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Abstract. The inverse method is a saturation based theorem proving
technique; it relies on a forward proof-search strategy and can be applied
to cut-free calculi enjoying the subformula property. Here we apply this
method to derive the unprovability of a formula in the modal logic K.
To this aim, we design a forward calculus to check the K-satisfiability of
a set of modal formulas. From a derivation of Ξ, we can extract a Kripke
model of Ξ.

1 Introduction

The inverse method, introduced by Maslov [8], is a saturation based theorem
proving technique closely related to (hyper)resolution [3]; it relies on a forward
proof-search strategy and can be applied to cut-free calculi enjoying the subfor-
mula property. Given a goal, a set of instances of the rules of the calculus at hand
is selected; such specialized rules are repeatedly applied in the forward direction,
starting from the axioms (i.e., the rules without premises). Proof-search termi-
nates if either the goal is obtained or the set collecting the proved facts saturates
(nothing new can be added). The inverse method has been originally applied to
Classical Logic and successively extended to some non-classical logics [2,3,4,7].

In all of the mentioned papers, the inverse method has been exploited to
prove the validity of a formula in a specific logic. In [6] we launched a new
perspective designing a forward calculus to derive the unprovability of a goal
formula in Intuitionistic Propositional Logic. In this paper we begin to study
the applicability of such an approach to modal logics considering the case of the
basic modal logic K, semantically characterized by finite intransitive trees [1].

We design a forward refutation calculus to check the K-satisfiability of a
set of modal formulas Ξ (namely, the non-validity of the formula ¬(

∧
Ξ) in

K); to constructively ascertain this we show how to extract from a derivation τ
asserting the satisfiability of Ξ, a model Mod(τ) of Ξ. In forward reasoning, it
is crucial to bound the application of rules, so that the naive saturation forward
procedure eventually terminates (see the Finite Rule Property [3]). To achieve
this, the rules of the calculus are determined by the goal set Ξ; we call the
resulting calculus RK(Ξ) (Forward Refutation in K with goal Ξ). Each node of
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an RK(Ξ)-derivation is a set containing formulas constructed using the ones in
Ξ. Axioms of RK(Ξ) are maximal consistent sets of the set of literals determined
by Ξ. Rules of RK(Ξ) are inspired by semantics, so that proof-search for a
derivation of Ξ mirrors the construction of a model of Ξ. A remarkable result is
that the models extracted from RK(Ξ)-derivations are in general “small”. This
is mainly due to the fact that in forward derivations we can re-use the same
premise many times, without duplicating it, and this reduces the generation of
redundant worlds. Actually, for every satisfiable set Ξ, we can build a derivation
of Ξ in RK(Ξ) such that the height of the extracted model is minimal.

2 The calculus RK(Ξ)

We consider the language L built from a denumerable set V of propositional
variables and the connectives ∧, ¬ and �. We denote formulas by α, β, . . . and
set of formulas by Γ , ∆, . . . ; �Γ is the set {�α | α ∈ Γ}. By LCL we denote
the set of classical formulas of L, namely the formulas not containing �; with
H, X , . . . sets of classical formulas, we call cl-sets. A literal is a formula of the
kind p or ¬p, with p ∈ V. A set of literals X is lit-consistent iff there is no p ∈ V
such that {p,¬p} ⊆ X . The set Sf+(Γ ) is the smallest set of formulas such that
Γ ⊆ Sf+(Γ ) and:

– α ∧ β ∈ Sf+(Γ ) implies {α, β} ⊆ Sf+(Γ ); ¬¬α ∈ Sf+(Γ ) implies α ∈ Sf+(Γ );
– ¬(α ∧ β) ∈ Sf+(Γ ) implies {¬α, ¬β} ⊆ Sf+(Γ );
– �α ∈ Sf+(Γ ) implies α ∈ Sf+(Γ ); ¬�α ∈ Sf+(Γ ) implies ¬α ∈ Sf+(Γ ).

Let W be a non-empty finite set of worlds and R be an intransitive successor
relation on W (i.e., ∀x, y, z(xRy ∧ yRz → ¬xRz); note that R is irreflexive as
well). An intransitive tree with root ρ is a triple (W,R, ρ) such that the reflexive
and transitive closure of R is a tree partial order on W with root ρ [1]. A model
for L is a structure M = 〈W,R, ρ, V 〉, where (W,R, ρ) is an intransitive tree
with root ρ and V , the evaluation function, maps each p ∈ V to a subset of W
(the set of worlds where p is true). A (classical) interpretation is a subset of V;
for w ∈ W , by I(w) we denote the interpretation defined by the propositional
variables true at w (i.e., p ∈ I(w) iff w ∈ V (p)). The relation (M, w) |= α (the
formula α is valid in M at world w) is defined as usual by induction on α (see
e.g. [1]):

– (M, w) |= p, with p ∈ V, iff w ∈ V (p);
– (M, w) |= �α iff, for every v ∈W , wRv implies (M, v) |= α.

The interpretation of ¬ and ∧ is classical. Note that the validity of a classical
formula at a world w only depends on I(w). Expressions of the kind Γ, α and
Γ,∆ denote the sets Γ ∪ {α} and Γ ∪∆ respectively. By (M, w) |= Γ we mean
that, for every α ∈ Γ , (M, w) |= α. A set Γ is (K-)satisfiable iff there exists
a model M and a world w of M such that (M, w) |= Γ . It is well-known that
the modal logic K is the set of formulas α of L such that, for every model M
and every world w of M, (M, w) |= α (see [1]); accordingly, α is valid in K iff
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Fig. 1. The calculus RK(Ξ).

the set {¬α} is not satisfiable. In this paper we present a forward calculus to
constructively prove the satisfiability of a set of formulas.

The calculus RK(Ξ) is a forward refutation calculus to prove that a finite
nonempty set Ξ of formulas of L is satisfiable, meaning that the formula ¬(

∧
Ξ)

is not valid in K. In forward calculi proof-search starts from axioms and rules
are applied from premises to the conclusion (forward direction). The rules are
displayed in Fig. 1. Axioms of RK(Ξ), introduced by the axiom rule Lit, are
the cl-sets X such that X is a maximal lit-consistent subset of Sf+(Ξ), namely:
there is no lit-consistent set Y such that X ⊂ Y ⊆ Sf+(Ξ). Cl-rules are standard
refutation rules for classical connectives; they introduce a formula of the kind
α ∧ β, ¬(α ∧ β) and ¬¬α. To get termination, we only admit rule applications
generating formulas in Sf+(Ξ): this motivates the side condition on the applica-
tion of cl-rules. Join rules on and on0 allow one to introduce formulas of the kind
�α and ¬�α. The rule on has n+ 1 ≥ 2 premises, where at least one premise H
is a cl-set. Rule on0 is the degenerated instance of on only having the premise H.
In both cases, the formulas introduced by the rule applications must belong to
Sf+(Ξ) (see the definition of the J . K operator). An RK(Ξ)-derivation of ∆ is a
derivation in RK(Ξ) with the set ∆ as root. A set Γ is provable in RK(Ξ) iff
there exists an RK(Ξ)-derivation τ of ∆ such that Γ ⊆ ∆; we also say that Γ
is proved by τ .

Soundness

Given an RK(Ξ)-derivation τ of ∆, we can build a K-model satisfying ∆; this
proves the soundness RK(Ξ). The height of τ , denoted h(τ), is the maximum
distance from the root of τ and an axiom sequent of τ . We define the structure
Mod(τ) inductively on the height of τ .

– If h(τ) = 0, then τ only consists of an application of Lit and ∆ is a maximal
lit-consistent subset of Sf+(Ξ). We set Mod(τ) = 〈{ρ}, ∅, ρ, V 〉, where ∅ is the
empty successor relation and V (p) = {ρ} if p ∈ ∆ and V (p) = ∅ otherwise.



– If h(τ) > 0, let R be the rule applied at the root of τ .
(1) If R is a cl-rule or R =on0, let τ ′ be the immediate subderivation of τ .

Then Mod(τ) = Mod(τ ′). Note that, if τ is a derivation of a cl-set H,
τ only consists of one instance of Lit followed by instances of cl-rules,
accordingly Mod(τ) consists of a single world.

(2) Otherwise, R =on. Let τi be the subderivations with root Γi and τn+1 the
one with root H; let Mod(τi) = 〈Wi, Ri, ρi, Vi〉 (1 ≤ i ≤ n + 1). Since
H is a cl-set, as discussed in Point (1), we have Wn+1 = {ρ}. Without
loss of generality, we assume that the Wj ’s are pairwise disjoint. We set
Mod(τ) = 〈W,R, ρ, V 〉 where:

W =

n+1⋃
i=1

Wi, V =

n+1⋃
i=1

Vi, R =

n⋃
i=1

(Ri ∪ { (ρ, ρi) } )

It is easy to check that Mod(τ) is a well-defined model. Moreover, proceeding
by induction on the height of τ one can prove:

Theorem 1 (Soundness of RK(Ξ)). Let τ be an RK(Ξ)-derivation of ∆ and
ρ be the root of Mod(τ). Then (Mod(τ), ρ) |= ∆.

Completeness

We prove that the calculus RK(Ξ) is complete, namely: if Ξ is a finite satisfiable
set, then Ξ is provable in RK(Ξ). We give a constructive proof by exhibiting
how to build an RK(Ξ)-derivation τ of ∆ ⊇ Ξ starting from a model M =
〈W,R, ρ, V 〉 of Ξ. The height of a world w0 ∈ W , denoted by h(w0), is the
maximal length of an R-chain w0Rw1Rw2 . . . ; since 〈W,R, ρ〉 is a finite tree, the
definition is well-found. The height ofM, denoted by h(M), coincides with h(ρ).
We show that h(Mod(τ)) ≤ h(M); accordingly, we can use RK(Ξ) to generate
“small” models of Ξ. To formalize this, we introduce the following definitions:

– Ξ is h-satisfiable iff there is a model M of Ξ such that h(M) ≤ h.
– If Ξ is satisfiable, h(Ξ) is the minimum h such that Ξ is h-satisfiable.

The rank Rn(τ) of an RK(Ξ)-derivation τ is the maximum number of applica-
tions of rule on along a branch of τ . Formally, let r be the root rule of τ and let
τ1, . . . , τn be the immediate subderivations of τ . Then:

Rn(τ) =

{
0 if r is the axiom rule Lit

c + max{Rn(τ1), . . . ,Rn(τn) } otherw.
c =

{
1 if r =on
0 otherw.

Note that h(Mod(τ)) = Rn(τ). In the proof of next lemma we show how to
build a derivation of a satisfiable set. Note that Theorem 2 immediately follows
from Lemma 1. By |Γ | we denote the number of symbols occurring in Γ .

Lemma 1. Let Ξ be a finite set of formulas and let Γ ⊆ Sf+(Ξ) be a h-
satisfiable set. Then, there exists an RK(Ξ)-derivation τ of ∆ such that Γ ⊆ ∆
and Rn(τ) ≤ h. Moreover, Γ ⊆ LCL implies ∆ ⊆ LCL.



Proof. We prove the assertion by induction hypothesis (IH) on |Γ |. Since Γ
is h-satisfiable, there exists a model M = 〈W,R, ρ, V 〉 and w ∈ W such that
(M, w) |= Γ and h(w) ≤ h. We proceed through a case analysis, only detailing
some representative cases.

Case 1: Γ only contains literals.
Let X be the set of literals l ∈ Sf+(Ξ) such that (M, w) |= l. Then, X is a
maximal lit-consistent subset of Sf+(Ξ), hence X is an axiom of RK(Ξ). Since
Γ ⊆ X ⊆ LCL, the assertion holds.

Case 2: Γ = ¬(α1 ∧ α2), Γ0, with ¬(α1 ∧ α2) 6∈ Γ0.
Since (M, w) |= ¬(α1 ∧ α2), there exists k ∈ {1, 2} such that (M, w) |= ¬αk.
Let Γk = Γ0 ∪ {¬αk}; note that (M, w) |= Γk, hence Γk is h-satisfiable. Since
|Γk| < |Γ | and Γk ⊆ Sf+(Ξ), by (IH) there exists an RK(Ξ)-derivation τk of
∆k such that Γk ⊆ ∆k and Rn(τk) ≤ h. Let τ be:

... τk
¬αk, Γ0, Θk ¬∧

∆ = ¬(α1 ∧ α2), Γ0, Θk

Θk = ∆k \ Γk

Since Γ ⊆ ∆ and Rn(τ) = Rn(τk) ≤ h, the assertion holds. Moreover, if Γ ⊆
LCL, by (IH) we get ∆k ⊆ LCL, hence ∆ ⊆ LCL.

Case 3: Γ = �Θ, ¬�α1, . . . ,¬�αn, H, with n ≥ 1.
Let j ∈ {1, . . . , n} and Γj = Θ ∪ {¬αj}. Since (M, w) |= ¬�αj , there exists
wj ∈ W such that wRwj and (M, wj) |= ¬αj . We also have (M, wj) |= Θ,
hence Γj is h(wj)-satisfiable. Since |Γj | < |Γ | and Γj ⊆ Sf+(Ξ), by (IH) there
exists an RK(Ξ)-derivation τj of ∆j such that Γj ⊆ ∆j and Rn(τj) ≤ h(wj),
hence Rn(τj) < h. Since H is h-satisfiable (indeed, (M, w) |= H) and H ⊆ LCL

and |H| < |Γ |, by (IH) there exists an RK(Ξ)-derivation τc of G such that
H ⊆ G ⊆ LCL. We can define τ as follows:

...

... τj

Θ, ¬αj , Υj ...

... τc
H, U

on
∆ = �Θ, ¬�α1, . . . ,¬�αn, H, Σ

1 ≤ j ≤ n
Υj = ∆j \ Γj

U = G \ H

where we leave understood the formulas in the (possibly empty) set Σ. We have
Γ ⊆ ∆. Note that τc cannot contain applications of rule on, hence Rn(τc) = 0.
This implies that Rn(τ) = m+1, where m is the maximum Rn(τj). Since m < h,
we get Rn(τ) ≤ h, and this concludes the proof of this case. ut

As a consequence of the previous lemma we get:

Theorem 2 (Completeness of RK(Ξ)). Let Ξ be a finite set of satisfiable
formulas. Then, there exists an RK(Ξ)-derivation τ of ∆ ⊆ Ξ such that such
that h(Mod(τ)) ≤ h(Ξ).



DB of proved sets Derivation τ1 Model Mod(τ1)

(1) ¬p Lit
(2) p Lit

(3) ¬�p , p on (1) (2)

(4) �p,¬��p , ¬p on (3) (1)

(5) �p ∧ ¬��p , ¬p ∧(4)

Lit
(1)

Lit
(2)

on
(3)

Lit
(1)

on
(4)

∧
(5) w4:

w3: p

w1:

Sf+(Ξ1) = {�p ∧ ¬��p , �p , ¬��p , p , ¬�p , ¬p }

Fig. 2. Example 1

Examples

Let α = �p∧¬��p. Note that α corresponds to the negation of the transitivity
axiom (4) �p→ ��p. It is well-known that (4) is not valid in K, hence Ξ1 = {α}
is satisfiable. We populate the database DB of sets provable in RK(Ξ1) according
with the naive recipe of [3]; the obtained DB is displayed in Fig 2 (for the sake
of conciseness, we only show the sets needed to get the goal Ξ1). We start by
inserting the axioms ((1) and (2)); then we enter a loop where, at each iteration,
we apply the rules to the set collected in previous steps. The iterations stop when,
either a superset of the goal is generated (as in our example) or the database
saturates (no more new sequents can be generated). The tree-like structure is
given by derivation τ1. As for the model Mod(τ1), the world wi is generated by
the rule applied to get the sequent (i) in the database, an arrow from wi to
wj indicates that wiRwj , while the interpretation I(wi) associated with wi is
displayed after the colon (hence I(w1) = I(w4) = ∅ and I(w3) = {p}). It is easy
to check that (Mod(τ1), w4) |= α. We conclude that Mod(τ1) is a model of {α}
and a countermodel for the transitivity axiom. We remark that h(Mod(τ1)) = 2,
which is the minimal height of a model of Ξ1.

A more significant example is given in Fig. 3, where we show an RK(Ξ2)-
derivation of a satisfiable set Ξ2 (read ♦ as ¬�¬) and the related model.

3 Future work

We have presented the naive forward proof-search strategy; we leave as future
work the investigation of clever strategies (e.g., the use of subsumption to reduce
redundancies) and the implementation of the calculus exploiting the full-fledged
Java Framework JTabWb [5]. In this paper we only focus on K; we plan to
extend the techniques here introduced to other modal logics.
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