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ABSTRACT 1 

Background. Estrogens are known to orchestrate reproductive events and to potentiate the immune 2 

system against infections and tissue damage. Recent findings suggest that, in the absence of any danger 3 

signal, estrogens trigger the physiological expansion and functional specialization of macrophages, which 4 

are immune cells that populate the female reproductive tract (FRT) and are increasingly being recognized to 5 

participate in tissue homeostasis beyond their immune activity against infections. Although estrogens are 6 

the only female gonadal hormones that directly target macrophages, a comprehensive view of this 7 

endocrine-immune communication and its involvement in the FRT is still missing. 8 

Objective and rationale. Recent accomplishments encourage a revision of the literature on the ability of 9 

macrophages to respond to estrogens and induce tissue-specific functions required for reproductive 10 

events, with the aim to envision macrophages as key players in FRT homeostasis and mediators of the 11 

regenerative and trophic actions of estrogens. 12 

Search methods. We conducted a systematic search using PubMed and Ovid for human, animal (rodents) 13 

and cellular studies published until 2018 on estrogen action in macrophages and the activity of these cells 14 

in the FRT. 15 

Outcomes. Our search allowed the appreciation of the remarkable ability of macrophages to activate 16 

biochemical processes in response to estrogens in cell culture experiments. The distribution at specific 17 

locations, interaction with selected cells and acquisition of distinct phenotypes of macrophages in the FRT, 18 

as well as the cyclic renewal of these properties at each ovarian cycle, demonstrate the involvement of 19 

these cells in the homeostasis of reproductive events. Moreover, current evidence suggests the association 20 

between the estrogen-macrophage signaling and the generation of a tolerant and regenerative 21 

environment in the FRT, although a causative link is still missing. 22 

Wider applications. Dysregulation of the functions and estrogen responsiveness of FRT macrophages may 23 

be involved in infertility and estrogens and macrophage-dependent gynecological diseases, such as ovarian 24 

cancer and endometriosis. Thus, more research is needed on the physiology and pharmacological control of 25 

this endocrine-immune interplay. 26 
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Introduction 1 

The fluctuations in estrogen levels that occur during the menstrual cycle in women regulate innate 2 

defensive mechanisms against pathogen invasion and modify the susceptibility to inflammatory diseases, 3 

such as atherosclerosis, ischemia or autoimmune pathologies; these immune mechanisms have been 4 

proposed to explain, at least in part, the different immune responses in females as compared to males 5 

(Jørgensen, 2015). Such immunomodulatory activity has been ascribed, at least in part, to the direct activity 6 

of estrogens in macrophages, while other sex steroid hormones, androgen and progesterone, show either 7 

little or null effect (Kovats, 2015).  8 

Macrophages are important players in innate immunity and their deranged activation has effects in human 9 

inflammatory pathologies. Beyond immunity, recent investigations demonstrated novel functions for 10 

macrophages, which are dictated by a vast array of physiological cues and in response to specific regulatory 11 

interactions that macrophages establish with the specific cell types and matrix components within tissues 12 

(Gordon and Plüddemann, 2017). Indeed, macrophages were proved to act in diverse organs of the female 13 

reproductive tract (FRT) by non-immune processes and recently shown to undergo a specific phenotypic 14 

adaptation in response to estrogens and estrogens-regulated mediators that promotes immune tolerance 15 

and tissue remodeling (Pollard et al., 1998; Pepe, Braga, et al., 2017). These novel data encourage a 16 

revision of the molecular and biological details of the macrophage response to estrogens and the evidence 17 

on the distribution and activity of these cells in the FRT, with insight into the relevance of this endocrine-18 

immune interplay in FRT homeostasis and diseases.  19 

 20 

Macrophage biology 21 

Origins and renewal 22 

Macrophages in adult tissues may have dual origin. During fetal life, embryonic progenitors migrate into 23 

developing organs to constitute the resident population of macrophages that can self-replenish throughout 24 

life. Tissue macrophages also derive from hematopoiesis, as blood monocytes may infiltrate into tissues 25 

and differentiate into mature cells (Schulz et al., 2012; Sieweke and Allen, 2013; Yona et al., 2013). Self-26 
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renewal of tissue resident macrophages is regulated by the lineage specific growth factor, macrophage-1 

colony stimulating factor (CSF1), as well as by immune and endocrine signals, such as interleukin-4 (IL-4), IL-2 

33 and estrogens, in a tissue-specific manner (Hashimoto et al., 2013; Jackson-Jones et al., 2016; Jenkins et 3 

al., 2013; Pepe, Braga, et al., 2017; Pepe, De Maglie, et al., 2017; Tagliani et al., 2011). Multiple 4 

physiological signals, including CSF1 and the chemokines Monocyte Chemoattractant Protein-1 (MCP-5 

1/CCL2) and Macrophage Inhibitory Protein 1-α (MIP-1α/CCL3), are clearly involved in the recruitment of 6 

monocytes (Pollard et al., 1987,  1998; Robertson et al., 1996; Wood et al., 1997; Long et al., 1998; Klotz et 7 

al., 2002; Moldenhauer et al., 2010; Wheeler et al., 2018). The population of macrophages in the FRT is 8 

maintained by both the self-renewal and monocyte recruitment, as also reported for other organs such as 9 

spleen and kidney. Expansion and recruitment of FRT macrophages occur under the influence of 10 

chemoattractive and proliferative signals that are released by FRT cells in response to endocrine and 11 

physiological stimuli, including estrogens. Thus, beyond their direct activity estrogens indirectly regulate 12 

macrophage number by increasing the expression of cytokines and chemokines in epithelial cells of the 13 

uterus and oviducts. Indeed, ablation of the genes coding for these mediators triggers defective 14 

macrophage and reproductive functions in animal models (Lavin et al., 2014; Pollard et al., 1987; Schulz et 15 

al., 2012). 16 

 17 

Physiologic functions of macrophages 18 

We here summarize the main physiological activities that are routinely carried out by macrophages located 19 

in various tissues, while more specialized functions related to estrogen signaling and the FRT are discussed 20 

in Sections 2 and 3. 21 

Inflammation, immune activation and tissue homeostasis 22 

In response to bacterial or viral infections macrophages acquire a classical activation phenotype, named M1 23 

in analogy with T-helper nomenclature, characterized by the production of inflammatory mediators such as 24 

cytokines, reactive oxygen species and arachidonic acid metabolites, which sustain inflammation and kill 25 

invading microbes. Instead, stimuli such as IL-4 and IL-13, together with tissue resident signals, lead 26 
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macrophages to acquire an “alternative” or M2 activation state, which is involved in tissue remodeling 1 

(Wynn and Vannella, 2016; Minutti et al., 2017). Though M1-M2 polarization has been shown to occur in 2 

vivo, this classification should only be considered a schematic representation of a spectrum of intermediary 3 

phenotypes induced by the combinatorial effects of stimuli and other cell types present in the 4 

microenvironment (Xue et al., 2014). 5 

Macrophage phenotypic adaptations are mediated by specific transcription factors, such as Nuclear Factor-6 

Kappa enhancer of activated B cells (NF-κB) that is crucial for the expression of genes linked to the M1 7 

inflammatory response, and CCAAT-enhancer-binding protein-b (C/EBPb), Kruppel-like Factor-4 (KLF4) and 8 

the transcriptional repressor KLF11 involved in M2 gene expression (Bouhlel et al., 2007; Takeda et al., 9 

2010; Lawrence and Natoli, 2011; Liao et al., 2011; Pello et al., 2012). Interestingly, some of these 10 

transcription factors are also highly expressed in the FRT and involved in reproductive tissue pathologies 11 

(Navarro et al., 2012; Daftary et al., 2013). Distinct phenotypes also correspond to specific adaptations of 12 

macrophage energy metabolism, so that resting and M2 macrophages produce energy by the potentiation 13 

of oxidative phosphorylation and tricarboxylic acid cycle, while M1 activation is associated with higher rates 14 

of glycolysis (Vats et al., 2006; Palsson-McDermott and O’Neill, 2013). 15 

The phenotypic adaptation of macrophages is crucial for communicating to the surrounding cells and the 16 

extracellular matrix (ECM; Wynn and Vannella, 2016). Classically activated macrophages sustain matrix 17 

destruction through the secretion of proteases, such as matrix-metalloproteinases (MMPs) and cathepsin K, 18 

and the increased expression of receptors for matrix proteins, such as Mac1 for fibrinogen (Adhyatmika et 19 

al., 2015). On the other hand, alternatively activated cells produce anti-inflammatory and pro-fibrotic 20 

mediators, such as Transforming Growth Factor-β1 (TGF-β1), C Chemokine Ligand 18 (CCL18) and Resistin-21 

Like Molecule α (RELM-α), which promote proliferation of surrounding cells and matrix synthesis and 22 

deposition (Knipper et al., 2015; Liu et al., 2004). Chronically activated inflammatory macrophages may 23 

lead to tissue degeneration, while the uncontrolled activation of the M2 phenotype is a pro-fibrotic process 24 

that drives tissue fibrosis and non-healing wounds (Minutti et al., 2017; Wynn and Vannella, 2016). The 25 

function of macrophages in the FRT is clearly and demonstrably controlled  by macrophage-specific 26 
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regulators that are locally synthesized by cells, such as uterine epithelia, also under the influence of 1 

estrogens (Moldenhauer et al., 2010).   2 

Phagocytosis 3 

Macrophages recognize, engulf and degrade microorganisms or “self” cells, or parts of them, through the 4 

engagement of specific phagocytic receptors. The phagocytosis of a pathogen is activated by the ability of 5 

pattern-recognition receptors (PRRs) to bind to specific molecules of the pathogen cell wall, such as 6 

mannans in yeasts and lipopolysaccharide (LPS) in bacteria (Weiss and Schaible, 2015). On the other hand, 7 

phagocytosis of self-cells is a natural homeostatic process in cell turnover induced by “eat-me” signals, such 8 

as phospholipid phosphatidylserine, and inhibited by “don’t-eat-me” signals, such as sialic acid, which are 9 

recognized by specific scavenger receptors abundantly expressed by macrophages (Arandjelovic and 10 

Ravichandran, 2015; Gordon and Plüddemann, 2018). Importantly, PRR activation is coupled with the 11 

production of pro-inflammatory molecules, while engulfment of apoptotic cells transmits an 12 

immunosuppressive signal in macrophages to curtail inflammation and promote tissue remodeling.  13 

 14 

Estrogen signaling and macrophage responses 15 

Biosynthesis. Gonadal steroidogenesis is mediated by a cooperative interaction between thecal and 16 

granulosa cells, known as the “two-cell” model, which is tightly regulated in time and space by 17 

neuroendocrine signals (Hillier et al., 1994). Under the influence of luteinizing hormone (LH), 18 

steroidogenesis begins in thecal cells, which take up large amounts of cholesterol via the low density 19 

lipoprotein receptor (LDLR) and convert it into shorter intermediates. These lipophilic molecules diffuse 20 

through the basal lamina and infiltrate granulosa cells, which instead receive no blood supply and have 21 

minimal levels of LDLR and cholesterol-modifying enzymes, except for the aromatase enzyme, the last 22 

enzyme in estrogens biosynthesis that is expressed under the control of follicle stimulating hormone (FSH). 23 

This neuroendocrine system generates the typical temporal profile of blood estrogen levels, which 24 

gradually increase during the early and mid-proliferative phases until sharply peaking and immediately 25 

declining at the end of the proliferative phase before ovulation, which is triggered by the LH surge at mid-26 
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cycle; estrogens synthesis is then sustained by luteinizing cells of the corpus luteum in the secretory phase 1 

and decreases during luteolysis. The most abundant and active estrogen is 17β-estradiol (E2). Macrophages 2 

are physically confined to the thecal cell layer in the growing follicle, while they gain contact with 3 

luteinizing cells after ovulation, suggesting a specific role in cholesterol handling and steroidogenesis, as 4 

further described in section 3. 5 

The molecular mechanism of estrogen action  6 

Estrogen receptors. Estrogen action is mediated by two intracellular estrogen receptors (ERs), namely ESR1 7 

(ERα) and ESR2 (ERβ), and by the G protein-coupled estrogen receptor 1 (GPER1), a plasma membrane 8 

protein which binds E2 and ER agonists/antagonists with a reduced affinity (10-100 fold and 1,000-fold 9 

lower, respectively) than that of intracellular ERs (Petrie et al., 2013; Thomas et al., 2005). Human and 10 

mouse macrophages express the Esr1 and Gper1 genes, while expression of ERβ and progesterone receptor 11 

(PR) in macrophages is controversial (Lambert et al., 2004; Rettew et al., 2010; Ribas et al., 2011a; Vegeto 12 

et al., 2004; Villa et al., 2016). To clarify this issue, we searched in public repository sites for transcriptomics 13 

datasets obtained by RNA sequencing of mouse and human resting macrophages and report the data 14 

relative to steroid receptors in Table 1. ERβ and PR are not detectable, the androgen receptor (AR) is 15 

expressed at low levels, while ERα and GPER1 mRNAs are present at different absolute values among 16 

datasets, probably due to the sensitivity of the methodology used. However, their relative abundance 17 

remains unchanged when considered in relation with the house-keeping gene, ribosomal protein lateral 18 

stalk subunit P0 (Rplp0), or the Nr3C1 gene coding for the glucocorticoid receptor (GR), whose expression 19 

and activity are widely described in macrophages (Martinez et al., 2006; Pepe, Braga, et al., 2017). Thus, in 20 

line with the general consensus, this analysis supports the conclusion that estrogen action in macrophages 21 

is mainly mediated by ERα and GPER1 under physiological conditions, and that these cells are not able to 22 

respond to progesterone, at least through a receptor-mediated mechanism under physiological conditions.  23 

Estrogen receptor expression may be regulated by genetic or epigenetic mechanisms induced by estrogen 24 

itself or by pathological conditions such as inflammation, obesity and high fat diet in the case of 25 

macrophage ERα (Ribas et al., 2011; Villa et al., 2015) or endometriosis for uterine GPER1 and ERβ (Adams 26 
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et al., 2007; Han et al., 2015; Heublein et al., 2013; Nasu et al., 2011; Renthal et al., 2013; Ribas et al., 1 

2011b; Villa et al., 2015). Despite being the most abundant sex steroid receptor in macrophages, ERα levels 2 

are lower than in breast epithelial cells, possibly due to a cell-specific usage of diverse promoter regions 3 

within the Esr1 gene (Murphy et al., 2009). Thus, the unique expression of ERα among sex steroid receptors 4 

of in macrophages and its liability to regulation suggest a physiologic role for this receptor in the endocrine 5 

regulation of macrophage responses. 6 

 Regualtion of receptor activity. As summarized in Figure 1, ERα is a transcription factor that is activated by 7 

estrogens to regulate target gene transcription by directly binding to target gene promoters and recruiting 8 

transcriptional co-regulators, or to interfere with the activity of other transcription factors. Estrogen-9 

activated ERα and GPER1 also regulate cytoplasmic effectors that modulate intracellular lipids, Ca2+ or 10 

cAMP levels (Smith and O’Malley, 2004; Revankar et al., 2005; Deroo and Korach, 2006; Levin, 2015). While 11 

target genes expression changes within hours, non-genomic responses occur within minutes since the 12 

estrogen surge. The response to estrogens varies in different tissues as a result of cell-specific differences in 13 

the expression levels and activity of hormone receptors and their co-regulators. Hormonal responses need 14 

also to be considered in a dynamic view, since estrogen levels progressively increase during the 15 

proliferative phase of the ovarian cycle and induce later responses triggered, as in a cascade model, by the 16 

initial estrogen-responsive targets (Della Torre et al., 2011). In macrophages, estrogens were shown to 17 

regulate gene expression through ERα and to induce non-genomic responses mediated by both ERα and 18 

GPER1 (Cote et al., 2015; Frazier-Jessen and Kovacs, 1995; Ghisletti et al., 2005; Guo et al., 2002; Hsieh et 19 

al., 2009; Liu et al., 2013; Murphy et al., 2010; Pepe, Braga, et al., 2017; Qian et al., 2015; Rettew et al., 20 

2010; Suzuki et al., 2008). The dose and time-dependent mechanisms of action are particularly relevant for 21 

peritoneal organs, where estrogen levels are higher than in peripheral tissues (Loumaye et al., 1985; 22 

Manolopoulos et al., 2001).  23 

Estrogen receptor activity can be switched on or off by other endogenous molecules. Receptor activation 24 

may be triggered by intracellular kinases that are activated by diverse signals, including inflammatory 25 

cytokines, and induce modifications in the ERα conformation resulting in receptor-mediated genomic 26 
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responses (Stellato et al., 2016)(Stender et al., 2017). Moreover, progesterone is known to oppose estrogen 1 

actions in the uterus and vagina through the differentiation from proliferative to secretory endometrial 2 

cells, production of less potent estrogens and formation of vaginal mucus that hinders sperm survival  3 

(Patel et al., 2015). The opposed activity is less defined in corpus luteum, as both progesterone and 4 

estrogen participate in luteal functions and regression, while it does not seem to occur in macrophages, as 5 

these cells do not express PRs (see Table 1). 6 

Constitutive and macrophage-specific ablation of ER. ER knock-out models showed that ERα is responsible 7 

for the effects of estrogens in FRT physiology, with ERβ being important in ovulation and GPER1 8 

dispensable for fertility and reproduction (Dupont et al., 2000; Hamilton et al., 2014; Hewitt et al., 2016). 9 

Transgenic mice also confirmed the primary role of ERα in macrophage responses to estrogens in various 10 

tissues, including brain, skin, lung and peritoneum, although GPER1 may also be involved (Vegeto et al., 11 

2003, 2010; Garidou et al., 2004; Lambert et al., 2004; Campbell et al., 2014; Wei et al., 2016; Pepe et al., 12 

2017). Animal models carrying myeloid-specific ablation of ERα unraveled its contribution in maintaining 13 

key macrophage functions, such as oxidative metabolism, phagocytosis, cholesterol uptake and phenotypic 14 

activation (Calippe et al., 2010; Campbell et al., 2014; Ribas et al., 2011). However, indications on the 15 

reproductive phenotype are only available for the myeloid-specific ERα deficiency (MACER) mice, which 16 

were reported to be fertile but also to develop liver, metabolic and adipose abnormalities reminiscent of 17 

dysmetabolic traits observed in women with polycystic ovarian syndrome (PCOS), who also develop 18 

subfertility and menstrual irregularities (Ribas et al., 2011a; Teede et al., 2010). Interestingly, when 19 

exposed to insults such as caloric restriction, metabolic imbalance or infections, different transgenic female 20 

mice displayed a subfertility phenotype, described by anestrous, lengthened ovarian cycles or reduced 21 

number of post-implantation embryos, while maintaining a fertile phenotype under unstimulated 22 

conditions (Martinez de la Torre et al., 2007; Della Torre et al., 2016). Thus, subtle alterations in 23 

reproductive processes should be addressed to define the relevance of estrogen action in macrophages and 24 

precursor cells within the FRT, also considering that compensatory mechanisms may substitute for the 25 

deletion of a transcription factor involved in phenotype specialization, such as ERα.  26 
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 1 

Macrophage responses to estrogen 2 

Our understanding of the functional interplay between estrogens and macrophages grew in parallel with 3 

the acquisition of knowledge on novel aspects of macrophage biology, such as ontogenesis, self-renewal, 4 

function specialization and lineage heterogeneity. Thus, from initial observations using classic inflammatory 5 

paradigms showing the anti-inflammatory activity of estrogen, subsequent analysis demonstrated a 6 

hormone effect also on macrophage reparative phenotype, while only recently estrogen was envisioned as 7 

a physiologic signal that may regulate macrophage reactivity per se (Bruce-Keller et al., 2000; Campbell et 8 

al., 2014; Salem, 2004; Vegeto et al., 2001; Villa et al., 2015). In the hypothesis of conceiving macrophages 9 

as key messengers in FRT homeostasis orchestrated by estrogens, the following paragraphs discuss 10 

macrophage responses to estrogens beyond immunity against infections, as summarized in Figure 1.  11 

Proliferation. E2 has been involved in macrophage proliferation via either direct mechanisms or increased 12 

production of growth factors, such as EGF and IGF1, by non-macrophage cells (Pollard et al., 1987; Klotz et 13 

al., 2002; Pepe et al., 2017). It still needs to be verified whether the renewal of resident macrophages 14 

cyclically occurring in the FRT during the ovarian cycle, particularly in the proliferative phase, also involves a 15 

direct proliferative effect of estrogens. 16 

Immune polarization and extracellular communication. A comprehensive description of the genomic 17 

responses induced by the estrogen surge in peritoneal macrophages of female mice showed the dynamic 18 

and variegated adaptation of macrophages to the hormonal signal per se, in the absence of pathological or 19 

inflammatory stimuli, which occurs through the regulation of early and late genes, such as Vegf and IL10 20 

(Pepe et al., 2017). Under inflammatory conditions, estrogens have been proposed to anticipate both the 21 

onset and termination and to enhance the potency of the inflammatory response driven by macrophages 22 

and to favor the transition towards an M2-like phenotype, in line with improved outcome of inflammatory 23 

responses in female mice and humans (Bolego et al., 2013; Rathod et al., 2017; Scotland et al., 2011; 24 

Toniolo et al., 2015; Villa et al., 2015). These effects have been reconciled with genomic and cytoplasmic 25 

mechanisms induced by estrogen-activated ERα and GPER1. The activity of M1 or M2 stimuli on the 26 
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expression of genes, such as MMP9, Tumor Necrosis Factor-α (TNF-α), IL-1β and MIP2 or arginase 1 (ARG1), 1 

Transglutaminase 2 (TGM2) and RELMα, respectively, is modified by the presence of estrogens according to 2 

the tissue of origin of macrophages or the cell line used (Campbell et al., 2014; Cote et al., 2015; Frazier-3 

Jessen and Kovacs, 1995; Ghisletti et al., 2005; Pervin et al., 1998; Ribas et al., 2011a; Ruh et al., 1998; 4 

Vegeto et al., 2004). E2-activated ERα may also interfere with the activity of transcription factors that drive 5 

macrophage polarization, while the effects on energy consumption widely described for other target cells 6 

are still unknown in macrophages (Dai et al., 2009; Duckles et al., 2006; Ghisletti et al., 2005; Mattingly et 7 

al., 2008; Villa et al., 2015; Wang et al., 2001; Xing et al., 2012).  8 

Studies focused on ECM remodeling, in particular on the wound healing process, showed that estrogens 9 

fasten tissue repair by contributing to epithelial, collagen and vascular remodeling through a direct activity 10 

on macrophages and the increased secretion of: i) tissue repair molecules, such as RELM-α (Ashcroft et al., 11 

1997; Campbell et al., 2014; Liu et al., 2004); ii) proteases, such as matrix metalloproteinases (MMPs) and 12 

cathepsins, and their inhibitors (Rochefort et al., 2001; Vegeto et al., 2001); iii) the TGM2 enzyme, a 13 

conserved M2 marker highly expressed by human and murine macrophages in Th2-driven pathologies, 14 

involved in matrix protein crosslinking, clearance of apoptotic cells and promotion of an anti-inflammatory 15 

phenotype (Eligini et al., 2016; Martinez et al., 2013; Pepe, Braga, et al., 2017; Ribas et al., 2011a); iv) 16 

Fibroblast Growth Factor (FGF) and VEGF, through the involvement of both ERα and GPER1 (McLaren et al., 17 

1996; Kanda and Watanabe, 2002; Khan et al., 2005; Pepe et al., 2017). Thus, matrix and microenvironment 18 

remodeling by macrophages appears to be potentiated by estrogen, as initially demonstrated in an animal 19 

model of peritoneal adhesion formation in which estrogen administration reduced connective tissue 20 

deposition (Frazier-Jessen et al., 1996).  21 

Phagocytosis. In relation with the nature of the activating signal, estrogens are able to modulate the 22 

phagocytic activity of macrophages. As shown for immune polarization, estrogens exert opposite effects in 23 

the presence of M1 or M2 stimuli, reducing the effects of LPS or β-amyloid on phagocytosis and expression 24 

of receptors, such as CD14 and scavenger receptor-A (SR-A), or enhancing the phagocytosis of parasite or 25 

immunoglobulin-coated cells, possibly via increased expression of macrophage receptors for “eat-me-26 
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signals” (Bruce-Keller et al., 2000; Hsieh et al., 2009; Ning et al., 2016; Saia et al., 2015; Vegeto et al., 2004,  1 

2006; Yu et al., 2014; Zhang et al., 2015).  2 

Iron homeostasis. Iron is an essential cofactor for several metabolic processes within cells, yet it is 3 

extremely toxic if not handled properly by tissues. Resident macrophages process large amounts of iron 4 

through the expression of receptors that import protein-bound iron, such as the transferrin receptor-1 5 

(TFRC) and CD163, or free extracellular iron, such as Six-Transmembrane Epithelial Antigen of Prostate 3 6 

(STEAP3) and Divalent Metal Transporter-1 (DMT1/Slc11a2) (Kohyama et al., 2009; Haldar et al., 2014; 7 

Korolnek and Hamza, 2015). Inside macrophages, iron may be used for the cell metabolic demand, stored 8 

as ferritin-bound form or exported by ferroportin-1 (FPN). Iron efflux is negatively regulated by hepcidin, an 9 

hepatic hormone that induces FPN endocytosis and degradation (Nemeth et al., 2004). M1 macrophages 10 

develop an iron-sequestering phenotype that restricts extracellular iron availability for pathogens, while an 11 

iron-releasing phenotype that sustains the growth of surrounding cells is ascribed to alternative activation 12 

of macrophages through the expression of genes involved in iron turnover, mobilization and release (Cairo 13 

et al., 2011). Estrogens increase cellular iron uptake via the positive regulation of TFRC, iron binding 14 

proteins and transporters as well as by a negative effect on hepcidin expression in liver (Yang et al., 2012). 15 

In the FRT, estrogens induce the temporally coordinated expression of genes related with iron homeostasis, 16 

such as the iron delivery and exporter proteins, lactotransferrin (LTF), lipocalin-2 (LCN2) and FPN, 17 

respectively. By contrast, hormone action in macrophages has been poorly investigated, with some 18 

contrasting results depending on the specific macrophage population analyzed (Campesi et al., 2012; 19 

Hamad and Awadallah, 2013; Pentecost and Teng, 1987; Huang et al., 1999; Pepe, Braga, et al., 2017; Qian 20 

et al., 2015; Stuckey et al., 2006; Yang et al., 2012). 21 

Hemostasis and beyond. Macrophages are a source of factors for coagulation and complement activation 22 

that contribute to thrombin and fibrin formation and platelet aggregation (Boyce et al., 2015; van der Meer 23 

et al., 2014). In turn, molecules of the hemostatic system directly bind to macrophages through specific 24 

receptors and induce responses such as inflammation, angiogenesis, phagocytosis and matrix remodeling. 25 

For instance, thrombin and fibrin remain trapped in the perivascular space after vessel rupture and from 26 
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this site they bind to tissue resident macrophages and induce the production of inflammatory and 1 

fibrinolytic mediators that are required for tissue healing (Gratchev et al., 2001;  Davalos et al., 2012). 2 

Although oral estrogen therapy is known to induce a pro-coagulant state through the transcriptional 3 

regulation of hemostasis genes in liver, additional details on how estrogens act on FRT hemostasis are still 4 

lacking.  5 

Cholesterol metabolism. Cholesterol is transported in blood in the form of cholesterol esters (CEs) mainly 6 

bound to LDL and its cellular intake occurs through endocytosis mediated by LDL-R. Within 7 

endosomes/lysosomes, CEs are hydrolyzed to release free cholesterol, which may be used for membranes 8 

synthesis, stored in cytoplasmic lipid droplets continuously processed by hydrolysis and re-esterification, or 9 

excreted by efflux systems (Brown and Goldstein, 1983). Incorrect cholesterol handling may transform 10 

macrophages into foam cells that sustain atherosclerotic lesions formation (von Eckardstein, 1996). 11 

Consistent evidence showed that E2 reduces the uptake and favors the efflux of cholesterol by 12 

macrophages under inflammatory conditions, also by down-regulating the expression of scavenger 13 

receptors CD36 and SR-A (Allred et al., 2006; Corcoran et al., 2011; McCrohon et al., 1999; Napolitano et 14 

al., 2001; Rayner et al., 2008; Shchelkunova et al., 2013; Tomita et al., 1996; Vegeto et al., 2006; Wilson et 15 

al., 2008). Human and mouse macrophages were shown to express steroidogenic enzymes in vitro, 16 

depending on the tissue of origin (Rubinow, 2018).  17 

Circadian rhythm. Circadian rhythmicity is driven by a molecular clock composed of a transcriptional 18 

regulator complex that is mainly activated by daily brain signals. However, an intrinsic molecular clock in 19 

peripheral tissues also works independently of brain inputs and its disruption is associated with chronic 20 

pathologies. In particular, clock gene expression in the ovaries is involved in the timing of reproductive 21 

events and in fertility, as further discussed in section 3 (Mereness et al., 2016; McAlpine and Swirski, 2016; 22 

Sen and Sellix, 2016). Macrophages express circadian clock genes also independently from the brain 23 

pacemaker (Boivin et al., 2003; Keller et al., 2009); interestingly, macrophage inflammatory responses 24 

follow circadian rhythmicity and require clock genes to efficiently take place (Spengler et al., 2012; Oliva-25 

Ramírez et al., 2014; Nakazato et al., 2017). Endogenous or pharmacological fluctuations of estrogens in 26 
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rodents have been shown to regulate the expression of clock genes, such as Periodic Circadian clock 1 1 

(Per1) and Per2, in macrophages and in the FRT (Nakamura et al., 2005,  2010; Zhu et al., 2015; Wiggins and 2 

Legge, 2016; Pepe et al., 2017).  3 

 4 

The role of macrophages in the homeostasis of the female reproductive tract 5 

The FRT is a peculiar site where the immune system is constantly balanced between aggression and 6 

tolerance towards the seminal fluid, fertilized egg and microorganisms as well as self-components and 7 

tissue remodeling. Indeed, macrophages in the FRT not only protect against infection but also participate in 8 

reproductive events through the physical and functional interaction with surrounding cells, matrix and 9 

fluids, similarly to macrophages that reside in brain, liver or lung (Gertig and Hanisch, 2014; Lavin et al., 10 

2014; Minutti et al., 2017).  11 

The number and function of FRT macrophages change in a precise temporal and spatial manner during the 12 

ovarian cycle. Target cells for estrogens include leukocytes of the FRT, which operate in synchrony with  13 

other cells to adapt to the oocyte fate (Givan et al., 1997; Evans and Salamonsen, 2012). The paragraphs 14 

below summarize the evidence on macrophage distribution and functions in the ovaries, ovarian tubes, 15 

uterus and lower genital tract, as summarized in Figure 2, and the relevance of macrophages in ovarian and 16 

endometrial pathologies.  17 

Macrophage-depleted animal models. An undisputed advance in the understanding of macrophage 18 

physiology is provided by mouse models that allow for the constitutive or conditional ablation of 19 

macrophages in vivo. Table 2 summarizes the reproductive and FRT phenotypes together with their 20 

drawbacks such as incomplete macrophage depletion, as in the case of clodronate or monoclonal 21 

antibodies targeting CSF1R (Van der Hoek et al., 2000; MacDonald et al., 2010; Sauter et al., 2014), or 22 

developmental defects of the hypothalamus, occurring in mice bearing a null mutation in Csf1 23 

(Csf1
op

/Csf1
op) or Csf1r gene knock-out, which alter reproductive functions independently of macrophage 24 

number in the adult FRT (Cohen et al., 1999,  2002; Dai et al., 2002). CD11b-Dtr transgenic mice, in which 25 

the diphtheria toxin receptor (DTR) is specifically expressed by CD11b-positive cells, may remove such 26 
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obstacles and allow for the acute and reversible reduction of macrophages in the entire organism including 1 

the FRT (Duffield et al., 2005). 2 

Macrophages in the ovaries  3 

Cell distribution 4 

Macrophages are preferentially located within the endocrine compartment of the ovary, where they 5 

change in number and function during the ovarian cycle, as summarized in Figure 2. While absent from the 6 

ovarian stroma and ovarian surface epithelium (OSE), macrophages appear in the theca cell layer and 7 

interstitial space of primary follicles at early stages of development (Wu et al., 2004; Gaytán et al., 2007). 8 

Macrophage cells number then gradually increases and sharply augments in thecal layers in preovulatory 9 

follicles (Brännström and Enskog, 2002; Van der Hoek et al., 2000). Instead, macrophages are excluded 10 

from the granulosa cell compartment of antral follicles, while they are abundant in corpora lutea, reaching 11 

a peak at luteal regression, and in atretic follicles, where they are in contact with apoptotic granulosa cells 12 

(Wu et al., 2004). Ovarian macrophages seemingly derive from monocytes supplied by blood that flows in 13 

the theca, and not granulosa, compartment of antral follicles and in the vastly vascularized corpora lutea; 14 

recruiting factors, such as CSF1, MCP-1/CCL2 and IL-33, are produced by ovarian and granulosa cells 15 

particularly in response to LH at ovulation (Hume et al., 1984; Carlock et al., 2014).  16 

The preferential location of macrophages at specific microanatomical regions within the ovaries recalls that 17 

seen in endocrine organs, the pancreas and testis, for which more details are available on the role of 18 

macrophages in tissue homeostasis. In these organs, macrophages were shown to establish a symbiotic 19 

connection with endocrine and vascular cells, forming a functional unit that is essential for the correct 20 

production of insulin and androgens (Bhushan and Meinhardt, 2017; Calderon et al., 2015; Cohen et al., 21 

1999; Turner et al., 2011; Unanue, 2016). Whether macrophages are similarly relevant for the endocrine 22 

activity of the ovaries still needs to be defined. Conversely, it is also of interest that macrophages are 23 

excluded from the non-endocrine compartments, even at ovulation when the highly inflammatory 24 

microenvironment may favor their recruitment. As already mentioned, the OSE shows peculiar properties 25 

as compared with other FRT epithelia, with which it shares a common embryonal origin; one of such 26 
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peculiarities is the absence of interactions with macrophages, which are instead tightly intermingled with 1 

epithelial cells lining the endometrial surface and glands and the tubal wall (Gaytán et al., 2007; King et al., 2 

2011). On the other hand, macrophages are found in association with ovarian epithelial cells when these 3 

are transformed into metaplastic cells and it is thus supposed that macrophages participate in ovarian 4 

carcinogenesis. Thus, it will be important to understand the role of macrophages in the ovarian endocrine 5 

activity and study the mechanisms that allow or inhibit these cells to communicate with FRT epithelia 6 

(Gaytán et al., 2007). 7 

Ovaries-specific phenotypes and functions 8 

Along with the increase in cell number, fluctuations in estrogen levels associate with the acquisition of 9 

specialized functions by ovarian macrophages that are necessary for the maturation of oocytes and for the 10 

development, fate and vascularization of ovarian follicles.  11 

Immune polarization and extracellular communication. Macrophages endowed with pro-healing and 12 

regenerative activities accumulate during the pre-ovulatory phase of follicle development and favor 13 

granulosa cell proliferation through the production of growth factors, such as bFGF, EGF and VEGF (Care et 14 

al., 2013). On the other hand, the peri-ovulatory phase is associated with the increase of M1-like 15 

macrophages in the ovulating follicle. In fact, ovulation has been described as an inflammatory event that 16 

mainly enrolls inflammatory macrophages, which sustain the infiltration of additional immune cells, tissue 17 

disruption and subsequent maturation and functional specialization of granulosa cells through the 18 

secretion of inflammatory mediators (i.e. chemokines, reactive nitrogen species, prostaglandin F2α) and 19 

matrix remodeling enzymes (Espey, 1980; Machelon et al., 1995; Nakao et al., 2015; Shkolnik et al., 2011; 20 

Wong et al., 2002). Macrophage-derived signals are also important for vessel integrity of the antral follicle 21 

and corpus luteum, since whole body ablation of macrophages results in hemorrhage limitedly to the 22 

ovaries and not other tissues (Care et al., 2013; Turner et al., 2011). Apoptosis of granulosa and luteal cells 23 

is triggered by inflammatory mediators, including TNFα, while an increased macrophage number in the 24 

atretic follicle and corpus albicans has been associated with tissue regression and removal through the 25 

release of catabolic mediators and phagocytosis (Carlock et al., 2014; Pate and Landis Keyes, 2001; 26 
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Shirasuna et al., 2013; Stocco et al., 2007; Wu et al., 2015).  1 

Thus, ovarian follicles are populated by functionally distinct subtypes of macrophages, as confirmed by the  2 

recent identification of ovarian macrophage subsets that differentially express antigen presentation and 3 

adhesion molecules (Carlock et al., 2013). Importantly, a deranged balance between inflammatory and anti-4 

inflammatory phenotypes has been proposed as a pathological link towards infertility and ovarian 5 

dysfunction (Uri-Belapolsky et al., 2014).  6 

Iron homeostasis. Non-heme iron in mouse ovaries is predominantly confined to macrophages, especially 7 

those adjacent to degenerating corpora lutea and apoptotic atretic follicles where ferrous ions are released 8 

(Asano, 2012). Both macrophages and the iron overload , derived from retrograde menstruation, are 9 

involved in the ceasing of ovarian function in women approaching the menopause, while dysfunctional iron 10 

handling by ovarian macrophages appears to contribute to malignant degeneration of the ovary (Vercellini 11 

et al., 2011). 12 

Cholesterol metabolism and steroidogenesis. The growing follicle is a site of cholesterol enrichment for its 13 

usage in steroidogenesis and incorporation in newly formed ovarian and granulosa cells. Indeed, the 14 

metabolism of cholesterol used for gonadal steroidogenesis drastically changes during the peri-ovulatory 15 

phase in association with changes in macrophage number and phenotype (see Figure 2). As shown in Figure 16 

2, steroidogenesis in theca, granulosa and luteinizing cells is associated with resident macrophages showing 17 

an alternative polarization phenotype, while the sharp pre-ovulatory reduction in estrogen synthesis is 18 

linked to increased number of M1-like macrophages, which are known to inhibit steroidogenesis through 19 

the secretion of inflammatory cytokines, both in the ovaries and testes (Bornstein et al., 2004; CHEN et al., 20 

1992; Leisegang and Henkel, 2018; Samir et al., 2017). Although macrophages are well-established 21 

regulators of cholesterol homeostasis, the role and identity of mediators secreted by M2 macrophages as 22 

well as the ability to directly supply cholesterol for steroidogenic cells are still unknown. As already 23 

mentioned in the previous Section, estrogens are able to both stimulate cholesterol efflux in macrophages 24 

and induce their M2 polarization, suggesting that these cells might sustain estrogens synthesis in response 25 

to estrogens themselves. Interestingly, an increased number of lipid-laden macrophages are observed 26 
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particularly at sites of excess cholesterol accumulation and follicular atresia in the ovaries of female 1 

patients with congenital lipoid adrenal hyperplasia (lipoid CAH), an endocrine disorder linked to a defect in 2 

steroidogenesis and premature ovarian failure, suggesting a role for macrophages in cholesterol 3 

accumulation in the ovary (Ishii et al., 2016). Nevertheless, cholesterol storage and usage by ovarian 4 

macrophages are still poorly defined to understand the impact of these cells on the physiopathology and 5 

estrogen dependence of ovarian endocrine activity. 6 

Circadian rhythm. Clock genes expression in the ovary occurs in pre-antral follicles and further increases in 7 

the late antral and preovulatory stages in granulosa, theca and stromal cells and in oocytes (Fahrenkrug et 8 

al., 2006; Karman and Tischkau, 2006). The circadian clock of the ovaries drives the expression timing of 9 

crucial proteins for ovarian physiology, such as LH receptor and steroidogenesis enzymes, demonstrating 10 

that the ovary plays an intrinsic role in the timing of female reproduction (Yoshikawa et al., 2009; 11 

Nakamura et al., 2010; Mereness et al., 2016). Indeed, disruption of the ovarian circadian clock is 12 

associated with infertility and reproductive pathologies (Khan et al., 2012; Simonneaux and Bahougne, 13 

2015). It is increasingly evident that all events occurring during the reproductive cycle in females are 14 

rhythmically regulated by an integrated network of hormonal and circadian signals that derive from and 15 

operate in brain and FRT cells. Emerging evidence suggests that these signals regulate each other, as in the 16 

case of estrogen and clock gene expression in FRT, providing an additional level of control in reproductive 17 

synchrony; dangerous consequences for women’s fertility and health may also emerge when impairment of 18 

this complex network occurs at any of its control levels (Simonneaux and Bahougne, 2015).  19 

 20 

 21 

Macrophages in the oviducts 22 

Cell distribution 23 

Macrophages are localized within the epithelial, lamina propria and wall layer compartments of the human 24 

Fallopian tubes (Haney et al., 1983; Ardighieri et al., 2014).Macrophages have also been identified within 25 

the tubal lumen in close proximity with the cumulus cells complex that surrounds the oocyte (Akkoyunlu et 26 
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al., 2003; King et al., 2011). Following ovulation, the fallopian tubes are acutely exposed to the follicular 1 

fluid that is enriched with inflammatory mediators (e.g. cytokines, ROS generating enzymes, proteases), 2 

which increase the number of macrophages in the tubal walls and their interactions with epithelial cells 3 

(King et al., 2011). Contrary to epithelial cells of the endometrium, epithelial cells lining the oviduct walls do 4 

not proliferate in response to ovulation nor estrogens, but their DNA is frequently damaged by 5 

inflammation; importantly, epithelial cells in the distal part of the fallopian tubes may be sloughed by the 6 

inflammatory burden driven by ovulation and penetrate the ovarian surface together with macrophages, a 7 

mechanism that may be involved in ovarian cancer pathogenesis (Kurman and Shih, 2010; King et al., 2011). 8 

Thus, inflammation and macrophages in the ovarian tubes have important functions for tissue homeostasis, 9 

although still poorly deciphered. Interestingly, female patients with inflammatory peritoneal disorders 10 

show higher levels of oviductal macrophages, suggesting that tubal homeostasis is also influenced by 11 

peritoneal inflammation (Haney et al., 1983). 12 

Oviduct-specific phenotypes and functions 13 

Immune polarization and extracellular communication. The mucosal secretions and resident immune cells 14 

of the uterine tubes represent, like in other mucosal surfaces, protective mechanisms against 15 

microorganism invasion as well as key regulators of tissues homeostasis. Some evidence has shown 16 

increased inflammation and macrophage density in the tubal mucosa of women with ectopic implantation, 17 

infertility, infection spread and neoplastic transformation suggesting a role for macrophages in tubal cells 18 

motility and receptivity (Shaw and Horne, 2012; George et al., 2016; Shao et al., 2012; Tonello and Poli, 19 

2007). Moreover, prolonged exposure to follicular and peritoneal fluid has been proposed as a causative 20 

mechanism promoting tubal tumorigenesis (Vercellini et al., 2011; George et al., 2016). However, little 21 

information is available on the role of macrophages in tubal epithelial cells secretory function and the 22 

healthy and safe migration and fertilization of the oocyte within uterine tubes. 23 

 24 

Macrophages in the uterus 25 

Cell distribution 26 
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Macrophages are non-uniformly scattered throughout the endometrium and their density changes under 1 

the influence of hormonal fluctuations. Figure 2 summarizes the data obtained in women and rodent 2 

models, which showed that macrophages are mainly confined to the superficial endometrial stroma during 3 

the repair and proliferative phases, with a preferential distribution around or even within superficial 4 

endometrial glands, with no tendency to aggregate around vessels; their density then significantly rises in 5 

the late secretory phase in women or at diestrus in mice (Stewart and Mitchell, 1991; Shimada-Hiratsuka et 6 

al., 2000; Russell et al., 2011, 2013; Thiruchelvam et al., 2013; Cousins et al., 2016). Specific sets of 7 

chemokines are released by the epithelial, stromal, immune and vascular compartments with differences at 8 

each of these sites according with the ovarian phase (Sanford et al., 1992;(MacDonald et al., 2010; 9 

Thiruchelvam et al., 2013). Macrophages are also found in the myometrium, where their number remains 10 

constant throughout the ovarian cycle. During the proliferative phase macrophages seem to derive from 11 

the amplification of resident cells; interestingly, macrophage precursor cells are also present in the mouse 12 

uterus and depend on ovarian steroid hormones for replication (Hudson Keenihan and Robertson, 2004). 13 

On the other hand a transient influx of monocytes and monocyte-derived macrophages sustains the 14 

increase in cell density in the late secretory phase (Cousins et al., 2016). The presence of macrophages in 15 

the shed endometrium and denuded luminal surface not only suggests their direct involvement in tissue 16 

destruction and repair but also indicates that at least some of these cells are not shed away during tissue 17 

remodeling. This opens the important question, still barely addressed, related to the mechanisms that 18 

remove macrophages to reduce their number. Macrophages may leave the endometrium by trafficking to 19 

the lymph nodes, although endometrial lymphatic circulation is poorly developed possibly to protect the 20 

female’s immune system against autoantigens (Red-Horse, 2008), or by moving to endometrial lymphoid 21 

aggregates. These recently described structures have unknown functions but contain macrophages in a 22 

greater number at the secretory phase (Red-Horse, 2008; TABIBZADEH, 1990; Wira et al., 2014). In 23 

addition, monocytes may be cleared by apoptosis following completion of endometrial repair, as recently 24 

suggested (Cousins et al., 2016).   25 

Thus, as in the ovaries and ovarian tubes, macrophages in the endometrium show preferential locations 26 
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and specific cellular connections, and are locally renewed from circulating precursors in response to ovarian 1 

inputs at each new cycle.  2 

Macrophages within the uterine lumen. The tissue of origin of macrophages and other immune cells found 3 

in the uterine and cervical fluids has not been defined yet. Inflammatory cytokines are secreted into the 4 

uterine lumen by the apical compartments of luminal epithelial cells.  It is not known yet whether these 5 

molecules attract macrophages from the lumen to the epithelial wall, where they could integrate in the 6 

macrophage endometrial compartment. 7 

Uterus-specific phenotypes and functions 8 

Histological and cytometric analyses in human and murine uteri allowed appreciating the existence of 9 

distinct phenotypic subsets of macrophages preferentially located in close proximity to exocrine glands and 10 

to areas of tissue remodeling, therefore believed to participate in mucosal function as well as in tissue 11 

degradation, repair and regeneration (Thiruchelvam et al., 2013). As it occurs during the wounding and 12 

healing of other mucosae, shedding and reconstruction of the endometrial tissue require a series of well-13 

controlled events that accelerate re-epithelialization and inflammation without scar or fibrosis formation; 14 

macrophages participate in all stages of wound healing and tissue repair (Smigiel and Parks, 2018). As 15 

discussed below, novel experimental models now allow to mimic human menstruation in mice (Cousins et 16 

al., 2014); however, animal models with whole-body depletion of macrophages are not suited for studying 17 

the endometrium due to its functional dependence upon the hypothalamus-pituitary-ovarian axis that is 18 

interrupted by macrophage depletion (see Table 1). To circumvent this problem, ovariectomy is generally 19 

performed in female mice and, after few days of estrogen conditioning, a single E2 administration is used to 20 

assess a proliferative response of endometrial cells. These experimental conditions have been used e.g. by 21 

Care et al. in CD11b-DTR females to assess the contribution of macrophages to hormone action (Care et al., 22 

2014). Although the results showed a dispensable role for macrophages in the estrogen-induced 23 

proliferation of differentiated epithelial cells of the endometrium, this experimental setting appears limited 24 

in evaluating the contribution of endometrial progenitor cells, although it is known that their regenerative 25 

potential sustains endometrial reconstitution through repeated proliferation and differentiation cycles 26 
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(Gargett et al., 2015; Janzen et al., 2013). Endometrial precursor cells expand under the positive regulation 1 

of estrogens and progesterone; as expected, the number of epithelial and leucocyte progenitor cells is 2 

reduced in the endometrium of ovariectomized mice (Deane et al., 2016). Nevertheless, the responsiveness 3 

of resilient stem cells to estrogen signaling is still uncertain; further studies and models are needed to 4 

better understand estrogen action and their cellular targets in the endometrium.   5 

Immune polarization and extracellular communication. During the proliferative phase, endometrial 6 

macrophages express membrane proteins (i.e. TFRC, CD69 and IntraCellular Adhesion Molecule-1, ICAM1), 7 

matrix remodeling molecules and growth factors that induce a permissive environment and allow the 8 

regeneration of tissue and ECM in preparation for fertility (Eidukaite and Tamosiunas, 2004; Salamonsen 9 

and Woolley, 1999; Thiruchelvam et al., 2013). On the other hand, during the secretory phase macrophages 10 

generate a local inflammatory response via the release of cytokines (e.g. MIP1β/CCL4 and MIF) that either 11 

permits embryo implantation during the so-called “window of implantation” or induces uterine shedding, 12 

an event that further culminates in menstruation only in some primates, including women (Thiruchelvam et 13 

al., 2013). In vivo studies using artificially induced menstruation in mice recently allowed to demonstrate 14 

that inflammatory monocytes and monocyte-derived macrophages are recruited during the simultaneous 15 

phases of tissue breakdown and repair to perform phagocytosis of apoptotic endothelial cells and tissue 16 

debris along with resident macrophages (Cominelli et al., 2014; Cousins et al., 2016). Transcription factors 17 

linked to phenotypic activation in macrophages, such as members of the KLF family, are highly expressed in 18 

reproductive tissues and have also been involved in endometrial and FRT pathologies (Daftary et al., 2013; 19 

Simmen et al., 2015). 20 

Hemostasis and beyond. The relevance of hemostasis in the human endometrium is well established. The 21 

cessation of menstrual bleeding and subsequent reconstruction of functional endometrium are 22 

accompanied by the expression of coagulation factors, induction of platelet aggregation and fibrin 23 

deposition, under the influence of the local inflammatory and hormonal environment, while the reduction 24 

in tissue factor and thrombin levels creates a pro-hemorrhagic and fibrinolytic milieu that is associated with 25 

endometrial sloughing (Davies and Kadir, 2012). Importantly, altered expression of hemostatic factors 26 
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appears to be involved in endometriosis (Schatz et al., 2016). Mostly investigated during pregnancy and 1 

labor, the contribution of macrophages to hemostasis in reproductive cycles is still ill defined. 2 

Extracellular communication. Breakdown of the functional endometrial layer recruits macrophages mainly 3 

through the activity of MMPs and plasminogen activator, whose expression is upregulated during the 4 

menstrual phase in macrophages and other uterine cells (Jeziorska et al., 1996; Thiruchelvam et al., 2013). 5 

Whether the hormone-induced activation of VEGF-A mediated by ERα in macrophages is involved in the 6 

activity of these cells on vascular permeability and remodeling still needs to be clarified  (McLaren et al., 7 

1996; Kanda and Watanabe, 2002; Pepe et al., 2017). Through the secretion of factors, such as IL-6, 8 

affecting the glycosylation pattern of membrane proteins, uterine macrophages also regulate the ability of 9 

uterine epithelial cells to create a receptive surface for embryo implantation (Nakamura et al., 2012). 10 

Iron homeostasis. Many genes related with iron homeostasis are up-regulated in the mouse uterus during 11 

endometrial growth and proliferation induced by pharmacological treatment with estrogens, suggesting an 12 

important role for estrogens in iron metabolism, possibly to meet the increased iron demand by replicating 13 

endometrial cells during the proliferative phase (Stuckey et al., 2006). These cells may also include ovarian 14 

macrophages that grant iron availability for surrounding endometrial cells and for their own renewal and 15 

phenotypic adaptation. Iron handling by macrophages is also important for mucosal immunity, since iron 16 

proteins are also secreted into the uterine luminal fluid, and to buffer iron overload associated with 17 

retrograde menstruation and endometriosis in women (Defrere et al., 2008). 18 

 19 

Macrophages in the lower genital tract 20 

The cervicovaginal mucosa is a specialized immune organ that preserves fertility by promoting tolerance to 21 

paternal antigens and by protecting against genital pathogens (Zhou et al., 2018). Less information is 22 

available on the physiology and endocrine regulation of macrophages that populate the lower genital tract 23 

(LGT), namely the cervix and vagina, in non-pregnant, healthy females.  24 

Cell distribution 25 
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Macrophages are a dominant population among vaginal and cervical innate immune cells, with some 1 

differences among these anatomical regions (Pudney et al., 2005). In contrast to the upper FRT, their 2 

number appears almost stable throughout the menstrual cycle with a slight increase in the cervical mucosa 3 

during the menstrual phase, even though high intra and inter-subject variability has been reported (Pudney 4 

et al., 2005; Trifonova et al., 2014). Histological observations of the mouse vaginal fold  showed that the 5 

vaginal mucosa undergoes extensive modifications in the number of leukocytes, which are absent at 6 

proestrus and estrus while present at metestrus and diestrus (Gal et al., 2014). Interestingly, inflammatory 7 

mediators that are present in seminal fluid, such as cytokines and prostaglandins,  increase substantially 8 

the number of macrophages and other immune cells in the epithelium and stroma of human cervix and 9 

uterus after coitus, further suggesting a role for inflammatory cells in promoting fertility (Adefuye et al., 10 

2016; Sharkey et al., 2012). 11 

LGT-specific phenotype and functions 12 

Since cervical macrophages contribute to the remodeling of the LGT during parturition and represent a 13 

major cellular target for viral infections in women, these cells have been intensely studied for their immune 14 

functions in pregnancy-associated diseases or sexually-transmitted infections. This research allowed 15 

appreciating the functional specialization of vaginal macrophages, as indicated by the higher expression 16 

levels of CXCR4, the HIV-1 receptor, as compared to those residing in other mucosae such as intestinal 17 

macrophages (Barreto-de-Souza et al., 2014; Roan and Jakobsen, 2016; Shen et al., 2009). Interestingly, 18 

vaginal and cervical macrophages preferentially reside along the stroma-epithelium interface; it has been 19 

suggested that these cells migrate towards the epithelium or even into cervicovaginal secretions (Pudney et 20 

al., 2005), to capture and disseminate HIV infection through CXCR4 activity (Olesen et al., 2016). However, 21 

little is known on the ontogeny and specific functions of LGT macrophages beyond their role in immunity 22 

against infections (Iijima et al., 2008). 23 

Immune polarization and extracellular communication. The composition of inflammatory and defense-24 

related proteins (defensins) in the vaginal and cervical mucus varies during the menstrual cycle, with their 25 

increased expression being strongly correlated with decreased HIV infectivity and their dysregulation 26 
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associated with reproductive pathologies in women (Grande et al., 2015,  2017; Hughes et al., 2016). In the 1 

cervical tissue of healthy mice, estrogen has been shown to modulate the expression of inflammatory 2 

genes, such as IL-1β and the S100 calcium binding protein A9 (S100a9) in vaginal macrophages and 3 

dendritic cells by ERα-dependent pathways. Subsequent activation of epithelial cells and differentiation of 4 

Th17 cells lead to enhanced anti-viral responses in the genital tract (Polan et al., 1988; Stygar et al., 2007; 5 

Anipindi et al., 2016). 6 

Thus, although only marginally addressed, estrogens action in LGT macrophages is clearly associated with 7 

functional responses. 8 

 9 

Macrophages and FRT pathologies 10 

Gynecological dysfunctions and cancer 11 

Emerging evidence indicates that ovarian dysfunction and diseases are associated with impaired activity of 12 

ovarian macrophages. During senescence, fibrotic transformation of ovarian tissue is accompanied by 13 

accumulation of multinucleated macrophages with enhanced phagocytic function and production of pro-14 

inflammatory factors (Asano, 2012; Briley et al., 2016). Activated macrophages with poorly characterized 15 

phenotypes are also found in the follicular fluid of patients suffering from premature ovarian failure and 16 

polycystic ovary syndrome (Bukovsky and Caudle, 2008,  2012). Macrophages with M2-skewed phenotype 17 

known as tumor-associated macrophages (TAMs) are detected in several tumors including gynecological 18 

cancers. TAMs show immunosuppressive and pro-tumorigenic effects and are intensely studied to 19 

understand disease progression and to identify novel anticancer agents (Krishnan et al., 2018). However, 20 

potential stimulatory effects on tumor growth specifically dictated by estrogen-induced TAMs have not 21 

been elucidated. 22 

3.5.2 Endometriosis 23 

Endometriosis is a gynecological disorder characterized by ectopic growth of endometrial tissue fragments 24 

on the surface of the peritoneum and ovaries, causing pelvic pain and infertility. Endometrial cells have 25 

access to the peritoneal cavity via retrograde migration through the Fallopian tubes and adhesion and 26 
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invasion of the mesothelial cell layer of the peritoneum (Young et al., 2013). Ectopic endometrial lesions 1 

are enriched with macrophages derives from both the shed tissue itself and the peritoneal and vascular 2 

compartments. Under the influence of endometriosis-associated pathologic signals, including hypoxia, iron 3 

overload and inflammation, macrophages become reprogrammed to operate in favor of lesion 4 

development, as suggested by a derangement in immune polarization, phagocytosis and vascular activity of 5 

macrophages and by their preferential location, in analogy with the endometrium, as single or aggregated 6 

cells in close proximity to glandular structures in endometriotic tissue (Greaves et al., 2014; McLaren et al., 7 

1996, 1997; Nakamura et al., 2012). A heterogeneous population of potentially dangerous pro-8 

inflammatory and anti-inflammatory macrophages is present within or around the lesions, since pro-9 

angiogenetic, matrix remodeling, iron-recycling and growth factors produced by M2 macrophages sustain 10 

endometriotic lesion development and interactions with vasculature and nerve fibers, while M1 11 

macrophages enable early initiation of endometriosis and sustains stromal cell activity via released pro-12 

inflammatory molecules, such as IL-6, TNF-α or prostaglandin E2 (Lin et al., 2006; Bacci et al., 2009; Tran et 13 

al., 2009; Capobianco et al., 2011; Capobianco and Rovere-Querini, 2013; Khan et al., 2015; Yuan et al., 14 

2017; Burns et al., 2018).  15 

The ectopic endometrial tissue retains the ability to respond to sex steroid hormones and undergoes 16 

destruction and remodeling during the menstrual cycle, although this endocrine signaling is somehow 17 

modified in endometriosis, as suggested by elevated estrogen levels, progesterone resistance and altered 18 

expression of ERs, PR and coregulators, and possibly by the limited therapeutic efficacy of hormonal drugs 19 

(Han et al., 2015; Han and O’Malley, 2014; Nasu et al., 2011; Szwarc et al., 2014; Zhao et al., 2015). The use 20 

of novel mouse models of menstruation and endometriosis will allow a better understanding of estrogen-21 

macrophage interplay in endometriosis, as already suggested for innervation events of early lesions 22 

development in animal models of disease (Greaves et al., 2015; Burns et al., 2018). Thus, current data 23 

suggest that the estrogen-macrophage interplay has a relevant impact on endometriosis through the 24 

amplification of macrophages bearing a permissive phenotype for endometrial cell proliferation, 25 

vascularization and innervation. Current therapeutic interventions in endometriosis make use of 26 
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progesterone, an off-signal of estrogen activation, to oppose estrogens actions in endometrial cells; being 1 

insensitive to progesterone, macrophage responses to estrogens are probably unaffected by such 2 

therapies, hinting at appropriate antagonists of macrophage estrogen signaling as novel therapeutic agents 3 

in endometriosis.  4 

 5 

Discussion 6 

The distribution at specific locations in reproductive tissues, interaction with selected cell types and 7 

acquisition of distinct phenotypes and specialized functions strongly substantiate the hypothesis that 8 

macrophages are key players in the homeostasis and rhythmical renewal of the FRT. Importantly, the 9 

specificity of the intercellular communications between macrophages and FRT cells, although still poorly 10 

addressed, may induce phenotypically distinct subsets of macrophages that express specific mediators, 11 

thus representing candidate therapeutic targets for infertility or FRT diseases. The peculiar ability of 12 

macrophages to adapt and respond to diverse signals allows them to actively participate in the 13 

coordination of reproductive events by translating endocrine signals, such as estrogens or glucocorticoids, 14 

and local cues, such as cytokines or hypoxia, into specific cellular interconnections that are precisely 15 

organized in time and space, as summarized in Figure 3A. The endocrine communication between 16 

macrophages and reproductive tissues is mainly driven by estrogens, whose function is associated with 17 

diverse responses of FRT macrophages. The physiological meaning of this interplay might be to generate a 18 

tolerant environment for egg movement, fertilization and implantation as well as to sustain a highly 19 

reactive and renewable system for the cyclic remodeling of reproductive tissues. Accordingly, 20 

derangements of macrophage function and responsiveness may be involved in estrogen and macrophage-21 

dependent gynecological diseases, such as uterine cancer and endometriosis (Figure 3B). A better 22 

understanding of the molecular and cellular mechanisms that allow macrophages to participate in the 23 

homeostasis of reproductive cycles and to act as estrogen-responsive cells will provide new knowledge and 24 

potential pharmacological targets for reproductive procedures and for estrogens and macrophage-25 

dependent gynecological diseases. 26 

27 
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FIGURE LEGENDS 1 

Figure 1. Molecular mechanisms of estrogen action and macrophage responses. 2 

Estrogens are the only female sexual hormones that directly communicate with macrophages, since these 3 

cells express ERα and GPER1 but do not express progesterone, LH or FSH receptors. Estrogens-activated 4 

ERα dimerizes and translocates to the nucleus where it regulates target gene transcription by binding to 5 

short DNA sequences known as estrogen responsive elements (EREs), within gene promoters and by 6 

recruiting chromatin protein complexes and transcriptional coregulators (CoR). Genomic responses may 7 

also derive from ERα interference with the expression or activity of other transcription factors, such as NF-8 

κB and C/EBP, as well as by a reduced availability of transcriptional co-regulators. Hormone-activated ERα 9 

and GPER1 also directly induce cytoplasmic responses, including PI3K and MAPK activation, calcium 10 

mobilization, and cAMP formation. Under physiological conditions, estrogen action in macrophages 11 

mediates several biological processes, which are overall associated with the induction of a tolerant immune 12 

environment for the growth, specialization and remodeling of surrounding cells and tissues.  13 

Figure 2. Distribution, phenotype and functions of FRT macrophages. 14 

Female reproductive tissues are colonized by distinct populations of M1 and M2 macrophages. In the upper 15 

FRT, these cells change in number, distribution and function in association with estrous cycle phases and 16 

fluctuations in estrogens levels. Macrophages with M2-like activities are more abundant during the pre-17 

ovulatory phase and also found in the corpus luteum; inflammatory macrophages sharply increase 18 

immediately before ovulation in the ovaries and at the end of the ovarian cycle in the endometrium and 19 

generally predominate in tissues during the post-ovulatory phase. In the lower FRT, macrophages remain 20 

more constant and have mainly been associated with defensive mechanisms against pathogens invasion. 21 

Beyond this immune task, macrophages in the upper FRT participate in specific processes (shown in italics), 22 

such as proliferation, differentiation and apoptosis of granulosa cells (GC), endocrine activity, ovulation and 23 

vascularization in the ovaries, epithelial cells (EC) proliferation and secretory activity in the oviducts and 24 

endometrium, where they also regulate extracellular matrix (ECM) and vascular remodeling.  25 

Figure 3. Macrophage cellular interconnections in the homeostasis of the FRT. 26 
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A, Macrophages establish physical contacts and functional connections with FRT cells, such as epithelial, 1 

endocrine and immune cells, which are precisely organized in space and time under the influence of 2 

endogenous hormones, such as estrogens or glucocorticoids, and local signals, including cytokines or 3 

hypoxia. The responsiveness of macrophages to estrogens occurs both directly, through ERs expressed in 4 

macrophages, and indirectly, via estrogen-regulated cytokines-mediated pathways.   B, The responsiveness 5 

of macrophages to estrogens contributes to FRT functions, while any alterations in macrophage functions 6 

or estrogens signaling might promote and sustain estrogens and macrophage-dependent reproductive 7 

pathologies, such as infertility, ovarian cancer and endometriosis. 8 

  9 
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Figure 1. Molecular mechanisms of estrogen action and macrophage responses.  
Estrogens are the only female sexual hormones that directly communicate with macrophages, since these 
cells express ERα and GPER1 but do not express progesterone, LH or FSH receptors. Estrogens-activated 

ERα dimerizes and translocates to the nucleus where it regulates target gene transcription by binding to 
short DNA sequences known as estrogen responsive elements (EREs), within gene promoters and by 

recruiting chromatin protein complexes and transcriptional coregulators (CoR). Genomic responses may also 
derive from ERα interference with the expression or activity of other transcription factors, such as NF-κB and 

C/EBP, as well as by a reduced availability of transcriptional co-regulators. Hormone-activated ERα and 
GPER1 also directly induce cytoplasmic responses, including PI3K and MAPK activation, calcium mobilization, 

and cAMP formation. Under physiological conditions, estrogen action in macrophages mediates several 
biological processes, which are overall associated with the induction of a tolerant immune environment for 

the growth, specialization and remodeling of surrounding cells and tissues.  
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Figure 2. Distribution, phenotype and functions of FRT macrophages.  
Female reproductive tissues are colonized by distinct populations of M1 and M2 macrophages. In the upper 
FRT, these cells change in number, distribution and function in association with estrous cycle phases and 
fluctuations in estrogens levels. Macrophages with M2-like activities are more abundant during the pre-

ovulatory phase and also found in the corpus luteum; inflammatory macrophages sharply increase 
immediately before ovulation in the ovaries and at the end of the ovarian cycle in the endometrium and 

generally predominate in tissues during the post-ovulatory phase. In the lower FRT, macrophages remain 
more constant and have mainly been associated with defensive mechanisms against pathogens invasion. 

Beyond this immune task, macrophages in the upper FRT participate in specific processes (shown in italics), 
such as proliferation, differentiation and apoptosis of granulosa cells (GC), endocrine activity, ovulation and 
vascularization in the ovaries, epithelial cells (EC) proliferation and secretory activity in the oviducts and 

endometrium, where they also regulate extracellular matrix (ECM) and vascular remodeling.  
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Figure 3. Macrophage cellular interconnections in the homeostasis of the FRT.  
A, Macrophages establish physical contacts and functional connections with FRT cells, such as epithelial, 
endocrine and immune cells, which are precisely organized in space and time under the influence of 

endogenous hormones, such as estrogens or glucocorticoids, and local signals, including cytokines or 
hypoxia. The responsiveness of macrophages to estrogens occurs both directly, through ERs expressed in 
macrophages, and indirectly, via estrogen-regulated cytokines-mediated pathways.   B, The responsiveness 
of macrophages to estrogens contributes to FRT functions, while any alterations in macrophage functions or 

estrogens signaling might promote and sustain estrogens and macrophage-dependent reproductive 
pathologies, such as infertility, ovarian cancer and endometriosis.  
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Table 1. Steroid receptors expression in macrophages 

Macrophage source 

mRNA content 

ERα 

(ESR1) 

ERβ 

(ESR2) 

GPER 

(GPER1) 

PR 

(PGR) 

AR 

 

GR 

(NR3C1) 

RPLP0 

 

Peritoneal 

macrophages
*
 

1.4 nd 0.08 nd nd 30 1290 

Peritoneal 

macrophages
**

 
151 nd nd nd 34 2821 52333 

Monocyte-derived 

macrophages
***

 
110 nd 20 nd 45 1180 12000 

 

Expression levels of steroid receptor transcripts detected in different macrophage datasets. Gene 

names are reported in brackets.
 

*
 BioProject ID PRJNA376257, reported in Pepe et al., 2016. Data refer to murine peritoneal 

macrophages from adult female mice and are expressed as reads per kilobase of transcript per 

million mapped reads. 
**

 GEO dataset ID GSE107174. Data refer to murine peritoneal macrophages and are expressed as 

reads per kilobase of transcript per million mapped reads. Mouse sex is not specified. 
***

 GEO dataset ID GSE5099, reported in Martinez et al., 2006. Data refer to in vitro differentiated 

monocyte-derived macrophages from men and women healthy donors and are expressed as 

arbitrary units at net of background level (20). 

 

Abbreviations: MDM, monocytes-derived macrophages; nd, not detected; AR, androgen receptor; 

GR, glucocorticoid receptor; RPLP0, ribosomal protein lateral stalk subunit P0 (house-keeping 

gene). 

Page 52 of 53Human Reproduction Update



For Peer Review

 

Table 2. Reproductive phenotypes in macrophage-depleted mouse models  

Mouse models  
Reproductive and endocrine 

phenotypes in adult females 

FRT phenotype  

Ovaries
 

Endometrium Notes References 

conditional Clodronate 

liposomes 

Not described Reduced ovulation rate. 

Extended duration of 

M/DE stage  

No MP depletion Intrabursal injections 

reduce theca MP.  

No liposomal diffusion 

through the 

endometrium 

Van der Hoek et al., 2000 

 Mab against 

CSF1R 

 

Estrous cycle is present.  

Cycle onset and phases duration not 

described. 

No MP depletion 

(complete MP ablation in 

testis)
 

No MP depletion
 

No reduction of blood 

monocytes  

MacDonald et al., 2010;   

Sauter et al., 2014 

 CD11b-Dtr  Infertility when MP are depleted 

after ovulation, as a result of failure 

to form corpora lutea and to 

synthesize progesterone. 

Embryo implantation inhibited by MP 

depletion after conception, rescued 

by progesterone administration. 

Hemorrhages.  

Loss of integrity of vessels 

and basal membranes in 

antral follicles and corpus 

luteum. 

E2-induced 

epithelial cell 

proliferation in ovx 

mice unaffected.  

Endothelial cell 

number in ovx 

mice unaffected. 

Significant MP reduction 

in ovaries and uterus 

Turner et al., 2011; Care 

et al., 2013; Care et al., 

2014 

constitutive Csf1
op
/Csf1

op
 Reduced fertility.  

Delayed microglial colonization of 

the hypothalamus during 

development; alteration of neuronal 

circuitries governing feedback 

sensitivity of GnRH neurons.  

Reduced ovulatory frequency and 

number.  

Low pregnancy rates.  

Absence of mammary gland 

branching after parturition; females 

unable to nurture their pups.  

Absence of E2 surge at P, normal E2 

levels at E, M and DE. 

Generally severe growth and 

endocrine defects 

Defective follicular 

development.  

Defective ovulation.  

Delayed cycle onset.  

Prolonged cycle length 

(mainly stopped in ME). 

  Significant MP reduction 

in antral follicles 

Cohen et al., 1992; Cohen 

et al., 2002 

  Csf1r
-/-

  Reduced fertility Prolonged cycle length 

(mainly stopped in ME) 

  Blood monocyte reduction Dai et al., 2002 

MP, macrophages; Mab-α, monoclonal antibody; E2, 17β-estradiol; ovx, ovariectomized; P, proestrus; E, estrous; M, metestrous; DE, diestrous 
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