomotion	 has	 been	 considerably	 analysed	 from	 both	

bioenergetics	 and	 biomechanical	 point	 of	 views	 (Saibene	 &	 Minetti,	 2003;	

Cavagna,	 2010).	 Since	 earliest	 times,	 hunting	 for	 food	 and	 escaping	 from	

predators	 already	 has	 proven	 how	 important	 is	 to	 comprehend	 this	 complex	

engineering	that	is	our	locomotor	machine.			

Different	 mechanical	 paradigms	 were	 defined	 and	 developed	 for	 each	

kind	of	locomotion.	These	models	are	based	on	the	interrelationship	between	the	

mechanical	 energies	 of	 the	 body	 centre	 of	 mass	 (BCoM)	 in	 order	 to	 describe	

locomotion	 from	 a	 simple	 physics	 point	 of	 view.	 Walking	 and	 running	 were	

modelled	as	an	‘inverted	pendulum’	and	‘spring	mass-model’	(Saibene	&	Minetti,	

2003;	Blickhan,	1989).	

The	inverted	pendulum	is	a	theoretical	model	describing	the	mechanical	

paradigm	of	walking:	potential	(PE)	and	kinetic	(KE)	energies	time	course	is	out	

phase	 allowing	 an	 exchange,	 the	 sum	 of	 these	 two	 energies	 gives	 the	 total	

mechanical	 energy	 (TE	=	PE	+	KE).	 In	 a	 perfect	 pendulum	without	 friction	 the	

energies	will	exchange	forever	so	that	no	additional	energy	is	needed	to	keep	the	

pendulum	oscillating	and	TE	is	constant.	This	peculiar	exchange	is	addressed	in	

the	energy	recovery	proposed	by	Cavagna	et	al.	(1976),	where	the	percentage	of	

energy	saved	by	the	pendulum	is	presented.	Walking	is	not	a	‘perfect’	pendulum,	

but	 the	 energy	 recovery	 is	 moderately	 high	 (up	 to	 60%),	 and	 it	 is	 influenced	

among	others	by	stride	length	(Minetti	et	al.,	1995)	and	walking	speed	(Cavagna	

et	al.,	1976).	

When	analysing	locomotion,	the	total	mechanical	work	done	is	calculated	

as	 the	 sum	 of	 external	 and	 internal	 work,	 according	 to	 the	 Konig’s	 theorem	

(Cavagna	 et	 al.,	 1963).	 The	 external	 work,	 Wext,	 is	 the	 work	 done	 to	 rise	 and	

accelerate	the	BCoM	with	respect	to	the	environment,	and	it	is	obtained	from	the	

increment	of	 the	 total	energy	 time	course.	The	 internal	work,	Wint,	 is	 the	work	
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done	to	accelerate	the	body	segments	with	respect	to	the	BCoM	(Cavagna	et	al.,	

1963).	 The	 total	mechanical	work	 (Wtot)	 done	 by	muscle	 during	 locomotion	 is	

the	sum	of	Wext	and	Wint.		

From	 the	 bioenergetics	 point	 of	 view,	 the	 net	 metabolic	 power	 of	 the	

investigated	 gait	 is	 divided	 by	 the	 progression	 speed	 in	 order	 to	 obtain	 the	

metabolic	 cost	 (C,	 J.kg-1.m-1)	 (Margaria,	 1938;	 Schmidt-Nielsen,	 1972;	 Di	

Prampero,	1986):	the	energy	needed	to	move	one	kilogram	of	body	mass	along	

one	 meter.	 In	 walking,	 an	 increase	 in	 speed	 does	 not	 cause	 a	 proportional	

increasing	of	energy	expenditure,	then	the	cost	vs.	speed	relationship	shows	a	U-

shape	behaviour	with	a	minimum	(about	2	J.kg-1.m-1)	at	a	speed	of	1.1	–	1,4	m.s-1,	

that	 can	be	considered	an	optimal	 speed	since	 it	minimizes	 the	energy	needed	

for	travelling	one	meter	(figure	1)	(Margaria,	1938).		
	

	
Figure	1.	Cost	of	transport	as	a	function	of	the	speed	for	different	types	of	human	locomotion.	w	
Walking,	 r	 running,	 ccs	 cross-country	 skiing,	 ss	 ice	 skating,	 sk	 skipping.	 The	 dashed	 curves	
represent	 the	 iso-metabolic	 power	 limit	 for	 a	 healthy	normal	 subject	 (14	W.kg–1,	 lower	 curve)	
and	an	athlete	(28	W.kg–1,	upper	curve).	From	Saibene	&	Minetti,	2003.	

		

This	 optimal	 speed	 is	 also	 very	 close	 to	 the	 self-selected	 speed,	

highlighting	that	men	usually	move	minimizing	the	energy	expenditure	(Cavagna	

&	Kaneko,	1977).	The	concept	of	energy	saving	 in	human	 locomotion	has	been	
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widely	reported	both	from	a	mechanical	and	bioenergetics	perspective	and	it	is	a	

feature	of	human	evolution	(Alexander,	1991;	Saibene	&	Minetti,	2003).	

The	parameter	that	relates	mechanics	and	bioenergetics	is	the	efficiency.	

Efficiency	 is	 the	 ratio	 between	 a	mechanical	 output	 and	 a	 chemical	 input.	 The	

maximal	 muscular	 efficiency	 of	 the	 transformation	 of	 chemical	 energy	 into	

positive	mechanical	work	by	the	muscles	is	about	25%	for	animals	and	humans	

(Heglund	 &	 Cavagna,	 1987).	 The	 locomotion	 efficiency	 in	 level	 locomotion	 is	

usually	 expressed	as	 the	 ratio	between	 the	positive	work	done	by	 the	muscles	

and	metabolic	cost	(Cavagna	&	Kaneko,	1977).	Efficiency	can	give	an	indication	

of	the	relative	importance	of	the	contractile	and	the	elastic	behaviour	of	human	

machine.	In	fact,	a	value	greater	than	25%	(the	muscular	efficiency)	shows	that	

part	 of	 the	 work	 is	 performed	 by	 elastic	 elements	 (mainly	 tendons)	 without	

metabolic	cost	(Cavagna	&	Kaneko,	1977;	Heglund	&	Cavagna,	1987).		

When	moving	from	level	to	gradient	walking,	C	shows	the	same	U-shape	

behaviour	as	function	of	speed	uphill	(Margaria,	1938),	with	the	minimum	(and	

maximal	 speed)	 that	 shifts	 leftwards	 to	 slower	 speed	 values.	 When	 walking	

downhill	 the	 U-shape	 was	 flatter,	 and	 a	 real	 minimum	 is	 hard	 to	 be	 detected	

(figure	2)	(Margaria,	1938;	Ardigò	et	al.,	2003).	Minetti	et	al.	(1993)	showed	that	

when	the	minimum	cost	at	each	gradient	is	plotted	against	the	gradient,	another	

parabolic	profile	is	present	with	a	minimum	at	a	gradient	of	-10%.	

	
	
	
	
	
	
	

speed	(km.h-1)	

C	
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Figure	2.	Metabolic	cost	(C,	J	kg-1	m-1)	as	a	function	of	speed	(km	h-1)	at	different	gradients.	From	
Margaria	(1938).	
	

This	minimum	was	 explained	by	 the	partitioning	 of	 positive	 and	negative	Wext	

(figure	3).	The	positive	external	mechanical	work,	as	stated	before,	 is	 the	work	

done	 to	 rise	 and	accelerate	BCoM,	 the	negative	 is	 the	work	done	 to	decelerate	

and	lower	BCoM	(Minetti	et	al.,	1993).		
	

	
Figure	 3.	 The	 positive	 and	 negative	 component	 (W+	 and	W-,	 widths	 of	 the	 bottom	 rectangles)	
constitutes	one-half	of	the	total	mechanical	work	at	 level	walking	(zero	gradient).	They	assume	
that	 to	maintain	 the	same	speed	uphill	 and	downhill	 at	different	gradients	both	 the	 total	work	
increases	 and	 the	 contribution	 of	 one	 of	 its	 components	 becomes	 prominent	 (positive-uphill,	
negative-downhill).	By	multiplying	the	rectangle	bases	by	the	proper	heights	(which	corresponds	
to	dividing	by	the	efficiency	of	positive	and	negative	work),	they	obtain	areas	proportional	to	the	
metabolic	equivalent	of	each	component	of	 the	mechanical	work	(stippled	and	white	patterns).	
The	 cumulative	 area	 for	 each	 gradient,	 given	 as	 the	 ordinate	 in	 the	 upper	 graph,	 has	 an	
asymmetric	 profile	with	 a	minimum	 corresponding	 to	 a	 certain	 gradient	 in	 the	 downhill	 zone.	
Adapted	from	Minetti	et	al.	1993.	
	
	

The	 efficiency	 of	 negative	 work	 is	 4-5	 times	 higher	 than	 positive	 (Cavagna	 &	

Kaneko,	1977;	Heglund	&	Cavagna,	1987)	so	 that	 its	metabolic	contribution	on	

level	 can	 be	 disregarded,	 however	when	moving	 downhill	 where	 the	 negative	

work	becomes	predominant	 (i>-15%),	 the	amount	of	metabolic	 cost	needed	 to	

perform	 that	 work	 is	 large	 and	 plays	 an	 important	 role	 (Minetti	 et	 al.,	 1993;	

1994).	When	 walking	 on	 level	 the	 partitioning	 between	 positive	 and	 negative	

work	 is	 the	 same	 (figure	 4),	 whereas	 beyond	 15%	 most	 of	 the	 mechanical	

external	work	 is	positive	 in	uphill	and	negative	 in	downhill	walking	(Minetti	et	

al.,	1993).	This	different	partitioning	affects	also	walking	mechanics	on	gradient.	
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The	displacement	of	BCoM	becomes	monotonic	(only	 increasing,	or	decreasing,	

at	positive	or	negative	 inclines,	 respectively).	The	pendulum-like	mechanism	 is	

impaired:	when	walking	uphill	 a	 lower	 value	 of	 energy	 recovery	was	 reported	

because	of	a	lower	exchange	between	potential	and	kinetics	energies	(Minetti	et	

al.,	1993;	Gomeñuka	et	al.,	2014).	

	
Figure	4.	Negative	external	work	(as	a	percentage	of	positive	and	negative	external	work)	as	a	
function	 of	 gradient;	 running	 data	 (filled	 squares	 and	 triangles)	 and	 walking	 values	 (open	
squares;	Minetti	et	al.,	1993)	are	both	shown.	Each	value	represents	the	fraction	of	the	external	
mechanical	work	devoted	to	lower	and	decelerate	the	body	centre	of	mass,	while	its	complement	
to	 100%	 is	 the	 fraction	 necessary	 to	 raise	 and	 accelerate	 it	 (from	Minetti	 et	 al.	 1994).	 In	 that	
paper	 the	 authors	 argued	 that	 the	 running	 curve	 superimposes	on	 the	walking	 curve	 after	 the	
effects	 of	 elastic	 structures	 on	 positive	 and	 negative	 work	 have	 been	 removed.	 Adapted	 from	
Saibene	&	Minetti	(2003).	
	

When	walking	carrying	loads	on	level,	the	metabolic	cost	is	higher	(Huang	

&	Kuo,	2014)	but	 the	U-shape	 remains	 the	 same	 (Bastien	et	 al.,	 2005)	 and	 the	

few	 studies	 that	 investigated	 the	 mechanical	 work	 found	 no	 substantial	

differences	 on	 the	 level	 (Bastien	 et	 al.,	 2016)	 and	 on	 positive	 gradient	

(Gomeñuka	et	al.,	2014).	In	the	literature	the	ratio	between	negative	and	positive	

work	 efficiency	 during	 unloaded	 locomotion	 was	 found	 to	 be	 5:1,	 whereas	

nothing	is	known	about	the	influence	of	load	on	locomotion	efficiency.		
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The	analysis	of	muscular	activity	in	locomotion	may	help	to	comprehend	

muscles	activity	during	 locomotion	and	their	relation	with	BCoM	displacement.	

Some	 investigations	 have	 reported	 the	 role	 of	 the	main	muscles	when	moving	

uphill	or	downhill	(Lay	et	al.,	2007;	Pickle	et	al.,	2016).	They	found	that	in	uphill	

locomotion	 soleus	 and	 gastrocnemius	 had	 a	 significant	 role,	 whereas	 moving	

downhill	a	major	activity	(mean	values	and	duration)	of	the	knee	extensors	was	

reported	(Lay	et	al.,	2007;	Pickle	et	al.,	2016).	However,	they	did	not	relate	this	

activation	 to	 any	 mechanical	 work	 and	 neither	 they	 compare	 the	 activation	

during	positive	and	negative	locomotion.		

Muscles	when	shortening	are	not	able	to	exert	the	same	force	at	different	

velocity,	the	force-velocity	profile	 is	hyperbolic	(Woledge	et	al.,	1985),	with	the	

maximal	 force	 that	 is	 exerted	at	 zero	velocity	 (isometric	 contraction)	 and	 zero	

force	at	maximal	contraction	velocity	(figure	5).	When	lengthening	the	profile	is	

different.	During	 lengthening	muscles	 are	 able	 to	perform	more	 force	 than	 the	

isometric	 contraction	 and	 this	 force	 production	 increases	 very	 sharply	 at	 the	

first	negative	velocity	and	then	reaches	a	plateau	(figure	5).	It	has	to	be	said	that	

the	shortening	(positive)	side	of	the	force-velocity,	power	and	efficiency	is	well	

known,	whereas	less	is	known	about	the	lengthening	(negative)	side.		
	

Figure	 5.	 The	 force-velocity	 diagram	 of	 the	 muscle.	 Negative	 shortening	
speed	 refer	 to	muscle	 lengthening,	 positive	 to	muscle	 shortening.	Adapted	
from	Alexander	(1999).	

	

As	already	described,	muscle	shortening	produced	positive	external	work	

and	 lengthening	negative	external	work.	These	 two	different	modalities	have	a	
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different	cost,	 in	 fact	according	to	the	force-velocity	diagram	when	muscles	are	

operating	 at	 the	 same	 velocity	 they	 can	 produce	 almost	 five	 time	 more	 force	

during	 lengthening.	 If	 the	 muscle	 is	 required	 to	 perform	 the	 same	 work	 by	

shortening	or	lengthening	it	will	use	1/5	of	its	maximal	force	during	lengthening,	

with	 a	 lower	 number	 of	 fibres	 activated	 that	 need	 less	 energy,	 so	 that	 the	

negative	 work	 is	 produced	 with	 less	 cost	 (see	 figure	 3).	 The	 ratio	 between	

negative	 and	 positive	 efficiency	 (with	 efficiency	 obtained	 as	 the	 ratio	 between	

Wext	+	or	Wext	–	and	C)	in	human	walking	and	running	was	found	to	be	close	to	

5:1	 (Minetti	 et	 al.,	 1993;	 1994)	 that	 is	 in	 line	 with	 experiment	 at	 fibre	 level	

(Woledge	et	al.,	1985).	However,	if	the	two	contractions	(positive	and	negative)	

are	forced	to	occur	at	low	contraction	velocity	(in	the	F-v	diagram	in	figure	5	we	

are	 moving	 close	 to	 0	 v	 and	 isometric	 force),	 the	 difference	 in	 the	 activated	

muscle	fibres	should	be	no	more	1/5.	Thus,	the	cost	of	negative	work	should	be	

higher,	the	negative	efficiency	lower	and	the	ratio	between	negative	and	positive	

efficiency	should	move	from	5:1	to	smaller	ratios.		

The	aim	of	this	study	was	to	analyse	metabolic	and	mechanical	aspects	of	

loaded	 gradient	 walking	 in	 order	 to	 i)	 impair	 the	 positive	 and	 negative	 work	

efficiency	and	ii)	give	an	exhaustive	description	of	the	load-gradient	interaction	

on	walking	(mechanics	and	bioenergetics).	
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Material	and	Methods	
	

Subjects	

Three	 male	 subjects	 (29.0±3.1	 years,	 1.74±0.03	 m	 height,	 66.7±7.0	 kg	

mass;	mean	±	SD)	 took	part	 in	 the	study.	They	were	 fully	 familiarised	with	 the	

protocol	 and	 different	 weight-gradient-speed	 conditions	 during	 some	

familiarisation	sessions.		

	

Experimental	Protocol	

Subjects	walked	on	 a	 treadmill	 (Ergo	LG,	Woodway)	 at	 different	 speeds	

(from	0.28	to	1.94	m.s-1),	gradients	(0,	15	and	25%,	uphill	and	downhill),	while	

carrying	different	 loads	with	a	weight	vest	on	 the	 trunk	 (0,	10,	20	and	40%	of	

body	weight).	The	protocol	 resulted	 in	a	combination	of	20	conditions	and	5-7	

speed	 for	 each	 condition.	 During	 one	 experimental	 session	 subjects	walked	 at	

one	gradient,	with	one	extra	load,	at	all	possible	speeds	that	allowed	to	rely	on	

the	aerobic	glycolysis	(RER	<	1)	for	four	minutes.	The	gradient-load	combination	

was	randomly	assigned	to	the	subjects,	whereas	speeds	were	 in	crescent	order	

from	0.28	to	1.67	m.s-1	when	walking	uphill,	from	0.56	to	1.94	m.s-1	when	moving	

downhill	and	from	0.28	to	1.94	m.s-1	on	level.	At	least	48	h	intercurred	between	

two	consecutive	sessions.			

	

Data	collection	and	Processing	

	 Metabolic	measurements		

	 The	 experimental	 session	 started	 with	 8	 min	 of	 baseline	𝑉𝑂!(ml	 O2.kg-

1.min-1)	 assessment	 (4	min	 in	 a	 seated	 and	4	min	 in	 a	 standing	 position)	 after	

that	subjects	were	asked	to	walk	on	the	treadmill	for	4	min	in	each	condition;	in	

this	way	a	steady	state	values	for	𝑉𝑂! was	reached	and	values	of	the	last	minute	

analysed.	 Respiratory	 gas	 was	 analysed	 breath	 by	 breath	 with	 three	 portable	

metabographs	(one	K4b2	and	two	K5b2,	Cosmed,	Rome,	Italy.	We	were	obliged	to	

use	three	different	apparatus	for	technical	problems),	and	the	metabolic	cost	(C,	J	

kg-1	 m-1,	 i.e.,	 the	 metabolic	 energy	 needed	 to	 move	 1	 kg	 of	 body	 mass	 for	 a	

distance	of	1	m)	was	calculated	dividing	the	net	𝑉𝑂!	(steady	state	𝑉𝑂!	–	standing	

baseline	𝑉𝑂!)	by	the	progression	speed	(v,	m	s-1)	(Di	Prampero,	1986).	In	order	
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to	convert	𝑉𝑂!	(ml	O2.kg-1.min-1)	to	metabolic	J	the	RER	caloric	equivalent	(J/ml	

O2)	was	taken	into	account.		

		 	

		 Kinematics	

	Three-dimensional	body	motion	was	sampled	by	an	eight-camera	system	(Vicon	

MX,	 Oxford	 Metrics),	 measuring	 at	 a	 sampling	 rate	 of	 100	 Hz	 the	 spatial	

coordinates	of	18	reflective	markers	located	bilaterally	on	the	main	joint	centres	

(fifth	 metatarsal,	 calcaneus,	 lateral	 malleolus,	 femoral	 epicondyle,	 greater	

trochanter,	glenohumeral	axis,	elbow	axis,	midpoint	of	the	ulnar	radius,	and	ear	

canal).	in	order	to	compute	the	BCoM	position	from	an	11	rigid	segments	model	

(head-trunk,	upper	arms,	lower	arms,	thighs,	lower	legs,	and	feet)	(Minetti	et	al.,	

1993;	 Pavei	 et	 al.,	 2017)	 based	 on	 Dempster	 inertial	 parameters	 of	 body	

segments	(Winter,	2005).	When	the	vest	was	loaded	the	centre	of	mass	location	

and	radius	of	gyration	of	each	segment	remained	the	same,	whereas	the	segment	

mass	was	scaled	according	to	the	added	load	and	the	percentage	weight	of	each	

segment.	Each	acquisition	lasted	1	min,	during	the	 last	minute	of	the	metabolic	

recording.	 	From	the	BCoM	3D	trajectory	 the	 time	course	of	potential	 (PE)	and	

kinetics	(KE)	energies	were	computed	to	obtain	the	total	mechanical	energy	(TE	

=	PE	+	KE).		

		 The	summation	of	all	increases	in	TE	time	course	constitutes	the	positive	

external	work	(Wext+,	J.kg-1.m-1)	the	work	to	accelerate	and	raise	BCoM	(Cavagna	

et	 al.	 1963;	 Cavagna	 &	 Kaneko,	 1977).	 On	 the	 other	 side	 the	 work	 done	 to	

decelerate	 and	 lower	 BCoM,	 which	 is	 calculated	 as	 the	 summation	 of	 all	

decreases	 in	TE	 time	 course	 represents	 the	negative	 external	work	 (Wext-,	 J.kg-

1.m-1,	Minetti	 et	 al.,	 1993;	 1994).	 The	work	 necessary	 to	 rotate	 and	 accelerate	

limbs	 with	 respect	 to	 BCoM	 (internal	 work,	 Wint,	 Cavagna	 &	 Kaneko,	 1977;	

Minetti,	 1998)	 was	 calculated	 from	 the	 kinetic	 and	 rotational	 energy	 of	 the	

segment	 with	 respect	 to	 BCoM	 and	 summed	 to	 Wext	 to	 obtain	 the	 total	

mechanical	work	(Wtot,	J·kg-1·m-1).	Energy	Recovery,	the	ability	of	the	system	to	

save	 energy	 by	 acting	 like	 a	 pendulum-like	 system,	 was	 calculated	 on	 level	

according	to	Cavagna	&	Kaneko	(1977).	All	kinematic	data	were	processed	with	

custom	written	LabView	programs	(release	2013,	National	Instruments).	
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	Muscular	activity	

	 	A	wireless	electromyographic	(EMG)	system	(Trigno,	Delsys	Inc.,	Boston,	

MA,	USA)	recorded	the	surface	EMG	activity	 from	eight	 lower	 limbs	muscles	of	

the	 right	 leg:	 gluteus	medius	 [GM],	 vastus	 lateralis	 [VL],	 vastus	medialis	 [VM],	

rectus	femoris	[RF],	biceps	femoris	[BF],	gastrocnemius	medial	head	[Ga],	soleus	

[Sol],	and	tibialis	anterior	[TA].	Parallel-bar	EMG	electrodes	(DE-27x37x15-mm	

single	differential	surface	EMG	sensor	with	four	1-mm	Ag	contacts	5	mm	apart)	

were	 placed	 longitudinally	 on	 each	 muscle	 according	 to	 standard	

recommendations	 (Stegeman	&	Hermens,	 1999).	 The	 skin	was	 shaved,	 slightly	

abraded,	degreased,	and	disinfected	with	alcohol	before	attaching	the	electrodes	

to	minimize	impedance.		

	The	EMG	signal	was	sampled	at	1000	Hz	with	Vicon	software	in	order	to	

have	 EMG	 and	 Kinematics	 signals	 synchronized.	 The	 root	 mean	 square	

amplitudes	(RMS)	of	the	EMG	signal	were	calculated	(with	a	time	window	of	50	

ms)	 for	 each	 muscle	 and	 for	 each	 complete	 gait	 cycle	 in	 the	 60	 s	 of	 the	

acquisition.	Gait	cycle	was	defined	as	the	interval	between	two	consecutive	heel	

strikes	of	the	foot	on	the	right	side.		
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Results	
	

	Data	 are	 presented	 for	 one	 subject,	 the	 only	 that	 finished	 the	 whole	

experimental	setup	(20	conditions,	5-7	speeds	for	each	condition),	the	other	two	

subjects	 completed	 the	 50%	of	 the	 acquisitions	 and	 are	 not	 included	 yet.	 This	

delay	was	mainly	caused	by	technical	problems	with	the	metabograph.		

	

	Metabolic	Cost	

	Metabolic	cost	of	walking	unloaded	across	different	gradients	was	comparable	

with	Margaria’s	data	(1938).	Values	are	represented	in	figure	6	as	a	3D	surface	

with	reference	data	(Margaria,	1938)	in	the	mathematical	description	of	Ardigò	

et	 al.	 (2003).	The	 cost	 showed	a	parabolic	profile	 versus	 speed	at	 all	 gradient;	

when	minimum	cost	was	compared	with	gradient	it	showed	a	minimum	around	-

10%	and	increased	at	steeper	(positive	and	negative)	gradients.		

	

	
Figure	6.	The	3D	surface	of	metabolic	cost	(C,	J	kg-1	m-1)	as	function	of	gradient	and	speed	(m	s-1)	
is	represented.	The	uniform	grey	surface	refers	to	Margaria’s	data	(1938),	the	four	checkerboard	
surfaces	represent	data	from	this	study	at	the	four	different	load	conditions.	
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When	 loads	were	applied	 to	 the	subject,	 the	+10%	condition	did	not	show	any	

difference,	+20%	had	small	increases,	whereas	+40%	caused	an	increase	in	cost	

that	 was	 speed	 and	 gradient	 dependent	 as	 shown	 in	 figure	 7.	 The	 average	 C	

increase	at	each	gradient	was	greatest	at	+25%	(4	J.kg-1.m-1)	and	lowest	at	-11%	

(0.1	 J.kg-1.m-1),	 when	 reported	 as	 percentage	 of	 unload	 condition	 the	 peak	 of	

increase	was	 at	 +15%	with	 an	 extra	 cost	 of	 42%,	 the	 lowest	 extra	 cost	was	 at	

11%	with	0.05%	(figure	8,	Extra	cost	surface).	

	

	
	Figure	7.	The	3D	surface	of	metabolic	cost	(C,	J	kg-1	m-1)	as	function	of	gradient	and	speed	(m	s-1)	
is	presented.	From	this	perspective	the	difference	in	cost	across	different	loaded	conditions	can	
be	 better	 appreciated,	 in	 particular	 0.4BW	 showed	 the	 highest	 cost	 whereas	 no	 appreciable	
differences	can	be	seen	between	unload	and	0.1BW.	
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	Figure	8.	The	3D	surface	of	metabolic	cost	(C,	J	kg-1	m-1)	as	function	of	gradient	and	speed	(m	s-1)	
is	 presented.	 With	 respect	 to	 the	 previous	 two	 graphs	 here	 the	 checkerboard	 pink	 and	 blue	
surface	represent	the	Extra	Cost	of	0.4BW	compared	with	unload.	It	can	be	seen	that	this	extra	
cost	is	not	constant,	it	can	be	described	as	a	function	of	both	speed	and	gradient.	
	

	Mechanical	Work		

	Internal	work	 (Wint)	 increased	with	 speed,	 did	 not	 change	with	 gradient	 and	

decreased	with	load	(figure	9).		
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	Figure	9.	The	internal	work	values	(Wint,	J	m-1)	are	presented	as	function	of	gradient	and	speed	
(m	s-1).	Different	colours	represent	the	different	loaded	conditions.	
	

	External	 work	 (Wext)	 positive	 for	 uphill	 and	 negative	 for	 downhill	 gradients	

increased	with	gradient	and	load	but	was	mainly	speed	independent	at	gradient	

(figure	 10).	 The	 partitioning	 of	 positive	 and	 negative	 external	 work	 was,	 as	

supposed,	very	close	to	100%	in	the	two	gradient	conditions	(figure	11).	
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	Figure	 10.	 The	 external	 work	 values	 (Wext,	 J	 m-1)	 are	 presented	 as	 function	 of	 gradient	 and	
speed	(m	s-1).	Different	colours	represent	the	different	loaded	conditions.	
	

	

	
	
	Figure	11.		Negative	external	work	(as	a	percentage	of	external	work)	as	a	function	of	gradient.	
Different	colours	represent	the	different	loaded	conditions.	It	can	be	seen	that	no	differences	in	
partitioning	are	present	among	load	conditions	and	in	the	analysed	gradients	the	external	work	
was	almost	totally	negative	downhill	and	positive	uphill.			
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	Total	 work	 (Wtot)	 as	 sum	 of	 positive	 or	 negative	 external	 work	 and	 internal	

work	increased	with	gradient	and	loads.	On	level	and	at	 -15%	it	 increased	also	

with	speed	(figure	12).		

	
	Figure	12.	The	total	mechanical	work	values	(Wtot,	J	m-1)	are	presented	as	function	of	gradient	
and	speed	(m	s-1).	Different	colours	represent	the	different	loaded	conditions.	

	

	

	Efficiency		

	Efficiency	was	calculated	as	 the	ratio	between	Wtot	and	C,	with	Wtot	 that	was	

composed	of	negative	or	positive	external	work	when	walking	downhill	or	uphill	

and	 internal	 work.	 When	 moving	 uphill	 efficiency	 was	 mostly	 speed	

independent,	the	load	effect	was	not	well	defined	with	small	differences	among	

conditions	 (±3%)	 (figure	 13).	 In	 downhill	 part	 the	 efficiency	 vs.	 speed	 curve	

followed	 a	 parabolic	 profile	 with	 a	 peak	 at	 the	 intermediate	 speed.	 The	 load	

effect	was	not	so	clear.	(figure	13).	As	for	the	ratio	between	negative	and	positive	

work	efficiency	(figure	14)	there	was	not	a	visible	trend	with	added	masses:	the	

ratio	was	about	4:1	with	fluctuations	among	speeds	and	loads.	
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Figure	13.	The	mechanical	efficiency	(Eff)	is	presented	as	function	of	gradient	and	speed	(m	s-1)	
Different	colours	represent	the	different	loaded	conditions.	
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	Figure	14.	Ratio	between	negative	and	positive	efficiency	as	function	of	speed	(m	s-1)	at	the	two	
gradients	analysed	(15	–	25%).	Different	colours	represent	the	different	loaded	conditions.	 	

0.00	

1.00	

2.00	

3.00	

4.00	

5.00	

6.00	

0.00	 0.20	 0.40	 0.60	 0.80	 1.00	 1.20	 1.40	 1.60	 1.80	 2.00	

eff-/eff+	25%	

0	

0.1	BW	

0.2	BW	

0.4	BW	

0.00	

1.00	

2.00	

3.00	

4.00	

5.00	

6.00	

7.00	

0.00	 0.20	 0.40	 0.60	 0.80	 1.00	 1.20	 1.40	 1.60	 1.80	 2.00	

eff-/eff+	15%	

0	

0.1	BW	

0.2	BW	

0.4	BW	

speed	(m	s-1)	



	 23	

Discussion	
	

The	 metabolic	 cost	 of	 loaded	 walking	 on	 gradient	 showed	 some	

interesting	points	of	discussion.	First	of	all,	unloaded	data	were	superimposed	to	

the	 reference	 data	 of	 Margaria	 (1938)	 and	 the	 surface	 representation	 (as	 for	

Ardigò	et	al.,	2003)	showed	no	differences	between	the	two	series/surfaces.	This	

underlines	that	at	all	gradients	the	cost	versus	speed	behaviour	is	parabolic	with	

a	 minimum	 that	 slightly	 change	 to	 slower	 speed.	 Moreover,	 the	 minimum	 at	

intermediate	negative	gradient	was	again	confirmed	and	was	similar	to	previous	

papers	(Margaria,	1938;	Minetti	et	al.,	1993).		

When	loaded,	the	metabolic	cost	of	the	subject	increased	markedly	only	at	

the	highest	load	(+40%BW)	whereas	was	unchanged	with	10%BW	of	extra	load	

and	only	slightly	at	+20%BW.	This	is	quite	different	from	previous	studies	where	

the	 increase	 in	metabolic	cost	should	be	directly	proportional	 to	 the	extra	 load	

carried	(Bastien	et	al.,	2005b).	This	difference	could	be	partially	attributed	to	the	

experimental	 setup:	 extra	 load	 was	 carried	 with	 a	 weighted	 vest	 where	 loads	

were	 symmetrically	 placed	 in	 the	 front	 and	 rear	 side,	 whereas	 all	 the	 other	

studies	used	a	normal	backpack	that	could	have	enhanced	rotational	torques	and	

muscular	 work	 to	 counterbalance	 them.	 Since	 also	 mechanical	 work	 was	

calculated,	and	then	BCoM	position	was	computed,	it	was	very	important	to	keep	

the	 center	of	mass	of	 the	 trunk	 in	 the	 same	relative	position	and	 the	vest	well	

addressed	 this	 need.	 Another	 interesting	 finding	 of	 the	 extra	 cost	 was	 the	

inconstancy	across	speeds	and	gradients.	Bastien	et	al.	(2005b)	were	among	the	

first	to	report	that	extra	cost	related	to	the	extra	load	increased	as	a	function	of	

walking	 speed	 on	 level.	 Looking	 at	 figure	 8,	 present	 data	 with	 40%BW	 load	

confirm	 those	 results	 on	 level	 and	 negative	 gradient,	 whereas	 for	 the	walking	

uphill	part	it	seems	that	a	constant	increase	is	shown	across	speeds;	it	cannot	be	

excluded	 that	 the	 lower	 speed	 range	 would	 help	 this	 constancy.	What	 is	 new	

with	present	data	is	the	difference	in	extra	cost,	calculated	as	average	difference	

across	speeds,	at	the	different	gradients.	As	shown	in	figure	8	the	minimum	extra	

cost	 (analysed	as	percentage	 in	order	 to	avoid	discrepancies	among	gradients)	

occurs	at	 -11%	and	 it	 increases	with	steeper	(positive	and	negative)	gradients.	

The	“expected-target”	value	of	+40%	in	extra	cost	was	confirmed	only	at	steepest	
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negative	 slope	 and	 above	 +15%,	 so	 that	 the	 increase	 in	 cost	 due	 to	 the	 added	

mass	seems	not	so	strictly	defined	and	speed	and	gradient	dependent.	The	cost	

vs.	 speed	 relation	 on	 gradient	 with	 loads	 keeps	 the	 parabolic	 profile	 of	 the	

unloaded	 condition	 without	 appreciable	 differences	 in	 shape	 and	 minimum,	

these	results	confirm	and	extend	Gomeñuka	et	al.	(2016)	data	with	lower	extra	

load.		

These	seems	to	be	the	first	data	on	walking	loaded	mechanics	on	gradient	

above	 +15%	 and	 downhill,	 since	 Gomeñuka	 et	 al.	 (2014)	 analysed	mechanical	

work	at	0,	+7	and	+15%.	The	choice	of	slopes	greater	than	±15%	was	driven	by	

the	idea	that	above	that	gradient	the	partitioning	between	positive	and	negative	

work	was	predominant	by	negative	work	downhill	and	positive	uphill	(Minetti	et	

al.,	 1993).	 Looking	 at	 figure	 11	 the	 assumption	 was	 right	 since	 in	 all	

gradient/load	 condition	 the	 value	was	 above	93%.	Thanks	 to	 these	 results	 the	

subsequent	 analysis	 on	 efficiency	 can	 be	 safely	 done	 and	 will	 regard	 only	

positive	and	negative	work	parts.	A	proof	of	the	monotonically	ascent	or	descent	

of	BCoM	at	these	slopes	was	confirmed	in	 figure	15,	where	Wext	 is	shown	as	a	

function	of	 speed	 and	 gradient	 (as	 in	 figure	10)	 together	with	 two	planes	 that	

represent	 the	 vertical	mechanical	work.	 Vertical	mechanical	work	 is	 the	work	

that	has	to	be	done	to	lift	(positive	gradient)	or	absorbed	in	lowering	(negative	

gradient)	 the	 BCoM,	 and	 it	 relies	 only	 on	 the	 difference	 in	 potential	 energy	

according	to	the	equation	

𝑊!"#$ = 𝑚 𝑔 𝑠𝑖𝑛 𝑎𝑟𝑐𝑡𝑎𝑛 𝑖 	

	

where	m	 is	 the	 mass	 (kg),	 g	 is	 gravity	 acceleration	 (9.81	 m	 s-2)	 and	 i	 is	 the	

gradient	 (Minetti	 et	 al.,	 2002).	 The	 planes	 pass	 through	 both	 unloaded	 and	

+40%BW	 data	 (the	 other	 two	 added	 loads	 have	 been	 omitted	 for	 clarity	 but	

showed	the	same	interpolation)	highlighting	that	most	of	the	external	(positive	

or	negative)	work	is	done	to	lift	or	absorbed	in	lowering	BCoM.	The	increase	in	

external	work	is	to	be	ascribed	only	to	the	increase	in	total	mass	and	the	absence	

of	speed	effect	on	gradient	could	be	attributed	to	the	greater	amount	of	potential	

energy	 compared	 with	 level	 walking,	 where,	 instead,	 the	 great	 kinetic	 energy	

fluctuations	at	increasing	speed	also	contribute	to	the	increase	in	external	work.		
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Figure	15.	The	total	mechanical	work	values	(Wtot,	 J	m-1)	are	presented	as	function	of	gradient	
and	 speed	 (m	 s-1)	 with	 different	 colours	 that	 represent	 different	 loaded	 conditions.	 The	 blue	
checkerboard	plane	represents	the	vertical	work	of	the	unloaded	condition,	while	the	yellow	one	
refers	to	0.4BW	extra	load.	In	both	cases	the	planes	interpolate	completely	(positive	and	negative	
gradient	 parts)	 the	 experimental	 points	 highlighting	 the	 predominance	 of	 vertical	work	 in	 the	
mechanical	external	work.		
	

Mechanical	 internal	work	 increased	with	 speed	 regardless	 the	 gradient,	

this	is	in	agreement	with	previous	papers	(Nardello	et	al.,	2011;	Gomeñuka	et	al.,	

2014;	Minetti,	1998)	and	it	is	probably	due	to	the	changes	in	its	determinants:	an	

increase	 in	 stride	 frequency	and	a	decrease	 in	duty	 factor	driven	by	 the	 speed	

change	 (Minetti,	 1998).	On	 the	 other	hand,	Wint	 decreased	with	 load,	 this	 is	 a	

consequence	of	the	percentage	distribution	of	the	segment	mass	due	to	the	extra	

load	on	the	trunk.	The	internal	work	is	calculated	based	on	rotational	and	linear	

kinetic	energies	of	limbs	with	respect	to	BCoM	and	both	include	the	percentage	

mass	of	the	limb.	From	the	anthropometric	table	it	 is	known	that	the	trunk	has	

more	weight	in	the	weighted	mean	for	BCoM	compared	with	limbs,	moreover	the	

extra	load	is	placed	on	the	trunk	augmenting	its	percentage	weight.	In	unloaded	

walking	limbs	periodic	movements	determine	the	greatest	part	of	Wint,	whereas	

trunk	 movements	 are	 small	 and	 give	 a	 marginal	 contribution	 to	 Wint.	 In	 the	

loaded	condition	even	if	limbs	movements	are	the	same	their	percentage	mass	is	
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lower	and	consequently	 their	work.	On	the	other	hand,	 the	trunk	has	a	greater	

weight	 but	 its	 movements	 with	 respect	 to	 BCoM	 are	 smaller	 than	 limbs,	 they	

require	 less	 work	 and	 then	 Wint	 in	 heaviest	 loaded	 condition	 (+40%BW)	

becomes	 smaller	 than	 unloaded	 condition.	 As	 the	 sum	 of	 the	 two	 mechanical	

work	described	before	and	with	predominance	of	Wext,	Wtot	can	only	increase	

as	a	function	of	the	added	mass,	by	following	the	same	trend	of	Wext.	

In	unload	condition,	efficiency	of	positive	work	was	 lower	than	negative	

work	at	the	two	investigated	gradients,	as	reported	in	previous	studies	(Minetti	

et	 al.,	 1993,	 Minetti	 et	 al.,	 2002).	 When	 loads	 were	 applied	 there	 was	 not	 an	

appreciable	 change	 in	 efficiency	 versus	 gradient	 and/or	 speed,	 results	 were	

overlapped	 and	 it	 was	 difficult	 to	 find	 a	 significant	 trend	 (figure	 13).	 In	 this	

situation,	 also	 the	 ratio	 of	 negative	 and	 positive	 efficiency	 remained	 almost	

constant	 among	 gradients	 and	 speeds	 (figure	 14).	 We	 thought	 that	 adding	

masses	the	gap	between	positive	and	negative	efficiency	could	be	reduced	due	to	

a	higher	muscular	activation	that	would	have	moved	closer	positive	and	negative	

cost	with	the	same	(obviously)	total	mechanical	work.		

The	mechanical	work	was	the	same,	the	cost	was	still	different	even	with	

an	extra	load	that	challenge	the	aerobic	capacity	of	our	subject,	so	that	a	higher	

load	will	 be	not	 carried	 for	 four	minutes.	 Speeds	were	analysed	paired	 so	 that	

muscles	should	have	operated	at	the	same	velocity,	probably	it	was	not	enough	

slow	for	diminishing	the	difference	between	the	positive	and	negative	part	of	the	

Force-Velocity	diagram.	In	fact,	very	low	contraction	velocities	(and	movements)	

could	let	muscles	operate	very	close	to	an	isometric	contraction.	In	this	isometric	

condition	 there	 is	 no	more	 difference	 in	 the	muscle	 force,	 velocity,	 power	 and	

efficiency	when	contraction	is	performed	to	resist	a	load	or	to	support	it.	At	the	

same	time	i)	if	walking	uphill	slowly	(let’s	say	at	0.1	m	s-1)	is	easily	achievable,	it	

would	be	demanding	from	a	neuromuscular	point	of	view	downhill	and	probably	

subjects	 could	 find	 such	 slow	 speeds	 to	 be	 awkward;	 ii)	 the	𝑉O2	 difference	

between	 baseline	 and	 very	 slow	 walking	 speeds	 could	 be	 quite	 small	 (when	

moving	downhill)	to	be	accurately	detected;	and	iii)	when	walking	very	slow	the	

support	 phases	 are	 longer	with	 an	 increase	muscular	 demand	 for	 stabilization	

(at	the	back	for	example)	and	balance	of	the	single	support	leg.	These	can	lead	to	

higher	 level	 of	 co-contractions	 of	 agonist	 and	 antagonist	muscles	 of	 the	 lower	
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limbs	(or	the	trunk)	that	would	increase	the	metabolic	consumption,	but	it	is	not	

considered	 in	 and	 neither	 produce	 any	 mechanical	 work.	 When	 efficiency	 is	

computed	we	could	assist	to	a	decreased	efficiency	at	these	very	low	speeds	just	

because	 the	 denominator	 accounts	 for	 the	 co-contraction	 extra	 cost,	 but	 the	

numerator	 does	 not.	 So	 that	 also	 the	 ratio	 between	 negative	 and	 positive	

efficiency	could	change,	but	we	are	not	confident	that	the	whole	change	is	due	to	

a	real	change	in	work	efficiency.	

Nevertheless,	 we	 are	 working	 now	 with	 the	 new	 acquisitions	 in	 this	

direction	 with	 very	 slow	 speeds	 paired	 uphill	 and	 downhill	 with	 the	 heaviest	

(+40%BW)	load	in	order	to	get	close	enough	to	the	 isometric	condition	and	no	

differences	between	positive	and	negative	part	of	the	F-v	diagram.		

If	nothing	will	 change	and	 these	are	 the	results,	 it	means	 that	 in	human	

walking	 the	 ratio	 between	 negative	 and	 positive	 efficiency	 is	 always	 the	 same	

whichever	(aerobic)	combination	of	load/gradient	and	speed	is	chosen.	And	the	

real	upper	limit	for	loaded	gradient	locomotion	is	the	subject	metabolic	(aerobic)	

power.	
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CHAPTER	2	

Heart	rate	off-kinetics	as	a	predictor	of	𝑽O2max	

Introduction	

Wearable	sensors	

During	 last	years	we	faced	a	great	 increase	of	new	technological	devices	

in	the	health	and	sports	market	due	to	lower	cost	and	size	of	many	sensors	that	

can	 monitor	 and	 measure	 physics,	 geographic,	 physiological	 etc.	 variables.	

Wearable	devices	are	appealing	because	they	are	lightweight,	can	be	worn	close	

to	 and/or	 on	 the	 skin	 surface,	 and	 detect,	 analyse,	 and	 transmit	 information	

about	various	internal	and	external	variables	(Halson	et	al.,	2016).		

Mobile	health	devices	(i.e.	wearable	and	wireless	sensors)	are	expanding	

into	 the	 network	 commerce	 accurate	 data	 for	 metabolic	 energy	 expenditure	

during	 different	 activities	 (Parak	 &	 Korhonen,	 2014;	 Wallen	 et	 al.,	 2016;	

Chowdhury	et	al.,	2017).	In	this	perspective	it	is	worth	noting	wearable	sensors	

updating	periodically	its	models	to	an	effective	and	accurate	biofeedback.	Among	

these	 devices,	 the	 smartwatch	 developed	 by	 Apple	 Inc.	 (Cupertino,	 California,	

USA)	 has	 been	 featured	 its	 straightforwardness	 and	 reliability	 to	 obtain	

physiological	data	from	physical	exercise	(Chowdhury	et	al.,	2017).		

Some	authors	have	pointed	out	the	main	limitations	of	current	wearable	

devices:	 a)	 the	 need	 to	 place	 devices	 at	 specific	 anatomical	 locations;	 b)	

movement	artefact;	c)	the	sampling	frequency;	d)	the	capability	to	monitor	only	

a	 few	 of	 selected	 variables	 (as	 opposed	 to	 a	 suite	 of	 them);	 e)	 the	 lack	 of	

measurement	of	environmental	factors	(e.g.	temperature,	humidity,	altitude,	UV	

radiation);	 f)	 the	 uncertainty	 in	 accuracy	 of	 data	 interpretation	 (by	

athletes/algorithm	vs.	trained	professional);	and,	f)	the	inability	to	transmit	data	

indoors,	 underwater,	 and	 in	 built-up	 areas;	 h)	 and	 interference	 from	 other	

physiological	 responses	 (e.g.	 vasoconstriction,	 hypovolemia)	 (Duking	 et	 al.,	

2016).	Based	on	 this	perspective	 few	studies	have	emphasized	 the	accuracy	of	

these	wrist-worn	devices	during	rest,	exercise	and	daily	of	life	activities	(Spierer	

et	al.,	2015;	Wallen	et	al.,	2016;	Chowdhury	et	al.,	2017).	
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One	 device	 that	 has	 attained	 up	 to	 now	 a	 quite	wide	 acceptance	 is	 the	

Apple	Watch	(Cupertino,	California,	USA)	due	to	the	simplicity	to	obtain	HR.	HR	

is	acquired	by	blood	oxygenation	pulsations	(plethysmography)	from	its	red	and	

green	 lights	 sensors	 fixed	 behind	 the	main	 wrist	 of	 the	 watch	 (infrared	 light-

emitting	 diodes	 –	 LEDs)	 and	 photodetectors.	 The	 measurement	 of	 blood	

fluctuations	 (volume	 changing)	 results	 in	HR	data	 (figure	 2).	Nevertheless,	 the	

time	 interval	 between	 every	 beat	 (R-R)	 provided	 by	 plethysmography	 device	

(pulse	 oximeter)	 is	 still	 unknown	 and	 a	 5	 seconds	 mean	 is	 usually	 provided.	

Probably	manufacturers	still	do	not	release	the	algorithms	used	into	own	devices	

to	avoid	major	details	 to	 the	 concurrent	 commerce	 (Van	Hees	et	 al.,	 2016).	On	

the	other	hand,	traditional	HR	monitors	(with	the	elastic	thoracic-band)	provides	

the	R-R	period	and/or	t	HR	beat-by-beat	according	to	consumers’	requirement.		

	

	
Figure	1.	Structure	and	modus	operandi	of	photoplestymography	(PPG)	by	using	reflected	

light.	 LED	 represents	 Light	 Emitting	 Diode	 technology	 and	 PD	 the	 Photo	 Detector.		

Adapted	from	Fukushima	et	al.	(2012).	
	

The	major	challenge	nowadays	for	the	companies	is	to	produce	a	device,	

which	 is	 able	 to	 track	 the	best	HR	 signal	 and	 then	 to	provide	 reliable	physical	

activity	outputs	(such	as	energy	expenditure)	on	the	device	 itself.	For	 instance,	

Chowdhury	 et	 al.	 (2017)	 reported	 that	 four	 different	 smartwatches	 (Apple	

Watch,	 Microsoft	 Band,	 Fitbit	 Charge	 HR	 and	 Jawbone	 UP24)	 gives	 weak	 or	

lower	results	when	compared	with	controlled	 laboratory	conditions.	Moreover,	

any	 consumer	 monitors	 are	 able	 to	 perform	 as	 well	 as	 the	 research-grade	

devices	 although,	 in	 some	 (but	not	 all)	 cases,	 estimates	were	 close	 to	 criterion	
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measurements.	 Differently,	 El-Amrawy	 &	 Nounou	 (2015)	 investigated	 the	

accuracy	of	17	wearable	devices	during	walking	with	three	different	step	counts	

(200,	500	and	1000,	repeated	40	times)	compared	with	heart	rate.	They	found	a	

reasonable	result	(not	exceeding	20%	deviation	of	HR)	from	the	selected	fitness	

trackers,	then	estimating	properly	energy	expenditure.	

Some	 researchers	 have	 proposed	 novel	 techniques	 in	 order	 to	 estimate	

accurately	 HR	 signals	 through	 smartwatches	 (Coolbaugh	 et	 al.,	 2014;	

Salehizadeh	et	al.,	2015).	This	 is	because	strenuous	and	high	 intensity	exercise	

can	 result	 in	 severe	 motion-corrupted	 artifacts	 in	 plethysmography	 signals,	

making	accurate	HR	estimation	difficult	(Salehizadeh	et	al.,	2015;	Zakynthinaki,	

2015).	Likewise,	this	bias	also	does	not	supply	a	beat-to-beat	detection	accuracy	

required	by	proper	HR	analysis,	which	makes	a	calculation	over	an	average	time	

(i.e.	 3-5	 s).	 Consequently,	HR	data	 from	vigorous	 and	quick	 exercises	have	not	

been	mentioned	as	the	general	 increasing	 into	this	subject	(Ostojic	et	al.,	2010;	

2011).	

In	this	context,	data	of	HR	from	smartwatches	seems	more	reliable	during	

submaximal	 exercises	 avoiding	 sudden	 movements	 (Parak	 et	 al.,	 2015).	

However,	a	faster	activity	still	requires	more	consideration	by	wearable	devices.	

Even	though,	the	manufacturers	have	released	new	devices	with	new	algorithms	

and	 technologies	 trying	 to	 include	 this	 important	 factor	 (see	Appendix	 section	

for	the	current	gadgets).		
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Heart	rate		 	

One	of	the	most	used	parameters	for	assessing	health	and	physical	fitness	

status	 is	 the	 heart	 rate	 (HR).	 The	 first	written	 description	 of	HR	 can	 be	 dated	

back	 to	 the	 300	 Before	 Christ,	 when	 a	 Greek	 scientist	 and	 physician	 was	

probably	 the	 first	 to	describe	 the	 timing	of	 the	pulse,	which	can	be	considered	

the	first	HR	description.		

During	 these	 two	millennia,	 technology	 and	 knowledge	made	 progresses	

for	 analysing	 beat-to-beat	 pulse	 variability,	 the	 electrocardiogram	 and	 HR	

variability	 in	 time	 and	 frequency	 domain	 (Billman,	 2011).	 In	 the	 early	 sixties	

exercise	 physiologists	 (among	 the	 others	 also	Margaria	 et	 al.	 (1965))	 assessed	

HR	 during	 different	 exercises	 and	 they	 showed	 the	 close	 relation	 between	HR	

and	oxygen	consumption	(𝑉𝑂! ,	an	 index	of	aerobic	 fitness).	This	 relationship	 is	

linear	 at	 submaximal	 intensity	with	 a	 variation	 at	maximal	 intensity.	Based	on	

this	 evidence	 𝑉𝑂!!"#$ 	can	 be	 determined	 from	 HR	 values	 recorded	 at	

submaximal	work	 rates	 (Daanen	 et	 al.,	 2012)	 in	 this	way	 the	maximal	 aerobic	

capacity	 can	 be	 assessed	 in	 different	 population,	 without	 causing	 subject's	

exhaustion.	Thus,	a	reliable	assessment	of	exercise	intensity	and	control	became	

a	 more	 convenient	 tools	 compared	 with	 the	 oxygen	 consumption	 that	 can	 be	

assessed	in	laboratory	conditions).			

The	HR	behaviour	during	exercise	mirrors	the	𝑉𝑂!patterns	mostly	because	

of	 the	Fick	 law	(Wieling	et	al.,	 2016).	As	 for	𝑉𝑂!	an	on-kinetics,	 at	 the	onset	of	

exercise,	a	plateau,	during	exercise	and	an	off-kinetics,	after	exercise	and	during	

the	recovery,	can	be	described	also	for	HR.	The	steady	state	is	usually	considered	

for	 setting	 exercise	 intensity,	 whereas	 the	 two	 transitions	 (on-	 and	 off-)	 have	

been	mainly	 addressed	 to	 heart	 capability	 of	 adjust	 the	 rhythm	 and	metabolic	

demand.	The	HR	off-kinetics	depict	the	decrease	in	HR	after	exercise,	from	peak	

to	rest	condition	and	has	been	shown	to	be	an	indicator	of	mortality	(Kriatselis	

et	 al.,	 2012;	 Coolbaugh	 et	 al.,	 2014)	 and	 fitness	 level	 (Koeneman	 et	 al.,	 2011;	

Wallen	et	al.,	2016)	Based	on	these	features	different	studies	have	focused	on	the	

HR	off-kinetics	(8et	al.,	2007;	Coote,	2009)	and	they	define	different	indexes	that	

better	 identify	specific	 relationship	with	 the	 investigated	variables,	 so	 that	 it	 is	

quite	difficult	to	make	a	comparison.	The	HR	off-kinetics	is	modelled	as	a	mono-
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exponential	decay	(Figure	2)	(Coote,	2009)	this	allows	to	define	different	parts	

on	the	curve.		

Some	studies	focused	their	attention	on	the	first	phase	of	the	decay	where	

the	 slope	 is	 steeper	 and	 then	 the	 decay	 is	 faster,	 and	 analysed	 the	 difference	

between	 the	 peak	 of	 HR	 after	 exercise	 and	 its	 value	 after	 30-60s	 of	 recovery	

(Lamberts	et	al.,	2004;	Ostojic	et	al.,	2010).	This	is	considered	the	simplest	non-

invasive	analysis	of	HR	recovery	 that	 can	estimate	cardiac	autonomic	 recovery	

through	 both	 sympathetic	 and	 parasympathetic	 mechanisms	 (Duking	 et	 al.,	

2016).	This	balance	between	sympathetic	and	parasympathetic	responses	plays	

a	major	role	during	and	after	exercise	(Figure	2)	(Coote,	2009).	At	the	beginning	

of	exercise,	a	vagal	(parasympathetic)	inhibition	occurs	driven	by	central	system	

and	 tetanoreceptor	 in	 the	 muscles,	 simultaneously	 with	 an	 increased	

sympathetic	 activity	 (more	 influenced	 by	 central	 command	 and	 muscle	

metaboreceptors)	 (Ostojic	 et	 al.,	 2011).	 At	 the	 end	 of	 the	 exercise	 the	 mirror	

tends	 to	 occur	 (increasing	 of	 vagal	 activity	 and	 withdrawal	 of	 sympathetic	

activation).	These	activities	can	be	influenced	by	exercise	related	to	factors	such	

as	 intensity	 and	 volume	 (Goldberger	 et	 al.,	 2006;	 Lepretre	 et	 al.,	 2012).	 The	

analysis	 of	 the	 fast	 HR	 recovery	 is	 usually	 performed	 to	 assess	 the	

para/sympathetic	 interplay	 on	 HR.	 However,	 because	 of	 the	 workload-

dependency	(type	of	exercise,	volume,	intensity)	of	the	kinetics,	it	becomes	hard	

to	compare	different	studies	especially	when	 just	 the	 fast	off-phase	 is	analysed	

(Ostojic	et	al.,	2011;	Haddad	et	al.,	2012).	When	fitting	the	curve	only	in	the	first	

30	 s	 in	 order	 to	 explain	 only	 the	 fast	 time	 constant,	 some	 authors	 used	 a	

mathematics	 curve	 based	 on	 semi-logarithmic	 analysis	 (Buchheit	 et	 al.,	 2007;	

Peçanha	 et	 al.,	 2017):	 the	 HR	 decay	 is	 represented	 by	 logarithm	 analysis,	 and	

fitted	as	a	first-degree	polynomial	equation.	With	this	approach	it	is	possible	to	

obtain	the	time	constant	for	the	fast	HR	recovery	as	the	negative	reciprocal	of	the	

slope	of	the	fitted	line	(-1/slope;	see	Figure	3).	
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	Figure	2.	Changes	in	heart	rate	during	and	following	exercise.		Adapted	from	Coote	(2009).	
	

After	60	s	the	HR	presents	a	more	graduated	decline	(Peçanha	et	al.,	2017).	

This	 second	 phase	 of	 the	 HR	 decay	 is	 primarily	 influenced	 by	 a	 slower	

sympathetic	withdrawal,	which	was	shown	by	using	pharmacological	blockades	

(Coote,	 2009).	 In	 order	 to	 analyse	 the	 sympathetic	 behaviour	 and	 the	

investigation	needs	a	much	longer	recovery	that	can	arrive	to	300	s	(Peçanha	et	

al.,	2017).	In	this	way	it	is	possible	to	describe	both	parasympathetic	reactivation	

and	sympathetic	withdrawal	(8et	al.,	2007).	

Even	if	some	studies	focus	only	on	the	first	(fast)	or	second	(slow)	recovery	

phase,	the	analysis	of	the	whole	HR	off-kinetics	can	give	a	whole	picture	of	the	all	

system	 (Adabag	 &	 Pierpont,	 2013).	 With	 this	 approach	 the	 off-kinetics	 is	

modelled	and	fitted	with	a	mono-exponential	decay	and	the	time	constant	of	HR	

recovery,	 Tau	 (τ),	 which	 denotes	 the	 time	 to	 reach	 63%	 of	 the	 steady	 state	

response	is	calculated	(Coote,	2009;	Peçanha	et	al.,	2017).	The	mono-exponential	

analysis	 presents	 an	 asymptotic	 value	 of	 HR	 (mean	 basal	 value),	 the	maximal	

amplitude	of	HR	and	τ		

																																								𝐻𝑅 𝑡 =  𝑎! + 𝑎! ∙ 𝑒
!! ! 	 	 	 	

Where	𝑎!	is	the	asymptotic	value	of	HR;	𝑎! is	defined	as	maximum	value	of	

HR	after	exercise;	t	is	time	and	τ	is	the	time	constant	to	reach	27%	(since	this	is	a	

off	kinetics	tau	equals	to	1-63%)	of	HR	maximum	excursion.		

434 J. H. Coote Exp Physiol 95.3 pp 431–440

in experimental animals and man show that afferent
feedback from exercising muscles exerts a considerable
additional influence (Coote, 1995; Coote & Bothams,
2001; Fisher & White, 2004). Especially relevant are
studies showing that cardiac acceleration is linked in a
graded fashion with involuntary muscle contraction where
central command is absent (Bull et al. 1989; McMahon &
McWilliam, 1992; Al-Ani et al. 1997). Recent evidence
shows that these involuntary muscle contraction-induced
heart rate increases are elicited by small muscle afferents
that are sensitive to distortion or stretch of muscles, so
allowing their effects to be examined experimentally in
humans and experimental animals (Potts & Mitchell,
1998; Gladwell & Coote, 2002; Fisher et al. 2005).
The primary effect of these muscle mechanoreceptors,
named tentanoreceptors by Gladwell et al. (2005), is an
inhibition of cardiac vagal tone. Muscles also contain
metabolically sensitive afferents that are excited during
muscle contraction and throughout exercise and provide
a major driving force to sympathetic activity (Coote et al.
1971; McCloskey & Mitchell, 1972; Fisher & White, 2004).

The combined action of the central and peripheral
arms of the exercise control system is to increase heart
rate (Fig. 2) and arterial blood pressure simultaneously.
Since increases of this kind would normally be sensed by
arterial baroreceptors and buffered in part by decreases in
heart rate, the question arises of how well these receptors
are functioning during exercise and particularly during
prolonged endurance events, such as the biathlon.

Baroreceptor control of heart rate in exercise

During exercise, the baroreceptor reflex is reset to a higher
operating point (Bevegard & Shepherd, 1966; Coote &
Dodds, 1976; Raven et al. 2006). In a beautifully designed

Figure 2. Changes in heart rate during and following exercise
The graph illustrates the change in heart rate from rest in a subject undergoing a 30 min period of moderate
dynamic exercise followed by a 30 min recovery period. The timing of the contribution from changes in cardiac
vagal and cardiac sympathetic activity and their relation to central command and inputs from exercising muscle,
as discussed in the text, are indicated schematically. Based on data from various sources.

series of studies, Peter Raven and colleagues tested the
entire carotid baroreceptor stimulus–response curve by
measuring the heart rate changes following increases and
decreases in pressure in a neck cuff, which induce decreases
and increases, respectively, in carotid baroreceptor input.
In accord with resetting, it was revealed that the carotid–
heart rate response curve during exercise was shifted to the
right and upwards but was similar to rest, except that the
reflex was now operating at a higher heart rate and arterial
blood pressure (Fig. 3; Raven et al. 2006). The relocation of
the function curve occurs in direct relation to the intensity
of exercise, and the operating point is similarly shifted to a
higher point on the function curve, hence to a position of
reduced gain (Fig. 3; Ogoh et al. 2005). The extent of this
change in position of the operating point and reduction
in gain of the baroreceptor–heart rate response reflects the
decrease in cardiac vagal tone that is induced by exercise. As
a consequence, there is a progressive operational reduction
in the baroreceptor reflex control of the heart rate from
rest to maximal exercise, although a degree of control
is still maintained via the cardiac sympathetic supply.
The importance of the resetting is that it provides a
sufficient buffer of the cardiovascular changes to control
them adequately in a physiologically beneficial manner
relevant to exercise intensity. Thus, if the influence of the
baroreceptors is reduced by maintaining blood pressure
at resting values when humans or animals are exercising,
the heart rate changes are much increased (Scherrer et al.
1990; DiCarlo & Bishop, 1992). Although not directly
pertinent to this review, it is important to understand that
the influence of the baroreflex on arterial blood pressure
is also reset and that this occurs despite the increase in
vascular conductance in the exercising muscles, which is
partly offset by opposite changes in other vascular beds
(Keller et al. 2003).

C⃝ 2009 The Author. Journal compilation C⃝ 2010 The Physiological Society
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For	Pierpont	 et	 al.	 (2000)	 τ	 is	 a	useful	 tool	 for	 representing	HR	 recovery	

after	submaximal	exercises.	They	found	that	τ	is	not	influenced	by	the	intensity	

of	 the	 exercise,	 but	 they	 highlighted	 that	 the	 recovery	 time	 should	 be	 long	

enough	for	reaching	the	baseline	values	again	(Pierpont	et	al.,	2000).	Moreover,	

HR	recovery	could	be	analysed	by	HR	variability	after	exercise.	This	assessment	

can	be	accomplished	both	in	time	and	frequency	domain	by	exploiting	the	inter-

beat	(RR)	interval	between	heartbeats	(Peçanha	et	al.,	2017).	The	HR	variability	

is	 commonly	 studied	 under	 controlled	 environments,	 which	 can	 include	 long-

term	monitoring	during	recovering	(around	5	min	and	24	hours)	(Dupuy	et	al.,	

2012).	 Heart	 rate	 variability	 is	 generated	 by	 the	 integrated	 action	 of	

parasympathetic	and	sympathetic	branches	of	the	autonomic	nervous	system	on	

the	sinus	node.	The	difference	 for	 this	evaluation	consists	 to	 find	how	variable	

are	 the	 heartbeats	 (by	 the	 time	 or	 frequency)	 instead	 of	 single	 value	 after	 a	

determined	time	period.	

Figure	 3.	 Examples	 of	 heart	 rate	 recovery	 assessment.	HRR30s,	HRR60s,	HRR300s:	 heart	 rate	
after	30,	60	and	300	s	of	recovery.	HRRt	=	time-constant	of	heart	rate	recovery	after	a	first	order	
exponential	fitting	in	the	entire	recovery	curve.	HRamp	is	the	difference	between	peak	HR	and	HR0,	
HR0	=	asymptotic	value	of	HR.	Adapted	from	Peçanha	et	al.	2017.	
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The	 aforementioned	 literature	 shows	 that	 researchers	 are	 looking	 for	

similar	values	that	could	be	representative	of	HR	recovery.	Their	findings	try	to	

combine	simple	and	practical	methodologies	with	more	complex	one.	The	use	of	

short	and	reliable	tests/equations	could	reach	a	 larger	number	of	practitioners	

via	common	used	devices,	such	as	heart	rate	monitor.		 	



	 36	

Fitness	variable	predictions	 		

In	 the	 last	 decades	 researchers	 have	 tried	 to	 find	 a	 simple	 model	 to	

predict	 aerobic	 fitness	 (Weyand	 et	 al.,	 2001;	 Mier	 et	 al.,	 2004;	 Nemeth	 et	 al.,	

2009).	When	HR	was	analysed,	 these	 trials	have	 focused	on	off-kinetics	due	 to	

easiest	data	collection	when	compared	to	exercise	being	performed	(Dupuy	et	al.,	

2012;	 Haddad	 et	 al.,	 2012).	 Also,	 we	 have	 to	 know	 that	 certain	 tests	 are	

considered	neither	quick	nor	useful,	because	they	use,	 for	example,	a	 long	time	

pre-exercise,	or	require	several	bouts	to	complete	the	test	(Weyand	et	al.,	2001;	

Magrani	et	al.,	2010).	At	the	same	time,	it	is	hard	to	find	consistent	HR	data	for	

𝑉𝑂!!"#$ 	prediction	in	fast	tests	(Boullosa	et	al.,	2014).	

Several	studies	have	reported	good	relationship	between	HR	off-kinetics	

and	aerobic	power	(Watson	et	al.,	2016),	when	performing	long	protocols	(more	

than	 30	min)	 even	 if	without	 a	methodological	 consensus	 (Otsuki	 et	 al.,	 2007;	

Ostojic	et	al.,	2010;	Mourot	et	al.,	2015;	Peinado	et	al.,	2014).	Even	though,	 the	

phase-off	 (recovery)	 of	 HR	 has	 been	 shown	 to	 be	 advantageous	 also	 because	

utilizes	 a	 chest	 belt	 to	 detect	 HR	 signals.	 However,	 the	 difficulty	 to	 detect	 HR	

signals	during	a	movement	requiring	intensive	activity	it	is	known	mainly	due	to	

motion	 artefact-corrupted	 signals	 (El-Amrawy	 &	 Nounou,	 2015;	 Parak	 et	 al.,	

2015).	 Unfortunately	 this	 bias	 is	 also	 significant	 for	 smartwatches	 due	 to	

responsive	 mechanism	 to	 collect/calculate	 data	 from	 pulse	 (Fukushima	 et	 al.,	

2012).	 Albeit	 facing	 difficulties	 with	 smart	 devices	 for	 indicating	 maximal	

aerobic	capacity,	HR	monitor	by	chest	belt	 is	 still	 considered	gold	standard	 for	

this	 purpose	when	 exploiting	HR	 as	main	 input	 to	 predict	𝑉𝑂!!"#$ 	(Lai	&	Kim,	

2015).	Besides	 that,	when	performing	submaximal	exercise,	both	materials	are	

able	 to	 provide	 accurate	 estimates	 for	 aerobic	 power	 (independent	 of	 device)	

due	 to	absence	of	 the	aforementioned	problems	(Fukushima	et	al.,	2012;	Lai	&	

Kim,	2015).	In	this	contest,	the	tests	most	used	are	based	on	cyclic	movements,	

such	as	cycling,	walking,	running	and	stepping	(Peçanha	et	al.,	2017).	

In	general,	walk	tests	are	more	accessible	to	anybody	(from	novel	users	to	

experienced	subjects),	since	it	is	safely,	and	useful	when	running	is	not	advisable,	

such	 as	 in	 obese	 or	 elderly	 people.	 Moreover,	 the	 studies	 based	 on	 running	

exercise	require	a	higher	intensity	and	longer	time	when	compared	with	walking	

and	 stepping.	 A	 recent	 review	 of	 Sartor	 et	 al.	 (2013)	 analysed	 various	 studies	
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that	 estimate	𝑉𝑂!!"#$  from	 submaximal	 tests:	 28	 studies	 involved	 walking	

and/or	stepping,	while	11	studies	explored	running	(Swain	et	al.,	2004;	Davies	et	

al.,	 2008;	 Mier	 et	 al.,	 2004;	 Nemeth	 et	 al.,	 2009).	 Running	 tests	 can	 estimate	

aerobic	 fitness	with	 a	 small	 standard	 error	 of	 the	 estimate	 (SEE,	 range	was	~	

2.87-5.98	 ml.kg-1.min-1)	 as	 well	 as	 walking	 locomotion	 (Sartor	 et	 al.,	 2013).	

Although	 running	 can	 require	 some	 more	 attentions	 (as	 longer	 time	 for	

familiarization	 by	 untrained	 individuals),	 shows	 good	 correlation	 between	 HR	

and	𝑉𝑂! 	during	entire	data	collect	(resting,	running	and	recovery)	(Daanen	et	al.,	

2012).	

The	running	protocol	for	𝑉𝑂!!"#$ 	estimate	from	HR	off-kinetics	data	may	

used	 steady	 or	 unsteady	 speeds	 and	 various	 series	 of	 intervals	 (Ostojic	 et	 al.,	

2010;	 Buchheit	 et	 al.,	 2014),	 and	 these	 methods	 can	 be	 accomplished	 in	

laboratory	or	field	conditions	depending	on	the	purpose	of	the	study.	Simpler	the	

method,	 it	 is	 easier	 to	 be	 accomplished	 into	 the	 field	 conditions	 and	 then	 it	 is	

more	accessible	to	the	most	of	the	population.	In	this	line,	as	precursor	through	

running	 activity,	 Cooper	 (1968)	 estimated	maximal	 aerobic	 power	 by	 distance	

travelled	during	a	maximal	running	test	(12	min)	at	athletic	track	field	(the	only	

predictor	 variable	 was	 the	 covered	 distance).	 When	 HR	 is	 introduce	 as	

dependent	 factor	 to	 estimate	𝑉𝑂!!"#$ ,	 the	 time	 required	 for	 data	 collection	

during	exercise	varied	between	10	and	30	min	(Kline	et	al.,	1987;	Weyand	et	al.,	

2001).	 The	 advantage	 to	 analyse	 off-kinetics	 of	 HR	 is	 a	 shorter	 time	 for	 the	

evaluation	after	exercise,	which	can	vary	between	the	30	s	and	5	min	(Peçanha	et	

al.,	 2017).	 Thus,	 the	 only	 concern	 could	 be	 linked	 to	 finding	 shorter	 and	

economic	exercise	protocols.	

Actually,	besides	longer	protocols,	the	major	part	of	these	studies	has	not	

been	 exploited	off-kinetics	 of	HR	 as	 estimation	 for	 fitness	 aerobic	 (Kline	 et	 al.,	

1987;	Swank	et	al.,	2001;	Weyand	et	al.,	2001).	Instead	of	a	predicting	𝑉𝑂!!"#$ ,	

the	 most	 recent	 analyses	 choose	 to	 estimate	 energy	 expenditure	 during	 daily	

routine	activities	 from	algorithms	embedded	 in	 the	studied	device.	The	system	

generally	 is	 composed	 of	 HR	 data	 originated	 from	 R-R	 interval,	 or	 by	 average	

time	windows	of	that	interval	(Peçanha	et	al.,	2017).			
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Usually,	 the	studies	 that	aimed	 to	estimate	𝑉𝑂!!"#$ 	during	running	used	

traditional	HR	monitor,	which	analyses	HR	 from	R-R	 interval	 (MacMillan	et	al.,	

2006;	Lamberts	et	al.,	2010;	Ostojic	et	al.,	2010,	and	2011;	Buchheit	et	al.,	2014)	

and	 they	 showed	 that	 athletes	 report	 a	 faster	 HR	 recovery	 to	 performance.	

Ostojic	et	al.	(2010	and	2011)	reported	significant	faster	HR	recovery	during	the	

first	20-30	s	for	athletes	with	higher	aerobic	capacity	following	after	a	maximal	

exercise.	 This	 fast	 decreasing	 suggests	 a	 strong	 influence	 of	 autonomic	 system	

playing	 an	 important	 role	 in	 ultra	 short-term	 cardiovascular	 responses	 to	

exercise.	 Therefore,	 this	 higher	𝑉𝑂!!"#$ 	can	 be	 associated	 with	 faster	 HR	

recovery	by	autonomic	control	due	to	the	rapid	analyses.		

Although	 the	shorter	 recovery	phase,	 the	studies	usually	have	proposed	

maximal	 protocols	 requiring	 exercise	 test	 lasting	 at	 least	 fifteen	 minutes	

(Pierpont	et	al.,	2000;	Ostojic	et	al.,	2011).	In	this	line,	the	type	of	methodology	

utilized,	such	as	number	of	beats	recovered	within	a	given	time	(e.g.	60	s,	HRR60	

s),	 or	 fitting	 via	 exponential	 models	 might	 influence	 the	 fitness/performance	

control	estimated	(Seiler	et	al.,	2007;	Thomson	et	al.,	2015;	Peçanha	et	al.,	2017).	

The	 recovery	 time	 would	 be	 inclined	 to	 the	 analysis	 accomplished:	 a	 long	

(‘slower’)	 evaluation	 would	 be	 associated	 to	mono-exponential	 modeling.	 It	 is	

known	that	longer	analysis	can	respond	with	a	better	capture	of	the	overall	HR	

responses	compared	with	a	short	one	since	both	the	initial	fast	component	and	

the	 delayed	 recovery	 phase	 are	 considered	 (Buchheit	 et	 al.,	 2014).	 Likewise,	 a	

longer	 recovery	 time	 has	 been	 required	 to	 better	 understand	 off-kinetics	

behavior	(MacMillan	et	al.,	2006).	

It	is	a	challenge	for	current	researchers	to	estimate	aerobic	fitness	while	

running,	 from	off-kinetics	of	HR,	by	combining	a	protocol	composed	by	shorter	

running	 tests	 and	 recovery.	Up	 to	 now,	 authors	 reporting	 off-kinetics	 of	HR	of	

running	 do	 not	 used	 quick	 protocols,	 instead	 of	 cycling,	 walking	 and	 stepping	

(MacMillan	et	al.,	2006;	Ostojic	et	al.,	2010	and	2011).	They	proposed	a	 longer	

maximal	 ramp	 protocol	 of	 running	 (that	 can	 last	 from	 10	 to	 15	 minutes)	

combined	with	a	certain	time	for	rest	and/or	recovery	(5-10	minutes)	in	order	to	

control	performance/fitness.	This	kind	of	protocols	requires	young	and	healthy	

people	with	no	physical	restrictions	to	support	a	maximal	effort.		
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Besides	 maximal	 aerobic	 ramp	 tests,	 some	 authors	 have	 proposed	

sprinting	tests	to	evaluate	off-kinetics	of	HR	(Ostojic	et	al.,	2010;	Al	Haddad	et	al.,	

2012;	 Vernillo	 et	 al.,	 2015).	 These	 studies	 reported	 results	 from	 intermittent	

exercise	 where	 a	 number	 of	 series	 with	 resting	 intervals	 where	 performed	

(Ostojic	et	al.,	2010;	Vernillo	et	al.,	2015)	and	then	that	cannot	be	applied	to	the	

examples	cited	above.	

Therefore,	 the	 shorter	 off-kinetics	 of	 HR	 requires	 more	 attention	 by	

researchers	 during	 its	 analysis,	 which	 currently	 has	 not	 been	 well	 addressed.	

The	 sprint	 running	 has	 demonstrated	 reliable	 values	 for	 subsequent	 recovery	

analyses	 (Al	 Haddad	 et	 al.,	 2012;	 Vernillo	 et	 al.,	 2015).	 Even	 though,	 recent	

studies	 have	 preferred	 explore	multiple	 bouts	 and	 its	 recovery	 after	 a	 total	 of	

series	performed	(Ostojic	et	al.,	2010;	Vernillo	et	al.,	2015).	Still,	which	could	be	

the	response	of	HR	after	a	single	sprint	bout,	and	how	it	would	estimate	aerobic	

power	 since	 authors	 have	 shown	 good	 correlations	 between	 anaerobic	 efforts	

and	𝑉𝑂!!"#$?	
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Article	
	 	

My	study	on	the	 feasibility	of	sprint	performance	and	HR	off-kinetics	on	

the	𝑉𝑂!!"#$ 	estimation	 has	 been	 recently	 published	 in	 a	 paper	 in	 Frontiers	 in	

Physiology	 entitled	 “A	 'wearable'	 test	 for	 maximum	 aerobic	 power:	 real-time	

analysis	of	a	60-m	sprint	performance	and	heart	rate	off-kinetics”	(Storniolo,	JL.,	

Pavei,	 G.,	 and	 Minetti,	 AE.,	 2017).	 The	 following	 paragraphs	 will	 address	 this	

publication.	

	

A	'wearable'	test	for	maximum	aerobic	power:	real-time	analysis	of	a	

60-m	sprint	performance	and	heart	rate	off-kinetics	
	

Jorge	L.	Storniolo1,	Gaspare	Pavei1,	Alberto	E.	Minetti1*	

Accepted	on	17	Oct	2017.	

ABSTRACT		

Maximum	aerobic	power	(𝑉𝑂!!"#$)	as	an	indicator	of	body	fitness	is	today	a	very	

well	known	concept	not	just	for	athletes	but	also	for	the	layman.	Unfortunately,	

the	 accurate	 measurement	 of	 that	 variable	 has	 remained	 a	 complex	 and	

exhaustive	 laboratory	 procedure,	 which	 makes	 it	 inaccessible	 to	 many	 active	

people.	In	this	paper	we	propose	a	quick	estimate	of	it,	mainly	based	on	the	heart	

rate	off-kinetics	immediately	after	an	all-out	60-m	sprint	run.	The	design	of	this	

test	took	into	account	the	recent	availability	of	wrist	wearable,	heart	band	free,	

multi-sensor	 smart	 devices,	 which	 could	 also	 inertially	 detect	 the	 different	

phases	of	the	sprint	and	check	the	distance	run.	25	subjects	undertook	the	60-m	

test	 outdoor	 and	 a	𝑉𝑂!!"#$ 	test	 on	 the	 laboratory	 treadmill.	 Running	 average	

speed,	 HR	 excursion	 during	 the	 sprint	 and	 the	 time	 constant	 (τ)	 of	 HR	

exponential	 decay	 in	 the	 off-kinetics	were	 fed	 into	 a	multiple	 regression,	with	

measured	𝑉𝑂!!"#$as	 the	dependent	variable.	Statistics	 revealed	 that	within	 the	

investigated	range	(25-55	ml	O2/(kg.min-1)),	despite	a	tendency	to	overestimate	

low	 values	 and	 underestimate	 high	 values,	 the	 three	 predictors	 confidently	

estimate	 individual	𝑉𝑂!!"#$ 	(R2=	 0.65,	 p<0.001).	 The	 same	 analysis	 has	 been	

performed	on	a	5-s	averaged	time	course	of	the	same	measured	HR	off	kinetics,	

as	these	are	the	most	time	resolved	data	for	HR	provided	by	many	modern	smart	
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watches.	Results	indicate	that	despite	of	the	substantial	reduction	in	sample	size,	

predicted	𝑉𝑂!!"#$still	explain	59%	of	the	variability	of	the	measured	𝑉𝑂!!"#$ .	

	

INTRODUCTION		

In	 the	 last	 few	 decades	 we	 assisted	 to	 a	 growing	 interest	 toward	

personally	keeping	one's	health	in	a	better	shape,	a	condition	that	would	enrich	

the	 entire	 life	 and	 likely	 prevents	 early	 deterioration	 of	many	 body	 functions.	

This	 passes,	 among	 others,	 through	 the	 development	 and	 maintenance	 of	 a	

maximum	oxygen	consumption	(𝑉𝑂!!"#$)	higher	than	for	a	sedentary.	However,	

portable	professional	metabographs	are	out	of	reach	for	most	of	the	athletes,	not	

to	 mention	 the	 laymen,	 who	 represents	 the	 vast	 majority	 of	 the	 potential	

audience	in	the	need	to	periodically	check	the	aerobic	fitness	level.		

At	 the	 same	 time,	 the	progress	 in	 terms	of	portable	 technology	 (tablets,	

'smart'	phones,	bracelets/bands	and	watches)	makes	us	move	equipped	with	a	

redundancy	of	sensors.	In	addition	to	the	ubiquitary	camera,	most	of	the	devices	

bring	GPSs,	accelerometers,	gyroscopes,	magnetometers,	proximity	sensors	and,	

most	 recently,	 infrared	 emitter/detector	 LED	 systems	 to	 measure	 heart	 rate	

(HR)	in	real-time.	Although	not	all	of	them	provide	data	accurately	and	precisely	

enough	to	compete	with	the	analogous	laboratory	equipment	(Chowdhury	et	al.,	

2017),	 their	 improvement	 is	 just	 a	 matter	 of	 time	 and	 scenarios	 for	 new	 and	

different	biomedical	tests	could	be	certainly	hypothesized	to	be	implemented	in	

the	near	future.	

Submaximal	metabolic	effort	such	as	walking,	running,	hiking,	swimming	

at	moderate	speed	has	been	classically	included	in	the	activity	monitor	function	

of	'smart'	portable/wearable	devices.	The	estimate	of	burned	calories	is	obtained	

from	 short-term	 average	 HR,	 average	 speed	 and	 from	 accelerometry-based	

recognition	of	locomotion	type	(Chowdhury	et	al.,	2017).		

Differently,	 no	 estimate	 of	 𝑉𝑂!!"#$ 	from	 smart	 devices	 has	 been	

implemented	so	 far,	 to	 the	authors'	knowledge.	Potential	 reasons	 for	 this	 is,	 as	

mentioned,	 the	 infancy	 of	wearable	 sensor	 technology	 that	 strives	 to	 compete	

with	 professional	 analogues.	Our	 challenge	 in	 the	 present	 investigation	was	 to	

design	 a	 simple	 test	 exploiting	 sensors	 already	 incorporated	 in	 smart	

watches/bracelets.		
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The	idea	originated	from	transport	engineering:	race	car	engines	increase	

and	decrease	rpm	(revolutions	per	minute,	a	'sound'	particularly	apparent	when	

gear	is	disengaged)	much	faster	than	in	a	normal	car.	In	the	biological	realm	we	

face	a	similar	phenomenon:	athletes	display	a	faster	𝑉𝑂!	increase	(at	the	start	of	

a	 heavy	 exercise)	 and	 decrease	 (during	 the	 recovery)	 than	 sedentary	 subjects	

(for	 a	 review	 see	 Jones	 and	 Poole	 2005;	 Rossiter,	 2011).	 HR	 is	 a	 fundamental	

determinant	of	𝑉𝑂!!"#$ 	on-	and	off-kinetics,	since	its	time	course	closely	mimics	

the	changes	 in	gas	exchange	 (Hickson	et	al.,	1978;	Hagberg	et	al.,	1980;	Norris	

and	Petersen,	1998).	Thus,	similarly	to	engine	rpm,	HR	kinetics	is	expected	to	be	

faster	 the	 higher	 the	 metabolic	 power	 of	 human	 engine	 (Darr	 et	 al.	 1988;	

Sugawara	et	al.	2001;	Otsuki	et	al.,	2007;	Ostojic	et	al.,	2010;	Ostojic	et	al.,	2011;	

Watson	 et	 al.,	 2017).	 This	 applies	 to	 other	 important	 kinetics,	 such	 as	 the	

enzymatic	chain	(Timmons	et	al.,	1998),	within	the	whole	metabolic/mechanical	

'turn	on/off'	process	of	muscular	exercise.	

A	 very	 short	 maximal	 sprint	 (60-m)	 was	 adopted	 in	 order	 to	 design	 a	

quick	 test	 that	 could	 be	 performed	 in	 a	 non-specialized	 environment:	 only	

rubber	soles	and	a	short	straight	path,	in	addition	to	the	smart	watch,	would	be	

necessary.	 We	 decided	 to	 use	 only	 the	 HR	 off-kinetics	 because	 even	 more	

professional	HR	 sensors	 (i.e.	 the	 thoracic	 belt)	 have	 troubles	 to	detect	 just	 the	

heart	signal	when	many	other	muscles	 in	the	body	are	 intensively	activated,	as	

during	maximal	propulsion.	

Aim	 of	 the	 study	 was	 to	 propose	 a	 simple	 methodology	 and	 algorithm	

predicting	individual	aerobic	fitness,	and	check	its	adherence	to	experimentally	

measured	𝑉𝑂!!"#$ values.	 This	 test	 could	 be	 implemented	 in	 many	 smart	

wearable	devices	and	would	certainly	benefit	 from	the	 inevitable	 improvement	

in	sensor	technology.	

	

MATHERIAL	AND	METHODS	

Subjects		

Twenty-five	subjects	(7	women	and	18	men,	25.0	±	5.0	yr,	1.77	±	0.08	m	

height,	71.4	±	8.6	kg	body	mass;	mean	±	SD)	 took	part	 in	 the	study;	 they	were	

physically	 active	 subjects	 involved	either	 in	 recreational	 activity	or	 in	 amateur	

sport	 activity	 with	 a	 maximum	 of	 four	 sessions	 per	 week.	 The	 study	 was	
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approved	by	 the	Ethics	Committee	of	 the	University	of	Milan,	and	participants,	

after	 becoming	 aware	 of	 the	 potential	 risks	 involved	 in	 the	 experimental	

sessions,	gave	written	informed	consent.	

	

Experimental	protocol	

Subjects	 performed	 two	 different	 tests	 in	 different	 days	 separated	 by	 a	

minimum	of	48	h:	a	60-m	maximal	 sprint	accomplished	on	an	outdoor	athletic	

track	 and	 an	 incremental	 exercise	 test	 for	 the	 determination	 of	𝑉𝑂!!"#$ 	in	 the	

laboratory.	Participants	were	instructed	to	arrive	at	the	experimental	session	in	

a	 rested	 and	 fully	 hydrated	 state	 and	 to	 avoid	 strenuous	 exercise	 in	 the	 24	 h	

preceding	each	testing	session.	In	addition,	they	were	told	to	avoid	alcohol	(24	h)	

and	caffeine	(6	h)	intake	before	the	exercise	test.	

	

Data	acquisition		

Field	test	

The	first	session	consisted	of	a	60-m	maximal	sprint	 trial	preceded	by	a	

short	warm-up	(5	min	with	jogging	and	stretching)	and	10	min	of	resting	period	

(5	 min	 in	 a	 seated	 and	 5	 min	 in	 a	 standing	 position).	 Heart	 rate	 (HR)	 was	

recorded	beat-by-beat	throughout	all	phases	of	the	sprint	test	(rest,	running	and	

5	min	 of	 recovery)	 by	 a	 heart	 rate	monitor	with	 transmitter	 belt	 (Polar	 S410,	

Kempele,	Finland).	All	tests	were	performed	at	the	same	time	of	day	(10-11	a.m.)	

to	limit	the	influences	of	circadian	rhythm	on	muscle	performance	and	heart	rate	

response/variability.	 60-m	 sprint	 duration	 was	 recorded	 by	 using	 a	 manual	

stopwatch	 and	 the	 average	 running	 speed	 (vtest,	 m.s-1)	 was	 obtained.	 Subjects	

were	encouraged	to	accomplish	their	best	performance.	

	

Laboratory	test	

Peak	 aerobic	 power	 (𝑉𝑂!!"#$ )	 was	 determined	 with	 an	 incremental	

running	test	performed	on	a	treadmill	(Ergo	LG,	Woodway).	After	10	minutes	of	

standing	resting	period,	the	protocol	began	with	subjects	running	at	9	km.h-1	for	

4	 minutes,	 then	 the	 belt	 speed	 was	 increased	 by	 1	 km.h-1	 every	 minute	 until	

volitional	exhaustion.	Pulmonary	ventilation	(𝑉𝐸,	BTPS),	O2	consumption	(𝑉𝑂!),	

and	 CO2	 output	 (𝑉𝐶𝑂!),	 both	 STPD,	 were	 determined	 breath	 by	 breath	 by	 a	
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portable	metabograph	(K4b2,	Cosmed,	Italy).	

	

Data	analysis		

Anthropometric		

Body	mass	and	height	of	subjects	were	measured	using	a	stadiometer	(A.	

Vandoni,	 Italy).	 	The	 subjects	were	asked	 to	maintain	 a	 relax	position	 for	both	

measurements	(height	and	body	weight).	

	

Maximal	oxygen	consumption	(𝑽𝑶𝟐𝒑𝒆𝒂𝒌)	

𝑉𝑂!!"#$ 	values	were	taken	as	the	highest	30s	average	𝑉𝑂!	value	attained	

before	 the	 subject’s	 volitional	 exhaustion.	 These	 data	 were	 collected	 and	

analysed	 as	ml.kg-1.min-1.	 At	 rest	 and	 at	 various	 times	 (5,	 7	 and	9	min)	during	

recovery,	0.6	μL	of	capillary	blood	was	obtained	from	a	preheated	earlobe	for	the	

determination	 of	 blood	 lactate	 concentration	 ([La]b)	 (Lactate	 Plus,	 Nova	

Biomedical).	 Thus,	 values	 higher	 than	 8	 mmol.L-1	 were	 accepted	 to	 ensure	 a	

𝑉𝑂!!"#$ 	state.	Besides	 that,	 respiratory	exchange	ratio	 (RER)	was	calculated	as	

the	 ratio	 of	𝑉𝐶𝑂!to	𝑉𝑂! ,	 and	 values	 higher	 than	 1.1	 were	 used	 to	 confirm	

𝑉𝑂!!"#$as	well	 as	 a	HR	 higher	 than	 predicted	 value	 (220	 –	 age;	 Tanaka	 et	 al.,	

2001).	

	

Heart	rate	kinetics		

Heart	 rate	 off-kinetics	 (HR	 decrease	 after	 60-m	 sprint)	 was	 modelled	

according	 to	 a	 mono-exponential	 function	 of	 time	 by	 using	 a	 Least	 Squares	

Method	(minimizing	the	sum	of	squared	vertical	distances	between	experimental	

points	and	the	exponential	curve):	

	𝐻𝑅 𝑡 = 𝐻𝑅!"#$%&'$ + 𝐴𝑚𝑝𝑙 ∙ 𝑒
!! !!"" 																																	(1)	

	

where	HRbaseline	 is	the	average	of	HR	(bpm)	during	the	last	60	s	of	the	recovery	

period;	is	the	asymptotic	amplitude	for	the	exponential	term	(maximal	HR	values	

–	HRbaseline,	bpm);	τoff	is	the	time	constant	(s)	of	the	exponential,	i.e.	the	time	from	

the	 end	 of	 the	 sprint	 to	 reach	 27%	 of	 HR	 maximum	 excursion	 (which	

corresponds	to	HR	=	HRbaseline	+	Ampl	(1	-	63%)).	The	velocity	of	HR	decays	after	
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the	sprint	(voff,	s-1)	was	inferred	as	the	reciprocal	of	τoff.	Also,	the	heart	rate	range	

from	 the	 sprint	 start	 to	 the	 beginning	 of	 the	 off-kinetics	 phase	 (ΔHR)	 was	

calculated	(Fig.	1).		

Figure	1.	Example	of	a	representative	heart	rate	time	course	from	rest	to	recovery	of	the	maximal	
sprint	test.	The	thick	vertical	 line	coincides	with	the	start	of	 the	sprint,	 the	dashed	vertical	 line	
with	the	end	of	the	sprint,	the	thin	vertical	line	represents	the	start	decay	of	HR,	while	the	dotted	
line	expresses	the	τoff	and	the	grey	continuous	curve	represents	the	mono-exponential	best	fit.	
	

	 The	input	data	available	for	the	mathematical	routine	were	R-R	intervals	

(raw	data,	.hrm)	from	heart	rate	monitor.	A	time	delay	(tdelay)	after	final	test	was	

calculated	due	to	a	short	constant	time	present	for	peak	of	HR	in	all	subjects	(2-5	

s).	 Then,	 this	 variable	 was	 also	 a	 confounding	 factor	 that	 enabled	 avoid	

consequents	error	to	the	final	analysis.				

All	 data	 have	 been	 analyzed	with	 purposely	written	 LabView	 programs	

(release	13,	National	Instruments).	

	

Statistics	

	 Data	 are	 presented	 as	 mean	 ±	 standard	 deviation	 (SD).	 Multiple	 linear	

regression	 analysis	 was	 adopted	 to	 explain	 the	 variance	 of	 the	 individual	

𝑉𝑂!!"#$ ,	 based	on	 independent	 variables	 vtest,	 voff	 and	ΔHR.	 Linear	 regressions	

were	used	to	analyse	correlations	between	variables	and	residuals	of	predicted	

(𝑉𝑂!!"#$)	vs.	measured	𝑉𝑂!!"!" .		
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A	Bland-Altman	test	was	carried	out	to	assess	the	repeatability	of	𝑉𝑂!!"#$ 	

from	 sprint	 field	 test	 by	 verifying	 agreement	 between	 both	𝑉𝑂!!"#$ values	

(measured	and	estimated).	

The	Standard	Error	of	the	Estimate	(SEE)	was	calculated	to	measure	the	

accuracy	 of	 the	 prediction	 and	 to	 compare	 it	 to	 other	 published	 predictors	 of	

𝑉𝑂!!"#$ .s	

Statistical	 significance	 was	 granted	 at	 p	 ≤	 0.05.	 Statistical	 analysis	 was	

performed	by	using	SPSS	v20	(IBM,	USA).	

	 	

RESULTS	

	 𝑉𝑂!!"#$ 	range	 was	 29.1-56.6	 ml.kg-1.min-1	 (mean	 ±	 SD,	 42.5±8.7	 ml.kg-

1.min-1).	 Peak	 net	 blood	 lactate	 concentration	 after	 the	 incremental	 test	 was	

8.5±1.3	mM.	All	groups	attained	maximal	HR	values	corresponding	to	95%	of	the	

age	 predicted	maximum	 and	 RER	 values	 >	 1.1.	 Thus,	 taking	 into	 account	 also	

[La]b	peak	values,	it	can	be	assumed	that	subjects	reached	the	maximum	exercise	

capacity.	

The	vtest	and	voff	were	significantly	related	to	𝑉𝑂!!"#$ 	(r	=	0.74,	p	<	0.001;	

r	 =	 0.43,	 p	 =	 0.03,	 respectively)	 (Fig.	 2A,	 B),	 whereas	 ΔHR	was	 not	 related	 to	

𝑉𝑂!!"#$ 	(r	 =	 -0.18,	 p	 =	 0.39)	 (Fig.	 2C).	Multiple	 regression	 analysis	 (𝑉𝑂!!"#$ 	=	

7.46·vtest+	261.4·voff	-	0.19·ΔHR)	showed	that	a	linear	combination	of	vtest,	voff	and	

ΔHR	from	the	sprint	test	explained	65%	of	the	𝑉𝑂!!"#$ 	variance	(R2	=	0.65,	p	<	

0.001)	(Fig.	3).	

	

Figure	2.	Relation	between	𝑉𝑂!!"#$	and	vtest	(A),	voff	(B),	and	ΔHR	(C)	are	illustrated.	
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Figure	 3.	 Relation	 between	 measured	VO2peak and	 predicted	𝑉𝑂!!"#$	estimated	 from	 multiple	
linear	regression	VO2peak=	7.46∙vtest+	261.4∙voff -	0.19∙∆HR	Trend	line	(thick	black	line)	expresses	
the	 linear	 regression	 between	 the	 variables	 (𝑉O2peak=	0.62 ∙ VO2peak + 15.9;	 r	 =	 0.80).	 The	 thin	
black	lines	are	the	confidence	interval	(95%)	of	the	trend	line,	while	the	dashed	grey	line	is	the	
identity	line.		

	

	

A	 paired	 t-test	 did	 not	 show	 significant	 difference	 (p	 >	 0.05)	 between	

measured	𝑉𝑂!!"#$ 	and	 the	 predicted	 value	 (𝑉𝑂!!"#$ .)	 and	 the	 SEE	 was	 5.28	

ml.kg-1.min-1.	Fig.	4	shows	the	Bland-Altman	plot	VO2diff	 (𝑉𝑂!!"#$ 	−	𝑉𝑂!!"#$)	vs.	

mean	𝑉𝑂!!"#$ ,	 both	 for	 a	 beat-to-beat	 analysis	 and	 for	 a	 5s	 average	 of	HR	off-

kinetics	(see	below).	
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Figure	4.	Bland-Altman	plot	of	VO2peakdifference	(measured	-	predicted	values)	vs.	mean	VO2peak	
(black	circles).	Solid	line	(average	bias	=	-0.04	ml.kg-1.min-1);	dashed	line	indicates	95%	limits	of	
agreement.	 The	 trend	 line	 equation	 expresses	 y	 =	 0.28x	 –	 11.9,	 with	 r	 =	 0.40	 (p	 =	 0.04)	with	
confidence	intervals	(95%).	Grey	circles:	predicted	values	based	on	5s	average	of	HR	time	course	
(see	Discussion).	

	

	

DISCUSSION	

The	idea	behind	this	investigation	has	been	to	find	a	simple	and	short	test	

that	could	reasonably	predict	individual	𝑉𝑂!!"#$ ,	based	on	signals	from	sensors	

that	constitute	the	current	'equipment'	inside	mobile/smart	devices	(phones	or	

watches).	

The	software	algorithm	has	been	designed	as	to	use	the	most	meaningful	

part	 of	 the	 post-sprint	 HR	 time	 course:	 it	 was	 noted	 that	 signal	 is	 often	 still	

increasing	or	almost	constant	before	starting	the	decay	towards	the	resting	value	

(Fig.	 1	 and	 5).	 Thus,	 in	 order	 to	 better	 quantify	 HR	 off-kinetics,	 a	 routine	

trimmed	the	data	and	fed	the	statistical	procedure	(exponential	regression	Least	

Squares	 Method)	 with	 just-decay	 values.	 We	 did	 not	 analyse	 the	 on-kinetics	

because,	 as	 expected,	 during	 the	 sprint,	 HR	 values	 are	 scattered	 (see	 the	 data	

between	the	first	two	vertical	lines	in	Fig.	1	and	5)	presumably	due	to	both	the	

interferences	 of	 the	 contracting	 thoracic	muscles	 and	 of	 the	 belt	 vibrations	 on	

the	 ECG	 signal.	 However,	 as	 an	 indicator	 of	 the	 on-kinetics	 the	 overall	 HR	

variation	 from	 rest	 baseline	 to	 the	 beginning	 of	 the	 off-kinetics	 (ΔHR)	 was	
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included	in	the	model.	

The	 Multiple	 Regression	 has	 been	 designed	 to	 correlate	 a	 measure	 of	

metabolic	power	(=	metabolic	work	/	time,	𝑉𝑂!!"#$)	to	three	predictors:	as	two	

of	 them	originally	have	units	with	 time	at	 the	denominator	 (vtest	 and	ΔHR),	we	

decided	 to	 transform	 τoff	 into	𝑣!"" =
!

!!""
,	 to	 increase	 the	 'linearity'	 of	 their	

statistical	effect.		

Despite	of	the	short	duration	and	the	simplicity	of	the	test,	its	reliability	in	

predicting	 the	 'real'	𝑉𝑂!!"#$values	 has	 been	 checked	 in	 terms	 of	 a	 significant	

correlation	both	of	the	Multiple	Regression	and	by	an	acceptable	standard	error	

of	 the	 estimate	 (also	 in	 relation	 to	 previous	 literature,	 see	 Fig.	 6	 and	 below).	

Among	 the	 predictors,	when	 individually	 compared	 to	𝑉𝑂!!"#$ ,	 only	ΔHR	does	

not	significantly	correlate	(albeit	negatively)	with	𝑉𝑂!!"#$ 	(see	Fig.	2C).	This	can	

be	 ascribed	 to	 two	 contrasting	 effects:	 1)	 ΔHR	 should	 be	 higher	 in	 highly	 fit	

subjects	due	to	their	faster	on-kinetics,	and	2)	highly	fit	subjects	(as	shown	by	a	

significant	correlation	in	Fig.	2A)	run	the	same	60-m	in	a	shorter	time,	thus	not	

allowing	HR	to	reach	a	high	value.	However,	the	regression	made	just	by	vtest	and	

voff	 as	 variates	 explains	 a	 smaller	 portion	 of	 the	 experimental	𝑉𝑂!!"#$variance	

(55%),	witnessing	the	value	of	ΔHR	in	the	multiple	regression	models.		

The	HR	off-kinetics	(voff,	Fig.	2B)	 is	positively	related	to	VO2peak:	 fitter	

subjects	 showed	 a	 faster	 decay;	 this	 result	 is	 in	 line	 with	 previous	 literature	

(Darr	et	al.,	1988;	Sugawara	et	al.,	2001;	Yamamoto	et	al.,	2001;	Carnethon	et	al.,	

2005;	Giallauria	et	al.,	2005;	Ostojic	et	al.,	2011;	de	Mendonca	et	al.,	2017).	HR	

off-kinetics	is	characterised	by	a	coordinated	interaction	of	parasympathetic	re-

activation	 and	 sympathetic	 withdrawal	 (Perini	 et	 al.,	 1989;	 Imai	 et	 al.,	 1994	

Dewland	et	al.,	2007;	Borresen	and	Lambert,	2008;	Maeder	et	al.,	2009;	Daanen,		
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Figure	 5.	Heart	 rate	 recording	of	each	participant	 (n	=	25)	during	 the	sprint	 test	and	 their	 respective	markers:	
thick	black	vertical	line	as	start	of	the	sprint,	dashed	vertical	line	representing	end	of	the	sprint,	thin	vertical	black	
line	denotes	the	start	decay	of	HR,	and	dotted	line	expresses	the	τoff.	

	

	

et	al.,	2012)	and	it	seems	that	in	trained	subjects	the	adaptations	in	the	efferent	

parasympathetic	 pathway	 could	 accelerate	 the	 vagus-mediated	 heart	 rate	

recovery	(Imai	et	al.,	1994;	Dewland	et	al.,	2007).	On	the	other	hand	Hagberg	et	

al.	 (1979)	 found	 that	 this	 faster	 recovery	 was	 not	 related	 to	 a	 more	 rapid	

recovery	 of	 the	 sympathetic	 response	 to	 exercise.	 Exercise	 intensity	 and	 type	

have	been	shown	to	 influence	 the	speed/tau	of	HR	off-kinetics	due	 to	different	

energetic	 contribution	 and	 released	 metabolites	 during	 exercise	 and	 recovery	
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(Pierpont	 et	 al.,	 2000;	 Buchheit	 et	 al.,	 2007;	 Borresen	 and	 Lambert,	 2008;	 Al	

Haddad	et	al.,	2009;	Nakamura	et	al.,	2009;	do	Nascimento	Salvador	et	al.,	2016).	

Such	 heterogeneity	 in	 exercise	 related	 factors	 and	 different	 indexes	 used	 for	

defining	 the	 off-kinetics	make	 a	 comparison	 of	 decays	 among	different	 studies	

quite	troublesome.		

In	 the	 present	 study,	 subjects	 performed	 a	 shorter	 effort	 than	 those	

present	in	literature,	reached	a	maximal	HR	of	150±20	bpm,	which	is	the	79%	of	

the	maximal	HR	of	 the	 incremental	 test,	 in	 about	20	 s.	At	 the	beginning	of	 the	

exercise,	 the	 onset	 of	 HR	 is	 characterized	 by	 the	 fast	 vagal	 withdraw	 and	 the	

slower	 sympathetic	 activation.	 Even	 if	 our	 exercise	 duration	was	 very	 short	 it	

seems	that	both	mechanisms	would	have	been	activated	in	order	to	reach	(and	

then	recover	from)	the	79%	of	the	maximal	HR.	

As	shown	in	Fig.	3	and	4,	both	these	regressions	slightly	overestimate	and	

underestimate	real	values	at	 low	and	high	𝑉𝑂!!"#$ ,	respectively.	The	predictive	

equation	was	verified	with	a	random	sampling	approach.	From	the	whole	sample	

(n=25),	12	subjects	were	randomly	extracted	and	used	as	a	new	control	group	

for	the	predictions	of	the	multiple	regression	that	was	performed	on	the	other	13	

subjects.	 This	 process	 was	 performed	 35	 times	 (taking	 care	 of	 avoiding	

duplicated	 group	 composition).	We	 obtained	 35	 new	 predictive	 equations	 and	

average	discrepancies	between	the	measured	and	predicted	𝑉𝑂!!"#$ .	The	mean	

SEE	was	6.31±0.82,	similar	to	5.28	obtained	from	processing	the	whole	sample.	

Although	we	 used	 lab-quality	 sensor	 technology,	 the	 implementation	 of	

the	proposed	test	on	consumer	wearables	could	manage	the	whole	experimental	

protocol	 locally:	 continuous	 beat-by-beat	 HR	 would	 be	 used	 both	 to	

monitor/warn	 the	 subjects	 on	 the	most	 appropriate	 time	at	which	 to	 start	 the	

60-m	sprint	(i.e.	when	a	rest	steady	state	is	reached)	and	to	collect	the	recovery	

phase.	 GPS	 and	 3-axis	 accelerometers	 could	 provide	 where	 and	 when,	

respectively,	the	60-m	sprint	started	and	ended,	from	which	the	overall	distance	

travelled	can	be	checked	and	the	average	speed	calculated.	

The	 use	 of	 a	 'traditional'	 thoracic	 belt	 sensor	 (Polar	 S410,	 Kempele,	

Finland)	 has	 been	 driven	 by	 the	 need	 of	 the	 most	 accurate,	 beat-by-beat	 HR	

sensor.	 There	 is	 no	 such	 a	 capability,	 so	 far,	 in	most	 consumer	wrist-wearable	

devices.	 Even	 Apple	 Watch	 (Apple	 Inc.,	 California,	 USA),	 which	 has	 been	



	 52	

mentioned	 for	 a	 very	 high	 reliability	 in	 processing	 physiological	 data	 during	

physical	 exercise	 (Chowdhury	et	 al.,	 2017;	Wang	et	 al.,	 2017),	 does	not	output	

beat-to-beat	 intervals.	 Blood	 oxygenation	 pulsations	 (photo-plethysmography)	

are	 detected	 by	 photodetectors	 measuring	 the	 bounced	 back	 infrared	 light	

emitted	 by	 LED	 diodes	 located	 between	 wrist	 and	 watch.	 The	 fluctuations	 in	

blood	colour	absorption	due	to	the	local	volume	changes	are	measured	resulting	

in	 HR	 data.	 A	 few	 studies	 have	 emphasized	 the	 accuracy	 of	 these	 wrist-worn	

devices	(Spierer	et	al.,	2015;	Wallen	et	al.,	2016;	Chowdhury	et	al.,	2017;	Wang	et	

al.,	2017)	during	rest	and	exercise.	Nevertheless,	no	system	at	present	seems	to	

be	 confident	 enough	 to	deliver	 single	beat	 interval/frequency,	probably	due	 to	

motion	induced	artifacts,	a	problem	that	could	be	solved	by	sensor	redundancy	

and/or	signal	processing	enhancing	signal-to-noise	ratio.	

Current	technology	confines	the	time	resolution	of	most	of	those	devices	

(Parak	et	al.,	2015)	to	about	5	seconds,	within	which	an	average	heart	frequency	

is	computed.	Although	our	investigation	is	particularly	meant	for	next,	beat-by-

beat	sensors,	we	tested	the	predictive	ability	of	the	proposed	algorithm	when	HR	

data	was	provided	at	0.2	Hz	 (as	 in	 the	actual	 versions).	 	This	was	achieved	by	

manipulating	 the	recorded	single-beat	sequences	as	 to	obtain	an	average	value	

every	 5s.	 In	 Fig.	 4	 grey	 points	 reflect	 the	 approximation	 involved	 in	 using	 5s	

average	HR	 data,	which	 resulted	 quite	 similar	 to	 single-beat	 regressions	 (R2	 =	

59%).	

The	proposed,	 indirect	𝑉𝑂!!"#$test	 is	 certainly	not	meant	 to	 replace	 the	

usual	direct	metabolic	measurements	and	protocols	done	in	a	research	or	clinical	

laboratory	setting,	where	a	much	higher	accuracy	is	required	in	the	assessment	

of	 subject/athlete's	 aerobic	 fitness.	 By	 using	 a	 portable	 smart	 device	 with	

multiple	sensors	and	the	suggested	algorithm,	a	handle	𝑉𝑂!!"#$ 	estimation	is	at	

reach	 for	 individuals	 who	 could	 later	 decide	 whether	 or	 not	 to	 deepen	 the	

awareness	 of	 their	 health	 status.	 However	 when	 compared	 with	 many	 other	

𝑉𝑂!!"#$predicting	 submaximal	 protocols	 done	 on	 similar	 subjects,	 based	 on	

different	physical	activities	and	with	much	longer	exercise	duration	(thus	more	

distressful	conditions,	quoted	 in	Fig.	6),	 the	SEE	was	quite	similar:	5.28	 for	 the	

60-m	sprint	vs.	4.63	±	1.58	(average)	of	the	literature.	 	
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Figure	6.	Accuracy	of	the	𝑉𝑂!!!"# 	prediction,	as	SEE	(ml.kg-1.min-1),	is	presented	in	relation	to	
average	 protocol	 duration	 (t,	 min)	 clustered	 in	 exercise	 (red	 positive	 bars)	 and	 rest	 (blue	
negative	bars)	 time.	Present	data	 is	 shown	as	 thick	 lines.	 SEE	of	other	predictive	equations	 on	
submaximal	 protocols	 are	 shown	 for	 comparison	 with	 their	 bibliographic	 reference.	 A	 more	
detailed	discussion	about	the	quoted	investigations	can	be	found	in	Sartor	et	al.,	2013	review. 
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The	 proposed	 test	 leaves	 space	 for	 improvement:	 a)	 HR	 kinetics	 are	

known	(Astrand	et	al.,	1986)	to	be	affected	by	a	number	of	conditions	(age,	body	

and	 ambient	 temperature,	 over-training,	 altitude,	 fatigue,	 hydration,	 etc.)	 here	

not	 taken	 into	 account,	 b)	 off-kinetics	 only	 have	 been	 considered,	 but	 new	

processing	 techniques	 (e.g.	 Salehizadeh	et	 al.,	 2016)	 could	 allow	 to	 include	HR	

on-kinetics	to	better	infer	𝑉𝑂!!"#$ ,	and	c)	new	refined	modeling	approaches	(e.g.	

Zakinthinaky,	 2015)	 could	 help	 to	 incorporate	 in	 the	 algorithm	 and	 detect	

slightly	differences	in	the	delayed	off-kinetics	start	that	could	better	estimate	the	

fitness	 level,	 d)	 a	 greater	 sample	 size	 with	 inter-subject	 repeatability	 could	

enhance	the	power	of	the	predictive	equation.	

Results	 from	the	current	 investigation	encourage	to	develop	new	simple	

methods	 to	 infer	 individual	physiologic	variables	by	exploiting	 the	current	and	

next	portable	technology.	Watches	and	bracelets	are	the	perfect	candidates,	with	

respect	 to	 smart	 phones,	 because	 of	 their	 small	 size	 and	 the	 increased	

computational	power	capable	to	sample	and	process	the	data	on-board,	with	no	

immediate	need	of	external	connection.	

	

CONCLUSION	

Then,	a	simple	and	short	test	(60-m	sprint	run)	could	reasonably	predict	

individual	 VO2peak	 based	 on	 the	 heart	 rate	 off-kinetics	 immediately	 after	 the	

sprint.	 This	 test	 can	 be	 easily	 managed	 by	 all	 individuals	 with	 the	 new	 wrist	

wearable,	 heart	 band	 free,	 multi-sensor	 smart	 devices	 and	 the	 proposed	

algorithm.	
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Appendix	
	

Table	1.	Technical	features	of	current	smartwatches	on	commerce.		

Device	
Model	

Operator	
System	

Display	 Processor	
Onboard	
storage	
(GB)	

Battery	 Connectivity	

Apple	
Watch	3	 WatchOS	4	 1.53”	OLED	 S2	-	Dualcore	 8	/	16	 18	hours	

Wi-Fi;	
Bluetooth;	
NFC;	

LG	
Watch	
Style	

Android	
4.3+	
	

1.2"	360	x	
360	P-
OLED	
	

Snapdragon	
Wear	2100	

	
4	 Up	to	24	

hours	
Wi-Fi;	

Bluetooth;	

Samsung	
Gear	3	 Tizen	OS	

1.3"	360	x	
360	Super	
AMOLED	

Dual-core	
1.0GHz	 4	 3	days	 Wi-Fi;	

Bluetooth;	4G;	

LG	
Watch	
Sport	

Android	
Wear	2.0	 1.38"	OLED	 Snapdragon	

Wear	2100	 4	 16	hours	
Wi-Fi;	

Bluetooth;	
NFC;	

Fitbit	
Ionic	 Fitbit	OS	 TBC,	1000	

nits		
Dual-core	
1.0GHz	 2.5	 2-3	days	 Wi-Fi;	

Bluetooth;	

Moto	
360	

Android	
Wear	2.0	

1.37”	or	
1.56”	LCD		

Quad-core	
1.2GHz	 4	 1.5-2	

days		
Wi-Fi;	

Bluetooth;	
AMOLED:	Active-matrix	organic	light-emitting	diode;	
LCD:	liquid	crystal	display;	
NFC:	Near	Field	Communication;	
OLED:	Organic	light-emitting	diode;	
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	


