
Negative trust for conflict resolution in software

management

Giuseppe Primiero
Department of Philosophy, University of Milan

Jaap Boender
Department of Computer Science, Middlesex University London

November 7, 2018

Abstract

Software management systems need to preserve integrity by the han-
dling, approval, tracking and execution of changes on the packages of the
current installation profile. This is a problematic task, which needs to be
accounted for both in terms of installation of new packages and removal
of conflicting ones. While existing approaches are able to identify depen-
dency satisfaction and conflicts, a broader and efficient approach can be
formalised in terms of trust. Positive instances of trust are required by
the identification of safely installable packages. Negative trust, a much
less explored concept, can be useful to analyse the complementary issue of
packages’ removal both in case of conflicts and of security issues. In this
paper we develop a logic of negative trust with two aims: identifying pack-
ages that are undesirable in view of the current installation profile; and
currently installed packages that become inconsistent with a new intended
installation. The logic provides distinct procedures for the identification
of either case. We illustrate properties of the calculus, provide a simple
working example and offer a translation of the protocol to the Coq proof
assistant for verification of its formal correctness.

1 Introduction

Software management configuration is among the most pervasive problems in
modern personal computing. The maintenance of a consistent and functioning
software system is complicated by the ability of modern systems to accommodate
multiple users, by the need of releases to preserve package compatibility across
versions and customizations, and the essential coherence required by distributed
systems, especially in the context of web and cloud services. One of the specific
aspects involved by these issues is software change management: the handling,
approval, tracking and execution of changes on the packages of the current
installation profile, with the crucial requirement that integrity of the system

1

be preserved. In most cases, users manage their installation profile through a
software package system which satisfies integrity through an underlying logical
notion of validity.

Definition 1 (Valid Installation profile). An installation profile is valid if and
only if all dependencies for the installed packages are met and all conflicts are
avoided.

The aim of software management is to preserve validity, which can be af-
fected by installation of new packages. Let us illustrate this issue with a simple
example. The server-side software underlying the package management system
in the free operating system Debian and its numerous derivatives is called dpkg;
the user typically accesses it through the apt tool. Binary packages are capable
of declaring their dependencies and conflicts and this allows the system to main-
tain profile validity.1 When a conflict is declared between two packages, dpkg
forbids them to be unpacked on the system at the same time. So a package φ
conflicts with package ψ when φ will not operate if ψ is installed on the system.
If one of the two is already installed in the profile, then it must be removed
before the other one can be unpacked. If the package intended for installation
is marked as replacing another one on the system, or the one on the system is
marked as deselected, then dpkg will remove the package which is causing the
conflict. If both packages are marked Essential, it will halt the installation of
the new package with an error. This makes sure that essential packages are not
substituted by non-essential ones. This also illustrates that packages and their
dependencies come with a priority relation. Note also that sharing functionali-
ties with another package is not a sufficient reason to declare conflicts with that
package.

1.1 An example

Let us consider the dependencies list for the Tor package from Figure 1: this
list presents an underlying conflict with libsl0.9.8 which, as shown in Figure
2, is an outdated package version which is no longer available in the reposi-
tory: this conflict could be resolved by manual installation or just by admitting
the required higher version libsl1.0.0 of the library involved by the conflict.
Moreover, the Tor Bundle depends on the package libc6, which is the C Gnu
library required by any program in that language.

Consider now that a user under this same installation profile attempts an
installation of the package triggering the dependencies listed in Figure 3: this
package induces the upgrade and associated error with libc6 illustrated in
Figure 4.2 The software package hedgewars requires an upgrade on libc6;
this would require overwriting it with its replacement; but the library cannot
be (temporarily) removed, as it is required by Tor. In other words, libc6

has unresolvable dependencies while, at the same time, removing it becomes

1https://www.debian.org/doc/debian-policy/ch-relationships.html\#s-conflicts

for details.
2This error is reported at https://ubuntuforums.org/showthread.php?t=1091866.

2

gprimiero@xps:˜ apt−cache depends tor
tor

Depends: libc6
Depends: libevent−2.0−5
Depends: libseccomp2
Depends: libssl1 .0.0
Depends: libsystemd0
Depends: zlib1g
Depends: adduser
Depends: init−system−helpers
Depends: lsb−base
Conflicts : <libssl0.9.8>
Recommends: logrotate
Recommends: tor−geoipdb
Recommends: torsocks
Suggests: mixmaster
Suggests: torbrowser−launcher
Suggests: socat
Suggests: tor−arm
Suggests: apparmor−utils
Suggests: obfsproxy
Suggests: obfs4proxy

Figure 1: List of dependencies for Tor Package.
gprimiero@xps:˜ sudo apt−get install libssl0 .9.8

Error:

Reading package lists... Done
Building dependency tree
Reading state information ... Done
Package libssl0 .9.8 is not available , but is referred to by another package.
This may mean that the package is missing, has been obsoleted, or
is only available from another source

E: Package ’ libssl0 .9.8 ’ has no installation candidate

Figure 2: Conflict message for obsolete package libssl0.9.8.

hard due to the number of other packages that depend on it, including the Tor
Bundle.

This example illustrates that an optimal conflict resolution strategy would
make the user not only aware that libssl0.9.8 is not safe to be installed in view
of the direct conflict with Tor (as indeed apt does); but also that hedgewars is
non-safe in view of the current installation, because installing it would require
Tor to be removed, due to its dependency in view of the given version of libc6.

Determining these consistency relations between packages in a given instal-
lation profile is essential for the system’s stability, but also to prevent the pos-
sibility of security threats in critical systems: if the system at hand is meant
to control infrastructure rather than allow to play games, unsafety means a lot
more.

1.2 The Uninstall Problems

The ability to determine which and how many software packages would need
to be removed by the installation of a new one, is therefore an essential aspect

3

gprimiero@xps:˜ sudo apt−get install hedgewars

Upgraded the following packages:
fp−compiler (2.2.0−dfsg1−9ubuntu1) to 2.2.2−8
fp−units−base (2.2.0−dfsg1−9ubuntu1) to 2.2.2−8
fp−units−misc (2.2.0−dfsg1−9ubuntu1) to 2.2.2−8
fp−units−rtl (2.2.0−dfsg1−9ubuntu1) to 2.2.2−8
libc6 (2.8˜20080505−0ubuntu9) to 2.9−4
libc6−amd64 (2.8˜20080505−0ubuntu9) to 2.9−4
libc6−dev (2.8˜20080505−0ubuntu9) to 2.9−4
libc6−dev−amd64 (2.8˜20080505−0ubuntu9) to 2.9−4
libc6−i686 (2.8˜20080505−0ubuntu9) to 2.9−4

Figure 3: Requirement for installation of hedgewars package
gprimiero@xps:˜

Unpacking replacement libc6 ...
dpkg: error processing /var/cache/apt/archives/libc6 2.9−4 i386.deb
(−−unpack):
trying to overwrite ‘/usr/share/man/man1/localedef.1.gz’,
which is also in package belocs−locales−bin

dpkg−deb: subprocess paste killed by signal (Broken pipe)
Processing triggers for man−db ...
Errors were encountered while processing:
/var/cache/apt/archives/libc6 2.9−4 i386.deb

Figure 4: Conflict message for required libc6 library.

of software management. This not only to provide confidence on the safety of
the system, but also to allow the user to asses the risks and changes required.
The problem of maintaining profile consistency and system integrity in view of
uninstall processes has already been addressed in the literature. In [50], the
problem is presented in the following terms:

Definition 2. (Uninstall Problem). Given a new package φ to install, de-
termine the minimal number of packages (possibly none) that must be removed
from the system in order to make φ installable.

This means identifying and removing all packages ψ1, . . . , ψn currently in-
stalled that are in conflict with the intended installation of φ and all of its
dependencies ξ1, . . . , ξn. This version of the problem can be complemented by
that of identifying packages that depend on an undesired one.

Definition 3. (Uninstall Problem (Alternative Version)). Given a new
package φ whose installation needs to be prevented, determine for which other
packages depending on φ installation has to be prevented.

This means identifying all packages ξ1, . . . , ξn depending on the package φ
that is in conflict with some of the currently installed packages ψ1, . . . , ψn and
for which installation needs to be prevented.

The relations between client and software repository illustrated by these
problems can be reformulated in terms of trust. In particular, in the example
from the previous subsection, we are considering instances of negative trust : if
trust is granted to a package which preserve profile validity, then trust should
be denied to any package that threatens such consistency (and completeness).

4

Whatever the nature of the interested property breach, we can express this func-
tionally as a trust denial operation. In our example, libssl0.9.8 is strictly
untrustworthy under the current installation; and, provided the intended instal-
lation of hedgewars, the package Tor looses its trustworthiness status, provided
it depends on libc6 which would need to be removed. Obviously, this relation
is instantiated also in a different form: hedgewars should be labelled untrust-
worthy, and more so than libssl0.9.8, as the damage it induces to system’s
stability is so much more vast.

This illustrates how an account of the effects of conflicts is essential, as well
as a description of how procedurally different operations can be performed to
resolve the same conflict. Negative instances of trust have a complex, and so
far little studied, meaning. One way to clarify it is by clearly distinguishing
between two of its forms: here and in the following the term untrust is used as
neutral for ‘negative trust’ with respect to its derivatives mistrust and distrust,
where the former expresses trust removal, the latter trust denial. These two
types of operations can be used to formalize different approaches to conflict
prevention and conflict resolution. On this basis, we adapt here the Uninstall
Problems from Definitions 2 and 3 to the two semantics of untrust:

Definition 4. (Mistrusted Uninstall Problem) Given a package φ to be
installed but conflicting with the current profile, determine which packages have
to be mistrusted in order for φ to become installable.

As in the approach from [50], we are interested here in determining the
minimal set of packages inconsistent with φ that eventually have to be removed
from the installation profile.

Definition 5. (Distrusted Uninstall Problem) Given a distrusted package
φ, determine which other packages can be installed (i.e. do not depend on φ).

In this case, we are obviously interested in determining the maximal set of
installable packages that do not conflict with φ and therefore eventually can be
granted installation.

In the present paper we provide a solution to these two problems in soft-
ware management through their formalization in a logic for negative trust.
Consistency-checking on contents is a natural basic way to interpret compu-
tational trust: if this is translated in the context of software management, trust
corresponds to a property obtained by installation validity as per Definition 1.
Negative trust seems therefore an appropriate functional counterpart to be ap-
plied to any software package which breaks such validity. Note that this can
notion of negative trust must allow to express the two cases mentioned above,
of trust removal (from the current profile) ad of trust denial (for external pack-
ages).

To express such operations, we are in need of a language which expresses
trust and its negation as functions on contents (i.e. software packages in the
present context), rather than as a relation between agents. To this aim the logic
(un)SecureND, introduced in Section 4, is an optimal tool. The logic allows to

5

reason about statements expressing the following situation: a package φ can be
consistently installed under profile Γ; while installation for a given conflicting
package ψ is prevented or ψ is accommodated by removal of existing packages
in Γ. Positive trust applies to software packages which are safe to install and
conflicts are prevented through negative trust. The kind of inconsistencies that
can be treated through this formal machinery are not just those induced by
technical requirements of the packages, but can be extended also to security
and ownership issues. This formal strategy has the conceptual advantage to
split the uninstall problem presented in Definition 2 in the two easier, clearer
versions, where the uninstall process is qualified with respect to whether the
removal operation has to happen on the client or on the server side. Moreover,
our approach offers also a computable approach to trust management to reduce
risks related to installation profile inconsistency.

This approach is novel from a conceptual point of view, because software
dependency satisfaction as trust management has not yet been investigated.
Secondly, it is novel from a technical point of view, as proof-theoretic solu-
tions and the possibility of implementation in theorem provers for automatic
inconsistency checking have been neglected so far. In comparison with existing
approaches for the resolution of inconsistent installations, our underlying logic
allows a finer-grained approach than, for example, SAT-solvers. More specifi-
cally, a SAT solver can only give a response to the question whether a package
is installable or not, i.e. whether its dependencies are satisfied and it does
not conflict with any other packages that are already installed. Our approach
is also able to deal with packages that are technically installable, but should
nonetheless not be installed, for example because they have security issues or
come from untrusted sources. Moreover, the procedural approach provided by
the proof-theoretic semantics explicitly formulate the different strategies of con-
flict resolution corresponding to trust denial and trust removal. Ultimately, the
ideal approach would be to combine SAT solving with our calculus, so that the
resolution of dependencies and conflicts can be taken care of by a SAT solver,
and issues of trust and provenance by a tool based on our approach.

The paper is an extension of the work presented in [42], including a detailed
example, a more extensive analysis of the literature in the several related areas,
an informal presentation of the protocols for negative trust and more exten-
sive clarification of their formal counterpart in the logic (un)SecureND, and a
more detailed presentation of the (now extended) Coq library. The paper is
structured as follows. In Section 2 we offer an overview of related works in
the areas of computational trust, software management and automated theo-
rem proving for those two specific research fields. In Section 4 we introduce the
system (un)SecureND, which provides the formal machinery for our analysis.
In Section 5 the Mistrusted Uninstall Problem is reformulated within our logic
and its solution illustrated. In Section 6 the same is done for the Distrusted
Uninstall Problem. In Section 7 we present a simple scenario modelled by ex-
ample derivations showing both cases at work. We conclude with some general
remarks and a brief overview of future work.

6

2 Related Work

The present work sits at the intersection of the literature on software dependency
management and computational trust. These are two extensively developed
but largely non-overlapping research areas. The present work offers, to our
knowledge, a first approach to software dependency management that makes use
of a computational account of trust. Moreover, we do so through a formal proof-
theoretic approach which also allows us to exploit the possibility of automatic
proof checking for the purpose of proving correctness of the proposed protocol.
In this section we briefly overview related works in both areas and compare
those to our approach and results.

2.1 Software Management

The resolution of installation problems is essential for quality assurance of pack-
age based software distributions and their engineering. The present approach
is located within the literature concerning globally managed, hierarchically or-
ganised software packages. The problem has been investigated largely in view
of issues related to dependencies, interactions between software from different
packages and upgrade [21]. SAT solving has been so far the most promising ap-
proach for the development of efficient methods of dependency graph resolution.
SAT technology has been used in [37] to validate dependencies and check instal-
lability of packages of specific Linux distributions. In particular, this encoding
has allowed to establish its complexity as NP-hard and it represents the basis
for several quality metrics including the above mentioned issue of relevance in
a repository, see also [1], and the strength of conflicts, see [20]. The analysis of
conflicts and defective reporting are thus crucial, so is their analysis and possible
resolution, see [8].

The Uninstall Problem from [50] is at the basis of the Opium package-
management tool, also using pseudo-boolean solvers. Opium is complete with
respect to solution finding and can optimize a user-defined function, e.g. to pre-
fer smaller packages over larger ones. An implementation of Opium is available
as the 0install solver.3 A review of the state-of-the-art package managers and
their ability to keep up with evolution and their dependency solving abilities is
offered in [3], with a proposal to treat dependency solving as a separate concern
from other upgrade aspects. The upgrade problem is also considered in [2] to
justify the design of a modular package manager. The solvability of the decision
problem related to software dependency management and its optimization are
also considered in [9].

An associated but distinct issue is the co-installability problem: to quickly
identify the components that can or cannot be installed together. It is related
to boolean satisfiability and it is known to be algorithmically hard. It is shown
to be especially complex for cases that include optimization by user preferences,
where a combination of exact and approximate solving can help, [33]. In [51] a

3See http://0install.net/solver.html. An OCaml implementation is also available at
http://roscidus.com/blog/blog/2014/09/17/simplifying-the-solver-with-functors/.

7

formally certified semantic method preserving graph-theoretic transformations
is developed to associate to each concrete component repository a much smaller
one with a simpler structure. One aspect of co-installability is that of reciprocal
dependencies [10].

This brief – and only partially complete – overview illustrates the variety and
complexity of issues arising in the context of software dependency management.
Our approach is a first attempt in a new direction in terms of trust management,
and as such maintained at the lowest possible level of complexity. While we do
not have an implementation of preferential settings based on user-choices, our
installation profiles are defined according to a criterion of minimality for depen-
dency satisfaction: this means that we construct installation profiles according
to an ordered criterion of dependency satisfaction. This helps in that package
removal from a profile always proceeds by identifying the minimal number of
required packages. Also, in our approach we do not explicitly distinguish cases
of upgrade as separate from installation of new packages: this is clearly a sim-
plification, but the system can deal indirectly with upgrades by using the more
complex tactic of removing older versions first and installing newer ones after-
wards. The issue of reciprocal dependencies, i.e. where two packages depend
one from the other, is abstracted in the present formulation. The Mistrusted
Uninstall Problem introduced in Section 1 and formally illustrated in Section
5 replicates the intuition of the co-installability problem in the setting where
external packages (and their dependencies) are in explicit conflict with currently
installed ones (and those they depend on).

2.2 Computational Trust

Computational Trust is an area of extensive work, with both foundational work
and applications in security and reputation models, uncertain environments,
autonomous systems and social networks. The major problems of interest are
related to trust propagation, trust interference and distrust blocking, see e.g.
[26, 12, 28, 54, 38, 35, 18, 36, 15, 25]. Applications can be found in Internet-
based services [27], to component-based systems [29, 52], accuracy [7], trust
transferability in context-aware [48] and mobile applications [49], and epis-
temic reliability [53]. Propagation for trust as a first order relation is largely
studied [17, 14, 34, 6, 40], with solutions to undesirable effects ranging from
decentralised trust [5], bounded-transitivity in authorization contexts [16], to
guarantors-based constraints [18]. The problem of defining models of computa-
tional trust is also related to social attributes and values, also in connection to
delegation decision, see e.g. [13, 30].

Our contribution is based on previous work both for a general logic of trust
and for its application to software management problems. The proof-theoretic
language SecureND was developed first in [43] to reason about secure instances
of trust relations in the context of access control systems. The system has been
later extended to the language (un)SecureND in [41] for instances of negative
trust. The system has been applied then to the problem of trust transitivity
for software management systems in the form of threats generated by transitive

8

authorizations over (possibly unreliable) software repository, see [11, 42]. More-
over, the generality of the definition of trust provided by the logic has allowed
applications to information transmission in networks [44], to modelling of trust
and reputation protocols for transmissions across ad hoc networks [45].

Negative trust notions are admittedly not largely present in the literature,
with some exceptions. Approaches in the social sciences have typically ac-
counted distrust as a response to lack of information [23, 24] and mistrust as
former trust destroyed or healed [47]. In more recent accounts focusing on
computational trust [38, 4], the straight first-order relation account of trust
is qualified in terms of contextual situations. This weakening of the absolute
trust relation induces the following definitions (we skip here formal details for
brevity):

• mistrust is misplaced trust, i.e. a situation where there was a positive
estimation and trust has been misplaced (not necessarily betrayed);

• untrust is little trust;

• distrust is no trust.

This approach designs a continuum between the positive and negative evalu-
ations (with some blurry limit at trust value zero) but it abstracts from the
reasons behind the attribution of these evaluations, in favour of a purely quan-
titative approach. In [31], a scale is considered

unjustified trust (antitrust) → justified trust (sceptical) → condi-
tional trust (contingent) → unconditional trust (faith)

which clearly relies strongly on evaluation criteria which are not only quantita-
tive. Propagation for negative (first-order) trust is formulated in [35].

Our contribution relies on a strict distinction between distrust and mistrust,
which we explain in some details below in Section 3.

2.3 Automated Theorem Proving

We also hope to facilitate the introduction of automated theorem provers in both
areas of computational trust and software management. In particular, theorem
provers can be beneficial in the process of checking intended installations in
order to anticipate possible conflicts. Our work in [11] and the work presented
in [3] present formal translation to libraries for the Coq theorem prover,4 with
the aim of verifying their results. Our system seems also to be the only one
among those in the area of software management that relies on the explicit
formulation of a natural deduction calculus.

4The repository is available at https://github.com/gprimiero/SecureNDC.

9

3 Forms of (un)trust

The semantics of negated trust is here detailed in two versions, distinguishing
between

• distrust : trust denied to software packages inducing a conflict with a cur-
rently installed package;

• mistrust : trust revoked to currently installed packages, in view of desired
new packages to be installed.

Our approach formalises these cases for install and uninstall operations which,
as far as we are aware, is entirely missing in the literature in computational
trust. In large part of this tradition, (un)trustworthiness is a global property of
agents, and (un)trust holds as a first-order relation between agents. This widely
accepted view of (un)trust has various shortcomings, in particular it induces
either acceptance or rejection of all activities from the agents designated as
trustworthy or untrustworthy, and it generates unintentionally transitive trust
and multiplicative untrust relations. In the context of software management
systems, this corresponds to denying trust to a whole repository, and in turn to
all packages with dependencies located in it.

Our approach (conceptually) modifies the standard takes on (un)trust in two
ways:

1. (un)Trust is (un)Trustworthiness of a relation: (un)trust characterizes a
relation, in our application case the access and query operation from a
client to a repository for any given package;

2. Untrustworthiness is qualified by intentionality : which form of (un)trust
is applied, depends on the intention of the client to preserve a local func-
tionality, or its willingness to give it up.

We start by providing informal descriptions of the (un)trust protocols mod-
elled by the logic (un)SecureND introduced below.

3.1 Trust

We start with basic (positive, informally stated) rules that contextualize our
understanding of trust:

• A client queries a repository for a package;

• Packages which can be consistently subsumed under the client’s installa-
tion profile are trusted;

• A client accessing trustable packages is allowed to install them.

If we consider two basic operations from access control theory like reading and
writing, trust is modelled as an authorization function: a consistently accessible
package can be trusted; an accessible and trusted package can be installed, see
Figure 5.

10

Figure 5: The trust function in a sequence diagram.

3.2 Distrust

Packages conflicting with currently installed ones in the client’s installation pro-
file require a conflict resolution strategy. A procedure to distrust a package φ
from repository under the installation profile of a client is modelled as the re-
fusal to remove currently installed packages. This account of trust denial for
the external package requires blocking the content received from the external
repository and preserving the originally available functionalities in the instal-
lation profile, see Figure 6. The Block procedure simulates a strong negation
introduction, similar to the abort operation in constructive logic for program
actions. It induces rejection of further packages that would depend on φ, but
not of a further package ψ from the same repository.

3.3 Mistrust

A software package currently installed and conflicting with a desired installation
is mistrusted inducing a change in trust behaviour in the installation profile of
the client. Under this reading, a procedure to mistrust package φ originating in
the installation profile of the client expresses the belief (or a measure thereof)
that some functionality in the installation profile of such client requires a change
in trust attitude in order for a different functionality provided by a conflicting
package ψ to be made available. Hence, any trusted information which is di-
rectly contradicted by a required resource should be mistrusted. Formally, this
procedural account of mistrust can be formulated as saying that a trusted re-
source inconsistent in view of new resources is mistrusted (trust removal) and
the previously conflicting resource becomes installable, see Figure 7.

11

Figure 6: The Distrust function in a sequence diagram.

4 (un)SecureND

The logic SecureND was first introduced in [43] to provide a proof-theoretic
treatment of trust in the context of access control systems. The basic intuition
behind the calculus is the use of a trust function to bridge read and write

operations on formulas. In this way, message reading operations including appli-
cation of trust are guaranteed to preserve consistency when the agents perform
writing operations.

The basic application was initially the resolution of problems generated by
transitive trust operations, where one wishes to block trust applications among
agents where consistency is lost. This protocol was applied in [11] for the first
time to the context of software management, where agents are interpreted as
software repositories and clients. We offered a trust-based version of the opti-
mization problem from [50], known as the minimum install problem: it consists
in determining the optimal way to install a new package, where optimality is
determined by an objective function to minimize the amount of dependencies
satisfied such that it results in a valid installation profile. Trust is then used
to guarantee that the minimal amount of dependencies for each newly installed
package is satisfied by transitively accessed repositories.

In [41] the language has been extended to a negation complete version called

12

Figure 7: The Mistrust function in a sequence diagram.

(un)SecureND. The present version of (un)SecureND introduces a strict partial
ordering on formulas to express package dependency; this is then lifted at the
level of sets of formulas representing installation profiles to express rules for
their construction, and finally imported at the level of repositories where the
associated packages are located. In view of this order relation, the system
qualifies as a substructural logic, in that Weakening is constrained by a trust
function, Contraction and especially Exchange by the order relation.

We start with introducing the language of our logic:

Definition 6. (Syntax of (un)SecureND)

S∼ := {A ≤ B ≤ . . .}
φS := aS | ¬φSi | φSi → φSj | φSi ∧ φSj | φSi ∨ φSj | ⊥ |

Read(φS) |Write(φS) | Trust(φS)
ΓS := φSi | φSi < φSj | ΓS ;φSj

We explain the elements of the language step by step in the following sub-
sections. The language defines a derivability relation between judgements:

Definition 7 (Judgements). An (un)SecureND judgement φAi ` ψB
j says that a

package ψj from repository B can be validly executed under a profile containing
package φi from repository A.

13

The relation of derivability embeds therefore the idea of package dependency,
more clearly expressed by the Dependency Insertion rule, see below Section
4.1: a judgement expresses package execution, while package dependency alone
is introduced in terms of an order relation. A package which does not require
any dependency is valid in any installation profile:

Definition 8 (Validity). An (un)SecureND judgement ` φAi says that a package
φi from repository A can be executed in any profile.

4.1 Repositories, packages and dependencies

S∼ is the set of software repositories ordered by ≤: this order is determined
by dependencies between packages they contain, obtained below as lifting from
package dependency φAi < ψB

j . A partial order relation ≤ over S × S intu-
itively expresses that dependencies are satisfied across repositories. Note that
we preserve the order for logically equivalent repositories S = S′, with the un-
derstanding that a package dependence can hold between two packages in the
same (or in two distinct but logically equivalent) repositories.

Definition 9. ∀A,B ∈ S∼, A ≤ B if and only if ∃φAi , ψB
j such that φAi < ψB

j

and ¬∃φAk , ψB
l such that ψB

l < φAk .

φS is a meta-variable for formulae, denoting software packages and their
logical composition inductively defined by connectives, including operations to
read (query), trust (consistency checking) and write (install), with S here a
metavariable for elements in S∼. Each package is indexed by the repository
it originates from: φAi says that package φi can be retrieved from repository
A ∈ S. The partial order defined over elements S ∈ S allows for branching in the
hierarchy, so that e.g. φS1 < φS2 < φS3 and φS1 < φS2 < φS4 , i.e. packages φS3 , φ

S
4

have both dependencies on φS2 and transitively on φS1 , but φS3 , φ
S
4 could have

no dependencies on each other. The language includes ⊥ to express conflicts:
we formulate ¬φAi as an abbreviation for φAi → ⊥, meaning that package φAi
induces a conflict (possibly within a given installation profile).

By the first clause in Definition 9, A < B′ means that some package in A
satisfies a dependency for a package in B. By the second clause in Definition 9,
our order relation abstracts from the issue of reciprocal dependencies. As noted
in [10], two packages that mutually depend on each other will either be installed
together, or not installed at all. They can therefore be considered as a single
package for dependency resolution purposes.

An installation profile ΓS is the list of all packages sufficient to an access
or execution operation on a package φS

′
with S ≤ S′ and is consistent if it

prevents conflicts, i.e. it does not include packages φS ,¬φS , or packages φS , ψS

such that any dependency of ψS is satisfied by a package ¬φS . A profile is
internally structured to reflect the dependency of packages through the partial
order < in S∼: this is guaranteed by the Profile Construction Rules in Figure 8.
We use the meta-theoretical typing declaration : profile to state that a formal
expression (ordered set of formulas) on the left-hand side of the colon can be

14

Empty Profile
{} : profile

` φAi Package Insertion
φAi :profile

ΓA, φAi : profile ΓA, φAi ` ψB
j

Dependency Insertion
ΓA, φAi < ψB

j :profile

ΓA : profile ` ψB
j

Profile Extension
ΓA;ψB

j :profile

Figure 8: The System (un)SecureND: Profile Construction Rules

considered a valid installation profile. Validity corresponds here to consistency.
Profiles are constructed inductively from the empty profile by the first rule.
By Package Insertion, validly executed packages without dependencies can
be added to an empty installation profile. By Dependency Insertion, a non-
empty installation profile including package φAi which consistently admits the
execution of a package ψB

j allows the insertion of the latter within the profile by

preserving the dependency φAi < ψB
j . Note that by the first two rules it is not

possible to start constructing a profile by having two packages that are in conflict
with each other, even if these do not depend from one another. This is obviously
a strong requirement, but we assume it here to guarantee consistent construction
of profiles by induction. We allow extension of profiles by packages that are not
dependent on previous ones, denoted as ΓS ; ΓS′

= {φSi < . . . < φSn ;φS
′

n+1}, by the
rule Profile Extension. This construction allows us to consider installation
profiles that have all the sufficient conditions for the valid execution of a package,
but can also be extended with additional packages. When such extension comes
from the same repository, we use a comma: ΓS , φSi . The same operation is
validated more in general by an application of the Weakening Rule (see Figure
11). It is worth noting that Weakening will preserve profile consistency as it
requires additionally an instance of the trust rule (see Figure 10).

4.2 Rules for package execution

The operational rules in Figure 9 formulate package execution procedures closed
under compositionality by logical connectives. As it is standard in proof-
theoretic semantics, the meaning of our binary (connectives) and unary func-
tions is given by a pair of introduction and elimination rules, the former intended
to express how the connective is obtained, the latter how it can be dispensed
with. Recall that the (generalised) judgement of the form ΓA ` φB says that
package φ from repository B is validly executable within an installation profile
with packages coming from repository A. Then the rule Atom establishes valid
package execution for any package available in the repository from which all
packages in the installation profile are obtained, or across any repository for
which dependencies are satisfied. This is reflected by the side condition ex-

15

ΓA; ΓB : profile
Atom, for any ψB

i ∈ ΓB ≥ ΓA

ΓA; ΓB ` ψB
i

ΓA ` ⊥ ⊥, for any B ∈ S
ΓA ` φB

ΓA ` φAi ΓB ` φBj
∧-I

ΓA; ΓB ` φAi ∧ φBj

ΓA; ΓB ` φAi ∧ φBj
∧-E

ΓA; ΓB ` φIi/j

ΓA; ΓB ` φIi/j
∨-I

ΓA; ΓB ` φAi ∨ φBj

ΓA; ΓB ` φAi ∨ φBj φ
I∈{A,B}
i/j ` ψC

k
∨-E

ΓA; ΓB ` ψC
k

ΓA;φBi ` φCj
→-I

ΓA ` φBi → φCj

ΓA ` φBi → φCj ΓA ` φBi
→-E

ΓA;φBi ` φCj

Figure 9: The System (un)SecureND: Operational Rules

pressing validity of the rule for any repository B ≥ A. ⊥ says that if a profile
is inconsistent, any package becomes executable, reflecting a form of ex falso
sequitur quodlibet : notice how the generalised derivability holds for packages
from any repository, irrespective of their dependencies being satisfied. The in-
troduction rule for conjunction ∧-I allows composition of packages from distinct
profiles; by the corresponding elimination rule ∧-E, each composing package can
be executed under the combined profiles (with I = {A,B}). The introduction
rule for disjunction ∨-I says that a combined profile can validly execute any
package from each of the composing profiles; by the corresponding elimination
∨-E, each package consistently executed under each individual profile can also
be executed under the extended profile. →-Introduction expresses inference of a
package from a combined profile as inference between packages (Deduction The-
orem); its elimination →-E allows to recover such inference as profile extension
(Modus Ponens).

4.3 Access Rules

While the previous rules fragment expresses the semantics of rule execution, we
need now to equip the system with a set of rules describing valid access, such
that execution is guaranteed to preserve the installation profile validity. This
fragment of rules is presented in Figure 10. In particular, we formulate a rule
to query a package from a repository (read) and one to install a package within
a profile (write). A third rule is formulated to guarantee that only packages
consistent with the installation profile can be installed (trust).
¬-distribution is an essential rule to preserve consistency across the positive

and negative fragments of the languages: it ensures that if an operation is

16

ΓA ` ¬O(φBi)
O ∈ {Read, Trust,Write}, ¬-distribution

ΓA ` O(¬φBi)

read , for any ψB
i ∈ ΓB ≥ ΓA

ΓA ` Read(φBi)
ΓA ` Read(φBi) ΓA;φBi : profile

trust
ΓA ` Trust(φBi)

ΓA ` Read(φBi) ΓA ` Trust(φBi)
write

ΓA `Write(φBi)

ΓA `Write(φBi)
exec

ΓA ` φBi

ΓA ` Read(φBi)→ ⊥
DTrust-I

ΓA ` ¬Trust(φBi)
ΓA ` ¬Trust(φBi) ΓA ` ¬Trust(φBi)→ ψC

j
DTrust-E

ΓA `Write(ψC
j)

ΓA ` Read(ψB
i)→ ⊥ ΓA \ {φAj } : profile

MTrust-I
ΓA \ {φAj };ψB

i ` ¬Trust(φAj)

ΓA \ {φAj };ψB
i ` ¬Trust(φAj) ΓC ;ψB

i : profile
MTrust-E, ∀C ≤ B

ΓA \ {φAj }; ΓC ` Trust(ψB
i)

Figure 10: The System (un)SecureND: Access Rules

not possible on a package φBi under the installation profile ΓA, then the same
operation must be possible assuming a package for a contradictory functionality
holds in that same profile. read says that from any consistent installation
profile ΓA a package φBi can be read, provided its dependencies are satisfied (if
any); this is expressed by the side condition which reflects the order relation
of repositories.5 trust works as an elimination rule for read: it says that if a
package φBi can be read from an installation profile ΓA and its inclusion preserves
profile consistency, then it can be trusted. write works as an elimination rule
for trust: it says that a readable and trustable package can be installed (the
function Write). exec allows to reduce the access process to the execution
rules formulated in Figure 9: it says that any package that is safely installed
in a consistent profile can be executed in it. Note how in this way execution of
non-safely installable packages is prevented.

The following set of rules extend the Trust function by negation, according
to the two forms of negated trust from Section 3. The rules for Distrust are

5Note that this side condition can be reformulated as a proper premise in the rule if so
required.

17

intended to preserve the current installation profile in view of a conflict with an
external package. The Introduction rule for distrust DTrust− I expresses the
following principle: a package φBi whose reading is inconsistent with the current
installation profile ΓA is untrustworthy, i.e. the rule for trust is not applied;
note that in this case the rule induces a straightforward rejection of the package.
The corresponding elimination rule DTrust− E uses →-introduction to induce
installation of any package ψC

j consistent with the resolution of the conflict with

φBi by blocking its access.
The rules for Mistrust are intended to modify the current installation profile

by accommodating the installation of a currently conflicting external package.
To do so, the removal of one or more currently installed packages is necessary.
The Introduction rule for mistrust MTrust− I expresses the following principle:
given a package ψB

i whose reading is inconsistent with the current installation
profile ΓA, identify the (set of) package(s) φAj which can be removed from the

profile ΓA so that the profile is still a valid one, ψB
i consistently extends it, and

it makes φAj untrustworthy. The corresponding elimination rule MTrust− E

expresses the following: given a consistent profile where some package has been
removed and a previously inconsistent one ψB

i has been added, identify the set of
dependencies that the latter needs to satisfy and which can be consistently added
to ΓA to confirm trust of ψB

i . This holds for any required dependency in other
repositories, as expressed by the side condition that requires checking for any
C ≤ B. By the latter set of rules, Distrust is a flag for preventing installation
of conflicting external packages, while Mistrust is a flag for facilitating removal
of conflicting packages present in the current installation profile. Note that both
untrust functions are triggered by the querying operation on a repository, hence
conflicts are highlighted before installation.

4.4 Structural Rules

Structural rules for (un)SecureND hold with restrictions, as illustrated in Figure
11. As a result, the system qualifies as substructural, see e.g. [46]. In the present
context, these rules illustrate how installation profiles behave with respect to
the ordering and composition of new packages.

Weakening usually is formulated as to guarantee that consistency of formula
derived is not affected by the extension of their assumptions. In the present
interpretation though, it is evident that extending installation profiles needs to
be guarded against conflicting ones. As a consequence, the rule is constrained
by an instance of trust: it says that a valid installation of φAi in the profile ΓA

is preserved under a profile extension in view of a package φBj if and only if
such package is trustworthy, i.e. one whose extension of the current installation
profile is provably consistent.

Contraction normally expresses the principle that copies can be safely ig-
nored, as the information they provide is already available. Under our interpre-
tation, installation profiles are ordered in view of the dependency relations they
instantiate, as by Definition 9. Hence, Contraction requires a constraint to

18

ΓA `Write(φAi) ΓA ` Trust(φBj)
Profile Weakening

ΓA;φBj `Write(φAi)

ΓA, φAi ;φBi `Write(ψA
k) A ≤ B

Profile Contraction
ΓA, φAi `Write(ψA

k)

ΓA, φAi , φ
A
j `Write(φAk) φAi ≮ φAj

Profile Exchange
ΓA, φAj , φ

A
i `Write(φAk)

ΓA ` φBi ΓB , φBi ` φBj
Profile Cut

ΓA; ΓB ` φBj

Figure 11: The System (un)SecureND: Structural Rules

preserve such dependencies: it says that a valid installation of φAk is preserved
when removing one instance of two identical packages φAi ;φBi , possibly from
distinct repositories, provided one preserves the package from the higher reposi-
tory (if one exists) in the order dependency (as illustrated by the side condition
A ≤ B), so as to guarantee any further dependency below is preserved.

Exchange holds for set of formulas, where no order is not present and it
expresses the principle that formula derivability is preserved across sets of as-
sumptions in which two formulas are swapped. In the present language, the
rule is doubly constrained by the ordered structure of installation profiles: it
says that a valid installation of φAk is preserved under reorder of packages φi, φj ,
if those come from the same repository A (so as to guarantee that there is no
hidden order instantiated by their repositories of origin), and more explicitly
if there is no involved dependency between them, as illustrated by the side
condition φi ≮ φj .

Finally, the Cut rule expresses valid package execution under profile ex-
tension, constrained by the preservation of the (downwards) order relation of
dependency A ≤ B: if a package φBi is validly executed under profile ΓA and
a profile ΓB including φBi allows execution of a package φBj , then the extended

profile ΓA; ΓB allows execution of φBj . We show here the admissibility of this
rule for the most relevant cases:

• for φBi ≡ ¬Trust(φBj): consider the first premise of the rule to be the
conclusion of a DTrust− I rule, then the whole rule collapses in a form of
DTrust− E rule, where φBj is any package consistent with the removal of

φBi ;

• for φBi ≡ ¬Trust(φAi): consider the first premise of the rule to be the
conclusion of a MTrust− I rule, then ΓA ≡ ΓA\{φAi };ψB

j for some package

ψB
j for which installation is desired; then the second premise of the Cut

19

rule is an instance of DTrust− I. The conclusion illustrates then the
situation presented in Figure 12, valid for all C > B > A.

ΓA \ {φA
i };ψB

j ` ¬Trust(φA
i) ΓC ;¬Trust(φA

i) ` ξCk
cut

ΓA \ {φA
i };ψB

j ; ΓC ` ξCk

Figure 12: An instance of the Cut Rule

This instance of the rule shows that any package ξCk which is valid un-
der an installation profile ΓC ;¬Trust(φAi) which mistrusts a given pack-
age φAi , will be preserved by any consistent extension of the profile ΓA \
{φAi };ψB

j ; ΓC , and this should be preserved for any repository with possi-
ble dependencies from the highest repository A in the order.

5 The Mistrusted Uninstall Problem

In this section we illustrate formally how the Mistrusted Uninstall Problem is
solved by the logic (un)SecureND. Recall that such problem is formulated in
Definition 4 as follows: determine which packages require to be uninstalled from
the current profile, given a conflicting package should be installed.

Consider a profile ΓA = {φA1 < . . . < φAn } and a package φBm which one
wishes to install in it: in the calculus, this corresponds to the conclusion of an
instance of the Write rule,

ΓA `Write(φBm)

but assume that φBm is in conflict with the given profile

ΓA ` Read(φBm)→ ⊥

The Mistrusted Uninstall Problem consists then in determining the minimal set
ΦA = {φAi ∈ ΓA | φAi → ¬φBm} which should be removed when installing φBm.
We will call any such package φAi a mistrusted package. The problem can be
further reformulated as that of identifying the minimal set of formulas ΦA such
that for each φAi ∈ ΦA

ΓA \ ΦA;φBm ` ¬Trust(φAi)

By MTrust− E, given any other set of formulas ΓC required by φBm, it follows

ΓA \ ΦA; ΓC ` Trust(φBm)

We start by identifying the minimal subset of packages from the current instal-
lation profile that satisfies the conflict:

Lemma 1. If ΓA ` Read(φBm) → ⊥, then there is ΦA ⊆ ΓA such that ΦA =
{φAi < . . . < φAn } ` Read(φBm)→ ⊥.

20

Proof. ∀φAi , φAj ∈ ΓA, if φAi ` Read(φBm) → ⊥ and φAi < φAj , then φAj `
Read(φBm) → ⊥. And ∀φAi ≮ φAh , φAh ` Read(φBm). Hence it suffices to identify
the maximal (according to >) φAi in conflict with φBm and to include it in ΦA

together with all packages φAj ∈ ΓA such that φAi < φAj . We will call ΦA a
maximally mistrusted set.

Lemma 2. Consider a maximally mistrusted ΦA ⊆ ΓA and package φBm such
that ΓA ` Read(φBm)→ ⊥. Then ∀φAi ∈ ΦA, φAi ≮ φBm.

Proof. By Assumption and Lemma 1, φAi ` Read(φBm)→ ⊥. Then (un)SecureND
allows the derivation from Figure 13. Then φAi < ¬φBm holds by Dependency
Insertion and φAi ≮ φBm by contraposition.

φAi ` Read(φBm)→ ⊥
DTrust-I

φAi ` ¬Trust(φBm)
¬-distr

φAi ` Trust(¬φBm)
write

φAi `Write(¬φBm)
exec

φAi ` ¬φBm

Figure 13: An instance of derivation in (un)SecureND.

Theorem 1. (Mistrusted Uninstall) Given a package φBm to be installed
under profile ΓA, a package φAi is mistrusted in ΓA iff for all {φAi < φAj } ⊆ ΓA

1. ΓA ` φAj → ¬φBm,

2. φAj < Read(φBm)→ ⊥ and

3. φAi ≮ φBm.

Proof. The first condition is required by Lemma 1 to include all the dependen-
cies in the maximally mistrusted set. The second condition holds from Lemma 2.
Finally, the third condition holds by contradiction: if φAi < φBm, then φAi ` φBm
by Dependency Insertion; it follows by Weakening that φAi ;φBm : profile and
hence φB ` Trust(φAi).

This last result identifies packages to be removed as those that are in max-
imally mistrusted set and do not satisfy any dependency for the package to be
installed under the current profile.

21

6 The Distrusted Uninstall Problem

In this section we illustrate formally how the Distrusted Uninstall Problem is
solved by the logic (un)SecureND. Recall that such problem is formulated in
Definition 5 as follows: determine which installation are permissible, given a
package should not be installed.

Consider a profile ΓA = {φA1 < . . . < φAn } and a package φBm which one
wishes not to install. This might be due to a security constraint, or an explicit
conflict in view of an installed package φAi ∈ Γ, which the system administrator
explicitly wants to preserve. We call such a package φBm the distrusted package.
In the calculus, this is expressed by the conclusion of an instance of the DTrust-I
rule:

ΓA ` ¬Trust(φBm)

The Distrusted Uninstall Problem is to determine which packages can be in-
stalled in ΓA that do not depend on φBm. (un)SecureND allows to express this
principle as the request to obtain the maximal set of formulas denoted {ΨN

i }
from any repository N ≥ B such that

ΓA ` ¬Trust(φBm)→ {ΨN
i }

By DTrust-E, this guarantees the right to install any package ψN
i ∈ {ΨN

i }. The
first step consists in transforming our problem in a formulation that removes
the trust condition.

Lemma 3. ΓA ` ¬Trust(φBm)→ ψN
i iff ΓA;¬φBm ` ψN

i .

Proof. → By the assumption ΓA ` ¬Trust(φBm) and by consistent distribu-
tion of negation we obtain ΓA ` Trust(¬φBm); similarly, from the premise
ΓA ` ¬Trust(φBm) → ψN

i and consistency of negation we get ΓA `
Trust(¬φBm) → ψN

i . Now apply Write to Trust(¬φBm) and eliminate
the function through exec; by →-E we obtain ΓA;¬φBm ` ψN

i .

← By the assumption ΓA;¬φBm ` ψN
i it holds ΓA;¬φBm : profile, which

justifies ΓA ` Read(¬φBm) by Read; ΓA ` Trust(¬φBm) holds by the
previous and Trust and ΓA ` ¬Trust(φBm) by ¬-distribution. It fol-
lows ΓA;¬Trust(φBm) ` ψN

i by substitution from the assumption, and
ΓA ` ¬Trust(φBm)→ ψN

i is obtained by →-I.

We can now reduce the obtained expression to an operation on all packages
coming from the repository involved by the distrust operation:

Lemma 4. If ΓA;¬φBm ` ψN
i then ΓA; ΓB \ {φBm} ` ψN

i , for all consistent
profiles ΓB that include φBm.

Proof. ΓA can be extended with every consistent package from B by Atom; by
definition ΓA;¬φBm ` ¬Trust(φBm), hence by Weakening this is possible except
for φBm as it does not satisfy Trust.

22

The above corresponds to finding the maximal set of formulas in ΓB that allows
to execute ψN

i without requiring φBm in the profile. To this aim, it is enough to
find all φBl ≯ φBm, i.e. the set of packages in B that have no dependencies from
φBm. What has been so far restricted to one repository, can now be generalised
to any repository that preserves the dependency condition:

Lemma 5. ΓA;φNl `Write(φNi) iff (φNl ≮ φNm ≮ φNi) for any package φNm and
any repository N ≥ A such that ΓA ` ¬Trust(φNm).

Proof. → Assume the following: ΓA;φNl `Write(φNi) and ΓA;φNl ` ¬Trust(φNm).
Then: if φNl < φNm, then ΓA;φNl ` φNm by Atom, contradicting the distrust
assumption; and if φNm < φNi then similarly φNl ` φNi and by Weakening

it is possible to obtain ΓA;φNl , φ
N
m ` Write(φNi), again contradicting the

distrust assumption.

← Assume (φNl ≮ φNm ≮ φNi) and ΓA;φNl ` ¬Trust(φNm). Then: because
φNl ≮ φNm, the second assumption above does not require to remove φNl
from ΓA as by Lemma 4; and because φNm ≮ φNi , installing the latter does
not require installing the former. Hence ΓA;φNl `Write(φNi) holds.

Finally, our main result is obtained:

Theorem 2. (Distrusted Uninstall) Given a package φBm such that ΓA `
¬Trust(φBm), ΓA `Write(ψN

i) iff φBm ≮ ψN
i .

Proof. From Definition 5, consider the package φBm that is distrusted under ΓA.
Then by Lemma 5, any other package ψN

i can be installed in ΓA if and only if
φBm does not satisfy any direct or indirect dependency for ψN

i .

This last result identifies all distrusted packages as those that have at least
a dependency from one package conflicting with the current installation profile.

7 Applying the Example

Consider the simple scenario presented in Section 1 where a user aims at expand-
ing an existing installation profile Γ with the following package ad its depen-
dencies (in the following, we remove indices denoting repositories for simplifying
reading):

Γ =
{
{libc6, libssl0.9.8} < tor

}
Assume the system distrusts the package libssl0.9.8 as it is obsolete. The

Distrusted Uninstall Problem asks which packages can be further installed in Γ
without installing libssl0.9.8. Consider now the package libssl1.0.0 ≯ libssl0.9.8,
for obvious versioning reasons, then the derivation from Figure 14 holds. In
other words, flagging libssl0.9.8 as distrustful in our system does not impede
the installation of a package tor which can be installed independently from it.

23

D
Γ ` ¬Trust(libssl0.9.8)

D’
Γ ` Read(libssl1.0.0) libssl0.9.8 ≮ libssl1.0.0

Γ `Write(libssl1.0.0) libssl1.0.0 < tor

Γ, libssl1.0.0 ` Read(tor) Γ, libssl1.0.0, tor :profile

Γ, libssl1.0.0 ` Trust(tor)

Figure 14: A distrust derivation

Γ ` Read(libc6 2.9− 4 i386.deb)→ ⊥ libc6 2.9− 4 i386.deb < hedgewars

Γ \ {libc6 2.8 i386.deb};` ¬Trust(libc6 2.8 i386.deb) Γ, libc6 2.9− 4 i386.deb : profile

Γ \ {libc6 2.8 i386.deb} `Write(libc6 2.9− 4 i386.deb)

Figure 15: A mistrust derivation

Assume now the user wishes to install an additional package

hedgewars > libc6 2.9− 4 i386.deb

such that

Γ = {libc6− i686(2.8 ∼ 20080505− 0ubuntu9) to 2.9− 4}

and

Γ ` Read(libc6 2.9− 4 i386.deb)→ ⊥

The package hedgewars depends on libc6 2.9 − 4 i386.deb, but the latter is
in version conflict with libc6 − i686(2.8 ∼ 20080505 − 0ubuntu9) to 2.9 − 4.
Removing the latter proves hard for the presence of other packages like tor
depending from it. Then the derivation in Figure 15 shows how our mistrust
rule manages version upgrade.

8 Coq implementation

Validation of the system is obtained by implementation of the (un)SecureND

calculus as a large inductive type in the Coq proof assistant. The development is
available at https://github.com/gprimiero/SecureNDC. It makes it possible
to express and prove the lemmas and theorems from sections 5 and 6. Note
that the current implementation must be thought of as a proof of realizability
in principle of a tool using the proposed library. This is currently at a proof of
concept stage and we do not offer details from the usability point of view.

Coq is a proof assistant based on the language of type theory and the calculus
of inductive constructions. It embeds the formulas-as-types identity originat-
ing in the Curry-Howard isomorphism and its computational counterpart, the

24

proofs-as-programs approach ([22, 32, 39, 19]). Its language is both a pure func-
tional programming language and a type system. A proof assistant is typically
used to check proofs, in order to testify their correctness. By the proofs-as-
programs formal identity, one can use a proof assistant to test the correctness
of a program that has the same logical structure as a given derivation. In Coq,
Prop is the sort or type used for propositions; proof-terms in this type may
depend on other terms in Prop. An equivalent type is Set. The underlying
logic for terms is the intuitionistic fragment including conjunction, implication
and disjunction, extended with quantifiers and equality.

Theorems are proven by derivation of appropriate sub-goals by applying
tactics that use assumptions and provide rules to introduce or eliminate auxiliary
propositions. Standard libraries include basic logical notations and properties,
basic data types (boolean and natural numbers), operations such as (+,×,min)
and relations such as (<,≤).

The logic can be axiomatically extended to a classical setting by introducing
excluded middle. Additional libraries include, e.g., the rules for algebraic laws
or properties of orders, lists, basic functions and properties of lists. Writing of
programs uses definition of inductive types, predicates and families, structurally
recursive programs, pattern matching.

Our propositions will be typed as Resources (packages), defined by logical
operations on terms t in Prop. Our implementation uses the library Coq.Structures.Orders

to define ordered types, required for the dominance relation between reposito-
ries and hence the dependency between packages available in them. It also
relies on the MSets library for finite modular sets, used for both packages and
installation profiles. Equivalence on atomic packages is fully defined in terms of
reflexivity, symmetry and transitivity and it is decidable. This typically means
that terms are convertible and that a proof of a ≡ b allows one to substitute
a for b everywhere inside a term.

The different resources are defined in an inductive type:

Inductive Resource {A: Type} {S: Type}:

Type :=

| nd_atom: A -> Resource

| nd_bottom: Resource

| nd_impl: Resource -> Resource ->

Resource

| nd_and: Resource -> Resource ->

Resource

| nd_or: Resource -> Resource ->

Resource

| nd_not: Resource -> Resource

| nd_read: Resource -> Resource

| nd_write: Resource -> Resource

| nd_trust: Resource -> Resource.

An installation profile is a list of resources, plus a theorem that specifies
when a profile is valid. In such a way, to construct a profile, we will have to
supply a list of resources and a proof that this list constitutes a valid profile.

25

Record profile := mkProfile

{ resources: list Resource.t;

validity: is_valid_aux resources

}.

The predicate that specifies whether a list of resources is valid is simple; two
succeeding packages in a list are either unrelated or one depends on the other.

Function is_valid_aux (l: list Resource.t):

Prop :=

match l with

| [] => True

| h::t => match t with

| [] => True

| h’::t’ => ~(Resource.lt h’ h) /\

is_valid_aux t

end

end.

Equivalence, membership and typability of installation profiles are all defined
inductively in terms of the packages they contain and their construction reflects
the rules from Figure 8. A judgement in (un)SecureND is of the form

NDProof: list Resource.t -> Resource.t ->

Prop

where the resource or package t is also defined inductively with operations
reflecting the rules from Figure 9, 10 and 11.

As an example, this is the Atom rule (renamed nd_atom_rule to avoid
confusion with the resource nd_atom):

nd_atom_rule: forall Ra Rb Pa Pb f,

typable_profile Ra Pa ->

typable_profile Rb Pb ->

repository_leq Ra Rb ->

typable Rb f ->

profile_in f Pb ->

NDProof (profile_merge Pa Pb) f.

This covers the rule from the calculus. Ra and Rb are repositories (in the
original rule, these are A and B). Pa and Pb represent two profiles (ΓA and
ΓB ; the two typable_profile rules represent the typing of ΓA in A and ΓB in
B respectively). The fact that A ≤ B is also represented, and the resource f

typable in Rb and part of profile Pb represents φBi . The conclusion of the rule
states that f is executable in the combination of profiles Pa and Pb.

We also need rules for profile construction. Most of these are met through the
validity theorem; but for dependency insertion, which involves a derivation,
we need a special rule:

26

Axiom dependency_insertion:

forall Pa f, typable Rb f ->

NDProof (profile_merge Pa

(singleton_profile f)) g ->

is_valid_aux (ordered Pa ++ [f; g]).

This axiom establishes that for any profile and repository, if a resource f is added
to a profile Pa to execute another resource g, then the same profile Pa with f

is valid when g is added. This is exactly what the Dependency Insertion rule
expresses.

Provided the whole calculus is translated into the Coq development, proofs
from the former can be transformed into proofs in the latter. An example from
the proof of Lemma 1 from Section 5 is given below

Lemma lemma1a: forall Ra Rb f1 f2 f3,

repository_lt Ra Rb ->

Resource.lt f1 f2 -> typable Ra f1 ->

typable Ra f2 -> typable Rb f3 ->

NDProof (singleton_profile f1)(nd_impl

(nd_read f3) nd_bottom) ->

NDProof (singleton_profile f2)

(nd_impl (nd_read f3) nd_bottom).

Proof.

intros.

apply nd_exec with Ra Rb; sprem.

apply singleton_profile_typable;

assumption.

apply remove_empty.

apply nd_weakening with Ra Ra;

sprem.

apply nd_write_intro with Ra Rb;

sprem.

apply nd_read_intro with Ra Rb;

sprem.

apply nd_trust_intro with Ra Rb;

sprem.

apply nd_read_intro with Ra Rb;

sprem.

simpl; trivial.

apply nd_trust_intro with Ra Ra;

sprem.

apply nd_read_intro with Ra Rb;

sprem.

simpl; trivial.

Qed.

Currently, translating the proofs is still quite labour-intensive. As seen above,
rules have many premises, and every proof has to be manually generated. Most
of this is quite trivial and can be automated. The sprem tactic is a first stab at
this, but there is much more that is possible here.

27

At present, the Coq development consists of a formalisation of the calculus,
and a first stab at the proofs. In this way the Coq proofs will be almost direct
translations of their paper versions. The idea behind the implementation is that
a package installation within a profile can be matched to a corresponding a high-
level proof constructed within the syntax of our Coq-base library. Intuitively,
the idea is that a user should be provided with the means to present a package
intended for installation and the current installation profile of her machine and
ask the theorem prover to provide an instance of the validity of a write operation
for that package under that profile. If the library manages to construct such a
proof, the package can be installed, otherwise a warning is issued. The presence
of the two negative trust strategies could be implemented by offering the user
the option on which to execute: trust removal on currently installed packages, or
trust denial of the newly presented conflicitng package. While we are still away
from being able to provide such a working tool, future work will be devoted
to complete the formalisation of the proofs, and as noted, to write tactics to
automate a lot of the administrative legwork.

9 Conclusions

In this paper we have formulated two variants to the Uninstall Problem. Each
relies on a different semantic qualification of untrusted packages required to be
removed or prevented from installation in a given installation profile, in order
to preserve consistency.

Our approach, grounded on the logic (un)SecureND, includes an explicit
trust function on formulas to guarantee consistency check at each retrieval step
(after a read function), and before installation rights are granted for a package
(by a write function). The fragment of the language presented in this paper
allows to express negation over trust as a dis-installation requirement. Different
pairs of introduction/elimination rules determine the selection of one of two
resolution strategies: one flags a package external to the installation profile as
distrusted and hence as not installable; the other identifies already installed
packages to be removed. The selection takes care of identifying and removing
all required dependencies. We have illustrated the working protocol through an
easy example and provided an informal explanation of the verification through
the Coq proof assistant.

A characteristic of the logic (un)SecureND is its substructural nature, which
in future work can be exploited to investigate cases of strengthened and lim-
ited resource redundancy for fault tolerance and source shuffling for security.
Other applications of negative trust can be investigated to distinguish between
malevolent and simply unsuccessful sources.

28

Acknowledgements

This work was done while the first author was a member of the Department of
Computer Science at Middlesex University London.

References

[1] P. Abate, R. Di Cosmo, J. Boender, and S. Zacchiroli. Strong dependencies
between software components. In Proceedings of the Third International
Symposium on Empirical Software Engineering and Measurement, ESEM
2009, October 15-16, 2009, Lake Buena Vista, Florida, USA, pages 89–99.
ACM / IEEE Computer Society, 2009.

[2] P. Abate, R. Di Cosmo, R. Treinen, and S. Zacchiroli. MPM: A Modular
Package Manager. In Proceedings of the 14th International ACM Sigsoft
Symposium on Component Based Software Engineering, CBSE ’11, pages
179–188, New York, NY, USA, 2011. ACM.

[3] P. Abate, R. Di Cosmo, R. Treinen, and S. Zacchiroli. Dependency solv-
ing: A separate concern in component evolution management. Journal of
Systems and Software, 85(10):2228–2240, 2012.

[4] A. Abdul-Rahman. A framework for decentralised trust reasoning. PhD
thesis, Department of Computer Science, University College London, 2005.

[5] A. Abdul-Rahman and S. Hailes. A distributed trust model. In T. Haigh,
B. Blakley, M.E. Zurko, and C. Meodaws, editors, Proceedings of the 1997
Workshop on New Security Paradigms, Langdale, Cumbria, United King-
dom, September 23-26, 1997, pages 48–60. ACM, 1997.

[6] A.Jøsang, E. Gray, and M. Kinateder. Simplification and analysis of tran-
sitive trust networks. Web Intelligence and Agent Systems, 4(2):139–161,
2006.

[7] N. Ali, Y.-G. Guéhéneuc, and G. Antoniol. Trustrace: Mining Software
Repositories to Improve the Accuracy of Requirement Traceability Links.
IEEE Trans. Software Eng., 39(5):725–741, 2013.

[8] C. Artho, K. Suzaki, R. Di Cosmo, R. Treinen, and S. Zacchiroli. Why do
software packages conflict? In M. Lanza, M. Di Penta, and T. Xie, edi-
tors, 9th IEEE Working Conference of Mining Software Repositories, MSR
2012, June 2-3, 2012, Zurich, Switzerland, pages 141–150. IEEE Computer
Society, 2012.

[9] D. Le Berre and A. Parrain. On SAT Technologies for Dependency Manage-
ment and Beyond. In S. Thiel and K. Pohl, editors, Software Product Lines,
12th International Conference, SPLC 2008, Limerick, Ireland, September
8-12, 2008, Proceedings. Second Volume (Workshops), pages 197–200. Lero
Int. Science Centre, University of Limerick, Ireland, 2008.

29

[10] J. Boender. Formal verification of a theory of packages. ECEASST, 48,
2011.

[11] J. Boender, G. Primiero, and F. Raimondi. Minimizing transitive trust
threats in software management systems. In A.A. Ghorbani, V. Torra,
H. Hisil, A. Miri, A. Koltuksuz, J. Zhang, M. Sensoy, J. Garćıa-Alfaro, and
I. Zincir, editors, 13th Annual Conference on Privacy, Security and Trust,
PST 2015, Izmir, Turkey, July 21-23, 2015, pages 191–198. IEEE, 2015.

[12] M. Carbone, M. Nielsen, and V. Sassone. A Formal Model for Trust in
Dynamic Networks. In A. Cerone and P. Lindsay, editors, Int. Conference
on Software Engineering and Formal Methods, SEFM 2003., pages 54–61.
IEEE Computer Society, 2003. A preliminary version appears as Technical
Report BRICS RS-03-4, Aarhus University.

[13] J. Carter and A.A. Ghorbani. Towards a formalization of value-centric
trust in agent societies. Web Intelligence and Agent Systems, 2(3):167–183,
2004.

[14] P.S. Chakraborty and S. Karform. Designing Trust Propagation Algo-
rithms based on Simple Multiplicative Strategy for Social Networks. Pro-
cedia Technology, 6(0):534–539, 2012. 2nd International Conference on
Communication, Computing & Security [ICCCS-2012].

[15] J. Chang, K. Venkatasubramanian, A. West, S. Kannan, B. Loo, O. Sokol-
sky, and I. & Lee. AS-TRUST: A Trust Quantification Scheme for Au-
tonomous Systems in BGP. In Trust and Trustworthy Computing: 4th
International Conference, TRUST 2011, volume 6740 of Lecture Notes in
Computer Science, pages 262–276. Springer Berlin / Heidelberg, 2011.

[16] P.C. Chapin, C. Skalka, and X.S. Wang. Authorization in trust manage-
ment: Features and foundations. ACM Comput. Surv., 40(3), 2008.

[17] B. Christianson and W.S. Harbison. Why Isn’t Trust Transitive? In
T.M.A. Lomas, editor, Security Protocols, International Workshop, Cam-
bridge, United Kingdom, April 10-12, 1996, Proceedings, volume 1189 of
Lecture Notes in Computer Science, pages 171–176. Springer, 1996.

[18] S. Clarke, B. Christianson, and H. Xiao. Trust*: Using Local Guarantees to
Extend the Reach of Trust. In B. Christianson, J.A. Malcolm, V. Matyas,
and M. Roe, editors, Security Protocols Workshop, volume 7028 of Lecture
Notes in Computer Science, pages 171–178. Springer, 2009.

[19] T. Coquand and G. Huet. The Calculus of Constructions. Information and
Computation, 76(2–3):95–120, 1988.

[20] R. Di Cosmo and J. Boender. Using strong conflicts to detect quality issues
in component-based complex systems. In S. Padmanabhuni, S.K. Aggar-
wal, and U. Bellur, editors, Proceeding of the 3rd Annual India Software

30

Engineering Conference, ISEC 2010, Mysore, India, February 25-27, 2010,
pages 163–172. ACM, 2010.

[21] R. Di Cosmo, S. Zacchiroli, and P. Trezentos. Package upgrades in
FOSS distributions: Details and challenges. In T. Dumitras, D. Dig, and
I. Neamtiu, editors, Proceedings of the 1st ACM Workshop on Hot Topics
in Software Upgrades, HotSWUp 2008, Nashville, TN, USA, October 20,
2008. ACM, 2008.

[22] H. B. Curry and R. Feys. Combinatory Logic, Volume I. North-Holland,
1958. Second printing 1968.

[23] G. Cvetkovich. The attribution of social trust. In G. Cvetkovih and R. Lof-
stedt, editors, Social Trust and the Management of Risk, pages 53–61.
Earthscan, 1999.

[24] G. Cvetkovich and R.E. Lofstedt. Social trust and culture in risk man-
agement. In G. Cvetkovih and R. Lofstedt, editors, Social Trust and the
Management of Risk, pages 9–21. Earthscan, 1999.

[25] T. DuBois, J. Golbeck, and A. Srinivasan. Predicting trust and distrust in
social networks. In PASSAT/SocialCom 2011, Privacy, Security, Risk and
Trust (PASSAT), 2011 IEEE Third International Conference on and 2011
IEEE Third International Conference on Social Computing (SocialCom),
Boston, MA, USA, 9-11 Oct., 2011, pages 418–424. IEEE, 2011.

[26] J.A. Goguen and J. Meseguer. Security Policies and Security Models. In
IEEE Symposium on Security and Privacy, pages 11–20, 1982.

[27] T. Grandison and M. Sloman. A survey of trust in internet applications.
Communications Surveys Tutorials, IEEE, 3(4):2–16, Fourth 2000.

[28] R. Guha, R. Kumar, P. Raghavan, and A. Tomkins. Propagation of Trust
and Distrust. In Proceedings of the 13th International Conference on World
Wide Web, WWW ’04, pages 403–412, New York, NY, USA, 2004. ACM.

[29] P. Herrmann. Trust-based protection of software component users and
designers. In P. Nixon and S. Terzis, editors, Trust Management, First
International Conference, iTrust 2003, Heraklion, Crete, Greece, May 28-
30, 2002, Proceedings, volume 2692 of Lecture Notes in Computer Science,
pages 75–90. Springer, 2003.

[30] H. Hexmoor, S. Rahimi, and R. Chandran. Delegations guided by trust
and autonomy. Web Intelligence and Agent Systems, 6(2):137–155, 2008.

[31] R. R. Hoffman, J. D. Lee, D. D. Woods, N. Shadbolt, J. Miller, and J. M
Bradshaw. The dynamics of trust in cyberdomains. IEEE Intelligent Sys-
tems, pages 5–11, November/December 2009.

31

[32] W. Howard. The Formulae-as-Types Notion of Construction. In J. Seldin
and J. Hindley, editors, To H. B. Curry: Essays on Combinatory Logic,
Lambda Calculus and Formalism, pages 479–490. Academic Press, 1980.

[33] A. Ignatiev, M. Janota, and J. Marques-Silva. Towards Efficient Optimiza-
tion in Package Management Systems. In Proceedings of the 36th Inter-
national Conference on Software Engineering, ICSE 2014, pages 745–755,
New York, NY, USA, 2014. ACM.

[34] A. Jøsang, S. Marsh, and S. Pope. Exploring Different Types of Trust
Propagation. In Ketil Stølen, WilliamH. Winsborough, Fabio Martinelli,
and Fabio Massacci, editors, Trust Management, volume 3986 of Lecture
Notes in Computer Science, pages 179–192. Springer Berlin Heidelberg,
2006.

[35] A. Jøsang and S. Pope. Semantic Constraints for Trust Transitivity. In
S. Hartmann and M. Stumptner, editors, APCCM, volume 43 of CRPIT,
pages 59–68. Australian Computer Society, 2005.

[36] U. Kuter and J. Golbeck. Using probabilistic confidence models for trust
inference in web-based social networks. ACM Trans. Internet Technol.,
10(2):8:1–8:23, June 2010.

[37] F. Mancinelli, J. Boender, R. Di Cosmo, J. Vouillon, B. Durak, X. Leroy,
and R. Treinen. Managing the Complexity of Large Free and Open
Source Package-Based Software Distributions. In 21st IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE 2006), 18-22
September 2006, Tokyo, Japan, pages 199–208. IEEE Computer Society,
2006.

[38] S. Marsh and M.R. Dibben. Trust, Untrust, Distrust and Mistrust – An
Exploration of the Dark(er) Side. In Peter Herrmann, Valérie Issarny, and
Simon Shiu, editors, Trust Management, volume 3477 of Lecture Notes in
Computer Science, pages 17–33. Springer Berlin Heidelberg, 2005.

[39] P. Martin-Löf. Intuitionistic Type Theory, volume 1 of Studies in Proof
Theory: Lecture Notes. Bibliopolis, Napoli, 1984.

[40] J. Mohsen and M. Ester. A Matrix Factorization Technique with Trust
Propagation for Recommendation in Social Networks. In Proceedings of
the Fourth ACM Conference on Recommender Systems, RecSys ’10, pages
135–142, New York, NY, USA, 2010. ACM.

[41] G. Primiero. A Calculus for Distrust and Mistrust. In S. Mahbub Habib,
J. Vassileva, S. Mauw, and M. Mühlhäuser, editors, Trust Management X -
10th IFIP WG 11.11 International Conference, IFIPTM 2016, Darmstadt,
Germany, July 18-22, 2016, Proceedings, volume 473 of IFIP Advances
in Information and Communication Technology, pages 183–190. Springer,
2016.

32

[42] G. Primiero and J. Boender. Managing software uninstall with negative
trust. In J.-P. Steghöfer and B. Esfandiari, editors, Trust Management XI -
11th IFIP WG 11.11 International Conference, IFIPTM 2017, Gothenburg,
Sweden, June 12-16, 2017, Proceedings, volume 505 of IFIP Advances in
Information and Communication Technology, pages 79–93. Springer, 2017.

[43] G. Primiero and F. Raimondi. A typed natural deduction calculus to reason
about secure trust. In A. Miri, U. Hengartner, N.-F. Huang, A. Jøsang, and
J. Garćıa-Alfaro, editors, 2014 Twelfth Annual International Conference
on Privacy, Security and Trust, Toronto, ON, Canada, July 23-24, 2014,
pages 379–382. IEEE, 2014.

[44] G. Primiero, F. Raimondi, M. Bottone, and J. Tagliabue. Trust and distrust
in contradictory information transmission. Applied Network Science, 2:12,
2017.

[45] G. Primiero, F. Raimondi, T. Chen, and R. Nagarajan. A proof-theoretic
trust and reputation model for VANET. In 2017 IEEE European Sym-
posium on Security and Privacy Workshops, EuroS&P Workshops 2017,
Paris, France, April 26-28, 2017, pages 146–152. IEEE, 2017.

[46] G. Restall. An Introduction to Substructural Logics. Routledge, 2000.

[47] P. Sztompka. Trust: a sociological theory. Cambridge University press,
1999.

[48] M. Tavakolifard, S.J. Knapskog, and P. Herrmann. Trust transferabil-
ity among similar contexts. In A.Y. Zomaya and M.Cesana, editors,
Q2SWinet’08 - Proceedings of the 4th ACM Workshop on Q2S and Se-
curity for Wireless and Mobile Networks, Vancouver, British Columbia,
Canada, October 27-28, 2008, pages 91–97. ACM, 2008.

[49] T.Dang, Z.Yan, F.Tong, W.Zhang, and P.Zhang. Implementation of
a trust-behavior based reputation system for mobile applications. In
L.Barolli, F.Xhafa, X.Chen, and M.Ikeda, editors, Ninth International
Conference on Broadband and Wireless Computing, Communication and
Applications, BWCCA 2014, Guangdong, China, November 8-10, 2014,
pages 221–228. IEEE, 2014.

[50] C. Tucker, D. Shuffelton, R. Jhala, and S. Lerner. OPIUM: Optimal Pack-
age Install/Uninstall Manager. In Software Engineering, 2007. ICSE 2007.
29th International Conference on, pages 178–188, 2007.

[51] J. Vouillon and R. Di Cosmo. On Software Component Co-installability.
ACM Trans. Softw. Eng. Methodol., 22(4):34:1–34:35, October 2013.

[52] Z. Yan and C. Prehofer. Autonomic trust management for a component-
based software system. IEEE Trans. Dependable Sec. Comput., 8(6):810–
823, 2011.

33

[53] A. Zeller. Can We Trust Software Repositories? In Jürgen Münch and
Klaus Schmid, editors, Perspectives on the Future of Software Engineering,
pages 209–215. Springer Berlin Heidelberg, 2013.

[54] C.-N. Ziegler and G. Lausen. Propagation Models for Trust and Distrust in
Social Networks. Information Systems Frontiers, 7(4-5):337–358, December
2005.

34

