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Abstract We consider a bivariate logistic model for a binary response and
we assume that two rival dependence structures are possible. Copula functions
are very useful tools to model different kinds of dependence with arbitrary
marginal distributions. We consider Clayton and Gumbel copulae as competing
association models. The focus is on applications in testing a new drug looking
at both efficacy and toxicity outcomes. In this context, one of the main goals is
to find the dose which maximizes the probability of efficacy without toxicity,
herein called P-optimal dose. If the P-optimal dose changes under the two
rival copulae, then it is relevant to identify the proper association model. To
this aim, we propose a criterion (called PKL-) which enables us to find the
optimal doses to discriminate between the rival copulae, subject to a constraint
that protects patients against dangerous doses. Furthermore, by applying the
likelihood ratio test for non-nested models, via a simulation study we confirm
that the PKL-optimal design is really able to discriminate between the rival
copulae.
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1 Introduction

In recent years, there has been an increasing interest in developing dose finding
methods incorporating both efficacy and toxicity outcomes; see Dragalin et al
(2008); Gao and Rosenberger (2013); Thall and Cook (2004); Thall (2012);
Yuan and Guosheng (2009) among others. Up to our knowledge, in the lit-
erature, the association between efficacy and toxicity is always specified (ex-
cept for some unknown parameters) through a bivariate model. For instance,
among others, Dragalin et al (2008) propose a bivariate probit model for the
selection of an efficacious and safe dose for a new anticoagulant compound to
prevent thromboembolic disorders; Thall and Cook (2004) apply the bivari-
ate binary Gumbel-Morgenstein model to identify rapid treatment of acute
ischemic stroke; Yuan and Guosheng (2009) model toxicity and efficacy as
time-to-event outcomes through the Clayton copula to investigate a novel mi-
totic inhibitor for treating prostate cancer; Tao et al (2013) propose a joint
model for correlated efficacy-toxicity outcome constructed with Archimedean
copula. However, as argued in Gao and Rosenberger (2013), assuming that
the true efficacy-toxicity relation arises from a specific bivariate model might
lead to unpleasant inferential consequences if the model is misspecified. Hence
the motivation of this paper: to design an experiment with the aim of dis-
criminating between rival bivariate models. More specifically, we consider a
bivariate logistic model for a binary response and we use Clayton and Gumbel
copulae (both allowing for positive association) as competing models for the
dependence structure. We need to discriminate between the two rival models
when the dose which maximizes the probability of efficacy without toxicity
(called P-optimal dose) is different under the two models. The P-optimal dose
is the safest and the most efficacious dose and it can be used as a benchmark
for other doses; therefore, when this dose changes under the rival models it
is necessary to clarify which is the true model and hence the true P-optimal
dose.

In order to establish how the P-optimal dose depends on the assumed
dependence structure (Clayton and Gumbel copulae) we have developed a ro-
bustness study. This study (which is reported in the Supplementary Material)
shows that the P-optimal dose may change under different copula models;
from here, the necessity to discriminate between competing copulae. To solve
the discrimination problem, Perrone et al (2017) apply the Ds-criterion which
can be used only for nested models; for this reason, they need to introduce
the mixture copula model (which includes the rival copulae as special cases).
In this paper, instead, we compare directly the competing models without
using any other auxiliary reference model. More specifically, we modify the
KL-optimality criterion proposed by López-Fidalgo et al (2007) in order to
identify the correct dependence structure and at the same time protect pa-
tients against dangerous doses. In more detail, we propose a criterion (called
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PKL-) which enables us to find doses which are “good” to discriminate be-
tween the rival copulae, subject to a constraint that protects patients against
doses which are far away from the P-optimal dose. Finally, in order to assess
the ability of the PKL-optimal design to select the right copula, we perform
a simulation study where the likelihood ratio test for non-nested models is
applied.

As previously recalled the Ds-criterion can be applied to discriminate be-
tween nested models. For separate models Atkinson and Fedorov (1975a,b)
introduced the well known T-optimality, but it can be used only for regression
Gaussian models. Some contributions to the theory of T-optimality, among
others, are Ponce de Leon and Atkinson (1991), Uciński and Bogacka (2005),
López-Fidalgo et al (2008) and Dette and Titoff (2009). Recently, Drovandi
et al (2014) propose a sequential design based on the mutual information for
model discrimination.

Let us note that the focus of this work is on applications in dose finding
methods; the proposal, however, might be relevant for other application areas.
For instance, in manufacturing industry to study the relationship between
machine component failures under stress; see Kim and Flournoy (2015).

The paper is organized as follows. In Section 2 the bivariate copula model
is introduced and the main definitions are given. Section 3 describes the bi-
nary model for efficacy-toxicity response through a copula function. Section
4 provides the definition of P-optimal dose and the motivation of the work.
The PKL-optimality criterion is introduced in Section 5, where an equivalence
theorem is also proved. Finally, in Section 6 we perform a simulation study to
evaluate the performance of the PKL-optimum design to discriminate between
the rival copulae. Concluding remarks follow in Section 7. Theoretical details
are deferred to Appendices A and B.

2 Bivariate Copula-Based Model

Let (Y1, Y2) be a bivariate response variable with marginal distributions FY1
(y1;α)

and FY2
(y2;β), which depend on the unknown parameter vectors α and β, re-

spectively. If Y1 and Y2 are not independent, then it is necessary to define a
joint model for (Y1,Y2). Copula functions provide a rich and flexible class of
models to obtain joint distributions for multivariate data.

A bivariate copula is a function C : I2 → I, with I2 = [0, 1] × [0, 1] and
I = [0, 1], that, with an appropriate extension of the domain in R2, satisfies
all the properties of a cumulative distribution function (cdf). In particular,
it is the cdf of a bivariate random variable (U1, U2), with uniform marginal
distributions in [0, 1]:

C(u1, u2; θ) = P (U1 ≤ u1, U2 ≤ u2; θ), 0 ≤ u1 ≤ 1 0 ≤ u2 ≤ 1,

where θ ∈ Θ is a parameter measuring the dependence between U1 and U2.
The importance of copulae in statistical modelling stems from Sklar’s theorem
(Nelsen, 2006), which states that a joint distribution can be expressed in terms
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of marginal distributions and a function C(·, ·; θ) that binds them together. In
more detail, according to Sklar’s theorem, if FY1,Y2(y1, y2; δ, θ) is the joint cdf
of (Y1, Y2), where δ = (α, β), then there exists a copula function C : I2 → I
such that

FY1,Y2
(y1, y2; δ, θ) = C

(
FY1

(y1;α), FY2
(y2;β); θ

)
, y1, y2 ∈ IR. (1)

If FY1(y1;α) and FY2(y2;β) are continuous functions then the copula C(·, ·; θ)
is unique. Conversely, if C(·, ·; θ) is a copula function and FY1(y1;α) and
FY2

(y2;β) are marginal cdfs, then FY1,Y2
(y1, y2; δ, θ) given in (1) is a joint

cdf.
From (1) we have that a copula captures the dependence structure between

the marginal probabilities. This idea allows researchers to consider marginal
distributions and the dependence between them as two separate but related
issues. Finally, let us recall that for each copula there exists a relationship
between the parameter θ and Kendall’s τ coefficient (see Nelsen (2006) pp.
158-170) and between θ and the lower and upper tail dependence parameters
λl and λu (which measure the association in the tails of the joint distribution;
see Nelsen (2006) pp. 214-216).

3 Binary Model for Efficacy and Toxicity

Let (Y1, Y2) be a binary efficacy-toxicity response variable; both Y1 and Y2
take values in {0, 1} (1 denotes occurrence and 0 denotes no occurrence).
π1(x;α) = P (Y1 = 1|x;α) and π2(x;β) = P (Y2 = 1|x;β) are the marginal
success probabilities of efficacy and toxicity, where x ∈ X denotes the dose of
a drug. We consider a logistic model for both Y1 and Y2.

It is commonly accepted that efficacy and toxicity increase with dose. For
efficacy, however, in order to allow a wide variety of possible dose-response rela-
tionships (including non-monotonic functions) a logistic model with a quadratic
term is sometimes preferred; see Thall and Cook (2004). Then, we assume the
following logistic models for efficacy and toxicity:

π1(x;α) = P (Y1 = 1|x;α) =
eα0+α1x+α2x

2

1 + eα0+α1x+α2x2 , α = (α0, α1, α2),

π2(x;β) = P (Y2 = 1|x;β) =
eβ0+β1x

1 + eβ0+β1x
, β = (β0, β1).

A copula approach is applied to define a bivariate binary logistic model for
the efficacy-toxicity response. If δ = (α, β) and C(·, ·; θ) is a copula function
which models the dependence between π1(x;α) and π2(x;β), then the joint
probability of (Y1,Y2) at an experimental condition x is

pCy1y2(x; δ, θ) = P (Y1 = y1, Y2 = y2|x; δ, θ), y1, y2 = 0, 1. (2)

From (2) and the copula representation (1), let

pC11(x; δ, θ) = P (Y1 = 1, Y2 = 1|x; δ, θ) = C
(
π1(x;α), π2(x;β); θ

)
. (3)
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Equation (3) defines a class of models for the bivariate binary response: spec-
ifying C(·, ·; θ) it provides a particular model.

Table 1: Joint probabilities for efficacy and toxicity.

Toxicity
Efficacy 1 0

1 pC11 pC10 π1(x;α)

0 pC01 pC00 1− π1(x;α)
π2(x;β) 1− π2(x;β) 1

From Table 1 we have that

pC10(x; δ, θ) = π1(x;α)− pC11(x; δ, θ), (4)

pC01(x; δ, θ) = π2(x;β)− pC11(x; δ, θ), (5)

pC00(x; δ, θ) = 1− π1(x;α)− π2(x;β) + pC11(x; δ, θ). (6)

Several bivariate copulae have been proposed in the literature (see for in-
stance Nelsen (2006)). In this paper we consider only Clayton and Gumbel
copulae which have been applied in the context of Optimal Design by Den-
man et al (2011) and Perrone and Müller (2016) and which have been used
by Tao et al (2013) for modeling correlated efficacy-toxicity outcomes in a
dose-finding clinical study.

Clayton and Gumbel copulae are recalled in Table 2.

Table 2: Copula functions

Copula C(u1, u2; θ) θ ∈ Θ

Clayton (u−θ1 + u−θ2 − 1)−1/θ θ ∈ (0,∞)

Gumbel exp
(
−
[
{− ln(u1)}θ + {− ln(u2)}θ

]1/θ)
θ ∈ [1,∞)

Table 3 lists the herein considered values for θ, along with corresponding
association measures: Kendall’s τ and the lower and upper tail dependence
coefficients, λl and λu.

Both these copulae allow only for positive association between variables
(τ ≥ 0) but they exhibit strong left and strong right tail dependence, respec-
tively. Their main characteristics are:

- As θ approaches zero the Clayton copula approaches the product copula
Π = u1u2 (independence situation). For θ →∞ the copula approaches the
Frećhet-Hoeffding upper bound M = min(u1, u2). In the bivariate case, the
upper bound represents perfect positive dependence (i.e. comonotonicity
or positive monotone functional dependence) between variables (see Nelsen
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Table 3: Copula parameter values and the related dependence and tail dependence coeffi-
cients

Clayton θ τ = θ/(θ + 2) λl = 2(−1/θ) λu = 0

2 0.500 0.707 0.000
8 0.800 0.917 0.000
18 0.900 0.962 0.000

Gumbel θ τ = 1− 1/θ λl = 0 λu = 2− 2(1/θ)

2 0.500 0.000 0.586
5 0.800 0.000 0.851
10 0.900 0.000 0.928

(2006) p.32 and p.187 for details). This copula exhibits strong left (lower)
tail dependence, i.e. there exists a relationship between efficacy and toxicity
when they assume their low values.

- For θ = 1 the Gumbel copula corresponds to Π. For θ → ∞ the copula
approaches the Frećhet-Hoeffding upper bound M. This copula exhibits
strong right (upper) tail dependence, i.e. there exists a relationship between
efficacy and toxicity when they assume their high values.

4 P-optimal dose and motivation of the paper

Researchers are usually interested in finding the P-optimal dose which maxi-
mizes the probability of efficacy without toxicity, i.e.

xPC = arg max
x∈X

pC10(x; δ, θ). (7)

The computation of the P-optimal dose xPC is a deterministic problem that
can be solved whenever the model for the data is known.

Equation (7) shows that xPC depends on the assumed dependence structure
C(·, ·; θ). To establish if the P-optimal dose changes considerably under differ-
ent dependence structures, we have performed a robustness study exploring
several scenarios δ (i.e. different values of the marginal parameters α and β).
In order to obtain results which do not depend on the minimum (xmin) or
maximum (xmax) doses, neither on the unit of measurement, we standardize
the x according to this formula:

d =
x− xmin+xmax

2
xmax−xmin

2

, (8)

hence the experimental domain X becomes the interval D= [−1, 1].

From the robustness study (see the Supplementary Material and Deldossi
et al (2016)) we have that:
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a) There are scenarios where the P-optimal dose does not change substantially
under Clayton or Gumbel copulae and this common dose is obtained even
assuming (incorrectly) independence (as in Scenario 1 of the Supplemen-
tary Material);

b) There are scenarios where the copula misspecification does not influence
the P-optimal dose (as in the previous case), but we have a different P-
optimal dose if we incorrectly assume independence (such as Scenario 2 of
the Supplementary Material);

c) There are scenarios where the P-optimal dose changes considerably under
different rival copulae (as in Scenario 3 of the Supplementary Material).

Therefore, it is necessary to discriminate between copulae in case c). This
occurrence happens when the probability of toxicity overcomes the probability
of efficacy at each dose (Fig. 5 in the Supplementary Material), which is quite
common for instance in chemotherapeutic treatments.

In short, a pilot study, an expert opinion or past experiences suggest a
value for δ and τ (as a consequence, from Table 3 the association parameters
in the two rival copulae are also available); if the P-optimal doses obtained
from (7) under distinct copula models are quite different, then it is neces-
sary to select the most adequate dependence model. The identification of the
true dependence structure, however, may be difficult because the competing
models differ only for the tail dependence. In order to discriminate between
rival copulae, we propose a constrained version of the KL-optimality criterion
such that the corresponding optimum design is good to discriminate between
Clayton and Gumbel copulae without exposing patients to unsafe doses.

5 Constrained KL-Optimality

An approximate design ξ with a finite number of support points is denoted as

ξ=

{
d1 · · · dk
ω1 · · · ωk

}
,

where di ∈ D is an experimental condition that the researcher can freely
choose in the experimental domain D and 0 ≤ ωi = ξ(di) ≤ 1, i = 1, . . . , k, are
weights summing up to 1 and representing the amount of experimental effort
at each support point.

An experimental design is said “optimal” if it maximizes a concave opti-
mality criterion function which reflects an inferential goal.

In what follows the indices Cl and G denote Clayton and Gumbel copulae,
respectively. From now on we assume that nominal values for δ and τ are
available (hence, θCl and θG are known). In order to discriminate between the
rival copulae, the following geometric mean of KL-efficiencies may be used as
an optimality criterion:

ΦKL(ξ; δ, θCl, θG) = {EffG,Cl(ξ; δ, θCl)}γ1 ·{EffCl,G(ξ; δ, θG)}1−γ1 , 0 ≤ γ1 ≤ 1,
(9)
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where

EffC,J(ξ; δ, θJ) =
IC,J(ξ; δ, θJ)

IC,J(ξ∗C,J ; δ, θJ)
, ξ∗C,J = arg max

ξ
IC,J(ξ; δ, θJ), C, J = Cl,G.

The function

IC,J(ξ; δ, θJ) = inf
θC

∫
d∈D
I {pJy1y2(d; δ, θJ), pCy1y2(d; δ, θC)} dξ(d),

is the KL-criterion proposed by López-Fidalgo et al (2007), where

I {pJy1y2(d; δ, θJ), pCy1y2(d; δ, θC)} =
∑

y1,y2∈{0,1}

pJy1y2(d; δ, θJ) log
pJy1y2(d; δ, θJ)

pCy1y2(d; δ, θC)

is the Kullback-Leibler divergence between the true model pJy1y2(x; δ, θJ) and

pCy1y2(x; δ, θC), defined in formulas (2)-(6), with C, J = Cl,G.
Unfortunately, maximizing (9) could provide optimal doses that are unsafe

in the sense that they are very different from the P-optimal dose,

dPC = arg max
d∈D

pC10(d; δ, θC), C = Cl,G. (10)

To overcome this problem, we propose to maximize criterion (9) subject to a
constraint on a function of the probability of efficacy without toxicity. In more
detail, given a design ξ,

ΦPC(ξ; δ, θC) =

∫
d∈D

pC10(d; δ, θC) dξ(d), C = Cl,G (11)

is the marginal probability of efficacy without toxicity (McGree and Eccleston,
2008), which is maximized by ξPC = arg maxξ Φ

P
C(ξ; δ, θC). It is easy to prove

that ξPC is the design which concentrates the whole mass at the optimal dose
dPC given in (10). A measure of the “goodness” of a design ξ, in terms of safety
and efficacy, is

0 ≤ EffPC(ξ; δ, θC) =
ΦPC(ξ; δ, θC)

ΦPC(ξPC ; δ, θC)
≤ 1, C = Cl,G (12)

which is herein called P-efficiency of ξ. Let us consider the following geometric
mean of P-efficiencies

ΦP (ξ; δ, θCl, θG) =
{

EffPCl(ξ; δ, θCl)
}γ2
·
{

EffPG(ξ; δ, θG)
}1−γ2

, 0 ≤ γ2 ≤ 1;

(13)
we have that the larger ΦP (ξ; δ, θCl, θG), the safer and more efficacious ξ, under
both the rival copulae.

Hence, in order to discriminate between the two competing models, we
propose to maximize ΦKL(ξ; δ, θCl, θG) subject to the constraint

ΦP (ξ; δ, θCl, θG) ≥ c, (14)
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where c represents the value of the probability of efficacy without toxicity the
researcher wants to exceed to protect patients. From Cook and Wong (1994),
this constrained design problem is equivalent to the following compound cri-
terion, which is called PKL-criterion:

ΦPKL(ξ; δ, θCl, θG) = {ΦKL(ξ; δ, θCl, θG)}γ3 ·{ΦP (ξ; δ, θCl, θG)}1−γ3 , 0 ≤ γ3 ≤ 1.
(15)

For ease of notation, in what follows we omit δ from the argument of the
functions, even if they depend on the model parameter δ.
Maximizing (15) is equivalent to maximize

ΨPKL(ξ; θCl, θG) = logΦPKL(ξ; θCl, θG)

= γ3 logΦKL(ξ; θCl, θG) + (1− γ3) logΦP (ξ; θCl, θG).(16)

From Lemma 1 in Cook and Wong (1994) we may state the following
theorem that relates the weight γ3 in (15) with the constant c in (14):

Theorem 1 Given γ3 ∈ (0, 1), if ξγ3PKL = arg maxξ ΨPKL(ξ; θCl, θG) then

ξγ3PKL = arg max
ξ
ΦKL(ξ; θCl, θG) subject to the constraint

ΦP (ξ; θCl, θG) ≥ cγ3 , where cγ3 = ΦP (ξγ3PKL; θCl, θG). (17)

The PKL-optimum design ξγ3PKL = arg maxξ ΨPKL(ξ; θCl, θG) exists since
criterion function (16) is concave, as it is a convex combination of concave
optimality criteria (for a proof of the concavity of the KL-criterion see Tom-
masi (2007); it is also easy to prove that logΦPC(ξ; δ, θC) is concave as well).
Furthemore, the following equivalence theorem may be stated:

Theorem 2 A design ξγ3PKL is PKL-optimum if and only if the following in-
equality is satisfied:

γ3

[
γ1
I{pCly1y2(d; θCl), p

G
y1y2(d; θG)}

IG,Cl(ξ
γ3
PKL; θCl)

+ (1− γ1)
I{pGy1y2(d; θG), pCly1y2(d; θCl)}

ICl,G(ξγ3PKL; θG)

]

+ (1− γ3)

[
γ2

pCl10 (d; θCl)

ΦPCl(ξ
γ3
PKL; θCl)

+ (1− γ2)
pG10(d; θG)

ΦPG(ξγ3PKL; θG)

]
− 1 ≤ 0, d ∈ D. (18)

The left-hand side of inequality (18) is the directional derivative of the PKL-
criterion (16) evaluated at ξγ3PKL in the direction of ξd − ξγ3PKL (theoretical
details are provided in Appendix A). The analytical expression of the direc-
tional derivative is useful to check the optimality of a design as well as to
apply the first order algorithm in order to compute the PKL-optimum design
numerically; see §3.2 in Fedorov and Hackl (1997) and Fedorov and Leonov
(2014).

If a researcher aims at considering both the problems of model discrimina-
tion and parameter estimation at the same design stage, then a DKL-criterion
could be used (Tommasi, 2009). Even in this case we suggest to penalize with
respect to (13).
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Remark 1. The optimality criterion (15) depends on the choice of γ1, γ2 and
γ3. Weight γ1 reflects the relative importance of the two rival copula models.
Let ξγ1KL = arg maxξ ΦKL(ξ; θCl, θG) be the best design to discriminate be-
tween the two copulae. Choosing γ1 equal to 0.5 does not necessarily imply
equal belief in the competing models, thus following Cook and Wong (1994) we

suggest to choose the value γ∗1 such that EffG,Cl
(
ξ
γ∗
1

KL; θCl
)

= EffCl,G
(
ξ
γ∗
1

KL; θG
)
.

In the same way, let ξγ2P = arg maxξ ΦP (ξ; θCl, θG) for a given γ2. We suggest

to use the value γ∗2 such that EffPCl(ξ
γ∗
2

P ; θCl) = EffPG(ξ
γ∗
2

P ; θG).
Differently, (1 − γ3) reflects the degree of protection from unsafe designs as
expressed by the constraint (17): the smaller γ3 the safer the optimal design.
Therefore, the optimal design ξγ3PKL and the threshold cγ3 should be computed
for several values of γ3. Then, the researcher can choose the best PKL-optimum
design depending on the degree of protection cγ3 that he/she prefers.

For three values of (θCl; θG) (corresponding to three different values of τ)
and for several values of γ3 (γ1 = γ∗1 and γ2 = γ∗2 , as described in Remark 1),
Table 4 reports: ξγ3PKL, the KL-efficiency, i.e.

EffKL(ξγ3PKL) =
ΦKL(ξγ3PKL; θCl, θG)

ΦKL
(
ξ
γ∗
1

KL; θCl, θG
) , (19)

and the threshold cγ3 given in (17). For instance, if γ3 = 0.6, ξγ3PKL provides
a good performance to discriminate between dependence structures, since the
KL-efficiency of ξγ3PKL is greater than 0.90 for all the values of (θCl; θG). In
addition, according to (17), ξγ3PKL also guarantees a quite high probability
(around 0.50) of efficacy without toxicity.

Results in Table 4 have been obtained by running a computer code written
in Mathematica. The code is freely available upon request to the authors.

6 Simulation study

In order to assess the ability of the PKL-optimum design to discriminate be-
tween two competing copula models we employ the likelihood ratio test. In
some sense, we apply Cox’s test (see Cox (1961) and Cox (1962)) to compare
non-nested1 models, but instead of using the asymptotic distribution proposed
by Cox, we consider the Monte Carlo distribution of the log-likelihood ratio.

For a specific Scenario δ and for a specific value of Kendall’s τ coefficient,
we generate M samples of size n, at the PKL-optimum design ξγ3PKL, from one
of the two rival models. Then, we check how many times the likelihood ratio
test provides an evidence in favour of each model.

1 In non-nested hypotheses neither model can be obtained from the other by imposing a
parametric restriction.
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Table 4: PKL-optimal designs, their KL-efficiencies and thresholds cγ3
(θCl; θG) γ3 ξγ3PKL EffKL(ξγ3PKL) cγ3

(2;2)

0.2

{
−0.605 −0.267
0.530 0.470

}
0.446 0.767

0.4

{
−0.686 −0.200
0.478 0.522

}
0.747 0.620

0.6

{
−0.750 −0.150
0.465 0.535

}
0.911 0.504

0.8

{
−0.800 −0.100
0.460 0.540

}
0.986 0.410

1

{
−0.800 −0.050
0.440 0.560

}
1 0.368

(8;5)

0.2

{
−0.600 −0.157
0.520 0.480

}
0.680 0.578

0.4

{
−0.663 −0.132
0.472 0.528

}
0.850 0.530

0.6

{
−0.700 −0.100
0.461 0.539

}
0.935 0.491

0.8

{
−0.750 −0.063
0.459 0.541

}
0.994 0.437

1

{
−0.793 −0.050
0.470 0.530

}
1 0.399

(18;10)

0.2

{
−0.039 0.576
0.583 0.417

}
0.590 0.795

0.4

{
−0.010 0.700
0.517 0.483

}
0.829 0.689

0.6

{
−0.171 0.750
0.472 0.528

}
0.910 0.647

0.8

{
−0.214 0.800
0.441 0.559

}
0.983 0.558

1

{
−0.250 0.850
0.413 0.587

}
1 0.504

6.1 Likelihood ratio test for rival copula-based models

Given δ, τ and a design ξ, let (y1i, y2i) for i = 1, 2, ...n be a sample of efficacy
and toxicity outcomes from one of the two rival models. Following Pesaran and
Weeks (2001) the problem is to test both the following systems of hypotheses:

A)

{
HCl : FCl = {pCly1y2(d; δ, θCl), θCl ∈ ΘCl}
HG : FG = {pGy1y2(d; δ, θG), θG ∈ ΘG}

B)

{
HG : FG = {pGy1y2(d; δ, θG), θG ∈ ΘG}
HCl : FCl = {pCly1y2(d; δ, θCl), θCl ∈ ΘCl}

From now on, we omit the arguments d and δ for ease of notation. As test
statistics, we consider the following log-likelihood ratios:

TClG = LCl(θ̂Cl)− LG(θ̂G) and TGCl = LG(θ̂G)− LCl(θ̂Cl), (20)
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Table 5: PKL-optimal design, KL-efficiency and threshold cγ3 for (θCl; θG) = (8; 5) and
γ3 = 0.17

ξγ3PKL EffKL(ξγ3PKL) cγ3{
−0.587 −0.187
0.531 0.469

}
0.601 0.594

where LCl(θCl) and LG(θG) are the log-likelihood functions under HCl and

HG, respectively, and θ̂Cl and θ̂G are the corresponding maximum likelihood
estimators2 of θCl and θG.

Let pClG and pGCl be the p-values of TClG and TGCl, respectively. Given a
significance level α̃, the test of hypothesis can lead to four different decisions:

a) If pClG < α̃ and pGCl ≥ α̃, we reject Clayton and accept Gumbel;
b) If pClG ≥ α̃ and pGCl < α̃, we accept Clayton and reject Gumbel;
c) If pClG ≥ α̃ and pGCl ≥ α̃, we accept Clayton (or Gumbel) when pClG >

pGCl (or pGCl > pClG);
d) If pClG < α̃ and pGCl < α̃, we reject Clayton (or Gumbel) when pClG <

pGCl (or pGCl < pClG).

In other words, we suggest to accept Clayton (or Gumbel) model whenever
pClG > pGCl (or pGCl > pClG).

In the case of non-nested models the log-likelihood ratio is not (asymp-
totically) distributed as a Chi-squared random variable (see for instance Cox
(1962); Pesaran and Weeks (2001); Monfardini (2003)). Hence, we implement
a Monte Carlo procedure to approximate the sample distribution of TClG and
TGCl and to compute the corresponding p-values, p̂ClG and p̂GCl under HCl

and HG, respectively. Differently, Cox (1961, 1962) proposed the asymptotic
distribution of the log-likelihood ratio suitably standardized.

6.2 Simulation and results

For Scenario 3 of the Supplementary Material, δ = (1, 1.5,−3, 2.5, 5), and
τ = 0.8 we perform two Monte Carlo simulations, based on the generation
of M = 5000 samples of size n from model (3) using a Clayton copula with
θCl = 8 and a Gumbel copula with θG = 5, respectively. The doses and the
proportions of observations to be taken at each dose are given by the PKL-
optimum design with γ3 = 0.17, which is reported in Table 5. From the last
two columns of Table 5 we can observe that this design is almost equally good
for discriminating between rival copulae, according to the KL-efficiency (19),
and for protecting patients against unsafe doses, according to the constraint
(14).

2 Observe that θ̂Cl and θ̂G are referred to as QML (quasi maximum likelihood) estimators
when they are obtained under the not true hypotheses HCL and HG.
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For the generation of the dichotomous response (Y1, Y2) in model (3) we
consider the following latent response model with continuous dependent vari-
able (Y ∗1 , Y

∗
2 ) (see Verbeek (2008), p.202). Let us assume that

Yj =

{
1 if Y ∗j > 0
0 if Y ∗j ≤ 0

j = 1, 2 (21)

where, after the standardization (8),

Y ∗1 = α0 + α1d+ α2d
2 + ε1 = η1(d; δ) + ε1

Y ∗2 = β0 + β1d+ ε2 = η2(d; δ) + ε2

and the random error (ε1, ε2) follows a bivariate standard logistic distribution
with a dependence structure which fulfills Theorem 3 (see Appendix B).
In more detail:

We compute η1(d; δ) and η2(d; δ) at d1 = −0.587 and d2 = −0.187, which
are the support points of the PKL-optimum design (see Table 5).

For M times we repeat the following steps:

1. We generate a random sample of n i.i.d. bivariate errors, (ε1i, ε2i), i =
1, . . . , n, from the following cdf

Fε1,ε2(ε̃1, ε̃2; θC) = Fε1(ε̃1) + Fε2(ε̃2)− 1 + C
(
1− Fε1(ε̃1), 1− Fε2(ε̃2); θC

)
,

(see Equations (28) and (29)), where Fεj (ε̃j), j = 1, 2, denotes the marginal
cdf of a standard logistic random variable and C(·, ·; θC) is the Clayton
copula with θCl = 8 (or the Gumbel copula with θG = 5);

2. We compute {
y∗1i = η1(d1; δ) + ε1i
y∗2i = η2(d1; δ) + ε2i

i = 1, · · · , n1

and {
y∗1i = η1(d2; δ) + ε1i
y∗2i = η2(d2; δ) + ε2i

i = 1, · · · , n2

where n1 and n2 are obtained multipling ξ(d1) = 0.531 and ξ(d2) = 0.469
(given in Table 5) by n, and then using some rounding off rule (see for
instance Chapter 12 in Pukelsheim (2006)).

3. For i = 1, · · · , n we obtain (y1i, y2i) by transforming (y∗1i, y
∗
2i) according to

(21).
4. We compute the ML estimates of θCl and θG to calculate the observed

values of TClG and TGCl given in (20).
5. We compute the Monte Carlo p-values (at the m-th step), p̂mClG and p̂mGCl

using the following subroutine:

Subroutine (Monte Carlo p-value for TClG)
(a) Generate R = 10000 samples of size n from the model under HCl with

θCl = 8;
(b) For r = 1, .., R:
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– Compute the estimates (θ̂rCl, θ̂
r
G) by maximizing the log-likelihood

functions LCl(θ
r
Cl) and LG(θrG) under HCl and HG, respectively;

– Evaluate the log-likelihood ratio statistic

T rClG = LCl(θ̂
r
Cl)− LG(θ̂rG);

(c) Calculate the Monte Carlo p-value as

p̂mClG =

R∑
r=1

I(T rClG ≤ tmClG)/R

We can obtain the Monte Carlo p-value of TGCl by reversing the role of
Clayton and Gumbel models.

We calculate the percentages of correct selection of the true model, i.e. the
percentage of times that pmClG > pmGCl for m = 1, . . . ,M , when the data are
generated from the Clayton copula, and the percentage of times that pmGCl >
pmClG for m = 1, . . . ,M , when the data are generated from the Gumbel copula.

The simulation results are reported in the third and the forth columns of Table
6.

Table 6: Monte Carlo simulation of the likelihood ratio test (M = 5000): data gener-

ated from Clayton and Gumbel copulae for τ = 0.8, at the PKL-optimum design ξγ3=0.17
PKL

(columns 3-4) and at the KL-optimum design ξKL = ξγ3=1
PKL (columns 5-6)

ξγ3=0.17
PKL ξKL

n Test decision
True copula model (%) True copula model (%)
Clayton Gumbel Clayton Gumbel

100 Correct decision 70.58 71.86 72 71.88
Wrong decision 29.42 28.14 28 28.12

200 Correct decision 81.46 81.4 82.28 84.04
Wrong decision 18.54 18.6 17.72 15.96

500 Correct decision 91.34 91.06 95.56 95.4
Wrong decision 8.66 8.94 4.44 4.6

1000 Correct decision 97.52 97.58 99.5 99.2
Wrong decision 2.48 2.42 0.5 0.8

We can observe that the percentage of correct decision is always much
greater than that of wrong decision. Its value is around 70% from n = 100
and it exceed 90% for n = 500. Furthermore, the percentage of wrong decision
decreases substantially as n increases. Taking into account that the competing
models differ only for the tail dependence, the obtained results are excellent.
Perhaps continuous response variables guarantee better percentages even with
a smaller sample size. This will be a matter of future research.

In order to compare the performance of the PKL-optimum design with
the unconstrained KL-optimum one (reported in Table 4 for (θCl; θG) = (8; 5)
and γ3 = 1), we repeat the same simulation study generating data at the
KL-optimum design. The corresponding percentages of correct decision and
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wrong decision (listed in the last two columns of Table 6) show that the KL-
optimum design is slightly better than its constrained PKL-version. Hence,
we can conclude that the introduction of the penalization in the KL-criterion
does not have a large negative effect on the discrimination ability.

7 Conclusion

In the last years, toxicity and efficacy are jointly studied in dose-finding
methodologies. Many of these studies assume a specific dependence structure
to model the relationship between the probabilities of efficacy and toxicity.
Since the underlying dependence structure is sometimes unknown, our goal is
to decide which specific copula is to be employed whenever two distinct copulae
yield to a different P-optimal dose (the dose which maximizes the probability
of efficacy without toxicity). More specifically, we consider as competing mod-
els the Clayton and Gumbel copulae, which both allow for positive association
even if they differ for tail dependence. From a robustness study we observe
that the P-optimal dose changes considerably (under the two copulae) when
the probability of toxicity overcomes that of efficacy (at each dose). Hence, in
this setting it is fundamental to determine the proper dependence structure
in order to identify the P-optimal dose.

To this aim, we propose the PKL-criterion which is a constrained version of
the KL-optimality and depends on the Scenario δ, the association parameter
τ and the weights γ1, γ2, γ3. To apply our method, we suggest the following
scheme:

a) Guess a value for the Scenario δ and the association level τ from a pilot
study, an expert opinion or past experiences.

b) Given δ and the copula parameters θCl and θG corresponding to τ (see
Table 3), compute the P-optimal doses under the two rival copulae applying
(7). When the P-optimal doses are very different, then it is necessary to
discriminate between the competing copulae.

c) Fix the weights γ1, γ2 and γ3 as described in Remark 1.
d) Compute the PKL-optimum design applying (17).
e) Run the experiment in order to collect the data and finally apply the se-

lection method (based on Cox’s test) described in Section 6.

The PKL-optimum design is good to discriminate between the two rival cop-
ulae as well as to protect patients against unsafe doses. These two goals could
be also achieved using the penalization approach described in Dragalin and
Fedorov (2006) and Dragalin et al (2008) but, differently from their proposal,
by choosing the value of γ3 we can control the amount of protection against
dangerous doses. A simulation study shows that the PKL-optimal design is
really able to discriminate between the rival copulae despite the constraint
introduced to avoid doses that are far away from the P-optimal one.
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APPENDIX A: Theoretical details

Taking into account equations (9) and (13), criterion function (16) becomes

ΨPKL(ξ; θCl, θG) = γ3

[
γ1 log

IG,Cl(ξ; θCl)

IG,Cl(ξ∗G,Cl; θCl)
+ (1− γ1) log

ICl,G(ξ; θG)

ICl,G(ξ∗Cl,G; θG)

]

+ (1− γ3)

[
γ2 log

ΦPCl(ξ; θCl)

ΦPCl(ξ
P
Cl; θCl)

+ (1− γ2) log
ΦPG(ξ; θG)

ΦPG(ξPG ; θG)

]
.

(22)

Except for a constant term, from (22) we have that

ΨPKL(ξ; θCl, θG) = γ3 [γ1 log IG,Cl(ξ; θCl) + (1− γ1) log ICl,G(ξ; θG)]

+ (1− γ3)
[
γ2 logΦPCl(ξ; θCl) + (1− γ2) logΦPG(ξ; θG)

]
.(23)

The directional derivative of ΨPKL(ξ; θCl, θG) at ξ in the direction of ξd − ξ
can be easily obtained from the expressions of the corresponding directional
derivatives of Ii,j(ξ; θj), i, j = G,Cl and ΦPC(ξ; θC), C = G,Cl, respectively.

Assuming that the true model is pjy1y2(x; θj), we recall that

∂Ii,j(ξ, ξd; θj) = I{pjy1y2(d; θj), p
i
y1y2(d; θi)} − Ii,j(ξ; θj), i, j = G,Cl,

(24)
see López-Fidalgo et al (2007).

The directional derivative of ΦPC(ξ; θC) at ξ in any direction ξ̄ − ξ is:

∂ΦPC(ξ, ξ̄; θC) = lim
α→0+

ΦPC
[
(1− α)ξ + αξ̄; θC

]
− ΦPC(ξ; θC)

α

= lim
α→0+

(1− α)ΦPC(ξ; θC) + αΦPC(ξ̄; θC)− ΦPC(ξ; θC)

α

= ΦPC(ξ̄; θC)− ΦPC(ξ; θC), C = Cl,G,

where the second equality is due to the linearity of the criterion ΦPC(ξ; θC).
Therefore, taking into account equation (11),

∂ΦPC(ξ, ξ̄; θC) =

∫
d∈D

[
pC10(d; θC)−

∫
d∈D

pC10(d; θC) d ξ(d)

]
dξ̄(d).

From this last expression, the directional derivative of ΦPC(ξ; θC) at ξ in the
direction of ξd − ξ is

∂ΦPC(ξ, ξd; θC) = pC10(d; θC)−
∫
d∈D

pC10(d; θC) d ξ(d). (25)
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From (23), taking into account Equations (24) and (25), we have that

∂ΨPKL(ξ; ξd) = γ3

[
γ1
I{pCly1y2(d; θCl), p

G
y1y2(d; θG)} − IG,Cl(ξ; θCl)
IG,Cl(ξ; θCl)

+ (1− γ1)
I{pGy1y2(d; θG), pCly1y2(d; θCl)} − ICl,G(ξ; θG)

ICl,G(ξ; θG)

]

+ (1− γ3)

[
γ2
pCl10 (d; θCl)− ΦPCl(ξ; θCl)

ΦPCl(ξ; θCl)
+ (1− γ2)

pG10(d; θG)− ΦPG(ξ; θG)

ΦPG(ξ; θG)

]
.

= γ3

[
γ1
I{pCly1y2(d; θCl), p

G
y1y2(d; θG)}

IG,Cl(ξ; θCl)
+ (1− γ1)

I{pGy1y2(d; θG), pCly1y2(d; θCl)}
ICl,G(ξ; θG)

]

+ (1− γ3)

[
γ2
pCl10 (d; θCl)

ΦPCl(ξ; θCl)
+ (1− γ2)

pG10(d; θG)

ΦPG(ξ; θG)

]
− 1.

APPENDIX B: Latent representation of the model

The random error (ε1, ε2) in the latent representation (21) is distributed as
a bivariate standard logistic distribution which fulfills the following theorem
(for ease of notation, in what follows we omit d and δ).

Theorem 3 If Ĉ(·, ·; θC) is the copula that defines the cdf of the bivariate
error (ε1, ε2), according to the Sklar’s theorem, then P (Y1 = 1, Y2 = 1; θC) =
C(π1, π2; θC) where C(·, ·; θC) is the survival copula of Ĉ(·, ·; θC). Vice versa,
if P (Y1 = 1, Y2 = 1; θC) = C(π1, π2; θC) where C(·, ·; θC) is a copula function,
then the cdf of (ε1, ε2) is defined by the survival copula of C(·, ·; θC).

Proof Let us recall that given a copula Ĝ(·, ·; θ), the corresponding survival
copula is

G(u, v; θ) = u+ v − 1 + Ĝ(1− u, 1− v; θ). (26)

(see Nelsen (2006)). In addition, let Fε1,ε2(·, ·; θC) and Fεi(·) be the joint cdf
and the marginal cdf of the errors εj with j = 1, 2.

If we assume that Fε1,ε2(ε̃1, ε̃2; θC) = Ĉ(Fε1(ε̃1), Fε2(ε̃2); θC), where Ĉ(·, ·; θC)
is a copula function, then

P (Y1 = 1, Y2 = 1; θC) = P (Y ∗1 > 0, Y ∗2 > 0; θC) = P (ε1 > −η1, ε2 > −η2; θC)

= 1− P (ε1 <−η1)− P (ε2 <−η2) + P (ε1 <−η1, ε2 <−η2; θC)

= F ε1(−η1) + F ε2(−η2)− 1

+ Ĉ
(
1− F̄ε1(−η1), 1− F̄ε2(−η2) ; θC

)
(27)

where F εj (·) = 1− Fεj (·) is the survival function of εj , j = 1, 2.
The first statement of the theorem is proved by comparing Equations (26) and
(27).
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On the other side, if P (Y1 = 1, Y2 = 1; θC) = C(π1, π2; θC), where C(·, ·; θC)
is a copula function, then

P (Y1 = 0, Y2 = 0; θC) = 1− π1 − π2 + C(π1, π2; θC)

= Fε1(−η1) + Fε2(−η2)− 1

+ C
(
1− Fε1(−η1), 1− Fε2(−η2) ; θC

)
. (28)

By comparing (28) with (26) it is easy to show that P (Y1 = 0, Y2 = 0; θC) is
defined by the survival copula of C(·, ·; θC). However it should be noted also
that

P (Y1 = 0, Y2 = 0; θC) = P (Y ∗1 < 0, Y ∗2 < 0; θC) = P (ε1 < −η1, ε2 < −η2; θC)

= Fε1,ε2(−η1,−η2; θC). (29)

Thus, the second statement of the theorem follows from Equations (28) and
(29).
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SUPPLEMENTARY MATERIAL: P-optimal dose under different
scenarios

Let d ∈ [−1, 1] denote a dose as defined in (8). To understand how the P-
optimal dose given in (10) changes accordingly to the assumed dependence
structure C(·, ·; θC), we have considered several different settings for δ. Herein,
we describe just three scenarios as representatives of three different cases:

a) It is not necessary to take into consideration the dependence structure:
pCl10 (d; δ, θCl) and pG10(d; δ, θG) give P-optimal doses close to that obtained
in the independence case;

b) It is necessary to model the dependence but pCl10 (d; δ, θCl) and pG10(d; δ, θG)
give almost the same P-optimal dose, hence discrimination is unnecessary;

c) It is relevant to discriminate between Clayton and Gumbel copulae as
pC10(d; δ, θC) leads to different P-optimal doses for C = Cl,G.

Let Scenario 1 be δ = (1, 1.5,−0.5,−2, 1.5). As shown in Fig. 1 under this
scenario the marginal probability of efficacy is greater than 0.5 and that of
toxicity is less than 0.4, at each dose. It follows that the whole design region
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Fig. 1: Marginal probabilities of efficacy (red solid line) and toxicity (blue dashed
line) and their joint probability in the independence case (black dotted line), for δ =
(1, 1.5,−0.5,−2, 1.5) related to Scenario 1.

D = [−1, 1] may represent the so-called therapeutic region defined by the
the minimum effective dose (MED) and the maximum tolerated dose (MTD)
(Dragalin et al, 2008).

Let us recall that to measure the goodness of a dose d with respect to the
P-optimal dose dPC we use the P-efficiency defined in (12):

EffPC(d; δ, θC) =
pC10(d; δ, θC)

pC10(dPC ; δ, θC)
.

Table 7 reports the P-optimal dose dPC , the P-efficiency of dPΠ (optimal dose
in the independence case) and the P-efficiency of dPCF

(optimal dose under a
misspecified copula) for Scenario 1. We can observe that the P-optimal dose
under the independence assumption is quite similar to those obtained assuming
different copula functions (and/or different values of the dependence parameter
θC). Hence, the P-efficiencies of dPΠ are all close to 1.
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Table 7: P-optimal dose dPC , P-efficiency of dPΠ (optimal dose in the independence case) and

P-efficiency of dPCF
(optimal dose under a misspecified copula) under Scenario 1

Scenario 1

True Copula (CT ) θCT
dPC EffPCT

(dPΠ) False Copula (CF ) θCF EffPCT
(dPCF

)

Clayton
2 0.2538 0.9999

Gumbel
2 0.9999

8 0.2479 0.9998 5 1
18 0.2479 0.9998 10 0.9999

Gumbel
2 0.2467 0.9998

Clayton
2 0.9999

5 0.2479 0.9998 8 1
10 0.2479 0.9998 18 1

Independence
0.2654 1copula Π

Actually, the region where the joint probability (3) takes its values is

π1(x;α) · π2(x;β) ≤ pC11(x; δ, θ) ≤ min{π1(x;α);π2(x;β)}, (30)

(see Nelsen (2006) p.30). From (30) we have that the farther pC11 is from the
lower bound which corresponds to independence between efficacy and toxic-
ity, the larger should be the effect of the dependence structure. According to
(30), we can observe from Fig. 1 that pC11 may assume values only in the area
included between the blue dashed line and the black dotted one. As a con-
sequence, the dependence structure (i.e. the copula function) cannot separate
pC11 too much from π1 ·π2 and thus the probabilities of efficacy without toxicity
pC10 for the Clayton and the Gumbel copulae with the same τ are overlapping,
as shown in Fig. 2.

Hence, for Scenario 1, clinicians can avoid to model toxicity and efficacy
jointly by using Clayton or Gumbel copulae: the P-optimal dose can be ob-
tained under the independence assumption. From our simulations, it seems
that this kind of results holds when the marginal probability of efficacy is
uniformly greater than the marginal probability of toxicity.

Consider now Scenario 2 defined by δ = (−1, 3, 0,−1, 4) where the marginal
probability of efficacy and toxicity are quite similar for d ≤ 0, while for d > 0
the probability of toxicity is greater than that of efficacy (see Fig. 3 where the
area included between the red solid line and the black dotted one defines the
region where pC11 may assume values). From the results reported in Table 8 we
can observe that the losses in P-efficiency of dPΠ increase with the association
between efficacy and toxicity.

Differently from the previous scenario, in this case clinicians should model
efficacy and toxicity jointly, since the P-efficiency of dPΠ is quite low under
both the rival copulae, except for θCl=2 and θG=2 (compare the shapes of pC10
in Fig. 4 under the different dependence structures). From the right-hand side
of Table 8, however, we can observe that the P-efficiency of the P-optimal dose
under a misspecified copula, dPCF

, is large and increases with θC . Hence, even
if it is relevant to take into consideration the dependence structure (because
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Fig. 2: Marginal probabilities of efficacy (red line) and toxicity (blue line); pC11(d; δ, θC)
(left-side) and pC10(d; δ, θC) (right-side) for: the independence situation (black line), C = Cl
(green line) and C = G (orange line), with three different values of τ (see Table 3): τ = 0.5
(first row), τ = 0.8 (second row) and τ = 0.9 (last row), at δ = (1, 1.5,−0.5,−2, 1.5)
(Scenario 1).
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Fig. 3: Marginal probabilities of efficacy (red solid line) and toxicity (blue dashed line) and
their joint probability in the independence case (black dotted line), for δ = (−1, 3, 0,−1, 4)
related to Scenario 2.
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Table 8: P-optimal dose dPC , P-efficiency of dPΠ (optimal dose in the independence case) and

P-efficiency of dPCF
(optimal dose under a misspecified copula) under Scenario 2

Scenario 2

True Copula (CT ) θCT
dPC EffPCT

(dPΠ) False Copula (CF ) θCF EffPCT
(dPCF

)

Clayton
2 0.3249 0.9708

Gumbel
2 0.8666

8 -0.3180 0.5184 5 0.9049
18 -0.3551 0.0859 10 0.9656

Gumbel
2 0.0366 0.9179

Clayton
2 0.7603

5 -0.1562 0.5796 8 0.9225
10 -0.2757 0.2355 18 0.9771

Independence
0.1993 1copula Π

to ignore it leads to a wrong optimal dose dPπ ), the choice of the copula seems
to be indifferent (orange and green lines in Fig. 4 are almost overlapping).

Finally consider Scenario 3 defined by δ = (1, 1.5,−3, 2.5, 5), where the
marginal probability of toxicity is greater than that of efficacy, as shown in
Fig. 5 where the area included between the red solid line and the black dotted
one defines the region where pC11 may assume values. Actually, we have losses
in the P-efficiency of both dPΠ and dPCF

, as shown in Table 9.

Table 9: P-optimal dose dPC , P-efficiency of dPΠ (optimal dose in the independence case) and

P-efficiency of dPCF
(optimal dose under a misspecified copula) under Scenario 3

Scenario 3

True Copula (CT ) θCT
dPC EffPCT

(dPΠ) False Copula (CF ) θCF EffPCT
(dPCF

)

Clayton
2 -0.3760 0.9215

Gumbel
2 0.7747

8 -0.2234 0.5982 5 0.2308
18 -0.0825 0.3282 10 0.0333

Gumbel
2 -0.5551 0.9516

Clayton
2 0.7601

5 -0.6229 0.7567 8 0.0957
10 -0.6606 0.4914 18 0.0002

Independence
-0.479 1copula Π

From Fig. 6 we have that the probabilities of efficacy without toxicity, pC10
under Clayton and Gumbel copulae, reach their maximum value at different
doses (even if both of them are flat).

Therefore, for this kind of scenarios, it is necessary to correctly identify the
true dependence copula model in order to assess the P-optimal dose.
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Fig. 4: Marginal probabilities of efficacy (red line) and toxicity (blue line); pC11(d; δ, θC)
(left-side) and pC10(d; δ, θC) (right-side) for: the independence situation (black line), C = Cl
(green line) and C = G (orange line), with three different values of τ (see Table 3): τ = 0.5
(first row), τ = 0.8 (second row) and τ = 0.9 (last row), at δ = (−1, 3, 0,−1, 4) (Scenario
2).
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Fig. 5: Marginal probabilities of efficacy (red solid line) and toxicity (blue dashed line) and
their joint probability in the independence case (black dotted line), for δ = (1, 1.5,−3, 2.5, 5)
related to Scenario 3.
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Fig. 6: Marginal probabilities of efficacy (red line) and toxicity (blue line); pC11(d; δ, θC)
(left-side) and pC10(d; δ, θC) (right-side) for: the independence situation (black line), C = Cl
(green line) and C = G (orange line), with three different values of τ (see Table 3): τ = 0.5
(first row), τ = 0.8 (second row) and τ = 0.9 (last row), at δ = (1, 1.5,−3, 2.5, 5) (Scenario
3).


